36 research outputs found

    TOU-AR:Touchable Interface for Interactive Interaction in Augmented Reality Environment

    Get PDF
    Touchable interface is one of the future interfaces that can be implemented at any medium such as water, table or even sand. The word multi touch refers to the ability to distinguish between two or more fingers touching a touch-sensing surface, such as a touch screen or a touch pad. This interface is provided tracking the area by using depth camera and projected the interface into the medium. This interface is widely used in augmented reality environment. User will project the particular interface into real world medium and user hand will be tracked simultaneously when touching the area. User can interact in more freely ways and as natural as human did in their daily lif

    RICHIE: A Step-by-step Navigation Widget to Enhance Broad Hierarchy Exploration on Handheld Tactile Devices

    No full text
    International audienceExploring large hierarchies is still a challenging task, especially for handheld tactile devices, due to the lack of visualization space and finger's occlusion. In this paper, we propose the RICHIE (Radial In-Cremental HIerarchy Exploration) tool, a new radial widget that allows step-by-step navigation through large hierarchies. We designed it to fit handheld tactile requirements such as target reaching and space optimization. Depth exploration is made by shifting two levels of hierarchy at the same time, for reducing the screen occupation. This widget was implemented in order to adapt a Command and Control (C2) system to mobile tactile devices, as these systems require the on-screen presence of an important unit's hierarchy (the ORder of BATtle). Nevertheless, we are convinced that RICHIE could be used on several systems that require hierarchical data exploration, such as phylogenetic trees or file browsing

    Hand Occlusion on a Multi-Touch Tabletop

    Get PDF
    International audienceWe examine the shape of hand and forearm occlusion on a multi-touch table for different touch contact types and tasks. Individuals have characteristic occlusion shapes, but with commonalities across tasks, postures, and handedness. Based on this, we create templates for designers to justify occlusion-related decisions and we propose geometric models capturing the shape of occlusion. A model using diffused illumination captures performed well when augmented with a forearm rectangle, as did a modified circle and rectangle model with ellipse "fingers" suitable when only X-Y contact positions are available. Finally, we describe the corpus of detailed multi-touch input data we generated which is available to the community

    Gaze+touch vs. touch: what’s the trade-off when using gaze to extend touch to remote displays?

    Get PDF
    Direct touch input is employed on many devices, but it is inherently restricted to displays that are reachable by the user. Gaze input as a mediator can extend touch to remote displays - using gaze for remote selection, and touch for local manipulation - but at what cost and benefit? In this paper, we investigate the potential trade-off with four experiments that empirically compare remote Gaze+touch to standard touch. Our experiments investigate dragging, rotation, and scaling tasks. Results indicate that Gaze+touch is, compared to touch, (1) equally fast and more accurate for rotation and scaling, (2) slower and less accurate for dragging, and (3) enables selection of smaller targets. Our participants confirm this trend, and are positive about the relaxed finger placement of Gaze+touch. Our experiments provide detailed performance characteristics to consider for the design of Gaze+touch interaction of remote displays. We further discuss insights into strengths and drawbacks in contrast to direct touch

    Data Visualization on Interactive Surfaces: A Research Agenda

    Get PDF
    International audienceInteractive tabletops and surfaces provide rich opportunities for data visualization and analysis, and consequently are used increasingly in such settings. In this article we discuss the potential benefits of using interactive surface platforms for visualization applications and present a research agenda of some of the most pressing research challenges in this space. The agenda emerged from discussions with researchers and practitioners in human-computer interaction, computer-supported collaborative work, and a wide variety of visualization fields at the DEXIS 2011 workshop on "Data Exploration for Interactive Surface

    Assessing the effectiveness of direct gesture interaction for a safety critical maritime application

    Get PDF
    Multi-touch interaction, in particular multi-touch gesture interaction, is widely believed to give a more natural interaction style. We investigated the utility of multi-touch interaction in the safety critical domain of maritime dynamic positioning (DP) vessels. We conducted initial paper prototyping with domain experts to gain an insight into natural gestures; we then conducted observational studies aboard a DP vessel during operational duties and two rounds of formal evaluation of prototypes - the second on a motion platform ship simulator. Despite following a careful user-centred design process, the final results show that traditional touch-screen button and menu interaction was quicker and less erroneous than gestures. Furthermore, the moving environment accentuated this difference and we observed initial use problems and handedness asymmetries on some multi-touch gestures. On the positive side, our results showed that users were able to suspend gestural interaction more naturally, thus improving situational awareness

    BiTouch and BiPad: Designing Bimanual Interaction for Hand-held Tablets

    Get PDF
    International audienceDespite the demonstrated benefits of bimanual interaction, most tablets use just one hand for interaction, to free the other for support. In a preliminary study, we identified five holds that permit simultaneous support and interaction, and noted that users frequently change position to combat fatigue. We then designed the BiTouch design space, which introduces a support function in the kinematic chain model for interacting with hand-held tablets, and developed BiPad, a toolkit for creating bimanual tablet interaction with the thumb or the fingers of the supporting hand. We ran a controlled experiment to explore how tablet orientation and hand position affect three novel techniques: bimanual taps, gestures and chords. Bimanual taps outperformed our one-handed control condition in both landscape and portrait orientations; bimanual chords and gestures in portrait mode only; and thumbs outperformed fingers, but were more tiring and less stable. Together, BiTouch and BiPad offer new opportunities for designing bimanual interaction on hand-held tablets
    corecore