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Abstract—Many Internet of Things (IoT) networks are created
as an overlay over traditional ad-hoc networks such as Zigbee.
Moreover, IoT networks can resemble ad-hoc networks over
networks that support device-to-device (D2D) communication,
e.g., D2D-enabled cellular networks and WiFi-Direct. In these
ad-hoc types of IoT networks, efficient topology management
is a crucial requirement, and in particular in massive scale
deployments. Traditionally, clustering has been recognized as a
common approach for topology management in ad-hoc networks,
e.g., in Wireless Sensor Networks (WSNs). Topology management
in WSNs and ad-hoc IoT networks has many design common-
alities as both need to transfer data to the destination hop
by hop. Thus, WSN clustering techniques can presumably be
applied for topology management in ad-hoc IoT networks. This
requires a comprehensive study on WSN clustering techniques
and investigating their applicability to ad-hoc IoT networks.
In this paper, we conduct a survey of this field based on the
objectives for clustering, such as reducing energy consumption
and load balancing, as well as the network properties relevant
for efficient clustering in IoT, such as network heterogeneity
and mobility. Beyond that, we investigate the advantages and
challenges of clustering when IoT is integrated with modern
computing and communication technologies such as Blockchain,
Fog/Edge computing, and 5G. This survey provides useful insights
into research on IoT clustering, allows broader understanding of
its design challenges for IoT networks, and sheds light on its
future applications in modern technologies integrated with IoT.

Index Terms—IoT, Clustering, WSNs, Survey, 5G, SDN, Edge,
Fog, Blockchain, NFV

I. INTRODUCTION

Smart devices have facilitated the pervasive presence of
various things, interacting and cooperating with each other
through unique addressing schemes—Internet of Things (IoT).
IoT, introduced first in 2008-2009 [1], connects billions of
devices around the world on top of different network infras-
tructures, mainly the Internet. IoT aims to integrate different
traditional and next-generation network technologies to work
simultaneously in a common infrastructure and support differ-
ent ubiquitous applications [2]. Compared to other networks
such as WSNs, IoT nodes are highly heterogeneous [3] thanks
to their broad usage in divers application domains and being
a key component of Cyber-Physical Systems (CPS) [4].

Many IoT networks resemble ad-hoc networks, following
the same pattern of data transmission to the Internet as

Amin Shahraki, Amir Taherkordi and Frank Eliassen are with the Depart-
ment of Informatics, University of Oslo, Norway

Amin Shahraki and Øystein Haugen are with Faculty of Computer Sciences,
Østfold University College, Halden, Norway

WSNs, e.g., Internet of Vehicles (IoV). In such networks, IoT
nodes communicate with each other as an overlay network
on top of an existing ad-hoc network protocol, e.g., Zigbee.
The basic building blocks of these types of IoT networks
are often WSNs in which sensors, along with multitude of
everyday objects, communicate, interact and share data on a
massive scale [5]. In addition, thanks to the possibility of
device-to-device (D2D) communication in networks such as
cellular networks, WiFi and Bluetooth, the IoT nodes in such
networks can communicate in an ad-hoc manner [6]. This will
allow more efficient interaction with co-located IoT nodes and
reducing the network overhead. Moreover, there are many IoT
applications that run over ad-hoc and MANET networks, such
as healthcare [7], smart cities [5], [8], vehicular networks [9],
military applications [10], and smart agriculture [11].

In ad-hoc IoT networks, topology management is a critical
requirement for efficient and scalable management of the
network, as well as the applications deployed over such
networks. In ad-hoc networks like WSNs, clustering has
been introduced as the most popular approach for topology
management. Clustering techniques divide the network to
groups of nodes and distribute network functions among the
group members to improve efficiency in, e.g., collecting and
forwarding data, resource management, and supporting QoS.
Many clustering techniques have been proposed for WSN
topology management, such as LEACH [12], HEED [13] and
TEEN [14], to name a few.

Like WSNs, ad-hoc IoT networks can use clustering for
topology management to meet the above performance needs,
as well as IoT-specific challenges, e.g., scalability of the
network [1]. Sharing many fundamental characteristics with
WSNs implies that ad-hoc IoT networks can potentially utilize
WSN clustering techniques without having to design them
from scratch. However, clustering in IoT can be challenging
due to high heterogeneity and mobility of IoT nodes, and
integration of IoT with recent computing and networking
paradigms such as Edge computing and 5G networks. There-
fore, conducting a comprehensive study on existing WSN
clustering techniques and investigating their applicability to
IoT networks would be significantly advantageous for the IoT
research community. Such a survey work can be further com-
pleted with reviewing clustering techniques that are already
being used in IoT networks. In conducting such an extensive
survey, it is crucial to define clear goals on what aspects of the
existing techniques should be investigated, and how the scope
of applicability to IoT should be envisioned. Considering the
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performance needs of ad-hoc IoT networks, the objectives
of clustering, such as reducing energy consumption, load
balancing, improving connectivity, etc. should be central to
such a survey.
Existing surveys. Most existing clustering surveys study
and compare WSN clustering techniques and efficiency of
them [15], [16], [17], [18], not comparing the objectives of
those techniques and more importantly their applicability in
IoT [19]. Most of them cover only main clustering techniques,
such as LEACH [12], HEED [13] and FLOC [20], proposed in
different forms and extensions. Some other surveys consider
only one parameter in designing clustering techniques or
network infrastructures like unequal clusters [18]. Another
category of surveys covers the techniques derived from the
above main techniques to improve clustering performance
or support application-specific clustering requirements. For
example, in [21] the authors indicate that there are more than
60 extended versions of the LEACH protocol in the literature.
Besides, in some survey papers, e.g., [22], clustering has been
studied from the viewpoint of reducing energy consumption,
while it is not the sole objective of clustering.

This survey work is distinguished from the others by
focusing on applicability of clustering in IoT networks and
feasibility of migrating existing WSN clustering techniques to
IoT networks. The main contributions of this paper include:

• reviewing existing clustering techniques in WSNs from the
objectives viewpoint and providing an insightful statistical
analysis (cf. Section III);

• investigating applicability of relevant WSN clustering tech-
niques to IoT networks with respect to network properties
and identified objectives (cf. Section V);

• for each clustering objective: studying existing IoT clus-
tering solutions and discussing the associated challenges in
using clustering in IoT (cf. Section V);

• investigating the advantages of clustering when IoT is inte-
grated with modern computing technologies and paradigms
(i.e., Blockchain, Fog and Edge, Software-Defined Network-
ing and Network Function Virtualization, and 5G), as well
as exploring the challenges in applying clustering techniques
in these types of integration (cf. Section VI).

Review methodology. The methodology adopted for conduct-
ing this survey consists of the following steps. First, we
extracted the list of main WSN clustering techniques from the
relevant papers in reputable conferences and journals, such
as ICCCN, WCNC, GLOBCOMM, ICPS, CNCS, SECON,
IPDPS, ICDCS, INFOCOM, EWSN, PerCom, SenSys, IT-
PDS, IEEE IoTJ, ITWC, ITN, ITVT, and ATSN. Based on
the extracted relevant papers, we then checked their references
and related work to find any other papers that were concealed.
Having the main clustering techniques compiled, we finally
searched for all other research works that either cited the
main techniques like LEACH or proposed their own clustering
technique. For that, we read and refined about 500 papers.
Finally, over 250 papers were extracted as the distinguished
clustering techniques proposed for WSNs and IoT. We filtered
the papers based on their quality, publication channel, and
number of citations.

II. CLUSTERING: BASIC CONCEPTS AND TAXONOMY

Topology management is one of the main challenges in es-
tablishing networks, especially in ad-hoc networks [23]. Clus-
tering, as a type of topology management technique, improves
the efficiency by dividing the network to groups of nodes and
distributing network functions among the group members, e.g.,
collecting and forwarding data, and resource management.
Various network types have utilized clustering for topology
management, such as MANET [24], VANET [25], WSN [15],
and IoT [26]. From the application layer viewpoint, clustering
techniques have been introduced for different types of needs
such as resource allocation [27], applying reputation models
[28], service discovery [29], intrusion detection [30], fault
monitoring [31], and anomaly detection [32]. A cluster is
composed of a number of nodes (i.e., members) and has
one or more Cluster Heads (CH) to manage the members
and shared resources. Moreover, CHs can collect, fuse, and
process members’ data, and transfer it to gateway(s). Each
network can have one or more gateways (also known as base
stations or sinks) that connect CHs to outside of the network.
Clustering can address several conventional quality-related
objectives, such as reducing resource consumption, improving
load balancing and QoS, and fault tolerance. We discuss those
objectives in detail in Section V.

A. Clustering Structural Models

Two primary aspects of clustering include grouping nodes
and allocating responsibilities. Grouping methods are gen-
erally based on the structure of Voronoi diagrams, but also
can be non-Voronoi like chain or spectrum structures. In the
Voronoi structure, a 2D or 3D network environment is divided
into several unequal sections, called clusters. Each cluster
possesses some nodes and possibly interacts with other clusters
or gateways directly or through neighbor clusters. In the chain
structure, nodes in a cluster connect to each other to reach
the corresponding CH. Each node has only two connections
with neighbors in the chain to reach the CH: one outgoing
connection to the next hop, and one incoming connection
from another node to the current node as the next hop. In the
spectrum structure, angles of nodes to base stations (BSs) are
as important as the distance to BS for cluster establishment.
Node angles are generally captured by the Scanning Sweep
method [33]. In both spectrum and chain structures, layering
of the network can also be performed to enable multi-hop
data transmission and improve the efficiency of the network,
especially in terms of resource consumption. Figure 1 depicts
the above three clustering structures.
Cluster establishment methods: There are generally two
methods to establish clusters in a network: i) Determining
clusters by grouping nodes and then selecting one or more
nodes as CH(s), and ii) Selecting CHs first and then inviting
other nodes to join a neighbor CH. Joining of nodes to a
cluster is mainly based on the physical proximity of nodes
and other parameters such as cluster size, number of nodes,
and balancing network load and resource consumption. In
addition, high-level parameters can be defined as clustering
criteria, such as application-specific requirements, local data
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Fig. 1. Different structures of clustering techniques

processing needs (e.g., data fusion and compression), and
resource sharing. With respect to CH selection, there are
various techniques as described below:

• In some clustering techniques, resource-rich nodes are
predetermined as fixed CHs for the whole network life
time [34]. In networks with homogeneous or resource-
constrained nodes, this method is not efficient. Even in
a heterogeneous network, being CH for a long period of
time will drain the node power quickly, leading to node
death. Moreover, in case of fixed CHs, mobile nodes and
dynamicity of the network can unbalance the number of
members and/or cluster load, causing network congestion
and inefficient resource consumption.

• In some clustering techniques, randomness is the solution to
circulate the CH responsibility among nodes [12]. Although
this is beneficial in homogeneous networks, accidental unfair
randomness can lead to network congestion and chronic
energy consumption in some CHs.

• The most common solution for such issues is the conscious
CH selection method in which CHs are selected based on
the circumstances of the nodes and the network [35], [36].
In this method, appropriate nodes are actively selected as
CHs based on parameters like available resources, location,
and number of neighbors.

The CH selection process can be performed either in a
centralized or distributed way. In the centralized model, CH
selection parameters are gathered, compared, analyzed and
processed in a central node (i.e., generally BS). Although in
this model network-wide comparison of parameters can be
performed, it often imposes high overhead due to transmitting
many management packets, in particular in large and/or highly
dynamic networks with the CH re-selection capability. On the
other hand, distributed methods impose less overhead, but due
to relying on local CH selection criteria, selected CHs cannot
always fulfill the whole network requirements. Due to this fact,
distributed methods can cause network inefficiency in different
performance aspects, e.g., QoS and load balancing.
Re-clustering methods: Re-clustering refers to any action
related to re-selecting CHs or re-organizing existing clusters.
CH selection methods are mostly designed to react against
any unforeseeable circumstances by re-selecting or replacing
CHs dynamically with more appropriate nodes. Moreover,
not every node can serve as CH for a long period of time

because of resource depletion, thereby the CH role should
be rotated among appropriate nodes during the network life-
time. With respect to re-organization of clusters, events like
network congestion, dead nodes, and unbalanced network
load can also trigger re-clustering. There are two methods
to trigger re-clustering: i) Time-based method: The network
will be re-clustered at a certain time to balance resource
consumption among nodes. This method is generally used
in homogeneous networks with predetermined network load,
and ii) Event-based method: An event triggers part of or
the whole network to re-select CHs and possibly re-cluster,
e.g., exceeding resource usage thresholds like energy, CPU,
bandwidth consumption, or high resource consumption in a
certain time. The combination of time-based and event-based
methods can be used for re-clustering as well. Depending on
which re-clustering conditions hold first, the corresponding
method will be triggered.
Data forwarding in clustering techniques: The network data
can be transferred in its raw format or as a fused value (i.e.,
data fusion). In clustered networks, CHs are used to gather
and fuse the members’ data. The CH can transmit individual
data items to BS or send the fused values. Since common
clustering techniques are based on the proximity of the nodes
providing data for the same application, it would be possible
to perform data aggregation in CHs and reduce the amount
of data to be transmitted. In addition, in some cases, CHs are
able to compress data to reduce the data volume. Last but not
least, data can be processed locally in CHs and results can
be sent to the gateway(s). There are two methods to transmit
packets from CHs to BS(s):
• CHs can send data directly to BS. In the direct commu-

nication, each CH transmits data directly to BS(s) causing
energy depletion in case of a long distance (d) based on
Eq.1 [37].

Etransmit = F (d2) (1)

• CHs can use middle nodes (often other CHs) to forward data
to the gateway(s), called inter-cluster routing. Although it
reduces energy consumption, it increases delay. This method
also needs establishing efficient routes from CHs to the
gateway(s) causing network overhead.
Besides the communication between CHs and BS(s), nodes

in a cluster can connect to their CHs directly or indirectly,
called intra-cluster routing. However, it is used in special cases
e.g., blind spaces or big-sized clusters. This routing method
can also impact QoS, e.g., increasing delay [37], [38].

III. CLUSTERING IN WSNS

WSNs are a network of devices, denoted as nodes, which
can sense the environment and transmit the sensed data
gathered from the monitored field wirelessly. The sensed data
is transmitted, possibly via multiple hops, to a BS node
that can process it locally or forward it through a gateway
to other networks, e.g., the Internet. There exist different
types of WSNs, such as Terrestrial WSNs [39], Underground
WSNs [40], Underwater WSNs [41], Multimedia WSNs [42],
and Mobile WSNs and Wireless Sensor and Actuator Net-
works (WSANs) [43].
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WSNs are often considered as infrastructure-less resource-
constrained networks [44] such that the nodes should
cooperate to establish a network, and gather and transfer the
data, calling for efficient topology management solutions.
Clustering is recognized as a popular technique for this
purpose, e.g., to improve efficiency of routing methods and
reduce energy consumption due to wireless data transmission
using hierarchical data fusion [17]. From about 2000 to 2019,
tens of WSN clustering techniques have been proposed. In
this section, we study all significant clustering methods by
reviewing around 125 papers. Unlike other survey papers,
we do not focus on the design details of clustering methods
like algorithm complexity, methodology, etc. as it is not the
goal of our study. We review the most significant clustering
techniques in WSNs based on their objectives and the specific
properties of networks. Considering the former, the primary
goal of clustering in WSNs is retaining and/or improving
a pre-defined set of quality-driven objectives. A clustering
technique is designed to support one or multiple objectives
simultaneously. The objectives include:

• Energy Consumption (E) • Load Balancing (L)
• Fault Tolerance (F) • Reliability (R)
• Physical Layer Support (U) • Jitter (J)
• Throughput (T) • Scalability (A)
• Coverage (O) • Connectivity (C)
• Mobility Management (M) • Stability (B)
• Packet Delivery Ratio (Y) • Security (S)
• Mutli-Sink Support (K) • Delay (D)
• Number of Packets Received by BS (P)

We also consider a set of network and clustering properties
in our review that are crucial for the applicability of clustering
techniques to IoT networks. These properties include: hetero-
geneity, role of CH, inter-cluster routing, and mobility. Below,
we explain the reasons for choosing these properties.
Heterogeneity: Contrary to WSNs which are often homoge-
neous [19], IoT networks are known to be heterogeneous [3].
Thus, network management in IoT needs to deal with nodes
heterogeneity as it affects the performance of the network
from different aspects, e.g., stability, connectivity, and QoS
[45], [46]. Clustering is a network management technique
that can address heterogeneity issues in the network. Thus,
WSN clustering techniques that support heterogeneity are
more compatible with the nature of IoT networks.
Role of CH: Generally, CHs in WSNs are not in charge of
performing complicated tasks, thus the parameters to select
CHs are often limited to energy and data forwarding resources.
However, some clustering techniques utilize CHs for data
fusion, in which the CH selection criterion is the computation
power of nodes [15]. Such techniques can be suitable for
clustering in IoT networks as CHs in IoT can be used to
execute computationally demanding tasks [47], [48], e.g.,
edge-level image processing in smart cities.
Inter-cluster routing: In some WSN clustering techniques,
data transmission to the sink is performed through a 2-hop
communication model (i.e., node to CH and CH to sink) over
a multi-point to point network infrastructure. However, many
other clustering techniques allow data routing with more hops

between the sources and the sink. To apply existing WSN
clustering techniques to IoT, such techniques would be more
advantageous because in IoT networks, services can run inside
the network on intermediary nodes, e.g., hierarchical data
processing in Fog [49]. In addition, the number of gateways
may be more than one node in IoT, implying the need for inter-
cluster routing to access the most efficient gateway in terms
of, e.g., bandwidth and delay. It should be noted that we do not
consider intra-cluster routing as a parameter in applicability of
WSN clustering techniques to IoT as it is used in special cases
such as in blind spaces or for big-sized clusters, in addition
to the fact that it may also degrade QoS.
Mobility: Based on their applications, IoT networks may con-
tain more mobile nodes [50] than WSNs [51], e.g., wearable
devices and IoV. Clustering techniques that support mobility
would be more appropriate for IoT, thus we include mobility as
a network property in reviewing WSN clustering techniques.

Table I lists the studied WSN clustering techniques, sorted
in chronological order. Each technique has been examined
based on the aforementioned network properties and ob-
jectives. For example, LEACH [12], proposed in the year
2000, neither supports heterogeneity, nor mobility. CHs in
this method are mainly in charge of data fusion and they
use direct inter-cluster routing to transmit data to BS. In
addition, the sole clustering objective of LEACH is to reduce
energy consumption (E). Some techniques support objectives
that are not among the main 17 objectives. For them, the
table includes a short description of the targeted objectives,
e.g., EACLE [52] reduces packet collision, in addition to
reducing energy consumption (E). Moreover, for techniques
supporting heterogeneity and mobility, the table clarifies how
these properties are supported. If there is no comment for a
technique supporting heterogeneity, its heterogeneity aspect is
by default the energy resource. The last row of Table I shows
the statistics of the studied techniques. As shown, most of
the literature focuses on improving the energy consumption,
in addition to load balancing and scalability. Moreover, it
indicates that many techniques support multi-hop inter-cluster
routing. With respect to the network properties, there are
not many clustering techniques supporting heterogeneity and
mobility. As these are two most important parameters in IoT
clustering, more research effort in this area is needed.

To the best of our knowledge, this table compiles the most
well-known clustering techniques in WSNs, their properties
and objectives. It allows filtering the techniques based on
the desired properties and objectives for clustering. Regarding
their applicability to IoT networks, it allows finding the
suitable techniques based on the chosen network properties
and clustering objectives. In the next section, we study those
types of techniques, in the context of IoT, according to the
aforementioned clustering objectives, and discuss existing IoT
clustering solutions addressing each objective.

In Table II, objectives of clustering are reviewed based
on their correlation. The white cells on the diameter of the
table show the number of techniques that support an objective
on x/y-axis, e.g., 44 techniques support load balancing (L).
Other numbers, in each column, show the percentage of the
techniques that support an objective on the y-axis.



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL., NO., 5

Num Clustering
Technique

Year

H
et

er
og

en
ei

ty

Role
of

CH

In
te

r-
cl

us
te

r
R

ou
tin

g

M
ob

ili
ty

Objectives

R
el

ay

Fu
si

on

E L R D J T Y P C O F B A M S U K
1 LCA[53] 1981 No X D M Yes X

X X
2 [54] 1997 No X X D M Yes support multimedia applications

X X

3 CLUBS[55] 1998 No X M Yes
network management, fault tolerance (processor failure),

resource sharing (distributed computing)
CHs are leaders to allocate tasks

4 LEACH[12] 2000 No X D No X
X

5 TEEN[14] 2000 No X M No support time-critical data sensing applications
6 HCC[56] 2001 No X X M Yes X X

X X
7 MBC[57] 2001 No X X M Yes support group mobility

8 PEGASIS[58] 2002 No X D No X X
X X X X

9 RCC[59] 2002 No X D Yes support high speed mobility
X

10 APTEEN[60] 2002 No X M No support query based WSNs
X X X

11 GS3[61] 2003 Yes X D Yes support high degree of mobility and dynamicity
12 EEHC[62] 2003 No X D M No X X
13 HEED[13] 2004 No X D M No X X X
14 ACE[63] 2004 No X D Yes X X X
15 FLOC[20] 2004 No X D Yes X X
16 SEP[64] 2004 Yes X D No X X X

X X
17 DWEHC[65] 2005 No X D No possible inter-cluster communication

X X X
18 [66] 2005 No X X D M No fault tolerance (CH failure)

X X
19 UCS[67] 2005 Yes X M No CHs are mobile

X X X X X
20 TTDD[68] 2005 No X X M No support multiple mobile sinks

support query based WSNs, directed diffusion
21 BCDCP[69] 2005 No X M No X X
22 EECS[70] 2005 No X X D No X X X

X X X X X
23 MOCA[71] 2006 No X M No reduce processing and message complexity, CH failure tolerance
24 [72] 2006 No X X M No X X X
25 DWCA[73] 2006 No X M Yes X X
26 CCS-PEGASIS[74] 2007 No X M No X X
27 EEDC[75] 2007 No X M No X X X

X X
28 EcoMapS[76] 2007 No D No task scheduling, parallel processing, task mapping in CHs

X X
29 EACLE[52] 2007 No X M No reduce packet collision

X X X X
30 [77] 2008 Yes X X M No reduce transmission cost

31 ICDB[78] 2008 No X M No X X
32 [79] 2008 No X X M No X

X

33 C4SD[80] 2008 Yes M Yes
optimize message ratio to discover services

service discovery protocol based on clustering
CHs are directory of services

34 EEMC[81] 2008 No X M No X X
35 MRPUC[82] 2008 No X M No X X

X X
36 MHP[34] 2008 Yes X M No support query based data gathering, CHs are predetermined
37 EEDUC[83] 2008 No X M No X X

X
38 BSIDR[84] 2008 Yes X D No support computation & communication heterogeneity

data compression in CHs
39 PEBECS[85] 2009 No X M No X X X
40 UCR[86] 2009 No X M No X X

X X X X X X X
41 [87] 2009 Yes X M Yes support heterogeneity in transceivers, node type

sensor type and energy
42 KOCA[88] 2009 No X M No X X X
43 ACHTH-LEACH[89] 2010 No X M No X X

X X X
44 CBR-Mobile[90] 2009 No X Yes CHs are statiornary

CHs are responsible to do time scheduling for data aggregation
45 HGMR[91] 2010 No X M No X X X X X

X X X
46 PANEL[92] 2010 No X M No data aggregation, reliable data storage

support asynchronous applications
47 ARC[93] 2010 No X M No X X X X

X X X X
48 EDFCM[94] 2010 Yes X D No support computation resource heterogeneity

X
49 MMCRA[95] 2010 No X D M Yes support vehicular WSNs

X X
50 EAUCF[96] 2010 No X X M No X X X

X X
51 [97] 2011 No X D No track the targets and recover lost targets

52 Spatial-clustering [98] 2011 No X M No data aggregation
53 LUCA[99] 2011 No X M No X X
54 EEEPSC[100] 2011 No X D No X X
55 EADUC[101] 2011 Yes X M No X X
56 EDUC[102] 2011 Yes X X D M No X X X
57 ACT[103] 2011 No X M No X X

X X X
58 CCR[104] 2011 Yes X M Yes support WSAN, support delay sensitive applications

support heterogeneity in energy and transmission rate
59 MBC[105] 2011 No X M Yes X X
60 EBCAG[106] 2012 No X M No X X
61 LEACH-SWDN [107] 2012 No X D No X X X
62 ECPF[108] 2012 No X M No X X
63 LEACH-ERE[109] 2012 No X D No X X X
64 DECSA[110] 2012 No X M No X
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X X X

65 EPCR[111] 2012 No X M Yes fault tolerance (packet loss recovery)
66 E-LEACH[112] 2012 No X M No X X
67 IFUC[113] 2013 No X M No X X
68 COCA[114] 2013 No X M No X X

X X X
69 ACDA[115] 2013 No X M No support directional antenna
70 DSBCA[116] 2013 No X D No X X X
71 LCM[117] 2013 No X X M No X X X
72 MODLEACH[118] 2013 No X M No X X
73 Q-LEACH[119] 2013 No X D No X X X X
74 EDDEEC[120] 2013 Yes X D No X X

X X X
75 PASCCC[121] 2014 Yes X D Yes optimize packets received by BS and CHs, congestion control

support application priority models
76 [122] 2015 No X M No X X X X

X
77 DECA[123] 2014 Yes X D No CHs are predetermined
78 FUCP[124] 2015 No X M No X X X
79 FAMACROW[124] 2015 No X M No X X X
80 E-OEERP[125] 2015 No X M No X X X X

X
81 SCCH[126] 2015 No X D No reduce data loss, fault tolerance (CH failure)

X X
82 TCBDGA[127] 2015 No X M No support mobile sinks, support heterogeneous sensory data

X X
83 DFCR[128] 2015 No X M No fault tolerance (CH failure)

84 PEECR[129] 2015 No X M No X X
85 BTCWSN[130] 2015 No X D No X X X

X
86 [131] 2016 No X M No data compression, support hexagon-clustered networks

X X
87 PKF-ST [132] 2016 No X D No support temporal and spatial data aggregation
88 Improved EADUC[133] 2016 No X M No X X
89 FBUC[134] 2016 No X M No X X
90 DUCF[135] 2016 No X M No X X
91 GFTCRA [136] 2016 No X M No X X X
92 nCRO-UCRA[137] 2016 No X M No X X X

X X X
93 UMBIC[138] 2016 Yes X M No fault tolerance (CH failure)
94 EDDUCA[139] 2016 No X M No X X
95 UCCGRA[140] 2016 No X M No X X

X X X
96 MHCDA[141] 2016 Yes X M Yes (support mobile sinks)

X X X
97 [142] 2016 No X M No support mobile sinks

X X X
98 NDCMC[143] 2016 No X D No CHs are mobile as mule
99 DECUC [144] 2017 No X M No X X X
100 PSO-ECHS[145] 2017 No X D No X X
101 GEEC[146] 2017 No X D No X X

X X X X
102 K-SCC[147] 2017 No X M No improve security by providing authentication
103 HDMC[148] 2017 No X M No X X X
104 GASONeC[149] 2017 No X D No X X
105 LEACH-SF[150] 2017 No X D No X X X

X X X
106 EPMS[151] 2017 No X D No support mobile sinks
107 EA-CRP[152] 2017 No X X M No X X X
108 nCRO-ECA [153] 2017 No X M No X X

X X X
109 EECDRA [154] 2017 No X M No support multiple mobile sinks

X X X X X
110 DCMDC [155] 2017 No X M Yes reduce mobility management cost
111 HSCA[156] 2018 Yes X M No X X X
112 FUCA[157] 2018 No X D No X X
113 COARP[158] 2018 No X D No X X
114 H-kdtree[159] 2018 Yes X M No X X X X
115 HiTSeC[160] 2018 Yes X D Yes X X
116 ENEFC[161] 2018 No X M No X X X
117 DHRP[162] 2018 No X M No X X

X
118 CMS2TO[163] 2018 No X M No support mobile sinks

X
119 [164] 2018 No X M No support mobile sink mule

X X X X X X X
120 FEEC-IIR[165] 2018 Yes X M No balance channel load, improve buffer occupancy

X
121 VCHFBG [166] 2019 Yes X D No fault tolerance (CH failure)

X X X X
122 EECSR[167] 2019 No X M No data compression in CHs

X X
123 BPA-CRP [168] 2019 No X X M No data compression in CHs
124 NEP-ECGD[169] 2019 No X M No X X
125 MLBC[170] 2019 No X M No X X X X X X X X

Results N/A Yes=22
No=103 28 108 Direct=34

M-hop=83
Yes=21
No=104 113 44 3 21 3 15 20 20 8 8 13 8 32 2 4 3 2

TABLE I: Comparing the existing well-known WSN clustering techniques
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For example, out of 44 papers on L, 97,7% of them support
E as other objective, while only 4,5% of them support R.
The heatmap highlights which pairs of objectives in existing
clustering techniques have received more attention by the
researcher. In addition, the statistical analysis of Table I shows
that the number of papers that support 1, 2, 3, 4, 5, 6, 7 and
8 objectives simultaneously are 15, 53, 40, 10, 4, 0, 2, and
1, respectively. This indicates that clustering techniques are
normally used to support multiple objectives simultaneously,
where the majority of them support two objectives.

The other useful insight is to find out which pairs of
(objective, networkproperty) have been considered more in
the design of clustering techniques. For this purpose, out of
the 125 techniques in Table I, we counted the number of tech-
niques that support a given (objective, networkproperty) as
shown in Table III, e.g., 92 of the techniques with energy
efficiency (E) as an objective can not support heterogeneity.
As shown in the table, most of the literature does not support
heterogeneity. Considering the role of CH, the table shows that
data fusion has been the common role of CH in achieving most
of the objectives such as E, L, Y and P. Besides the obvious
reason of fusing data for energy consumption reduction or load
balancing, for Y and P sending fused data instead of individual
data items will lead to a lower rate of data loss in the network.
Considering routing, multi-hop methods are quite common for
achieving E, in addition to improving network coverage (O)
and connectivity (C). In addition, it can be seen that there
is a limited amount of literature that supports mobility when
the objective is energy consumption improvement or load
balancing (13 and 2 respectively). This implys that mobility
support can disrupt achieving these popular objectives. The
above statistical evaluation shows that designing clustering
techniques for IoT networks needs more attention as support-
ing mobility and heterogeneity are two key requirements for
IoT clustering.

IV. MIGRATING FROM WSNS TO IOT

WSNs essentially connect sensor nodes to the Internet
through a gateway, contrary to smart devices in IoT that
are often able to connect directly to the Internet. Figure 2
shows different types of IoT networking models. In centralized
networking solutions, nodes connect to on-premise servers
or cloud platforms to process data. By integration IoT with
cloud computing platforms, smart devices connect to virtually
infinite resources to store and process data centrally. In the
decentralized model, Machine-to-Machine (M2M), D2D, and
ad-hoc networks allow IoT networks to connect nodes directly.
The main difference between D2D and M2M is the physical
proximity of devices. In D2D a pair of devices must be in
close physical proximity, but in M2M they can be distant, but
they are able to communicate directly without the need for a
central node (e.g., servers). Communication technologies such
as wide area networks and cellular networks have also further
realized the decentralized networking model in IoT, such as
LoRA [171] and NB-IoT [171], respectively. To conclude,
many IoT networks resemble ad-hoc networks with respect
to topology and the communication model. Moreover, IoT is

rapidly being introduced for massive scale applications such
as smart cities and vehicular networks, which are often built
over ad-hoc infrastructures, as mentioned above.

Contrary to the centralized models with the capability of
direct connectivity to the server or the Cloud, in the decen-
tralized model, topology management is a critical requirement
for efficient and scalable management of IoT networks. Being
the primary solution for topology management, clustering can
be applied to decentralized IoT networks in order to improve
resource usage, QoS, and load balancing, to name a few.
Therefore, the survey is carried out for this type of IoT
networks.

ServerServer

Server

Server

With On-Premise Servers With Cloud Platforms

Cloud

Cloud

Decentralised IoT Networking Model

Cloud

Centeralised IoT Networking Model

Fig. 2. General IoT networking models

A. Clustering in WSNs vs. in IoT: Technical Differences

Existing solutions and technologies for WSN clustering
have the potential to be applied to IoT networks. However,
clustering in IoT introduces new challenges that are discussed
below. The summary of the technical differences is presented
in Table IV.

1) Heterogeneity: A fundamental challenge in IoT is sup-
porting heterogeneity. Compared to WSNs, IoT network man-
agement techniques need to consider heterogeneity as a con-
tingent characteristic of the network. In IoT, in addition to
WSN nodes, other types of smart devices (e.g., smartphones
and cameras) may be used in one application scenario [172].
Even compared to typical WSNs, WSNs-assisted IoT [173]
are essentially different in terms of heterogeneity [174]. As
shown in Table I, most WSN clustering techniques are based
on homogeneous networks. Those supporting WSN hetero-
geneity focus mostly on energy resources [175], but in IoT,
heterogeneity is somewhat different with respect to clustering:
• Energy: Heterogeneous WSN clustering techniques

(HeWCTs) mostly support heterogeneous networks that
have predetermined initial energy, though all nodes have not
the same initial energy. However, they have not considered
the networks with high diversity in node energy levels,
or nodes with rechargeable energy resources. The fact is
that, In IoT networks, nodes may have different energy
capacities, ranging from nodes with unlimited energy
resources, e.g., plugged PC or cameras, to nodes with
flexible energy resources, e.g., outdoor sensors equipped
with photovoltaic solar panels.

• Computing power: Similar to heterogeneity in energy, in
some cases, clustering techniques in HeWCTs support a few
predefined levels of computing power like in [94]. However,
in heterogeneous IoT (HetIoT) [3], the smart devices may
have divers computing power levels. Such diversity can
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TABLE II
COMPARING CLUSTERING OBJECTIVES AND THEIR CORRELATIONS IN THE REVIEWED CLUSTERING TECHNIQUES

E L R D J T Y P C O F B A M S U K

E 113 97,7 % 100,0 % 95,2 % 100,0 % 100,0 % 90,0 % 100,0 % 62,5 % 62,5 % 57,1 % 87,5 % 75,0 % 0,0 % 100,0 % 66,7 % 100,0 %

L 38,1 % 44 66,7 % 9,5 % 25,0 % 40,0 % 20,0 % 25,0 % 12,5 % 37,5 % 35,7 % 37,5 % 25,0 % 0,0 % 0,0 % 0,0 % 50,0 %

R 2,7 % 4,5 % 3 4,8 % 50,0 % 13,3 % 10,0 % 0,0 % 0,0 % 12,5 % 0,0 % 12,5 % 6,3 % 0,0 % 0,0 % 0,0 % 0,0 %

D 17,7 % 4,5 % 33,3 % 21 50,0 % 13,3 % 10,0 % 0,0 % 0,0 % 12,5 % 0,0 % 12,5 % 6,3 % 0,0 % 0,0 % 0,0 % 0,0 %

J 3,5 % 2,3 % 66,7 % 14,3 % 4 40,0 % 35,0 % 5,0 % 12,5 % 0,0 % 7,1 % 25,0 % 28,1 % 0,0 % 33,3 % 66,7 % 50,0 %

T 13,3 % 13,6 % 66,7 % 28,6 % 75,0 % 15 5,0 % 0,0 % 0,0 % 0,0 % 7,1 % 0,0 % 6,3 % 0,0 % 0,0 % 33,3 % 0,0 %

Y 15,9 % 9,1 % 66,7 % 33,3 % 25,0 % 33,3 % 20 10,0 % 0,0 % 12,5 % 7,1 % 25,0 % 12,5 % 0,0 % 33,3 % 33,3 % 0,0 %

P 17,7 % 11,4 % 0,0 % 4,8 % 0,0 % 13,3 % 15,0 % 20 12,5 % 12,5 % 14,3 % 37,5 % 12,5 % 0,0 % 0,0 % 0,0 % 0,0 %

C 4,4 % 2,3 % 0,0 % 4,8 % 0,0 % 0,0 % 5,0 % 0,0 % 8 0,0 % 0,0 % 0,0 % 3,1 % 0,0 % 0,0 % 33,3 % 0,0 %

O 4,4 % 6,8 % 33,3 % 0,0 % 0,0 % 6,7 % 5,0 % 0,0 % 50,0 % 8 0,0 % 12,5 % 12,5 % 0,0 % 0,0 % 0,0 % 50,0 %

F 7,1 % 11,4 % 0,0 % 4,8 % 25,0 % 6,7 % 10,0 % 0,0 % 12,5 % 12,5 % 14 12,5 % 12,5 % 0,0 % 0,0 % 0,0 % 0,0 %

B 6,2 % 6,8 % 33,3 % 9,5 % 0,0 % 13,3 % 15,0 % 0,0 % 12,5 % 12,5 % 0,0 % 8 18,8 % 50,0 % 0,0 % 66,7 % 0,0 %

A 21,2 % 18,2 % 66,7 % 42,9 % 50,0 % 26,7 % 20,0 % 5,0 % 50,0 % 50,0 % 42,9 % 25,0 % 32 0,0 % 0,0 % 0,0 % 0,0 %

M 0,0 % 0,0 % 0,0 % 0,0 % 0,0 % 0,0 % 0,0 % 0,0 % 0,0 % 0,0 % 7,1 % 0,0 % 6,3 % 2 33,3 % 66,7 % 50,0 %

S 2,7 % 0,0 % 0,0 % 4,8 % 0,0 % 6,7 % 0,0 % 0,0 % 0,0 % 0,0 % 0,0 % 0,0 % 3,1 % 0,0 % 3 0,0 % 0,0 %

U 1,8 % 0,0 % 0,0 % 9,5 % 6,7 % 6,7 % 0,0 % 12,5 % 0,0 % 0,0 % 14,3 % 0,0 % 6,3 % 0,0 % 0,0 % 3 0,0 %

K 1,8 % 2,3 % 0,0 % 4,8 % 0,0 % 0,0 % 0,0 % 0,0 % 12,5 % 0,0 % 0,0 % 0,0 % 3,1 % 0,0 % 0,0 % 0,0 % 2

Objectives

O
bj

ec
tiv

es

TABLE III
THE CORRELATIONS BETWEEN OBJECTIVES AND PROPERTIES OF THE

NETWORK IN THE REVIEWED CLUSTERING TECHNIQUES

Support
Heterogeneity Role of CH Routing Mobility

Yes No Fusion Relay Both Direct Multi-hop Both Yes No
E (113) 21 92 101 20 11 30 77 5 13 100
L (44) 6 38 43 7 6 6 34 3 2 42
R (3) 2 1 3 0 0 0 3 0 3 0

D (21) 4 17 17 6 3 4 17 0 5 16
J (4) 4 0 3 2 1 0 4 0 1 3

T (15) 6 9 12 3 0 2 12 0 4 11
Y (20) 5 15 18 2 4 7 13 0 8 12
P (20) 2 18 20 1 1 7 12 0 0 20
C (8) 1 7 5 5 2 1 6 1 2 6
O (8) 1 7 6 3 1 0 8 0 0 8
F (14) 3 11 9 6 2 5 7 2 7 7
B (8) 2 6 7 2 1 4 4 0 1 7

A (32) 4 28 25 12 5 12 17 3 8 24
M (2) 1 1 1 2 1 1 1 0 2 0
S (3) 1 2 3 0 0 2 1 0 1 2
U (3) 1 2 2 2 1 0 2 1 2 1
K (2) 0 2 1 2 1 0 2 0 0 2

make clustering more complicated when combined with
other clustering criteria for, e.g., selecting CH and assigning
tasks. Nodes with high computing power are a potential
candidate to gather, fuse and process data.

• Storage: Having smart devices with different amounts of
data storage in the network is another aspect of hetero-
geneity that should be taken into account in IoT network
clustering, in particular because of the big data applications
of IoT [176]. To the best of our knowledge, there is only
one clustering technique [177] that supports heterogeneity
in storage.

• Network interface controller (NIC): In IoT networks, nodes
may be equipped with different network interfaces such
as Wi-Fi, Zigbee, XBee, Bluetooth, BLE, and LTE. In
HeWCTs, researchers consider mainly low-power commu-
nication technologies such as Zigbee and 802.15.4 [111].
Considering clustering, network nodes with different types
of interfaces can pose two challenges: i) they may not be

discoverable by each other in physical proximity [87], and
ii) in inter- and intra-cluster routing there is a trade-off in
choosing the best network interface with respect to, e.g.,
cost, energy, transmission range, etc. [87].

2) Mobility: Supporting mobility of nodes in IoT net-
works has been an important issue, e.g., in MANET-IoT
networks [178]. The authors in [179] review mobility manage-
ment challenges in IoT and show how mobility can make IoT
networks unstable. Mobility in WSNs has often been proposed
for rather simple scenarios such as mobile sinks, unlike
highly dynamic IoT applications such as smart cities [5], and
V2V [180]. Additionally, mobile nodes not only change their
locations in the IoT network, but also may switch between
different networks which is related to handover mechanisms
in IoT networks [181][182]. These issues make designing
clustering techniques in IoT networks challenging [183].

3) Device Identity: The other issue is that the IoT network
includes not only ID-based devices but also IP-enabled de-
vices [184]. This implies that clustering techniques should
be designed in such a way that they can support clustering
both these types of nodes. For instance, IP-enabled devices
can basically communicate with ID-based devices, while the
opposite direction of communication may not be straightfor-
ward [185]. Therefore, clustering techniques can adopt two
different approaches for clustering: clustering devices with
the same network type, or clustering both IP-enabled and ID-
enabled devices.

4) Device-to-Device (D2D) Communication: D2D commu-
nication involves direct short-range communication between
IoT devices without the support of network infrastructures,
such as BSs or access points [186]. Many IoT applications and
services are realized through D2D communication networks
such as Zigbee, Bluetooth Low Energy (BLE), Radio Fre-
quency Identification (RFID) and Near Field Communication
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TABLE IV
COMPARING THE TECHNICAL DIFFERENCES OF WSNS AND IOT TO USE

CLUSTERING

Technical Differences WSNs IoT
Energy Occasionally Common
Computing Power Selodm Common
Storage Seldom CommonHeterogeneity

NIC Mostly single NIC Common Multi-NIC
Mobility Occasionally Very common

Communication Type Mostly ad-hoc Possibly ad-hoc
Deployment model Single application Multi-applicationApplications Design model data-centric Service-based

(NFC). 6LoWPAN is an advanced D2D enabling technology
(the scaled-down version of the IPv6 standard for LoW-
PANs) [187]. Given the wide usage scope of 6LoWPAN, IoT
clustering can take advantage of D2D communication through
6LoWPAN and exploit the flexibility and diversity of D2D
communications to provide more efficient and application-
driven clustering techniques.

5) Applications: Although clustering is targeted toward the
network layer requirements, there are challenges, raised by
IoT applications, that should be considered in IoT clustering:
• Deployment model: Contrary to WSNs which usually host a

single application [188], IoT network infrastructures may be
offered to host multiple applications with their own quality
requirements. As most WSN-based clustering techniques
rely on the network layer parameters for clustering, e.g., en-
ergy, supporting application-level requirements by clustering
is crucial, in particular when applications’ requirements are
in conflict with each other, e.g., QoS and resource demands.

• Design models: Unlike WSNs which are mostly data-centric,
IoT applications are often service-based [1], in which ser-
vices can run on various devices and platforms, from local
computing platforms to the Cloud. To further facilitate IoT
services development and improve their efficiency, new
computing technologies such as Edge/Fog computing [189],
[2] have been recently emerged. With respect to the network
infrastructure, Fog/Edge can possibly change the essence
of the network topology from multi-point to point (like
in WSNs) to multi-point to multi-point due to distribution
of IoT services across the network. This will pose new
challenges in designing IoT clustering routing algorithms
and CH selection as they have to adhere to the target service
distribution model.

V. FROM WSNS TO IOT: CONVENTIONAL CLUSTERING
OBJECTIVES

A clustering technique can support a single objective, or
multiple objectives simultaneously. The IoT networks that
resemble ad-hoc networks share several commonalities with
WSNs regarding conventional quality-driven objectives. The
nature of ad-hoc IoT introduces new challenges in achieving
clustering objectives in IoT networks. In this section, we study
each objective in detail. In particular, for each objective and
the associated general clustering solutions, we discuss existing
IoT clustering techniques, and also design concerns raising
due to applying clustering to IoT for that specific objective. It
should be noted that, due to the high volume of the literature in

Fig. 3. All conventional clustering objectives and exiting solutions
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clustering, we split existing solutions to pure WSN clustering
techniques, and IoT-related clustering techniques (i.e., WSN-
assisted IoT and pure IoT). The former category is compiled
as a list in Section III, while the prominent works in the latter
category are discussed per objective in this section.

Before discussing the objectives in detail, in Figure 3 we
illustrate an overview of of clustering objectives and existing
solutions. Figure 4 also shows the challenges in achieving
those objectives in IoT through clustering techniques. These
figures together provide a brief overview of what we present
in this section.
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Fig. 4. IoT-Specific concerns in achieving clustering objectives
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A. Energy Consumption Improvement
As the most important objective of clustering, clustering

techniques can balance energy consumption and improve the
network lifetime. Since data communication is the prominent
source of energy consumption in low-power networks [37],
clustering can mitigate it through inter/intra-cluster routing by
middle nodes, as well as data aggregation in CHs.
Existing solutions and techniques include:
• CH duty rotation: In clustering techniques, CHs consume a

large amount of energy compared to cluster members [190].
As a multi-objective selection technique, CH selection is
a complicated task which can be performed using Fuzzy
logic [191] [192], AI methods [193], and heuristic meth-
ods [194] [195]. CHs as a central node should support
various objectives of networks such as QoS, reliability, and
balancing energy consumption. CH rotation—rotating CH
duty—is a common solution to achieve such objectives.
One key criterion for triggering CH rotation is the threshold
for energy consumption or the remaining energy of nodes.
In homogeneous networks, CH duty rotating is a more
complicated task because all nodes have the same energy
resources [36]. On the contrary, in heterogeneous networks,
CH re-selection would be easier thanks to the presence of
energy-rich nodes limiting the number of CH node candi-
dates. Being highly heterogeneous compared to WSNs [3],
CH rotation is more natural in IoT, keeping the performance
of the network at the expected level. In Heterogeneous IoT

(HetIoT), more replacement candidates are available when
looking for a node for data forwarding (aggregated) or
processing energy-intensive tasks. In [196], the authors use
the k-means algorithm in IoT networks based on the residual
energy to select new CHs. EnergIoT [197] is a hierarchi-
cal clustering method to assign duty cycle (i.e., switching
between sleeping and active modes) ratios to devices for
improving energy consumption. However, in IoT, CHs are
not only in charge of data aggregation and forwarding but
also responsible to perform more complicated tasks such as
hosting services, data compression, network management,
etc. This makes CH selection more complicated as the
residual energy cannot be the only parameter for selecting
the new CH like in WSNs. Therefore, CH selection becomes
a multi-objective problem with new parameters such as
location and density of the nodes in Ultra Dense Networks
(UDN) and computation power, network interfaces, and
storage in HetIoT. In [198], the authors use the residual
energy of IoT nodes together with the density and location
of alive nodes as the parameters to rotate duty of CH.

• Hierarchical clustering: This is a method that organizes
the network in a number of layers. Each layer can com-
municate with neighbor layers, which saves more energy
compared to transferring data directly to far destinations.
In hierarchical clustering techniques, middle nodes in upper
layers (closer to the BS) consume more energy because of
forwarding massive volume of data from the lower layers to
the upper layers. One popular method to balance the load
is establishing hierarchical unbalanced clusters. Clusters
in the lower layers have more members compared to the
upper layers [152]. Since receiving data consumes a fixed
amount of energy, CHs of lower layers can have more
members but do not need to forward/aggregate many packets
from the other layers; therefore unbalanced layers/clusters
would be an appropriate option to balance energy con-
sumption. In IoT networks, hierarchical clustering has been
exploited to balance energy consumption. In [199], Tang
et al. introduce a hierarchical clustering index tree based
on EnerGy-eFficiency Hierarchical Clustering index tree
(ECH-tree) that organizes regions, called grid cells in IoT
networks. The method ensures that the upper level grid cells
have less dead spaces as compared to the lower levels.
Using this technique, the energy consumed to collect and
forward the data is reduced as compared with traditional
index tree based techniques. In [200], the authors introduce
hierarchical unbalanced layers for industrial IoT networks
to balance the energy consumption as the layers closer to
BS contain smaller clusters.

• Balanced clusters: Although unbalanced clustering (through
hierarchical clustering) is a solution for balancing energy
consumption, it would be challenging in ad-hoc networks
in which nodes are mobile or not uniformly distributed.
Unbalanced clusters in such networks can lead to more
energy consumption due to gathering data from many mem-
ber nodes. In such cases, to have fair energy consumption,
clusters should be balanced based on the number of nodes
and the volume of generated data, not the size of the areas
covered by the clusters [201]. In IoT, balanced clusters have
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been proposed to improve energy and resource consumption.
In [200], Zhang et al. introduce a method that partitions
industrial IoT networks into grid clusters in each layer to
balance energy consumption. The size of the grid clusters
are calculated by solving polynomials. In [202], the authors
introduce a service-aware clustering method to improve the
energy consumption. The proposed method uses a traffic
engineering model to design the clustering technique and
provide profiles of services running on sensor nodes to
improve the network lifetime.

IoT-specific concerns. Whereas the above techniques have
been somewhat considered for energy saving in IoT, there are
a number of IoT-specific issues that should be studied when
applying clustering for energy saving in IoT, as discussed
below:
• Application-aware energy saving: From a different view-

point, unlike WSNs, IoT applications and their services
can affect the design of clustering techniques and energy
consumption improvement as the nodes may connect to
different hosts (local or remote) for service invocation.
While in many WSN network management techniques,
data-aware energy consumption has been neglected [148],
IoT services serve as a new factor in energy consumption
measurement [203], thus designing a clustering technique
cannot be performed only by considering the network layer
requirements [204] [205]. In [206], the authors introduce
a clustering method for multimedia IoT, based on the K-
means algorithm. They establish a tree to divide multime-
dia sessions and connect clusters of nodes to support the
requirements of multimedia applications.

• Routing techniques: The presence of different network in-
terfaces in IoT makes the implementation of clustering-
based routing techniques complicated—as a solution to re-
duce energy consumption. Specifically, each node can have
multiple network interfaces with different energy consump-
tion in data transmission, connection speed, and cost. In
addition, as IoT networks generally contain more gateways
due to their scale, data volume, and QoS requirements [5],
routing protocols should support point-to-point, point-to-
multipoint, multipoint-to-point and multipoint-to-multipoint
communications, making clustering-routing techniques more
complicated compared to WSNs. Routing Protocol for Low-
Power and Lossy Networks (RPL) as the standard routing
protocol has been introduced to solve the problem of IoT
routing [207], [208], but there are doubts that RPL is able to
satisfy requirements of IoT in real world applications [209].

B. Load Balancing
Load balancing is the second most important conventional

objective of clustering. Generally, clustering techniques use
a type of divide and conquer method to transfer data from
nodes to BSs. A high load of data to transfer can result in
unbalanced resource consumption and influence QoS support.
Load balancing can also solve the “Hot Spot problem” which
is a common problem in WSNs [210] [164] and IoT [211].
The Hot Spot problem is a situation in which some nodes in
the network transfer high volume of data compared to others

which cause network congestion. Generally, load balancing
is a critical issue in IoT due to the massive scale, huge
volume of data and mobility of IoT networks which can cause
inefficiency, e.g., in [212] a technique is introduced to balance
the load of the network to reduce interference among nodes1.
Existing solutions and techniques include:
• Densified clusters: means creating more clustering layers

and establishing more clusters in each layer. Having more
CHs will allow to distribute the network load among more
destinations (middle nodes). Moreover, having more layers
in hierarchical clustering can extend the number of hops
as in each layer more nodes are available as the next hop
for data transmission [214]. Considering layering in IoT,
the authors in [215] propose a multi-path routing based on
clustering techniques, providing more routes for areas that
need to transfer higher volume of data.

• Balanced clusters: Balancing clusters in terms of volume
of generated data would be a solution especially in direct
communication. If nodes are homogeneous, the number
of nodes can be a parameter to balance the load among
clusters [216]. As an example, in [217] the authors introduce
a Software Defined Network (SDN) model to establish a
Particle Swarm Optimization (PSO) based clustering table
that is used by the SDN controller to balance the clusters,
resulting in load balancing. The authors in [218] integrate a
clustering technique with compressive sensing in IoT. They
introduce the CSLB-CS method which is a new cluster size-
based load balancing to optimize compressive sensing in
IoT-based sensor networks. In heterogeneous networks like
IoT, the packet rate per node can be a parameter to balance
clusters, but the packet rate is a challenging and resource-
consuming parameter to predict and process on-the-fly as it
needs network traffic classification algorithms [219].

• Congestion control mechanisms: Some clustering techniques
are aimed to address the congestion control problem in
the network, resulting in load balancing by dividing the
network load among existing resources. In [220], the authors
introduce a clustering technique to solve the congestion
control problem in M2M IoT networks, resulting in load
balancing. They assume the IoT network is based on M2M
communication in which clustering provides a slot alloca-
tion mechanism based on Q-Learning to avoid congestion.
In [221], the authors propose a clustering technique to
manage multimedia big data in mobile IoT. They propose a
new approach in MANET-IoT based on a modified LEACH
clustering method. They also propose a congestion control
method by link utilization based on the link status.

• Balanced energy consumption: As data transmission is the
most important cause of energy depletion, fair distribution
of energy consumption among nodes can indirectly improve
load balancing and vice versa. In [222], the authors in-
troduce a clustering technique that balances the network
load based on a cost function. LiMCA is a IoT clustering
technique, introduced in [223], to balance the energy con-
sumption in CHs and members by training them about their

1In [213], a comprehensive review of load balancing techniques in IoT
including clustering-based techniques, is presented.
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coarse-grain location. They analyze energy consumption by
evaluating the lognormal shadowing channel, inter-cluster
and intra-cluster traffic, and the packet error rate. They
consider that both CH and members of clusters have a
predetermined location based on the stochastic deployment
scheme.

IoT-specific concerns. In order to use clustering for load
balancing in IoT, we face a number of challenges:
• Dispersed destinations: Concurrent applications need to

support different rates of packet streams with various vol-
ume of data. Moreover, by using new emerging technologies
such as Fog and Edge, destinations of streams cannot
be only BS(s) or gateways, but also other nodes in the
network [224]. This transforms the communication model in
IoT networks to a multipoint-to-multipoint model, making
load balancing challenging [225].

• Cross network communication: Considering load balancing,
the network beyond the gateway can not be controlled.
For example, to support low latency in communication,
packet streams may be re-routed to a more efficient gate-
way, leading to dynamic unbalancing of the network load.
In [226], the authors introduce a new idea called Cognitive
IoT gateways, which can decide which services should be
migrated from the Cloud to the IoT network and vice versa,
dynamically. Using Cognitive gateways, nodes can monitor
the network performance such as QoS and load balancing
and bring services from outside of the network to inside.

• Dynamicity: In IoT, consumers and providers of services
may not be known in advance, appearing and disappearing
over application lifetime, e.g., multimedia applications. Un-
foreseeable service requests can make the IoT nodes more
unpredictable with respect to the data load [227]. As the
load of the network is dynamic, load balancing should be
monitored on a regular basis and optimized accordingly.

• Two-way communication: The most crucial difference be-
tween WSNs and IoT which affects the network load balanc-
ing is related to one-way and two-way communications. To
balance the network load, two-way communication should
be considered in IoT and hops should allocate resources to
forward data in both ways.

C. Fault Tolerance
There are different causes for node failure in IoT and WSN

networks, such as battery depletion, or failure in hardware
components like transceiver and processor which can be dam-
aged by external factors. Moreover, connectivity failure can
happen by physical or environmental factors, mobile nodes, or
faulty nodes. To handle such types of failures, fault-tolerant
clustering techniques have been introduced to replace faulty
nodes with other nodes and keep the network stable [166].
Existing solutions and techniques include:
• Cluster-based failure detection: The speed of failed node

detection methods is a challenge because high latency in
detecting failures can cause data loss especially in data-
loss sensitive applications. In addition, connections should
be checked to determine any fault in connectivity which
can cause delay or data loss. In both cases, clustering can

help to detect failures and recover the infrastructure quickly.
In [228], the authors introduce a routing method for IoT
networks based on the bio-inspired particle multi-swarm
optimization (PMSO) strategy which is able to detect faulty
nodes quickly and replace routes with new ones. They use
super nodes serving as a CH for information gathering.

• Spare nodes (CHs): To tolerate faulty nodes, some tech-
niques use spare nodes to take over responsibilities and
avoid data loss. Spare CHs can be replaced by faulty CHs
as Hot Spots and solve the problem efficiently. In [166], a
method is introduced to select failure-free CHs to replace
faulty CHs in IoT. It forms a virtual CH that includes
three failure-free CHs based on the Flow-Bipartite Graph
Modeling and energy of all failure-free CHs. After detecting
a CH failure by BS, BS will ask failure-free CHs to take
over the responsibilities of the faulty CH.

• Re-clustering: As spare nodes induce overhead in selecting
and keeping them updated, the simplest solution is re-
clustering. After detecting failures, clusters can be destroyed
and re-established, recovering the network infrastructure to
transmit data. In [229], the authors introduce a clustering
based routing technique for IoT networks which replaces
faulty CHs with vice CHs. In case of faulty vice CH, re-
clustering will be performed.

IoT-specific concerns. In IoT, fault tolerance is a big
challenge because of being highly dynamic and heteroge-
neous and also unreliability of the IoT network infrastruc-
ture [230] [231] [232]. Addressing IoT fault tolerance issues
by clustering introduces the following challenges:

• Faulty connections: In IoT, faulty connections are com-
mon [233]. Reliable communication mediums, such as WiFi
and 4G, can reduce faulty connections, but technologies
such as cellular-D2D and BLE still suffer from commu-
nication problems [6]. Moreover, mobile IoT devices can
increase the probability of connection faults in IoT networks.
These issues can make the clusters and routes between nodes
unstable resulting in, e.g., data loss.

• Faulty services: Services are the other source of faults in
IoT [234], [235]. They can disrupt the network function, in
particular in the case of clustered networks. For example,
one solution for handling faulty services is to run the
services in other nodes [236], but it can influence the
efficiency of the clustered network as the routes should be
re-established, affecting load balancing [237].

D. Quality of Service

QoS is a rather a broad topic, encompassing divers quality
aspects of network services, such as packet loss, bit rate,
throughput, transmission delay, availability, jitter, etc. Al-
though WSNs and IoT share many QoS concerns, the specific
characteristics of IoT networks introduce new QoS require-
ments, such as guaranteeing QoS in simultaneously running
IoT applications, and higher delay-sensitivity in safety-critical
IoT applications, such as IoV [238]. Clustering techniques
can contribute to QoS improvement in IoT systems through
dividing nodes to groups and improving QoS for each group
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in a distributed manner. For example, in [212] the authors in-
troduce a clustering based routing algorithm for IoT networks
to reduce end-to-end delay. They reduce interference resulting
in delay and balance the load among nodes in wireless mesh
IoT networks. In the following, we discuss existing clustering-
based methods that deal with QoS requirements.

1) Reliability: By reliability, we mean the rate of data
successfully received by the destination node in the network.
Clustering can contribute to the reliability of the network by
improving the stability of the network. Below, we discuss
existing solutions in this context.
Existing solutions and techniques include:
• Network stability improvement: Clustering can improve the

reliability of the IoT network by avoiding node death and
maintaining connectivity [239]. As an example, in [170], the
authors propose a method to reduce inter-cluster commu-
nication cost to improve reliability in data transmission by
assigning more resources to data forwarding and less amount
of resources to the transmission of network management
data. The proposed method establishes a tree determin-
ing connections between two nodes based on a weighting
method and detects more reliable and affordable routes for
data transmission to the BS. In [240], the authors propose
a clustering-based routing algorithm called REMI for RPL-
based IoT networks to provide faster multicast dissemination
of messages, resulting in reliability improvement. In [241],
the authors introduce a new clustering technique based
on quantum particle swarm optimization (QPSO) with the
improved non-dominated sorting genetic algorithm (NSGA-
II). The clustering technique introduces a trade-off between
QoS and energy consumption of Industrial IoT.

2) Delay: Optimizing the efficiency of clustering-routing
techniques can reduce delay (i.e., end-to-end delay). Gener-
ally, there is a trade-off between energy consumption and
delay [37].
Existing solutions and techniques include:
• Reducing number of hops: The optimal solution is sending

data directly from each node to BS, causing high energy
consumption. Therefore, a challenge in designing routing
methods is how to reduce delay and improve energy con-
sumption at the same time. In [242], the authors introduce
a delay-aware clustering algorithm for data acquisition in
heterogeneous WSN-based IoT networks. In the proposed
approach, the nodes with higher radio range act as relay
nodes to reduce the number of hops [242], [243]. In [52],
[55], two fixed hops are employed in intra-cluster routing
to reduce delay in clusters.

• Load balancing: Load balancing can optimize lengths of
queues in middle nodes, resulting in less delay. Network
congestion is a result of an unbalanced load in the net-
work which can cause high latency. Unequal clusters can
cause delay due to unbalanced data transmission in dif-
ferent areas of the network [164]. In addition, selecting
CHs/forwarders with low amount of resources can further
increase delay [244]. In [245], the authors introduce a tree-
based WSN clustering method which can balance the load
of the network by reordering clusters based on available

streams to reduce dynamic end-to-end delay. The proposed
method analyzes the packet streams on-the-fly and changes
the clusters and routes to reduce delay. In [185], Kumar et
al. compare K-means, hierarchical clustering and fuzzy C-
means clustering techniques to group IoT nodes. They use
these techniques to design a response time-aware scheduling
model for IoT to improve QoS and show that K-mean is
more efficient compared to others regarding the prioritized
message delivery model.

• Routing optimization: inter-cluster and intra-cluster routing
can highly influence delay by determining shortest-fastest
routes. As routing is not the main focus of clustering,
different techniques are introduced to achieve concurrent
routing in clustering techniques [17]. In [243], the authors
establish clusters based on an improved K-Means algorithm.
They split and merge clusters to restructure the network
resulting in a non-uniform clustering structure. Then, they
create a tree for data fusing based on unequal clusters to
utilize time slot scheduling, resulting in delay reduction.

3) Throughput: It refers to the amount of data that is
successfully transferred through the whole network for a
certain period of time.
Existing solutions and techniques include:

• Network stability improvement: Infrastructure-independent
networks are not always stable because of node mobility,
node failure, unreliable connections, and node death due
to energy depletion, to name the most important ones.
By having a more stable infrastructure, the network can
have more reliable routes to transfer data which improves
throughput. Clustering serves as an efficient means to im-
prove stability by reducing the time for network recovery in
unstable network circumstances. Some clustering techniques
(e.g., in [246]) increase the number of alive nodes as a
solution to improve the stability of the network. In [247], the
authors introduce a clustering technique for IoT networks to
conserve energy during routing, resulting in less probability
of node death and so improving stability. They improve
stability of the network by reducing delay, packet drop and
energy consumption, resulting in better throughput.

• Stable number of CHs: A certain number of CHs with stable
communication between CHs and BS(s) can improve the
throughput of the network and keep the network reliable.
Having a deterministic number of CHs, the rate of data
delivery to the BS will be predictable and the network
throughput will become stable accordingly. In [248], the au-
thors improve the throughput of heterogeneous IoT networks
by proposing a clustering technique that uses weighted
election probabilities to select a stable number of CHs
among resource-rich nodes.

• Data aggregation: Data compression and aggregation are
two methods to optimize the volume of data to transfer.
Using these methods, the volume of data received by BS(s)
would be less than the accumulative data generated in all
nodes which can improve throughput and decrease energy
consumption. In [249], the authors introduce a method to
eliminate repetitive readings of generated packets during
intra-cluster and inter-cluster routing to reduce the volume
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of data to transfer.

4) Jitter: Another parameter that can improve QoS is jitter
prevention. It is especially important for multimedia and real-
time applications which should keep the connections stable
and live, and also control network congestion [250].

Existing solutions and techniques include:

• Tree-based clustering: Tree-based clustering structures can
balance and possibly predict the volume of data in each
route which can reduce jitter. In [159], the authors intro-
duce a hierarchical tree-based routing protocol for cluster
establishment. They introduce a reactive mechanism that
use the history of the network to form CHs and reduce
jitter. In [251], the authors introduce an optimized clustering
communication protocol based on intelligent computing.
The proposed clustering is a tree based technique improves
energy consumption, but also reduces jitter and delay based
on a cost function for establishing the tree.

• Splitting data streams: Ad-hoc networks use some nodes
as hop to transmit data where each hop can be shared
among different streams. Different stream rates, within a
hop, can affect each other by changing the priority of packets
in the forwarding queue, leading to jitter creation. By
splitting packet streams in middle nodes or using different
middle nodes for different streams, the effect of streams
on each other will be reduced, e.g., effect of a multimedia
stream on a temperature sensor stream which can be delay,
jitter, or low throughput. In [206], the authors introduce a
clustering technique for multimedia IoT networks to divide
the large multimedia sessions into simple sessions based on
the network situation to reduce jitter.

IoT-specific concerns. As discussed above, there are some
clustering-based solutions addressing QoS requirements in
IoT, however tackling the QoS issues of IoT systems by
clustering introduces the following challenges:

• Quality of Experience (QoE): QoE is a novel concept which
should be supported by IoT networks. QoE is aimed to
improve the QoE of IoT users by receiving online feedback
from them and the network infrastructure based on avoiding
and solving network problems [252]. In other words, appli-
cations which interact with a human need to improve QoE,
however supporting QoE can influence applications that do
not interact with a human but have critical QoS require-
ments. Since no work exists on supporting QoE through
clustering techniques in WSNs [19], it becomes challenging
to address QoE in clustering techniques introduced for IoT.

• Applications requirements: Many IoT applications demand
for critical QoS requirements. In special cases like IoV
that deal with safety, QoS must be supported and it is not
an optional parameter in improving the efficiency of the
network. Since an ad-hoc IoT network may host multiple
applications with various QoS requirements, the middle
nodes in clustering will face a challenge on how to meet
the QoS requirements in those applications that may be in
conflict.

E. Network Management
This is an important challenge in IoT networks due to their

large scale of deployments, and heterogeneity and mobility
of nodes. In IoT applications, networks are more dynamic
compared to WSNs, e.g., IoV and smart cities, making network
management difficult. To manage the IoT network, dividing
the network into geographical partitions and assigning the
responsibility of partition management to local nodes is the
primary solution. As network partitioning is the main task of
clustering, different aspects of network topology management
are satisfied by clustering techniques as listed below:

1) Scalability: Due to having many nodes such as sensors,
wearables, user equipment, etc., IoT networks have to be
scalable and connect thousands or millions of nodes.
Existing solutions and techniques include:
• Distributed management: Centralized network management

solutions are not efficient in large-scale networks and impose
high overhead. The authors in [253] introduce a scalable
MQTT model in clustered IoT networks. Each cluster has
some nodes as MQTT message brokers. They are used as
a backend system to service MQTT clients and balance the
load of the network in massive scale IoT networks. The
authors in [254] introduce a method to search IoT services
relying on a hierarchical network of semantic gateways.
They use a recursive agglomerative clustering technique to
provide a routing table of semantic gateways. It establishes
clusters based on characterizing dissimilarities between ser-
vices and distances. The authors in [199] propose a method
to divide the regions where sensors are deployed into a grid
and use a clustering index tree to manage and establish these
grid cells.

• Reducing communication overhead: Communication over-
head is another challenge in supporting scalability. In [130],
the authors design a clustering method that reduces com-
munication overhead to support scalability. Neamatollahi et
al. [162] introduce a clustering method that supports scala-
bility by applying an energy-efficient distributed algorithm
for all levels of clusters to reduce communication overhead
based on the number of nodes.
2) Stability: Stability is one of the management objectives

which can make the network infrastructure more reliable in
terms of connectivity, QoS, and fault tolerance. Different
challenges can affect the stability of a MANET like mobility,
node failure, etc. The most important existing solution used
by clustering techniques to provide stability is:
• Avoiding node death: Clustering techniques reduce energy

consumption of nodes to avoid node death and keep the
routes and the cluster more stable. ACHTH-LEACH [89]
is a method which provides reliable routes and a more
stable network infrastructure to transfer data by selecting
resource-rich nodes as CHs. In this method, routes are
established for a long time and nodes can trust routes to
be fully connected during their data transmission. In [255],
the authors introduce a hierarchical clustering algorithm for
dynamic and heterogeneous IoT. This algorithm considers
battery lifetime of the CHs to improve lifetime of the
network and consequently make the network more stable.
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3) Mobility management: Mobility has always been consid-
ered a big challenge in wireless networks. Although mobility
is an advantage for many applications, it can introduce various
challenges in the network such as connectivity, reliability, and
stability.
Existing solutions and techniques include:
• Inter-cluster handover mechanisms: Mobility of nodes is

supported by clustering based on handover mechanisms
among clusters. Mobile nodes may join and leave the
clusters during the network lifetime. Some methods are
introduced to support mobile CHs and BSs for information
gathering in the network [154] [163]. In [143], CHs are
considered mobile and used as mules to gather and transfer
data. In [105], the authors use the speed of each node’s
movement as a parameter to select CHs. By using TDMA
to schedule access to the medium in each cluster, CHs
estimate the connection time between members and CHs to
detect the mobility of nodes between clusters. In [256], the
authors introduce a method to enable reliable uplink com-
munications for clustered UAV IoT devices considering the
energy consumption. They show that the proposed approach,
can manage mobile IoT nodes as well as provide reliable
uplink communications. In [257], the authors introduce a
clustering technique for smart cities to optimize the planning
of the transportation traffic network among hotel service
centers in Tianjin. They introduce a clustering algorithm
using the deep belief network (DBN) to divide regions and
determine their service centers in Tianjin. In [258], Jabeur
et al. introduce a new firefly-based clustering algorithm in
which real-world things (RWTs) organize themselves into
clusters during the macro clustering phase and integrate
small neighboring clusters. Clusters can ask RWTs to join
or leave the cluster due to events and their impacts.

IoT-specific concerns. As mentioned above, there are some
clustering-based solutions addressing topology management
(i.e., scalability, stability and mobility) in IoT. However,
addressing topology management in IoT through clustering
introduces the following challenges:

• Supporting QoS in scalable networks: As scalability is a
critical challenge in large scale IoT systems (e.g., UDN
networks, IoV, and smart cities), supporting QoS would
be realized in a distributed manner in order to reduce the
network management overhead [259]. In addition, two-way
communication is considered as a challenge to support QoS,
because in some cases QoS of a stream from a node to a
destination is different compared to the QoS of the responses
from the same destination to the same node.

• Highly dynamic applications of IoT: Mobility is a common
aspect of several IoT applications such as IoV and smart
cities. Adopting clustering as the mobility handling solution
can impose high overhead when the network undertakes re-
clustering due to the high mobility of nodes.

F. Network Connectivity

Clustering can improve connectivity as each node has at
least one connection to other nodes (directly) and also to BS

(directly or indirectly). There are two aspects of connectivity
that clustering can improve as listed below.

1) Improving coverage: A better coverage can connect
more nodes to the network and extend the sensing coverage
area.
Existing solutions and techniques include:
• Radio range management: In some clustering techniques,

there are specific policies to limit radio range of nodes to
improve coverage. In [115], the authors use a directional an-
tenna to reduce energy consumption and also coverage of the
network by controlling the transmission range of directional
antennas. In [260], the authors introduce a model to analyze
clustered D2D IoT networks in three-dimensional spaces
based on Thomas Cluster Process (TCP). They evaluate the
network in the presence of co-channel interference from
both the same cluster and the other clusters, and investigate
the coverage probability.
2) Improving nodes connectivity: A good connectivity

among nodes can make the network infrastructure reliable and
fully connected resulting in improving data delivery.
Existing solutions and techniques include:
• Establishing stable connections: In mobile networks, con-

nectivity is a big challenge because mobile nodes can loose
their connection dynamically. In [105], the authors introduce
a method for mobile WSNs to improve connectivity which
is based on an estimated connection time between CHs
and members. If connections between members and a CH
are lost, the members detect connection loss based on the
estimated connection time and broadcast a request to find
a new CH to avoid packet loss. Clusters overlapping can
improve connectivity of nodes and coverage. However, high
overlapping can cause various problems, especially delay
because of having more hops between a node and BS.
In [148], the authors introduce a clustering technique that
can control the overlapping of the clusters and reduce delay
and energy consumption using a hierarchical infrastructure.
In [255], the authors introduce a new clustering technique
for heterogeneous IoT networks based on selecting the
optimal number of CHs to improve connectivity of hierar-
chical communication between nodes and BS. In [261], the
authors introduce a cluster-based framework for Unmanned
Aerial Vehicle (UAV) IoT networks that is adaptive, self-
configurable, and resilient. The proposed framework cogni-
tively adapts with IoT network changes to provide reliable
connectivity between spatially dispersed smart devices.

IoT-specific concerns. Connectivity is a challenge due to
establishing the IoT network over an existing network in-
frastructure that is perhaps unreliable. Below, we discuss
challenges in applying clustering techniques to tackle IoT
connectivity concerns.
• Network interfaces: Each route in IoT can include nodes

with different types of network interfaces and each network
interface may have various disadvantages compromising the
reliability of the whole route. As an example, a Zigbee
connection between two nodes in a route can be less
reliable and cause higher delay when all other connections
of the route are WiFi. In addition, although some nodes are
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physically close to each other, because of lacking a common
type of network interface, they can not connect to each other
and need middle nodes to connect.

• Network infrastructures: Some technologies like 5G can
serve as the network infrastructure of future IoT systems,
even though they still suffer from some connectivity prob-
lems, e.g., blind spaces and millimeter waves are absorbed
by physical obstacles [262]. The characteristics of the under-
lying IoT network infrastructure can affect the performance
of clustering techniques in connectivity provisioning.

G. Data Delivery Improvement
It can enhance QoS and reduce energy consumption and

network overhead by reducing packet re-transmission, data
loss, etc. There are a number of metrics for packet delivery
that can be improved by clustering techniques as listed below:

1) Improving packet delivery ratio: It is a parameter that
has a high correlation with throughput.
Existing solutions and techniques include:
• Improving reliability: This refers to data loss and node fail-

ure reduction, and connectivity improvement in the network.
In [165], a method has been proposed to improve the packet
delivery ratio by selecting CHs based on their remaining
energy, QoS parameters and the location of nodes. The
proposed method uses the immune-inspired optimization
algorithm to select routes for delivering packets. Industrial
IoT is used in [263] as the network infrastructure featuring a
grid-based clustering algorithm to model the network load.
The network is divided into unequal grids based on the
optimal grid length to optimize energy consumption and
improve the packet delivery ratio.

• Reducing data loss: Data loss can also cause serious prob-
lems, especially in safety critical applications, such as fire
detection, disaster management, and military-based infor-
mation. Clustering can be used to detect node failures and
reduce data loss. In [126], Izadi et al. introduce a clustering
method that can detect node failure in an acceptable time
after failure, while avoiding data loss. In [247], the authors
introduce a routing protocol for IoT networks based on
clustering to maximize throughput and decrease packet drop
ratio together with reducing energy consumption.
2) Optimizing number of packets received by BS: which

has a high correlation with packet delivery ratio, but it refers
to the amount of data received by BS in a certain time period
compared to the data generated in nodes. In some papers,
this parameter has been investigated as a metric for evaluating
throughput of the network [161] [21].
Existing solutions in WSNs and IoT. Clustering techniques
can be leveraged to optimize the number of packets received
in BS. In the following, we discuss them:
• Network lifetime improvement: Improving network lifetime

can increase the number of packets received over time by
BS [152] [158]. In [248], the authors introduce a clustering
technique to improve the network lifetime and consequently
the rate of packet transmission to BS.

• Data aggregation: In some clustering techniques, the num-
ber of packets sent to BS is reduced to improve QoS and

reduce network load, and energy consumption. Data aggre-
gation, compression and fusion are the solutions applied in
CHs and middle nodes to reduce the volume of data [80].
In [264], the authors introduce a method to fuse data on
clusters established based on RSSI of IoT nodes. Access
points are the CHs, exploiting RSSI to establish clusters.
The fused data is then sent to the Cloud.

IoT-specific concerns. Like WSNs, the packet delivery rate
should be improved in IoT to make the network infrastructure
more efficient. Below, we discuss the challenge in applying
clustering techniques for packet delivery improvement in IoT:

• Unreliability and instability of network infrastructures: They
are the challenges against packet delivery improvement in
IoT. To reduce data loss and improve packet delivery ratio,
node failure and connection failure should be reduced as
discussed above. The stability of the IoT network is com-
promised due to high dynamicity. In some IoT applications
like IoV and smart cities, it is very challenging to keep the
network infrastructure stable compared to WSNs.

H. Security

There are different types of attacks that can happen due
to ad-hoc characteristics, e.g., hole attacks and DDoS [265].
Different techniques have been introduced to solve the attacks
and detect malicious nodes, especially hole attacks which are
very common in ad-hoc networks. In [266], the authors analyse
the security mechanisms in IoT networks based on clustering.
Existing solutions and techniques include:
• Distributed trust-based models: Clustering techniques can

enable distributed trust-based models. In such models, each
group of nodes includes one or more nodes that is (are)
trustworthy. The trustworthy nodes are responsible to eval-
uate the local nodes in case of security attacks. In [267],
the authors introduce a trust-based CH selection model for
WSN-based Intelligent Transportation Systems (ITS). Each
CH is selected based on residual energy, trust value and
the number of neighbors. Each node is responsible for
monitoring the behavior of its neighbors. CHs are in charge
of evaluating the trustworthiness of each member based on
analyzing other members’ evaluation. In [178], a clustering
technique is introduced to provide security for wearable
IoT devices. They propose a clustering-based anonymity
method to preserve privacy of data gathered from wearable
IoT devices and guarantee the usability of the collected
data. In [268], the authors propose a centralized detection
system based on the data gathered from clusters to detect the
malicious gateways of clusters in IoT networks using packet
drop probability as a means to monitor the gateways.

IoT-specific concerns. Security is one of the main concerns
of IoT systems because of having weak and vulnerable nodes.
Using clustering techniques for addressing security concerns
in IoT will face a number of challenges as listed below:

• Highly dynamic IoT: The massive scale of IoT deploy-
ments and their high dynamicity can pose more security
challenges. As unknown IoT devices can join the network
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in applications like smart cities, applying distributed trust-
based models would be a challenge as trustworthy nodes
may have not enough time to evaluate unknown nodes.

• Resource-constrained IoT devices: Security solutions for
IoT are mostly focused on authentication and authorization.
As supporting security is a heavy task, applying authenti-
cation and authorization techniques is resource demanding.
In distributed models, clusters may include heterogeneous
nodes, thereby having the same local authentication and
authorization techniques among members and the CH would
be challenging with respect to the heterogeneity of nodes.

I. Physical Layer Support

Although clustering techniques logically belong to the net-
work layer, they can contribute to the efficiency requirements
of the physical layer, e.g., improving the efficiency of band-
width reservation methods. Existing approaches in this field
revolve around distributed resource management.
Existing solutions and techniques include:
• Distributed resource management: Clustering techniques

can group nodes with a local resource management mecha-
nism in each cluster in order to more efficiently manage,
schedule and share physical resources, e.g., medium and
bandwidth allocation to avoid transmission interference. As
a fundamental clustering method, adaptive clustering [54]
is used to efficiently allocate bandwidth to members in
each cluster. It uses a virtual circuit definition to assign
real-time connections and reserve time slots in clusters.
In [269], the authors introduce a classification technique to
establish cells (i.e., clusters) for IoT architectures based on
a mesh of IoT devices, roadside repositories and vehicular
mobile gateways. The model uses routing trees, the network
geometries, capacity of wireless connections, and stability
of IoT queues to perform the classification. In [270], the
authors introduce a method to utilize bandwidth alloca-
tion based on inter-cluster aggregation which reduces the
volume of data in a hierarchical clustering technique in
each layer, in addition to reducing energy consumption and
bandwidth allocation in upper layers. In [245], the authors
use a heuristic scheduling model in clusters to adapt the
network with end-to-end delay and bandwidth allocation
requirements. They use a scheduling model that can react to
different data flow changes in routers (CHs) by re-ordering
active periods of clusters and optimizing the time-slot to
access shared channels by each cluster. In [271], the authors
introduce a multiple-input-single-output (CMISO) method
to prolong the lifetime of CHs. In the paper, they formulate
the cooperative coalition selection for CMISO and use a
quantum-inspired particle swarm optimization technique to
select the optimum cooperative coalition.

IoT-specific concerns. Supporting physical layer requirements
is an important issue in IoT. As listed below, different aspects
should be considered for designing IoT clustering techniques
to support physical layer objectives.

• Ultra Dense Networks (UDN): In several IoT applications,
the network infrastructure is a UDN which needs to allocate

medium to nodes efficiently, e.g., by using scheduling tech-
niques. To reduce medium access interference in an area,
nodes may reduce their radio ranges, which can compromise
network connectivity. Thus, to establish clusters, reducing
the interference needs to be considered during CH selection
and joining of the members. Clusters that can not support
UDN networks may not be a good choice for optimizing
resource consumption. Densification is a new definition in
D2D-enabled UDN cellular networks that resembles clus-
tering, grouping and limiting D2D communication between
nodes to reduce interference [272].

J. Multi-Sink Support
Supporting multi-sink is a great solution to improve the

efficiency of the network by increasing the number of data
routing options to the end node. It can improve throughput,
packet delivery and fault tolerance, as well as reduce delay.
Although multi-sink networks are more efficient compared to
single-sink networks, clustering techniques which are able to
support multi-sink networks are more complex to design.
Existing solutions and techniques include:
• Multi-point to multi-point (MP2MP) clustering-routing: As

the main solution, clustering-routing techniques need to
connect nodes to the best sink (e.g., with respect to re-
source consumption and delay) as an optimization problem.
Establishing these connections needs to have a multi-point
to multi-point inter-cluster routing. In [154], the authors
propose a method to support multiple mobile sinks. It uses
CHs to maintain optimal routes which have minimum hops
to the latest location of mobile sinks. In [68], the authors
introduce a clustering technique that can support multiple
mobile sinks to gather data based on queries. They improve
the ’success rate’ which denotes the ratio of the number of
successfully received data packets at BSs to the total number
of data packets generated by a node. In [273], the authors
introduce an SDN-based solution for resource-constrained
IoT devices that need to select the best router to connect as
the edge node. The network includes multi-sink (i.e., edge
nodes) and the clusters use RPL to establish routes between
clusters and edge nodes. They consider different metrics
and objective functions for routing, including Minimum
Rank with Hysteresis Function (MRHOF) and Zero (OF0).
In [274], the authors propose a Shortcut Addition strategy
based on the Particle Swarm algorithm for multi-sink IoT
networks. It constructs network topology based on a small-
world network. A fitness function is created by combining
the average path length and load of the sink node to
evaluate the results of the particle swarm optimization (PSO)
technique. Each node selects the sink closest to itself based
on the results of the PSO algorithm. Sung et al. in [275]
introduce a multihop clustering technique to minimize the
required Internet connection in an IoT network. A node per
cluster is responsible for connecting the nodes to the Internet
and the clustering technique minimizes the distance between
the end-nodes and those connected to the Internet.

IoT-specific concerns. Although supporting multi-sink is an
important factor in improving efficiency, some issues should
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be considered in designing an IoT clustering technique that
supports multi-sink. We discuss the most important one below:
• Selecting the best sink (gateway): Supporting multi-sink

networks is an important objective that can increase the effi-
ciency of ad-hoc networks in different aspects such as QoS
and resource consumption. Most clustering techniques that
support multi-sink focus on designing a routing method to
find the best route to transfer data to outside of the network.
Although some clustering techniques consider multi-sink,
especially as a scenario in their performance evaluation,
there are not many techniques that have a specific solution
for multi-sink networks. In IoT, selecting the best sink
is a multi-objective problem. Two steps are introduced to
select the best sink: i) selecting the best sink based on
different costs to transmit data through the sink; ii) selecting
the best route from the node to the selected sink, which
is a challenging issue in IoT as nodes in a route may
be heterogeneous in terms of the properties of network
interfaces (e.g., bandwidth and delay) [276].

VI. IOT CLUSTERING AND MODERN NETWORKING
PARADIGMS

So far, we discussed how clustering can address various
quality-related objectives in IoT. Along this, clustering can
be exploited to facilitate adoption of recent technologies
integrated with IoT systems, in particular with respect to the
barriers originating from networking issues. We focus on four
new pioneering computing and networking paradigms that
are being rapidly integrated with IoT, namely Blockchain,
SDN/NFV, Fog/Edge, and 5G. First, we describe each of them
briefly, especially from the networking viewpoint. Next, we
discuss how clustering can be exploited to improve various
design aspects in these technologies. For each technology,
we discuss the limited number of existing clustering-based
approaches. Then, the benefits of clustering is presented per
technology. Finally, we identify the challenges raising in
integration of clustering techniques with these technologies.

A. Blockchain and IoT
Blockchain (BC) technology is fundamentally developed to

store transactions reliably in a distributed manner, especially
for cryptocurrencies. BC is a distributed ledger among network
nodes to store transactions and improve the security, relia-
bility and efficiency of a decentralized network. Consensus
algorithms [277] are used to guarantee that the BC is de-
centralized, reliable and secure. In a BC network, all nodes
have P2P connections similar to BitTorrent and contribute to
storing, mining, and accessing transactions. Each node has two
keys, private key and public key, to encrypt and decrypt the
messages from and to the node, respectively.

BC can be used in various security-related applications, not
only cryptocurrencies. Concerning IoT applications, security
and privacy are still two major challenges due to the scale
and distributed nature of IoT, and the resource scarcity of IoT
nodes. Traditional security methods consume a lot of energy
and impose high processing overhead. Integrating IoT and
BC can promise a network infrastructure that becomes safe

and secure by storing transaction records on network nodes
in a distributed manner. General IoT security methods are
not distributed and need many-to-one traffic streams which
cause vulnerabilities such as central node failure, delay, and
unnecessary energy consumption [265], [278].

Clustering techniques can facilitate integrating IoT and BC
to improve the security and efficiency of IoT. Using clustering
techniques, nodes can share their resources in a distributed
management model to perform resource consuming tasks of
BC. In addition, grouping nodes can help BC to provide
smaller logical networks that can share resources or work
based on trustworthiness. Mining as a complicated task should
be performed by several nodes and clustering techniques can
enable distributed execution of it.

Common features of IoT and BC make BC suitable to
address the security needs of IoT as listed below:
• Both technologies are decentralized which can support scal-

ability and eliminate non-efficient traffic overheads.
• BC provides security and privacy on top of the overlay net-

work which includes untrusted nodes. Generally, IoT nodes
are resource-constrained, while evaluating their trustworthy
level is a resource consuming task.

• BC nodes are anonymous due to supporting privacy of users
which is suitable in IoT use cases.
Although BC can offer many advantages for IoT systems,

there are significant challenges which should be addressed to
implement BC as listed below:
• BC technology uses some nodes in the network as miners to

mine the blocks of the ledger. Mining is a highly resource-
intensive task that calculates Proof of Work (POW) as a
cryptographic puzzle to add new blocks to BC. Each verified
transaction will be added to a pending block in multiple
miners and all of them should mine the same block, caus-
ing delay, resource consumption, etc. Since IoT nodes are
generally resource-constrained, mining is the main challenge
in implementing BC in IoT due to resource consumption,
delay and management of distributed mining on different
machines.

• BC techniques can be categorized as public and private
and also permission-less and permissioned. Public BCs can
have global-anonymous participants, but private BCs are
application-specific and designed to establish a BC among
known participants, mainly to reach a specific objective. On
the other hand, participants of permission-less BC do not
require permission to be part of the BC, but in permissioned
BCs, a control layer controls the actions performed by
permissioned participants.

• BC has high overhead traffic which is not suitable for IoT
devices that suffer from bandwidth limitation.
Recently, some works have been carried out to apply BC in

IoT, out of which a number of approaches use clustering tech-
niques to integrate IoT and BC. In [279], the authors propose
a method based on the concept of ’The friend of my friend
is my friend’. They use BC for WSN-IoT mobile networks to
solve authentication problems of resource-constrained nodes in
IoT. The proposed method authenticates mobile nodes that are
moving from one cluster to another. They use BC to reduce the
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number of exchanged messages to provide security and also
eliminate Key Derivation processing. She et al. [280] propose a
BC trust model in 3D environments to detect malicious nodes
in WSNs based on Consortium Blockchain and clustering
techniques. BS publishes contracts and CHs use them as verifi-
cation nodes and also provide digital certificate-based identity
information for cluster members. In the proposed method, CHs
are pre-selected to detect malicious nodes. In [281], the authors
introduce a security layer in IoT to detect and isolate malicious
nodes based on clustering techniques. They consider CHs as
resource-rich nodes which are simultaneously miners and also
keep a copy of nodes’ firmware. They assume that clusters are
already available and if the CH is compromised, the whole
cluster would be untrustworthy. They use an authentication
service as a smart contract on CHs to authenticate nodes. For
authorization, all nodes in a trusted cluster should be able to
authorize other members.

In [282], the authors proposed a clustering technique for IoV
to reduce the load of transactions on IoV devices. The pro-
posed method determines slots which can update BC ledgers
optimally by selecting appropriate CHs. Using the clustering
technique, they reduce energy consumption for about 40% and
the volume of transactions for about 82%. A distributed ledger
mechanism is used among CHs and it makes the decision about
when and how the ledger should be updated on CHs. They
propose a location-based ledger-offloading model that selects
new CHs to optimize energy consumption.

In [277], the authors use a BC model to provide a distributed
cyber infrastructure for the future smart grid systems. They
proposed a model based on public and private keys in which
each meter-node in the network collects data, encrypts it and
then broadcasts it. Other meter node decrypts data and verifies
the data by a voting method. If the data has enough votes to
verify, then the data is packaged into a block. Their application
is a smart meter data aggregation network consisting of re-
gional BC and wide-area BC. In this application, smart meters
are clustered called regional clusters. Then, clusters establish
regional BC networks which create a wide-area BC network.
The model establishes a two-tier hierarchical BC where CHs
as gateways secure and maintain the wide-area BC network. A
CH can be a storage or processor of the data sent from cluster
members.

The authors in [283] use BC in IoV networks to improve
the privacy and security of vehicles. They propose a de-
centralized architecture for the smart vehicle eco-system in
which each node is part of an overlay network and a cluster.
CHs manage BC and maintain the architecture called overlay
block managers (OBM). CHs use changeable public keys and
multisig (multi-signature) transactions. Multisig transactions
are broadcast among OBMs. Each node of OBM has a list of
public key pairs to verify signatures. Each OBM node controls
access to the transactions of its cluster members.

Ali Dorri et al. [284] propose a new BC method called
Lightweight Scalable Blockchain (LSB) which replaces the
mining procedure with a new trustworthy model in a clustered
infrastructure. In [285] and [286], A. Dorri et al. propose
a method based on LSB to replace the mining model with
a trustworthy mechanism in smart homes. CHs are used as

nodes that can trust each other and store blocks, ledgers and
transactions. By having clusters, members can trust CHs and
CHs can trust each other using multi-signature transactions.
Moreover, scalability can be supported by allowing forking in
different clusters or different layers of hierarchical clustering
techniques. In [287], the authors propose a secure routing
protocol for smart homes. They use a clustering technique to
separate indoor spaces by allocating region numbers for each
space like kitchen, bedroom, etc. They create super clusters
and common clusters. Super clusters include reference nodes
that can connect to a common cluster of CHs directly. They use
a beta-based trust management model to improve the security
of CH selection.

In the case of permissioned BC, Amiri et al. [288] introduce
a cluster-based sharding technique for permissioned BC to
support scalability of BC. Their proposed technique, called
SharPer, establishes clusters to assign different shards of data
to the clusters. Each data shard is replicated on cluster mem-
bers to support intra-shard, and cross-shard transactions. Their
proposed BC ledger is based on the directed acyclic graph and
establishes consensus by clusters for cross-shared transactions
based on a flattened protocol. Hyperledger fabric is also
introduced by IBM as a modular and permissioned architecture
to assign the roles to nodes in a distributed architecture of BC
[289]. In [290], the authors propose a BC-based multi-layer
security model for IoT. They divide the IoT network to k-
unknown clusters based on Genetic algorithms and the PSO
algorithm. In each CH, they provide a local authentication and
authorization technique to improve the security of IoT. They
also use BC to provide security for inter-CH communication
and CH-to-BS communications. They also propose a global
BC to secure the BS communications. An open source BC
hyperledger fabric is used to verify the techniques. In addition,
Mbarek et al. in [291] introduce a multil-evel BC system to
improve data security and privacy of IoT along with reducing
the response time and resource consumption. They propose
three levels called mirco level, meso level, and macro level,
which contain members of clusters, CHs, and servers of BC,
respectively. In addition, the authors introduce the use of
mobile IoT devices that move in different levels of IoT and
BC to perform BC functions, e.g., hashing and encryption.

Additionally, there exist some BC research works that
use clustering methods, while their main contribution is not
proposing new clustering techniques. In [292], the authors use
CHs to collect, fuse and encrypt data gathered from nodes.
They use attribute-based encryption to provide confidentiality
and access control. CHs are the owners of data and BC miners
are the other nodes. In [293], the authors use clustering as a
node grouping technique in the supply chain. CHs are selected
randomly, proposing a new block when needed.

1) Importance of clustering for BC: As mentioned above,
IoT has some limitations which make implementing BC for
IoT systems challenging. Clustering can be used to overcome
these obstacles.
• Improve the compatibility of BC with IoT: As mining is

a resource-intensive process, it can be replaced with other
techniques, e.g., trustworthy mechanisms. Using clustering
methods, the network can be structured in such a way
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that clusters trust each other and do not need to mine
blocks. As explained before, A. Dorri et al. [284] propose a
trustworthy mechanism rather than mining. Clustering can
provide an extra overlay network on top of IoT, which can
be used to group nodes. Grouped nodes can evaluate their
trustworthiness and detect malicious nodes. Then, clusters
can trust each other or have an extra layer that uses BC
as well. In other words, by using clustering methods, it
is possible to have a hierarchical BC which distributes
responsibilities, not among nodes, rather among groups of
nodes.

• Resource sharing in BC: In implementing a BC, nodes need
large amount of resources to mine blocks which are not
applicable to IoT systems due to resource scarcity. Although
mining is a centralized task, it is possible to perform it in
a distributed manner. There exist two different approaches
on distributed mining. Distributed miners [294] is the first
approach which divides the mining task into work units
and uses different machines to execute them. Bitcoin Plus,
Bitp.it and Stealthcoin are examples of distributed miners.
The second approach is called pooled mining [295], in
which miners share their processing power to mine and
split the reward based on the amount of their contribution.
Both these approaches can be used in IoT for distributed
mining based on share resources. Clustering techniques
can be used to propose clusters as pools and CHs will
serve as a coordinator among pools. Especially in Fog
computing models, which have powerful nodes, it is possible
to establish clusters to share resources of powerful fog
nodes. On the other hand, Some BC solutions use solo
mining [296] in which each miner includes only one node. In
this case, clustering can determine and use CHs as miners. In
this case, CH is responsible for mining transactions related
to its members or neighbors. Besides, there are different
P2P based mining methods to increase the efficiency of BC
which can be implemented using clustering. As an example,
P2POOL [297] uses a peer-to-peer network of node miners
to create a mining pool. Using clustering, a more efficient
P2P distributed network can be established to implement
such methods.

2) Challenges of integrating clustering techniques with BC:
To integrate clustering techniques and BC, we face a number
of challenges as listed below:

• Heterogeneity: In resource sharing techniques, fairness is an
important factor due to the resource-intensiveness of mining.
Generally, IoT nodes are heterogeneous and the positions of
nodes in IoT are unbalanced, causing unfairness. To design
efficient clustering techniques, clusters should be equal in
terms of available resources. Resource consumption of the
mining process is generally unpredictable which may cause
unbalanced resource consumption on different machines. To
support fairness, all clusters should have balanced resources;
thereby, clusters should be composed of heterogeneous
nodes.

• Dynamicity: To execute tasks on shared resources in a
cluster (i.e., mining and storing ledger), the cluster should be
stable between two set-up phases. Mobility and dynamicity

are two challenges, which make resource sharing difficult.
Dynamic clustering is needed when a cluster is subject to
dynamic changes. Additionally, using task offloading meth-
ods for mobile nodes can address the dynamicity problem.

• Compatibility: As mentioned above, standard BC is not
applicable in IoT due to resource-intensive processing tasks
in BC. Designing a method that can make the standard BC
compatible with IoT can be useful, e.g., the technique pro-
posed in [285]. However, such techniques like trustworthy
based models essentially impose high traffic overhead rather
than processing overhead. To have compatible models and
eliminate mining, distributed techniques should be applied
regarding control of their overheads.

• Scalability: Although different techniques can support scala-
bility in BC IoT infrastructures, managing a huge number of
nodes can induce high processing and traffic overheads. In
large-scale networks, maintaining the efficiency of clustering
would be a resource-intensive task.

B. SDN, NFV and IoT

Software-Defined Networking (SDN) is basically a central-
ized networking paradigm to decouple the control plane from
the data plane of data transmission [298]. In SDN, the network
intelligence (i.e., the control function or the control plane)
is centralized at one or a set of control entities (i.e., SDN
controllers), while the data forwarding plane is abstracted for
applications and networks services. In the first generation of
SDN, the OpenFlow protocol [299] is used between the control
and data planes. For example, an OpenFlow switch has one
or more forwarding tables that are controlled by a centralized
controller, which realizes programmability in the control plane.

Network Function Virtualization (NFV) is the concept of
relocating network functions from dedicated hardware appli-
ances to software-based appliances running in the cloud envi-
ronment or on general-purpose commodity equipment [300].
Using NFV, conventional network functions (NF) will run on
a virtual machine (VM) as a one-to-one mapping model or is
decomposed into smaller components called Virtual Network
Function components running on multiple VMs. Virtual Net-
work Functions (VNF), which represents the implementation
of NFs, are deployed and executed on an NFV Infrastructure
(NFVI). The NFVI consists of virtual resources, which are
abstracted and logically partitioned from underlying hardware
resources (computing, storage, and networking) through a
virtualization layer.

1) Importance of clustering for SDN and NFV: Clustering
has the potential to contribute to the efficiency of SDN
and NFV, such as communication and control. In particular,
clustering can enable a better division of network nodes and
their association with the SDN control domain based on pre-
defined communication criteria, e.g., nodes vicinity. Clustering
can also enable more efficient implementation of the control
component in SDN by facilitating distributed control through
clustered nodes and their CHs. The main advantage of using
clustering techniques in NFV is that the amount of traffic that
needs to be traversed through NFV based nodes in the same
cluster do not need to leave the cluster. This can significantly
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reduce the amount of traffic routed throughout the network, in
particular in mobile edge computing networks.

However, there are not many works focusing on the ex-
ploitation of clustering techniques in SDN scenarios. In [301],
as one of the few works in this category, a new clustering
algorithm, The Whale Optimisation Algorithm (WOA) is
proposed based on the concept of SDN for IoT systems. WOA
considers both sensor resource restrictions and the random
diversification of IoT node density in the geographical area.
It divides the sensing area by the SDN controller into virtual
zones (VZs) to balance the number of CHs according to the
node density in each VZ. Then, it uses WOA to define the
optimal set of CHs based on residual energy, communication
cost and node density. In [302], scalability, fault tolerance
and interoperability in the centralized control of the SDNs
are challenged and a novel clustered distributed controller
architecture is proposed in the real setting of SDNs. The
distributed cluster implementation comprises of multiple SDN
controllers. The clustered controllers perform load balancing
by distributing the number of connected OpenFlow switches
between instances of the controllers in the cluster. Similarly,
in [303] a system is proposed to assign controllers to clusters
by optimizing the maximal distance between two controllers
in the same clusters in order to reduce the time complexity of
load balancing in the SDN control plane. In [304], a model
based on SDN is proposed to prevent different attacks in IoT
systems. Clusters of SDN controllers are created and a CH
selection process is proposed to manage and control different
security issues in a particular domain. In [305], a WSN is
divided into multiple clusters, with CHs acting as a controller
in each network. Communication between nodes and CHs is
managed by gateway nodes and each cluster is considered to
be an SDN domain.

There is also a limited body of work on using clustering
techniques in NFV. In [306], the concept of clustered NFV
is proposed. An existing solution for combining clustering
and NFV is leveraged to compute the optimal number of
clusters to minimize the end-to-end time of MEC services. The
proposed scheme is applied to form multiple MEC clusters of
NFV enabled nodes within the radio access networks (RANs).
In [307], the authors propose a systematic virtual networking
architecture to perform the virtualization control and monitor-
ing of a CPS, in which NFV configuration and orchestration
can be realized. A game-theoretic topology decision approach
is proposed to control the topology of the clustering and virtual
network functions deployment at run-time in a CPS.

2) Challenges of integrating clustering techniques with
SDN and NFV: We identify the following future directions
in using clustering techniques in SDN and NFV:
• Distributed control: thanks to the structure of clusters and

the possibility of CH-level decision making, the centralized
components of SDN can be decentralized in cluster based
topologies in order to address more efficiently the capacity
concerns in large IoT applications. This implies that the data
forwarding plane is limited to the nodes in a cluster, while
inter-cluster data forwarding is still a challenging issue.

• Clustering for orchestrating in NFV: a key function of NFV
is the realization of orchestrated virtual network functions,

which can be implemented in different ways, like data flows.
Clustering can facilitate the development of orchestration for
NFV by utilizing CHs as the point of orchestration.

• Software-based clustering: a cluster is generally built on
a network topology which adheres to the given clustering
requirements. From the NFV viewpoint, a given clustering
mechanism and the associated algorithm can be derived as
virtualized functions installed on, e.g., a general-purpose
computing device. In this way, more flexibility and dynam-
icity will be enabled in the implementation of clustering
functions.

C. Fog and Edge

IoT devices and services are proliferating into a massive
scale, thereby, IoT data, services and applications are being
migrated to the Cloud, enabling powerful processing and
sharing of IoT data beyond the capability of individual things.
Moreover, due to requirements such as mobility support,
location-awareness and low latency, the cloud computing
paradigm has been recently extended from the core of the
network to the edge—Fog Computing. The fog nodes, residing
between the IoT devices and the Cloud can be structured in
various forms, such as hierarchical topologies. More efficient
organization of fog devices can lead to more efficient data
collection, processing and transmission to the Cloud. Fog
computing and edge computing are quite similar in meaning.
Both are concerned with leveraging the computing capabilities
in a local network to perform computation tasks that would
otherwise have been executed in the Cloud. However, Edge
computing usually occurs directly on the IoT devices or a
gateway device that is physically close to the sensors and IoT
devices. Fog computing moves the edge computing activities
to computing nodes that are connected to the LAN or into the
LAN hardware itself so they may be physically more distant
from the sensors and IoT devices and spread geographically
from edge devices towards the Cloud.

1) Importance of clustering in Fog and Edge: Clustering
has the potential to address efficient data collection and pro-
cessing in Fog- and Edge-computing environments. Clustering
can not only improve the robustness of the Fog network but
also allow better control of data management. As an example
for the latter, IoT data processing in large deployments is
bounded to a geographically defined area. Figure 5 shows
an overview of how clustering can be applied to fog-based
scenarios in which fog nodes are organized in a hierarchical
model. This model is suitable for large-scale IoT deployments,
e.g., in smart cities [308]. As can be seen in the figure, a
cluster can be composed of a set of IoT devices and the
associated fog node as the CH. The nodes in a cluster can
communicate through D2D or M2M technologies. In this
model, the fog node is often called as the edge node acting
as CH. As the alternative scenario, a cluster can also consist
of only fog nodes, which fits in scenarios with, e.g., fog-level
load balancing and workload distribution for intensive data
processing [309].

Recently, a number of works have been reported on the
usage of clustering techniques in fog computing scenarios. The
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Fig. 5. A clustering model in hierarchical fog architectural models

more popular line of research in this area is related to using
clustering for cost-efficiency, low power consumption, and
robustness in fog networks. A comprehensive cluster-based
approach in fog computing is proposed in [310]. It proposes
an algorithm for cluster formation and load balancing for fog
computing. The algorithm has a customizable design where
metrics, scheduling rules, and clustering objectives can be set
according to specific application and network requirements.
Another application of clustering is in data caching. In [311],
a clustering method is proposed to group spatially proximate
user devices with mutual task popularity interests with their
serving cloudlets. Then, cloudlets can cache the popular tasks’
computations of their cluster members to minimize computing
latency. In [312], a communication service between the fog
layer and the IoT device layer in fog computing is provided,
in which dynamic IoT device clustering is proposed to reduce
the system complexity and the delay for the IoT devices with
better channel conditions. The concept of edge-managed clus-
tering is proposed in [313] to supervise the operations among
cooperating devices forming a cluster. The cluster manager
is proposed running on an edge access point, providing both
connectivity and fast management response to the attached IoT
devices.

There are also contributions to the application of clustering
techniques in fog-based systems, e.g., clustering for the pur-
pose of better application software management. In [314], an
architecture for edge cloud PaaS is presented for application
and service orchestration to manage and orchestrate applica-
tions through containers. They use clustering to create a cluster
of Raspberry Pi nodes (as fog nodes) to run computationally
intensive software. In [315], a distributed consensus algorithm
is proposed for decision making in service-oriented IoT. Clus-
tering is exploited to partition the IoT network into multiple
clusters for a local consensus. The local consensus can be
achieved within each cluster and can then be used to make
consensus decision in knowledge sharing and integration of
functional capabilities. The authors use a distance-based static
clustering scheme for node clustering. In [49], the authors
investigate container-oriented operational frameworks for IoT.
They propose edge-managed clustering, where a manager su-
pervises the operations among cooperating devices. The cluster
manager runs on an edge access point to allow connectivity
and fast management response to the attached IoT devices.

2) Challenges of integrating clustering techniques with Fog
and Edge: We identify the following future directions in using
clustering techniques in fog computing:
• Clustering for addressing privacy: clustering can be applied

for fog devices that are in charge of collecting and pro-
cessing privacy-sensitive data, e.g., the power consumption
profile of a neighborhood. Using clustering, the collaborative
fog nodes (for data processing) can form clusters with well-
defined privacy constraints. In this way, the privacy issue
will be easier to maintain, in addition to the fact that inter-
cluster communications can be mapped to the privacy levels
of the end-user application.

• Optimization of resource allocation: fog resource allocation
is a complex problem. It refers to how the available fog
resources should be allocated for data processing to satisfy
quality requirements such as low latency, and cost. To allo-
cate resources efficiently, optimization algorithms should be
leveraged, taking into account the pre-defined optimization
parameters in resource allocation. Clustering can be the
basis for optimization such that the nodes in the cluster are
identified based on the optimization goals [316]. In this way,
the management of resources and execution of optimization
algorithms will become more efficient.

• Clustering for running data-intensive tasks: in data-intensive
applications, tasks may run on different nodes, while the
results of task execution are sent to other nodes in the
network. Clustering can serve as a local network of fog
nodes hosting the execution of interrelated tasks and sending
the task execution results to other nodes in the network, e.g.,
to the Cloud.

• Computation offloading: This is an important feature in fog
computing due to QoS requirements or resource limitations.
A task may be offloaded to a fog device from other nodes
or the Cloud, or uploaded to the Cloud from a fog node,
respectively. With respect to the former, a critical efficiency
parameter of the offloading process is selecting the best can-
didate for task offloading. Clustering can provide a suitable
platform for facilitating the selection process. In particular,
when CH has an overview of the resource capabilities of its
nodes, it can be exploited to find the node(s) for offloading
based on the resource availability information. Moreover,
when the computation offloading is limited to a geographical
area (e.g., due to privacy preservation), the counterpart
cluster(s) specify the boundaries for the techniques that
should select the candidate nodes for offloading.

D. 5G and IoT

Today, different generations of cellular networks cover at
least 90% of the world’s population. 2G providing voice
communication, covers 90%, while 3G used for transferring
data and voice covers 65% of the people in the world [317].
4G and Long Term Evolution (LTE) are the generations after
3G supporting IoT applications not only themselves but also
by establishing concrete overlay network infrastructures like
NB-IoT [317]. There are several issues in supporting IoT
applications in the 4G network which need to be addressed,
such as capacity, data rate, end-to-end delay, massive device
connectivity, communication cost and QoE [318]. 5G is an
emerging generation of cellular networks designed to enhance
the efficiency of data transmission and address the problems
of LTE. Although 5G is not designed specifically for IoT, it
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is expected that it will provide the main backhaul of IoT in
2025 [319]. A large number of solutions have been proposed
on the integration of IoT applications and 5G infrastruc-
tures [320]. Third Generation Partnership Project (3GPP) as a
collaboration among different associations designs standards
for cellular networks like 5G to establish concrete infrastruc-
tures that support applications with requirements such as low
latency, QoS, energy efficiency, etc. [320] [321] [322] [323].
Different technologies are emerging to improve the efficiency
of 5G, and different standards are being released based on
them. Although there exists a large number of such tech-
nologies, some technologies are the foundation stones of
5G. There are 5+1 fundamental technologies which form
5G [324] [325] [326] [327], including Millimeter Waves
(mmWave) [328], Small Cell [322], Massive MIMO [328],
Beamforming [329], Full Duplex [330], and Device-to-Device
Communication (D2D) [331].

Although D2D is not a fundamental technology for 5G, it is
emerging as a significant technology to support 5G objectives.
The above technologies can improve the efficiency of LTE and
4G to satisfy the requirements of 5G. Although all these tech-
nologies support each other, Small Cell and D2D are used to
form the network infrastructure, logically in the network layer.
Almost all other technologies contribute to improvements in
the MAC and physical layers. Small Cell is a technology that
establishes a hierarchical network infrastructure to cover blind
spaces, optimize energy consumption based on reducing the
distance between devices and small cell BSs, and support
QoS. Small cells break up a cell site into smaller cells,
usable in indoor and outdoor environments called Macro cells,
Microcells, Picocells and Femtocells, respectively, as listed in
Table V. As an example, a Femtocell as the smallest cell can
connect to a bigger cell or directly connect to the Internet by
wire. The way of connecting is same for all types of cells.
This hierarchical model can help 5G to cover all blind spaces,
reduce energy consumption, and improve QoS [332].

Although Small Cell can enhance the efficiency of the
network infrastructure management in 5G, there are still
some challenges with respect to supporting QoS, improving
bandwidth and energy consumption. D2D communication can
address these challenges. D2D is introduced for short-range
communication between two devices without using BS, result-
ing in less energy consumption, and improving load balancing
and QoS. Resource-constrained IoT devices normally do not
support wide coverage of connectivity. D2D technology was
first introduced by Qualcomm, called flashlinQ, to enable
D2D in LTE-A [333]. It is officially addressed in 3GPP LTE
release 12 [334]. D2D is introduced by 3GPP, also known
as Proximity Service (ProSe) which supports multi-hop relay
networks [335]. In release 15, the main objective is to improve
the power efficiency of remote User Equipment (UE), such
as IoT devices and wearables, by allowing them to establish
D2D communication with UEs acting as a relay. Although
D2D in ISM bands like Wi-Fi direct is well-established, D2D
standardization in cellular networks is still a challenge.

D2D communication in 5G can enable the development of
novel applications and enhance existing mobile applications.
For example, social networks apps and games can use D2D to

TABLE V
THE SPECIFICATION AND COVERAGE AREA OF DIFFERENT 5G CELL TYPES

Cell Type Radius (Km) Power (W) Number of Users Covered area Example
Macro Cell 8 to 30 10 to >50 >2000 Outdoor Cover a City
Micro Cell 0.2 to 2.0 1 to 10 100 to 2000 Indoor/Outdoor Cover a Street
Pico Cell 0.1 to 0.2 0.25 to 1 30 to 100 Indoor/Outdoor Cover a Building
Femtocell 0.01 to 0.1 0.001 to 0.25 1 to 30 Indoor Cover a Flat

find users close by to transfer data. Today, Wi-Fi direct is used
in such applications (e.g., Zapya [336]) for direct data trans-
mission. Natural disasters and crisis management are other
application types of D2D 5G networks that need to establish
an infrastructure-less network when BSs are not available.
In IoT, D2D can reduce delay, improve coverage, optimize
energy efficiency and support QoS. Different applications like
Vehicle to Vehicle (V2V) [337] can use a combination of
D2D and Small Cell to improve the efficiency of the network
infrastructure.

From a topology management perspective, combining D2D
and Small Cell yields a network infrastructure which resem-
bles with multi-gateway (i.e., multi-sink) WSNs. Similar to
WSNs, this topology needs to be managed in order to satisfy
different objectives, e.g., energy efficiency, handling band-
width limitations, and delay reduction. These two technologies
have the potential to be used for clustering in 5G networks.

To the best of our knowledge, the only paper that studies the
effect of clustering in IoT 5G scenarios is [19]. The authors
consider the use of clustering techniques in 5G IoT networks
to support energy efficiency, distributed processing and hierar-
chical management of the network infrastructure. The authors
studied five challenges including node heterogeneity, resource
and financial cost of transmission, user utility, smart core
network, and supporting mobility. However, Small Cell and
D2D are not studied as a 5G infrastructure in the paper.
In [338], the authors use a clustering method in D2D-assisted
LTE-A networks for tie-breaking to maximize fairness and
throughput. In their method, CH is opportunistically different
at each scheduling frame to manage cellular traffic. In [339],
the authors introduce user-centric cluster-based coordinated
multi-points in 5G. Clusters can reduce the overhead of
intercell coordination by limiting it to within the cluster only.
In addition, they use the re-clustering method to distribute the
traffic of cells to neighboring cells. Network densification is
also a method that can use clustering techniques to improve
the efficiency of spectrum utilization [340]. In [239], the
authors use a clustering method to achieve green IoT in
5G networks and solve the problem of handover. In [341],
Song et al. use a clustering method to minimize network
energy cost and maximize connected IoT devices in 5G small
cells based on the k-means algorithm. In [342], a clustering
method is introduced based on supporting Massive MIMO
in 5G. In [343], a method is introduced which uses cluster
forms in 5G cellular networks to support D2D. The above
literature show that clustering improve the efficiency of 5G by
managing nodes and resources in each cluster locally. In this
paper, we review the opportunities and challenges of clustering
techniques in 5G networks based on Small Cell and D2D.

1) Importance of clustering in 5G Networks: As mentioned
above, in 5G settings that support Small Cell and D2D commu-
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nication technologies, clustering can be a foundation stone for
topology management. Clustering techniques in 5G can sup-
port different applications and also improve the efficiency of
communication based on grouping the nodes and hierarchical
management. Below, we discuss the importance of clustering
in 5G based on the different efficiency improvements achieved
by 5G clustering.

• Applications: Not all applications over 5G need to use BS
for data transmission, e.g., online group games. Based on
5G characteristics, D2D communication can be established
among nodes that have Line of Sight (LoS). Clustering
can connect different UEs to one UE as CH based on
commonalities of applications or services.

• Improving massive MIMO efficiency: Massive MIMO use
BSs with very large antenna arrays to communicate with
several users in each time frequency [344]. With a large
number of UEs which communicate with BS directly, in-
terference can be quite high in BS, which can result in a
smaller number of users being supported. Clustering can be
considered as a solution to scale down the number of users
connected directly, while the resulting multi-hop network
topology can lead to increased delay in the network as
discussed in [37]. Given the high speed of D2D commu-
nication in 5G, clustering will not impose significant delay,
in addition to the fact that the number of UEs connected
directly to BS can be controlled, resulting in improving the
efficiency of Massive MIMO.

• Caching: Leveraging small cells and D2D, it is possible to
cache data in CHs. Cluster members can be UEs that need
the same data. There are many types of applications that
need caching, such as multimedia, online video conferenc-
ing, etc. Caching can help avoid data redundancy in data
transmission. In hierarchical clustering techniques, caching
can reduce the volume of data significantly by reusing data
hop by hop. In addition, different services in the Fog can use
cached data in CHs and avoid asking the Cloud to transfer.

• Energy consumption: As one of the main challenges in 5G,

clustering can reduce overall network energy consumption
through balancing energy consumption in nodes. Similarly,
D2D and Small Cell are introduced to optimize energy
consumption. Clustering techniques can be used in a 5G
D2D network to delegate data transfer to the nodes that
have higher energy resources.

• Spectrum efficiency: Spectrum efficiency is an important
factor in 5G which is supported by the mmWave technology.
By mmWave, UEs use a 10-300GHz band that supports a
very fast gigabit-per-second data rate. In mmWave, com-
munication between nodes is limited by their transmission
power and physical obstacles. Using clustering techniques
in such networks opens up for low range communication.
This can support low multi-user interference (MUI) in ultra-
dense networks like IoT. UEs can communicate with CHs
by allocating different bands and adopting LOS or multi-
hop D2D. In addition, in the case of having no LOS between
nodes and CH, intra-cluster routing can be provided by D2D
communication.

• Resource usage efficiency: Each UE in 5G has specific
resources that can be used in the network. Supporting D2D
allows 5G to use the resources of UEs to support different
services and applications. Clustering techniques can be used
to group a set of nodes and assign a task to a node group.

• Network heterogeneity: In 5G, nodes support different net-
work interfaces. Clustering techniques can be used to switch
between network interfaces for data transmission. As an
example, nodes can connect to CH using D2D and then
use Wi-Fi direct to transfer data to the next hop.

Figure 6 shows an example of how clustering techniques can
improve connectivity and efficiency of 5G networks.

2) Challenges of integrating clustering techniques with 5G:
Although using clustering techniques in 5G-IoT networks has
many advantages as mentioned above, it also introduces a
number of challenges:

• Heterogeneity: Most clustering techniques are designed for
homogeneous networks, not considering requirements of
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other layers as a parameter in establishing clusters. As an
example, mmWave technology can be confined by physical
obstacles to connect to UEs. To establish clusters, physical
obstacles can change the form of clusters, number of mem-
bers, etc. which can cause inefficiency. On the other hand,
clustering techniques should consider application services.
As traditional clustering techniques are designed to establish
clusters based on the network layer objectives like improv-
ing QoS, new parameters should be considered in cluster
creation. As an example, to improve efficiency, clusters can
be established to unite the nodes that use the same service
as data generator or data consumer. These parameters make
establishing and maintaining clusters more complicated and
resource consuming.

• Interference: As 5G-IoT networks can possibly be a kind
of Ultra-Dense networks, massive volumes of data in a
cluster can cause interference among members. Generally,
clusters can be established based on common applications
among neighbor nodes, but also some applications can have
a high volume of data to transfer which cause interference
in an area. MUI reduction techniques might be considered
in cluster establishment and member selection to distribute
potential interference nodes among clusters. Using MUI as
a parameter to establish clusters, may result in a clustering
model in which each cluster contains members belonging to
different applications which again would lead to interference
reduction in a cluster. On the other hand, having nodes
which consume or generate data of a specific application
in a cluster can result in a higher chance of performing
data aggregation, fusion, service migration efficiency, etc.
Finding an optimal trade-off between reducing interference
and establishing clusters based on common applications and
services is a challenge that need to addressed.

• Scalability: with thousands of nodes in 5G-IoT networks,
scalability is a great challenge. As 5G-IoT networks can
be a UDN [345], the number of nodes and communication
links per area are very high. As the radio range of the UEs
should be limited to improve resource consumption and also
reduce interference, the number of nodes per cluster and
number of clusters per network would increase which cause
more complexity of establishing clusters and connecting
them to BSs. In addition, in 5G networks, there are several
gateways in the network, basically BSs, which make the
topology management more complicated. In massive-scale
IoT applications, having multiple potential destinations,
makes finding optimal routes to clusters and balancing the
load of network efficiently a complex task.

• Dynamicity: Network dynamicity is a significant challenge
in 5G networks due to the presence of mobile nodes, faulty
nodes, etc. For example, some nodes are moved by humans
as attached nodes like vehicles, cellphones, wearable sen-
sors, etc. Routes, clusters and connections which transfer
data through the mobile nodes need to be re-established
after considerable network topology changes which cause
high overhead and time complexity of re-clustering tech-
niques. Having a dynamic network infrastructure in 5G IoT
networks, new challenges emerge like channel impairment
which should be considered in the design of a dynamic

clustering technique.
• Hierarchical management: In UDN, network management

is a challenge due to the scale of the network in terms
of number of nodes and communication load. Hierarchical
distributed management can address this challenge, appli-
cable to cells of all sizes. Clusters should be established
based on the different sizes of cells as the possible cost of
causing cluster overlap. Reducing overlaps is a complicated
process when establishing clusters within cells. Small Cell
technology divides the network into cells and clustering
divides the network into clusters. This implies that two
identical node grouping techniques may simultaneously
be used over a common network infrastructure. Applying
the same clustering techniques simultaneously can cause
unexpected efficiency problems. Overlaps and interference
among clusters and cells may cause overheads and topology
management problems. 5G networks supporting Small Cell
technology are similar to multi-sink ad-hoc networks in
which each BS is a sink. Therefore, selecting the best sink
as the gateway of a packet stream would be challenging due
to financial and resource costs.

VII. CONCLUSIONS

Topology management is an important issue in the IoT
networks that resemble ad-hoc networks, e.g., D2D-based IoT
networks over cellular networks. Clustering is the most pop-
ular method for topology management, especially in WSNs.
Some existing approaches for WSN clustering have the po-
tential to be applied to IoT networks, even though special
characteristics of IoT networks such as heterogeneity and
nodes mobility make clustering a challenging issue in IoT. In
this paper, we conducted a comprehensive survey on existing
WSN clustering techniques and investigated their applicability
to IoT networks. The survey work is conducted based on
all the common clustering objectives (e.g., reducing energy
consumption and load balancing), as well as the network
properties impacting efficiency of IoT clustering (e.g., mo-
bility). Classifying the well-known clustering literature shows
that clustering can not only reduce energy consumption as
its primary objective, but also achieve several other quality-
related objectives. In addition, our investigations show that
existing clustering techniques can contribute to better support
of quality-related requirements of ad-hoc IoT networks, e.g.,
QoS and fault tolerance, although their high dynamicity and
heterogeneity make clustering challenging. Moreover, we fo-
cused on the modern networking and computing paradigms in-
tegrated with IoT (i.e., Blockchain, SDN, NFV, Fog/Edge, and
5G) and reviewed existing clustering-based approaches. Our
thorough study shows that clustering can greatly contribute
in better handling of design concerns related to scalability
in these computing areas, from distributed control to service
orchestration and resource allocation.
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