84 research outputs found

    Timing in Technischen Sicherheitsanforderungen für Systementwürfe mit heterogenen Kritikalitätsanforderungen

    Get PDF
    Traditionally, timing requirements as (technical) safety requirements have been avoided through clever functional designs. New vehicle automation concepts and other applications, however, make this harder or even impossible and challenge design automation for cyber-physical systems to provide a solution. This thesis takes upon this challenge by introducing cross-layer dependency analysis to relate timing dependencies in the bounded execution time (BET) model to the functional model of the artifact. In doing so, the analysis is able to reveal where timing dependencies may violate freedom from interference requirements on the functional layer and other intermediate model layers. For design automation this leaves the challenge how such dependencies are avoided or at least be bounded such that the design is feasible: The results are synthesis strategies for implementation requirements and a system-level placement strategy for run-time measures to avoid potentially catastrophic consequences of timing dependencies which are not eliminated from the design. Their applicability is shown in experiments and case studies. However, all the proposed run-time measures as well as very strict implementation requirements become ever more expensive in terms of design effort for contemporary embedded systems, due to the system's complexity. Hence, the second part of this thesis reflects on the design aspect rather than the analysis aspect of embedded systems and proposes a timing predictable design paradigm based on System-Level Logical Execution Time (SL-LET). Leveraging a timing-design model in SL-LET the proposed methods from the first part can now be applied to improve the quality of a design -- timing error handling can now be separated from the run-time methods and from the implementation requirements intended to guarantee them. The thesis therefore introduces timing diversity as a timing-predictable execution theme that handles timing errors without having to deal with them in the implemented application. An automotive 3D-perception case study demonstrates the applicability of timing diversity to ensure predictable end-to-end timing while masking certain types of timing errors.Traditionell wurden Timing-Anforderungen als (technische) Sicherheitsanforderungen durch geschickte funktionale Entwürfe vermieden. Neue Fahrzeugautomatisierungskonzepte und Anwendungen machen dies jedoch schwieriger oder gar unmöglich; Aufgrund der Problemkomplexität erfordert dies eine Entwurfsautomatisierung für cyber-physische Systeme heraus. Diese Arbeit nimmt sich dieser Herausforderung an, indem sie eine schichtenübergreifende Abhängigkeitsanalyse einführt, um zeitliche Abhängigkeiten im Modell der beschränkten Ausführungszeit (BET) mit dem funktionalen Modell des Artefakts in Beziehung zu setzen. Auf diese Weise ist die Analyse in der Lage, aufzuzeigen, wo Timing-Abhängigkeiten die Anforderungen an die Störungsfreiheit auf der funktionalen Schicht und anderen dazwischenliegenden Modellschichten verletzen können. Für die Entwurfsautomatisierung ergibt sich daraus die Herausforderung, wie solche Abhängigkeiten vermieden oder zumindest so eingegrenzt werden können, dass der Entwurf machbar ist: Das Ergebnis sind Synthesestrategien für Implementierungsanforderungen und eine Platzierungsstrategie auf Systemebene für Laufzeitmaßnahmen zur Vermeidung potentiell katastrophaler Folgen von Timing-Abhängigkeiten, die nicht aus dem Entwurf eliminiert werden. Ihre Anwendbarkeit wird in Experimenten und Fallstudien gezeigt. Allerdings werden alle vorgeschlagenen Laufzeitmaßnahmen sowie sehr strenge Implementierungsanforderungen für moderne eingebettete Systeme aufgrund der Komplexität des Systems immer teurer im Entwurfsaufwand. Daher befasst sich der zweite Teil dieser Arbeit eher mit dem Entwurfsaspekt als mit dem Analyseaspekt von eingebetteten Systemen und schlägt ein Entwurfsparadigma für vorhersagbares Timing vor, das auf der System-Level Logical Execution Time (SL-LET) basiert. Basierend auf einem Timing-Entwurfsmodell in SL-LET können die vorgeschlagenen Methoden aus dem ersten Teil nun angewandt werden, um die Qualität eines Entwurfs zu verbessern -- die Behandlung von Timing-Fehlern kann nun von den Laufzeitmethoden und von den Implementierungsanforderungen, die diese garantieren sollen, getrennt werden. In dieser Arbeit wird daher Timing Diversity als ein Thema der Timing-Vorhersage in der Ausführung eingeführt, das Timing-Fehler behandelt, ohne dass sie in der implementierten Anwendung behandelt werden müssen. Anhand einer Fallstudie aus dem Automobilbereich (3D-Umfeldwahrnehmung) wird die Anwendbarkeit von Timing-Diversität demonstriert, um ein vorhersagbares Ende-zu-Ende-Timing zu gewährleisten und gleichzeitig in der Lage zu sein, bestimmte Arten von Timing-Fehlern zu maskieren

    Model-connected safety cases

    Get PDF
    Regulatory authorities require justification that safety-critical systems exhibit acceptable levels of safety. Safety cases are traditionally documents which allow the exchange of information between stakeholders and communicate the rationale of how safety is achieved via a clear, convincing and comprehensive argument and its supporting evidence. In the automotive and aviation industries, safety cases have a critical role in the certification process and their maintenance is required throughout a system’s lifecycle. Safety-case-based certification is typically handled manually and the increase in scale and complexity of modern systems renders it impractical and error prone.Several contemporary safety standards have adopted a safety-related framework that revolves around a concept of generic safety requirements, known as Safety Integrity Levels (SILs). Following these guidelines, safety can be justified through satisfaction of SILs. Careful examination of these standards suggests that despite the noticeable differences, there are converging aspects. This thesis elicits the common elements found in safety standards and defines a pattern for the development of safety cases for cross-sector application. It also establishes a metamodel that connects parts of the safety case with the target system architecture and model-based safety analysis methods. This enables the semi- automatic construction and maintenance of safety arguments that help mitigate problems related to manual approaches. Specifically, the proposed metamodel incorporates system modelling, failure information, model-based safety analysis and optimisation techniques to allocate requirements in the form of SILs. The system architecture and the allocated requirements along with a user-defined safety argument pattern, which describes the target argument structure, enable the instantiation algorithm to automatically generate the corresponding safety argument. The idea behind model-connected safety cases stemmed from a critical literature review on safety standards and practices related to safety cases. The thesis presents the method, and implemented framework, in detail and showcases the different phases and outcomes via a simple example. It then applies the method on a case study based on the Boeing 787’s brake system and evaluates the resulting argument against certain criteria, such as scalability. Finally, contributions compared to traditional approaches are laid out

    From Safety Analysis to Experimental Validation by Fault Injection—Case of Automotive Embedded Systems

    Get PDF
    En raison de la complexité croissante des systèmes automobiles embarqués, la sûreté de fonctionnement est devenue un enjeu majeur de l’industrie automobile. Cet intérêt croissant s’est traduit par la sortie en 2011 de la norme ISO 26262 sur la sécurité fonctionnelle. Les défis auxquelles sont confrontés les acteurs du domaine sont donc les suivants : d’une part, la conception de systèmes sûrs, et d’autre part, la conformité aux exigences de la norme ISO 26262. Notre approche se base sur l’application systématique de l’injection de fautes pour la vérification et la validation des exigences de sécurité, tout au long du cycle de développement, des phases de conception jusqu’à l’implémentation. L’injection de fautes nous permet en particulier de vérifier que les mécanismes de tolérance aux fautes sont efficaces et que les exigences non-fonctionnelles sont respectées. L’injection de faute est une technique de vérification très ancienne. Cependant, son rôle lors de la phase de conception et ses complémentarités avec la validation expérimentale, méritent d’être étudiés. Notre approche s’appuie sur l’application du modèle FARM (Fautes, Activations, Relevés et Mesures) tout au long du processus de développement. Les analyses de sûreté sont le point de départ de notre approche, avec l'identification des mécanismes de tolérance aux fautes et des exigences non-fonctionnelles, et se terminent par la validation de ces mécanismes par les expériences classiques d'injection de fautes. Enfin, nous montrons que notre approche peut être intégrée dans le processus de développement des systèmes embarqués automobiles décrits dans la norme ISO 26262. Les contributions de la thèse sont illustrées sur l’étude de cas d’un système d’éclairage avant d’une automobile. ABSTRACT : Due to the rising complexity of automotive Electric/Electronic embedded systems, Functional Safety becomes a main issue in the automotive industry. This issue has been formalized by the introduction of the ISO 26262 standard for functional safety in 2011. The challenges are, on the one hand to design safe systems based on a systematic verification and validation approach, and on the other hand, the fulfilment of the requirements of the ISO 26262 standard. Following ISO 26262 recommendations, our approach, based on fault injection, aims at verifying fault tolerance mechanisms and non-functional requirements at all steps of the development cycle, from early design phases down to implementation. Fault injection is a verification technique that has been investigated for a long time. However, the role of fault injection during design phase and its complementarities with the experimental validation of the target have not been explored. In this work, we investigate a fault injection continuum, from system design validation to experiments on implemented targets. The proposed approach considers the safety analyses as a starting point, with the identification of safety mechanisms and safety requirements, and goes down to the validation of the implementation of safety mechanisms through fault injection experiments. The whole approach is based on a key fault injection framework, called FARM (Fault, Activation, Readouts and Measures). We show that this approach can be integrated in the development process of the automotive embedded systems described in the ISO 26262 standard. Our approach is illustrated on an automotive case study: a Front-Light system

    Measurable Safety of Automated Driving Functions in Commercial Motor Vehicles - Technological and Methodical Approaches

    Get PDF
    Fahrerassistenzsysteme sowie automatisiertes Fahren leisten einen wesentlichen Beitrag zur Verbesserung der Verkehrssicherheit von Kraftfahrzeugen, insbesondere von Nutzfahrzeugen. Mit der Weiterentwicklung des automatisierten Fahrens steigt hierbei die funktionale Leistungsfähigkeit, woraus Anforderungen an neue, gesamtheitliche Erprobungskonzepte entstehen. Um die Absicherung höherer Stufen von automatisierten Fahrfunktionen zu garantieren, sind neuartige Verifikations- und Validierungsmethoden erforderlich. Ziel dieser Arbeit ist es, durch die Aggregation von Testergebnissen aus wissensbasierten und datengetriebenen Testplattformen den Übergang von einer quantitativen Kilometerzahl zu einer qualitativen Testabdeckung zu ermöglichen. Die adaptive Testabdeckung zielt somit auf einen Kompromiss zwischen Effizienz- und Effektivitätskriterien für die Absicherung von automatisierten Fahrfunktionen in der Produktentstehung von Nutzfahrzeugen ab. Diese Arbeit umfasst die Konzeption und Implementierung eines modularen Frameworks zur kundenorientierten Absicherung automatisierter Fahrfunktionen mit vertretbarem Aufwand. Ausgehend vom Konfliktmanagement für die Anforderungen der Teststrategie werden hochautomatisierte Testansätze entwickelt. Dementsprechend wird jeder Testansatz mit seinen jeweiligen Testzielen integriert, um die Basis eines kontextgesteuerten Testkonzepts zu realisieren. Die wesentlichen Beiträge dieser Arbeit befassen sich mit vier Schwerpunkten: * Zunächst wird ein Co-Simulationsansatz präsentiert, mit dem sich die Sensoreingänge in einem Hardware-in-the-Loop-Prüfstand mithilfe synthetischer Fahrszenarien simulieren und/ oder stimulieren lassen. Der vorgestellte Aufbau bietet einen phänomenologischen Modellierungsansatz, um einen Kompromiss zwischen der Modellgranularität und dem Rechenaufwand der Echtzeitsimulation zu erreichen. Diese Methode wird für eine modulare Integration von Simulationskomponenten, wie Verkehrssimulation und Fahrdynamik, verwendet, um relevante Phänomene in kritischen Fahrszenarien zu modellieren. * Danach wird ein Messtechnik- und Datenanalysekonzept für die weltweite Absicherung von automatisierten Fahrfunktionen vorgestellt, welches eine Skalierbarkeit zur Aufzeichnung von Fahrzeugsensor- und/ oder Umfeldsensordaten von spezifischen Fahrereignissen einerseits und permanenten Daten zur statistischen Absicherung und Softwareentwicklung andererseits erlaubt. Messdaten aus länderspezifischen Feldversuchen werden aufgezeichnet und zentral in einer Cloud-Datenbank gespeichert. * Anschließend wird ein ontologiebasierter Ansatz zur Integration einer komplementären Wissensquelle aus Feldbeobachtungen in ein Wissensmanagementsystem beschrieben. Die Gruppierung von Aufzeichnungen wird mittels einer ereignisbasierten Zeitreihenanalyse mit hierarchischer Clusterbildung und normalisierter Kreuzkorrelation realisiert. Aus dem extrahierten Cluster und seinem Parameterraum lassen sich die Eintrittswahrscheinlichkeit jedes logischen Szenarios und die Wahrscheinlichkeitsverteilungen der zugehörigen Parameter ableiten. Durch die Korrelationsanalyse von synthetischen und naturalistischen Fahrszenarien wird die anforderungsbasierte Testabdeckung adaptiv und systematisch durch ausführbare Szenario-Spezifikationen erweitert. * Schließlich wird eine prospektive Risikobewertung als invertiertes Konfidenzniveau der messbaren Sicherheit mithilfe von Sensitivitäts- und Zuverlässigkeitsanalysen durchgeführt. Der Versagensbereich kann im Parameterraum identifiziert werden, um die Versagenswahrscheinlichkeit für jedes extrahierte logische Szenario durch verschiedene Stichprobenverfahren, wie beispielsweise die Monte-Carlo-Simulation und Adaptive-Importance-Sampling, vorherzusagen. Dabei führt die geschätzte Wahrscheinlichkeit einer Sicherheitsverletzung für jedes gruppierte logische Szenario zu einer messbaren Sicherheitsvorhersage. Das vorgestellte Framework erlaubt es, die Lücke zwischen wissensbasierten und datengetriebenen Testplattformen zu schließen, um die Wissensbasis für die Abdeckung der Operational Design Domains konsequent zu erweitern. Zusammenfassend zeigen die Ergebnisse den Nutzen und die Herausforderungen des entwickelten Frameworks für messbare Sicherheit durch ein Vertrauensmaß der Risikobewertung. Dies ermöglicht eine kosteneffiziente Erweiterung der Validität der Testdomäne im gesamten Softwareentwicklungsprozess, um die erforderlichen Testabbruchkriterien zu erreichen

    Measurable Safety of Automated Driving Functions in Commercial Motor Vehicles

    Get PDF
    With the further development of automated driving, the functional performance increases resulting in the need for new and comprehensive testing concepts. This doctoral work aims to enable the transition from quantitative mileage to qualitative test coverage by aggregating the results of both knowledge-based and data-driven test platforms. The validity of the test domain can be extended cost-effectively throughout the software development process to achieve meaningful test termination criteria

    Scalable allocation of safety integrity levels in automotive systems

    Get PDF
    The allocation of safety integrity requirements is an important problem in modern safety engineering. It is necessary to find an allocation that meets system level safety integrity targets and that is simultaneously cost-effective. As safety-critical systems grow in size and complexity, the problem becomes too difficult to be solved in the context of a manual process. Although this thesis addresses the generic problem of safety integrity requirements allocation, the automotive industry is taken as an application example.Recently, the problem has been partially addressed with the use of model-based safety analysis techniques and exact optimisation methods. However, usually, allocation cost impacts are either not directly taken into account or simple, linear cost models are considered; furthermore, given the combinatorial nature of the problem, applicability of the exact techniques to large problems is not a given. This thesis argues that it is possible to effectively and relatively efficiently solve the allocation problem using a mixture of model-based safety analysis and metaheuristic optimisation techniques. Since suitable model-based safety analysis techniques were already known at the start of this project (e.g. HiP-HOPS), the research focuses on the optimisation task.The thesis reviews the process of safety integrity requirements allocation and presents relevant related work. Then, the state-of-the-art of metaheuristic optimisation is analysed and a series of techniques, based on Genetic Algorithms, the Particle Swarm Optimiser and Tabu Search are developed. These techniques are applied to a set of problems based on complex engineering systems considering the use of different cost functions. The most promising method is selected for investigation of performance improvements and usability enhancements. Overall, the results show the feasibility of the approach and suggest good scalability whilst also pointing towards areas for improvement

    Measurable Safety of Automated Driving Functions in Commercial Motor Vehicles

    Get PDF
    With the further development of automated driving, the functional performance increases resulting in the need for new and comprehensive testing concepts. This doctoral work aims to enable the transition from quantitative mileage to qualitative test coverage by aggregating the results of both knowledge-based and data-driven test platforms. The validity of the test domain can be extended cost-effectively throughout the software development process to achieve meaningful test termination criteria

    Optimizing the Automotive Security Development Process in Early Process Design Phases

    Get PDF
    Security is a relatively new topic in the automotive industry. In the former days, the only security defense methods were the engine immobilizer and the anti-theft alarm system. The rising connection of vehicles to external networks made it necessary to extend the security effort by introducing security development processes. These processes include, amongothers, risk analysis and treatment steps. In parallel, the development of ISO/SAE 21434 and UN-ECE No. R155 started. The long development cycles in the automotive industry made it necessary to align the development processes' early designs with the standards' draft releases. This work aims to design a new consistent, complete and efficient security development process, aligned with the normative references. The resulting development process design aligns with the overall development methodology of the underlying, evaluated development process. Use cases serve as a basis for evaluating improvements and the method designs. This work concentrates on the left leg of the V-Model. Nevertheless, future work targets extensions for a holistic development approach for safety and security.:I. Foundation 1. Introduction 2. Automotive Development 3. Methodology II. Meta-Functional Aspects 4. Dependability as an Umbrella-Term 5. Security Taxonomy 6. Terms and Definitions III. Security Development Process Design 7. Security Relevance Evaluation 8. Function-oriented Security Risk Analysis 9. Security Risk Analysis on System Level 10. Risk Treatment IV. Use Cases and Evaluation 11. Evaluation Criteria 12. Use Case: Security Relevance Evaluation 13. Use Case: Function-oriented Security Risk Analysis 14. Use Case: System Security Risk Analysis 15. Use Case: Risk Treatment V. Closing 16. Discussion 17. Conclusion 18. Future Work Appendix A. Attacker Model Categories and Rating Appendix B. Basic Threat Classes for System SRA Appendix C. Categories of Defense Method Propertie

    Generation of model-based safety arguments from automatically allocated safety integrity levels

    Get PDF
    To certify safety-critical systems, assurance arguments linking evidence of safety to appropriate requirements must be constructed. However, modern safety-critical systems feature increasing complexity and integration, which render manual approaches impractical to apply. This thesis addresses this problem by introducing a model-based method, with an exemplary application based on the aerospace domain.Previous work has partially addressed this problem for slightly different applications, including verification-based, COTS, product-line and process-based assurance. Each of the approaches is applicable to a specialised case and does not deliver a solution applicable to a generic system in a top-down process. This thesis argues that such a solution is feasible and can be achieved based on the automatic allocation of safety requirements onto a system’s architecture. This automatic allocation is a recent development which combines model-based safety analysis and optimisation techniques. The proposed approach emphasises the use of model-based safety analysis, such as HiP-HOPS, to maximise the benefits towards the system development lifecycle.The thesis investigates the background and earlier work regarding construction of safety arguments, safety requirements allocation and optimisation. A method for addressing the problem of optimal safety requirements allocation is first introduced, using the Tabu Search optimisation metaheuristic. The method delivers satisfactory results that are further exploited for construction of safety arguments. Using the produced requirements allocation, an instantiation algorithm is applied onto a generic safety argument pattern, which is compliant with standards, to automatically construct an argument establishing a claim that a system’s safety requirements have been met. This argument is hierarchically decomposed and shows how system and subsystem safety requirements are satisfied by architectures and analyses at low levels of decomposition. Evaluation on two abstract case studies demonstrates the feasibility and scalability of the method and indicates good performance of the algorithms proposed. Limitations and potential areas of further investigation are identified

    Assuring Safety and Security

    Get PDF
    Large technological systems produce new capabilities that allow innovative solutions to social, engineering and environmental problems. This trend is especially important in the safety-critical systems (SCS) domain where we simultaneously aim to do more with the systems whilst reducing the harm they might cause. Even with the increased uncertainty created by these opportunities, SCS still need to be assured against safety and security risk and, in many cases, certified before use. A large number of approaches and standards have emerged, however there remain challenges related to technical risk such as identifying inter-domain risk interactions, developing safety-security causal models, and understanding the impact of new risk information. In addition, there are socio-technical challenges that undermine technical risk activities and act as a barrier to co-assurance, these include insufficient processes for risk acceptance, unclear responsibilities, and a lack of legal, regulatory and organisational structure to support safety-security alignment. A new approach is required. The Safety-Security Assurance Framework (SSAF) is proposed here as a candidate solution. SSAF is based on the new paradigm of independent co-assurance, that is, keeping the disciplines separate but having synchronisation points where required information is exchanged. SSAF is comprised of three parts - the Conceptual Model defines the underlying philosophy, and the Technical Risk Model (TRM) and Socio-Technical Model (STM) consist of processes and models for technical risk and socio-technical aspects of co-assurance. Findings from a partial evaluation of SSAF using case studies reveal that the approach has some utility in creating inter-domain relationship models and identifying socio-technical gaps for co-assurance. The original contribution to knowledge presented in this thesis is the novel approach to co-assurance that uses synchronisation points, explicit representation of a technical risk argument that argues over interaction risks, and a confidence argument that explicitly considers co-assurance socio-technical factors
    • …
    corecore