900 research outputs found

    Smart Wireless Sensor Networks

    Get PDF
    The recent development of communication and sensor technology results in the growth of a new attractive and challenging area - wireless sensor networks (WSNs). A wireless sensor network which consists of a large number of sensor nodes is deployed in environmental fields to serve various applications. Facilitated with the ability of wireless communication and intelligent computation, these nodes become smart sensors which do not only perceive ambient physical parameters but also be able to process information, cooperate with each other and self-organize into the network. These new features assist the sensor nodes as well as the network to operate more efficiently in terms of both data acquisition and energy consumption. Special purposes of the applications require design and operation of WSNs different from conventional networks such as the internet. The network design must take into account of the objectives of specific applications. The nature of deployed environment must be considered. The limited of sensor nodes� resources such as memory, computational ability, communication bandwidth and energy source are the challenges in network design. A smart wireless sensor network must be able to deal with these constraints as well as to guarantee the connectivity, coverage, reliability and security of network's operation for a maximized lifetime. This book discusses various aspects of designing such smart wireless sensor networks. Main topics includes: design methodologies, network protocols and algorithms, quality of service management, coverage optimization, time synchronization and security techniques for sensor networks

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    A Study of Wireless Sensor Networks to Comprehend their Relevance to Different Applications, Journal of Telecommunications and Information Technology, 2020, nr 2

    Get PDF
    Wireless sensor networks (WSNs) have experienced enormous growth, both in terms of the technology used and their practical applications. In order to understand the features of WSNs that make the solution suitable for a specific purpose, one needs to be aware of the theoretical concepts behind and technological aspects of WSNs. In this paper, the significance of WSNs is illustrated, with a particular emphasis placed on their demands and on understanding researchrelated problems. A review of the literature available is presented as well. Detailed discussions concerning sensor node architecture, different types of sensors used and their relevance for various types of WSNs is presented, highlighting the need to achieve application-specific requirements without degrading service quality. Multipath and cluster-based routing protocols are compared in order to analyze QoS requirements they are capable of satisfying, and their suitability for different application areas is reviewed. This survey highlights the performance of different routing protocols, therefore providing guidelines enabling each of the routing techniques to be used, in an efficient manner, with factors such as specific network structure, protocol operation and routing path construction taken into consideration in order to achieve better performanc

    Emerging Communications for Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are deployed in a rapidly increasing number of arenas, with uses ranging from healthcare monitoring to industrial and environmental safety, as well as new ubiquitous computing devices that are becoming ever more pervasive in our interconnected society. This book presents a range of exciting developments in software communication technologies including some novel applications, such as in high altitude systems, ground heat exchangers and body sensor networks. Authors from leading institutions on four continents present their latest findings in the spirit of exchanging information and stimulating discussion in the WSN community worldwide

    Integrated Framework For Mobile Low Power IoT Devices

    Get PDF
    Ubiquitous object networking has sparked the concept of the Internet of Things (IoT) which defines a new era in the world of networking. The IoT principle can be addressed as one of the important strategic technologies that will positively influence the humans’ life. All the gadgets, appliances and sensors around the world will be connected together to form a smart environment, where all the entities that connected to the Internet can seamlessly share data and resources. The IoT vision allows the embedded devices, e.g. sensor nodes, to be IP-enabled nodes and interconnect with the Internet. The demand for such technique is to make these embedded nodes act as IP-based devices that communicate directly with other IP networks without unnecessary overhead and to feasibly utilize the existing infrastructure built for the Internet. In addition, controlling and monitoring these nodes is maintainable through exploiting the existed tools that already have been developed for the Internet. Exchanging the sensory measurements through the Internet with several end points in the world facilitates achieving the concept of smart environment. Realization of IoT concept needs to be addressed by standardization efforts that will shape the infrastructure of the networks. This has been achieved through the IEEE 802.15.4, 6LoWPAN and IPv6 standards. The bright side of this new technology is faced by several implications since the IoT introduces a new class of security issues, such as each node within the network is considered as a point of vulnerability where an attacker can utilize to add malicious code via accessing the nodes through the Internet or by compromising a node. On the other hand, several IoT applications comprise mobile nodes that is in turn brings new challenges to the research community due to the effect of the node mobility on the network management and performance. Another defect that degrades the network performance is the initialization stage after the node deployment step by which the nodes will be organized into the network. The recent IEEE 802.15.4 has several structural drawbacks that need to be optimized in order to efficiently fulfil the requirements of low power mobile IoT devices. This thesis addresses the aforementioned three issues, network initialization, node mobility and security management. In addition, the related literature is examined to define the set of current issues and to define the set of objectives based upon this. The first contribution is defining a new strategy to initialize the nodes into the network based on the IEEE 802.15.4 standard. A novel mesh-under cluster-based approach is proposed and implemented that efficiently initializes the nodes into clusters and achieves three objectives: low initialization cost, shortest path to the sink node, low operational cost (data forwarding). The second contribution is investigating the mobility issue within the IoT media access control (MAC) infrastructure and determining the related problems and requirements. Based on this, a novel mobility scheme is presented that facilitates node movement inside the network under the IEEE 802.15.4e time slotted channel hopping (TSCH) mode. The proposed model mitigates the problem of frequency channel hopping and slotframe issue in the TSCH mode. The next contribution in this thesis is determining the mobility impact on low latency deterministic (LLDN) network. One of the significant issues of mobility is increasing the latency and degrading packet delivery ratio (PDR). Accordingly, a novel mobility protocol is presented to tackle the mobility issue in LLDN mode and to improve network performance and lessen impact of node movement. The final contribution in this thesis is devising a new key bootstrapping scheme that fits both IEEE 802.15.4 and 6LoWPAN neighbour discovery architectures. The proposed scheme permits a group of nodes to establish the required link keys without excessive communication/computational overhead. Additionally, the scheme supports the mobile node association process by ensuring secure access control to the network and validates mobile node authenticity in order to eliminate any malicious node association. The purposed key management scheme facilitates the replacement of outdated master network keys and release the required master key in a secure manner. Finally, a modified IEEE 802.15.4 link-layer security structure is presented. The modified architecture minimizes both energy consumption and latency incurred through providing authentication/confidentiality services via the IEEE 802.15.4

    A Survey and Future Directions on Clustering: From WSNs to IoT and Modern Networking Paradigms

    Get PDF
    Many Internet of Things (IoT) networks are created as an overlay over traditional ad-hoc networks such as Zigbee. Moreover, IoT networks can resemble ad-hoc networks over networks that support device-to-device (D2D) communication, e.g., D2D-enabled cellular networks and WiFi-Direct. In these ad-hoc types of IoT networks, efficient topology management is a crucial requirement, and in particular in massive scale deployments. Traditionally, clustering has been recognized as a common approach for topology management in ad-hoc networks, e.g., in Wireless Sensor Networks (WSNs). Topology management in WSNs and ad-hoc IoT networks has many design commonalities as both need to transfer data to the destination hop by hop. Thus, WSN clustering techniques can presumably be applied for topology management in ad-hoc IoT networks. This requires a comprehensive study on WSN clustering techniques and investigating their applicability to ad-hoc IoT networks. In this article, we conduct a survey of this field based on the objectives for clustering, such as reducing energy consumption and load balancing, as well as the network properties relevant for efficient clustering in IoT, such as network heterogeneity and mobility. Beyond that, we investigate the advantages and challenges of clustering when IoT is integrated with modern computing and communication technologies such as Blockchain, Fog/Edge computing, and 5G. This survey provides useful insights into research on IoT clustering, allows broader understanding of its design challenges for IoT networks, and sheds light on its future applications in modern technologies integrated with IoT.acceptedVersio

    Integrating secure mobile P2P systems and Wireless Sensor Networks

    Get PDF
    Aquesta tesi tracta de les diferents limitacions trobades a WSN per a habilitar-ne el desplegament en nous escenaris i facilitar la difusió de la informació obtinguda. A un nivell baix, ens centrem en el consum d'energia, mentre que, a un nivell més alt, ens focalitzem en la difusió i la seguretat de la informació. Reduïm el consum d'una mote individual en xarxes amb patrons de trànsit dinàmic mitjançant la definició d'una funció de planificació basada en el conegut controlador PID i allarguem la vida d'una WSN globalment distribuint equitativament el consum energètic de totes les motes, disminuint el nombre d'intervencions necessàries per a canviar bateries i el cost associat. Per tal d'afavorir la difusió de la informació provinent d'una WSN, hem proposat jxSensor, una capa d'integració entre les WSN i el conegut sistema P2P JXTA. Com que tractem informació sensible, hem proposat una capa d'anonimat a JXTA i un mecanisme d'autenticació lleuger per a la seva versió mòbil.Esta tesis trata las diferentes limitaciones encontradas en WSN para habilitar su despliegue en nuevos escenarios, así como facilitar la diseminación de la información obtenida. A bajo nivel, nos centramos en el consumo de energía, mientras que, a un nivel más alto, nos focalizamos en la diseminación y seguridad de la información. Reducimos el consumo de una mota individual en redes con patrones de tráfico dinámico mediante la definición de una función de planificación basada en el conocido controlador PID y alargamos la vida de una WSN globalmente distribuyendo equitativamente el consumo energético de todas las motas, disminuyendo el número de intervenciones requeridas para cambiar baterías y su coste asociado. Para favorecer la diseminación de la información procedente de una WSN hemos propuesto jxSensor, una capa de integración entre las WSN y el conocido sistema P2P JXTA. Como estamos tratando con información sensible, hemos propuesto una capa de anonimato en JXTA y un mecanismo de autenticación ligero para su versión móvil.This thesis addresses different limitations found in WSNs in order to enable their deployment in new scenarios as well as to make it easier to disseminate the gathered information. At a lower level, we concentrate on energy consumption while, at a higher level, we focus on the dissemination and security of information. The consumption of an individual mote in networks with dynamic traffic patterns is reduced by defining a scheduling function based on the well-known PID controller. Additionally, the life of a WSN is extended by equally distributing the consumption of all the motes, which reduces the number of interventions required to replace batteries as well as the associated cost. To help the dissemination of information coming from a WSN we have proposed jxSensor, which is an integration layer between WSNs and the well-known JXTA P2P system. As we are dealing with sensitive information, we have proposed an anonymity layer in JXTA and a light authentication method in its mobile version
    corecore