
Resource Allocation in Mobile

Edge Cloud Computing for

Data-Intensive Applications

by

Mohammad Nour ALKHALAILEH
Supervisor: Assoc. Prof. Bahman Javadi

Associate Supervisors: Dr. Rodrigo N. Calheiros and Dr. Quang

Vinh Nguyen

A thesis submitted in total fulfillment for the

degree of Doctor of Philosophy

in the

School of Computer, Data and Mathematical Sciences

Western Sydney University

February 2021

Dedication

This Thesis is dedicated to my parents

In memory of my father

In memory of my mother

With love and eternal appreciation for

their endless love, support and

encouragement

i

Acknowledgements

The completion of this thesis would not have been possible without the support

and encouragement of several special people. I would like to take this opportunity

to show my gratitude to those who have assisted me in a myriad of ways.

First and foremost, I would like to express my deep and sincere gratitude and heart-

felt thanks to my research supervisor A/Prof. Bahman Javadi for his continuous

support of my PhD study and research, for his patience, motivation, enthusiasm,

and generosity with his immense knowledge. His guidance was invaluable to me

during all stages of my research and when writing this thesis.

I could not imagine a better advisor and mentor for my PhD study. Dr Bahman

is someone you will instantly love and never forget once you meet him. He’s the

funniest advisor and one of the smartest people I know. I hope that I can learn to

be as lively, enthusiastic and energetic as Dr Bahman and to someday command

an audience as well as he can.

I would also like to express my appreciation to my co-supervisors Dr Rodrigo Cal-

heiros and Dr Quang Vinh Nguyen for their encouragement, insightful comments

and great help with many aspects of my research.

I thank to my close friend, Raed Alsurdeh, for helping me to solve technical issues

and supporting me during my research journey. Great thanks to my research team,

Bilal, Yogesh, Rekha and friends. Thank you, Nabil and Guang, for five years of

technical computing support. Thank you to all staff in the library and GRS for

all help and support I received. Thank you to Dr Campbell Aitken, who pro-

vided professional editing services in accordance with the Institute of Professional

Editors’ Guidelines for editing research theses.

I would like to express my sincere gratitude to Western Sydney University. WSU

has assisted me in gaining new research skills and knowledge of IT over the last

five years.

I am also thankful for Australia for hosting me for the last 12 years. I have come

to realise a lot about education, life, reality and most of all my destiny and journey

in this life.

ii

Dedication iii

I am indebted to my beloved parents for their continuous support. I would not be

the person I am today without their tremendous help and sacrifice. I owe all my

achievements and success to them.

Last but not least, I would like to thank my family: my lovely wife Noor, my

kids (Yousef, Zain and Batool), my brothers, my sister, my Parent-in-law and my

brothers-in-law for supporting me spiritually throughout writing this thesis and

my life in general.

Mohammad ALKHALAILEH

July 2020

Declaration of Authorship

I, Mohammad Nour ALKHALAILEH, declare that this thesis titled, Resource

Allocation in Mobile Edge Cloud Computing for Data-Intensive Applications and

the work presented in it are my own.

I confirm that the work presented in this thesis is, to the best of my knowledge

and belief, original except as acknowledged in the text. I hereby declare that I

have not submitted this material, either in full or in part, for a degree at this or

any other institution.

Signed

Date:

iv

08 / 02 / 2021

Contents

Dedication i

Acknowledgements ii

Declaration of Authorship iv

List of Figures ix

List of Tables xi

Abbreviations xii

Abstract xiv

1 Introduction 1

1.1 Mobile-aware Computing Models 2

1.1.1 Mobile Computing . 3

1.1.2 Hybrid Mobile Cloud Computing 4

1.1.3 Mobile-Edge Cloud Computing 8

1.2 Computation Offloading . 9

1.3 Problem Statement and Research Questions 11

1.3.1 Motivation . 11

1.3.2 Research Questions . 13

1.4 Contributions . 14

1.5 Thesis Organisation . 15

2 Literature Review 18

2.1 Introduction . 18

2.2 Computation Offloading Techniques and Algorithms 19

2.2.1 Energy Consumption . 21

2.2.2 Elasticity and Scalability 26

2.2.3 Data-intensive mobile applications 29

2.3 Summary and Discussion . 36

v

Contents vi

3 Dynamic Resource Allocation in Hybrid Mobile Cloud Comput-
ing for Data-Intensive Applications 37

3.1 Introduction . 38

3.2 System Architecture . 40

3.2.1 Context Monitor . 41

3.2.2 Decision-Making . 42

3.2.3 Execution Module . 43

3.3 System Modelling and Problem Formulation 43

3.3.1 Task Modelling . 44

3.3.2 Resource Modelling . 45

3.3.3 Application Execution Models 45

3.3.3.1 Task Execution Time Model 45

3.3.3.2 Mobile Device Energy Model 46

3.3.3.3 Monetary Cost Model 47

3.3.4 Problem Formulation . 48

3.4 Proposed Data-Aware Offloading Technique 48

3.5 Performance Evaluation . 52

3.5.1 Experimental Setup . 53

3.5.2 System Profiling . 54

3.5.3 System Evaluation and Experimental Results 57

3.6 Summary . 60

4 Data-Intensive Application Scheduling on Mobile Edge Cloud
Computing 61

4.1 Introduction . 62

4.2 Related Work . 64

4.3 System Architecture . 66

4.3.1 Application Profiler . 68

4.3.2 Resource Handler . 68

4.3.3 Queuing Estimator . 68

4.3.4 Cost Estimator . 69

4.3.5 Task Manager . 69

4.3.6 Decision-Maker . 69

4.4 Application Model . 70

4.4.1 Task Model . 71

4.4.2 System Model . 71

4.4.3 Task Execution Time Model 72

4.4.4 Mobile Device Energy Model 73

4.4.5 Monetary Cost Model . 74

4.5 The Proposed Offloading Algorithm 74

4.6 Performance Evaluation . 79

4.6.1 Experimental Setup . 80

4.6.2 System Profiling . 81

4.6.3 Model Validation . 82

Contents vii

4.6.4 System Evaluation Results 83

4.7 Summary . 87

5 Performance Analysis of Mobile, Edge, and Cloud Computing
Platforms for Distributed Applications 89

5.1 Introduction . 90

5.2 Overview of Cloud, Edge, and Mobile Environments 92

5.3 System Model . 93

5.3.1 Application Model . 93

5.3.2 Overview of Cost Models . 95

5.3.3 Overview of the Optimisation Technique 96

5.4 Experiment for Data-Intensive Application Offloading 97

5.4.1 Evaluation metrics . 97

5.4.2 Experimental Setup . 98

5.4.2.1 Computing Resources 98

5.4.2.2 Workload Model 99

5.4.2.3 Network Model . 101

5.4.3 Performance Evaluation . 101

5.4.3.1 BoT application model 102

5.4.4 Workflow application model 103

5.4.5 IoT application model . 105

5.5 Discussion and Recommendations 107

5.6 Summary . 110

6 Implementation and Simulation Environment 112

6.1 Introduction . 112

6.1.1 Designing a Data-Intensive Applications Offloading System . 114

6.2 High-Level Offloading System . 115

6.3 System Implementation and Deployment 120

6.4 Comparison of The Proposed Framework and Real Framework Re-
sults . 123

6.4.1 Conceptual Model . 123

6.4.2 Model Validation . 125

6.5 Summary . 131

7 Summaries and Discussion 132

7.1 Discussion . 132

7.2 Future Directions . 136

7.2.1 Optimisation problems . 136

7.2.2 Context awareness . 137

7.2.3 Reliable Computation Offloading 137

7.2.4 Security and privacy . 138

7.3 Conclusions . 139

Contents viii

Bibliography 140

List of Figures

1.1 Mobile cloud computing general architecture 5

1.2 Mobile-edge cloud computing general architecture 10

1.3 Thesis organisation . 16

3.1 Proposed hybrid MCC offloading decision optimisation framework. . 41

3.2 Example of the encoding of a particle’s position. 49

3.3 Application execution model validation using real experiments for
three different communication networks 56

3.4 System performance measurements with 3G network for different
data sizes . 57

3.5 System performance measurements with 4G network for different
data sizes . 58

3.6 System performance measurements with WiFi network for different
data sizes . 58

4.1 Mobile-edge cloud computing (MECC) framework 67

4.2 Evaluation of proposed optimiser with real scenarios for three dif-
ferent communication networks . 83

4.3 System performance measurements with 4G network interface for
different data sizes . 84

4.4 System performance measurements with WiFi network interface for
different data sizes . 85

4.5 The impact of deadline sensitivity on optimisation parameters . . . 85

4.6 The impact of multi-user and single-user scenarios on system per-
formance: WiFi mobile network . 86

4.7 The impact of multi-user and single-user scenarios on system per-
formance: 4G mobile network . 87

4.8 The optimisation times for MILP and PSO 87

5.1 Mobile-edge cloud computing architecture 92

5.2 Application models abstraction . 94

5.3 Montage Workflow . 100

5.4 BoT application model: 3G network 102

5.5 BoT application model: 4G network 102

5.6 BoT application model: WiFi network 103

5.7 Workflow application model: 3G network 104

5.8 Workflow application model: 4G network 104

ix

List of Figures x

5.9 Workflow application model: WiFi network 105

5.10 IoT application with mobile data collection : 3G network 106

5.11 IoT application with mobile data collection : 4G network 107

5.12 IoT application with mobile data collection : WiFi network 107

5.13 IoT application with edge data collection : 3G network 107

5.14 IoT application with edge data collection : 4G network 108

5.15 IoT application with edge data collection : WiFi network 108

6.1 High-level offloading system . 114

6.2 High-Level Offloading System . 116

6.3 Offloading optimisation framework 117

6.4 Offloading system implementation architecture 120

6.5 Model verification and validation 124

6.6 Processing energy profiling . 126

6.7 Data communication energy profiling for 100MB file size 127

6.8 Data communication energy sensitivity profiling for 100MB file size 127

6.9 Processing energy profiling . 128

6.10 Evaluation of proposed optimiser with real scenarios for three dif-
ferent communication networks: hybrid MCC case 130

6.11 Evaluation of proposed optimiser with real scenarios for three dif-
ferent communication networks: MECC case 130

List of Tables

2.1 MCC models summary . 33

3.1 Problem formulation notations . 44

3.2 Computation resources configuration 53

3.3 Communication Networks bandwidth 53

3.4 Task input data size distribution 54

4.1 Problem modelling notation . 70

4.2 Network interface bandwidth . 80

4.3 Task input data size distribution 81

4.4 Experiment resources configuration 81

5.1 Problem modelling notation . 95

5.2 Experiment resources configuration 99

5.3 Workflow sensitivity factors . 100

5.4 Data size distributions . 101

5.5 Task complexity models . 101

5.6 Network interface bandwidth . 101

6.1 Mobile application modelling . 125

6.2 95% CIs for data communication energy profiling 127

xi

Abbreviations

API Application Program Interface

BB Branch and Bound

BoT Bag of Tasks

CI Confidence Interval

CPU Central Processing Unit

DAG Directed Acyclic Graph

ETSI European Telecommunications Standards Institute

GPS Global Positioning System

IaaS Infrastructure as a Service

ILP Integer Linear Programming

I/O Input/Output

IoT Internet of Things

IoV Internet of Vehicles

JSON JavaScript Object Notation

LP Linear Programming

MC Mobile Computing

MCC Mobile Cloud Computing

MEC Mobile Edge Computing

MECC Mobile-Edge Cloud Computing

MIPS Million Instructions Per Second

MILP Mixed Integer Linear Programming

MINLP Mixed Integer NonLinear Programming

PaaS Platform as a Service

PSO Particle Swarm Optimization

xii

Abbreviations xiii

QoE Quality of Experience

QoS Quality of Services

REST Representational State Transfer

SaaS Software as a Service

SDN Software Defined Networking

VD-ABC Variety-Driven Artificial Bee Colony

VM Virtual Machine

WAP Wireless Application Protocol

WiFi Wireless Fidelity

3G Third Generation

4G Fourth Generation

Western Sydney University

Abstract

School of Computer, Data and Mathematical Sciences

Doctor of Philosophy

by Mohammad Nour ALKHALAILEH

Rapid advancement in the mobile telecommunications industry has motivated the

development of mobile applications in a wide range of social and scientific do-

mains. However, mobile computing (MC) platforms still have several constraints,

such as limited computation resources, short battery life and high sensitivity to

network capabilities. In order to overcome the limitations of mobile computing

and benefit from the huge advancement in mobile telecommunications and the

rapid revolution of distributed resources, mobile-aware computing models, such

as mobile cloud computing (MCC) and mobile edge computing (MEC) have been

proposed. The main problem is to decide on an application execution plan while

satisfying quality of service (QoS) requirements and the current status of system

networking and device energy. However, the role of application data in offloading

optimisation has not been studied thoroughly, particularly with respect to how

data size and distribution impact application offloading. This problem can be

referred to as data-intensive mobile application offloading optimisation. To ad-

dress this problem, this thesis presents novel optimisation frameworks, techniques

and algorithms for mobile application resource allocation in mobile-aware com-

puting environments. These frameworks and techniques are proposed to provide

optimised solutions to schedule data intensive mobile applications. Experimental

results show the ability of the proposed tools in optimising the scheduling and

the execution of data intensive applications on various computing environments

to meet application QoS requirements. Furthermore, the results clearly stated the

significant contribution of the data size parameter on scheduling the execution of

Abstract xv

mobile applications. In addition, the thesis provides an analytical investigation of

mobile-aware computing environments for a certain mobile application type. The

investigation provides performance analysis to help users decide on target compu-

tation resources based on application structure, input data, and mobile network

status.

Chapter 1

Introduction

In recent years mobile telecommunications has become an important part of life

and business via improving methods of social communication, e-commerce, smart

applications and so on. The number of users continues to increase and the volume

of data generated from users’ devices has grown exponentially.

According to a recent report [1], by 2022, mobile data traffic is expected to reach

77.5 exabytes per month worldwide at a compound annual growth rate of 46%.

Nearly two-thirds of the global population will have Internet access by 2022, with

an estimated 5.3 billion total users’ up from 3.9 billion (51% of global population)

in 2018. Moreover, it is predicted that by 2023, the fourth generation of broadband

cellular network technology (4G) will be responsible for 54.3% of total mobile

connections, compared to 34.7% in 2017, and connections will grow from 3 billion in

2017 to 6.7 billion by 2022 [1]. The advances in technology and the broad uptake of

mobile applications in many community and business sectors, such as social media,

healthcare and education, indicate potential to introduce more applications into

other environments. Mobile e-business applications, for example, require highly

scalable resources with high security measures to support communication-intensive

customer requests. Mobile gaming can benefit from cloud computing scalability

and high computation power to process complex gaming scenarios. Mobile devices

have inherent limitations, however, pertaining to processing data-intensive tasks

1

Chapter 1 2

such as information discovery, image processing and a reliance on battery power

as a source of energy.

The use of mobile technologies (mobile hardware, software, and communication)

to create, process and store information is generically described as mobile com-

puting (MC) [2]. Mobile applications improve information accessibility, integrate

technologies with information systems, and increase management effectiveness.

Nowadays, a wide range of mobile applications are data-driven, tending to use

huge amounts of mobile data due to their demand for high computation power

and memory space [3]. Data-intensive applications, such as customised data an-

alytic services, natural language processing and face recognition, are resource-

intensive, requiring machines with powerful central processing units (CPU) and

huge memory space to load dynamic application code and data. For example,

the computation for intelligent assistant applications such as Siri (Apple), Now

(Google), and Cortana (Microsoft) is performed in the cloud; this requires signifi-

cant amounts of data to be migrated via wireless networks and creates substantial

computational load on data centres [4]. A general term for overcoming limitations

of mobile devices is known as “computation offloading”, which implies migrating

intensive computations from resource-limited devices (mobile devices) to resource-

rich machines such as clouds, cloudlets, and edges to minimise the execution time

and optimise the device energy [5–7]. Computing offloading involves distributing

computation over a computing system to benefit from local and external capabili-

ties. The next section describes the foundation of mobile-aware computing models

employed to support the mobile offloading process.

1.1 Mobile-aware Computing Models

Computation and data offloading is an essential tool to enable smart devices to

deliver rich applications. Understanding the features and requirements of mobile-

aware computing systems is essential to develop efficient offloading strategies and

Chapter 1 3

techniques to meet the requirements of diverse application models and QoS. This

section provides a brief illustration of some mobile-aware computing systems.

1.1.1 Mobile Computing

The term “mobile computing” implies that the resources of a mobile device can be

used without consideration of physical location or network connectivity. MC was

first introduced in the early 1990s in association with ubiquitous computing [8].

Weiser [8] described the scenarios and applications of mobile-based hardware archi-

tectures and wireless communications. The MC vision is built on the combination

of three concepts: wireless communication, mobility, and portability [9, 10].

� Wireless communication. Wireless communication technology is the essential

enabler of MC; it allows communication between mobile system components

for data transmission and Internet access. Wireless communication connec-

tivity and quality are fundamental issues for MC system capability.

� Mobility. Mobility features enable smartphones to have transparent access

to computing infrastructure and shared resources. Device mobility supports

mobile applications in different ways. It improves information accessibility,

with the level of improvement depending on mobile hardware and commu-

nication efficiency. MC allows organisations to integrate technologies with

existing information systems, but has limitations. For instance, mobile tech-

nologies, such as general packet radio service, enhanced data rates for global

system for mobile communication evolution, and the third generation of wire-

less mobile telecommunications technology (3G) support insufficient network

bandwidth, have inadequate resources for processing intensive tasks and is

energy inefficient [2].

Chapter 1 4

The mobile device scheme of communication is governed by wireless com-

munication protocols. One of the leading wireless protocols is wireless ap-

plication protocol (WAP) [11]. WAP offers a common environment to de-

velop value-added services for mobile devices. The protocol is an open stan-

dard that abstracts network infrastructures, hardware profiles, and trans-

port mechanisms in a scalable fashion [12]. Nevertheless, mobile network

availability and stability, which are not guaranteed, are critical features for

sustainable device participation and engagement. Moreover, the uncertainty

of device location makes it challenging to predict critical offloading perfor-

mance parameters, such as network latency and device responsiveness [13].

� Portability. Portability is the core enabler of device mobility. The ultimate

challenge for portability is the unavailability of a continuous power source.

Mobile devices rely on short-term, low-capacity power supplies (batteries).

Networking services and mobile processes are energy-hungry, particularly in

the case of smart devices. Energy management is a complicated task and

has a significant influence on mobile device performance as a component of

a computing model.

1.1.2 Hybrid Mobile Cloud Computing

Cloud computing provides computation, storage and telecommunication services

in a scalable and virtualised manner usually as scalable services and under the

“pay-as-you-go” business model [14–17]. Cloud computing provides computation

and storage infrastructure and services for users to implement and host appli-

cations with minimal configuration and setup complexity. The most common

cloud services are Software as a Service (SaaS), Platform as a Service (PaaS),

and Infrastructure as a Service (IaaS). Cloud computing has been adopted to re-

solve the limitations of mobile computing, and in this case is known as mobile

cloud computing (MCC) [3]. Figure 1.1 illustrates a high-level architecture for

MCC. The core service of MCC is deriving benefits from cloud capabilities, such

as vast storage, high processing power, provisioning and scalability in running

Chapter 1 5

data-intensive applications. Many of MCC frameworks have been proposed in

the literature [11, 12, 14–24]; most target computation-intensive applications and

employ offloading techniques to enhance the performance of the MCC framework

by distributing or migrating intensive tasks to powerful servers in the cloud [25].

Two primary offloading techniques described in the literature are code offload-

ing and remote execution. Code offloading involves application-code partitioning,

and remote execution adopts task-oriented mobile web services as an offloading

strategy.

In addition to the features inherited from MC, discussed in the previous section,

MCC comprises additional features of resource heterogeneity, sociability, accessi-

bility and security. MCC architecture consists of three elements, namely, mobile

devices, remote clouds, and networking. Understanding how these elements are

integrated and collaborate is essential for the construction of efficient computation

and data offloading systems.

� Mobile Devices. Mobile devices are entities capable of performing lightweight

computation and storage services. MCC aims to augment mobile devices by

offloading computation and data-intensive jobs to more powerful entities like

Figure 1.1: Mobile cloud computing general architecture

Chapter 1 6

cloudlets and remote clouds. However, in some cases, such as low network

quality, high data transmission cost and high dependency on device features,

local execution is the preferred option.

� Remote Cloud. The remote cloud or Internet cloud basically represents the

highest level of computation power on the MCC model. It receives offload-

ing requests, which are either indirectly forwarded from cloudlets or directly

forwarded by mobile devices. Satyanarayanan et al. [24] proposed that the

cloud computing model is the best solution for solving the deficiencies of

mobile device resources. Cloud computing is a promising integral compo-

nent to assist with mitigating problems of the MC model, for many reasons.

First, cloud computing can extend mobile device battery life by migrating

complex processing to more powerful servers, thus minimising the total ex-

ecution time on mobile devices. Second, cloud computing enables mobile

users to store/access large data stores on the cloud via a wireless communi-

cation protocol. For example, cloud computing supports mobile users with

image exchange services, which save considerable energy and storage space,

as all images are sent to the cloud and processed on the cloud. Third, cloud

resources can be scaled to meet unpredictable mobile application develop-

ment demands. Lastly, the availability of different cloud service providers

makes it feasible to integrate cloud services to satisfy users’ demands.

� Networking. Networking is the most critical part of a mobile-aware com-

puting model. The feasibility of undertaking the offloading depends on net-

working availability and quality. The networking interface or protocol also

has significant influence on the offloading decision and process. For example,

cellular and mobile networks are expensive and consume more energy than

wireless fidelity (WiFi) networks [26].

Mobile cloud computing can support many application types, including commerce,

multimedia sharing, gaming, banking, social sensing, traffic monitoring and health-

care assistance [27]. For example, in MCC-based learning applications, thin clients

(mobile applications) can access cloud-based learning information at any time and

Chapter 1 7

in any place. Mobile sensor features enable MCC applications to collect sensing

information; the domains of this type of application might encompass online di-

agnoses, health monitoring and social networking. For instance, customers may

store and access their profile data regardless of time and geography constraints.

For social networking applications, MCC allows data and multimedia sharing in

real time across services. Another example is a mobile-based healthcare system in

a public cloud environment [28]. The system collects data from patients through

attached sensors. Data is sent immediately to the cloud to be processed by sophis-

ticated analytic tools. The major contributions of the cloud are minimising the

communication overheads between all actors in the system and having all system

data stored in a centralised, highly accessible yet secure repository.

The next generation of techniques of offloading optimisation was developed as

a response to the increasing popularity of MC in many aspects of human life.

Cloud computing effectively embraces benefits from scalability and sustainability

solutions. MCC offers opportunities to overcome energy limitations to handle

computation-intensive tasks and is able to offload heavy workloads to the cloud,

benefiting from its high computation capabilities to reduce the overhead of running

these tasks locally in user mobile devices.

The main shortcoming of MCC architecture is the necessity of transferring large

data files over mobile networks, which brings significant challenges with respect to

the monetary cost and energy involved in data transfer. To overcome these issues,

the cloudlet-based computing concept was proposed. Cloudlets are “decentralised

and widely dispersed Internet infrastructure components whose compute cycles

and storage resources can be leveraged by nearby mobile computers” [24].

Cloudlet features of self-management, Internet connectivity, and moderate capa-

bility make it a suitable resource model for many application scenarios. The

cloudlet-based resource model provides services like local resource management,

connecting local devices, executing offloading requests, and forwarding offload-

ing tasks to remote cloud resources in case of insufficient processing capabili-

ties to process incoming workloads. According to the granularity and complexity

Chapter 1 8

of offloading requests, the cloudlet system can determine the offloading schedule

and decides which tasks are executed locally or migrated to the cloud systems.

The integration between cloudlet-based and MCC models is referred to herein as

hybrid MCC, a concept which integrates two or more MCC basic architectures

(CloneCloud, cloudlet, and mobile cloud). The main objective of this integration

is to enhance overall application performance by utilising the benefits of each inte-

grated model. A clone hosted on a public cloud can be a high-performance server,

while a cloudlet is deployed via different wireless communication protocols.

The main problem facing a hybrid MCC integration scheme is guaranteeing seam-

less interaction between them, allowing the elimination of data duplication, provid-

ing high service accessibility and reducing the complexity of application migration

[29]. Edge resources allow efficient solutions and offer computation and storage

resources closer to user devices [30].

1.1.3 Mobile-Edge Cloud Computing

With the spread of Internet of Things (IoT) enabled and smart applications, such

as virtual reality [31], smart grids [32], and smart environments [33], the move

towards delay-sensitive applications poses a challenge for MCC architecture to

meet delay requirements. The MCC paradigm has limitations in its ability to

meet the requirements of low latency, location awareness and mobility support

[34, 35]. Thus, edge computing is becoming a popular way to replicate cloud

functions [36]. Edge computing brings the computation, data, applications, and

services the network edge and reduces dependency on cloud servers[38]. Mobile

edge computing (MEC) combines the capabilities of mobile edge networks and the

Internet to divert latency-sensitive services to the edge of mobile networks, thus

enhancing the various types of service quality. MEC is broadly applied in many

application contexts for highly responsive, secure, real-time and latency-sensitive

services[39].

Chapter 1 9

The major limitation of edge devices’ computation capability is their physical

limitations, which make it challenging to handle computation and data-intensive

tasks [40]. Moreover, MEC is not an appropriate computing model for handling

large-scale applications that involve migrating high computation and data work-

loads. To overcome the physical limitations of edge resources, MEC and MCC

architectures can be combined to benefit from the high capability of cloud servers

and low-latency processing at the edge layer. Integrating edge and cloud pro-

vides benefits from the high capability of cloud resources and the availability of

resources at the edge layer. This joint computation architecture can be referred

to as mobile-edge cloud computing (MECC) [41]. Figure 1.2 shows an example

of MECC architecture in an integrated computation system of edge and cloud

resources. Application/task offloading techniques can overcome QoS constraints

by considering the opportunities of each computation system model.

For instance, simple computational tasks can be processed locally or at the edge

layer to preserve device energy and achieve response with low latency. For computation-

intensive tasks, edge cloud collaboration can be applied to benefit from the capa-

bilities of cloud servers while meeting latency and energy consumption constraints

[41].

1.2 Computation Offloading

Computation offloading refers to the concept of boosting mobile systems by mi-

grating complex computation to highly capable computers [42]. The offloading

process relies on the decision of running a task locally (on the user device) or re-

motely (external server). The decision is based on the task complexity, user device

capability and energy status, and mobile cloud environment, such as scalability,

availability, energy and cost-efficiency [45]. Computation offloading in the context

of mobile-cloud application processing follows three main techniques: application

partitioning, code offloading and remote execution [24] [28, 43, 46].

Chapter 1 11

control the offloading decision. The computation size and the amount of data to

be sent in the communication have priority [44].

1.3 Problem Statement and Research Questions

Mobile offloading is a process of migrating computation-intensive tasks to powerful

resources to overcome limitations of mobile devices, notably low processing capa-

bility and short battery life. However, not all applications are only computation-

centric; some, such as customised data analytic services, natural language pro-

cessing and face recognition, involve handling huge amounts of data, particularly

those interacting with enormous numbers of users. An example of this scenario is

the high and active usage of intelligent assistant applications such as Apple Siri

[49] and Microsoft Cortana [50] to send huge numbers of service requests to the

cloud. This requires significant amounts of data to be sent to the cloud over the

wireless network and puts substantial computational pressure on the data centre

[4]. Wang et al. [18] argued that data-intensive application computations on mo-

bile computing are always costly in terms of computation time, mobile energy and

resource cost. Nan et al. [51] studied the challenges of data-intensive aware mobile

applications, and highlighted the significance of increasing data size on monetary

cost and QoS improvement.

1.3.1 Motivation

Data-intensive applications bring additional challenges for energy and cost opti-

misation [18]. Processing large data files on mobile devices has direct overheads

in terms of device energy, whereas transferring large data files over mobile net-

works can increase the device idle time, as well the total computation cost and

time. Moreover, data-intensive applications are resource-hungry and need compu-

tation machines equipped with powerful CPUs and huge memory to load dynamic

application code and data.

Chapter 1 12

In the context of data-intensive mobile applications, an offloading system should

be capable of resolving the issues of processing and transferring large chunks of

data over heterogeneous networking systems [22]. Thus, it is essential to study

the role of data size on application offloading in terms of modelling, planning and

optimisation. Franzago et al. [52] defined data-intensive mobile applications as

“applications whose primary purpose is to present a large amount of content to a

variety of possible users”. In addition, data-intensive mobile applications present

huge amounts of data to a variety of mobile users [52], with characteristics of these

applications being the need for a high-performance computing environment and

the abstraction of the computing platforms. Data-insensitive application offloading

issues are illustrated below.

1. High latency and low bandwidth. Basically, data-intensive application of-

floading determines whether large data files are transferred in batches or

streams. The network performance significantly affects the offloading pro-

cess. Data transmission with low-bandwidth network channels and high

latency is an obstacle to the achievement of offloading system objectives at

low cost and reduced energy consumption [24, 53, 54]. An offloading sys-

tem should generate an optimised task scheduling plan to reduce large data

migration when poor network conditions are existed.

2. Offloading monetary cost. Offloading mobile applications requires the use of

a variety of resources for data transfer and application processing purposes.

Offloading cost includes the costs of remote computation at edge or cloud

layers, data storage, and transferring data over communication networks. To

date, only a few researchers have attempted to estimate these costs for data-

intensive applications; the role of data volume needs to be studied carefully

to understand its effect on application offloading optimisation.

3. Short battery life. Limited device energy is the fundamental issue of most

mobile application offloading frameworks [55]. However, in the context of

offloading data-intensive applications, this issue can be even more challenging

Chapter 1 13

due to the requirements of migrating large chunks of data over unstable

network channels.

4. Offloading decision complexity. Decision-making is the core and the most

complex part of any offloading framework [56]. The decision process is re-

quired to produce a cost-efficient offloading plan to map application tasks

to available resources. The offloading plan is generated either statically or

dynamically. The former is simpler and mostly applied to predictable work-

loads, while the latter can be complicated with large-scale problems and in

unstable execution environment contexts [57]. An offloading system should

consider the application structure, data dependency between tasks and data

locations.

To meet the challenges outlined above, the main motivation of this thesis is to de-

sign and develop offloading techniques and algorithms to improve the efficiency of

data-intensive mobile applications offloading and scheduling on various computing

systems. The next section provides the main research questions which this thesis

attempts to answer.

1.3.2 Research Questions

The research questions that this thesis seeks to answer, related to mobile data-

intensive applications offloading and scheduling, can be expressed as:

1. How is the modelling of mobile data-intensive applications different from the

ones of other application types such as computation-intensive and bandwidth-

intensive applications?

2. Which optimisation techniques can meet the challenges of constructing data-

intensive application offloading plans in terms of application complexity, data

variation and mobile network instability?

Chapter 1 14

3. How does the problem scale and application complexity of scheduling data

intensive mobile applications influence the selection of an optimisation tech-

nique?

4. What are the determinants of selecting a mobile-aware computing system,

and how are they related to application model and user QoS constraints?

1.4 Contributions

Data-intensive mobile application execution on an MECC system involves propos-

ing efficient offloading techniques and algorithms to conquer the physical limita-

tions of mobile devices, as well as meeting user QoS constraints associated with

contextual and networking status. This thesis proposes techniques and algorithms

to plan the execution of data-intensive mobile applications in mobile-aware com-

puting environments. Allocating application tasks to computation nodes (local,

edge, or cloud) is formulated as an optimisation problem, which aims for the mini-

mum of energy and cost under the constants of available energy and task deadline.

The following are the key contributions of this thesis.

� The identification and description of the challenges of data-intensive appli-

cation offloading on multiple computing systems. The data size parameter

needs to be considered from two perspectives: how the increase in data size

impacts the computation complexity of an application and accordingly the

offloading technique complexity, and the data communication overhead of

uncertain mobile network quality and bandwidth. This thesis provides a

data-oriented mobile application modelling solution, which is clearly stated

in a cost model formulation to reflect the role of data variation in offloading

planning and optimisation.

� A resource allocation algorithm that leverages particle swarm optimisation

(PSO) to generate an application offloading plan on a hybrid MCC system.

PSO is adopted for its efficiency in searching the solution space for a global

Chapter 1 15

and optimal offloading plan. This thesis demonstrates the viability of adopt-

ing an evolutionary search optimisation with PSO, which is not commonly

applied in the literature.

� A resource allocation and task scheduling algorithm which is based on mixed

integer linear programming (MILP) technique for data-intensive application

on MECC. The MILP technique is convenient for large-scale search spaces.

This thesis is unique in proposing linear search optimisation for large-scale

mobile applications, which involves handling the complexity of managing

data and computation distribution in a multi-layer computing system.

� An experimental analysis of various data-intensive application offloading

setups/scenarios in regard to application models, computing systems and

model parameters. The analysis provides a detailed investigation of how

these parameters influence the application decision, as well as related opti-

misation variables of time, energy and cost.

1.5 Thesis Organisation

This thesis includes seven chapters, which are organised as shown in Figure 1.3.

An overview of the thesis’s organisation is given below.

� Chapter 2 provides a comprehensive survey of the research literature on re-

source allocation and task scheduling algorithms and techniques for compu-

tation and data-intensive applications on mobile-aware computing systems.

� Chapter 3 presents a QoS-constrained resource allocation algorithm for data-

intensive applications on a hybrid mobile cloud computing system. PSO was

adopted due to its ability to find a global optimum solution from a solution

search space (i.e., application offloading plans). This chapter is published in

the following conference paper:

– Alkhalaileh, Mohammad, Rodrigo N. Calheiros, Quang Vinh Nguyen,

and Bahman Javadi. “Dynamic resource allocation in hybrid mobile

Chapter 1 17

perform linear search optimisation under constraints of mobile energy and

task deadline. This chapter is published in the following journal paper:

– Alkhalaileh, Mohammad, Rodrigo N. Calheiros, Quang Vinh Nguyen,

and Bahman Javadi. “Data-intensive application scheduling on Mobile

Edge Cloud Computing.” Journal of Network and Computer Applica-

tions (2020): 102735.

MVC

� Chapter 5 provides a comprehensive analysis of many aspects of mobile-

aware computation models. The objective is to provide recommendations for

a mobile-related computation paradigm to execute mobile applications based

on application model, application data size, mobile network performance,

and mobile energy status. This chapter is published in the following book

chapter:

– Alkhalaileh, Mohammad, Rodrigo N. Calheiros, Quang Vinh Nguyen,

and Bahman Javadi. “Performance Analysis of Mobile, Edge, and

Cloud Computing Platforms for Distributed Applications”.In MEC2020,

Mobile Edge Computing (“in press, 2020.”)

� Chapter 6 provides a framework for evaluating the ability of the proposed al-

gorithms and techniques to reduce the energy and monetary costs of running

data-intensive mobile applications on mobile-aware computing systems. The

framework consists of a set of components, comprising services of profiling,

resource investigation and communication, context monitoring, an offloading

decision-maker, and a QoS optimiser.

� Chapter 7 concludes the thesis, summarises its findings, and suggests direc-

tions for future work.

Chapter 2

Literature Review

2.1 Introduction

Mobile Computing has physical limitations on its ability to process complex tasks

and handle large data sets. A principal concern related to computation-intensive

and data-intensive tasks is power consumption. As noted in Chapter 1, a general

term for methods designed to overcome the physical (notably, power) limitations

of mobile devices is “computation offloading”, which refers to the migration of

task complexity from limited resources to more powerful resources. For example,

integrating cloud computing infrastructure with mobile computing may solve the

current technical and physical limitations of the latter [18]. Satyanarayanan et

al. [24] argued that cloud computing is the most convenient computing architec-

ture to overcome the shortcomings of mobile computing systems. The evolution

of cloud computing grants the capability to resolve many issues of mobile com-

puting, due the unlimited resources it offers in high scalability and reliability [58].

MCC, a combination of high-performance clouds and convenient mobility-enabled

devices, is emerging as a convenient computing model to augment the computa-

tional abilities of mobile devices through the extraordinary computation facilities

of the cloud.

18

Chapter 2 19

Computation offloading can improve performance in data-intensive mobile appli-

cations by migrating intensive computations from resource-limited devices (mobile

devices) to resource-rich machines such as cloud or nearby resources (servers) to

minimise execution time and optimise device energy [5–7]. This chapter discusses

research intended to overcome the challenge of designing and implementing con-

venient offloading decision-making techniques with respect to various offloading

quality measurements, including energy consumption, latency and responsiveness,

and monetary cost. However, there are undeniable challenges related to the of-

floading process. The next section focuses on the main research work undertaken

in attempts to resolve the aforementioned offloading challenges.

2.2 Computation Offloading Techniques and Al-

gorithms

Computation offloading has been studied intensively, and several techniques have

been proposed for optimising energy consumption and meeting user QoS met-

rics such as response time and monetary cost. These techniques include compu-

tation augmentation [21], device cloning [59], nearby-resource computation [24],

provisioning middleware [23, 60, 61] and context-aware and profiling MCC system

[25, 62].

Mobile cloud computing has been widely accepted as a computation architecture

to overcome mobile computing’s shortcomings of limited computation capacity

and short battery life. As noted earlier, MCC involves the integration of mobile

devices and public cloud resources to provide computation and storage services for

mobile applications in a scalable manner, while providing high QoS [63]. However,

MCC has two significant limitations: long propagation distance from mobile device

to a remote cloud centre, which results in an excessively long latency for mobile

applications, and poor usage of computation and storage at the network edges,

which would otherwise be sufficient to enable ubiquitous mobile computing. How-

ever, the research literature shows alternative computing models can handle the

Chapter 2 20

latency and resource utilisation issues, such as MEC [40]. Processing on close edge

nodes is more efficient than cloud or cloudlet for reducing data transfer latency

and capturing more real-time context information [34].

Several definitions have been proposed for edge computing; in most, edge comput-

ing is the representation of an intermediate resource layer, including, micro data

centres, edge devices and network resources, which are able to produce, collect and

process data as well as migrate data to the cloud. Edge computing definitions cover

frameworks, applications, technologies and capabilities [64]. Tseng, Canaran and

Canaran [65] provided a definition that is closely related to computation offloading

scope:

“Edge computing, simply known as Edge, brings processing close to the data

source, and it does not need to be sent to a remote Cloud or other centralised

systems for processing. By eliminating the distance and time it takes to send data

to centralised sources,the speed and performance of data transmission improves, as

well as the devices and applications on the Edge.”

Mobile edge computing is an emerging paradigm designed to meet the ever-increasing

computation demands of mobile applications [66]. Most studies on offloading opti-

misation in MEC focus on finding an optimal strategy for distributing application

tasks to edge resources, attempting to minimise data transfer latency with respect

to the capacity of edge nodes [29, 34, 40, 67–70]. The main feature of MEC is to

push mobile computing, network control and storage from resource-limited mobile

devices to the network edges to enable computation-intensive and latency-critical

applications [35]. With MEC, a mobile application can track real-time informa-

tion such as behaviours, location and environment, which reduces the exchange of

sensitive information between the mobile device and cloud resources, while being

more energy efficient. However, edge resources are limited in computation ca-

pacity, scalability and high-energy sensitivity to perform long-term computation.

One solution is integrating edge and cloud resources, combining benefits from the

high capability of cloud resources and the availability of access resources at the

Chapter 2 21

edge layer. As noted earlier, this joint computation architecture is termed mobile-

edge cloud computing [41]. MECC differs from traditional cloud computing in

combining cloud and mobile computing models via wireless networks, and has the

advantage of allowing cloud resources to handle computation and data-intensive

tasks [18].

The rest of this section presents a comprehensive survey of the literature on compu-

tation offloading optimisation with consideration of issues like energy consumption,

resource scalability, application responsiveness and data sensitivity.

2.2.1 Energy Consumption

It is critical for mobile applications to deliver complex high-performance func-

tionalities at low cost. Mobile device input/output (I/O) processing and network

communications are energy-hungry components [21]. Abolfazlia et al. [21] showed

that mobile computation augmentation not only delivers intensive computation ca-

pacity to mobile users, but can save energy use and prolong battery life. Offloading

heavy tasks to the cloud can reduce energy consumption efficiently. Thus, energy

consumption is a fundamental objective while implementing offloading techniques

[71].

Chun et al. [59] designed the CloneCloud MCC model to bring the power of

cloud computing to mobile smartphones. A clone is a mobile image hosted on the

cloud. They observed that application code partitioning was not always viable

due to it being hard to split correctly in respect to connectivity. In addition,

CloneCloud only considers limited input/environmental conditions in offline pre-

processing and needs to be bootstrapped for every new application built [23].

Moreover, in CloneCloud the virtualisation overhead and the recurring tasks of

synchronising the shared data between the mobile and cloud degrade the augmen-

tation performance [72]. Another disadvantage is the necessity to access device

services such as global positioning systems (GPS) and Bluetooth. Transferring

device I/O between the mobile and the clone environment over the network also

Chapter 2 22

reduces the responsiveness and increases power consumption [73]. Furthermore,

running an application on multiple platforms increases the complexity of device

management [73].

Cuervo et al. [74] argued that the critical obstacle for future growth of smartphone

use is battery energy. They proposed MAUI architecture to address both energy

and performance for code-offloading MCC applications. MAUI code offloading

depends on remote execution to take advantage of the resource-rich infrastructure

of remote servers. There are two remote execution options. The first relies on

the programmer to pinpoint remote partitions and how to adopt the partition-

ing schema to the changing network connection [75]. The second is to use full

virtual machines (VM) migration for individual applications. MAUI builds prox-

ies, profilers and solvers on both the client and server sides. The model benefits

from remote execution by maximising energy saving through a fine-grained code

offload, while minimising the changes required to applications. One disadvantage

of MAUI is that not all code categories can be offloaded because constraints on

some application program interface (API), I/O devices or internal resources on

mobile devices have been established. A further disadvantage is that the decision

process in MAUI only considers information that is coarse-grained, compared with

the complex characteristics of the mobile environment, and MAUI is limited to

work on scalable systems on the cloud [23].

While CloneCloud [59] and MAUI [74] emphasise reducing energy consumption by

decomposing an application, they do not consider the reusability of computation

functionalities across applications [22]. Kemp et al. [76] introduced a program-

ming model, Cuckoo, which is designed for Android. The model supports both

local and remote service executions via user friendly interfaces to bundle and run

application packages. The offloading decision is based on network bandwidth and

signal quality, and it uses heuristic data and context information to evaluate an

offloading decision.

March et al. [22] designed µCloud architecture with the aim of developing rich

mobile applications that minimise energy cost through application decomposition

Chapter 2 23

and adopting component reusability. The application is defined as a cyclic graph

from a set of heterogeneous components, and each component represents a high-

level functionality. Components can be native mobile, cloud, or a combination of

both. The offloading framework consists of application and execution models. The

application model manages the coordination between application tasks in terms of

passing data, shared execution space and virtual memory management. The exe-

cution model partitions the application graph into disjoint sets of partitions, where

each represents the execution of a component in a target execution node, mobile

or cloud. The main advantage of µCloud is the ability to have seamless interaction

between execution components to reduce data migration and thus communication

energy.

Ding et al. [77] proposed a VD-ABC technique, a metaheuristic technique based

on bee colony optimisation and Boltzmann selection strategy to handle cloud VM

placement complexity with a multi-user offloading schema. The technique im-

proved CloneCloud [59] by reducing the complexity of multi-users offloading by

determining communication and waiting energy costs. Similarly, Kao et al. [78]

extended CloneCloud [59] for collaborative task execution between a mobile de-

vice and its cloud clone to execute deadline-constrained applications. The task

scheduling problem was formulated as the shortest-path problem on a directed

cyclic graph (DAG) model. EnaCloud [79] worked more restrictively and pro-

posed a heuristics approach for dynamic VM placement in the remote cloud as

a bin packing problem. However, EnaCloud only considered energy consumption

overhead and disregarded communication and data transfer costs.

Terefe et al. [80] proposed an energy-efficient offloading approach based on a dis-

crete time Markov chain to model data communication channels between mobile

devices and cloud servers. The authors highlighted the concept of multi-server

offloading to benefit from the ability of mobile devices to access multiple cloud

providers. This offloading distribution can ensure high QoS achievement as well

as more realistic networking data profiling than a single site offloading execution.

The approach aims to find the optimised partitioning plan to reduce energy while

Chapter 2 24

meeting a task execution deadline. The work simulates the offloading decision-

making for linear-based workflows and consider workflow tasks as separate exe-

cution components at different granularity levels. Experimental results showed

that the multisite computation offloading approach provided savings compared to

single-site execution with respect to both energy consumption and execution time.

Goudarzia et al. [69] applied the same partitioning strategy to hybrid multi-site

offloading to reduce energy consumption. To address the challenges of single-site

offloading, a fast hybrid multi-site computation offloading solution. The solution

handles application complexity for offloading optimisation and proposed methods

for optimal and near-optimal offloading partitioning. The offloading process is

adaptive in selecting the optimisation technique, such that the branch and bound

algorithm (BB) is applied to accelerate search space through a suitable bounding

function. For a near-optimal method, PSO is applied to reduce the polynomial

time for large-scale problem optimisation.

Chen et al. [81] studied the multi-user computation offloading problem for MECC

in a multi-channel wireless interference environment. The authors argued that

MCC can generate a critical latency issue while exchanging data via a wide com-

munication network. Moreover, cloudlet-based models can have some limitations

due to the limited converge of WiFi networks and the limited support of util-

ising high powerful resources, which may not align with QoS achievement for a

large number of users. To resolve these issues, Chen et al. adopted mobile-edge

computing with integration with public clouds to allow energy-efficient offloading

distribution to reduce execution time and cost. They aimed to select offloading

that reduced energy consumption and data transmission latency. The optimi-

sation problem was formulated as an offloading game to allocate tasks to edge

servers. Results show that the proposed game-based technique is able to achieve

good offloading performance even with large-scale problems.

Most of the energy-based MCC solutions follow the approach of mobile augmen-

tation through extending cloud services into mobile devices, and enabling mobile

devices to collaborate with cloud resources [82]. However, these solutions mostly

Chapter 2 25

do not consider application complexity variation and context parameters, such as

input data size, network bandwidth and corresponding data communication costs.

The mobile/wireless network performance significantly affects mobile application

responsiveness, processing time and energy consumption [15]. Satyanarayanan et

al. [24] proposed an architecture to improve application responsiveness and avail-

ability by relying on high-performance cloudlets, which have good connectivity

with cloud servers. However, cloudlets are limited in their convergence on the

mobile network for service provisioning, which does not support large numbers of

mobile users to share available resources [81] .

Hu et al. [83] studied the effects of adopting cloudlets on offloading systems in

terms of energy consumption and latency. Experimental results showed that of-

floading to cloud servers can reduce performance and increase energy consumption

compared to running locally on a mobile device. For highly interactive applica-

tions, offloading to nearby resources like cloudlets and edge resources can improve

offloading performance. Zhang et al. [84] studied deadline-constrained offloading

of a sequence of tasks in a collaborative MCC environment. The offloading optimi-

sation problem was formulated as a constrained shortest-path problem. The study

showed that collaborative task execution with consideration of task dependencies

can significantly reduce energy consumption in comparison to local and remote

execution.

Cardellini et al. [85] designed a game-theoretic approach to compute offloading in

MEC and used the waiting time in computation nodes to separate the execution

of multi-user applications. These researchers proposed efficient techniques for

adopting cloudlet/edge computing to enhance mobile application responsiveness,

reduce latency and optimise device energy. However, they did not attempt to

integrate between MCC and MEC, and in particular they did not propose practical

and adequate resource allocation and task scheduling techniques in the context

of data-intensive mobile applications. Moreover, the techniques they discussed

do not relate to offloading decision optimisation behaviour based on data-aware

parameters, such as application data size and location.

Chapter 2 26

Jararweh et al. [68] supported the argument that energy consumption optimisation

is the central issue of computation offloading and mobile augmentation. The

authors proposed an energy-aware optimisation technique based on MILP in an

edge system to reduce delays in task execution. Jinke et al. [41] attempted to

identify the system configuration with least latency by comparing mobile-aware

computing systems using Lagrange optimisation. They found that collaboration

between cloud and edge computing can efficiently reduce end-to-end computation

latency by reducing device communication and waiting energy.

Wang et al. [86] extended the MEC computing model by taking advantage of a

central cloud to overcome the physical limitations of edge clouds. However, the

proposed offloading strategy gives the highest priority to the central cloud as the

offloading target, and local task allocation is only determined when no connection

between mobile device and the central cloud is available.

The research discussed here proposed efficient techniques for adopting edge com-

puting to enhance mobile application responsiveness, reduce latency and optimise

device energy. However, previous researchers have done little to integrate MCC

and MEC, particularly in the context of data-intensive mobile applications. In

this thesis, interaction was extended to involve an intermediate layer of resources

and by considering parameters of cost and task deadline.

2.2.2 Elasticity and Scalability

Resource elasticity and scalability are critical factors for data-intensive applica-

tion offloading. Scheduling resource allocation is also a crucial issue for achieving

scalability and elasticity. The resource allocation may include the CPU, memory,

storage (disk I/O), and network bandwidth resources [18].

ThinkAir [23] is a framework for code offloading that enables mobile application

developers to scale cloud resources with parallel execution of offloaded tasks. The

proposed architecture framework is similar to CloneCloud [59], in which compu-

tation offloading is handled in a VM image inside the cloud. The main difference

Chapter 2 27

between the ThinkAir framework and CloneCloud is that it is more sensitive to

resource scalability and elasticity by enabling VM image sharing on the cloud. De-

cisions about computation offloading resources are based on the execution time,

energy consumption, and heuristics information about previous executions. The

framework combines three main modules for application execution, resource man-

agement and data profiling. ThinkAir supports resource auto-scaling to reserve

load balancing as well as application performance at cloud server level. Moreover,

the proposed framework relies on different profiling levels for improved offloading

performance and energy consumption estimation. At hardware level, only data

about device resources is profiled, whereas at software level, many parameters

are monitored, including program execution, network state and amount of trans-

ferred data within an interval of time. For network performance measurement,

a network profiler collects low-level details about the usage of different network

interfaces, including data transmission rate, number of transmitted packets and

network propagation delay. In contrast, this thesis provides more broad profiling

services and covers both local and remote resource monitoring.

Zhang et al. [73] assumed that augmenting mobile applications to the cloud can

benefit from the scalability and elasticity of cloud resources. They proposed a mid-

dleware to deploy elastic applications that consists of multiple components called

weblets. A weblet can be executed or launched either on a mobile device or in the

cloud environment. Weblets may improve offloading robustness through adopting

parallel execution schemes or algorithms of intensive computing components [21].

Rahimi et al. [60] proposed MAPCloud, a QoS-based two-tier resource-based

MCC. The work mainly targets system scalability and performance. Their model

deals with a mobile application as a workflow of tasks in which the workflow ex-

ecution is apportioned and mapped to computation resources based on average

optimisation of service price, latency, and power. Later, the model was extended

as MuSIC (Mobility-Aware Service Allocation on Cloud) [87], which uses mobility

information to estimate and predict the optimised resource allocation and execu-

tion resources.

Chapter 2 28

Context-aware offloading models emphasise profiling network conditions for of-

floading decision prediction, but none of their authors have studied offloading

decision optimisation behaviour based on data-aware parameters, such as appli-

cation data file size and location. On one hand, the processing of huge data files

can drastically absorb device energy. On the other hand, transferring these large

files can increase the device idle time and thus consumes more waiting energy for

task completions. In addition, service availability and performance can critically

affect the amount of waiting energy for remote execution services [88].

Smartphones now include tools and technologies, such as sensors and GPS, to

discover and learn about the surrounding environment and agents. For example,

location-based applications can be provided from mobile devices to allow tracking

of agents and items and enhance the performance of companies who have employees

deployed in the field. La et al. [89] developed a framework for location-based

services to monitor mobile user context information. The acquired information is

transmitted to the cloud for analysis, and hence, the user location can be predicted.

Zhou et al. [90] proposed a context-aware MCC model (mCloud) that benefits

from the changing context of a mobile device and heterogeneous cloud resources

for providing an adaptive and seamless offloading decision-making capability. The

work objective is to enhance service availability and performance by proposing

multi-layered offloading destinations (local device, cloudlet, mobile ad hoc and

public cloud) with various wireless communication options (Bluetooth, WiFi, 3G

and 4G).

Lin et al. [62] proposed a context-aware decision making system for execution

offloading. They argued for the significance of embedding context information,

including network robustness, network congestion, and time of day, in anticipat-

ing the offloading decision. They integrated their model with the ThinkAir [23]

architecture. Experimental results demonstrate high percentage accuracy and con-

venient offloading performance in terms of the response time and energy saving.

Chang et al. [91] presented an edge cloud system to extend the data cloud for work-

load distribution for all the path between the user device and the cloud. The model

Chapter 2 29

is a collaborative system between edges and cloud computing systems for running

low-latency and bandwidth-sensitive applications. Edge nodes are grouped based

on the zone location. Result demonstrate the capability of edge cloud localisation

offloading to save energy and scale real-time services. Souza et al. [92] worked

on latency-sensitive optimisation and adopted fog cloud scenarios for lightweight

and resource-intensive services. The authors formulated the allocation optimisa-

tion as an integer linear programming (ILP) problem, and showed that fog cloud

collaboration reduces the number of requests to the cloud and enables low delay

for the low-level and medium-level tasks complexity. Kang et al. [4] also worked

on collaborative edge cloud system. The authors proposed a fine-grained latency-

sensitive offloading technique with deep a neural network to improve end-to-end

latency while minimising overall energy consumption on user’s devices. Results

demonstrate significant energy savings and greater system utilisation, 59.5% and

1.5x respectively.

2.2.3 Data-intensive mobile applications

As mentioned previously, data-intensive mobile applications enable the processing

and the migration of huge amounts of data to a variety of mobile users [52].

Therefore, data-intensive application offloading must be studied with respect to

the impact of data size, and corresponding parameters such as network bandwidth

and application complexity.

Data-intensive applications, such as customised data analytic services, natural

language processing and face recognition, are resource-intensive applications that

require machines with powerful CPU and huge memory space to load dynamic

application code and data. Nan et al. [51] studied the challenges of increasing

user quality of experience (QoE) when running mobile data-intensive applications.

The study revealed strong associations between mobile users, QoE and mobile ap-

plication responsiveness, and further, showed how cloud services can minimise

Chapter 2 30

application response time, thereby, improving the overall mobile application per-

formance. Moreover, the study used monetary cost optimisation to improve user

QoE significantly.

Cloud-based resource allocation for mobile data-intensive applications is challeng-

ing. Simultaneously minimising monetary costs and enhancing customers’ QoE

requires an efficient cost-optimisation model [93]. Kang et al. [4] proposed a data-

centric offloading framework called Neurosurgeon, which differs from a control-

centric framework because it produces execution plans or partition decisions ac-

cording to the structure of data topology and data dependency between application

tasks. The work provides comparisons of most relevant offloading techniques and

includes the contribution of application data size to data transfer overhead, ap-

plication partitioning, execution time and profiling. The results show some inter-

esting insights related to experimental work with respect to variations of network

types, bandwidth capacity, and computation power. Firstly, for data-intensive

applications, the data transfer latency is often higher than mobile computation

latency, particularly with 3G/4G networks. Secondly, even though cloud process-

ing is significantly more powerful than mobile processing, for applications that

involves intensive data communication, offloading solutions need to illiterate an

efficient edge cloud collaboration to settle. Lastly, local processing often incurs

less latency and energy consumption than cloud-only processing. Cloud-only can

achieve higher performance when a WiFi connection is available.

The general schema of mobile offloading is often preferable with computation-

intensive tasks where the amount of data communication is minimised [94]. This

does not support the requirements of real-time and data-intensive application.

Thus, a hybrid MCC architecture can be proposed to meet the requirements of

data-intensive mobile applications.

Zhou et al. [90] proposed a three-tier MCC middleware that empowers program-

mers with computation alternatives, based on the application cost model and the

offloading decision-maker. Even though the proposed model includes the task data

size in generating an optimised execution application tasks plan, the data size is

Chapter 2 31

marginally small and cannot reflect the scenario of data-intensive application tasks

scheduling on MCC. In addition to offloading data size, the selection of proper ap-

plication and programming models is another challenge for accurate estimation

of energy consumption and efficient management of simultaneous offloading by

multiple users [95].

Processing on close edge nodes is efficient for reducing data transfer latency and

capturing real-time context information [34]. In the context of data-intensive

mobile applications, one can observe certain issues related to MECC. Firstly,

transferring huge amounts of data via an unstable mobile network will lead to

an unpredictable increase in data transfer latency. Secondly, edge resources would

have limited capability to process application tasks with high data input. Finally,

transferring huge data volumes over the cellular network and processing in public

clouds demands new techniques for data-intensive optimisation to reduce energy

consumption and monetary cost.

For joint distribution offloading on MECC, some researchers have proposed of-

floading techniques for latency-sensitive applications and to achieve user QoS re-

quirements. Such techniques support parallel computation on accessible resources

on MECC. Zhao et al. [96] designed a threshold-based policy to improve the

QoS of MEC, involving combination of local edge resources with public cloud

resources. Enzai et al. [67] developed a heuristic algorithm for multi-site compu-

tation offloading in MECC under multiple objective optimisations of energy, time

and cost, using a heuristic approach to transform the multi-weight optimisation

to single-weight on workflow applications. Vu et al. [97] proposed a joint task

offloading and resource allocation optimisation problem, and recommended apply-

ing a MINLP technique to minimise the mobile energy consumption under the fog

nodes, resource constraints and task delay requirements.

Multi-user edge computing can improve MEC by providing efficient management

and fair distribution of edge resources. Zhao et al. [96] designed a threshold-

based policy to improve the QoS of MEC, involving the cooperation of local edge

resources and public cloud resources, which takes advantage of the low latency

Chapter 2 32

of the local cloud and abundant computational resources of the public clouds si-

multaneously. Enzai et al. [67] developed a heuristic algorithm for multi-site

computation offloading in MECC and considered multiple objective optimisations

of time, cost and energy. The idea was to transform the multi-weight optimisation

to single-weight for a workflow application using a heuristic approach. Technique

evaluation results have shown that the heuristic algorithm can produce good qual-

ity solutions in a reasonable time for those test problems. Vu et al. [97] proposed a

joint task offloading and resource allocation optimisation problem based on mixed

integer nonlinear programming (MINLP) technique to minimise the energy con-

sumption for mobile devices under the fog nodes, resource constraints and task

delay requirements. The experimental results demonstrated the technique’s ability

to reduce energy consumption while achieving all deadline constraints.

The literature includes many studies of ways to meet the requirements of com-

putation offloading. Some of these focus on techniques to coordinate computing

resources, while others pay more attention to offloading optimisation techniques

and algorithms. However, few researchers have attempted to map data-intensive

offloading challenges and proposed data-centric offloading and scheduling frame-

works and techniques. Table 2.1 summarises the main work to date on computa-

tion offloading and device augmentation on mobile-aware computing models(MCC,

MEC and MECC).

Chapter 2 33

T
a
b
l
e
2
.1
:

M
C

C
m

o
d

el
s

su
m

m
ar

y

M
C

C
M

o
d
e
l

O
p
t
im

iz
a
t
io

n

M
e
t
r
ic

s

Q
o
S

M
e
t
r
ic

s

O
ffl

o
a
d
in

g

T
e
c
h
n
iq

u
e

R
e
s
o
u
r
c
e

A
ll
o
c
a
t
io

n

A
lg

o
r
it

h
m

/
T

e
c
h
n
iq

u
e

C
o
m

p
u
t
a
t
io

n

R
e
s
o
u
r
c
e
s

A
p
p
li
c
a
t
io

n

T
y
p

e

E
v
a
lu

a
t
io

n

M
e
t
h
o
d

C
lo

n
e
C

lo
u
d

[5
9
]

D
e
v
ic

e
e
n
e
rg

y
E

x
e
c
u
ti

o
n

ti
m

e
C

o
d
e

o
ffl

o
a
d
in

g
H

is
to

ry
b
a
se

d
p
ro

fi
li

n
g

IL
P

P
u
b
li

c
c
lo

u
d

N
e
a
rb

y
in

fr
a
st

ru
c
tu

re

C
o
m

p
u
ta

ti
o
n

in
te

n
si

v
e

E
x
p

e
ri

m
e
n
ts

C
lo

u
d
le

t
[2

4
]

R
e
sp

o
n
si

v
e
n
e
ss

R
e
sp

o
n
se

ti
m

e
V

M
m

ig
ra

ti
o
n

V
M

m
ig

ra
ti

o
n

a
n
d

a
p
p
li

c
a
ti

o
n

p
ro

fi
li

n
g

N
e
a
rb

y
in

fr
a
st

ru
c
tu

re
C

o
m

p
u
ta

ti
o
n

in
te

n
si

v
e

E
x
p

e
ri

m
e
n
ts

M
A

U
I

[7
4
]

D
e
v
ic

e
e
n
e
rg

y
E

x
e
c
u
ti

o
n

ti
m

e
R

e
m

o
te

e
x
e
c
u
ti

o
n

H
is

to
ry

-b
a
se

d
p
ro

fi
li

n
g

0
1

IL
P

P
u
b
li

c
c
lo

u
d

N
e
a
rb

y
in

fr
a
st

ru
c
tu

re

C
o
m

p
u
ta

ti
o
n

in
te

n
si

v
e

E
x
p

e
ri

m
e
n
ts

W
E

B
L

E
T

[7
3
]

D
e
v
ic

e
e
n
e
rg

y

M
o
n
e
ta

ry
c
o
st

C
o
n
te

x
t

a
w

a
re

n
e
ss

A
p
p
li

c
a
ti

o
n

th
ro

u
g
h
p
u
t

R
e
sp

o
n
se

ti
m

e

R
e
m

o
te

e
x
e
c
u
ti

o
n

A
p
p
li

c
a
ti

o
n

p
a
rt

it
io

n
in

g
P

u
b
li

c
c
lo

u
d

S
c
a
la

b
il

it
y

e
n
a
b
le

d

D
a
ta

in
te

n
si

v
e

E
x
p

e
ri

m
e
n
ts

µ
C

lo
u
d

[2
2
]

D
e
v
ic

e
e
n
e
rg

y
S
e
c
u
ri

ty

U
sa

b
il

it
y

R
e
m

o
te

e
x
e
c
u
ti

o
n

G
ra

p
h

b
a
se

d
d
e
c
o
m

p
o
si

ti
o
n

P
u
b
li

c
c
lo

u
d

C
o
m

p
u
ta

ti
o
n

in
te

n
si

v
e

E
x
p

e
ri

m
e
n
ts

T
h
in

k
A

ir
[2

3
]

U
se

r-
d
e
fi

n
e
d

R
o
b
u
st

n
e
ss

C
o
d
e

o
ffl

o
a
d
in

g
H

is
to

ry
-b

a
se

d
p
ro

fi
li

n
g

V
M

p
a
ra

ll
e
li

z
a
ti

o
n

P
u
b
li

c
C

lo
u
d

S
c
a
la

b
il

it
y

e
n
a
b
le

d

C
o
m

p
u
ta

ti
o
n

in
te

n
si

v
e

E
x
p

e
ri

m
e
n
ts

S
A

M
I

[9
8
]

R
e
sp

o
n
si

v
e
n
e
ss

P
o
rt

a
b
il

it
y

T
ru

st

R
e
m

o
te

e
x
e
c
u
ti

o
n

A
p
p
li

c
a
ti

o
n

p
ro

fi
li

n
g

P
u
b
li

c
c
lo

u
d

M
o
b
il

e
o
p

e
ra

to
r

C
o
m

p
u
ta

ti
o
n

in
te

n
si

v
e

D
a
ta

in
te

n
si

v
e

N
/
A

M
A

P
C

lo
u
d

[6
0
]

U
se

r-
d
e
fi

n
e
d

R
o
b
u
st

n
e
ss

R
e
m

o
te

e
x
e
c
u
ti

o
n

G
ra

p
h

b
a
se

d
d
e
c
o
m

p
o
si

ti
o
n

H
y
b
ri

d
c
lo

u
d

S
c
a
la

b
il

it
y

e
n
a
b
le

d

C
o
m

p
u
ta

ti
o
n

in
te

n
si

v
e

S
im

u
la

ti
o
n

Chapter 2 34

T
a
b
le

2
.1

c
o
n
t
in

u
e
d

fr
o
m

p
r
e
v
io

u
s

p
a
g
e

M
C

C
M

o
d
e
l

O
p
t
im

iz
a
t
io

n

M
e
t
r
ic

s

Q
o
S

M
e
t
r
ic

s

O
ffl

o
a
d
in

g

T
e
c
h
n
iq

u
e

R
e
s
o
u
r
c
e

A
ll
o
c
a
t
io

n

A
lg

o
r
it

h
m

/
T

e
c
h
n
iq

u
e

C
o
m

p
u
t
a
t
io

n

R
e
s
o
u
r
c
e
s

A
p
p
li
c
a
t
io

n

T
y
p

e

E
v
a
lu

a
t
io

n

M
e
t
h
o
d

H
M

C
C

[9
9
]

D
e
v
ic

e
e
n
e
rg

y

R
e
sp

o
n
si

v
e
n
e
ss

R
e
sp

o
n
se

ti
m

e
R

e
m

o
te

e
x
e
c
u
ti

o
n

A
p
p
li

c
a
ti

o
n

p
a
rt

it
io

n
in

g
P

u
b
li

c
c
lo

u
d

C
o
m

p
u
ta

ti
o
n

in
te

n
si

v
e

E
x
p

e
ri

m
e
n
ts

Z
h
o
u

e
t

a
l.

[9
0
]

D
e
v
ic

e
e
n
e
rg

y

M
o
n
e
ta

ry
c
o
st

C
o
n
te

x
t

a
w

a
re

n
e
ss

C
o
d
e

o
ffl

o
a
d
in

g
A

p
p
li

c
a
ti

o
n

p
ro

fi
li

n
g

P
u
b
li

c
c
lo

u
d

N
e
a
rb

y
in

fr
a
st

ru
c
tu

re

A
d
-h

o
c

m
o
b
il

e
c
lo

u
d

S
c
a
la

b
il

it
y

e
n
a
b
le

d

C
o
m

p
u
ta

ti
o
n

in
te

n
si

v
e

E
x
p

e
ri

m
e
n
ts

G
iu

rg
iu

e
t

a
l.

[6
1
]

U
se

r-
d
e
fi

n
e
d

R
e
sp

o
n
se

ti
m

e
C

o
d
e

o
ffl

o
a
d
in

g
G

ra
p
h

b
a
se

d
d
e
c
o
m

p
o
si

ti
o
n

P
u
b
li

c
c
lo

u
d

C
o
m

p
u
ta

ti
o
n

in
te

n
si

v
e

E
x
p

e
ri

m
e
n
ts

L
in

e
t

a
l.

[6
2
]

D
e
v
ic

e
e
n
e
rg

y

R
e
sp

o
n
si

v
e
n
e
ss

C
o
n
te

x
t

a
w

a
re

n
e
ss

A
c
c
u
ra

c
y

C
o
d
e

o
ffl

o
a
d
in

g
A

p
p
li

c
a
ti

o
n

p
ro

fi
li

n
g

P
u
b
li

c
c
lo

u
d

C
o
m

p
u
ta

ti
o
n

in
te

n
si

v
e

E
x
p

e
ri

m
e
n
ts

E
n
z
a
i

e
t

a
l.

[6
7
]

M
o
n
e
ta

ry
c
o
st

D
e
v
ic

e
e
n
e
rg

y

R
e
sp

o
n
se

ti
m

e
C

o
m

p
u
ta

ti
o
n

o
ffl

o
a
d
in

g
G

re
e
d
y

A
lg

o
ri

th
m

W
o
rk

fl
o
w

p
a
rt

it
io

n
in

g

P
u
b
li

c
c
lo

u
d

C
o
m

p
u
ta

ti
o
n

in
te

n
si

v
e

E
x
p

e
ri

m
e
n
ts

J
in

k
e

e
t

a
l.

[4
1
]

R
e
sp

o
n
si

v
e
n
e
ss

N
/
A

C
o
m

p
u
ta

ti
o
n

o
ffl

o
a
d
in

g
A

p
p
li

c
a
ti

o
n

p
a
rt

it
io

n
in

g

N
o
n
-l

in
e
r

o
p
ti

m
is

a
ti

o
n

P
u
b
li

c
c
lo

u
d

E
d
g
e

c
o
m

p
u
ti

n
g

C
o
m

p
u
ta

ti
o
n

in
te

n
si

v
e

D
a
ta

in
te

n
si

v
e

S
im

u
la

ti
o
n

J
a
ra

rw
e
h

e
t

a
l.

[6
8
]

R
e
sp

o
n
si

v
e
n
e
ss

D
e
v
ic

e
e
n
e
rg

y

S
L

A
C

o
m

p
u
ta

ti
o
n

o
ffl

o
a
d
in

g
M

IL
P

P
u
b
li

c
c
lo

u
d

E
d
g
e

c
o
m

p
u
ti

n
g

C
o
m

p
u
ta

ti
o
n

in
te

n
si

v
e

E
x
p

e
ri

m
e
n
ts

G
o
u
d
a
rz

ia
e
t

a
l.

[6
9
]

R
e
sp

o
n
si

v
e
n
e
ss

M
o
n
e
ta

ry
c
o
st

D
e
v
ic

e
e
n
e
rg

y

N
/
A

C
o
m

p
u
ta

ti
o
n

o
ffl

o
a
d
in

g
G

ra
p
h
-b

a
se

d
d
e
c
o
m

p
o
si

ti
o
n

0
-1

IL
P

P
u
b
li

c
c
lo

u
d

M
o
b
il

e

C
o
m

p
u
ta

ti
o
n

in
te

n
si

v
e

S
im

u
la

ti
o
n

E
x
p

e
ri

m
e
n
ts

Chapter 2 35

T
a
b
le

2
.1

c
o
n
t
in

u
e
d

fr
o
m

p
r
e
v
io

u
s

p
a
g
e

M
C

C
M

o
d
e
l

O
p
t
im

iz
a
t
io

n

M
e
t
r
ic

s

Q
o
S

M
e
t
r
ic

s

O
ffl

o
a
d
in

g

T
e
c
h
n
iq

u
e

R
e
s
o
u
r
c
e

A
ll
o
c
a
t
io

n

A
lg

o
r
it

h
m

/
T

e
c
h
n
iq

u
e

C
o
m

p
u
t
a
t
io

n

R
e
s
o
u
r
c
e
s

A
p
p
li
c
a
t
io

n

T
y
p

e

E
v
a
lu

a
t
io

n

M
e
t
h
o
d

C
h
e
n

e
t

a
l.

[7
0
]

R
e
sp

o
n
si

v
e
n
e
ss

D
e
v
ic

e
e
n
e
rg

y

R
e
sp

o
n
se

ti
m

e
C

o
m

p
u
ta

ti
o
n

o
ffl

o
a
d
in

g
0
-1

M
IN

L
P

P
u
b
li

c
c
lo

u
d

E
d
g
e

c
o
m

p
u
ti

n
g

C
o
m

p
u
ta

ti
o
n

in
te

n
si

v
e

S
im

u
la

ti
o
n

C
h
e
n

e
t

a
l.

[8
1
]

R
e
sp

o
n
si

v
e
n
e
ss

D
e
v
ic

e
e
n
e
rg

y

N
/
A

C
o
m

p
u
ta

ti
o
n

o
ffl

o
a
d
in

g
M

u
lt

i
u
se

r
o
ffl

o
a
d
in

g
g
a
m

e
E

d
g
e

c
o
m

p
u
ti

n
g

M
o
b
il

e

C
o
m

p
u
ta

ti
o
n

in
te

n
si

v
e

S
im

u
la

ti
o
n

C
a
rd

e
ll

in
i

e
t

a
l.

[8
5
]

R
e
sp

o
n
si

v
e
n
e
ss

M
o
n
e
ta

ry
c
o
st

D
e
v
ic

e
e
n
e
rg

y

R
e
sp

o
n
se

ti
m

e
C

o
m

p
u
ta

ti
o
n

o
ffl

o
a
d
in

g
G

e
n
e
ra

li
z
e
d

N
a
sh

E
q
u
il

ib
ri

u
m

P
ro

b
le

m
(G

N
E

P
)

P
u
b
li

c
c
lo

u
d

E
d
g
e

c
o
m

p
u
ti

n
g

M
o
b
il

e

C
o
m

p
u
ta

ti
o
n

in
te

n
si

v
e

S
im

u
la

ti
o
n

W
a
n
g

e
t

a
l.

[8
6
]

R
e
sp

o
n
si

v
e
n
e
ss

D
e
v
ic

e
e
n
e
rg

y

E
ffi

c
ie

n
c
y

C
o
m

p
u
ta

ti
o
n

o
ffl

o
a
d
in

g
M

IL
P

P
u
b
li

c
c
lo

u
d

E
d
g
e

c
o
m

p
u
ti

n
g

M
o
b
il

e

C
o
m

p
u
ta

ti
o
n

in
te

n
si

v
e

S
im

u
la

ti
o
n

S
o
u
z
a

e
t

a
l.

[9
2
]

U
se

r-
d
e
fi

n
e
d

R
e
sp

o
n
se

ti
m

e
C

o
m

p
u
ta

ti
o
n

o
ffl

o
a
d
in

g
0
-1

IL
P

P
u
b
li

c
c
lo

u
d

F
o
g

c
o
m

p
u
ti

n
g

C
o
m

p
u
ta

ti
o
n

in
te

n
si

v
e

E
x
p

e
ri

m
e
n
ts

Z
h
a
o

e
t

a
l.

[9
6
]

R
e
sp

o
n
si

v
e
n
e
ss

U
se

r-
d
e
fi

n
e
d

C
o
m

p
u
ta

ti
o
n

o
ffl

o
a
d
in

g
T

h
re

sh
o
ld

-b
a
se

d
p

o
li

c
y

P
u
b
li

c
c
lo

u
d

E
d
g
e

c
o
m

p
u
ti

n
g

C
o
m

p
u
ta

ti
o
n

in
te

n
si

v
e

S
im

u
la

ti
o
n

Chapter 2 36

2.3 Summary and Discussion

Previous researchers strove to overcome the challenges of data-aware mobile ap-

plication offloading. However, their models do not consider the contribution of

data size variation in association with other optimisation parameters in applica-

tion offloading decisions. In addition, these models do little to integrate cloud

and edge systems to resolve data-intensive application offloading and scheduling

optimisation. Moreover, although the literature presents comprehensive research

proposing computation-intensive and data-intensive application offloading optimi-

sation from different perspectives, in a variety of computation environments, two

issues are not fully addressed. The first is the efficient adoption of MECC to

overcome issues of latency-sensitive application when transferring and processing

large data files. The second is offloading optimisation in response to advanced sce-

narios, such as deadline and multi-user models. This thesis describes algorithms

and techniques for data-intensive application scheduling and offloading in hybrid

MCC and MECC systems.

The next chapter presents the first known work on data-intensive application of-

floading in hybrid MCC system.

Chapter 3

Dynamic Resource Allocation in

Hybrid Mobile Cloud Computing

for Data-Intensive Applications

Chapter 2 shows that considerable research has been directed toward computation-

intensive mobile application offloading optimisation, but little towards data-intensive

offloading optimisation. As noted earlier, emerging data-intensive applications,

such as face recognition and natural language processing, impose challenges on

mobile cloud computing platforms because of high bandwidth cost and data lo-

cation issues. To overcome these challenges, this chapter, proposes a dynamic

resource allocation model to schedule data-intensive applications in an integrated

computation resource environment composed of mobile devices, cloudlets and pub-

lic cloud, which can be referred to as hybrid mobile cloud computing.

The allocation process is based on a system model that takes into account param-

eters related to application structure, data size and network configuration. This

chapter describes real experiments conducted on the implemented system and an

evaluation of the performance of the proposed technique. Results demonstrate the

ability of the technique to generate an adaptive resource allocation in response

37

Chapter 3 38

to variation in application data size and network bandwidth. The proposed tech-

nique improves the execution time for data-intensive applications by an average of

78%, and reduces mobile energy consumption by an average of 87% compared to

a mobile device alone, while monetary cost increases only 11% due to using cloud

resources and mobile communication.

3.1 Introduction

The use of mobile devices such as smartphones and tablets has increased tremen-

dously due to advancement in functionalities supported by high connectivity, faster

CPU, large memory, and sophisticated sensors. The use of mobile technologies

(mobile hardware, software, and communication) to create, process and store in-

formation without consideration of geographic location is generically described

as mobile computing [2]. A common technique to reduce computation overhead

on mobile devices is offloading complex tasks to high-capability resources such

as clouds [7] and cloudlets [24]. Section 1.2 provides a detailed description of

computation offloading and device augmentation concepts.

Cloud computing offers highly capable computation resources in a convenient

“pay-as-you-go” cost model [17], and employing cloud resources in computation

offloading facilitates MCC. MCC aims to augment the capabilities of mobile de-

vices by improving and optimising their computing performance while undertak-

ing compute-intensive tasks in cloud-based resources [25]. Section 2.2 presents an

extensive review of the literature on offloading techniques and algorithms with

respect to MCC and hybrid MCC environments. The review concluded that it

is critical to find ways to reduce the energy consumption of mobile applications

when delivering complex high-performance functionalities [21].

Offloading heavy tasks to the cloud can reduce energy consumption in an efficient

way. Energy-based models of MCC proposed in the literature include mobile device

cloning in remote resources [59], code offloading and migration [74], application and

network profiling [76], and application decomposition and reusability [22, 61]. For

Chapter 3 39

hybrid MCC, cloudlets are integrated with an MCC model to enhance application

responsiveness and reduce energy consumption associated with local processing

and cloud communication instability [24]. In addition, Zhou et al. [90] proposed

hybrid MCC middleware to support application offloading and task scheduling

based on a variety of cost models.

However, while some applications are only computation-centric, others, such as

customised data analytic services, natural language processing and face recogni-

tion, involve handling huge amounts of data, particularly those interacting with

enormous numbers of users. The discussion in Section 2.2.3 illustrates the chal-

lenges of data-intensive offloading in terms of energy consumption, resource man-

agement, application responsiveness and the cost of data communication over cel-

lular networks. To facilitate data-intensive mobile applications, an offloading sys-

tem should be capable of resolving the issues of processing and transferring large

chunks of data over heterogeneous networking systems [22]. Thus, it is essential to

study the role of data size on application offloading in terms of modelling, planning

and optimisation.

Research on MCC-based offloading to date has not resulted in a clear view of

how to handle data-intensive applications and how variation in application data

can affect offloading decisions and task scheduling in MCC-based environments.

In this chapter, a dynamic resource allocation model to schedule data-intensive

applications in a hybrid MCC environment is proposed. A hybrid MCC model is

a combination of three type of resources: mobile devices, cloudlets, and the cloud.

In addition, a mobile application is defined as a set of independent tasks and han-

dled as a bag of task (BoT) structure. A BoT can be executed in parallel and

in any order in the computation platform [100]. The model aims to optimise the

overall BoT execution energy and monetary cost of the hybrid MCC environment

under the constraints of mobile device energy and task deadline. A PSO evolu-

tionary algorithm was adopted to find the optimal task scheduling plan [101]. The

contributions of this chapter are:

Chapter 3 40

� a model of multi-objective optimisation of device energy and monetary cost

in a hybrid MCC environment under the constraints of mobile device energy

and task deadline;

� a data-aware offloading technique for data-intensive applications in a hybrid

MCC environment; and

� a performance evaluation of the proposed technique using a real experiment

and simulations under various working conditions.

The rest of the chapter is structured as follows. Section 3.2 presents an overview

of the system architecture as an MCC environment. Application execution mod-

els and problem formulations are described in Section 3.3, while the proposed

data-aware offloading technique is explained in Section 3.4. The model perfor-

mance evaluation and experimental results are discussed in Section 3.5. Section

3.6 provides a summary of the chapter.

3.2 System Architecture

This chapter describes a proposed data-intensive mobile application offloading op-

timisation framework for a hybrid MCC environment. The environment leverages

the hybrid MCC resource types.The public cloud offers powerful and scalable re-

sources, while cloudlets are highly accessible resources with efficient computing

and storage capabilities which are distributed in geographical locations close to

users’ devices. These resources can be accessed via WiFi or the cellular network.

Mobile devices perform local computation and storage under the constraints of en-

ergy availability and wireless interfaces. Section 1.1.2 provides more details about

hybrid MCC environment resource types.

The proposed offloading optimisation framework consists of a set of components,

described in the following subsections, that provide services context monitoring,

decision-making and application execution. Figure 3.1 illustrates the proposed

framework.

Chapter 3 41

Figure 3.1: Proposed hybrid MCC offloading decision optimisation framework.

3.2.1 Context Monitor

The context monitor module is responsible for profiling context parameters at run

time and supports the decision-maker with energy consumption and monetary cost

estimations. The framework offers three profilers: a device profiler, a network mon-

itor and an application profiler. The device profiler collects data about the user’s

device, including available energy (battery level), computation power (number of

free cores) and free storage space. The network monitor keeps track of the commu-

nication between mobile device and remote servers (cloud and cloudlets). Mobile

network type and bandwidth are recorded. The data collected about network sta-

tus is passed to the decision module for data transfer time and cost estimation.

The application profiler records profiling data about application execution with

awareness of context information about network bandwidth. For each application

execution, the profiler registers the offloading decision in association with problem

parameters and optimisation values. This allows the decision-maker to estimate

Chapter 3 42

decision variables (time, cost and energy) according to problem parameters like

data size and bandwidth. This correspondence is termed data sensitivity analysis.

3.2.2 Decision-Making

The decision-making module includes three components. The cost estimator pro-

vides estimations for optimisation variables based on the proposed cost formulation

and profiled data by context module.

The QoS optimiser is responsible for evaluating offloading plans according to user

QoS constraints of maximum execution time and minimum energy. The evaluation

is based on the assumption that each task execution time does not exceed the

deadline, and total estimated energy is lower than device available energy. In

complex offloading scenarios (with a large number of tasks), the deadline constraint

relaxed to allow more tasks to be executed, that is, some tasks can exceed their

deadlines by a certain threshold. The threshold refers to the percentage of the

original deadline task can exceed to pass the deadline constraint. The selection of

the threshold is application-oriented and depends on task time sensitivity.

The cost estimator calculates the values of optimisation decision variables (time,

cost and energy) based on the given cost models, and the current device networking

status with remote servers. In addition, the cost estimator calculates the expected

waiting time for task remote execution based on the adopted queuing system.

The decision-maker runs the offloading optimisation process to find the best appli-

cation execution plan in a solution space where each solution is estimated by the

cost estimator and evaluated by the QoS optimiser. The process can be described

as follows:

1. a number of random offloading plans are generated;

2. for each plan, the cost estimator calculates the optimisation cost, and the

solution is verified by the QoS optimiser;

Chapter 3 43

3. the resource handler investigates the availability of the required resources;

4. the solution is compared to the current best solution; and

5. the best solution is sent to the execution module.

3.2.3 Execution Module

The execution module is responsible for running and managing the execution of

the application execution plan received from the decision-maker. It has three main

components. The resource handler manages the communication with computation

and storage resources, and is responsible for obtaining details about these resources

to determine whether they match the requirements of running application tasks.

The task manager controls the execution of application tasks and manages data

sharing through the resource manager. An offloading plan execution is handled as

follows:

1. the task manager receives the offloading plan (execution decision) from the

decision-maker;

2. the task manager interacts with the communication handler to check the

availability of remote servers and then sends remote tasks for execution. The

communication handler performs the real data transfer to server controllers

on remote servers; and

3. after running all the tasks, plan execution results and execution environment

status are sent for profiling.

3.3 System Modelling and Problem Formulation

This section describes the modelling of data-intensive applications and the hybrid

MCC environment. Table 3.1 describes the mathematical notations used in the

problem formulation.

Chapter 3 44

Table 3.1: Problem formulation notations

Symbol Definition
ti Application task i
Li Task input file location, either locally or remotely
si Task input size
wi The number of task execution instructions
∂i Task deadline
βdown, βup Available network download and upload bandwidth
βcost The monetary cost of data communication using the mobile network
d Mobile device storage
e Available device energy (joule)
α Available device memory
wm Device processing power
pcost Cost of processing in a cloud machine
wcloud Processing power of a cloud machine
C Estimated total monetary cost of the application
E Estimated total energy consumption in the mobile device
Dti Estimated execution time for task ti
Øi Task ti data size sensitivity factor
βs, βr Network bandwidth between data location and computation target
l Network latency
DW
ti

Task waiting time in a remote server
λ Mean rate of arrival of task execution requests at a remote server
Lq Mean number of task requests in the queue
MW Application waiting time

3.3.1 Task Modelling

The representation of a data-intensive hybrid MCC application A is represented

as set of independent tasks. An application A is modelled as:

A = {t1, t2, . . . , tn} (3.1)

where n is the number of tasks. Each task ti is modelled as:

ti = {Li, si, wi, ∂i} (3.2)

Data size and location parameters are included in task modelling to serve the

Chapter 3 45

objective of building a data-aware optimisation model for scheduling mobile ap-

plication tasks in a hybrid MCC environment.

3.3.2 Resource Modelling

This section describes the modelling of the hybrid MCC resource model. A mobile

device Pm is modelled as:

Pm = {α, βdown, βup, βcost, d, e, wm} (3.3)

A mobile device is connected to a cloudlet and the public cloud via WiFi or cellular

networks. A cloudlet or public cloud virtual machine Pcloud is modelled as:

Pcloud = {βdown, βcost, pcost, wcloud} (3.4)

3.3.3 Application Execution Models

This section describes the cost estimation models involved in formulating the mo-

bile application scheduled to run the application tasks in the hybrid MCC environ-

ment. In order to find the application execution plan, three estimation values need

to be calculated, namely, task execution time, total mobile energy consumption

and total monetary cost.

3.3.3.1 Task Execution Time Model

The task execution time for task ti is the sum of task processing time DP
ti

in the

target computation environment Ptarget, data communication time DC
ti

and task

average waiting time DW for remote execution.

Dti = DP
ti

+DC
ti

+DW (3.5)

Chapter 3 46

DP
ti

= wi,target + (si ∗ øi) (3.6)

DC
ti

=
si

min(βs, βr)
+ l (3.7)

Task remote execution in cloudlets and in the public cloud is modelled as a G/G/1

queuing system [102] with a single computation machine. The queuing system is

part of the time estimation process. It requires data from the application profiler

and network monitor to estimate the task waiting time based on machine compu-

tation availability. For the queuing system, the inter-arrival time of task execution

requests has a general distribution. In addition, independent and identical service

times among task execution requests with general distribution is assumed. The

objective of applying the queuing system is to estimate the average task waiting

time DW . For the G/G/1 queue, no result exists; thus, Shore’s approximation is

followed [102]. Using Little’s rule [103],

DW =
Lq
λ

(3.8)

3.3.3.2 Mobile Device Energy Model

The energy consumption of the mobile device E is estimated by calculating EP , the

total processing energy consumed by the mobile device, EW , the waiting energy

(particularly when the local execution time is less than the remote execution time,

since the system assumes parallel task execution in the computation environment),

and EC , which is the mobile energy consumption for data transfer communication.

E = EC + EP + EW (3.9)

Ei
P = Dti

P ∗ εiP (3.10)

EP =
m∑
i=1

Ei
P (3.11)

MW = max(0,
m∑
i=1

Dti
P −max(

c∑
i=1

Dti
P ,

cl∑
i=1

Dti
P)) (3.12)

Chapter 3 47

EW = MW ∗ εW (3.13)

EC =
m∑
i=1

Dti
C ∗ εC (3.14)

Where:

�
∑m

i=1Dti
P ,

∑c
i=1Dti

P ,
∑cl

i=1Dti
P : are the total processing times for all

tasks executed locally (in the mobile device) and remotely (in the public

cloud and cloudlet), respectively. Waiting energy consumption is considered

only if the waiting time MW has non-negative value.

� εi
P , εW , εC : the estimated energy consumption in the mobile device for task

ti, remote execution waiting and data communication, respectively.

� m, c, cl are the numbers of tasks to be executed in the mobile device, the

public cloud and cloudlet, respectively.

3.3.3.3 Monetary Cost Model

The monetary cost is the amount of money needed to run the mobile applica-

tion in the proposed hybrid MCC environment. This includes two parts: total

remote task processing cost CP in the cloudlet, and the public cloud and total

data communication cost CC .

C = CP + CC (3.15)

CP =
c∑
i

Ci
P (3.16)

Ci
P = Dti

P ∗ pcost (3.17)

CC =
n∑
i

(si ∗ βcost) (3.18)

Chapter 3 48

3.3.4 Problem Formulation

The main objective is to find the best mobile application offloading plan in which

the total energy consumption on the mobile device and the total monetary cost

are reduced with respect to the individual task deadline and available mobile

battery energy. The offloading plan represents a tuple for each task ti and the

selected computation environment for local execution on the mobile device Pm,

the cloudlet or the public cloud Pcloud. Precisely, the optimisation problem is

formulated as monetary cost (C) multiplied by mobile energy consumption (E),

due to the assumption of equal contribution to the optimisation and the difference

in both measurement units:

min(C ∗ E) (3.19)

Subject to:

Dti < ∂i , ∀ti ∈ A

E < e

3.4 Proposed Data-Aware Offloading Technique

Mobile application offloading aims to augment mobile device capabilities by mi-

grating computation to more powerful resources. Here, a data-aware offloading

technique is proposed and the contribution of data size for mobile application of-

floading decisions in hybrid MCC environment is evaluated. To accomplish this

objective, PSO [101] was adopted as an evolutionary search optimisation technique

to find the best offloading plan based on the optimisation objective in Eq (3.19).

This section discusses the proposed offloading technique, in which an optimised

tasks allocation and scheduling plan is generated.

Particle swarm optimisation is an evolutionary computational technique that op-

timises a problem by iteratively trying to improve a candidature solution with

respect to quality and cost. It simulates the behaviour of groups of organisms in

motion, such as a flock of birds or school of fish. It was developed by Eberhart and

Chapter 3 49

Kennedy [101] in 1995 and has been widely researched and utilised ever since. A

particle represents an individual that tries to find an optimised solution by moving

through a defined search space. Each particle adjusts its position towards local

best position (own position) and towards global best (the entire population best

position). This behaviour improves the convergence time needed to get a global

minimum with a reasonably good solution. PSO modelling requires two main

steps: problem encoding and fitness function formulation.

Here, a particle represents a randomised application execution plan on available

resources. Figure 3.2 provides an example of a particle position. There are 10

tasks to schedule. In this case, a particle is 10-dimensional and its position has

10 coordinates. The coordinate index (coordinate 1 through 10) maps into tasks

(t1 through t10). The value of each coordinate is a real number in the range (0..3].

Coordinate values in the range (0..1] for the corresponding tasks are allocated to

the mobile device and coordinate values in the range (1..2] for the corresponding

tasks are allocated to the cloudlet, while coordinate values in the range (2..3] for

the corresponding tasks are allocated to the public cloud.

To reflect the objective of scheduling tasks in the defined computation environ-

ment, the fitness function is used to determine the goodness of a particle’s position

by estimating the optimisation value for a given solution according to the total

monetary cost C Eq. (3.15) and the total energy E Eq. (3.9) consumed by the

mobile device.

Algorithm 1 shows the steps for calculating the fitness value for a particle. The

fitness function accepts a PSO particle which has a position that represents an

application task scheduling solution. The computation process of the offloading

Figure 3.2: Example of the encoding of a particle’s position.

Chapter 3 50

Algorithm 1 PSO fitness function

1: Function PSOFitFun (P, BoT)
2: Inputs: P: a PSO particle, The BoT
3: Output: optimisation value (C*E)
4: {CC , CP , C,EC , EP , EW , E} = 0
5: {DP , DC , D,DTM,MW } = 0
6: for i = 1 to n do do
7: Ptarget = P.pos(i)
8: if Ptarget != ti.L then
9: DC = CTFunc(ti,Ptarget)

10: if Ptarget == M or ti.L == M then
11: EC= EC+CEFunc(ti, Ptarget, D

C)
12: CC = CC + CCFunc(Ptarget, D

C)
13: end if
14: if ti.L == R then
15: CC = CC + CCFunc(Ptarget, D

C)
16: end if
17: end if
18: DP = PTFunc(ti, Ptarget)
19: if Ptarget == M then
20: EP = EP + PEFunc(Ptarget, D

P)
21: else
22: DW = QWFunc(Ptarget)
23: CP = PCFunc(Ptarget, D

P +DW)
24: end if
25: if Ptarget == M then
26: DTM = DTM +D DTM

27: else
28: DTC = DTC +D DTC

29: end if
30: D = DP +DC +DW

31: if D > ti.ρ then
32: return -1
33: end if
34: end for
35: MW = DTM −DTC

36: if MW > 0 then
37: EW = WEFunc(Pm,M

W)
38: end if
39: E = EP + EC + EW

40: C = CP + CC

41: if E > Pm.e then
42: return -1
43: end if
44: return E ∗ C

value based on the solution presented by the input practical is summarised as

follows.

Chapter 3 51

� The task processing time DP is calculated based on the computation re-

quirement and data size for task ti. The impact of data size is measured by

performing task processing with different data sizes. The processing time DP

is used to estimate processing energy for local task execution, and monetary

cost CP for remote execution.

� Energy estimation and cost calculation are based on task execution time D

Eq. (3.5), including processing, communication and waiting time.

� The system assumes extra energy consumption as the mobile device is in idle

state. This is referred to energy as device waiting energy, and is calculated

when total local execution time is less than the maximum remote execution

time in the cloudlet or public cloud, line 37.

� The data communication time DC for task ti depends on task data location

and is considered only if the data storage and computation environment are

in different locations, lines 10-16.

� The fitness function considers the impact of DC time on mobile device energy

and monetary cost.

� In the case of remote execution, the waiting DW is estimated using the

queuing system and calling the function QWFun in line 22.

� Model constraints for deadline and available energy are checked in lines 31

and 36 respectively.

Algorithm 2 shows the main steps of finding the optimal offloading scheduling

plan for data-aware mobile applications. Initially, the system collects data about

the computation resources R (mobile device and cloud resources). For the mobile

device, the available energy and available bandwidth are collected. The first step

is PSO environment configuration setup based on standard values of the param-

eters of inertia and coefficient acceleration. Next, PSO particles are initialised

with random position. A particle position represents a BoT execution plan on

computation resources.

Chapter 3 52

Algorithm 2 Task scheduling for data-aware offloading

1: Inputs : set of application tasks T, computation resources R
2: Output : application tasks schedule S
3: Update resources’ metadata
4: Setting up PSO Environment P
5: Initialise PSO Particles P [NumP] NumP : number of particles
6: P.gbest = inf Initialise global best gbest
7: for i = 1 to NumP do
8: Randomise P [i].POS
9: FitCost = PSOFitFun(P [i].POS, T)

10: UpdateBestPos (P, P [i], F itCost)
11: end for
12: Run PSO Iterations // NumL : number of iterations
13: for i = 1 to NumL do
14: for j = 1 to NumP do
15: Calculate P [j].V ELOCITY
16: Update P [j].POS
17: FitCost = PSOFitFun(P [j].POS, T)
18: UpdateBestPos (P, P [j], F itCost)
19: end for
20: end for
21: MinCost = PSOFitFun(P.gbest.POS, T)
22: S = (P.gbest.POS,MinCost)
23: Return S

For each particle, the fitness cost is calculated based on the fitness function pro-

vided in Algorithm 1. The local best pbest and global best gbest are updated.

The gbest is initialised to infinity for this cost minimisation problem. To find an

optimal solution, the algorithm performs multiple iterations, and in each iteration,

each particle position is updated based on its new velocity value. pbest and gbest

values are updated to reflect the new fitness cost estimation. Once the algorithm

finishes all iterations, the particle associated with gbest, which represents the min-

imum optimisation value of E ∗C, according to the optimisation objective, will be

considered as the optimal BoT execution plan.

3.5 Performance Evaluation

Performance evaluation for the proposed data-aware offloading technique was con-

ducted using two experiments. The first was a real experiment, designed to validate

Chapter 3 53

the model by comparing the results of the offloading technique against real execu-

tion. This experiment required a real MCC environment, as illustrated in Figure

3.1. In the second experiment, synthetic application data was used to evaluate the

proposed offloading technique.

3.5.1 Experimental Setup

The configuration of the hybrid MCC resources includes mobile devices, cloudlets

and the public cloud listed in Table 3.2. It assumes a single machine for task

processing in the public cloud and cloudlet. For mobile network bandwidth, the

experiment was conducted with three communication networks (3G, 4G, and Wi-

Fi). Table 3.3 presents details about bandwidth values for these networks. Min-

imum and maximum bandwidth in real application execution were recorded for

each network type and used to build a uniform distribution model for the exper-

imental work. The application structure was initialised with 30 tasks. Each task

has the following properties.

� The computation requirement (task workload) DP is based on the workload

model proposed by Anglano and Canonico [104]. Application task deadline

values are uniformly distributed in the interval [X ± 0.5X], where X is the

granularity of the tasks. The model was used to determine the task deadline

Table 3.2: Computation resources configuration

Resource type No. Cores Memory (GB)
EC2 Linux t2.2xlarge Intel Xeon 8 32
Cloudlet Intel Xeon 4 8
LG Nexus 5 Qualcomm 2 2

Table 3.3: Communication Networks bandwidth

Network Type Min. Bandwidth (MB/s) Max. Bandwidth (MB/s)
3G 1.5 2.6
4G 3.9 9.5
WiFi 10.8 20.5
Network Latency Min. Latency (s) Max. Latency (s)
Latency 0.6 11.5

Chapter 3 54

with X = 1000 granularity. After applying the model, deadline values are

uniformly distributed between 500 and 1500, all in seconds.

� The task data file locations (L) are distributed randomly between the public

cloud server, the mobile device and other cloud storage (i.e. AWS S3).

� Task data size (s) model: four different scenarios for the application data

model are employed to create each task. Table 3.4 presents four task data

distributions with minimum and maximum sizes. The data distributions

are selected to align with the study of data size contribution on offloading

optimisation decision.

� The task data sensitivity factor (ωi) has a value between [0,1] and measures

the task execution response to the change in data size.

Table 3.4: Task input data size distribution

Data Distribution Min. Size (MB) Max. Size (MB)
Small 20 200
Medium 200 500
Large 500 2000

3.5.2 System Profiling

This section outlines the implementation of a profiling process to compute an

approximation of energy and bandwidth estimation parameters in a hybrid MCC

environment. The profiling process focused on estimating the relationship between

model parameters of network bandwidth and data size and the energy consumed by

the user’s mobile device. A profiling experiment with varying data size (different

input data files) and bandwidth (change mobile network) was performed. At each

execution setup, a 30-tasks BoT application was run. Averages of processing,

communication and waiting energy values were recorded. PowerTutor software

was used for power estimation, giving energy consumption estimates within 5% of

actual values [105].

Chapter 3 55

Table 3.3 shows bandwidth profiling results. In addition, energy parameters were

used to calculate the energy the device consumed during task processing, data

transfer and device waiting for external task processing, εi
P , εC , εW , respectively.

The profiling process considers the parameters of task data size, mobile network,

device processing capability and physical data file transfer between data storage

and computation locations. The experiment was conducted for each combination

of data size and bandwidth variations. Table 3.4 shows the data size distributions

for data files used in the profiling experiments.

In addition, as a part of system profiling, the data sensitivity factor ωi for a task ti

was estimated. The sensitivity factor measures the sensitivity of task processing to

change in task data size. To get an accurate measurement of the sensitivity factor,

the correlation between task input data size and the change in processing time was

analysed. Thirty experiments were performed to reach a reliable measurement with

minimum variance on data sensitivity values.

The following provides the validation for the proposed execution model using a

real-time execution scenario. Validation was based on running an application with

30-task of small data model using both the proposed model and real implementa-

tion for three communication networks.

Figure 3.3 shows the proposed model and real execution results in three commu-

nication networks and three performance metrics: execution time, mobile energy

and monetary cost. For the purpose of validation, only the small data scenario

was implemented. The validation process can be described as follows.

1. Set up the environment. The execution environment includes three compu-

tation resources: a cloud server, a cloudlet and a mobile device. We have

applied the same experiment setup for profiling environment configuration.

This includes resources setup which is provided in Table 3.2 and communi-

cation network setup which is provided in Table 3.3.

2. Construct 30 execution scenarios for the 30-task BoT.

Chapter 3 56

WiFi 4G 3G
Network Type

0.0

0.1

0.2

0.3

0.4

To
tal

 E
xe

cu
tio

n
Ti

m
e (

h)

� ���!�� ����� ���� �%��#"���

���� �
 �

��"$� � �&��

�

	�

���

�	�

���

��
"�

��
%�

�#
"��

�
��

�
�&

��
�#

��
�

� ���!�� ����� ���� �%��#"���

���� �
 �

��"$� � �&��

�

�

�

�

�

��
"�

��
%�

�#
"��

�

�!
"�

��

� ���!�� ����� ���� �%��#"���

(a) Execution time (b) Mobile energy (c) Monetary cost

Figure 3.3: Application execution model validation using real experiments for
three different communication networks

3. For each network scenario, run the offloading optimisation to find the exe-

cution plan for each execution scansion.

4. Run the offloading plan on the real execution environment and record results.

The results shows some discrepancies between the proposed model and real exe-

cution scenario due to the differences in available bandwidth and network latency.

For execution time in Figure 3.3, the proposed model scenario demonstrates higher

values than the real-time with high-bandwidth networks. This can be explained

by the variation in bandwidth distribution interval which feeds the offloading sys-

tem with bandwidth values. This behaviour does not apply for small bandwidth

interval such as in 3G case. Another source of execution time overestimation is

the applied queuing system to estimate task waiting time at remote servers. For

the purpose of experimentation, a uniform distribution is adopted for each server

service time. Overall, the highest estimation error was observed in the 3G net-

work. As shown in Table 3.3, the bandwidth for the 3G network is between 1.5

and 2.6, but in real execution the bandwidth is unstable. The average errors for

the execution model are 8% for execution time, 11% for energy consumption and

15% for monetary cost. Based on average estimation errors, it can be concluded

that the proposed execution model is accurate enough to use for offloading in the

hybrid MCC system.

Chapter 3 57

3.5.3 System Evaluation and Experimental Results

After validating the proposed offloading model, a similar setup was used to evaluate

the proposed offloading technique under varying working conditions. The proposed

technique was compared with two other techniques: mobile only and random

offloading. The former implies only local processing on the user’s device, and the

latter refers to the selection of random offloading using a combination of mobile,

cloudlet and public cloud. The application tasks were demonstrated based on the

aforementioned data size scenarios. In addition, the performance measurements

used were execution time, mobile energy and monetary cost. Figures 3.4, 3.5 and

3.6 show the results of running the mobile application using three techniques and

three communication networks, giving nine sets of results in total.

Figure 3.4 shows the experimental results when using the 3G network. Figure 3.4

(a) illustrates that the proposed technique reduces the execution time in compar-

ison to the other two techniques for the three data size models. In comparison

to the random technique, execution time reduction was 25% with small data size,

56% with medium data size and 63% with large data size. For the same exper-

iment, the proposed technique, compared to the mobile technique, reduced the

execution time by an average of 73% for the three data size models. Moreover,

Figure 3.4 (b) shows reduction in mobile energy consumption with increasing data

size. For example, the proposed technique reduced mobile energy consumption by

[20, 200] [200, 500] [500, 20000]
Data size (MB)

0

2

4

6

8

To
tal

 E
xe

cu
tio

n
Ti

m
e (

h)

�!� �"��
������
������

[20, 200] [200, 500] [500, 20000]
��#� "�'� ����

�

����

����

���

����

�����

��
#�
��

%�
�$
#��
�
��

�!
�&

��
�$
��
�

�!� �"��
������
������

[20, 200] [200, 500] [500, 20000]
��#� "�'� ����

�

��

��

��

��

	�

��
#�
��

%�
�$
#��
�

�"
#�
��

�!� �"��
������
������

(a) Execution time (b) Mobile energy (c) Monetary cost

Figure 3.4: System performance measurements with 3G network for different
data sizes

Chapter 3 58

[20, 200] [200, 500] [500, 20000]
Data size (MB)

0

1

2

3

4

5

6

7

To
tal

 E
xe

cu
tio

n
Ti

m
e (

h)

� ���!��
������
������

[20, 200] [200, 500] [500, 20000]

�"� !�&� ����

�

����

����

����

����

	���

���

��
"�

��
$�

�#
"��

�
��

�
�%

��
�#

��
�

� ���!��
������
������

[20, 200] [200, 500] [500, 20000]

�"� !�&� ����

�

��

��

��

��

	�

��
"�

��
$�

�#
"��

�
�

�!
"�

��

� ���!��
������
������

(a) Execution time (b) Mobile energy (c) Monetary cost

Figure 3.5: System performance measurements with 4G network for different
data sizes

[20, 200] [200, 500] [500, 20000]
Data size (MB)

0

1

2

3

4

5

6

To
tal

 E
xe

cu
tio

n
Ti

m
e (

h)

� ���!��
������
������

[20, 200] [200, 500] [500, 20000]

�"� !�&� ����

�

����

����

����

	���

��
"�

��
$�

�#
"��

�
��

�
�%

��
�#

��
�

� ���!��
������
������

[20, 200] [200, 500] [500, 20000]

�"� !�&� ����

���

��

���

��

���

��

���

��

	��

��
"�

��
$�

�#
"��

�
�

�!
"�

��

� ���!��
������
������

(a) Execution time (b) Mobile energy (c) Monetary cost

Figure 3.6: System performance measurements with WiFi network for differ-
ent data sizes

57% with small data size, 74% with medium data size and 78% with large data

size compared with the random technique.

The proposed technique, compared to the mobile technique, reduced the mobile

energy consumption by an average of 78% for the three data size models. In

addition, Figure 3.4 (c) highlights the ability of the proposed technique to reduce

monetary cost by 2-3% compared to the mobile technique, and 50% compared

to the random technique. This is due to the proposed technique’s execution in

the mobile environment incurring only communication costs’ while the other two

techniques have communication costs and cloud resources costs. In general, as

data size increases, the ability of the proposed technique to handle data-intensive

applications also increases.

Chapter 3 59

In the 4G case Figure 3.5, results confirm the proposed technique behaves similarly

to the random and mobile techniques. Figure 3.5 (b) shows energy consumption

savings of the proposed technique compared with the mobile technique of 89%

for large data size; this compares to 80% for the 3G network, due to the higher

energy consumption of the 4G network. An important conclusion in regard to the

use of cellular networks is the proposed technique’s efficiency in providing cost-

effective offloading plans by using the capability of nearby cloudlets and reducing

the amount of computation and data migrated to the cloud.

The impact of low-cost networks on computation time and cost is represented

clearly in the case of WiFi Figure 3.6. The proposed technique’s strategy is to

maximise dependency on cloud resources. Thus, Figure 3.6 (a) shows an increase in

total execution time, and (b) shows average 90% and 84% savings in mobile energy

consumption of the proposed technique compared with the mobile technique and

the random technique, respectively. This again confirms the significance of the

proposed model in saving energy while using different communication networks.

Based on these results, the proposed technique improves execution time for data-

intensive applications for large data sets compared to the random technique by an

average of 51% and reduces mobile energy consumption by an average of 77%, while

the average monetary saving is 48%. Moreover, the proposed technique improves

execution time for data-intensive applications for large data sets compared to the

mobile technique by an average of 78% and mobile energy consumption by an

average of 87%, while the average monetary cost is only 11% higher due to using

cloud resources and mobile communication.

In summary, the proposed technique shows greater ability to handle data-intensive

applications than the mobile and the random techniques through reducing mobile

energy consumption and monetary cost. It can be stated that for data-intensive

applications, using the proposed technique is superior because the execution time

and mobile energy consumption will be very high, but for small data size appli-

cations, it has minimal advantages over the mobile technique and the random

technique.

Chapter 3 60

3.6 Summary

This chapter outlines a proposed QoS-aware resource allocation model for schedul-

ing data-intensive mobile applications in a hybrid MCC environment. The model

generates an application execution plan that consider application complexity, in-

put data size, available network bandwidth, and available mobile device energy.

Results indicate that the model reduces execution time and energy consumption

substantially. However, the execution model accuracy for estimating waiting time

on remote servers can be improved by more investigation on the queuing system

behaviour and incorporating additional parameters like task arrival rate and task

service rate.

One issue with evolutionary optimisation techniques like PSO is the exponential in-

crease in search complexity, particularly with large-space problems such as mobile

applications with large numbers of tasks. The next chapter describes an investi-

gation of offloading optimisation with linear search optimisation to reduce search

time complexity. In addition, it outlines a study of the integration of edge com-

puting into the hybrid MCC environment to improve handling of data-intensive

MCC applications.

Chapter 4

Data-Intensive Application

Scheduling on Mobile Edge Cloud

Computing

Chapter 3 describes an investigation of the role of hybrid MCC in overcoming the

challenges of mobile computing by allowing mobile devices to offload computation-

intensive and data-intensive tasks to high-performance and scalable computation

resources. However, emerging data-intensive applications pose challenges for hy-

brid MCC platforms because of high latency, cost and data location issues. To

address the challenges of data-intensive applications on mobile cloud platforms,

this chapter describes a proposed application offloading optimisation model that

schedules application tasks in an MECC environment. The optimisation model

is formulated as a MILP model, which considers both monetary cost and device

energy as optimisation objectives. Moreover, the allocation process considers pa-

rameters related to data size and location, data communication costs, context

information and network status.

To evaluate the performance of the proposed offloading algorithm, we conducted

real experiments on the implemented system with a variety of scenarios, such as

different deadline and multi-user parameters. The results demonstrate the ability

61

Chapter 4 62

of the proposed algorithm to generate an optimised resource allocation plan in

response to dramatic fluctuations in application data size and network bandwidth.

The proposed technique reduced the execution cost of data-intensive applications

by an average of 46% and 76% in comparison with PSO and full execution on a

mobile device only, respectively. In addition, the new technique reduced mobile

energy consumption by 35% and 84%, compared to PSO and full execution on a

mobile device only, respectively.

4.1 Introduction

MCC aims to augment the capacity of mobile devices by improving and optimising

their computing capabilities by performing computationally intensive tasks using

cloud-based resources [25], and involves migrating resource-intensive computations

from smartphone devices to the cloud via wireless communication technologies, a

process referred to as the computation offloading concept.

In the previous chapter, a data-intensive offloading technique on hybrid-MCC

based on the PSO optimisation technique was proposed. The technique has two

main limitations. The first limitation is handling the challenges of delay-sensitive

applications, where the long propagation distance from a mobile device to a re-

mote cloud server can result in an excessively long latency for mobile applications,

and the other corresponds to the high time complexity of optimising large-scale

problems using PSO technique. As discussed in Section 1.2, alternative computing

models like MEC can handle the latency issue by allowing approximate computa-

tion closer to data sources [40].

Mobile edge computing is an emerging paradigm designed to meet the ever-increasing

computation demands of mobile applications [66]. Edge computing is a computing

paradigm designed to facilitate the management of heterogeneous data sources for

collection, processing and transfer of massive data generated from interconnected

devices [106]. Applying edge computing can be sufficient to reduce the overload

of data flow requested to the cloud. Moreover, offloading some computing tasks

Chapter 4 63

to the edge can improve energy efficiency due to the huge data transfer saving,

particularly with mobile network usage [30]. Most studies of offloading optimisa-

tion in MEC focus on finding an optimal application task distribution strategy to

edge resources that minimises data transfer latency with respect to the capacity

of edge nodes [29, 34, 40, 67–70].

Mobile edge computing has the advantage for data-intensive to push mobile com-

puting, network control and storage from resource-limited mobile devices to the

network edges to enable computation-intensive and latency-critical applications

[35]. With MEC, a mobile application can track real-time information such as

behaviours, location and environment, which reduces the exchange of sensitive

information between the mobile device and cloud resources, while being more en-

ergy efficient. However, edge resources are limited in the computation capacity,

scalability and high-energy sensitivity needed to perform long-term computation.

One solution is integrating edge and cloud resources, providing benefits from the

high capability of cloud resources and the availability of access resources at the

edge layer. The joint computation architecture can be referred to as MECC [41].

In this chapter, multi-objective data-intensive mobile application scheduling and

allocation optimisation in an MECC computation environment is proposed. The

contributions of this work include:

� multi-objective optimisation of device energy and monetary cost in the MECC

environment under the constraints of available mobile device energy and task

deadline;

� formulation of joint task offloading and resource allocation optimisation for

multi-user mobile applications using MILP, considering both monetary cost

and device energy as optimisation objectives; and

� a multi-perspective analysis of data-intensive application optimisation based

on deadline and multi-user constraints.

This chapter is structured as follows. Section 4.2 describes an investigation of

related work on task scheduling and allocation optimisation on MCC, MEC and

Chapter 4 64

MECC. Section 4.3 presents an overview of the system architecture. System mod-

elling and problem formulation are presented in Section 4.4, while the optimisation

technique and the proposed offloading algorithm are explained in Section 4.5. The

proposed model’s performance evaluation and experimental results are discussed

in Section 4.6, and Section 4.7 provides summary of the chapter.

4.2 Related Work

This section contains a review of the existing work on task scheduling and alloca-

tion optimisation using MCC, MEC and MECC from different perspectives and

based on different optimisation objectives, including, energy, cost, latency and

multi-user implementation. Mobile device I/O processing and network communi-

cations are energy-hungry components [21], and offloading heavy tasks to high-

performance computation resources can substantially reduce energy consumption.

Many techniques have been proposed for overcoming the challenge of energy-

intensive applications, such as device augmentation [21], VM cloning [59], com-

putation migration [74] and code decomposition and component reusability [22].

Despite their capacity to fulfil the requirements of some applications, like peer-

to-peer gaming and low-scale image processing, these techniques encounter major

challenges in supporting large-scale and complex applications with unpredictable

numbers of users, exchanged data size, network bandwidth and corresponding data

communication costs.

Mobile/wireless network performance makes a significant contribution to mobile

application responsiveness and processing time [15]. Hung et al. [107] argued

that a high percentage of mobile users would prefer to run mobile applications lo-

cally due to network performance implications. The decision to run an application

locally or remotely is complicated and requires steady monitoring of network con-

ditions and application profiling [61]. Many researchers have focused on resolving

the issues of instability of network bandwidth and data communication quality.

Chapter 4 65

However, one limitation of cloudlets is their limited convergence on the mobile

network for service provisioning, which does not support a high number of mo-

bile users sharing available resources [81]. Processing on close edge nodes is more

efficient for reducing data transfer latency and capturing more real-time context

information [34]. Chen et al. [81] adopted MEC architecture and applied game

theory to find optimised application scheduling based on latency and energy con-

straints. Jararweh et al. [68] addressed the same optimisation problem using

MILP in an edge-only resource environment. Cardellini et al. [85] designed a

game-theoretic approach for computation offloading in a joint resource model of

cloud and edge computing. The work employed the waiting time in computation

nodes to separate the execution of multi-user applications without consideration

of user workload distribution. Offloading decisions on cloudlet-based architecture

needs to consider the level of interactivity and workload dynamicity among system

users.

In the context of data-intensive mobile applications, some issues related to MECC

are not clearly resolved. Firstly, transferring huge amounts of data via unstable

mobile networks will lead to an unpredictable increase in data transfer latency.

Secondly, edge resources have limited capability to process application tasks with

high data input. Finally, transferring massive data over cellular networks and

processing in public clouds incurs significant costs for application users. Wang et

al. [18] argued that data-intensive application computations on mobile computing

are always costly in terms of computation time, mobile energy and resource cost.

Nan et al. [51] studied the challenges of data-intensive-aware mobile applications

highlight the significance of increasing data size on monetary cost and QoS im-

provement. Abbas et al. [29] proposed an offloading optimisation technique-based

execution path to reduce execution latency for data-intensive mobile applications

in MEC, and Terefe et al. [80] proposed a data-intensive energy-efficient optimi-

sation model for a hybrid-cloud environment. The results of both studies show

how adopting a heterogeneous resource model can minimise energy consumption.

Zhou et al. [90] proposed a three-tier MCC middleware, mCloud, that empowers

programmers with computation alternatives, based on the application cost model

Chapter 4 66

and the offloading decision-maker. Even though the proposed model includes the

task data size in generating an optimised execution application task plan, the data

size is relatively small and cannot reflect the scenario of data-intensive applica-

tion task scheduling on MCC. Moreover, the mCloud offloading optimiser relies

on reducing the execution time and energy consumption. Our optimisation model

incorporates the monetary cost as an essential quality measurement when using

commercials clouds and mobile data networks.

The literature includes efforts to overcome the challenges of data-aware mobile

application offloading; however, the proposed models do not consider the contri-

bution of data size variation in association with other optimisation parameters

in application offloading decisions. In addition, these models largely neglect the

integration of cloud and edge computing to resolve data-intensive application of-

floading optimisation and fail to address certain other issues. These include the

efficient adoption of MEC to overcome latency-sensitive application when transfer-

ring and processing large data files and offloading optimisation in response to new

scenarios, such as deadline and multi-user models. In this chapter, an optimisa-

tion model for offloading data-intensive mobile applications in MECC is proposed.

The model adopts a MILP technique to construct an allocation strategy, reduc-

ing energy consumption and total monetary cost for the mobile user under the

constraints of task-level deadline and available device energy.

4.3 System Architecture

In this section, a description of the MECC environment is provided, followed by the

main optimisation engine components. Figure 4.1 illustrates the proposed MECC

resource model and optimisation framework. The MECC environment leverages

three resource layers, namely, public cloud, edge and mobile devices. The public

cloud is a powerful and scalable resource that allows for convenient processing

and storage capabilities for computation-intensive and data-intensive tasks. At

the edge layer, a user can access nearby computation and storage units with low

Chapter 4 68

follows.

4.3.1 Application Profiler

The framework offers three types of profiling, namely, energy profiling for energy

usage, network profiling to monitor mobile network information, and application

execution profiling to record profiling data about application execution with aware-

ness of contextual information about network and bandwidth. The application

profiler keeps a record of application execution at task level. profiling data in-

clude type of application, context information, including device energy, network

interface and bandwidth; and optimisation result, including execution time, cost,

energy, and task allocation plan. The profiling data is stored in an accessible

database to be shared with estimation components (cost and queuing estimators).

4.3.2 Resource Handler

The resource handler works on collecting data about the current status of user

device energy and edge resources. Collected data includes device energy level,

in-use mobile network and current network bandwidth, number of available cores

on mobile and edge nodes, and the connectivity status of the mobile device and

edge nodes. The resource handler fetches resource status prior to the optimisation

process to be recorded by the application profiler. In addition, the resource han-

dler is responsible for communicating with computation nodes and storage units

to run the application according to the optimisation plan. In other words, the

resource handler performs all communication aspects with external entities for

computation, storage and profiling.

4.3.3 Queuing Estimator

A limited number of cloud servers and edge nodes is assumed. Thus, a queuing

system is adopted to support the application offloading decision and manage task

Chapter 4 69

offloading to these resources with consideration of server capability and task wait-

ing time. The work represents computation servers at cloud and edge layers as

G/G/1 queues [108]. The queue estimator computes the task waiting time in each

processing queue, based on the current distribution of application tasks and the

capability of the computation server (service time).

4.3.4 Cost Estimator

The cost estimator handles the calculation of optimisation parameters, that is,

execution time, monetary cost and expected energy consumption. The cost esti-

mator communicates with the application profiler to get updated energy profiling

parameters for task processing, data transfer and device waiting for external task

processing.

4.3.5 Task Manager

The task manager coordinates the execution of application tasks based on the

offloading plan generated by the decision-maker. It sends task executions through

the resource handler, and updates the application profiler with execution results.

4.3.6 Decision-Maker

The decision-maker is responsible for generating execution plans (paths) and then

selecting the optimised one, based on the optimisation constraints of available

device energy and task deadline. The decision-maker runs the optimisation process

based on resource data from the resource handler and estimation values from cost

and queuing estimators.

To avoid the complexity of distributed file storage, it is assumed that each task is

associated with a single file storage and the file storage is consistently available for

data collection and is capable of storing all task data files. The available storage

Chapter 4 70

in the edge layer is temporary and just for input data and temporary data needed

by tasks. This assumption about data storage at the edge layer is illustrated in

the proposed system architecture, Figure 4.1. Data files are stored in temporary

centralised local storage servers at the edge layer to handle the complexity of large

data file access by computation resources, which allows the execution of data-

intensive applications such as data analytics, online monitoring and social sensing.

In addition, there is long-term storage in the cloud layer, which is used to store

required data for all applications. However, the assumption of consistent task data

availability cannot be applied at all data collection scenarios, particularly when

data is collected at real time manner. Thus, more sophisticated file management

and data replication schemes need to be injected. The research and development

towards these schemes is a promising future research direction.

4.4 Application Model

This section describes the modelling of mobile application execution in an MECC

system as a three-tiered computing system of mobile devices (application user),

edge resources and cloud server. Table 4.1 describes the mathematical notations

used in the problem formulation.

Table 4.1: Problem modelling notation

Symbol Definition
ti Application task i
Li Task input file location, either local or remote
si Task input size
Ii The number of task execution instructions (MIPS)
∂i Task deadline
β Available network bandwidth
βcost The monetary cost of data communication using a mobile network interface
wi Processing power for mobile devices or remote computation nodes
dm Mobile device storage (MB)
em Mobile device available energy (J)
p Cost of processing in a remote execution server ($/hour)
ωi Task ti data size sensitivity factor
l The network latency

Chapter 4 71

4.4.1 Task Model

A data-intensive mobile application A is represented as a BoT, in which tasks

are independent in computation and data sharing. The BoT application model

allows a variety of data locations (to test the bandwidth impact on data transfer)

and a variety of data sizes. In BoT, each task can have its own computation

complexity, which allows better linkage between data-intensive and computation-

intensive application features. BoT is a common application model for large-scale

systems, such as computational biology, parameter sweeps, fractal calculations and

data mining [109]. An application A is modelled as:

A = {t1, t2, . . . , tn} (4.1)

where n is number of tasks. A task ti is modelled as:

ti = {Li, si, Ii, ∂i} (4.2)

4.4.2 System Model

The computing system assumes three computation environments: public cloud,

M edge nodes and N mobile devices. A mobile device Pm is modelled as: Pm =

{β, βcost, dm, em, wm}. A mobile device is connected to an edge and the public

cloud via WiFi or cellular networks. A remote computation node on edge or public

cloud Pr is modelled as: Pr = {β, βcost, p, wr}. Assume that, in a given time slot, a

mobile user can request application execution; some tasks will be executed locally

(on the mobile user device) and others remotely (on an edge node or the cloud

server). A joint offloading technique is adopted to schedule application tasks in

the MECC computation environment. In addition, in this work, cloud and edge

resources are assumed to be available and pre-allocated (static provisioning) by

the platform (dynamic provisioning is an interesting aspect for future research).

Thus, rather than adding cloud resources to process extra tasks arriving in the

Chapter 4 72

system, the process adopts a queuing system in which tasks wait for resources.

This model minimises the monetary cost of cloud resources.

The next section describes the cost estimation models involved in formulating a

response to the mobile application scheduling and allocation problem. To find the

application execution plan, three value estimations need to be calculated, namely,

task execution time, total energy and total monetary cost.

4.4.3 Task Execution Time Model

The task execution time for task ti is the sum of task processing time DP
i in

the target computation environment Pr or Pm, data communication time DC
i and

task average waiting time DW
i for remote execution. However, the task processing

time DP
i depends on the number of task instructions Ii to run the task and the

target computation unit power wtarget. Moreover, the task data size is considered

in calculating the task processing time. To do so, a data sensitivity factor ωi,

which is calculated as the ratio of change in processing time to the change in

data size, is introduced. To get an accurate measurement of the sensitivity factor,

the correlation between the task input data size and the change in processing time

was calculated. Several experiments were conducted to reach a stable measurement

with minimum variance on data sensitivity values.

Di = DP
i +DC

i +DW
i (4.3)

DP
i =

Ii
wtarget

+ (si.ωi) (4.4)

DC
i =

si
β

+ l (4.5)

To compute the task waiting time for task ti, a G/G/1 queuing model is adopted.

The G/G/1 queue represents the queue length in a system with a single server

where inter-arrival times have a general (arbitrary) distribution and service times

have a (different) general distribution. Edge and public cloud computation re-

sources are assumed to be G/G/1 queues, in which the task arrival rate λ for

Chapter 4 73

processing follows a general distribution and the service time µ to process in-

coming tasks similarly follows a general distribution. Marchal [108] proposed an

approximation for G/G/1 as follows:

Lq ≈
ρ2(1 + C2

s)(C2
a + ρ2C2

s)

2(1− ρ)(1 + ρ2C2
s)

(4.6)

C2
s =

σ2
s

(1/µ)2
(4.7)

C2
a =

σ2
a

(1/λ)2
(4.8)

where Lq is the queue length, ρ is the server utilisation, ρ = λ
µs

, s = 1 is the

number of servers, C2
s is the coefficient square of the service time variance, C2

a is

the coefficient square of the inter-arrival time variance, σ2
s is the variance of the

service time and σ2
a is the variance of inter-arrival time. Using Little’s rule, the

queue waiting time (DW
i) can be computed as:

DW
i =

Lq
λ

(4.9)

4.4.4 Mobile Device Energy Model

The energy consumed by mobile device Ei to execute ti is estimated by calculating

the total processing energy EP
i consumed by the mobile device, the waiting energy

EW
i and data transfer energy EC

i .

Ei = EP
i + EC

i + EW
i (4.10)

Ei
P = Di

P .εi
P (4.11)

EC
i = Di

C .εC (4.12)

EW
i = Di

W .εW (4.13)

Where εi
P , εW , εC are the estimated energy consumption per second in the mobile

device for task ti, remote execution waiting (in seconds) and data communication

Chapter 4 74

MB/S, respectively.

4.4.5 Monetary Cost Model

The monetary cost represents the amount of money required to run a task ti in

a target computation environment Pr. This includes two parts. The first part is

the task processing cost CP
i in a remote server at edge nodes or the public cloud.

The processing cost is measured using the processing time length Di and the cost

per hour for the host server pi. The second part is the data communication cost

CC
i , which is measured by the amount of data si to be transferred with bandwidth

cost βcost.

Ci = CP
i + CC

i (4.14)

Ci
P = Di

P .pi (4.15)

CC
i = si.βcost (4.16)

4.5 The Proposed Offloading Algorithm

The system objective is to find the optimal solution in which the total energy

consumption of the mobile device and the total monetary cost are minimised un-

der the constraints of available device energy and task execution deadline. The

optimisation algorithm is implemented in the decision-maker, which is responsible

for collecting the information needed to run the algorithm and produce the opti-

misation solution. The solution represents a tuple of each task ti and the selected

computation environment, either local execution on the mobile client device Pm

or remote execution on external computation machine Pr (edge nodes or public

cloud VM).

This work utilises the MILP technique to address cost, energy and time optimi-

sation on MECC architecture. A MILP formulation essentially determines that

all objective functions and constraint equations are linear. The linear nature of

Chapter 4 75

MILP facilitates the easy and rapid solution of any subproblems, while allowing

for relatively complex formulations. Such an approach is usually faster and less

computation intensive than a non-linear technique. Additionally, MILP’s linear

nature ensures that any minimum obtained is a global minimum and not a local

one [110]. Furthermore, the complexity time for MILP increases linearly as the

problem space grows. On the other hand, the MILP algorithm has some lim-

itations with respect to the nonlinearity effects and the high dimensionality of

the given problem [111]. For the system and workload considered here, the pro-

posed MILP technique is able to find the optimal solution. However, for more

complex workload (e.g., applications with complex dependencies or variable data

size), MILP might be able to generate only suboptimal solutions. This could be

part of future work on non-linear methods involving quantitative comparisons.

The binary offloading decision variable for task ti is denoted by

xi = (xli, x
f
i1, ..., x

f
iM , x

c
i) (4.17)

In which xli, x
f
ij, x

c
i indicate that task ti is processed locally at the mobile device,

edge node (1 ≤ j ≤M) or the cloud server, respectively. A solution xi represents

the binary encoding for task ti allocation on system resources. Only one position

is set to number 1, which indicates that the corresponding machine is allocated

that task. Remaining positions are set to number 0. Based on solution xi for task

ti, optimisation parameters, that is, execution time Di, energy consumption Ei

and monetary cost Ci are calculated as follows.

Di = hTi xi, Ei = eTi xi, Ci = cTi xi (4.18)

where

� hi = (T li , T
f
i1, ..., T

f
iM , T

c
i) (the calculated end-to-end execution time for task

ti on each computation unit). See Eq. (4.3);

� ei = (El
i, E

f
i1, ..., E

f
iM , E

c
i) (the calculated end-to-end energy for task ti on

each computation unit). See Eq. (4.10); and

Chapter 4 76

� ci = (C l
i , C

f
i1, ..., C

f
iM , C

c
i) (the calculated end-to-end monetary cost for task

ti on each computation unit). See Eq. (4.14).

The optimisation problem, formulated as monetary cost (C) times energy (E), is

based on the assumption that these elements contribute equally to the objective

function:

� E = eTx, where e = (e1,, eN) represents the matrix of energy values for

task ti on all computation resources and eT is the energy matrix transposi-

tion;

� C = cTx, where c = (c1,, cN) represents the matrix of cost values for task

ti on all computation resources and cT is the cost matrix transposition;

� x = (x1,, xN) (the tuple represents the decision variable of each task ti);

and

� N is the number of tasks. The optimisation function can be formulated as:

P0 : min(E ∗ C) (4.19)

Subject to R0

Dti < ∂i, ∀ti ∈ A

E < e

xli, x
f
ij, x

c
i ∈ {0, 1},∀(i, j) ∈ NxM

where constraints of deadline Dti < ∂i and user mobile device energy E < e should

be satisfied.

P0 is an NP-hard optimisation problem, due to its MINLP [110]. The resulting

problem is a convex optimisation problem [112]. To prove the convexity of our

problem, the binary decision variables xli, x
f
ij, x

c
i ,∀(i, j) ∈ NxM were relaxed into

real numbers of range [0, 1] (please refer to the work of Vu et al. [97] for the

mathematical proof). Thus, the optimisation problem can be formulated as:

P̃0 : min(E ∗ C) (4.20)

Chapter 4 77

subject to R0 and:

(C3) : xli +
M∑
j=1

xfij + xci = 1

xli, x
f
ij, x

c
i ∈ [0, 1],∀(i, j) ∈ NxM

The BB algorithm is a commonly used search optimisation algorithm for solving

ILP and MILP problems. The algorithm solves linear programming (LP) relax-

ations using restricted ranges of possible values of the integer variables. It attempts

to generate a sequence of updated bounds on the optimal objective function value.

Like dynamic programming, BB is an intelligently structured search of the space

of all feasible solutions [113]. In BB, an optimisation problem is considered as a

search tree, in which every tree node represents the transition to a subproblem af-

ter fixing a binary variable. Subproblems have the same objective function, bounds

and linear constraints as the original problem, but without integer constraints.

Algorithm 3 provides a high-level abstraction of the behaviour of the BB opti-

misation method. Algorithm 3 takes two inputs: an application A and available

computation resources set R. The algorithm aims to find the optimal offloading

decision for minimising the cost.energy objective value. The optimisation objec-

tive optV al is initialised to infinity because a minimisation problem is targeted.

Algorithm 3 is a high-level description of how BB works, with the following steps.

1. The algorithm starts with an initial subproblem P0.

2. Calculate the objective value solObjV alue of the stack top solution toCheckSol.

In Lines 11-12, the solution (decision) is evaluated by calling callSolObjectiveV alue

in Algorithm 4, and the optimum value is updated if a new minimum is

found, Lines 16-18. A solution toCheckSol represents the binary encoding

for application A tasks allocation on system resources R. Only one po-

sition is assigned to 1, which indicates the target machine for that task.

Based on solution toCheckSol, optimisation parameters, that is, execution

time Di, energy consumption Ei and monetary cost Ci are calculated via

callSolObjectiveV alue in Algorithm 4.

Chapter 4 78

3. Check to update the best solution bestSol.

4. Branch on toCheckSol to produce new solutions (nodes), Line 20. The

branching step is taken heuristically, according to one of several rules. Each

rule is based on the idea of splitting a problem by restricting one variable to

be less than or equal to an integer J = 1, or greater than or equal to J+1. On

each branching step, two subproblems toAddSubProblems are constructed

by changing on one decision variable xi. Technically, a subproblem is a

candidate offloading decision.

5. Each subproblem is checked for problem upper and lower bound constraints

using the function checkIntegerConstraints. This is called bounding a so-

lution, Line 22.

6. Loop until the solutions stack (subP) is empty, Line 10.

7. Algorithm 3 returns the optimised application scheduling plan s and the

minimum problem value optV al, Line 29.

Algorithm 4 provides the steps to calculate the objective value for an offloading

solution sol. The algorithm takes three inputs: proposed solution sol, the applica-

tion A and the computation resources R. The resource handler is responsible for

collecting data about the current status of the resources R. Prior to running the

MILP solver, Line 19, the algorithm starts with building the problem. A MILP

problem has two main components. The first is the list of Constraints. Two con-

straints are included: the deadline constraint, Line 14, and the maximum available

energy constraint, Line 18. A solution cost value is calculated at the cost estima-

tor, which communicates with the queuing estimator to estimate task waiting time

ti at resource rj. Moreover, the cost estimator collects data about mobile device

energy status by communicating with the application profiler. To set the deadline

constraint, the execution time for each task is calculated by calling the function

findT ime and using Eq. (4.3), Line 11. The energy constraint expresses the cu-

mulative energy consumed, Lines 12 and 18, using Eq. (4.10). The monetary cost

is calculated for each task, Line 13, using Eq. (4.14) and the cost value for each

Chapter 4 79

Algorithm 3 Find optimal application tasks schedule

1: Inputs:
2: Application tasks A = {ti, ..., tn}
3: Computation resources R = {rl, (rf1 , ..., r

f
m), rc1}

4: Output:
5: optimised application tasks allocation plan P0

6: Initialise:
7: optV al =∞
8: bestSol = {}
9: subP = {P0}

10: while Len(subP > 0) do
11: toChecksol = subP [0]
12: solObjV alue = callSolObjectiveV alue(A,R, toChecksol)
13: if solObjV alue > optV al then
14: subP.removeAt(0)
15: else
16: if solObjV alue < optV al then
17: bestSol = toChecksol
18: optV al = solObjV alue
19: else
20: toAddSubProblems = Branch(subP [0])
21: for i = 1 to Len(toAddSubProblems) do
22: if checkIntegerConstraints(toAddSubProblems[i]) == True then
23: subP.insertAt(0, toAddSubProblems[i])
24: end if
25: end for
26: end if
27: end if
28: end while
29: RETURN s, optV al

task is added to the list, Line 15. Line 15 shows the model objective function of

energy E and cost C. The MILP solver function, Line 19, uses constraints and

cost matrices to run the solver to find the offloading decision with minimum cost

value. Finally, the offloading decision and cost value is returned to Algorithm 3.

4.6 Performance Evaluation

The performance evaluation for the proposed multi-objective offloading technique

was conducted using two experiments. The first was a real experiment to validate

the model by comparing the results of the proposed execution model and offloading

technique against real executions. For this experiment, a real MECC environment

Chapter 4 80

was implemented, as illustrated in Figure 4.1, while in the second experiment

synthetic application data was used to evaluate the proposed offloading technique.

4.6.1 Experimental Setup

The research objective was to study the contribution of parameters, such as the

mobile network interface, task input data size distribution and number of appli-

cation users, to the offloading optimisation objectives (monetary cost and device

energy consumption). Firstly, a mobile network interface determines the cellular

Algorithm 4 callSolObjectiveValue

1: Inputs:
2: Application tasks A = {ti, ..., tn}
3: Computation Resources R = {rl, (rf1 , ..., rfm), rc1}
4: Problem solution - Decision Variable X = {xi, ..., xn}
5: Output:
6: MILP Problem Parameters
7: Begin:
8: Constraints = {}
9: for i = 1 to Len(A) do

10: for j = 1 to Len(R) do
11: T [i, j] = findT ime(ti, rj)
12: E[i, j] = findEnergy(ti, rj)
13: C[i, j] = findCost(ti, rj)
14: Constraints[i, j] = AddToConstraint(T [i, j], ti.deadline)
15: CostV al[i, j] = AddToObjective(E[i, j] ∗ C[i, j])
16: end for
17: end for
18: Constraints[Len(A), Len(R)] = AddToConstraint(Sum(E),maxE)
19: X,ObjV al = SolveProblem(CostV al, Const)
20: Return X,ObjV al

Table 4.2: Network interface bandwidth

Network Type Min. Bandwidth (MB/s) Max. Bandwidth (MB/s)
3G 2 5
4G 8 12
WiFi 25 30
Latency Min. Latency (s) Max. Latency (s)

0.85 6.5

Chapter 4 81

data transfer technology that is available to the user device to send or receive

data. Table 4.2 provides details about the bandwidth distribution of each mobile

network interface and the average data transmission latency over these interfaces.

Secondly, the application size is initialised with 30 tasks. This number of tasks

provides the ability to verify a convenient range of data size, for the purposes

of a data-intensive application, without complicating the application structure.

Thirdly, Table 4.3 shows the data size distributions applied in the experiment. Fi-

nally, for task setup, the same setup provided in the previous chapter, section ??,

was used. The edge computation cost is assumed to be 40% of the cloud compu-

Table 4.3: Task input data size distribution

Data Distribution Min. Size (MB) Max. Size (MB)
Small 20 200
Medium 200 500
Large 500 2000
X-Large 2000 4000

tation cost. In addition, it is assumed that CPU cores have the same clock speed

and MIPS, and that the computation machine has enough memory at the time

of processing. Cost for the edge nodes can be specified by the owner or resource

provider. Table 4.4 provides details about the computation resources used in the

experiment.

Table 4.4: Experiment resources configuration

Resource Name #Cores #Nodes Computation Cost ($/Hour)
Mobile Device 2 1 0.001
Edge Node 2 8 0.0742
Cloud Server 32 1 0.3712

4.6.2 System Profiling

System profiling followed the same procedure provided in the previous chapter,

section (3.5.2). The profiling process includes network bandwidth and latency

profiling to examine bandwidth boundaries for data communication between com-

putation and storage units at cloud and edge layers.

Chapter 4 82

A profiling process to compute an approximation of energy and bandwidth esti-

mation parameters was implemented. Prior to a profiling iteration, an experiment

configuration is obtained from data size distribution. For each configuration setup,

a BoT application of 30 tasks is executed, and averages of processing, communica-

tion and waiting energy values are recorded for 30 executions. PowerTutor software

is used for power estimation and provides energy consumption estimates within

5% of actual values [105].

The profiling process includes network bandwidth and latency profiling to examine

bandwidth boundaries for data communication between computation and storage

units at cloud and edge layers. Energy parameters are used to calculate the en-

ergy the device consumes for task processing, data transfer and device waiting

for external task processing εi
P , εC , εW , respectively. The profiling process con-

siders the parameters of task data size, mobile network, mobile device processing

capability and physical data file transfer between data storage and computation

locations. The experiment was repeated for each combination of data size and

bandwidth. Table 4.3 shows the data size distributions for data files used in the

profiling experiments. Also, as part of system profiling, the data sensitivity factor

ωi for a task ti was estimated. The sensitivity factor measures how task processing

is sensitive to the change in task data size. Finally, Table 4.2 shows bandwidth

profiling results.

4.6.3 Model Validation

This section describes validation for the proposed execution model using a real

execution scenario. The validation objective was to evaluate optimiser stability

and validity by comparing results obtained from the optimisation model with those

collected from the real experiments. Results include execution time, consumed

energy and monetary cost of computation and data communication.

Evaluation experiments were run with 30 task applications, small input data size

(see Table 4.3) and three mobile network interfaces (3G, 4G and WiFi). Figure 4.2

Chapter 4 83

shows the evaluation results of the three model parameters based on the change

in the mobile network interface. The experiments predict slight estimation errors

for three model parameters, with 7%, 7% and 12% for execution time, consumed

energy and monetary cost, respectively. On average, the estimation error per

scenario is around 9%.

(a) Execution time (b) Mobile energy (c) Monetary cost

Figure 4.2: Evaluation of proposed optimiser with real scenarios for three
different communication networks

4.6.4 System Evaluation Results

After validation of the execution model, similar setup was used to evaluate the

proposed offloading technique under different working conditions. The procedure

began by comparing the proposed optimisation technique with PSO, mobile and

random techniques. The PSO technique was employed on the previous chapter in

data-intensive mobile application offloading [114]. The mobile technique involves

executing all application tasks in the user device. The random technique is a base-

line technique of much less complexity than the proposed techniques. The aim was

to learn how the proposed techniques perform against the baseline and measure

the performance gap. The task deadline is a soft deadline, and applications can

be still completed with the random technique (with low QoS achievement). Ex-

perimental results provide insight on how the optimiser responds to a variety of

parameters, such as data size, bandwidth, deadline and number of users, when

constructing an optimised application offloading plan.

Chapter 4 86

that both cloud and edge servers behave as G/G/1 queuing systems with variation

in task arrival rate and service time. The arrival rate represents the number of

received tasks in a certain time slot and the service time measures the time required

to process the incoming task. However, application tasks differ in computation

requirements; thus, the queuing system needs to handle heterogeneity in service

times. To overcome this issue, we performed an experiment to profile queuing

results at cloud and edge servers and used the means of variable rates and service

times to feed the optimisation model. Two scenarios, single-user and multi-user,

were tested: single-user means only one user application is in execution, while in

the multi-user scenario many of these applications are submitted for execution.

Figures 4.6 and 4.7 show that the difference in execution time between multi-user

and single-user scenarios is increased marginally with greater input data size, due

to the increase in application waiting time. With the WiFi network, as shown in

Figure 4.6, the optimiser was able to optimise the cost by allowing high waiting

time and thus, high energy. On the other hand, with the high-cost network, such as

4G as shown in Figure 4.7, the time difference between the two scenarios remained

steady, allowing energy savings.

(a) Execution time (b) Monetary cost (c) Mobile energy

Figure 4.6: The impact of multi-user and single-user scenarios on system
performance: WiFi mobile network

Figure 4.8 compares the optimisation time of the proposed MILP-based technique

and our previous PSO-based technique [114]. The figure confirms how PSO-based

optimisation time increases exponentially as the number of tasks increases (ap-

plication size). The MILP technique shows near-zero optimisation time variation

with increase in application size, while PSO demonstrates a 45% time increase on

Chapter 4 88

results imply that data size is the major driver of both monetary cost and device

energy, with the mobile network model making a smaller contribution. Moreover,

the work measured the impact of the number of active application users on model

parameters. Results demonstrated the model’s ability to handle data-intensive

applications by improving the efficiency of MECC. Moreover, the MILP-based

model has significantly lower computation time than the PSO technique. Finally,

the adoption of MECC demonstrated high viability with respect to reducing en-

ergy consumption and the monetary cost.

However, so far, only the offloading optimisation in respect to the BoT application

model has been studied. The next chapter describes experimental work related to

data-intensive application offloading planning and optimisation for other applica-

tion models, such as workflow and stream models. In addition, other optimisation

objectives, such as energy-only and cost-only, are studied.

Chapter 5

Performance Analysis of Mobile,

Edge, and Cloud Computing

Platforms for Distributed

Applications

Mobile devices and their corresponding services experienced a tremendous expan-

sion of in almost every social and business in human life. Mobile services cover

wide range of applications for collaboration, communication, monitoring, track-

ing, streaming, and many others. This engagement brings significant challenges

for mobile capability to effectively contribute on computation cycles due to lim-

ited computation power, the dependency on short-term energy power, and the

sensitivity to transmission network. A common technique to resolve mobile short-

comings is to offload complex computations to more powerful resources such as

edges, clouds, mobile clouds or integration between them. With the variation of

mobile applications, computation offloading becomes a complicated task to align

the unique characteristics and user QoS requirements for each application to a

convenient offloading plan. The availability of powerful resources at different com-

puting layer is also another challenge for offloading techniques. A question is how

a user can select a mobile-aware computing paradigm for a specific application,

89

Chapter 5 90

such that, it satisfies QoS requirements, considers the application structure and

meets the challenge of handling large input data volume. The idea of this chapter

is to assess the performance of mobile-aware computation systems in running dif-

ferent types of application models through a quantitative analysis of measurement

parameters including energy consumption and monetary cost. The following sec-

tions describe comprehensive analysis undertaken to answer the question as well as

provide recommendations regarding offloading data-intensive mobile applications

on.

5.1 Introduction

Chapters 3 and 4 proposed algorithms and techniques for data-intensive applica-

tion offloading on hybrid-MCC and MECC systems, respectively. This chapter

extends that work by applying these techniques to multiple application models.

The chapter provides a comprehensive analysis of many aspects of mobile-related

computation models. Its objective is to provide recommendations for selecting a

mobile-aware computation paradigm to execute data-intensive mobile applications

based on aspects such as application model, data size, mobile network perfor-

mance, and mobile energy status. The selection of a computation model is based

on the amount of energy consumption and the total monetary cost of executing

application tasks and transferring data between computation nodes.

The variation in mobile usage in many application contexts means different types

of application models must be accommodated. This chapter considers the fea-

tures of three models, namely, BoT, workflows and IoT. These features determine

the dependency between application tasks in terms of computation and sharing

data. Application complexity and structure should be considered while planning

for offloading to a mobile-aware computing environment. In combination with

the size of the application data, and the quality of the communication network,

the application structure adds another dimension to the offloading optimisation

process. This chapter presents a comprehensive analysis that shows how to select

Chapter 5 91

the best mobile-aware computing system to offload a data-intensive application

based on parameters of data size, network quality and application structure. The

motivation of this work was to reveal how these parameters could affect an applica-

tion scheduler’s selection of mobile-aware computation environments, that is MC,

MCC or MECC. The performance assessment of these computation environments

will be based on a quantitative analysis of their ability to run different types of

application models such as BoT, workflows and IoT applications while meeting

QoS and optimisation measurements including deadline, energy consumption and

monetary cost.

Each computing model has its own unique characteristics and is appropriate for

specific types of mobile applications. For example, MC reduces computation

cost, MEC highly recommended for time-sensitive applications, MCC can support

computation-intensive and data-intensive applications with powerful computation

capacity, and MECC integrates MEC and MCC to resolve the emergent direction

scope of data analytics and IoT-based applications. Furthermore, user QoS re-

quirements are varied, ranging from saving mobile energy, reducing computation

cost, and minimising application execution delay. The question is how a user can

select a mobile-aware computing paradigm for a specific application such that it

satisfies QoS requirements and considers the application structure and contextual

execution environment. Moreover, this chapter was designed to generate insights

into ways the mobile communications industry could realise cost savings and high-

quality data-aware offloading solutions by adopting new technologies such as edge

computing and region-based local networks.

The chapter is structured as follows. Section 5.2 provides an overview of computing

environments. Section 5.3 describes the system model, offloading technique and

cost models, while experimental work is presented in Section 5.4. Lastly, Section

5.6 illustrates the chapter summary and main findings.

Chapter 5 93

mobile applications.

To avoid these shortcomings of computation and storage, cloud resources are inte-

grated. The cloud layer offers high accessibility with pay-as-you-go computation

resources. However, the large distance between a mobile device and the cloud

server introduces higher latency in cloud computing than edge computing. In

MCC architecture, a mobile device is able to offload heavy workload to the cloud,

benefiting from its high computation capabilities to reduce the overhead of running

these tasks locally in the user’s mobile device.

Mobile cloud computing architecture has limited ability to handle the migration of

high-volume files due to the long distance between data sources and cloud servers,

which may cause high data transfer latency and incur additional monetary cost.

Edge computing can resolve these issues as it offers computation and storage re-

sources closer to mobile devices and data sources [30]. In addition, edge computing

allows time access for network performance data related to latency and bandwidth,

and be implemented in many application scenarios for real time and interactive

applications [37].

5.3 System Model

This section presents an overview of the optimisation technique. It includes a de-

scription of types of application models, the application modelling and abstraction,

the cost models and the optimisation technique.

5.3.1 Application Model

An application model represents the internal structure of the application tasks and

how they are related in terms of computation and data dependency. This chapter

presents work on three types of application models, namely, BoT, workflow and

IoT. Figure 5.2 shows an abstraction of these models. Figure 5.2 (a) shows the

BoT, which is a task-independent application model where tasks are fully isolated

Chapter 5 94

in their input data and computation logic [100]. This model is expected to have

additional overheads in terms of data transfer time and cost. The independence

of tasks increases the opportunity of transferring and processing large amount of

data.

Figure 5.2: Application models abstraction

In contrast, in the workflow model, Figure 5.2 (b), tasks are dependent; they

transfer their processing outcomes to corresponding tasks based on the workflow

structure. The dependent structure of a workflow model has a significant impact

on optimising application execution, because it determines the data flow and the

amount of data to be passed between tasks. It is convenient to construct workflow

execution schedules that reduce the time and cost overheads of transferring data

between dependent tasks. A workflow is a common application model represen-

tation, and is adopted in a wide range of application domains, such as scientific

domains, stream processing and data analysis [115]. Lastly, Figure 5.2 (c) shows

IoT applications, in which data is collected from IoT devices (such as sensors)

either in online or offline mode, as is common in application domains like data

analytics and real-time monitoring [116]. This chapter describes an investigation

of the contribution of the IoT data collection stage to application offloading opti-

misation. It is assumed that an IoT application is a combination of of BoT and

workflow models.

The application modelling includes high-level task modelling to reflect the three

applications models (BoT, workflow and IoT). Table 5.1 describes the mathemat-

ical notations used in application modelling. A data-intensive mobile application

A represents the execution of dependent or independent set of tasks, which is

Chapter 5 95

Table 5.1: Problem modelling notation

Symbol Definition
ti Application task i
Li Task input file location, either locally or remotely
si Task input size
wi The number of task execution instructions
∂i Task deadline

modelled as:

A = {t1, t2, . . . , tn} (5.1)

where n is the number of tasks. A task ti is modelled as:

ti = {Li, si, wi, ∂i} (5.2)

5.3.2 Overview of Cost Models

Cost estimation models are involved in formulating the mobile application schedul-

ing and allocation problem. To choose the application execution plan, task execu-

tion time, energy and monetary cost must be estimated. The task execution time

for task ti is the sum of task processing time DP
i , data communication time DC

i ,

and task average waiting time DW
i for remote execution. Here, edge and public

cloud computation resources are modelled as G/G/1 queues.

Di = DP
i +DC

i +DW
i (5.3)

The energy consumed by mobile device Ei to execute ti is estimated by the sum of

the total processing energy EP
i consumed by the mobile device, the waiting energy

EW
i , and EC

i (the mobile energy consumed during data communication).

Ei = EP
i + EC

i + EW
i (5.4)

Chapter 5 96

The monetary cost is the amount of money to run task ti in the target computation

environment Pr. This has two parts: total remote task processing cost CP
i in edge

nodes or the public cloud, and total data communication cost CC
i .

Ci = CP
i + CC

i (5.5)

The detailed modelling of task execution time, energy and monetary cost is pro-

vided in section 4.4.3, 4.4.4 and 4.4.5, respectively. The next section describes the

proposed offloading technique, which employs the cost models to find an optimised

application offloading plan.

5.3.3 Overview of the Optimisation Technique

The system objective is to find an optimal solution in which total consumed en-

ergy and total monetary cost are optimised with respect to task deadline and

device energy. A solution is represented as a tuple of each task ti and the se-

lected computation environment. This work utilises MILP to address cost and

energy optimisation for an MECC architecture. A MILP formulation essentially

necessitates that all objective functions and constraint equations are linear.

The optimisation problem is formulated as monetary cost (C) times energy (E)

which is based on the assumption that they contribute equally to the objective

function. The BB algorithm is a commonly used search optimisation algorithm

for solving ILP and MILP problems. The algorithm solves LP relaxations with

restricted ranges of possible values of the integer variables. It attempts to gener-

ate a sequence of updated bounds on the optimal objective function value. Like

dynamic programming, BB is an intelligently structured search of the space of all

feasible solutions [113]. In BB, an optimisation problem is considered as a search

tree, in which every tree node represents the transition to a subproblem after fix-

ing a binary variable. Subproblems have the same objective function, bounds and

linear constraints as the original problem, but without integer constraints.

Chapter 5 97

5.4 Experiment for Data-Intensive Application

Offloading

The main motivation of this chapter was to produce insights that would support

users to select a cost-efficient offloading plan to run their applications in multiple

computing environments. To achieve this, the work reported in this chapter in-

cluded designing and implementing an experiment to provide insights on how an

offloading decision can be obtained based on application model, data size, context

parameters and computing environment. The experiment examined the optimisa-

tion decision with respect to the variation on the aforementioned parameters. In

addition, the work described in this chapter aimed to evaluate the performance

of various types of mobile application models in nominated mobile-aware comput-

ing environments. The rest of this section provides details about the evaluation

metric, experiment configuration, and the main insights from the experimental

results.

5.4.1 Evaluation metrics

A MILP technique was adopted to optimise the offloading and execution of a mo-

bile application in a computing environment. The optimisation technique aims to

construct an offloading plan to map application tasks on environment resources.

An optimised scheduling plan reduces the energy consumption of the user’s mobile

device and the total monetary cost. Both optimisation parameters are affected by

the processing time parameter, which includes task processing and data commu-

nication. The processing time is an optimisation constraint handled at task level

and accordingly at application level.

Conserving energy is a critical aspect of mobile application optimisation; losing

device energy is a single point of failure for running the device. In this chapter,

three energy consumption operations are considered: task processing, data trans-

fer and device waiting (or idle) for remote execution. The contribution of each

Chapter 5 98

process is subject to many parameters, including data size, network bandwidth

and application complexity. The monetary cost, which involves data transfer and

processing cost. For data-intensive applications, data communication cost is not

trivial, particularly when a cellular network is utilised. The optimisation algo-

rithm is designed to handle the transfer of large data files to reduce the use of

mobile network bandwidth. In addition, this work considers the impact of large

data files in task processing cost. Moreover, the cost estimation depends on task

complexity and how it responds to the change in data size. Here, energy and cost

parameters are considered equally in the optimisation decision.

5.4.2 Experimental Setup

This section outlines the setup used to run data-intensive applications on multiple

computing models. To recap, this chapter presents an investigation of the role of

mobile application structure on offloading optimisation decisions, because it de-

fines the computation and data dependency among application tasks. Offloading

optimisation is examined with three different models, namely, BoT, workflow and

IoT. In BoT, tasks are independent on computation and data. The BoT is con-

venient for studying offloading optimisation for data-intensive applications with

data source distribution between local, edge and cloud storage units. The work-

flow model involves transferring data between tasks. Thus, the task computation

target plays the role of data source for dependent tasks. In the IoT model, a

combination of BoT and workflow models is assumed, and the impact of collect-

ing data from IoT devices is studied. The data collection can be handled by the

mobile device or by an edge node.

5.4.2.1 Computing Resources

The experiment was designed to investigate the efficiency of the computing model

on the optimisation decision. Three models were studied: MC, MCC and MECC.

Table 5.2 provides details about the resources configuration employed. A small

Chapter 5 99

fraction of cost for running a task on a mobile device is assumed. Processing cost

on edge was assumed to be 40% of the cost on cloud.

5.4.2.2 Workload Model

In this chapter, different workload models are adopted for BoT and workflow

application models. This section provides the details of workload and data models

used in the experiments.

The Montage workload model provided by Bharathi et al. [117] was employed.

A Montage-like workflow is generated to handle sky image processing. The work-

flow includes a set of tasks to import images, find differences, fit and concatenate,

and finally create the mosaic. Figure 5.3 shows the Montage workflow structure.

Montage workload model is basically designed to handle complex and heavy com-

putations which are hosted in powerful computing systems like public clouds. This

type of workload may not be the ideal for edge-based systems. However, the idea

of adopting Montage is for it’s workflow-based representation to asses the behavior

of proposed offloading techniques on various computing systems. In the workflow

model, the computation complexity depends on the number of images and the

level of overlap between images. For the purpose of offloading optimisation, the

attributes of data sensitivity must be set for each application task. The data

sensitivity factor relates the data size with computation time.

The provided profiling data was used to extract the parameters of data sensitivity

and generated output sensitivity. Table 5.3 shows the data and output sensitivity

values for workflow task types. Moreover, to have variation in data size, for the

purpose of studying data change contribution on offloading optimisation decision,

Table 5.2: Experiment resources configuration

Resource Name #Cores
Memory

(GB)
Cost

$/Hour
Mobile: LG Nexus 5 4 2 0.001
Edge: Machine Intel Xeron E5-1630 16 4 0.074
Cloud: Intel Xeron E5-2686 32 16 0.371

Chapter 5 101

Table 5.4: Data size distributions

Number of images [min, max] Data size [min, max] (MB)
[1, 10] [5,50]
[10, 20] [50,100]
[20, 100] [100,500]
[100, 200] [500,100]
[200, 400] [1000,2000]
[400, 600] [2000, 3000]
[600, 800] [3000, 4000]
Image Size Distribution [3.9, 5.2]

Table 5.5: Task complexity models

Task Complexity (MIPS) Low: [20 - 100] High: [200 - 700]
CPU Load (%) [0.1 - 0.9]
Data Sensitivity (%) [0.2 - 0.8]

5.4.2.3 Network Model

For data-intensive applications, the quality of mobile network has a significant

influence on the transfer time. Three types of networks, WiFi, 4G and 3G were

tested. Table 5.6 presents the network model applied in this experiment. The

minimum and maximum bandwidth values of each network were based on profiling

from previous work [118] the minimum and maximum bandwidth values of each

network were set.

Table 5.6: Network interface bandwidth

Network Type Bandwidth (MB/s) [Min, Max] Cost ($/GB)
3G [2,5] 1.0
4G [8,12] 1.0
WiFi [25,30] 0.05
Latency Min. Latency (s) Max. Latency (s)

0.85 6.5

5.4.3 Performance Evaluation

This section discusses the experimental results of running the offloading optimiser

with the experimental setup. For each application model, the impact of variation

of data size and bandwidth values is highlighted.

Chapter 5 102

5.4.3.1 BoT application model

A BoT application execution involves running tasks in a separate mode where

tasks are independent in terms of data and computation. In the context of data-

intensive applications, this behaviour determines the requirements for transferring

large files over the mobile network.

Figure 5.4 shows the result of running the BoT application over a 3G network.

With 3G, the optimiser will try to find an optimised offloading decision to meet

the task deadline and reduce the incurred cost of data transfer over the cellular

data network. MCC and MECC demonstrate similar behaviour for application

execution time along all data size variation intervals. With MECC, the opti-

miser reduces the energy consumption and cost compared to MCC, particularly

with medium and large data size input files. This is due to the ability to offload

heavy tasks to nearby edges, and thus reduce the energy consumption for local

5 50 100 500 1000 2000 3000 4000
Data Size (MB)

0

2

4

6

8

10

12

14

16

Ex
ec

ut
io

n
Ti

m
e

(H
ou

r)

MCC
MECC
MC

5 50 100 500 1000 2000 3000 4000
Data Size (MB)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ex
ec

ut
io

n
En

er
gy

(k
J)

Available Mobile Energy

MCC
MECC
MC

5 50 100 500 1000 2000 3000 4000
Data Size (MB)

0

10

20

30

40

50

Ex
ec

ut
io

n
Co

st
($

)

MCC
MECC
MC

(a) Execution time (b) Mobile energy (c) Monetary cost

Figure 5.4: BoT application model: 3G network

5 50 100 500 1000 2000 3000 4000
Data Size (MB)

0

2

4

6

8

10

Ex
ec

ut
io

n
Ti

m
e

(H
ou

r)

MCC
MECC
MC

5 50 100 500 1000 2000 3000 4000
Data Size (MB)

0

2

4

6

8

10

Ex
ec

ut
io

n
En

er
gy

(k
J)

Available Mobile Energy

MCC
MECC
MC

5 50 100 500 1000 2000 3000 4000
Data Size (MB)

0

10

20

30

40

Ex
ec

ut
io

n
Co

st
($

)

MCC
MECC
MC

(a) Execution time (b) Mobile energy (c) Monetary cost

Figure 5.5: BoT application model: 4G network

Chapter 5 103

5 50 100 500 1000 2000 3000 4000
Data Size (MB)

0

2

4

6

8

10

Ex
ec

ut
io

n
Ti

m
e

(H
ou

r)

MCC
MECC
MC

5 50 100 500 1000 2000 3000 4000
Data Size (MB)

0

1

2

3

4

5

6

7

8

Ex
ec

ut
io

n
En

er
gy

(k
J)

Available Mobile Energy

MCC
MECC
MC

5 50 100 500 1000 2000 3000 4000
Data Size (MB)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ex
ec

ut
io

n
Co

st
($

)

MCC
MECC
MC

(a) Execution time (b) Mobile energy (c) Monetary cost

Figure 5.6: BoT application model: WiFi network

processing and device waiting. However, Figure 5.5 demonstrates the contribu-

tion of higher bandwidth, using a 4G network, to reducing energy consumption.

Moreover, with a 4G network, the optimiser tends to perform more computation

using cloud resources to benefit from their high capability, as well as low waiting

time compared to edge resources. This opportunity is also applicable in the case

of WiFi network availability. Figure 5.6 provides the result for the WiFi network

case. The three computation environments offer convenient BoT cost optimisation

and reduce MECC costs with large data files. Even though the results confirm

the limitations of MC due to energy shortage, the adoption of an external mobile

energy source would be an effective enabler of local execution for data-intensive

mobile applications. Figures 5.5 and 5.6 show that the mobile device is capa-

ble of running BoT applications even with medium data size on high-bandwidth

networks.

5.4.4 Workflow application model

A workflow application is a computation model in which application tasks are

dependent. In workflow execution, the data location for the first task has a sig-

nificant impact on the overall optimisation process. Here, the experiment was run

with randomisation for the first task to obtain a convenient and stable offload-

ing decision. This section details an analysis of running a workflow application

and an investigation of the impact of mobile network and task input data size on

evaluation parameters.

Chapter 5 104

5 50 100 500 1000 2000 3000 4000
Data Size (MB)

0

5

10

15

20

25

30

Ex
ec

ut
io

n
Ti

m
e

(H
ou

r)

MCC
MECC
MC

5 50 100 500 1000 2000 3000 4000
Data Size (MB)

0

5

10

15

20

Ex
ec

ut
io

n
En

er
gy

(k
J)

Available Mobile Energy

MCC
MECC
MC

5 50 100 500 1000 2000 3000 4000
Data Size (MB)

0

10

20

30

40

Ex
ec

ut
io

n
Co

st
($

)

MCC
MECC
MC

(a) Execution time (b) Mobile energy (c) Monetary cost

Figure 5.7: Workflow application model: 3G network

5 50 100 500 1000 2000 3000 4000
Data Size (MB)

0

5

10

15

20

25

30

Ex
ec

ut
io

n
Ti

m
e

(H
ou

r)

MCC
MECC
MC

5 50 100 500 1000 2000 3000 4000
Data Size (MB)

0

5

10

15

20

Ex
ec

ut
io

n
En

er
gy

(k
J)

Available Mobile Energy

MCC
MECC
MC

5 50 100 500 1000 2000 3000 4000
Data Size (MB)

0

10

20

30

40

50

60

70

Ex
ec

ut
io

n
Co

st
($

)

MCC
MECC
MC

(a) Execution time (b) Mobile energy (c) Monetary cost

Figure 5.8: Workflow application model: 4G network

Figures 5.7, 5.8 and 5.9 show the results of running the workflow application

with 3G, 4G and WiFi mobile networks, respectively. An interesting result is

the advantage of MCC over MECC in minimising the workflow execution time,

even though results show that MECC offers a substantial energy saving compared

to MCC and MC. With the MCC model, the offloading optimiser tends to run

dependent tasks on cloud VMs which efficiently reduces the high transfer time of

large data files. With the MECC, the offloading optimiser processes some workflow

tasks at the edge layer to reduce computation cost, but this may lead to increase

in overall execution time due to data migration between edge and cloud layers.

In addition, with the low-bandwidth network (3G) in Figure 5.7, the incurred cost

gap between MECC and MCC reduces as the data size increases. To overcome the

limitation of 3G network bandwidth in transferring large data sizes, an optimised

solution would be offloading workflow tasks to the cloud. On the other hand,

with 4G, in Figure 5.8, the high bandwidth allows an efficient joint computation

Chapter 5 105

5 50 100 500 1000 2000 3000 4000
Data Size (MB)

0

5

10

15

20

25

30

Ex
ec

ut
io

n
Ti

m
e

(H
ou

r)

MCC
MECC
MC

5 50 100 500 1000 2000 3000 4000
Data Size (MB)

0

5

10

15

20

Ex
ec

ut
io

n
En

er
gy

(k
J)

Available Mobile Energy

MCC
MECC
MC

5 50 100 500 1000 2000 3000 4000
Data Size (MB)

0

2

4

6

8

Ex
ec

ut
io

n
Co

st
($

)

MCC
MECC
MC

(a) Execution time (b) Mobile energy (c) Monetary cost

Figure 5.9: Workflow application model: WiFi network

between edge and cloud resources to reduce the computation cost. In the case

of the WiFi network, Figure 5.9 shows that MCC provides greater savings than

MECC. This is due to the efficient usage of the high bandwidth and low-cost WiFi

network in mobile-cloud data transfer. This behaviour supports the conclusions

in the previous section about running the BoT with a WiFi network.

5.4.5 IoT application model

As explained earlier, IoT applications are common data analysis applications in

which data is collected from IoT devices (such as sensors) either in online or offline

mode. An IoT application was modelled as a combination of BoT and workflow

sub-applications. In addition, for IoT offloading optimisation, the contribution

of data collection stage was studied. Application data is collected by the user’s

mobile or by a stationary edge device. This section provides an analysis of the

execution of an IoT application based on various network bandwidth and data size

conditions in the three computing environments.

Figures 5.10, 5.11 and 5.12 present the experimental results of an IoT application

execution when the user’s mobile device is the data collection instrument. Results

show that for all network types, the three computing paradigms provide similar

results for application execution time. With the 3G network, in Figure 5.10, MC

demonstrates high ability to optimise energy consumption and monetary cost.

Thus, local processing is a preferred option when data is collected locally and a

Chapter 5 106

low-bandwidth network is used. For MC, the processing energy is the only factor

considered, because no data transfer is required. For MECC and MCC, the low

bandwidth increases the data transfer time, and hence the data transfer energy.

On the other hand, with the 4G network, in Figure 5.11, the high bandwidth saves

energy by sending some IoT application tasks to nearby edge nodes and reducing

the energy consumption overhead of the local execution. In addition, as shown in

Figure 5.12, the availability of a WiFi connection is a huge incentive to run an

IoT application locally in a user’s device because the WiFi connection potentially

reduces in data transfer energy and cost when data is collected from sensors. Data

collection with an edge node is discussed next.

Figures 5.13, 5.14 and 5.15 show the experimental results of an IoT application

execution when IoT data is collected at the edge layer. The high performance of

running the application in an MECC environment was expected. The optimiser

was able to find an optimised solution by running the workflow at the edge layer.

This scenario is promising when the mobile network is unstable or unpredictable.

In addition, Figures 5.14 and 5.15 show that the application can be run in MECC

and MCC with large data files without violating the energy constraint.

5 50 100 500 1000 2000 3000 4000
Data Size (MB)

0

2

4

6

8

10

Ex
ec

ut
io

n
Ti

m
e

(H
ou

r)

MCC
MECC
MC

5 50 100 500 1000 2000 3000 4000
Data Size (MB)

0

2

4

6

8

10

Ex
ec

ut
io

n
En

er
gy

(k
J)

Available Mobile Energy

MCC
MECC
MC

5 50 100 500 1000 2000 3000 4000
Data Size (MB)

0

5

10

15

20

25

Ex
ec

ut
io

n
Co

st
($

)

MCC
MECC
MC

(a) Execution time (b) Mobile energy (c) Monetary cost

Figure 5.10: IoT application with mobile data collection : 3G network

Chapter 5 107

5 50 100 500 1000 2000 3000 4000
Data Size (MB)

0

2

4

6

8

10

Ex
ec

ut
io

n
Ti

m
e

(H
ou

r)

MCC
MECC
MC

5 50 100 500 1000 2000 3000 4000
Data Size (MB)

0

1

2

3

4

5

6

7

8

Ex
ec

ut
io

n
En

er
gy

(k
J)

Available Mobile Energy

MCC
MECC
MC

5 50 100 500 1000 2000 3000 4000
Data Size (MB)

0

5

10

15

20

Ex
ec

ut
io

n
Co

st
($

)

MCC
MECC
MC

(a) Execution time (b) Mobile energy (c) Monetary cost

Figure 5.11: IoT application with mobile data collection : 4G network

5 50 100 500 1000 2000 3000 4000
Data Size (MB)

0

2

4

6

8

10

Ex
ec

ut
io

n
Ti

m
e

(H
ou

r)

MCC
MECC
MC

5 50 100 500 1000 2000 3000 4000
Data Size (MB)

0

1

2

3

4

5

6

7

8

Ex
ec

ut
io

n
En

er
gy

(k
J)

Available Mobile Energy

MCC
MECC
MC

5 50 100 500 1000 2000 3000 4000
Data Size (MB)

0.0

0.5

1.0

1.5

2.0

Ex
ec

ut
io

n
Co

st
($

)

MCC
MECC
MC

(a) Execution time (b) Mobile energy (c) Monetary cost

Figure 5.12: IoT application with mobile data collection : WiFi network

5 50 100 500 1000 2000 3000 4000
Data Size (MB)

0

2

4

6

8

10

12

14

16

Ex
ec

ut
io

n
Ti

m
e

(H
ou

r)

Env
MCC
MECC
MC

5 50 100 500 1000 2000 3000 4000
Data Size (MB)

0

2

4

6

8

10

12

14

16

Ex
ec

ut
io

n
En

er
gy

(k
J)

Available Mobile Energy

Env
MCC
MECC
MC

5 50 100 500 1000 2000 3000 4000
Data Size (MB)

0

5

10

15

20

25

30

35

40

Ex
ec

ut
io

n
Co

st
($

)

Env
MCC
MECC
MC

(a) Execution time (b) Mobile energy (c) Monetary cost

Figure 5.13: IoT application with edge data collection : 3G network

5.5 Discussion and Recommendations

This section presents the main insights from the experimental results outlined

in Sections 5.3 and 5.4. The results demonstrate the contributions of the stud-

ied parameters, namely, application type, network quality and data size, to the

offloading optimisation decision. The main insights are as follows.

Chapter 5 109

3. The data dependency between application tasks plays a significant role in

resources allocation planning. For example, in workflow applications, the

increase in data communication overhead to transfer large data files moti-

vates the optimiser to adopt an in-place allocation strategy. This means

moving the computation close to the data location. This strategy demon-

strates viable optimisation results because the allocation targets the closest

and highest-capability computation resources.

Based on these insights, the following recommendations for execution of data-

intensive mobile applications can be made.

� Data-intensive mobile applications should be handled using MECC. This is

the most efficient architecture, particularly for loosely coupled applications,

such as BoT, in which data and computation dependencies are low. MECC

allows an optimised computation distribution over edge and cloud resources.

However, MCC also reduces BoT execution time substantially with high

bandwidth networks to offload large data and complex task to powerful cloud

resources.

� For workflow applications, MECC provides valuable capability for energy-

sensitive scenarios. Results show that as data transfer between workflow

tasks increases, the optimal strategy is to perform computation with cloud-

only or edge-only resources. The availability and quality of the mobile net-

work are the determinants of strategy selection.

� For IoT applications, the ability of users’ devices to collect data from IoT

sensors is critical for selecting the best computation environment. With low

bandwidth networks, local processing is the preferred option when data is

stored in local devices.

� The adoption of an external mobile energy source would be an effective

enabler of running data-intensive applications on user devices. Resolving

the energy shortcoming can strength the opportunities of mobile-based and

edge-based computation systems.

Chapter 5 110

� The performance analysis highlights that high proportion of running data-

intensive application cost is related to data migration. Thus, more sophis-

ticated file management and data replication schemes can be applied for

efficient usage of storage capabilities at the edge layer.

5.6 Summary

Rapid and profound advances in the mobile telecommunications industry have

created the need for mobile-aware computing models that can benefit from the

capabilities of resources at different computation layers such as the cloud, fog

and edge. Moreover, integration between computing models supports the broad

engagement of mobile devices with various application model, such as BoT, work-

flow and IoT.

This chapter describes the variation in computing and application models and

how this can impact the offloading decision, that is, how application tasks can

be allocated to resources. For data-intensive mobile applications, the work in-

cluded a set of parameters to determine optimisation decision viability on each

computing model, including application data size and maximum execution time,

network quality and device energy. The results demonstrate the ability to opti-

mise data-intensive application execution while considering the target computing

environment and problem constraints. Major insights are: MECC is the preferred

target for loosely coupled applications or BoTs; network quality is a critical fac-

tor in the decision process e.g. (with WiFi connection, MCC is the optimised

target for workflow applications); for large data size inputs, adopting edge com-

puting supports nearby computation to reduce data transfer overhead in terms of

network latency, energy and cost.

For the purpose of offloading optimisation, an offloading framework was developed,

that allows interaction between a set of components for handling services like

offloading optimisation, resource communication and task execution. The next

Chapter 5 111

chapter discusses the computation offloading framework and all its components

and services.

Chapter 6

Implementation and Simulation

Environment

Chapter 3 provides an offloading optimisation technique for a hybrid MCC system

by leveraging three resource layers of mobile devices, cloudlets and the cloud. In

Chapter 4, the offloading system was improved by incorporating the edge layer to

revolve issues of network latency and computation performance closer to the user

layer. In Chapter 5 the selection of a computing system to obtain the minimum

optimisation value is described. Several parameters are involved, including data

size, network bandwidth, cost, and the type of application. This chapter provides

a framework for profiling and simulating the running of data-intensive mobile

applications on mobile-aware computing systems. The framework consists of a set

of components which perform profiling, resource investigation and communication,

context monitoring, offloading decision-making, and QoS optimisation.

6.1 Introduction

In the last decade, the mobile industry has gained huge attention to empower

mobile devices to engage in daily business and social activities to benefit from non-

stationary, connectivity and accessibility features in many disciplines, like social

112

Chapter 6 113

communication, E-commerce, smart applications, scientific experimentation, etc.

This widespread involvement steers the growth of mobile computing industry to

achieve the requirements of new application models. As noted in previous chapters,

the number of MC users is increasing and the volume of data generated from user’s

devices is increasing exponentially. These challenges necessitate the development

of adaptive resource and computing frameworks to overcome the deficiencies of

mobile devices related to energy limitation, storage capacity and computation

capability. The fundamental concept in overcoming challenges of mobile devices is

sending computation-intensive tasks for remote processing [24, 25]. Early research

on offloading optimisation was focused on energy reduction, with many techniques

adopted, such as code offloading [119] and VM migration [120].

This thesis proposes techniques and algorithms for the execution of mobile appli-

cations in mobile-aware computing environments. Allocating application tasks to

computation nodes (local, edge, or cloud) is formulated as an optimisation prob-

lem, the solution of which is the minimum energy consumption and cost under the

constraints of available energy and task deadlines. The first optimisation objective

is to reduce the energy consumed by the mobile device. Energy consumption was

studied from three perspectives: energy for processing task(s), energy for trans-

ferring and receiving data from other computation units and storage, and holding

(device waiting) energy. The second optimisation objective is monetary cost. To

implement the proposed offloading algorithms and related resource management

services, the candidate developed an offloading framework.

This chapter explains the optimisation framework, covering the main components

and communication between components, data collection, profiling, cost and time

estimation, optimisation, application execution services and optimisation steps.

The rest of the chapter is structured as follows. Section 6.2 describes the high-level

system architecture and the offloading framework. The system implementation is

highlighted in Section 6.3 and the offloading framework validation is presented in

Section 6.4. Finally, Section 6.5 summarises main chapter findings.

Chapter 6 114

6.1.1 Designing a Data-Intensive Applications Offloading

System

The application offloading system represents the set of activities required to per-

form application offloading planning on a given computing system. Figure 6.1

shows a high-level system use case model. The system has two main actors. After

downloading the offloading management app, the user should register to the sys-

tem. Next, the user needs to select preferred application templates, which reflect

the execution of application types of BoT, workflow and IoT. The user starts the

offloading planning process by adding an application, configuring it to set QoS

requirements, and finally setting up input data sources. The admin is responsible

for approving received applications based on user status, input resources valida-

tion and application structure format. After validating the app, the offloading

planning process start. The offloading plan is then sent for execution. The admin

is also responsible for monitoring app execution.

As seen in the previous chapters, data size has a non-trivial impact on offloading

Figure 6.1: High-level offloading system

Chapter 6 115

decisions and raises questions about how to reduce the implications of large data

size for device energy, monetary cost and optimisation model complexity. The

following points summarise the core requirements of designing a data-intensive

offloading system which is able to overcome the aforementioned issues.

1. QoS-aware. The offloading system should include a QoS-aware technique to

support joint optimisation of objectives like device energy, monetary cost,

task deadline and task waiting time.

2. Collaborative. The offloading system should implement a resource allocation

strategy to benefit from the advantages of heterogeneous computing models,

including mobile, edge and cloud.

3. Adaptable. The offloading system should be adaptable to changes in context

and computing environment parameters. Such parameters to consider are

the mobile network and bandwidth, number of users, resource availability,

application model, data size and user QoS constraints.

6.2 High-Level Offloading System

A data-intensive mobile application offloading system is a set of services which

allows a user to submit and run a mobile application in an MECC environment.

Figure 6.2 shows the high-level offloading system. System services are described

as follows.

� Submitting an application.

The user submits/sends an application to the offloading system. The appli-

cation should have a certain format to enable extraction of application details

for decision-making and execution. The application handler is responsible

for receiving and analyzing the application to extract required data about

application tasks, which includes data input and output locations, pre-tasks

and post-tasks, computation complexity and execution deadline. Next, the

application is saved in a local database.

Chapter 6 116

Figure 6.2: High-Level Offloading System

� Offloading Optimiser.

The optimisation service is provided by the offloading optimisation frame-

work, which is a set of components, each with a specific function. Figure 6.3

illustrates the framework structure and the interactions between its compo-

nents.

– Application Profiler.

The offloading decision to allocate application tasks to resources is sub-

ject to the expected energy consumption of the user’s device and the

estimated cost of running the application. Because the decision-maker

handles a variety of tasks which differ in computation complexity and

programming logic, profiling is essential to recognise how task execu-

tion affects energy and cost consumption. The profiling process aims

to measure the sensitivity of task execution to parameters of data size

and network bandwidth. In other words, it is designed to determine

the impact of change in input data size or network bandwidth on en-

ergy and cost consumption. Energy profiling relates to the functions of

task computation at the user’s device, data transfer between the user’s

device and the external data source, and waiting for remote execution.

The task t profiling process is described in Algorithm 5. The processes

represent running the task t on resource rtargt with input data dinput.

Chapter 6 118

Algorithm 5 Task profiling pseudocode

1: Inputs:
2: Application tasks T = {ti, ..., tn}
3: Computation Resources R = {rl, (re1, ..., rem), rc1}
4: Data files D = {di, ..., dn}
5: for t in T do
6: for i in {0..30} do
7: rtarget = selectTargetResource(R)
8: dinput = selectInputF ile(D)
9: result = runTask(t, rtarget, file)

10: updateTaskProfileRecord(t, result)
11: end for
12: end for

data communication network and bandwidth, and device energy and

processing capacity. The application profiler allows access to profiling

data, and sends tasks for execution via service API.

– Resource Handler.

The resource handler is the external gateway that allows the optimisa-

tion framework/engine to communicate with computation and storage

resources. It has a database to store details about these resources,

including computation capacity, available storage and access APIs. Be-

fore task profiling or application execution, the resource handler collects

data about user device energy, connected edge resources, and network

and bandwidth status between user device and external resources.

The resource handler was implemented to include two types of service

APIs: resource APIs are responsible for fetching and sending status

requests to resources; data access APIs allow other components to col-

lect sufficient details about resources for cost and task waiting time

estimations.

– Queuing Estimator.

It is assumed that many users can submit their application to the

framework for execution, and share computation resources. Thus, with

the existence of deadline constraints on application tasks, the decision-

maker should be aware of the task waiting time for processing in edge

Chapter 6 119

and cloud servers. To control task waiting time, a G/G/1 queuing sys-

tem was implemented, in which task arrival rate λ and task processing

µ follow a general distribution.

– Cost Estimator.

Optimisation decisions are designed to solve a joint minimisation prob-

lem: how to reduce the total energy consumption and cost. According

to the optimisation problem formulation, both optimisation variables

depend on time calculations, which include time for local processing,

remote processing, waiting after offloading all tasks, and transferring

data to and from the user’s device. Moreover, the cost estimator com-

municates with the resource handler to get information about available

resources, as well as context information related to the mobile network

and bandwidth. Next, energy and cost calculations are applied for each

task, and returned to the decision-maker.

– Decision-Maker. The decision-maker is the core component of the op-

timisation engine. To make a decision, the decision-maker uses an of-

floading optimisation technique, such as PSO or MLIP, to search the

problem space and generate offloading plans (paths) and then select

the optimal one, based on the optimisation constraints of energy and

deadline. The decision-maker runs the optimisation process based on

resources data from the resource handler and estimation values from

the cost and queuing estimators.

– Task Manager. The task manager is responsible for managing the ex-

ecution of application tasks. It receives processing requests from the

decision-maker for application profiling and execution purposes. The

task manager records task processing status, which helps the appli-

cation profiler to update profiling measurements for energy and data

sensitivity. To run a task, the task manager sends a request to the

application handler, which in turn sends it to the application runner.

� Application Executor.

The application performs the real communication with computation and

Chapter 6 121

through two types of applications: a mobile application (at the user’s device), and

a server application developed by Spring Boot Java Framework.

� The mobile application.

An Android application was developed to provide the following services in

the context of the offloading system.

1. Data collection.

The mobile application can use the sensing capability of the hosted

device to communicate with and collect data from sensors and IoT

devices. However, this feature is implemented only partially for the

sake of applying the model.

2. Application analysis.

Application specification is formatted in a JavaScript object notation

(JSON) file to facilitate setting task configuration and dependencies. A

JSON formatter and Validator was developed to read the application

file and convert it to a system-readable object.

3. REST-API communication.

The mobile application needs to communicate with external entities

for many purposes, including sending application specifications for of-

floading to the optimisation server, requesting/sending data files, and

sending/receiving task processing results.

4. Task processing.

As a part of the MECC environment, a mobile device is considered a

computation unit for task processing. Thus, the author implemented a

task runner module to run application tasks using Java Multithreading

feature.

The mobile app represents the user’s interface with the system. The app

was developed in Android Studio. Moreover, a local SQLite database was

created for profiling purposes.

Chapter 6 122

� REST-API Server Application.

At each remote server, a Spring Boot framework was installed in all access-

to-server services over HTTP protocol via RESTful web services. The Spring

Boot framework provides easy development and a scalable solution [121].

1. Run optimiser.

Run optimiser is the service API and interface for the optimisation

engine illustrated in Figure 6.4. Optimisation engine components are

basically back-end functions managed by the optimisation manager.

The optimisation API receives an application configuration and returns

the offloading decision, which reduces energy consumption and cost.

2. Process task.

The process task API allows the system to receive tasks for processing

from other computation units based on the offloading plan. However,

in some cases, such as workflows and IoT applications, a server can

receive a BoT to be processed sequentially or concurrently. At the

server back end, we implemented a task processing framework which

contains functions to validate and run the task, get data files, exchange

data between tasks, and update the optimiser with execution results.

3. Get a file.

The proposed offloading system assumes that task data files can be

stored in various locations. 1) Cloud storage: files can be located in

cloud VMs (EC2 machines) or in S3 (the object storage service from

AWS). 2) Edge storage: it is assumed that data files can be stored in

edge servers temporarily for the purpose of saving data transfer time

and cost for cloud communications. 3) Local storage: a user’s device

can provide data storage, particularly when tasked with sensing and

collecting data from sensors and IoT devices.

4. Get metadata.

As mentioned in the previous section, the resource handler is responsible

for collecting data about environmental resources. The resource handler

sends a request to get resource details and calls the get metadata API.

Chapter 6 123

For storing data profiles and user profiles, the application server offers data

APIs to communicate with a database server which runs the MySQL database.

6.4 Comparison of The Proposed Framework and

Real Framework Results

In order to validate the proposed framework, we have compared framework results

with real-time application execution. In this thesis a data-aware offloading frame-

work was provided to facilitate the planning of application execution, which has

high and active data migration within application tasks. One challenge related

to data-intensive application offloading is the unpredictable behaviour of mobile

networks. Chapters 3 and 4 provides modelling for estimating optimisation objec-

tives of execution time, energy consumption and monetary cost. To validate the

proposed framework, we have developed a profiling framework to support the of-

floading technique in estimating the optimisation objectives for varying input data

and network bandwidth. To the best of our knowledge, this research is unique in

providing an approximation for offloading optimisation sensitivity to the given

application model. Figure 6.5 shows the standard approach for simulation model

verification and validation.

6.4.1 Conceptual Model

Conceptual modelling is the abstraction of a simulation model from a real-world

system. When modelling an application, it is important to decide which part(s)

and function(s) are to be simulated. However, modelling all program parts is an

extremely complicated process. To model the application execution behaviour,

we have identified three parameters, namely number of processing instructions in

MIPS, CPU load, and data execution sensitivity factor. The “number of instruc-

tions” parameter refers to the processing load for a task in a single-core machine,

and the CPU load refers to the percentage of CPU cycles used for running the

Chapter 6 124

Figure 6.5: Model verification and validation

task. The data sensitivity factor determines the impact of data size increase on

task processing load. With this modelling, different types of execution models

could be constructed. The computation-intensive model embraces high number

of MIPS and high CPU usage, where as the data-intensive model corresponds to

large input data size as well as high processing sensitivity to increased data size.

Table 6.1 shows an example of modelling a 5-tasks application.

The calculation of task processing time PT is formulated in Eq. (6.1).

PT = (
I

w
+ (s.ω))ζ (6.1)

Chapter 6 125

Table 6.1: Mobile application modelling

ID Instructions (I) CPU load (ζ) Data size in (MB) (s) Data sensitivity (ω)

1 212 0.6 390 0.134

2 160 0.4 150 0.165

3 240 0.9 936 0.437

4 190 0.1 613 0.122

5 100 0.8 233 0.332

6.4.2 Model Validation

This section describes the outcomes of validating the proposed data-intensive of-

floading framework in respect to real-time application execution. For the purpose

of model validation and application profiling, the experiment setup provided in

section 3.5.1 is applied.

� Data sensitivity profiling

The data sensitivity factor ω determines how task processing load increases

with increasing input data size. This concept is critical for data-intensive

applications which handle large data files for either processing or migration.

To get an accurate measurement of the sensitivity factor, the correlation

between task input data size and the change in processing time was anal-

ysed. We conducted 30 experiments to establish accurate estimation of task

complexity and the sensitivity factor. Figure 6.6 shows the data sensitivity

factor values for the application tasks in the sample model in Table 6.1.This

showed that the sensitivity value is only correlated with the task processing

logic.

� Energy profiling

Energy profiling aims to examine the effect of change in data size on both

data communication and processing energy. The energy profiling includes

two parts. The former is processing energy, while the latter is data com-

munication energy. PowerTutor software was used for power estimation,

giving energy consumption estimates within 5% of actual values [105]. Data

communication energy profiling is critical due to the existence of different

network interfaces. To assess energy profiles we performed an experiments

Chapter 6 129

For validating the proposed model, offloading optimisation results were com-

pared with those obtained from a real execution scenario involving three

communication networks (3G, 4G and WiFi) and three performance met-

rics: execution time, mobile energy and monetary cost. For the purpose of

validation, only the small data scenario was implemented. We implemented

a profiling process to compute an approximation of energy and bandwidth

estimation parameters. Prior to a profiling iteration, an experiment con-

figuration is obtained from data size distribution. For each configuration

setup, a BoT application of 30 tasks is executed, and averages of processing,

communication and waiting energy values are recorded for 30 executions.

Figure 6.10 shows results for validating the proposed offloading framework

in the hybrid MCC environment. The results include some discrepancies be-

tween the proposed model and real execution scenario due to the differences

in available bandwidth and network latency. For execution time, as shown

in Figure 6.10 (a), the proposed model scenario demonstrates higher values

than the real-time scenario with high-bandwidth networks. This can be ex-

plained by the high variation in bandwidth capacity, which occurred because

the experiment was performed in different geographical areas. Overall, the

highest estimation error was observed in the 3G network. The average errors

for the execution model are 8% for execution time, 11% for energy consump-

tion and 15% for monetary cost. Based on average estimation errors, it can

be concluded the that proposed execution model is accurate enough to use

for offloading in the hybrid MCC system.

Figure 6.11 shows the results obtained from experiments performed to val-

idate the proposed offloading framework in the MECC environment. The

evaluation results for the three model parameters are based on the change

in the mobile network interface. The experiments predict slight estimation

errors for the three model parameters, with 7%, 7% and 12% for execution

time, energy consumption and monetary cost, respectively. On average, the

estimation error per scenario is around 9%.

Chapter 6 131

6.5 Summary

Data-intensive mobile applications bring significant challenges for offloading opti-

misation related to processing large amounts of data and transferring large datasets

over cellular and mobile networks. This chapter provides a detailed description

of the proposed offloading system, which has the required interfaces and com-

ponents to run the offloading process and communicates with external resources

for the purposes of model parameters estimation and profiling. Moreover, the

chapter provides some technical information on implementing front-end and back-

end applications. For framework validation, the chapter provides comprehensive

discussion on application conceptualisation, energy profiling and model validation

against real model execution. Processing and data communication energy profiling

results show low estimation variance. Finally, offloading model validation in both

MCC and MECC environments demonstrates low estimation error, averaging less

than 10% among all optimisation parameters.

Chapter 7

Summaries and Discussion

This chapter summarises the key findings of this thesis in relation to data-intensive

mobile application offloading in different computing systems. In addition, the

chapter highlights future directions for research into data-aware offloading tech-

niques and frameworks.

7.1 Discussion

Chapter 2 provided an extensive survey of the literature on many aspects of com-

putation offloading and device augmentation. A large proportion of the research in

this field to date is about developing energy-based solutions by integrating cloud

services and extending the capability of user devices through hybrid and collabora-

tive resource models such as MCC, MEC and MECC. Chapter 2 showed that con-

siderable research effort has been directed towards computation-intensive mobile

application offloading optimisation, but little attention towards data-intensive of-

floading optimisation. However, as noted earlier, emerging data-intensive applica-

tions, such as face recognition and natural language processing, impose challenges

on MCC platforms because of high bandwidth cost and data location issues.

The literature analysis concluded that research to date has gone in one of two direc-

tions: application complexity and structure variation, or the contribution of data

132

Chapter 7 133

size parameters to offloading optimisation decision-making. Previous researchers

strove to overcome the challenges of data-aware mobile application offloading.

However, their models do not consider the contribution of data size variation in

association with other optimisation parameters in application offloading decisions.

In addition, these models do little to integrate cloud and edge systems to re-

solve data-intensive application offloading and scheduling optimisation. Moreover,

although the literature presents comprehensive research proposing computation-

intensive and data-intensive application offloading optimisation techniques from

different perspectives, on a variety of computation environments, these issues are

not fully addressed.

Chapter 3 proposed a data-intensive mobile application offloading optimisation

framework for a hybrid MCC environment. The hybrid computing model con-

sists of the public cloud, cloudlets and mobile devices. This integration can meet

data-intensive offloading requirements by offering powerful resources at the cloud

layer and in highly accessible and distributed cloudlets. These resources can be

accessed via WiFi or the cellular network. Moreover, the chapter outlined a QoS-

aware resource allocation model for scheduling application tasks in a hybrid MCC

environment. The model aims to generate an allocation plan that provides the

best optimisation for device energy usage and monetary cost of remote execution

and data communication. To find the best allocation plan, PSO [101] was adopted

to search the offloading plans space by an iterative improvement to candidate so-

lution until finding the global solution.

Results demonstrate the technique’s ability to generate adaptive resource alloca-

tion in response to variation in application data size and network bandwidth. The

proposed technique improves the execution time for data-intensive applications by

an average of 78%, and reduces mobile energy consumption by an average of 87%

compared to a mobile device alone, while monetary cost increased only 11% due

to using cloud resources and mobile communication.

Emerging data-intensive applications pose challenges for MCC platforms because

Chapter 7 134

of high latency, cost and data location issues. Chapter 4 outlined a study of adopt-

ing edge computing through a hybrid model of MECC. In addition, One issue with

evolutionary optimisation techniques like PSO is the exponential increase in search

complexity, particularly with large-scale applications. The chapter investigated

use of an offloading optimisation with linear search technique, MILP, to reduce the

search time complexity of the PSO technique. The optimisation model is formu-

lated as a MILP problem, which considers both monetary cost and device energy

as optimisation objectives. Moreover, the allocation process considers parameters

related to data size and location, data communication costs, context information

and network status. To evaluate the performance of the proposed offloading al-

gorithm, the chapter present real experiments on the implemented system with

a variety of scenarios, such as different deadline and multi-user parameters. The

proposed offloading technique is compared to PSO and local execution techniques.

Results showed high model ability to respond to the high fluctuations in appli-

cation data size and network bandwidth it reduced the execution cost of data-

intensive applications by an average of 46% and 76% in comparison with PSO and

full execution on a mobile device only, respectively. In addition, the new technique

reduced mobile energy consumption by 35% and 84%, compared to PSO and full

execution on a mobile device only, respectively.

Chapter 3 and 4 proposed algorithms and techniques for data-intensive application

offloading on hybrid MCC and MECC systems. The experimental work presented

in these chapters focused on a single type of application-BoT. Even though BoT

applications are convenient to validate and evaluate the proposed techniques, but

other application features like structure and data dependency are need to be elab-

orated. In Chapter 5, we considered these features and provided a comprehensive

analysis of many aspects of mobile-related computation models. These features

determine the dependency between application tasks in terms of computation and

sharing data. Application complexity and structure should be considered while

planning for offloading to a mobile-aware computing environment. In combina-

tion with the size of the application data, and the quality of the communication

Chapter 7 135

network, the application structure adds another dimension to the offloading opti-

misation process.

Chapter 5 provided recommendations for selecting a mobile-aware computation

paradigm to execute data-intensive mobile applications based on aspects such as

application model, data size, mobile network performance, and mobile energy

status. The selection of a computation model is based on its energy consumption

and the total monetary cost of executing application tasks and transferring data

between computation nodes. Hence, the chapter provides a comprehensive analysis

of how to select the best mobile-aware computing system to offload a data-intensive

application based on parameters of data size, network quality and application

structure. The results demonstrate that it is possible to optimise data-intensive

application execution while considering the target computing environment and

problem constraints.

The main insights from the results presented in Chapter 5 are: (1) MECC is the

preferred computing system for loosely coupled applications like BoTs, where the

network performance makes a critical contribution to reducing the cost overhead

of offloading large data files; (2) for workflows, MCC has the best performance

because most processing can be undertaken at the cloud layer; and (3) there is

promising potential for use of edge resources with on-edge data collection and

communication with a large number of IoT devices. For low-capability mobile

devices, the process of collecting data and acting as a data source is not energy

efficient, and costly due to cellular data usage. Thus, the availability of edge

nodes which can communicate with IoT sensors for data collection allows offloading

optimisation to reduce data transfer time and cost.

For the purpose of offloading optimisation, an offloading framework is proposed to

allow interaction between a set of components for handling services like offloading

optimisation, resource communication and task execution. Chapter 6 provided

a framework for profiling and simulating the execution of data-intensive mobile

applications on mobile-aware computing systems. The framework consists of a set

Chapter 7 136

of components which perform profiling, resource investigation and communica-

tion, context monitoring, offloading decision-making, and QoS optimisation. The

chapter also discuses the high-level offloading system that represents end-to-end

service interactions between end users, the core optimisation frameworks and the

computation system.

In addition, the chapter presents technical details on implementing and deploying

the proposed system. End users configure and submit application execution re-

quests via a mobile app, which has the functions of data collection, task execution

and application server communication. We installed a Spring Boot server in cloud

and edge machines, and implemented all services for offloading optimisation, ser-

vice queuing, task execution, data communication and file management. Finally,

the offloading framework was validated with respect to real application execution.

To achieve optimal, reasonable and sufficient validation performance, a profiling

procedure was applied to generate accurate estimates of energy consumption re-

lated to processing on the mobile device and offloading data to remote servers. The

proposed framework was validated on hybrid MCC and MECC systems. Results

show low validation error, averaging less than 10% for the offloading optimisation

parameters.

7.2 Future Directions

This thesis addressed the problem of data-intensive application offloading on mobile-

aware computing systems, and proposed and validated several novel solutions.

However, some research challenges remain open for future exploration.

7.2.1 Optimisation problems

Computation offloading is the process of migrating complex tasks to powerful

resources to overcome the limitations of mobile devices [122]. Many techniques

and approaches have been proposed to solve the offloading optimisation problem

Chapter 7 137

in various contexts and scenarios. Most of these optimisation techniques have

focused on achieving optimisation objectives though adopting high performance

resource and communication models. However, with advances mobile research

toward streaming services [123], content delivery applications, social sensing [124]

and privacy-awareness enabled applications, offloading optimisation needs to be

taken to a higher level using workload-based techniques. In this thesis workload-

based offloading was studied using generic application scenarios. More research is

required to develop advanced offloading mechanisms that depend on application-

specific modelling strategies and sophisticated optimisation techniques at large-

scale with machine learning an artificial intelligence technologies [125, 126].

7.2.2 Context awareness

Context awareness has been broadly studied in the scope of dynamic offloading

to get benefit from the timely changing on some environmental features such as

user location and system states to propose optimised offloading plans. Handling

context awareness improves the performance and the applicability of an offload-

ing technique, since computation offloading does not always yield useful outcomes

[127]. With respect to data-intensive applications, offloading planning is sensitive

to context information like network quality and resource availability. For example,

in streaming applications, network quality plays a vital role in offloading perfor-

mance and accordingly application service quality. For such applications, applying

dynamic offloading schemes can be more beneficial. Thus, there is considerable

scope for research into dynamic offloading with respect to sensitive context aware

applications and with the support of cutting-edge technologies like edge comput-

ing, 5G and software-defined networking (SDN) [128, 129].

7.2.3 Reliable Computation Offloading

The vast majority of computation offloading techniques have seek to provide op-

timisation solutions for latency-sensitive and energy-aware offloading problems.

Chapter 7 138

An offloading process is subject to failure for many reasons, including resource

unavailability and inadequate network conditions [130]. Therefore, it is critical

for offloading systems to guarantee reliable offloading execution, which refers to

continuous and successful processing cycles for the desired application. For some

applications, reliability is a critical factor. For instance, in Internet of vehicles

(IoV) applications like autonomous driving, interruptions of communication links

and processing node failure are inevitable [131]. As reliable offloading aims to en-

sure a high probability of successful execution, techniques like joint computation

offloading, dynamic task allocation and edge-enabled SDN workload distribution

are promising future research directions for reliable latency-sensitive applications

[132]. However, with increasing IoT and IoV adoption in real-time applications,

researchers need to provide efficient solutions to the problem of moving toward

complex computation scenarios and structures to achieve reliability and hetero-

geneity constraints.

7.2.4 Security and privacy

Data exchange is a fundamental aspect of computation offloading systems. En-

suring data privacy and security as part of the offloading process is essential due

to the engagement of users’ personal devices for process activation, data collection

and related tasks [133]. There is huge investment in privacy and security research,

mostly focused on incorporating technologies like blockchain and SDN to sustain

secure offloading processing pipelines closer to user devices [134]. Edge-based com-

puting systems are relevant to secure offloading scenarios because they can support

closed computation cycles by migrating sensitive data to the cloud. Privacy, in-

tegrity, joint authentication, and anonymity are the main parameters considered

while formulating security-enabled offloading systems. The development of these

applications is mostly complex, and to date few researchers have proposed work-

able security-based offloading applications and frameworks. [130, 135, 136].

Chapter 7 139

7.3 Conclusions

Computation offloading is a common approach to resolving issues of local mobile

execution related to limited computation and storage capacity and dependence on

a single source of energy. However, with the emergence of new applications which

involve processing large data files or sending continuous data streams for remote

execution, and which have increasingly large requirements with respect to both

computation and data insensitivity, offloading processes and application execu-

tion planning are becoming even more complex. This thesis proposed algorithms

and techniques for optimising the execution of data-intensive applications through

adopting data-oriented application modelling, which reflects the contribution of

data parameter to the optimisation objectives of time, cost and energy. Moreover,

the thesis provides offloading optimisation techniques which are aligned with the

application complexity and structure. Several experiments were undertaken for

offloading optimisation on different computing systems. Finally, a comprehensive

analysis of the behaviour of data-intensive offloading techniques is presented.

Bibliography

[1] Cisco Visual Networking Index. global mobile data traffic forecast update,

2017–2022. White paper, 2019.

[2] BV RamaKrishna and B Sushma. Mobile cloud diabetic control system.

International Journal of Computer Science and Mobile Computing, 6(7):

121–127, 2017.

[3] Hind Bangui, Said Rakrak, and Said Raghay. External sources for mobile

computing: The state-of-the-art, challenges, and future research. In Cloud

Technologies and Applications (CloudTech), 2015 International Conference

on, pages 1–8. IEEE, 2015.

[4] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge,

Jason Mars, and Lingjia Tang. Neurosurgeon: Collaborative intelligence

between the cloud and mobile edge. ACM SIGARCH Computer Architecture

News, 45(1):615–629, 2017.

[5] Amina Rashid and Javed Parvez. Mobile cloud computing: A survey of

emerging issues and future trends. International Journal of Engineering

Science and Technology, 6(6):295, 2014.

[6] Mazliza Othman, Sajjad Ahmad Madani, Samee Ullah Khan, et al. A sur-

vey of mobile cloud computing application models. IEEE communications

surveys & tutorials, 16(1):393–413, 2013.

[7] Niroshinie Fernando, Seng W Loke, and Wenny Rahayu. Mobile cloud com-

puting: A survey. Future Generation Computer Systems, 29(1):84–106, 2013.

140

Bibliography 141

[8] Mark Weiser. Some computer science issues in ubiquitous computing. Com-

munications of the ACM, 36(7):75–84, 1993.

[9] George H. Forman and John Zahorjan. The challenges of mobile computing.

Computer, 27(4):38–47, 1994.

[10] Mahadev Satyanarayanan. Fundamental challenges in mobile computing.

In Proceedings of the Fifteenth Annual ACM Symposium on Principles of

Distributed Computing, pages 1–7, 1996.

[11] Shunxing Chen and Linfeng Yang. WAP (wireless application protocol).

Helsinki University of Technology, 1998.

[12] BO Eke. WAP, HTTP and HTML5 Web Socket Architecture Analysis in

Contemporary Mobile App Development. International Journal of Computer

Applications Technology and Research, 4(9):655–663, 2015.

[13] Fei Zhang, Guangming Liu, Bo Zhao, Xiaoming Fu, and Ramin Yahyapour.

Reducing the network overhead of user mobility–induced virtual machine

migration in mobile edge computing. Software: Practice and Experience, 49

(4):673–693, 2019.

[14] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud computing: state-of-the-

art and research challenges. Journal of Internet Services and Applications,

1(1):7–18, 2010.

[15] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy

Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion

Stoica, et al. A view of cloud computing. Communications of the ACM, 53

(4):50–58, 2010.

[16] Luis M Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A

break in the clouds: towards a cloud definition. Communications of the

ACM, 39(1):50–55.

Bibliography 142

[17] Ian Foster, Yong Zhao, Ioan Raicu, and Shiyong Lu. Cloud computing and

grid computing 360-degree compared. In 2008 Grid Computing Environ-

ments Workshop, pages 1–10. Ieee, 2008.

[18] Yating Wang, Ray Chen, and Ding-Chau Wang. A survey of mobile cloud

computing applications: perspectives and challenges. Wireless Personal

Communications, 80(4):1607–1623, 2015.

[19] Cisco Visual Networking Index Cisco. Global mobile data traffic forecast

update, 2013-2018 (white paper, 2014).

[20] Arif Ahmed, Abadhan Saumya Sabyasachi, and Esha Barlaskar. Study on

various qos issue in mobile cloud computing and future direction. In 8th

International Conference on Communication Network, page 48–255, 2014.

[21] Saeid Abolfazli, Zohreh Sanaei, Abdullah Gani, Feng Xia, and Laurence T

Yang. Rich mobile applications: genesis, taxonomy, and open issues. Journal

of Network and Computer Applications, 40:345–362, 2014.

[22] Verdi March, Yan Gu, Erwin Leonardi, George Goh, Markus Kirchberg, and

Bu Sung Lee. µcloud: towards a new paradigm of rich mobile applications.

Procedia Computer Science, 5:618–624, 2011.

[23] Sokol Kosta, Andrius Aucinas, Pan Hui, Richard Mortier, and Xinwen

Zhang. Thinkair: Dynamic resource allocation and parallel execution in

the cloud for mobile code offloading. In Infocom, 2012 Proceedings IEEE,

pages 945–953. IEEE, 2012.

[24] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Caceres, and Nigel

Davies. The case for vm-based cloudlets in mobile computing. IEEE Perva-

sive Computing, 8(4):14–23, 2009.

[25] Bowen Zhou, Amir Vahid Dastjerdi, Rodrigo N Calheiros, Satish Narayana

Srirama, and Rajkumar Buyya. A context sensitive offloading scheme for

mobile cloud computing service. In Cloud Computing (CLOUD), 2015 IEEE

8th International Conference on, pages 869–876. IEEE, 2015.

Bibliography 143

[26] Pulkit Gupta. Evolvement of mobile generations: 1g to 5g. International

Journal for Technological Research in Engineering, 1:152–157, 2013.

[27] Hoang T Dinh, Chonho Lee, Dusit Niyato, and Ping Wang. A survey of mo-

bile cloud computing: architecture, applications, and approaches. Wireless

Communications and Mobile Computing, 13(18):1587–1611, 2013.

[28] Huber Flores and Satish Narayana Srirama. Mobile cloud middleware. Jour-

nal of Systems and Software, 92:82–94, 2014.

[29] Nasir Abbas, Yan Zhang, Amir Taherkordi, and Tor Skeie. Mobile edge

computing: A survey. IEEE Internet of Things Journal, 5(1):450–465, 2017.

[30] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge

computing: Vision and challenges. IEEE Internet of Things Journal, 3(5):

637–646, 2016.

[31] Pramod Abichandani, William Fligor, and Eli Fromm. A cloud enabled

virtual reality based pedagogical ecosystem for wind energy education. In

2014 IEEE Frontiers in Education Conference (FIE) Proceedings, pages 1–7.

IEEE, 2014.

[32] Athar Ali Khan, Mubashir Husain Rehmani, and Martin Reisslein. Cognitive

radio for smart grids: Survey of architectures, spectrum sensing mechanisms,

and networking protocols. IEEE Communications Surveys & Tutorials, 18

(1):860–898, 2015.

[33] Ejaz Ahmed, Ibrar Yaqoob, Abdullah Gani, Muhammad Imran, and Mohsen

Guizani. Internet-of-things-based smart environments: state of the art, tax-

onomy, and open research challenges. IEEE Wireless Communications, 23

(5):10–16, 2016.

[34] Milan Patel, Brian Naughton, Caroline Chan, Nurit Sprecher, Sadayuki

Abeta, Adrian Neal, et al. Mobile-edge computing introductory technical

white paper. White paper, mobile-edge computing (MEC) industry initia-

tive, pages 1089–7801, 2014.

Bibliography 144

[35] Yuyi Mao, Changsheng You, Jun Zhang, Kaibin Huang, and Khaled B

Letaief. A survey on mobile edge computing: The communication perspec-

tive. IEEE Communications Surveys & Tutorials, 19(4):2322–2358, 2017.

[36] Mung Chiang and Tao Zhang. Fog and iot: An overview of research oppor-

tunities. IEEE Internet of Things Journal, 3(6):854–864, 2016.

[37] Pengfei Wang, Chao Yao, Zijie Zheng, Guangyu Sun, and Lingyang Song.

Joint task assignment, transmission, and computing resource allocation in

multilayer mobile edge computing systems. IEEE Internet of Things Journal,

6(2):2872–2884, 2018.

[38] MECISG ETSI. Mobile edge computing (mec); framework and reference

architecture. ETSI, DGS MEC, 3, 2016.

[39] Zhuo Li, Xu Zhou, and Yifang Qin. A survey of mobile edge computing in the

industrial internet. In 2019 7th International Conference on Information,

Communication and Networks (ICICN), pages 94–98. IEEE, 2019.

[40] Pavel Mach and Zdenek Becvar. Mobile edge computing: A survey on ar-

chitecture and computation offloading. IEEE Communications Surveys &

Tutorials, 19(3):1628–1656, 2017.

[41] Jinke Ren, Guanding Yu, Yinghui He, and Geoffrey Ye Li. Collaborative

cloud and edge computing for latency minimization. IEEE Transactions on

Vehicular Technology, 68(5):5031–5044, 2019.

[42] Karthik Kumar, Jibang Liu, Yung-Hsiang Lu, and Bharat Bhargava. A

survey of computation offloading for mobile systems. Mobile Networks and

Applications, 18(1):129–140, 2013.

[43] Rajesh Balan, Jason Flinn, Mahadev Satyanarayanan, Shafeeq Sinnamo-

hideen, and Hen-I Yang. The case for cyber foraging. In Proceedings of the

10th workshop on ACM SIGOPS European, pages 87–92, 2002.

[44] Karthik Kumar and Yung-Hsiang Lu. Cloud computing for mobile users:

Can offloading computation save energy? Computer, 43(4):51–56, 2010.

Bibliography 145

[45] Andreas Klein, Christian Mannweiler, Joerg Schneider, and Hans D Schot-

ten. Access schemes for mobile cloud computing. In 2010 Eleventh Inter-

national Conference on Mobile Data Management, pages 387–392. IEEE,

2010.

[46] Xiaohui Gu, Klara Nahrstedt, Alan Messer, Ira Greenberg, and Dejan Milo-

jicic. Adaptive offloading for pervasive computing. IEEE Pervasive Com-

puting, 3(3):66–73, 2004.

[47] Huber Flores, Satish Narayana Srirama, and Carlos Paniagua. Towards

mobile cloud applications. International Journal of Pervasive Computing

and Communications, 8(4):344–367, 2012.

[48] Saeid Abolfazli, Zohreh Sanaei, Abdullah Gani, Feng Xia, and Wei-Ming Lin.

Rmcc: Restful mobile cloud computing framework for exploiting adjacent

service-based mobile cloudlets. In 2014 IEEE 6th International Conference

on Cloud Computing Technology and Science, pages 793–798. IEEE, 2014.

[49] MG Siegler. Apple’s massive new data center set to host nuance tech, 2017.

[50] Emad Elwany and Siamak Shakeri. Enhancing cortana user experience using

machine learning. Recall, 55(54.61):24–24, 2014.

[51] Xiaoming Nan, Yifeng He, and Ling Guan. Optimal resource allocation for

multimedia cloud based on queuing model. In Multimedia signal process-

ing (MMSP), 2011 IEEE 13th international workshop on, pages 1–6. IEEE,

2011.

[52] Mirco Franzago, Henry Muccini, and Ivano Malavolta. Towards a collabo-

rative framework for the design and development of data-intensive mobile

applications. In Proceedings of the 1st International Conference on Mobile

Software Engineering and Systems, pages 58–61, 2014.

[53] Mohammed Anowarul Hassan and Songqing Chen. An investigation of dif-

ferent computing sources for mobile application outsourcing on the road.

Bibliography 146

In International Conference on Mobile Wireless Middleware, Operating Sys-

tems, and Applications, pages 153–166. Springer, 2011.

[54] Mohammed A Hassan, Kshitiz Bhattarai, and Songqing Chen. vups: Vir-

tually unifying personal storage for fast and pervasive data accesses. In

International Conference on Mobile Computing, Applications, and Services,

pages 186–204. Springer, 2012.

[55] Aaron Carroll, Gernot Heiser, et al. An analysis of power consumption in

a smartphone. In USENIX annual technical conference, volume 14, pages

21–21. Boston, MA, 2010.

[56] Azzedine Boukerche, Shichao Guan, and Robson E De Grande. Sustainable

offloading in mobile cloud computing: Algorithmic design and implementa-

tion. ACM Computing Surveys (CSUR), 52(1):1–37, 2019.

[57] Dong Huang, Ping Wang, and Dusit Niyato. A dynamic offloading algorithm

for mobile computing. IEEE Transactions on Wireless Communications, 11

(6):1991–1995, 2012.

[58] Armando Fox, Rean Griffith, Anthony Joseph, Randy Katz, Andrew Kon-

winski, Gunho Lee, D Patterson, Ariel Rabkin, Ion Stoica, et al. Above

the clouds: A berkeley view of cloud computing. Dept. Electrical Eng. and

Comput. Sciences, University of California, Berkeley, Rep. UCB/EECS, 28

(13):2009, 2009.

[59] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and Ash-

win Patti. Clonecloud: elastic execution between mobile device and cloud.

In Proceedings of the sixth conference on Computer systems, pages 301–314.

ACM, 2011.

[60] M Reza Rahimi, Nalini Venkatasubramanian, Sharad Mehrotra, and

Athanasios V Vasilakos. Mapcloud: mobile applications on an elastic and

scalable 2-tier cloud architecture. In Proceedings of the 2012 IEEE/ACM

fifth international conference on utility and cloud computing, pages 83–90.

IEEE Computer Society, 2012.

Bibliography 147

[61] Ioana Giurgiu, Oriana Riva, Dejan Juric, Ivan Krivulev, and Gustavo

Alonso. Calling the cloud: enabling mobile phones as interfaces to cloud

applications. In Proceedings of the 10th ACM/IFIP/USENIX International

Conference on Middleware, page 5. Springer-Verlag New York, Inc., 2009.

[62] Ting-Yi Lin, Ting-An Lin, Cheng-Hsin Hsu, and Chung-Ta King. Context-

aware decision engine for mobile cloud offloading. In Wireless Communica-

tions and Networking Conference Workshops (WCNCW), 2013 IEEE, pages

111–116. IEEE, 2013.

[63] Farshad A Samimi, Philip K McKinley, and S Masoud Sadjadi. Mobile ser-

vice clouds: A self-managing infrastructure for autonomic mobile computing

services. In IEEE International Workshop on Self-Managed Networks, Sys-

tems, and Services, pages 130–141. Springer, 2006.

[64] Inés Sittón-Candanedo, Ricardo S Alonso, Juan M Corchado, Sara

Rodŕıguez-González, and Roberto Casado-Vara. A review of edge computing

reference architectures and a new global edge proposal. Future Generation

Computer Systems, 99:278–294, 2019.

[65] M Tseng, T Canaran, and L Canaran. Introduction to edge computing in

iiot. Industrial Internet Consortium (IIC) White Paper, Tech. Rep, 2018.

[66] Yuyi Mao, Jun Zhang, and Khaled B Letaief. Dynamic computation of-

floading for mobile-edge computing with energy harvesting devices. IEEE

Journal on Selected Areas in Communications, 34(12):3590–3605, 2016.

[67] Nur Idawati Md Enzai and Maolin Tang. A heuristic algorithm for multi-

site computation offloading in mobile cloud computing. Procedia Computer

Science, 80:1232–1241, 2016.

[68] Yaser Jararweh, Mahmoud Al-Ayyoub, Muneera Al-Quraan, A Tawalbeh

Lo’ai, and Elhadj Benkhelifa. Delay-aware power optimization model for

mobile edge computing systems. Personal and Ubiquitous Computing, 21

(6):1067–1077, 2017.

Bibliography 148

[69] Mohammad Goudarzi, Mehran Zamani, and Abolfazl Toroghi Haghighat. A

fast hybrid multi-site computation offloading for mobile cloud computing.

Journal of Network and Computer Applications, 80:219–231, 2017.

[70] Min Chen and Yixue Hao. Task offloading for mobile edge computing in

software defined ultra-dense network. IEEE Journal on Selected Areas in

Communications, 36(3):587–597, 2018.

[71] Majid Altamimi, Rajesh Palit, Kshirasagar Naik, and Amiya Nayak. Energy-

as-a-service (eaas): On the efficacy of multimedia cloud computing to save

smartphone energy. In Cloud Computing (CLOUD), 2012 IEEE 5th Inter-

national Conference on, pages 764–771. IEEE, 2012.

[72] Muhammad Shiraz, Saeid Abolfazli, Zohreh Sanaei, and Abdullah Gani. A

study on virtual machine deployment for application outsourcing in mobile

cloud computing. The Journal of Supercomputing, 63(3):946–964, 2013.

[73] Xinwen Zhang, Sangoh Jeong, Anugeetha Kunjithapatham, and Simon

Gibbs. Towards an elastic application model for augmenting computing

capabilities of mobile platforms. In International Conference on Mobile

Wireless Middleware, Operating Systems, and Applications, pages 161–174.

Springer, 2010.

[74] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Ste-

fan Saroiu, Ranveer Chandra, and Paramvir Bahl. Maui: making smart-

phones last longer with code offload. In Proceedings of the 8th international

conference on Mobile systems, applications, and services, pages 49–62. ACM,

2010.

[75] Jason Flinn, Dushyanth Narayanan, and Mahadev Satyanarayanan. Self-

tuned remote execution for pervasive computing. In Proceedings Eighth

Workshop on Hot Topics in Operating Systems, pages 61–66. IEEE, 2001.

[76] Roelof Kemp, Nicholas Palmer, Thilo Kielmann, and Henri Bal. Cuckoo:

a computation offloading framework for smartphones. In International

Bibliography 149

Conference on Mobile Computing, Applications, and Services, pages 59–79.

Springer, 2010.

[77] Yan Ding, Gaochao Xu, Chunyi Wu, Liang Hu, Yunan Zhai, and Jia Zhao.

Explore virtual machine deployment to mobile cloud computing for multi-

tenancy and energy conservation in wireless network. Cluster Computing,

20(4):3263–3274, 2017.

[78] Yi-Hsuan Kao, Bhaskar Krishnamachari, Moo-Ryong Ra, and Fan Bai. Her-

mes: Latency optimal task assignment for resource-constrained mobile com-

puting. IEEE Transactions on Mobile Computing, 16(11):3056–3069, 2017.

[79] Bo Li, Jianxin Li, Jinpeng Huai, Tianyu Wo, Qin Li, and Liang Zhong.

Enacloud: An energy-saving application live placement approach for cloud

computing environments. In 2009 IEEE International Conference on Cloud

Computing, pages 17–24. IEEE, 2009.

[80] Mati B Terefe, Heezin Lee, Nojung Heo, Geoffrey C Fox, and Sangyoon Oh.

Energy-efficient multisite offloading policy using markov decision process for

mobile cloud computing. Pervasive and Mobile Computing, 27:75–89, 2016.

[81] Xu Chen, Lei Jiao, Wenzhong Li, and Xiaoming Fu. Efficient multi-user com-

putation offloading for mobile-edge cloud computing. IEEE/ACM Transac-

tions on Networking, 24(5):2795–2808, 2015.

[82] Lei Yang, Jiannong Cao, Hui Cheng, and Yusheng Ji. Multi-user compu-

tation partitioning for latency sensitive mobile cloud applications. IEEE

Transactions on Computers, 64(8):2253–2266, 2014.

[83] Wenlu Hu, Ying Gao, Kiryong Ha, Junjue Wang, Brandon Amos, Zhuo

Chen, Padmanabhan Pillai, and Mahadev Satyanarayanan. Quantifying the

impact of edge computing on mobile applications. In Proceedings of the 7th

ACM SIGOPS Asia-Pacific Workshop on Systems, pages 1–8, 2016.

Bibliography 150

[84] Weiwen Zhang, Yonggang Wen, and Dapeng Oliver Wu. Collaborative task

execution in mobile cloud computing under a stochastic wireless channel.

IEEE Transactions on Wireless Communications, 14(1):81–93, 2014.

[85] Valeria Cardellini, Vittoria De Nitto Personé, Valerio Di Valerio, Francisco

Facchinei, Vincenzo Grassi, Francesco Lo Presti, and Veronica Piccialli. A

game-theoretic approach to computation offloading in mobile cloud comput-

ing. Mathematical Programming, 157(2):421–449, 2016.

[86] Quyuan Wang, Songtao Guo, Jiadi Liu, and Yuanyuan Yang. Energy-

efficient computation offloading and resource allocation for delay-sensitive

mobile edge computing. Sustainable Computing: Informatics and Systems,

21:154–164, 2019.

[87] M Reza Rahimi, Nalini Venkatasubramanian, and Athanasios V Vasilakos.

Music: Mobility-aware optimal service allocation in mobile cloud computing.

In 2013 IEEE Sixth International Conference on Cloud Computing, pages

75–82. IEEE, 2013.

[88] Anind K Dey. Understanding and using context. Personal and Ubiquitous

Computing, 5(1):4–7, 2001.

[89] Hyun Jung La and Soo Dong Kim. A conceptual framework for provisioning

context-aware mobile cloud services. In Cloud Computing (CLOUD), 2010

IEEE 3rd International Conference on, pages 466–473. IEEE, 2010.

[90] Bowen Zhou, Amir Vahid Dastjerdi, Rodrigo N Calheiros, Satish Narayana

Srirama, and Rajkumar Buyya. mcloud: A context-aware offloading frame-

work for heterogeneous mobile cloud. IEEE Transactions on Services Com-

puting, 10(5):797–810, 2015.

[91] Hyunseok Chang, Adiseshu Hari, Sarit Mukherjee, and TV Lakshman.

Bringing the cloud to the edge. In 2014 IEEE Conference on Computer

Communications Workshops (INFOCOM WKSHPS), pages 346–351. IEEE,

2014.

Bibliography 151

[92] Vitor Barbosa C Souza, Wilson Ramı́rez, Xavier Masip-Bruin, Eva Maŕın-

Tordera, G Ren, and Ghazal Tashakor. Handling service allocation in com-

bined fog-cloud scenarios. In 2016 IEEE International Conference on Com-

munications, pages 1–5. IEEE, 2016.

[93] Claudio Feijóo, José Luis Gómez-Barroso, and Sergio Ramos. Implications

of data-intensive applications for next generation mobile networks. 2014.

[94] Chao Li, Yushu Xue, Jing Wang, Weigong Zhang, and Tao Li. Edge-oriented

computing paradigms: A survey on architecture design and system manage-

ment. ACM Computing Surveys (CSUR), 51(2):1–34, 2018.

[95] Lei Jiao, Roy Friedman, Xiaoming Fu, Stefano Secci, Zbigniew Smoreda, and

Hannes Tschofenig. Cloud-based computation offloading for mobile devices:

State of the art, challenges and opportunities. In 2013 Future Network &

Mobile Summit, pages 1–11. IEEE, 2013.

[96] Tianchu Zhao, Sheng Zhou, Xueying Guo, Yun Zhao, and Zhisheng Niu. A

cooperative scheduling scheme of local cloud and internet cloud for delay-

aware mobile cloud computing. In 2015 IEEE Globecom Workshops (GC

Wkshps), pages 1–6. IEEE, 2015.

[97] Thai T Vu, Diep N Nguyen, Dinh Thai Hoang, and Eryk Dutkiewicz. Opti-

mal task offloading and resource allocation for fog computing. arXiv preprint

arXiv:1906.03567, 2019.

[98] Zohreh Sanaei, Saeid Abolfazli, Abdullah Gani, and Muhammad Shiraz.

Sami: Service-based arbitrated multi-tier infrastructure for mobile cloud

computing. In Communications in China Workshops (ICCC), 2012 1st IEEE

International Conference on, pages 14–19. IEEE, 2012.

[99] Saeid Abolfazli, Abdullah Gani, and Min Chen. Hmcc: A hybrid mobile

cloud computing framework exploiting heterogeneous resources. In 2015 3rd

IEEE International Conference on Mobile Cloud Computing, Services, and

Engineering, pages 157–162. IEEE, 2015.

Bibliography 152

[100] Walfredo Cirne, Daniel Paranhos, Lauro Costa, Elizeu Santos-Neto, Fran-

cisco Brasileiro, Jacques Sauve, Fabŕıcio AB Silva, Carla O Barros, and

Cirano Silveira. Running bag-of-tasks applications on computational grids:

The mygrid approach. In Parallel Processing, 2003. Proceedings. 2003 In-

ternational Conference on, pages 407–416. IEEE, 2003.

[101] Russell Eberhart and James Kennedy. A new optimizer using particle swarm

theory. In Micro Machine and Human Science, 1995. MHS’95., Proceedings

of the Sixth International Symposium on, pages 39–43. IEEE, 1995.

[102] John E Shore. Information theoretic approximations for m/g/1 and g/g/1

queuing systems. Acta Informatica, 17(1):43–61, 1982.

[103] John DC Little. A proof for the queuing formula: L= λ w. Operations

Research, 9(3):383–387, 1961.

[104] Cosimo Anglano and Massimo Canonico. Scheduling algorithms for multiple

bag-of-task applications on desktop grids: A knowledge-free approach. In

Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE International

Symposium on, pages 1–8. IEEE, 2008.

[105] Z Yang. Powertutor-a power monitor for android-based mobile platforms.

EECS, University of Michigan, retrieved September, 2:19, 2012.

[106] Inés Sittón and Sara Rodŕıguez. Pattern extraction for the design of pre-

dictive models in industry 4.0. In International Conference on Practical

Applications of Agents and Multi-Agent Systems, pages 258–261. Springer,

2017.

[107] Shih-Hao Hung, Chi-Sheng Shih, Jeng-Peng Shieh, Chen-Pang Lee, and Yi-

Hsiang Huang. Executing mobile applications on the cloud: Framework and

issues. Computers & Mathematics with Applications, 63(2):573–587, 2012.

[108] William G Marchal. An approximate formula for waiting time in single

server queues. AIIE transactions, 8(4):473–474, 1976.

Bibliography 153

[109] George Terzopoulos and Helen D Karatza. Power-aware bag-of-tasks

scheduling on heterogeneous platforms. Cluster Computing, 19(2):615–631,

2016.

[110] Juan Pablo Vielma. Mixed integer linear programming formulation tech-

niques. Siam Review, 57(1):3–57, 2015.

[111] Luca Urbanucci. Limits and potentials of mixed integer linear programming

methods for optimization of polygeneration energy systems. Energy Procedia,

148:1199–1205, 2018.

[112] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge

University Press, 2004.

[113] Eugene L Lawler and David E Wood. Branch-and-bound methods: A survey.

Operations Research, 14(4):699–719, 1966.

[114] Mohammad Alkhalaileh, Rodrigo N Calheiros, Quang Vinh Nguyen, and

Bahman Javadi. Dynamic resource allocation in hybrid mobile cloud com-

puting for data-intensive applications. In International Conference on Green,

Pervasive, and Cloud Computing, pages 176–191. Springer, 2019.

[115] Mainak Adhikari, Tarachand Amgoth, and Satish Narayana Srirama. A sur-

vey on scheduling strategies for workflows in cloud environment and emerg-

ing trends. ACM Computing Surveys, 52(4):1–36, 2019.

[116] Chi-Tsun Cheng, Nuwan Ganganath, and Kai-Yin Fok. Concurrent data

collection trees for iot applications. IEEE Transactions on Industrial Infor-

matics, 13(2):793–799, 2016.

[117] Shishir Bharathi, Ann Chervenak, Ewa Deelman, Gaurang Mehta, Mei-

Hui Su, and Karan Vahi. Characterization of scientific workflows. In 2008

Third Workshop on Workflows in Support of Large-Scale Science, pages 1–

10. IEEE, 2008.

[118] Mohammad Alkhalaileh, Rodrigo N Calheiros, Quang Vinh Nguyen, and

Bahman Javadi. Data-intensive application scheduling on mobile edge cloud

Bibliography 154

computing. Journal of Network and Computer Applications, page 102735,

2020.

[119] Marco V Barbera, Sokol Kosta, Alessandro Mei, and Julinda Stefa. To

offload or not to offload? the bandwidth and energy costs of mobile cloud

computing. In 2013 Proceedings Ieee Infocom, pages 1285–1293. IEEE, 2013.

[120] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes. Cloud-

scale: elastic resource scaling for multi-tenant cloud systems. In Proceedings

of the 2nd ACM Symposium on Cloud Computing, pages 1–14, 2011.

[121] Gary Mak. Spring mvc framework. In Spring Recipes, pages 321–393.

Springer, 2008.

[122] Zhiyuan Li, Cheng Wang, and Rong Xu. Computation offloading to save

energy on handheld devices: a partition scheme. In Proceedings of the 2001

international conference on Compilers, architecture, and synthesis for em-

bedded systems, pages 238–246, 2001.

[123] Anas Toma and Jian-Jia Chen. Computation offloading for real-time sys-

tems. In Proceedings of the 28th Annual ACM Symposium on Applied Com-

puting, pages 1650–1651, 2013.

[124] Peng-Yong Kong. Computation and sensor offloading for cloud-based

infrastructure-assisted autonomous vehicles. IEEE Systems Journal, 2020.

[125] Junaid Shuja, Kashif Bilal, Eisa Alanazi, Waleed Alasmary, and Abdulaziz

Alashaikh. Applying machine learning techniques for caching in edge net-

works: A comprehensive survey. arXiv preprint arXiv:2006.16864, 2020.

[126] Bo Yang, Xuelin Cao, Joshua Bassey, Xiangfang Li, and Lijun Qian. Com-

putation offloading in multi-access edge computing: A multi-task learning

approach. IEEE Transactions on Mobile Computing, 2020.

[127] Mazliza Othman, Feng Xia, Abdul Nasir Khan, et al. Context-aware mobile

cloud computing and its challenges. IEEE Cloud Computing, 2(3):42–49,

2015.

Bibliography 155

[128] Tian Wang, Yuzhu Liang, Yilin Zhang, Muhammad Arif, Jin Wang, Qun

Jin, et al. An intelligent dynamic offloading from cloud to edge for smart

iot systems with big data. IEEE Transactions on Network Science and

Engineering, 2020.

[129] Qi Zhang, Lin Gui, Fen Hou, Jiacheng Chen, Shichao Zhu, and Feng Tian.

Dynamic task offloading and resource allocation for mobile-edge computing

in dense cloud ran. IEEE Internet of Things Journal, 7(4):3282–3299, 2020.

[130] Quang-Huy Nguyen and Falko Dressler. A smartphone perspective on com-

putation offloading–a survey. Computer Communications, 2020.

[131] Shi Yang. A task offloading solution for internet of vehicles using combina-

tion auction matching model based on mobile edge computing. IEEE Access,

8:53261–53273, 2020.

[132] Xiangwang Hou, Zhiyuan Ren, Jingjing Wang, Wenchi Cheng, Yong Ren,

Kwang-Cheng Chen, and Hailin Zhang. Reliable computation offloading

for edge computing-enabled software-defined iov. IEEE Internet of Things

Journal, 2020.

[133] Yuanfan Yao, Ziyu Wang, and Pan Zhou. Privacy-preserving and energy

efficient task offloading for collaborative mobile computing in iot: An admm

approach. Computers & Security, page 101886, 2020.

[134] Darshan Vishwasrao Medhane, Arun Kumar Sangaiah, M Shamim Hossain,

Ghulam Muhammad, and Jin Wang. Blockchain-enabled distributed secu-

rity framework for next generation iot: An edge-cloud and software defined

network integrated approach. IEEE Internet of Things Journal, 2020.

[135] Anju Rana and Farshid Hajati. A survey on privacy and security in mobile

cloud computing. In Workshops of the International Conference on Advanced

Information Networking and Applications, pages 1065–1076. Springer, 2020.

Bibliography 156

[136] Shuai Yu, Xu Chen, Lei Yang, Di Wu, Mehdi Bennis, and Junshan Zhang.

Intelligent edge: Leveraging deep imitation learning for mobile edge compu-

tation offloading. IEEE Wireless Communications, 27(1):92–99, 2020.

