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Abstract
Security is a relatively new topic in the automotive industry. In the former days, the
only security defense methods were the engine immobilizer and the anti-theft alarm
system. The rising connection of vehicles to external networks made it necessary
to extend the security effort by introducing security development processes. These
processes include, among others, risk analysis and treatment steps. In parallel, the
development of ISO/SAE 21434 and UNECE No. R155 started. The long develop-
ment cycles in the automotive industry made it necessary to align the development
processes’ early designs with the standards’ draft releases.
This work aims to design a new consistent, complete and efficient security devel-
opment process, aligned with the normative references. The resulting development
process design aligns with the overall development methodology of the underly-
ing, evaluated development process. Use cases serve as a basis for evaluating im-
provements and the method designs. This work concentrates on the left leg of the
V-Model. Nevertheless, future work targets extensions for a holistic development
approach for safety and security.

Keywords: Automotive Systems, Dependability, Security, Development Process
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The process of planning is very valuable, for
forcing you to think hard about what you are
doing, but the actual plan that results from it
is probably useless.

Marc Andreessen

1
Introduction

Few quotes are going better with this dissertation than the one of Marc Andreessen.
At the beginning of this dissertation project, the aim was a holistic process for
architecture verification regarding the meta-functional aspects of safety and security.
The project’s idea was to incorporate both aspects into the development process in
a unified way.
The necessity for such a new view on the development arises since modern auto-
motive systems have an increasing amount of driving assistance features [79, 48]
constantly moving towards automated driving. Statistics show that tens of millions
of connected vehicles exist [27], something necessary for advanced driving assistance
features. This shift leads to more complex functionality, primarily implemented in
software [42]. The results are manifold. More software functionalities lead to a rising
demand for hardware resources which is critical due to the limited space in the ve-
hicle. High integration of software onto commercial off-the-shelf (COTS) hardware
is a reasonable possibility to overcome this issue and reduce costs for specialized
hardware [22]. The distributed development process with numerous suppliers de-
mands rigorous approaches for coordination and consultation between all parties
concerned [79, p. 5].
The described trends imply a shift from the closed world assumption of former
automotive systems to open systems [48]. Since automotive systems are so-called
risk-prone systems regarding safety and security, this shift raises the demand for
quality management [79, p. 1]. Safety and security are traditionally disciplines that
interrelate due to their dual view of the system. Safety prevents harm to the user and
the environment, while security prevents harm to the system arising from the user
and the environment. The necessary cohabitation of both so-called meta-functional
aspects makes it necessary to rethink the development process designs: Otherwise,
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1. Introduction

it is impossible to identify interrelations as early as possible, raising the costs for
design changes. Especially the transition from the design and implementation phase
to validation and verification is essential in this case. It needs wholly defined and
well-implemented development process steps.
While safety is a known field in the automotive industry, security is newly emerg-
ing. The introduction of security started with anti-theft alarm systems, electronic
immobilizers, Remote Key-less Entry, and Key-less Go [104]. The emphasis was on
theft protection and tuning prevention rather than analyzing system weaknesses.
Nevertheless, the new trends make it necessary to see security development as a
continuing process introduced early and holistically in the development process [33,
25]. This so-called system-level security or security-by-design targets the system’s
design to be robust to currently known security threats and tolerant in case of ma-
licious attacks [87]. Also, the design must handle currently unknown threats as far
as possible. Nowadays, on the ranking of security attacks, the automotive industry
is in the third rank, which leads to high costs for handling attacks [27]. This trend
is possible through the extended attack surface of vehicles enabled by the vehicle’s
connectivity [48].
The focus and release time of the normative references emphasize the necessity for
a shift in security development. SAE J3061 Cybersecurity Guidebook for Cyber-
Physical Vehicle Systems [98] was the first published reference addressing security
issues on the level of unauthorized access to data. The guidebook provided first
recommendations for the cybersecurity process, too. Type approval in the auto-
motive domain now relies on accomplishing the process standards ISO/SAE 21434
[54], and UNECE No. R155 [85]. The release of those standards was just recently.
However, the long development times in the automotive domain made it necessary
to adopt the outlined security development process from the normative references
since its draft release.
Those standards demand a security development process that identifies unforeseen
consequences and treat those risks [38, p. 4]. Thereby the security risk analysis tells
a story of five questions:

• What can go wrong? - These are the damage scenarios endangering the sys-
tem’s correctness.

• How bad is this? - The impact of those damage scenarios.
• How can that happen? - The threat scenarios and attack paths an attacker

might use to accomplish the damage scenarios.
• Who can do that? - The type of attacker which can successfully launch the

attacks.
• How probable is this? - The feasibility of the attack.

The subsequent risk treatment step aims to consolidate the story. Thereby it weights
the different elements and assigns defense methods to the system to reduce the risks
arising from the impact and feasibility. Therefore, this step defines the implemen-
tation requirements regarding security.
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1.1. Research Questions

Implementing such analysis and treatment steps demands a new development pro-
cess. The core, but not necessarily the start of each development process design,
is its definition, the methods, and tools needed to accomplish the process steps
[66, p. 1]. Those methods help to achieve the necessary activities systematically
[8]. Initial process descriptions typically arise from former development cycles and
are subject to continuous evaluation and optimization to enhance efficiency and
acceptance.
In the case of automotive security, there is no suitable tradition of modeling and
analysis, like in safety. Initially, processes with this background are neither com-
plete nor well-implemented and have high improvement potential. In this case, the
processes were subject to constant change to align with the draft releases of the
normative references.
Due to these issues, it got apparent that the original project idea is impossible
with a proper relation to a real-world development scenario. Therefore, the project
evermore moved to the left leg of the V-Model. It ended with the question of a
complete, consistent, and efficient security development process design. The scope
of the process design is the vehicle itself. Therefore, the vehicle’s environment,
backend servers, and production facilities are out of scope. The result builds the
basis for accomplishing the original idea in future work.

1.1. Research Questions
This work targets the following research questions in order to design a complete,
consistent and efficient security development process:

RQ 1: What is a suitable terminology for the security development process? Security
is a traditional topic in information technology but new to the automotive domain.
Literature from research and industry shows that there is no standard terminology.
Therefore, it is necessary to define a distinct terminology to rate existing work and
have a common understanding between the involved parties. The approach transfers
the well-defined and commonly accepted Laprie model to the automotive security
area.

RQ 2: What are the demands of the normative references? Automotive development
demands alignment with normative references. Therefore, the starting point for
defining or evaluating a development process is the analysis of those demands.

RQ 3: What are the necessary analysis and treatment steps? The demands of the
normative references provide the abstract development process structure and pro-
cess descriptions. Those enable the evaluation of possible implementations. In the
case of already existing process steps, those need an evaluation regarding complete-
ness. Missing process steps in the existing process make an extension necessary.

RQ 4: What are the possibilities to raise efficiency in the security development
process? The complete process description allows for an evaluation of efficiency.
This evaluation demands distinct properties and reveals mechanisms, e.g., to reduce
repetition and raise automation.
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1. Introduction

RQ 5: Where is tracing necessary? How can tracing be introduced? A distributed
development environment is subject to frequent adjustments of requirements. The
certification demands of the normative references make it necessary for the security
development process to support the tracing of decisions. Otherwise, it is impossible
to reproduce process steps and work products.

1.2. Outline and Impact
The work begins with the background and the methodology (Part I). This part
clarifies the development methodology of the evaluated security development process
and the methodology used to achieve the contributions.
The next part about meta-functional aspects (Part II) aims to incorporate readers
from the safety and security domain. It transfers the dependability tree of Laprie
onto the security domain. It defines a taxonomy for a common understanding of
the underlying security terminology in the automotive domain and the remaining
work.
Part III uses the results from Part II for the security development process design.
Thereby, this part uses the existing security development process structure with
a state of September 2021 and includes later process changes as far as possible.
The main contributions are a new design of the security relevance evaluation [60],
improvements to the functional security risk analysis, a proposal for the former
missing step of the system level risk analysis, and the risk treatment [59].
Use cases in Part IV provide examples for the security development steps of Part
III and evaluate the achievements. The last part (Part V) discusses the results,
concludes the work, and presents how the original project idea relies on the achieve-
ments of this work in the future work chapter. This part incorporates the contri-
butions presented in former work [58, 57, 61].
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What I wanted to do was build an automobile.
Carroll Shelby

2
Automotive Development

A development process for meta-functional aspects needs to align with the overall
development methodology and follow a process model. Resulting from the norma-
tive references, the automotive development process commonly follows the V-Model
(see Section 2.1). One constraint for this work is function-oriented development (see
Section 2.2), embedded in a systems engineering approach (see Section 2.3). The
commonalities of security add important points to the development process (see
Section 2.4) to fulfill the demands of the normative references (see Section 2.5).

2.1. Development Models
Development models help structure the development steps by defining the begin-
ning, end, and activities themselves [113, p. 32]. They follow an underlying devel-
opment philosophy: sequential or incremental methods.

Sequential methods are those where the other system parts development happens
in a series of steps following a downward fashion from initial requirements to the
design, and the final product [100], [113, p. 33]. Such methods are suitable for
large, distributed development teams since they force the developers to stick to the
provided framework [113, p. 33]. They are also suitable for hardware development
since they restrict iterations and thereby late changes of the design [100].
The advantages of sequential models are predictability, stability, repeatability, and
high assurance [113, p. 33].
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2. Automotive Development

Incremental methods are typically also iterative by nature. They built upon the
philosophy to gradually improve the system until the design incorporates all de-
manded capabilities [113, p. 36], [100].
This approach is especially suitable for projects with many development steps and
concurrent development cycles. The latter is since the iterative nature allows the
incorporation of lessons learned from other development strands meanwhile the
different development phases [100].

Combined approaches are reasonable, depending on the development process. The
automotive industry tends to use the V-Model as a sequential development philos-
ophy candidate and combine it with the iterative nature of the spiral model [95,
p. 12].
The normative references of the security engineering process rely on the V-Model,
but in reality, the development process is not entirely sequential. Several prototypes
and iterations accompany the vehicle development, which the spiral model covers.
Therefore, the remaining section covers the V-Model but also shortly introduces the
idea of the spiral model. Interested readers may refer to the work of [121] for an
extensive overview of process models.

2.1.1. Spiral Model
The spiral model is an iterative model of the design process [121] relying on a
bi-directional development process. Top-down, the process derives requirements.
Based on evaluating prototypes, necessary changes adjust the requirements bottom-
up. Figure 2.1 illustrates the spiral model with one middle layer. In reality, the
spiral has several layers with a new prototype each.
During the development cycle of the spiral model the development phases overlap
[77, pp. 70 sq.], [37, p. 73]. The specifications validation (Definition 25) and verifi-
cation (Definition 26) is part of the prototyping process. By that, the specifications
refine along with the prototype while proceeding along the spiral to the outside [37,
p. 73], [121].
The spiral model allows for high flexibility and user involvement in the develop-
ment process. The iterative manner allows reacting very fast to changes in the
requirements. The prototypes support this since they make stakeholder feedback
easier.
On the other hand, the spiral model is only suitable for large-scale projects, which
allow for constructing prototypes. The flexibility of the spiral model needs stringent
management of the process with appropriate risk assessment, modeling, and analysis
tools [77, pp. 71 sq.]. Otherwise, the project might end unfinished due to constant
changes and new requirements.
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Figure 2.1.: Spiral Model, according to [37, p. 74].
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2.1.2. V-Model
The V-Model1 or Vee-Model is an extension of the sequential waterfall model [77,
pp. 72 sq.]. The characteristic shape (see Figure 2.2) results from splitting the
development process into a design and an integration phase [77, pp. 72 sq.], [99,
101], [120, p. 7], [37, pp. 58 sq.] accompanied by verification and validation steps
on each level [77, pp. 72 sq.].
The system design evolves downwards on the left-hand side, level by level [116],
starting with the product requirement analysis and different architectural views
(e.g., logical, technical, functional). The different development strands for the con-
crete implementation are at the end of the left leg. This part depicts the decompo-
sition of the overall system into the subsystems for implementing requirements and
showing feasibility [37, pp. 58 sq.]. In automotive systems, this would be the vehicle
subsystems with its different parts of mechatronic, electrical and electronic (E/E),
hardware and software development [37, pp. 58 sq.], [99]. The elements of the lowest
level are subject to production or harvesting. Those are not further decomposed
[116].
Parallel to the left leg of the V-Model, the integration phases compose the system
accompanied by validation, and verification steps [99]. The right side ends with the
overall system, validating that the initial requirements hold [77, pp. 72 sq.].
In conclusion, the V-Model levels illustrate the system development levels. Com-
posing the left and right-hand provides a particular system view on each level [116].
From left to right (horizontally), the time and maturity of the product evolve [113,
pp. 34 sq.]. Vertically, the levels of the system evolve. From the system context
and requirements analysis over logical and physical levels to the system parts in the
bottom layer [116].
The advantages of the V-Model are the easy addressable design verification against
the implementation [77, pp. 72 sq.]. Iterations in the development process are
possible on each level, on the left and right leg of the V [116]. This maintains high
flexibility. Each level builds a consistent baseline, enabling early verification and
concurrent engineering planning. The transfer of requirements downward the V and
their validation maintains bidirectional communication between the incorporated
parties [116].
In contrast to those advantages, the model does not address supporting processes,
and therefore the process organization [77, pp. 72 sq.]. To overcome this issue, [101]
formulates several views on the V-Model. Readers interested in those extensions
may refer to [101] as a starting point for further information about V-Model views.

2.2. Function Oriented Development
Automotive development projects tend to have many different functionalities and
variants of them. Those variants may be because of country dependencies or varia-
tions in the function range.

1The reader may not mix the V-Model with the German V-Modell [36] which is a development
standard.
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Figure 2.2.: V-Model, according to [37, p. 59].

Not every function variant is part of the resulting automotive architecture. Never-
theless, the development process must incorporate them all until the start of serial
development. At this point, functions or function variants not part of this vehicle
project drop out of the development process.
Function-oriented development targets this issue by incorporating functions inde-
pendent of their definitive treatment. This development methodology is part of
process organization and architecture generation. The idea is to decompose the
system into functionalities and define the system architecture through functions,
and sub-functions [113, pp. 190 sqq.] leaving the details of how to encompass them
aside. By that, it is possible to develop the functions independent of the final ar-
chitecture. This function-oriented view also reveals interdependencies, and action
chains between the functions, supporting the decision processes on the different
development process layers [114, 16].
Important in this approach is the independence of a concrete deployment. The func-
tions’ interdependencies and demands do not relate to the electronic control units
(ECUs). The hardware is part of the solution space in the systems architecture.
This independence allows the usage of the degrees of freedom in the deployment.
Those are, among others, costs and weight [16].

2.3. Systems Engineering
Automotive development consists of hardware and software development. Several
disciplines are essential in hardware development, e.g., E/E and mechanics. The
functions are mostly implemented in software. Meta-functional aspects introduce
additional dependencies into the development process and the resulting system.
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Figure 2.3.: Systems engineering concepts with the V-Model structure. The dotted line depicts
the baseline of the different layers. Each layer uses model-based systems engineer-
ing (MBSE) for deriving the requirements.

Systems engineering is an interdisciplinary field that is especially suitable for such
systems. Besides the inclusion of meta-functional aspects, it provides mechanisms
for interdependencies between different engineering disciplines and to support dis-
tributed development environments [37, p. IX]. Thereby, systems engineering is no
plan or method, but only a layout for system thinking and problem-solving [37,
p. 3], [113, p. 11].
The idea behind systems engineering is to derive the system requirements top-down
from the product properties in the stakeholder view. Those requirements refine
and decompose step-wise until the subsystem level [77, p. 10]. The single sub-
systems integrate into functional clusters. The system structure depicts the project
organization, the responsibilities, and the development team structure.
Combined with function-oriented development, systems engineering provides the
layering and dependency relations between the overall system requirements and the
development strands, ultimately supporting the definition of the system architecture
in which the functions integrate (see Figure 2.3). The stakeholder and system
requirements are the primary concern of systems engineering. Each level of the
systems engineering top-down decomposition refines the requirements allocated to
the functions (function-oriented development). The V-Model provides the structure
in which the systems engineering approach operates. Therefore, it represents the
layers from the vehicle view, function view, and component view in combination
with the notion of baselines and verification/validation of the requirements and the
system.
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2.4. System Security Engineering
Systems engineering incorporates risk management in the system architecture. This
management divides into risk identification of the product development risks and
the product itself, as well as analysis and treatment of those risks [67, p. 184].
Therefore, systems engineering directly supports the management of meta-functional
aspects like safety and security and allows suitable development processes for those
aspects through viewpoints. The security viewpoint incorporates requirements re-
lated to the security-development which is the fundamental principle of security
engineering [39, p. 26], [113, p. 234]. Therefore, systems engineering includes sup-
port for security-by-design. The reliance on modeling and analysis to build the
systems architecture allows model-based analysis of the system related to security.
This basis is a systematic, distinct and traceable way to manage security risks [39,
pp. 16, 20].
The layout for the security engineering process used for this thesis starts at the top
level of system engineering. In the beginning, the security concept is subject to
updating. This update introduces new technologies and strategies into the security
development process [113, pp. 234 sq.]. Conducting the risk assessment already
in the requirement engineering phase introduces security requirements as early as
possible [10]. This approach allows tailoring subsequent process steps related to
the necessary effort [30]. The security assessment steps refine the security require-
ments regarding the system functionalities [38, p. 3] and validate/verify them [113,
pp. 235 sq.]. Security engineering observes that the product realizes the introduced
requirements during production. Throughout the complete life-cycle of the car, se-
curity engineering maintains the secure state of the car through updates and other
support processes [113, pp. 234 sq.].

2.5. Normative References
Automotive security is, like most engineering disciplines, subject to the demands of
standards, and state-of-the-art practice recommendations [113, p. 166].
At first, the Society of Automotive Engineers (SAE) published the SAE J3061, the
Cybersecurity Guidebook for Cyber-Physical Vehicle Systems [98]. This guide pro-
vides information about recommended practices on automotive security. Thereby,
SAE J3061 addresses security issues on the level of unauthorized access to data and
gives recommendations for the Cybersecurity process.
In 2016 International Organization for Standardization (ISO) and SAE started the
development of the standard Road vehicles – Cybersecurity engineering and released
it in 2021. The security standard for automotive systems relies on the recommenda-
tions of SAE J3061 and extends them to the CIA triad (Confidentiality, Integrity,
and Availability) [54].
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ISO/SAE 21434 serves as a guideline to implement UNECE No. R155, the Proposal
for a new UN Regulation on uniform provisions concerning the approval of vehicles
with regards to cyber security and cyber security management system [85]. The first
release of the UNECE No. R155 was in 2020 and became effective in 2021. UNECE
No. R155 is binding for all automotive vehicle types beginning with July 2022 and
from July 2024 on for all new vehicles [28].

2.5.1. ISO/SAE 21434
The ISO/SAE 21434 standard defines the process steps in automotive security de-
velopment. Thereby the ISO/SAE 21434s main part for the product development
aligns to the V-Model and outlines the development process steps, along with pos-
sible methods. Also, it provides information about approaches usable throughout
the vehicle lifecycle [27]. Nevertheless, it does not provide details about efficiency
[27]. This issue is up to the realization of the development process in the company.
ISO/SAE 21434 defines the process steps typically as a triple: Input, requirements,
and work products. While input describes the results of preceding process steps,
the work products section defines the results of this process step. The requirements
section defines this process’s goal and possible methods.

2.5.2. UNECE No. R155
UNECE No. R155 describes the necessary parts of the security management systems
to acquire the certification according to the standard. This certification is subject to
revalidation every three years [85] and is required for type approval in the European
Union (EU) and other countries.
Therefore, the UNECE No. R155 describes which measures the company need
to take. In conclusion, it defines that the company needs to have a “systematic
risk-based approach defining organizational processes, responsibilities, and gover-
nance to treat risk associated with cyber threats to vehicles and protect them from
cyberattacks” [85].

2.5.3. Other Normative References
ISO/IEC 27001 covers information security systems [56] rather than automotive
security. There are fundamental differences between both. As described by [102],
automotive systems, in contrast to information systems, cannot be isolated from
their environment. However, the requirements of ISO/IEC 27001 are not irrelevant
in automotive development since it targets the backend-server and the information
systems of the original equipment manufacturer (OEM).

UNECE No. R156, Uniform provisions concerning the approval of vehicles with
regards to software update and software updates management system [111] targets
security related to the integrity of the update. Although this is relevant for type
approval of automotive systems, it is not relevant for this work. A suitable security
process for the related information systems and the automotive system covers this
issue without further adjustments.
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We can’t solve problems by using the same
kind of thinking we used when we created
them.

Albert Einstein

3
Methodology

This thesis aims to design a security development process using the evaluation of
an existing one and the normative references. The following chapter describes the
methodology used to accomplish this task, whereby a methodology is seen as a set
of “processes, methods, and tools used to support a specific discipline” [113, p. 190].

3.1. Representation in the Thesis
Since automotive security is a relatively new field, no common terminology exists.
The first step in this thesis is to determine a security taxonomy to overcome this
issue and provide a distinct basis. This taxonomy transfers the existing depend-
ability tree of the Laprie model onto security. The result is the foundation for the
subsequent development process design.
The following process description targets each process step one at a time. Thereby,
it uses a structure of five steps: The normative references for the process step,
the current implementation, and related work give rise to issues and improvement
potentials. Those improvement potentials and issues are subject to the subsequent
solution approach, which suitable use cases accompany.
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Therefore, each process step is part of two chapters with the following structure:
• Process Step (Part IV)

– Normative references
– Current process implementation
– Related work (if existing)
– Problem description and solution approach
– Contributions

• Use Cases (Part V)
– Application and results for the process step
– Evaluation by reference to evaluation criteria and requirements

The structure illustrates the methodology of the process design. The aim is to eval-
uate the demands of the normative references and general process requirements.
Those requirements depict the responsibilities, approach, methods, and tools. The
evaluation aims to systematically identify problems with the current process imple-
mentation, and possible solutions to overcome these issues [108]. The contributions
part of each process chapter aims to implement the solutions, followed by a use case
including a nominal-actual comparison in the evaluation.

3.2. Information Sources
The evaluation of the state-of-the-art involves several sources. From the norma-
tive reference side, ISO/SAE 21434 [54] and UNECE No. R155 [85, 86] are the
main sources. Those describe the demanded security development process steps as
well as possible methods. Therefore, those sources are the baseline to which the
development process needs to align.
An Architecture of Integrated Information Systems (ARIS) model illustrates the
current development process implementation in the form of a business process
model. The swimlane diagram shows the different process steps as well as prepa-
rational steps. Also, it incorporates responsibilities between the different security
development roles. This model provides the development process structure, which
must align with the development process steps of the normative references.
The definition of the development steps is in an internal wiki. Due to the company’s
global availability of the wiki, the responsible persons in the development process
and all interested employees can engage with the topic. This wiki documents the
process steps’ activities and the tools and methods used.
Another source for information about the current process implementation is the
development schedule. It gives rise to the points in time where the process steps
occur, which allows identifying if may need to provide the notation of uncertainties.
For the development process tracking, the security department uses the process and
issue tracking software Jira1. With that tool, the development team can manage
the security development process in a scrum-like fashion. By that, the process keeps
basic traceability through the development process of the functionalities and over
the complete progress.

1https://www.atlassian.com/software/jira
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In order to prevent unaware changes on the work products, the security department
uses a document management system based on Documentum2. One necessary key
feature of this software is its ability to work with confidential information.
The information in the process tracking software and the document management
system gives rise to the current implementation of the security development process.
By that, it is possible to evaluate current templates and process results. The criteria
are the alignment to the normative references, the time effort, and the support of
model-based development and security-by-design.
By evaluating the mentioned sources, issues regarding the defined criteria are iden-
tifiable. Those provide the improvement potential. Suggested improvements do, if
possible, not introduce new methods or tools but align and streamline the exist-
ing methods and tools. Therefore, the methodologies solution part describes the
adjustments to the methods and tools and possible extensions.
The use case part serves two purposes. On the one hand, it shows how the methods
and tools in the improved version apply in practice. On the other hand, the use
case gives rise to accomplishing the improvement goals. Since the information used
throughout the work is subject to non-disclosure agreement (NDA), the use case
section sometimes lacks details. It is necessary to use approximated numbers and
reduce the content of the use case input data and work products for this work.

2https://www.opentext.de/produkte-und-loesungen/produkte/enterprise-content-management/
documentum-platform/documentum-d2
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Part II.

Meta-Functional Aspects
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The literature commonly uses the term non-functional properties which indicates
that these are properties of a not functioning (broken) system. Therefore, this thesis
decided to use another term to emphasize that these properties do not directly
relate to the system’s functionality: meta-functional aspects. Those aspects depict
certain viewpoints to the system [37, p. 9] related to properties besides the specified
functionality. For example, timing as a system aspect narrows the usefulness or
correctness of the function regarding the viewpoint of timing requirements, not the
functionality itself.
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Safe is a relative construct. Safe has inconsis-
tent meanings.
Star Trek Discovery, Season 2, Episode

8

4
Dependability as an Umbrella-Term

Dependability describes the extent to which the user can trust that a system’s be-
havior follows its specification. The dependability attributes describe certain types
of trust in the system behavior. Impairments endanger these system properties,
while dependability means help to prevent these impairments (see Figure 4.1).
Research and industry discussed the terms related to the concept of dependability
to an enormous extent with varying definitions. In order to prevent misunderstand-
ings in the remaining work, this chapter discusses the dependability impairments,
attributes, and means regarding their definitions according to the Laprie model, the
applicable standard in the automotive industry (ISO 26262:2018 [53]) and related
literature as a reference point. Thereby, the security-related terms are left out.
They are the focus of the following Chapter 5, the security taxonomy.
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4.1. Related Work
The research community commonly follows the approach by Laprie/Aviz̆ienis et al.
[12, 15, 14, 13, 70, 71, 72, 69] 1 who group the different system attributes regarding
the quality of service into dependability attributes and according to impairments
and means (see Figure 4.1). Laprie et al. provide a distinct understanding between
the general meaning and the quantification of the concepts of dependability as well
as emphasize the commonality of the different perceptions of the attributes, which
aim to give trust in the examined systems behavior [70]. The reliance on the system
behavior includes both the correctness and the continuity of delivery.
[97] calls the Laprie model the dependability approach, which targets ultra-reliable
and fault-tolerant systems. While the typical approach includes safety into depend-
ability, [97] differentiates the dependability approach and the safety approach. The
dependability approach “maximizes the extent to which the system works well, while
the safety engineering tries to minimize the extent to which it can fail badly” [97].
In his paper, he categorizes both approaches according to their use case. While the
dependability approach is usable in systems “where there is no safe alternative to
normal service”, e.g., aircraft systems, the latter approach is used in systems like
military use cases “where there are specific undesired events” [97].
On the one hand, this categorization is interesting since it reflects different priorities
in the industry. On the other hand, the differentiation between safety and depend-
ability is not distinct. For example, the automotive industry emphasizes safety and
leaves the other attributes aside. Nevertheless, they cover reliability and availability
indirectly through the analysis in the development process. It is impossible to follow
only one system attribute and leave the other entirely aside. The question is rather
what the priority of the analysis results is. This interrelation also shows an evalua-
tion of [97] since the presentation of the safety approach is mainly industry-related.
In contrast, the dependability approach covers research and practice following the
Laprie model.
[65] attaches to the definitions of Laprie and his system model and interprets the
dependability concept in a behavioral context. The work introduces the concept of
trustability to cover the behavioral attributes of dependable systems.
Different standards arose from the industry’s perspective, applicable to different
industry areas. They use their vocabulary, which differs between themselves and the
research literature. This controversy leads to a diverse mindset about the different
dependability terms, definitions, and interrelationships. When comparing literature
out of industry standards and research like done by [109, 110] one can see that there
are different goals the system design has to emphasize and the names for the different
dependability attributes and impairments vary. However, at its core, the goal is the
same. The user should be able to trust the system because it functions correctly in
the behalves of its specification.

1Although the authors of the papers to the Laprie model changed and mentioned Aviz̆ienis more
often as first author, the model itself is commonly called the Laprie model. Therefore, the
author decided only to use the name Laprie in the text.
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In the automotive industry, the standard ISO 26262:2018 (“Road vehicles – Func-
tional safety”) is the derived version of the International Electrotechnical Commis-
sion (IEC) 61508 series (“Functional safety of electrical/electronic/programmable
electronic safety-related-systems”), the originating functional safety norm series.
Like in the research literature, the standards are selective in the defined terms. Al-
though safety analysis typically uses results from reliability analysis, ISO 26262:2018
[53] does not define the term reliability.
ISO 21448:2022 [52] targets unexpected safety impairments, or the Safety of the
Intended Functionality (SOTIF). Those are performance impairments, wrong situ-
ation assessments, and missing robustness against environmental influences. The
target functions are emergency intervention systems and Advanced Driver Assis-
tance Systems (ADAS) systems on levels 1 and 2.

4.2. Dependability Impairments

Maintainability

Reliability

Availability

Safety

Faults

Errors

Failures

Impairments

Attributes

Means

Dependability

Fault Prevention

Fault Removal

Fault Forecasting

Fault Tolerance

Figure 4.1.: Laprie Model, according to [13] with attributes reduced by the security objectives
confidentiality and integrity.

Following the Laprie model (Figure 4.1), there are three categories to describe de-
pendability impairments: Faults, errors, and failures. These relate to the underlying
quality of the systems delivered service. It is the correct service if the system im-
plements the system specification [13]. If this service deviates, the system transits
from correct (regular) to incorrect behavior (error) and may ultimately lead to a
system failure.
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4.2.1. Faults
Definition 1 (Fault). A fault is an unintended system condition that may result
in an error. Internal faults reside in the system, while external faults originate
from the system’s environment.

Faults are the actual or hypothesized causes of consecutive errors [13, 45] [66, p. 17].
They are typically seen as imperfections in the system [117] or not intended condi-
tions which may result in a system failure [53, Part I]. These definitions state that
faults are the beginning of the dependability chain leading ultimately to system
failure.
Laprie et al. state that every fault is a design fault in the underlying system
specification [69]. From a pragmatic point of view, this is not beneficial in modeling
and analysis. Therefore, there is a distinction between internal faults and external
faults. An internal fault is an event that leads to the system being still operational,
and the behavior seems to be correct. Nevertheless, the system has an underlying
defect in its design. Internal faults reside in the system and are activatable by
internal control flows. External faults are environmental conditions introducing an
error cause through interference or interaction [65, 13]. The distinction between
internal and external faults helps in system design. Internal faults are those in
the sphere of influence of the system designer and maintainer. External faults are
coverable in the system design and analysis but are out of reach during the system’s
run-time. This differentiation covers also the dependability means (see Section 4.4).
In literature, error or defect is sometimes used instead of fault. [109, p. 85] provides
a good overview of the deviations from Lapries definitions.

4.2.2. Errors
Definition 2 (Error). The internal system state deviates from the correct state.

In case of an activated fault the system state deviates from the correct state [53,
Part I], [13, 45], “from accuracy or correctness” [117]. This is an atomic transition
into the error state [65, 117, 13]. The error state itself is an internal system state
which can be triggered through internal or external faults [65]. Errors are, therefore,
the next stage in the dependability chain. The system’s internal state deviates, but
the deviation is not recognizable by the user.
An error can possibly be detected which is typically made recognizable through a
log or error message [66, p. 18]. In this case, there is the option to handle the
error in a way that leaves the system operational [109, p. 97]. As long as the
error is not detected, it is called a latent error [13]. Those definitions describe the
different states an error might have. Whether the system detects and handles an
error depends on the system implementation. The dependability means cover that,
e.g., by fault-tolerance approaches (see Section 4.4).
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4.2.3. Failures
Definition 3 (Failure). A failure transition leads to the system service deviating
from the intended one.

Not detected errors might lead to the event of the system behavior deviating in a
way in which the wrong system state gets externally recognized by the environment
(e.g., the user) [65, 13, 45] [53, Part I]. This transition transforms the system state
from operational into failed according to the system specification [65, 13]. Thereby,
failures are the last stage in the dependability chain. The system behavior deviates
from the intended one and violates the dependability attributes.
Depending on the severity of the failure, the primary differentiation is benign/minor
failure and malign/catastrophic failure. The former denotes failures “where the
harmful consequences are of similar cost as the benefit provided by correct service
delivery” [13]. The latter are those, “where the cost of harmful consequences is
orders of magnitude, or even incommensurately, higher than the benefit provided
by correct service delivery” [13]. This differentiation depends on how much a system
must fulfill the dependability attributes. For example, safety-critical systems aim
to prevent malign failures in any case.

4.2.4. Error Propagation
The Laprie model calls the correlation between the dependability impairments in
different system parts error propagation. [109, pp. 86 sqq.] shows that this idea is
usable for the propagation between system layers, e.g., hardware, operating system,
middle-ware, and application. These layer abstractions are the system and execution
layers (see Figure 4.2).
An internal fault gets activated during system execution. When the internal system
state deviates through external faults or control flows triggering internal faults, the
system goes into the error state. This error is the cause of a failure in the system
layer (internal).
The failure of the system layer results in an external fault introduction in the execu-
tion layer. This external fault leads to an error state and may result in a consecutive
failure of the execution layer. If this is recognizable to the user, the system fails
and goes into the outage state.
An example from [13] is as follows: “The result of an error by a programmer leads to
a failure to write the correct instruction or data, that in turn results in a [...] fault
in the written software (faulty instruction(s) or data); upon activation (invoking the
component where the fault resides and triggering the faulty instruction, instruction
sequence or data by an appropriate input pattern) the fault becomes active and
produces an error; if and when the error affects the delivered service (in information
content and/or in the timing of delivery), a failure occurs.” [13].

4.3. Dependability Attributes
The trust in the system behavior differentiates into several attributes. Those stress
the different properties of dependability a system designer may emphasize. For
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Figure 4.2.: Dependability chain of Laprie, transformed to the propagation between system
layers. Taken from [109, p. 89].

example, web servers do not show a high degree of safety but high availability and
maintainability. On the other hand, in automotive systems, maintainability is not
a primary concern but safety.
As already stated, this chapter defines the basic terms of dependability, excluding
the security-related ones. Therefore, this section defines dependability attributes,
leaving aside confidentiality and integrity. Availability’s definition is regarding its
impact on the general system service. Section 5.4 describes security-related aspects
of availability.

4.3.1. Maintainability
Definition 4 (Maintainability). Maintainability is a system’s design ability to
change in order to stay in a working state.

Maintainability is the property of a system to be repairable or changeable during
its life-cycle. [70] at first define maintainability as “continuous service interruption”
[70]. The later work of the Laprie model [71, 72, 14, 13, 15] defines maintainabil-
ity as “ability to undergo repairs and modifications”. [113, p. 228] arguments that
maintainability is a system property of being restored or retained in a correct work-
ing state. It is, therefore, a property of system design while maintenance is the
action, only possible in a properly designed system.
Although this is somewhat important also in automotive systems, the ISO standards
(ISO 26262:2018 [53], ISO/SAE 21434 [54], and ISO/IEC 27000:2018 [55]) do not
define this term.
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4.3.2. Reliability
Definition 5 (Reliability). Reliability is the property of continuity of correct
system behavior and results.

At first, the Laprie model defines reliability as “continuity of correct service” [69].
This definition is consistent with the consecutive papers [71, 72, 14, 13, 15].
While ISO 26262:2018 [53] and ISO/SAE 21434 [54] do not define the term reliabil-
ity, ISO/IEC 27000:2018 [55] defines it as “property of consistent intended behavior
and results” [55].
On the first view, the definition in ISO/IEC 27000:2018 seems slightly different
from the one given in the Laprie model, but at a second glance, it is the same.
The Laprie model describes service as the system behavior. Correctness in terms
of the Laprie model includes the correctness and the continuity of delivery [13].
Since the system fails, if the external behavior deviates from the intended one,
correctness means the intended behavior and the computation results. Therefore,
the definition of ISO/IEC 27000:2018 is transformable into the one of Laprie and
vice versa. Nevertheless, the one of ISO/IEC 27000:2018 states its meaning more
apparent.

4.3.3. Availability
Definition 6 (Availability). Availability is a system’s readiness for correct ser-
vice.

Availability as “readiness for usage” [69, 71, 72] is the first definition provided in the
Laprie model. Later the authors concretize the definition as “readiness for correct
service” [14, 13, 15]. This definition includes the interrelationship of availability
and reliability. Reliability describes the continuity of service without interruption.
Availability assumes repairable systems and describes that the system is currently
able to provide the intended service.
Other sources demand a certain timely manner of the provided service [41, 63],
[43, p. 14]. [91, p. 12] has the most comprehensive description of influences on
availability. It includes the usability and time, the fairness of resource allocation,
and aspects of fault tolerance in the discussion. [92] also emphasizes the aspect of
fault tolerance concerning data loss. Nevertheless, those are impairments or means
for availability rather than a definition.
The definition of availability in ISO 26262:2018 is twofold. On the one hand, it
defines the property of availability but also includes the quantifiable measure: “ca-
pability of a product to be in a state to execute the function required under given
conditions, at a particular time or in a given period, supposing the required ex-
ternal resources are available” [53, Part I]. The first part of the definition fits the
definitions of the other sources, focusing on the readiness to provide the expected
functionality. The latter part includes the availability of external resources, which
is not a core point of availability as a system property. The loss of external re-
sources is a fault that the system analysis must incorporate into the system design.
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It is no excuse if the system is unavailable. If there is the risk of a resource being
unavailable, the system has to mitigate this, e.g., using fault tolerance mechanisms.

4.3.4. Safety
Definition 7 (Safety). Safety denotes the absence of catastrophic consequences of
a system failure that result in death, injury, illness, damage to or loss of property,
or environmental harm.

According to the Laprie model, safety is the “absence of catastrophic consequences
on the user(s) and the environment” [14, 15, 13]. This definition results from the
continuing refinement of the level to which these consequences should be degrad-
able. At first, the authors use the word avoidance [69] which means “the action of
preventing something from happening” [89] or “action of keeping away from or not
doing something” [89] which emphasizes the lack of observation of catastrophic con-
sequences. Later, they use the word non-occurrence [71, 72] which dual occurrence
means “an incident or event” [90] or “the fact of something existing or being found
in a place or under a particular set of conditions” [90]. This refinement focuses on
safety as a negative outcome or influence on the system’s environment. The word
absence [14, 15, 13], like used in the later publications, means “the state of being
away from a place or person” [88] or “the non-existence or lack of something” [88]
and thereby emphasizes the result of the system modeling and analysis process: The
complete absence of risks for catastrophic consequences.
[65] follows the Laprie model definition: “safety denotes the system’s ability to fail
in such a way that avoids catastrophic consequences. Thus safety is reliability with
respect to catastrophic failures” [65]. The author regards safety as a “denial-of-
service to the [u]ser and thus a violation of the specification” if this disruption of
the delivery-of-service leads to catastrophic consequences [65]. On the other hand,
safety may also relate to the illegitimate users in the way of a confidentiality failure
which may also lead to catastrophic consequences [62].
The definition of the Laprie model and [62] are comparable to the definition of
ISO 26262:2018: “absence of unreasonable risk” [53, Part I]. ISO 26262:2018 also
focuses on reducing possible risks to the absolute minimum, whereby unreasonable
risk is an ambiguous term. It is defined as “[r]isk judged to be unacceptable in
a specific context according to valid societal moral concepts” [53, Part I]. Both
definitions (Laprie model and ISO 26262:2018) are interpretable in their subject of
the consequences. While the Laprie model authors do not precisely define catas-
trophic consequences, the ISO 26262:2018 leaves the definition to the societal moral
concepts. Again, this is not exact since the moral concepts differ between countries
and societies, especially regarding environmental consequences.
[18] on the other hand defines safety as “logical correctness (with respect to in-
put/output specification) and temporal correctness (further requirement of [Real-
time]-applications)” [18]. The source focuses on the way to analyze safety rather
than giving a distinction to reliability and availability. Logical and temporal cor-
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rectness might be usable to analyze reliability and availability, but safety can be
seen as an attribute whether failure may lead to severe results.
[97] defines safety as an attribute “concerned with the occurrence of accidents or
mishaps” [97], where mishaps are defined as “unplanned events that result in death,
injury, illness, damage to or loss of property or environmental harm” [97]. By that,
the definition is far more comprehensive regarding focusing on the consequences.
Nevertheless, the core of the different sources is the same with different emphasis
and subjects of the consequences: catastrophic consequences sourced by the system
under consideration. Within this thesis, safety as an attribute is as described in the
Laprie model with the definition of the user(s) and environment of [97]. Therefore,
incorporating environmental consequences, as well as people’s property.

Functional Safety is a sub-term to safety. According to IEC 61508 [45, Part IV], it is
a part of the overall safety regarding the system and the safety functions. This is also
the explanation used by [43]: “Something must continue to function in order to keep
the system safe” [43]. ISO 26262:2018 argues about the “absence of unreasonable
risk due to hazards caused by malfunctioning behavior of E/E-Systems” [53]. This
argumentation emphasizes that functional safety narrows the safety term. Safety
aims to prevent catastrophic failures, while functional safety tries to provide any
service in times of failure situations. Therefore, functional safety aims to transit the
system into a safe state, e.g., by graceful degradation to prevent further harm [94].
This thesis considers the ISO 26262:2018 definition of functional safety if needed.

4.4. Dependability Means
Dependability means classify and group the methods and tools to achieve the de-
pendability attributes. Classic literature groups them into fault intolerance and
fault acceptance approaches. The former tries to prevent the introduction of faults
in development. The latter admits that it is impossible to have a fault-free system
and aims to detect and handle the resulting errors to prevent failures during their
customer usage time. In modern systems, all means are also usable at run-time [109,
p. 79]. Therefore, this work relinquishes the distinction between fault intolerance
and fault acceptance.

4.4.1. Fault Prevention
The aim of fault prevention is to prevent the introduction of faults into the system
[71, 72, 14, 15]. The idea is that in an ideal system, the designer knows each fault
source, and the fault introduction is, therefore, preventable [109, pp. 77 sq.]. Since
this is impossible, fault prevention targets organizational and normative policies
and best practices (e.g., MISRA-C [84]) that help prevent fault introduction as far
as possible.
During the development process, quality control verifies that the developer adheres
to the policies [14]. As those, Laprie et al., like most dependability sources, do not
further evaporate over fault prevention since they count it to systems engineering,
which is a separate research area.
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4.4.2. Fault Removal
Fault removal aims to “reduce the number and severity of faults” [14, 15]. The
Laprie model states that fault removal consists of three steps. In the first step, the
system verification analyses the functional and meta-functional properties. If the
verification fails, the diagnosis step identifies the reason. The last step corrects the
fault, and the cycle starts again with verification [69]. In later work, the Laprie
model assigns the fault removal cycle to the development process. Fault removal
during the use phase consists therefore of “corrective and preventive maintenance”
[13]. Meaning the correction of reported miss-functions or, e.g., the preventive
exchange of hard drives.

4.4.3. Fault Forecasting
In fault forecasting, the idea is to identify faults in the system. The aim is not only
to evaluate whether faults exist in the system but also the likelihood and the con-
sequences of errors [69, 71, 72, 14, 15, 13]. Usable are quantitative and qualitative
models and analysis techniques. A good overview regarding dependability modeling
provides [109] and [13].

4.4.4. Fault Tolerance
Fault tolerance describes the system’s ability to work correctly besides existing
faults. Since the system reacts after detecting an error, literature sometimes calls
it error tolerance [109, pp. 78 sq.]. Typically, fault tolerance relates to redundancy
[71], since many approaches use redundancy in time or space, e.g., TMR systems
or backups. However, fault tolerance consists of error detection and handling [14].

4.4.5. Discussion
Like [69] states, the means of dependability have different targets and should always
be a combined approach. Fault prevention is regarding the system design, but the
best design methodologies do not entirely prevent the introduction of faults into
the system. Therefore, fault removal, combined with fault forecasting methods,
tries to evaluate and remove the faults from the system. Introducing fault tolerance
approaches helps to improve confidence in the trustability of the resilience of the
systems and helps to guide maintenance activities.
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In order to form an immaculate member of a
flock of sheep one must, above all, be a sheep.

Albert Einstein

5
Security Taxonomy

Security is a relatively new topic in the automotive industry. The typical approach
in such cases is to transfer the terminology, methods, and tools from other areas.
The vast amount of differing terminology in other domains makes this problematic.
Additionally, the varying definitions limit working in a development team without
an agreed-upon vocabulary.
Therefore, defining a taxonomy as a tool to organize the concepts is helpful to have
a distinct understanding throughout the complete development process. Tradition-
ally, dependability incorporates also security (see Figure 5.1). Nevertheless, security
is a large field whether methodology and terms substantially differ from the clas-
sic dependability approach. Therefore, the approach in this work is to transform
the Laprie models dependability tree (see Chapter 4) into the security domain of
automotive systems. This method helps maintain completeness to the same degree
as the Laprie model. Section 10.2 defines a taxonomy of security requirements and
categorizes the standard terms for threat mitigation. Combining both taxonomies
enables a precise understanding of the terms related to automotive security and
therefore fulfills the demands of usefulness and completeness of taxonomies [50].
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Figure 5.1.: Complete dependability tree of Laprie according to [13].
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5.1. Related Work
At first, the Laprie model introduces security as a dependability attribute [69] be-
fore deleting security as a standalone attribute and integrating confidentiality and
integrity [71]. This development reflects the growing discussions about security as
demand for risk-prone systems [68]. Since [71] the definitions start to be continuous.
Especially since [14] they stay the same.
[97] differentiates between the dependability and the security approach. The def-
inition of the secure systems approach focuses on research on security kernels but
also gives insights about similarities between fault tolerance and security kernels.
The focus of [97] differs from the scope of this thesis, making the contributions not
further applicable in this work.
[62] introduces the User and the Non-user to distinguish between the system’s differ-
ent types of service delivery. User and Non-user denote the system output regarding
the delivery and the denial of service to the permitted user and the attacker.
ISO/IEC 27000:2018 (“Information technology – Security techniques – Information
security management systems – Overview and vocabulary”) is the norm for the
vocabulary underlying the security standard series ISO/IEC 2700x. ISO/SAE 21434
is the standard “Road vehicles – Cybersecurity engineering” which partly adapts
the terms from ISO/IEC 27000:2018 and ISO 26262:2018. In other parts, ISO/SAE
21434 redefines terms already defined by ISO/IEC 27000:2018. Especially ISO/SAE
21434 [54] seems pretty selective since it does not define confidentiality, integrity,
and availability but relies on ISO/IEC 27000:2018.

5.2. Security
Literature provides several viewpoints to approach the general term security:

• from preventing threats and attacks
• the attributes of security
• the means for achieving security
• from resilience and preventing the result of an attack

ISO/SAE 21434 [54] as well as UNECE No. R155 [85] define security related to
protecting assets from system threats. This viewpoint also follows [44] and [35] by
stating that security is related to preventing threats and attacks on systems.
In [41] the term security is defined in terms of the properties a secure system should
have: the classic CIA triad and secondary properties like authentication and au-
thorization. The secure systems approach of [97] denotes, that secure systems have
specific properties, the CIA triad. The same idea also follows ISO/IEC 27000:2018
[55] by defining security as a composition of confidentiality, integrity, and availabil-
ity of information. Besides the varying focus on certain system parts, all approaches
define security in terms of system properties.
Other sources approach security from a security violation’s result or the other way
around. [66] and [102] describe security as resilience to intentional faults. In [78],
[63] and [76] the definition includes the environment as source for the negative
influence to the system to be prevented.
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Figure 5.2.: Taxonomy of Security

Comparing the discussed approaches to define security leads to the conclusion that
security is also an umbrella term [94]. The difference lies in the origin and type of
faults the system needs to prevent. The attributes are a sub-set of the dependability
attributes. At the same time, the means are derivable from the dependability
means. The following sections describe the transformation of the dependability
tree of Laprie into the security taxonomy (see Figure 5.2).

5.3. Security Threats
The term threat, like security, has varying viewpoints for definitions. One approach
for defining threats is as “intentional, malicious and planned actions” [25]. [38,
p. 20] classifies threats as events or circumstances which impact the system, thereby
focusing on the result of the action. This focus follows [76] by stating, that a threat
has “undesirable consequences”[76] and adds that security, in contrast to safety,
focuses on intentional events. However, those intentional events are known as well
as unknown scenarios. Including the former in the analysis procedures is easy. The
latter are scenarios that may arise in the future [94]. Those relate to threats in the
system currently unknown, e.g., faults in cryptographic procedures.
[63] definition of threats includes the environment as the intentional source of faults
in the system. This view follows [63] by adding an environmental system (human
being, other IT systems, or natural influence) as the source of the intentional events.
[120, p. 2] on the other hand, targets only the source as a definition for the term
threat.
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Other definitions incorporate a threat’s source and result for defining the term. [17]
states that environmental systems force a violation of the systems security policies.
In [91, p. 6] the definition targets the cause of an undesired event with the potential
harm to the system.
UNECE No. R155 [85] and ISO/IEC 27000:2018 [55] define the term threats similar
regarding the cause and the result. They extend the resulting harm, incorporating
the system, the organization, and individuals. ISO/SAE 21434 [54] has a more
elaborated definition than the other two norms. It defines threats regarding the
impact on security attributes of system assets (see Definition 21), which results in
a damage scenario.
While [66, p. 17] states that threats are intentional faults, the description and the
examples fall into a different category. Malware as a threat example is an error,
or even a system failure, depending on the viewpoint. Nevertheless, they define
threats as part of a propagation chain.
When comparing the definitions of the term threat, it reveals that threat is, like im-
pairments in the Laprie model, an umbrella term describing a chain of propagation
from the hypothesized cause to the resulting security failure.
Following the preceding discussion, threats are comparable to the impairments of
the Laprie model. Weaknesses, vulnerabilities, attacks, and damages are part of
system impairments, like faults, errors, and failures. Therefore, the remaining work
uses the following definition of threats, whether distinction and interrelation Figure
5.3 illustrates.

Definition 8 (Threat). Security impairments with the potential to violate a se-
curity objective.

5.3.1. Weakness
Definition 9 (Weakness). A weakness is an internal fault propagating into the
system’s lifetime, leading to the system being in a vulnerable state.

[13] does not directly define the term weakness or name the underlying fault of
security threats. Nevertheless, the necessity for a vulnerability as an internal fault
result states that there is a fault propagating into the system’s lifetime. Another
possibility are external faults introduced during system operation.
ISO/SAE 21434 defines weaknesses as a “defect or characteristic that can lead to
undesirable behaviour” [54]. As already stated, the term defect may be a substitute
for fault or failure [109, p. 85]. The most prominent sources supporting defect as a
synonym for fault are the ODC [21] and the IEEE Standard Glossary [47]. Since
ISO/SAE 21434 does not define other security threats, it is impossible to interpret
defects compared to other threats definitions. Therefore, this work interprets a
defect as a fault, like in the mentioned sources.
[38] relates weaknesses to “mistakes in the design of a system”[38, p. 22]. Following
Laprie, each fault is regarding the system design (see Section 4.2) and may be
internal or external. Internal faults originate in the internal system state [13].
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Figure 5.3.: Illustration of the security threat chain.

Comparing the definitions for weakness and vulnerability, provided by [38, p. 22]
allows the interpretation of weakness as an internal fault.
UNECE No. R155 [85] defines the term weakness indirectly through vulnerability.
A weakness relates to the system leading to an exploitable vulnerability. The link
to the system allows for identifying weaknesses as internal faults residing in the
system.
Literature shows that weakness is related to the term fault in the Laprie model and
may have different sources, like faults. Mainly, the system design phase introduces
weaknesses that propagate into the use phase. The nature of security-critical sys-
tems is that it is impossible to foresee every threat to the system. There is always
the possibility of a newly revealed weakness residing in the system. Therefore, a
security-critical system is in a vulnerable state during its lifetime.

5.3.2. Attack
Definition 10 (Attack). An attack is a malicious environment action that targets
introducing an external fault into the system.

The security’s viewpoint on intentional events demands an attacker to launch an
attack by introducing a malicious external fault [65]. External faults are those
integrated into the system by “interaction or interference” [13]. Therefore, like
weaknesses, attacks are actions of fault introduction. Weaknesses introduce internal
faults into the next system layer. Attacks introduce malicious external faults.
[120, p. 17] describes this mapping directly: “The attack itself is analogous to an
error in that it is the manifestation of a vulnerability”[120, p. 17]. The vulnerability
is the possibility of an exploit [91, p. 6].
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It leverages an attack to the system [119, p. 17], [96, p. 58], [96, p. 17]. While
[120, p. 17] describes the attack as a system state, it is rather a trace of system
transitions, depending on the type of attack. The ongoing attack manifests in the
system state, but each step is a system transition.
An attack may be successful or not [44, p. 53], [63]. Also, it can aim to introduce
a weakness into the system [65]. In this case, the attack is successful if it adds a
weakness to the system.
Depending on the type of attacker, an attacker may abort an attack. The typical
case is whitehat hackers. That attacker aims to realize an attack but does not harm
the system. They instead share their knowledge with the manufacturer [48].

Definition 11 (Attack Path). An attack path is a set of actions describing how
an attacker realizes damage to the system.

An attack is a particular case of a system state where the attacker exploits the
vulnerability and starts an attack path. A “set of deliberate actions to realize
a threat scenario”[54] where a threat scenario is the cause of an assets damage
scenario. Depending on the type of attack, the attack state may lead to another
attack state. Therefore, the attack is an environmental action, starting a series of
attack states whether length is not determinable beforehand.
Attack paths are also called attack vectors [38, p. 22]. They describe the way the
attacker uses to gain its goal [94].

5.3.3. Vulnerability
Definition 12 (Vulnerability). Vulnerability is an incorrect state in which a
malicious external fault could attack the system.

[13] states, that a necessity for a vulnerability is the existence of “an internal fault
that enables an external fault to harm the system”[13]. This view also follows [63]
as an “attack will be successful if it can exploit a vulnerability in the system”[63].
Further amendments in [13] are that vulnerabilities result from faults during devel-
opment (internal faults) or use (external faults). The existence of a fault leads to
the system being in a latent error state.
[38] denotes that vulnerabilities reside in the system and result from weaknesses:
“Vulnerabilities represent a materialization of design weaknesses” [38, p. 23] which
are usable for attackers. This definition allows to relate vulnerabilities to the active
fault/latent error state in the Laprie model (see Section 4.2). [66, p. 17] states that
a vulnerability is an exploitable fault, which supports this opinion. [91, p. 6] adds
that a security control stops a threat in the vulnerability state.
While ISO/SAE 21434 does not define the term vulnerability, UNECE No. R155
defines it as “a weakness of an asset or mitigation that can be exploited by one
or more threats” [85]. Vulnerability is an exploitable weakness, which means the
weakness is in an active state. Compared to the Laprie model, this is an incorrect
system state, an error. The incorporated threats are external faults that exploit the
vulnerability, named attacks.
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The evaluated literature shows that comparing the terms weakness/attack/vulner-
ability and fault/error is not straightforward. There is the need to change the view-
point from general dependability to a certain sense of security. While dependability
relates to unintentional events, security treats intentional actions. This intentional
action introduces an external fault (attack) that exploits an incorrect system state
(vulnerability) and may result in a system failure (damage). Beforehand, the system
is already in an error state, the vulnerability state. The attack exploits the vulnera-
bility and leaves the system in the error state of an ongoing attack. This state leads
to damage, or detection and handling are possible. Therefore, vulnerability is a
system state that deviates from the intended one because it violates security objec-
tives. This deviation is not recognizable during regular operation until a detected
or successful attack.

5.3.4. Damage
Definition 13 (Damage). A successful attack can lead to a system state where
the system behavior regarding one or more security objectives deviates from the
intended one, recognizable by the user.

As already stated, the evaluated literature sources leave out some of the terms
needed for a complete taxonomy on the terms of security. A good example is the
failure state. Typically the sources do not explicitly notice this fact since it is
logically deducible. Sometimes, the sources use the term failure and give examples
for security failures, e.g., [66, p. 18]. In this case, the term failure has the same
meaning as in classic dependability: The system cannot fulfill its specified service,
recognizable by the user.
[63] distinguishes between classic and security failures based on the system output
regarding the intended user and the attacker. In ISO/SAE 21434, the threat scenario
describes a successful attack and, therefore, a failure to the system. Where a threat
scenario is the resulting system failure: “adverse consequence involving a vehicle or
vehicle function and affecting a road user” [54].
The damage a successful attack may cause is regarding unauthorized access to the
system resulting in [55, 54, 46]:

• a modification or destruction of the system
• the change or use of information

In cases where the attackers aim to plant a weakness in the system, the attack
intends to exploit it later as part of another attack. This dependency depicts error
propagation in the Laprie model (see Figure 4.2). The introduced external fault is
a weakness, activated as a vulnerability and exploited through an attack.
Restoration relates to removing external faults introduced by an attack. From the
system point of view, a damage state is always restorable. However, from the user’s
point of view, it depends on the type of damage.
Attacks that only aim to place a weakness into the system, e.g., Viruses or Tro-
jan horses, have no direct damage to the user. Those are removable by system
restoration. The underlying cause for the fault introduction remains in the system.

42



5.3. Security Threats

This cause is only removable through a design or implementation change, e.g., a
system update. In case of a successful attack regarding confidential information,
the system returns to the vulnerable state after the attack. The damage to the user
or manufacturer still exists. From their point of view, the system remains damaged.
At first glance, restoration may be questionable in the case of security since it is use-
less to remove the damage without the underlying cause (the weakness). Restoration
is always just the first step in handling a successful attack. Every attack (attempt)
needs a consideration of the enabling weakness and measures to remove it. Besides
the theoretical viewpoint that restoration and threat removal are two separate steps,
they may be simultaneous in practice. Depending on the damage type, it is recom-
mendable to do no roll-back with a subsequent threat removal but a re-design of the
system. This re-design might be a new installation with a change, e.g., removing
some functionality or introducing new defense methods.

5.3.5. Propagation Chain
The presented definitions of security threats lead to a transformation of the de-
pendability propagation chain of Laprie. Figure 5.4 includes both viewpoints, de-
pendability impairments, and security threats in one picture. Since propagation
in security is regarding the development and the customer usage time, the figure
differentiates not between system layers like in Figure 4.2.
In the traditional dependability concept, a fault in one layer (e.g., hardware) is
an internal fault manifesting as an error and probable a failure in this layer. This
failure is regarded an external fault in the next layer (e.g., software).
Transferred to stages of system development and customer usage time, this propaga-
tion into the next layer is no external fault introduction. The failure in development
leads to an internal fault residing inside the system during customer usage time.
Nevertheless, the propagation inside one layer stays the same. Solely the transfer
between layers is different.
Development faults can be either malicious or non-malicious. The former denotes
the intended introduction of faults into the system. The latter are common de-
velopment faults. If not revealed during the development process, they manifest
in the system, leading to a development failure since the system deviates from the
intended design and function.
Non-malicious development faults manifest as internal faults in the lifetime and
follow the Laprie propagation chain into an error state, possibly leading to system
failure. A non-malicious external fault leads to a system’s transition into an error
state. Another possibility is that the external fault leads to a non-deliberate attack
state, e.g., data corruption or confidentiality breach. In this case, the system inter-
action manifests as a state which deviates from the intended security behavior. As
long as this state is not recognized, it is no damage. An example would be a user
who accidentally leaks system information. If no other user reveals this information,
there is no damage.
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Figure 5.4.: Incorporated dependability and security propagation chain. The security threat
chain of Figure 5.3 applies to each layer.

Malicious development faults manifest as weaknesses in the system during its life-
time and lead to the system being in a vulnerable state. Also, not every weakness
is foreseeable. Therefore, from a security point of view, the system is always in
a vulnerable state. A malicious external fault leads to an attack and the system
state transition into an ongoing attack state. The system cycles in this state as long
as the attack is not detected or successful. The system can sustain damage if the
attack is successful.

5.4. Security Objectives
Security objectives have varying names, the most prominent are attributes or prop-
erties [38, p. 15], [54], [102]. This work uses the more common and general term
objectives. Security objectives are not to confuse with security goals. Those are a
combination of an objective and a threat scenario [54].
In security, the term CIA-triad describes the set of security objectives. There exists
an ongoing discussion on whether the A stands for availability or authenticity. Nev-
ertheless, more common is the opinion that the CIA triad incorporates availability
[13, 97, 41, 63]. The Laprie model describes the coherence as “associating integrity
and availability with respect to authorized actions, together with confidentiality
leads to security” [71, 72]. Authenticity is a secondary attribute.
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Vehicle functionalities rely on communication. Therefore, the automotive indus-
try further distinguishes the CIA triad into data and ECUs, e.g., data integrity
and ECU integrity. Such distinctions narrow the scope of the analysis but have
no further benefit in the general term definitions. This work defines the security
objectives regarding information flow in a system. Therefore, their focus is already
on communication in this sense.

5.4.1. Confidentiality
Definition 14 (Confidentiality). Confidentiality is a behavioral property describ-
ing the prevention of information flow to unintended users and the availability of
information flow to intended users. Information flow in this context means every-
thing related to knowledge of information.

The Laprie model relates confidentiality to the “unauthorized disclosure of infor-
mation”[69, 71, 14, 13, 15] which may be accidental or intentional [69]. Accidental
confidentiality damages arise, e.g., from misconfiguration in the sense of wrong ac-
cess control configurations.
[62, 65] relate confidentiality to system behavior as denying information access to
illegitimate users. Therefore, confidentiality is a behavioral concept of the system’s
service, and its achievement demands denial-of-service to illegitimate users [63].
Other literature sources follow the definitions of the Laprie model and [62]: Con-
fidentiality is commonly seen as the prevention of unauthorized disclosure of in-
formation [66, p. 18], [91, p. 10], [41, 92, 87, 76] [96, p. 6]. [91] emphasizes that
information access in this context is “not only reading but also viewing, printing,
or simply knowing that a particular asset exists”[91, p. 10]. [92] adds that confi-
dentiality includes access control.
ISO/SAE 21434 relies on ISO/IEC 27000:2018, which defines confidentiality as “in-
formation is not made available or disclosed to unauthorized individuals entities or
processes” [55]. This definition emphasizes both confidentiality aspects: the access
to information to the intended user and the denial of information to the unintended
user.
Although the definition of confidentiality seems straightforward at first glance, un-
derstanding what unauthorized access to information means is tricky. Preventing
unauthorized access and availability of access demands access control to informa-
tion. Besides the obvious use of access control in operating systems and file access,
the question is how to define it concerning information flow in a general sense. In-
formation flow is everything that leads to knowledge about information. Following
the discussed literature, this knowledge extends from the existence of information
to its use.
In conclusion, confidentiality damage results from a vulnerability where an external
fault enables the information flow to unintended users or prevents the availability
of information flow to intended users. Information flow in this context means ev-
erything related to knowledge of information. Examples are data from the OEM
and implementation details.
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The system sustains damage if the confidentiality breach results from a malicious
source. Otherwise, a confidentiality breach is possibly non-malicious, and the sys-
tem does not reach the damage state. The confidentiality damage is permanent
damage that is not restorable. Restoration targets only the weakness – the orig-
inating weakness results from a development failure, typically due to missing or
miss-implemented access control mechanisms.

5.4.2. Integrity
Definition 15 (Integrity). Absence of improper system state modification.

In 1992 [69] recognizes integrity as a main attribute of dependability. There, the
definition of integrity is “the prevention of the unauthorized amendment or deletion
of information” [69]. [69] argues that integrity is “the condition of being unim-
paired, in the broad sense of the term: a) for either data or programs, and b) with
respect to either accidental or intentional faults” [69]. Later, the Laprie model au-
thors slightly change the definition to “non-occurrence of improper alternations of
information”[71, 72]. Both definitions fit the argumentation that integrity is a part
of protective security against fault introduction by the environment (intended and
unintended user) [62, 65].
In the later papers, [14, 15, 13] define integrity as the absence of improper system
alternations. Therefore, integrity “relates to the notion of authorized actions only”
[15], focusing on information and the alternation of information by violating the
authorization policy [14, 15, 13].
The general security literature provides several definitions for integrity. [91, p. 10]
and [76] target integrity to authorization regarding the modification of assets. As
with confidentiality, [91] explicitly states the types of modification: “writing, chang-
ing, changing status, deleting, and creating” [91, p. 10]. While [87] relates integrity
to authorization of modification, the authors target only data integrity stating that
the system is responsible for achieving integrity. [41] incorporates the correct mod-
ification of information . [92] subsumes and exceeds the initial scope of integrity to
“consistency, coherence and configuration of information and systems, and prevent-
ing unauthorized changes to them” [92].
Analyzing publications in automotive security reveals that many articles imma-
nently assume a definition of the term integrity. [6] focuses on verifying data in-
tegrity rather than the overall system and claims protection from unauthorized
or undesired changes. [66] state that integrity relates to “intentional or acciden-
tal system alternations” [66, p. 18]. The type of alternation covers the idea that
non-malicious faults can endanger security objectives.
The ISO/SAE 21434 [54] does not define integrity and just refers to ISO/IEC
27000:2018 [55] which defines integrity as the “property of accuracy and complete-
ness”[55].
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As shown in [61], the definitions target different abstraction levels and need a redef-
inition in the application domain context. For example, Aviz̆ienis defines integrity
as a property of the system itself. ISO/IEC 27000:2018 has the most abstract
definition, targeting the provision of service.
Integrity relates to an attack that aims to introduce a weakness into the system
by targeting a system state modification. The weakness is permanent, where the
attacker modifies the system’s software or modifies run-time data. In the first
case, the system sustains damage as a permanent modification if the attack or
modification is not detected and the system restoration occurs. If the attacker
modifies data in the system, the damage is temporary till the system recognizes
the attack or deletes the data. Integrity damage can spread to other system parts
if the damaged system communicates this data to other systems. In this case, the
communicated data is an external fault introduction at the receiver side which starts
an unintended attack.
An integrity attack may also be unintended. One example is a user who modifies
data in the system in good faith without knowing that this modification is forbidden
or wrong. Nevertheless, the result is the same as in the malicious case.

5.4.3. Availability
Definition 16 (Availability). Availability is a system’s readiness for usage to an
authorized entity without unauthorized withholding of information.

The security standard ISO/IEC 27000:2018 [55] defines availability towards the
security aspect as the “property of being accessible and usable on demand by an
authorized entity” [55]. Nevertheless, the common definition of availability is an
extension emphasizing authorized entities. This follows the idea of [62]: “ability of
the system to deliver its service to the authorized user” [62]. The author extends
the property to preventing “unauthorized withholding of information” [62] which
is the same as with [69]. This extension underpins the classification of [62] to
see availability as an attribute of the correct system behavior for the user or the
delivery-of-service. At the same time, it is no attribute to the illegitimate user.
[66, p. 18], [92], [41], and [96, p. 6] relate availability to the general definition
without setting it in a security context. [76] targets availability of information
towards authorized users.
An attack on availability introduces an external fault (malicious or non-malicious)
that prevents a system service from operating correctly. Thereby, the resulting
damage is the unavailability of the service to the user or the availability to unin-
tended users. This definition of availability includes preventing information flow to
the user and thereby confidentiality. Thereby, it emphasizes, again, the symmetry
of both properties.

47



5. Security Taxonomy

5.4.4. Secondary Objectives
Secondary objectives are specializations of the primary objectives [13, 15]. This
specialization relates to the object the objective refers to, e.g., regarding the user
or transactions [41].

Authorization - [41] relates authorization to users as “allowed or denied access to
resources” [41]. In [69] authorization is defined from the dual viewpoint. If a user
abuses his access rights without malicious actions, he violates authorization. By
that, he changes his status from a user to an attacker [69].
[96, p. 4] specify that authorization applies to information and actions. Therefore,
access rights to information and system functions fit the users’ needs. This view
emphasizes that authorization is usable as expedient to ensure the system objectives.

Definition 17 (Authorization). Authorization is expedient to ensure the primary
system objectives by access control to information and system functionality.

Non-repudiation as a system property relates “to an action and an entity performing
the action” [96, p. 5] . It means that “Users can’t perform an action and later deny
performing it” [41].
Therefore, non-repudiation is a composition of availability and integrity. If related
to information, it is possible to distinguish between the non-repudiation of the
source and the sink of the performing entities’ identity [15, 13]. Nevertheless, an
action engaged by a user is the exchange of information and has an origin and a
receiving side. Therefore, it is legible to abstract non-repudiation to actions instead
of further distinctions.
[96, p. 5] adds that non-repudiation may be a legal obligation or introduced for
liability.

Definition 18 (Non-repudiation). Non-repudiation is the availability and in-
tegrity of actions and the involved entities.

Authentication defines [41] as the property of proving the user’s identity. More
detailed is the definition of [92] as “ensuring that inputs to, and outputs from
systems, the state of the system and any associated processes, information or data
are genuine and have not been tampered with or modified” [92]. Inputs, outputs,
and processing relate to information and data change. This change results in a
modified system state. Therefore, the definition of [92] relates to data authenticity.
In [96, p. 4] define data authenticity concerning the true origin of data and the
author. Like [15, 15] the idea is to add information like time and place of creation
to the information. By that, the integrity of the information and its origin is
provable, encompassing authenticity.

Definition 19 (Authenticity). Authenticity implies the integrity of information
and its origin.
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Privacy The traditional sources discussing dependability/security terms do not in-
clude privacy. Privacy is a topic that arose in the age of constantly rising connec-
tivity and by that simultaneously to the late works for the Laprie model and [64].
Therefore, they do not discuss the term privacy. Nevertheless, current standards
like, e.g., ISO/SAE 21434 [54] demand include privacy in the security analysis.
Therefore, this work includes privacy as a secondary objective to security.
[3] defines privacy as the objective that persons have a complete view of the usage of
their personal information by others. This definition is also included in the E-safety
vehicle intrusion protected applications (EVITA) project [66, p. 18]. Another work
product of the EVITA project further defines privacy as a property of “an entity
and a set of information”[96, p. 5] related to confidentiality. Therefore, privacy
is an objective of anonymity of the system user and confidentiality of its sensitive
information.

Definition 20 (Privacy). Privacy is the property of anonymity of the system user
and confidentiality of its sensitive information.

5.5. Security Mitigations
In security, mitigations typically relate to reducing risk [54, 85]. Transferring the
traditional dependability means of fault prevention, removal, forecasting, and toler-
ance to security would substitute fault by risk. However, those mitigations do not
remove risk but threats, which are the risk sources. Therefore, this work uses the
term threat instead of risk.
Additionally, ISO/SAE 21434 includes risk retaining and sharing into the mitiga-
tions. Those mitigations are not subject to the security taxonomy. Although risk
retaining and sharing is common in practice, it should be no primary way to treat
system threats. Also, the extent to which risks are accepted is subject to develop-
ment process planning. Therefore, it is not part of the general development process
but determined initially, out of the scope of this work. For further information, [93,
p. 44] compares different risk acceptance criteria.

5.5.1. Threat Prevention
In general, threat prevention is directly comparable to fault prevention. The aim is
to prevent the introduction of weaknesses into the system.
Like in fault prevention, the way to achieve this is by policies and best practices.
Those policies have different sources like organizational policies, normative sources,
or external policies. Examples for normative sources in automotive industry are
ISO/SAE 21434 [54] and UNECE No. R155 [85]. Also fault prevention techniques
like MISRA-C [84] are applicable in threat prevention.
Threat prevention is subject to the complete development process.
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5.5.2. Threat Removal
Threat removal has the same drawbacks and methods as fault removal. It is simply
impossible to eliminate all system threats. Therefore, it is reasonable to include
also threat reduction into this category
Approaches for threat removal include treatment and structural methods. Treat-
ment methods are the subject of Chapter 10. Removing threats by structural meth-
ods also includes parts of treatment, but the simplest way is by excluding a system
part from, e.g., communication or the complete system. During the system life-
time, updates are also a method of threat removal. Examples are updates from
cryptographic libraries in order to remove insecure routines.
Therefore, threat removal is subject to the complete development process and sys-
tem lifetime.

5.5.3. Threat Forecasting
The normative sources for automotive development demand specific analysis steps,
e.g., security risk evaluation and risk assessment. Those are part of threat forecast-
ing: system analysis regarding threats, likelihood, and impact on the system. The
later chapters provide further information about the system analysis steps.
Threat forecasting is a recurrent task throughout system development.

5.5.4. Threat Tolerance
The term threat tolerance seems to be dual to the security analysis concept. Never-
theless, the number of security threats is constantly changing. Examples are newly
revealed threats or successful attacks. Therefore, the exact number and nature of
threats are never known, and removing all threats from the system is impossible.
There is always the possibility of malicious or non-malicious attacks. Therefore, the
system needs a concept to continue fulfilling its purpose in the presence of threats
- called threat tolerance.
Threat tolerance treats this fact by approaches to detect and respond to system
threats [73]. Examples are monitoring systems like intrusion detection systems but
also threat databases.
Methods of threat tolerance are subject to the treatment step in system development
(see 10).

5.5.5. Discussion
The similarities between threat mitigations and dependability means are apparent.
Also, the interrelationship between the different mitigation techniques is the same
[15].
Threat prevention reduces the number of introduced threats during development.
Threat forecasting is necessary in order to reveal the remaining system threats.
These methods enable threat removal to reduce the number of threats in the sys-
tem. Since it is impossible to have a threat-free system, threat tolerance supports
detecting and handling threats during run-time.
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Everything should be made as simple as pos-
sible, but not simpler.

Albert Einstein

6
Terms and Definitions

The previous chapters defined the terms from the Laprie model and transferred the
idea of Laprie to the security terms. Nevertheless, there are further terms needed
throughout this work. Such terms’ definitions define this chapter in alphabetical
order.

Asset - In the most sources, an asset is related to something which has value for
a stakeholder and assigned security objective(s) [54] [38, p. 15]. [96, p. 58] is more
distinct and states that an asset’s nature is that they are the goal of attacks. Both
definitions target the same issue with a dual view. [66, p. 15] adds that assets are
often related to data, but their scope is rather anything that has the potential for
being attacked.

Definition 21 (Asset). Assets are related to a system, fraud with security objec-
tives, and can potentially be attacked.

Attacker - Individuals or organizations which aim to violate a security objective
maliciously are called attackers [38, p. 21]. They exploit a vulnerability by unau-
thorized actions [106] in order to start an attack [96, p. 58].

Definition 22 (Attacker). Source of an external fault introduction during cus-
tomer usage time to launch an attack.
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Customer usage time - The automotive system’s run-time is when the vehicle is in
use. In automotive systems, it is helpful to have a separate term for the time after
the vehicle leaves the OEM and is in use by the customer. This time spans the
complete helpful lifetime of the car, irrelevant if the vehicle is parking or driving.

Definition 23 (Customer Usage Time). Time-span of the automotive system
from going into use till decommissioning.

Risk - There are two viewpoints to assessing the term risk. [91, p. 506] and [120,
p. 11] target the term from the result viewpoint. The risk is the potential for the
customer usage time or the system to be harmed.
Other sources target risk from the evaluation point of view. ISO/SAE 21434 de-
fines risk as “effect of uncertainty on road vehicle cybersecurity expressed in terms
of attack feasibility”[54]. Therefore, ISO/SAE 21434 misses the influence of the
damage scenario impact. Nevertheless, commonly risk is the combination of attack
feasibility and the damage potential [38, 85, p. 19], [102], [96, p. 61].

Definition 24 (Risk). Risk is the probability of occurrence of an attack and its
impact of it.

Validation - One part of the development process is evaluating whether the re-
sulting system accomplishes the stated goals [54]. The idea is to confirm that the
development requirements were correctly understood and implemented.

Definition 25 (Validation). Validation is the evaluation of the system’s confor-
mity with the development goals.

Verification - The idea of verification is the evaluation of the requirements fulfill-
ment [54]. Verification evaluates the systems correctness, completeness, and consis-
tency [95, p. 17].

Definition 26 (Verification). Verification is the system analysis regarding the
fulfillment of the development requirements.
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Part III.

Security Development Process Design
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ISO/SAE 21434 outlines the necessary development process steps, along with possi-
ble methods. The standard divides the development cycle into three steps relevant
for this work: security relevance evaluation (SRE), security risk assessment (SRA)
and risk treatment. Transferring this outline to a function-oriented development
environment, the process steps on the V-Models left leg divide into four layers:

Planning: The security department defines the security development process
[2].

Function: The security relevance and risk analysis on a functional level takes
place.

Component: Composition of the functional risk analysis results based on the
deployment, risk analysis on system level, and risk treatment.

System: Derivation of the requirement specifications on function and com-
ponent level – evaluation of the overall architecture.

The idea of the security relevance evaluation (SRE) as the first evaluation step is the
general relevance of a given item regarding cybersecurity. Due to the function ori-
entation, the SRA step divides into two layers. First, each relevant vehicle function
is subject to the subsequent function-oriented SRA. Following the final deployment,
the system SRA targets threats to the functions resulting from the hardware struc-
ture. The identified risks are subject to risk treatment to mitigate the threats. This
step assigns different defense methods to each attack path.
This thesis focuses on the function and component level and the transfer to the
system level. Figure 6.1 illustrates the parts and relations of this work’s focus.
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Figure 6.1.: Security development process parts and relations in the left leg of the V-Model.
Dashed arrows depict relations to process steps out of the scope of this work.
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The important thing is not to stop questioning.
Albert Einstein

7
Security Relevance Evaluation

The security relevance evaluation (SRE) is the first activity in the security analysis
process at the functional level. It is an efficient method to determine the lower
bound of the security criticality before proceeding to the SRA and is, therefore,
part of the overall risk analysis process.

7.1. Process Description
ISO/SAE 21434 [54] defines the security relevance evaluation (SRE) as an item-
related planning step.
UNECE No. R155 does not explicitly demand this process step. Nevertheless,
the amendments of UNECE No. R155 suggest to use the SRE process step in the
development process by referring to ISO/SAE 21434 [86].
Due to the nature of the SRE, no other related work is available.
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7.1.1. Normative Background
ISO/SAE 21434 defines neither input nor work products but only describes the
process step itself: “[...] the item or component shall be analyzed to determine:
a) whether the item or component is cybersecurity relevant; [...] b) if the item
or component is cybersecurity relevant, whether the item or component is a new
development or a reuse; [...] ”[54].
If the item is not security-relevant, the subsequent security process excludes this
item. Nevertheless, the final security assessment report includes the items evaluation
result. Therefore, a judgment is necessary regarding the acceptance or rejection of
the items security [54].
For conducting the SRE, ISO/SAE 21434 suggests two different methods. The
first method is to determine the security relevance “based on experience and mul-
tiple expert judgments” [54]. Security engineers have different experiences and
backgrounds. Their valuable experience is a necessary prerequisite for a successful
security development project. Nevertheless, in a distributed development environ-
ment, where a group of security engineers accomplishes the SRE an approach that
depends on expert judgment may lead to different results. Therefore, such methods
are efficient but tend to be less objective, hindering reproducibility.
The second possible method for SREs is using the question catalog provided in
Annex D of ISO/SAE 21434 [54]. If one of the questions answered yes, the item may
be security-relevant and proceeds further in the security process. Approaches based
on such question catalogs enhance objectivity. Another advantage of this method
is that it enables an automatized tracing of uncertainty and critical elements of the
assessment.

Requirements - Evaluating the normative reference and the aim of this thesis leads
to the following requirements:

R7.1 The method must incorporate the criticality evaluation comprehensively
and straightforwardly.

R7.2 The SRE method must support the explicit designation of uncertainty.
R7.3 SREs must support the tracing of uncertainty.
R7.4 SREs must be realizable in a time efficient way.

7.1.2. Implementation in the Development Process
A straightforward implementation of the SRE is using a questionnaire and applying
it to every function (R7.4).
The evaluated process uses a spreadsheet that extends the questions from ISO/SAE
21434. The extension targets OEM related questions and general information about
the item and the current vehicle project. Like in ISO/SAE 21434, each question
has two answering possibilities, yes or no resulting in dropping out of the security
development process or not.
After the risk assessment, ISO/SAE 21434 demands a recommendation for each
item’s level of risk acceptance. This recommendation needs a notion of criticality
(R7.1) for the item to provide an objective rating.
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Attack feasibility rating
Very Low Low Medium High

Impact Rating

Severe 2 3 4 5
Major 1 2 3 4
Moderate 1 2 2 3
Negligible 1 1 1 1

Table 7.1.: Risk Matrix taken from ISO/SAE 21434 [54]. For the SRE criticality, the attack
feasibility rating would be the exposure of the function; the impact rating is the
highest damage potential in the questionnaire.

The risk assessment in ISO/SAE 21434 [54] determines the risk for an item using the
impact of the damage and the likelihood of an attack. Transferring this approach
to SRE demands a rating of the questions regarding their impact. For this, the
evaluated process includes several additional questions for damage scenarios rated
by predefined answers. Those depict the damage potential of the item. For the
attack likelihood, a question regarding network interfaces gives an initial idea about
the item’s exposure. Using the highest-rated damage level and the most critical
attack surface, the risk matrix from ISO/SAE 21434 (see Table 7.1) allows for
identifying the criticality.

7.1.3. Problem Description
The evaluated process extends the question catalog of ISO/SAE 21434 by questions
related to the OEM. Additional questions support the determination of the item’s
impact and exposure and ultimately the item’s criticality (R7.1). In parts, the
question catalog and the damage catalog ask for the same information. Therefore,
it is subject to evaluation and adjustment.
Especially in the early stages of the development process, information may not be
available. This information is acquirable in a follow-up. By that, it is possible to
verify that the criticality of an item does not change through that data. Existing
information requires tracing to avoid missing any updates. Also, tracing enables
refining and deriving of requirements in later process steps. The current version
of the SRE questionnaire miss the possibility to make uncertainty explicit (R7.2)
and use tracing information for later recaps (R7.3). This lack leads to situations in
which expert judgment about the functionality and criticality of the item determine
the damage potential. Especially in distributed development teams, this approach
lacks objectivity and reproducibility.
Automotive development projects typically have hundreds of different software func-
tionalities. Every functionality needs to be evaluated based on the question cata-
log.This procedure leads to a high effort, with comparatively few items proceeding
further in the security process. Therefore, the SRE process step has much potential
for enhancing efficiency (R7.4).
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7.1.4. Approach
One idea for enhancing efficiency in the SREs (R7.4) is to automatize this process
step. This automation would also directly enable the tracing of uncertainties and
results (R7.3, R7.2). Nevertheless, this approach has several drawbacks: It demands
integrated and usable models or databases. Early development stages tend to use a
variety of models for the different types of functionalities. Also, automation depends
on a strict administration of the input models and is vulnerable to tool changes in
the input sources. Those drawbacks leave this approach inapplicable. Nevertheless,
the automation idea is applicable for updating information and follow-ups.
Function-oriented development uses a catalog of possible functions in the early
development stages. The serial development includes not all of them but leaves
out specific variants. Also, the catalog of functions shows similarities between the
functions usable for clustering those functions. This clustering reduces the number
of single SREs and enhances efficiency (R7.4).
ISO/SAE 21434 demands a SRA for every relevant item. Therefore, an extension
of the cluster approach would be to directly do SRAs for the identified clusters.
ISO/SAE 21434 does not strictly demand the use of the questionnaire but allows
to determine the relevance “based on experience and multiple expert judgments,
e.g., involving safety experts and cybersecurity experts” [54]. Therefore, ISO/SAE
21434 justifies this approach. With that approach, SRE and SRA use the same
method. By that, the incorporated persons have fewer tools to use, enabling higher
acceptance. SRAs have a high effort compared to SREs (R7.4). On the other
hand, the results may provide early information for basic security requirements in
this cluster. Those allow tailoring of the vehicle architecture in early development
stages. The development process would use the same interface throughout the
analysis steps for tracing and refining results (R7.3). On the disadvantage side, this
approach needs deep adjustment in the SRA process. Clustering should reduce the
number of analyses in the SRE step as much as possible. Therefore, the items in the
cluster still have much difference. The tool needs to be able to model those kinds
of differences and similarities. The most important drawback is that SRAs needs
much and detailed information about the item. That information is not available
in the early development stages. Accomplishing that information can be impossible
and is subject to many changes till serial development.
Using the questionnaire approach for cluster SREs, the analysis steps in the de-
velopment process use different methods. This is a disadvantage regarding tool
acceptance and training effort, but an advantage for tracing (R7.3). Both analysis
methods produce different results, which are subject to tracing. Their difference
makes it possible to formulate dependencies and directly identify chains of change
in case of newly revealed information. In summary, this cluster analysis approach is
more fruitful (R7.4). Therefore, this work dismisses the idea of cluster SRA instead
of SRE and further evaluates the idea and needed adjustments for cluster SREs (see
Section 7.2).
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The existing extended questionnaire is subject to evaluation and tailoring in this
work. The idea is to delete the initial questions for the SRE and incorporate missing
information in the damage criteria and exposure section to enable efficient critical-
ity evaluation (R7.4, R7.1). Also, the template gets easier to fill out by thinning
out the predefined answers. Especially categories where information is missing in
early development steps can be subject to recap. Including a particular answer
for those uncertainties allows for tracing in the subsequent process (R7.2). Those
deliberations result in a adjusted template for the SRE (see Section 7.3).
The template allows an automatized evaluation of the results (R7.4, R7.3). Eval-
uating uncertainties and distributing the results based on their need is possible.
Modeling tools can serve as an interface to the SRE. The results are assimilable
into the models, and uncertainties are resolvable by querying the model. Also,
cluster-based results are dividable into groups of different criticality ratings (see
Section 7.4).

7.2. Cluster SRE
The clustering of SREs reduces the effort for this process step by reducing the
number of analyses (R7.4). For this, a clustering technique and changes in the
questionnaire are necessary. While the clustering must be suitable to accomplish
the improvement, the questionnaire needs to allow the notation of differences and
different criticalities for a set of functions.

7.2.1. Criteria for the Clustering
For evaluating different clustering techniques, distinct evaluation criteria are neces-
sary. Those are:

• Comparatively fewer SREs
• Low number of contact persons per cluster
• Similarity in the items
• Support of function-oriented development

The evaluation of the cluster techniques’ efficiency uses the first criterion. Since
the main objective of the cluster SRE is to reduce the effort for SREs, the goal is a
comparatively low number of SREs while accomplishing the other criteria.
Completing the questionnaire is the development team’s responsibility with the
security department’s support. Typically, one person is in contact for a few functions
developed in the team. This person acquires the information from his teammates.
Therefore, the more SRE this person needs to complete, the more often he needs
to contact his teammates. Clustering this process step enables the contact person
to acquire the necessary information in one step. The SRE may also necessitate a
meeting between the contact person and the security engineer to clarify questions
and get support for the process step. Clustering supports that fewer meetings are
necessary and with fewer persons involved, required meetings are easier adjusted.
The more contact persons are necessary for the cluster SRE, the longer the process
takes.
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The questionnaire needs an exchange between the different persons. This exchange
is also error-prone and leads to different styles of commenting and fill-out. The
expectancy is that a low number of contact persons raises the acceptance in the
development teams. This expectation holds since fewer questionnaires need com-
pletion, so the development team has less deflection in daily work. Also, the SRE
process is faster with few persons incorporated. Following from the described influ-
ences, this criterion is very important to acquire the demands of efficiency (R7.4).
Clustering raises efficiency only if the items have similarities. Also, there are pos-
sibly different variants of the same item. Examples are country-dependent variants
or variants with different capabilities based on the configuration level. Those vari-
ants are targetable at once in a clustered SRE. The resulting SRE shows similar
arguments and provides a straightforward overview.
The SRE is mostly done before serial development starts. At this development stage,
typically, no integrated modeling tool is available. This point in the development
process also means no deployment of software to hardware, as well as sensors and
actuators, is wholly defined [95, p. 41]. Therefore, the development follows a
function-oriented style. The clustering of the SRE needs to support this by the
independence of the deployment in the architecture.

7.2.2. Possible Cluster Techniques
The automotive development process structure and the questionnaire enable differ-
ent ways to cluster the SRE. Incorporating the experience from the first development
cycle according to ISO/SAE 21434 leads to evaluating the different possibilities.

ECUs - The validation and verification steps in the development process incorpo-
rate the software deployment to the ECUs. An ECU-based clustering would lead
to an easy possibility for tracking results through the complete development cy-
cle. Also, it reveals inconsistencies in the security evaluation of items as early as
possible.
Introducing COTS and high integration of software [81] leads to ECUs with a variety
of software functionalities. Therefore, a cluster would incorporate many functions,
leaving it unhandy. Also, those high integration ECUs are commonly subject to
virtualization, which undermines an ECU-based clustering. This case would lead
to sub-clusters based on the isolation unit, e.g., virtual machine/container. Modern
cars contain around/up to 100 ECUs [29, 11]. This number does not contain sensors
that do not count as ECU but may still need a SRE for their software. Sub-clusters
for virtualization raise this number even more. Therefore, an ECU-based approach
leads to over 100 SREs.
It is common to combine functions from different functional domains into ECUs,
especially in the case of high integration. This combination leads to low similarities
between the items and a high number of different contact persons.
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Function-oriented development builds upon the independence of a concrete deploy-
ment. The allocation of functions to hardware finalizes at the start of serial de-
velopment [95, p. 41]. ECU-based clustering undermines this independence and is
impossible at this time in the development process. Also, in the case of function
variants, it may be that functions are missing since they are not part of the initial
deployment plan.

Automotive Domain - A common scheme to divide automotive functionalities is
automotive domains. According to the literature, there are four domains: power
train, chassis, vehicle body, and multimedia [16]. Due to the rising number of vehicle
functionalities, OEMs tend to make subclasses of automotive domains, e.g., light
and access control. These subclasses lead to around 20 domains.
The automotive domains are a coarse division of automotive functions. Due to
that, clustering the SRE along the automotive domains supports function-oriented
development. Nevertheless, dividing the software functionalities by 20 domains
leads to a high number of functions in each SRE Cluster.
Development domains are independent of a concrete deployment and have certain
similarities, e.g., light functions. While the overall functionality of the items has
similarities from an abstract point of view, a more detailed look shows many differ-
ences. One difference lies in the development areas. There are different development
teams inside the automotive domains, e.g., for electric and mechanics. Also, there
are differences in the concept of the domain. In the case of light functions from an
abstract point of view, they are similar, but there is a big difference between interior
and exterior lights. Also, exterior light functions are different depending on the use
case: driving or arriving/leaving concepts that present special light situations for
the driver.
The differences in the functions inside one domain lead to many departments and
contact persons for the cluster. Therefore, as a single criterion, the automotive
domains are insufficient.

Team Clusters - Each OEM has a different type of clustering inside the company
departments. Typically different departments again have different development
teams. Those teams typically focus on a subset of an automotive domain, e.g.,
software-based light functions. Additionally, those teams take a particular viewpoint
on this domain, e.g., standard light functions. Therefore, structuring the identified
automotive domains into the development teams overcomes the drawbacks of pure
automotive domain structuring.
Clustering along the development teams leads to functional groups of the items.
Due to the teams’ focus, the functions are similar by nature.
The teams incorporate all possible variants of the functions. Therefore, the cluster
automatically includes function variants. This clustering also leads to the indepen-
dence of a concrete deployment.

63



7. Security Relevance Evaluation

In the teams, there is typically a responsible person for security. Therefore, the
development team clustering leads to the least possible amount of contact persons.
Nevertheless, the clustering in development teams leads to a higher amount of SREs
compared to the other solutions.

Feature Clusters - There are already precedential cases of cluster SRAs. Those
clusters rest in certain areas where only exceptional cases are interesting. For ex-
ample, only functions that allow feature-activation over the air are security-relevant
in certain areas. This knowledge allows clustering also SRE.
This clustering technique directly leads to a low number of SRE since only functions
with particular functionalities are part of the evaluation. Nevertheless, this is also
a big drawback. Identifying the complete set of relevant features is error-prone.
Other relevant features may be veiled.
Also, this clustering technique requires much prior knowledge about the function.
At this development stage, no global model of the system architecture exists. Each
function needs an evaluation of the set of interesting features to build up the clusters
for the SRE. This additional step in the development process needs contact with
the responsible persons in the development teams. By that, the acceptance of the
security process lowers in the teams.
Another drawback is the number of contact persons in the cluster. A cluster with
every function featuring feature-activation over the air incorporates many functions
from different development areas. Therefore, there is a high number of contact
persons, which is against the stated criteria.

7.2.3. Resulting Clustering
In conclusion, the presented clustering techniques lead to the evaluation in Table
7.2.
The ECU-based clustering is straightforward and leads to a low number of SRE.
Nevertheless, in the case of high-integration ECUs it often undermines function-
oriented development and shows low similarities between the functions. Also, it has
a high rate of contact persons.
Better is the approach based on the automotive domains. It shows better results
for the similarities and the number of contact persons. Also, it is independent of
the deployment and leads to a low number of analyses.
The team-based approach has just the drawback of a higher amount of SRE com-
pared to the abovementioned approaches.
A clustering based on security-relevant features is suitable in a function-oriented
development and leads to a lower amount of SRE. Nevertheless, it is error-prone
and undermines the similarity criteria and a low number of contact persons.
The most promising approach for clustering the SREs is to extend the clustering
according to automotive domains to include the development teams. This approach
has a significant advantage over pure filtering for the development team. Depending
on the clustering results, different layers of the result are usable.
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Function List
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Domain n

Department 1
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Person 1

Person 2

Person 3

...
Person n

Figure 7.1.: Resulting clustering for the SRE. First automotive domain, then department, de-
velopment team, and contact persons.

For example, in cases where the cluster for the department is relatively homoge-
neous, no further filter for the development team is necessary.
The information for such clustering is easily acquirable by analyzing item lists. Au-
tomotive development relies on lists that incorporate all possible functions and their
variants. Such lists give rise to a unique id, name, automotive domain, development
team, and typically, the contact person in this team. Clustering this list into auto-
motive domains, the department, responsible development team, and persons also
guarantee that the SRE step misses no items (see Figure 7.1).

Criteria
Contact
Persons Similarities Function

Oriented
Low
Number

Cluster
Techniques

ECUs - - - +
Domain ∼ ∼ + +
Department + + + ∼
Feature - - + ∼

Table 7.2.: Results of evaluating different clustering techniques. (+) for good results, (∼) for
better than original, (-) bad results

7.3. Questionnaire
The evaluated process involves an extended version of the ISO/SAE 21434s question
catalog and additional questions for determining the items’ criticality (R7.1). The
template is subject to NDA, but analysis revealed that the questions for relevance
evaluation are a subset of the questions for determining the criticality.
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Therefore, the relevance questions are deletable from the catalog (R7.4). The re-
maining section concentrates on the criticality questions and dismisses the basic
relevance questions.
Evaluating the question catalog of ISO/SAE 21434 allows evaluating whether the
existing template aligns with ISO/SAE 21434. For the notion of criticality, the eval-
uated process determines damage potentials and the exposure based on pre-defined
answers. Evaluating and adjusting those answers allows for tracing uncertainties
(R7.2). Subsequently, adjusting the template to incorporate the proposed changes
completes this section.

7.3.1. Relevance Criteria
The security relevance criteria are derivable from the SRA scope. This scope is the
possible damages arising from the item. Those target the protective goods. Like in
security analysis, security relevance depends not only on what is protected but also
on who is protected. Therefore, the assets, as well as the stakeholder, are subject to
identification. In automotive security, stakeholders are the OEM and the user. The
protective goods are derivable from security objectives and secondary attributes like
privacy. The assets are the main categories of damage scenarios to the stakeholder
and the security objectives.
Another question is, what information is necessary to identify an asset in danger?
But also the information source as well as the time of availability. Not all informa-
tion is available at the beginning of the development process. The more specific the
questionnaire design is, the more precise the relevance evaluation. Conversely, more
information might not be available, leading to more uncertainty in the result. This
uncertainty demands later recaps of the evaluation and, therefore, raises the effort.
Therefore, it is necessary to find a balance for a suitable level for the relevance
evaluation and leave more depth information for the subsequent SRA. Focusing on
the main damage scenario categories and formulating questions at a suitable level
acquires this criterion.
Each question should target only one asset. On the one hand, mixing the questions’
scope leads to imprecise answers. The contact person might have different answers
for the scopes and is uncertain how to rate the question. On the other hand, this
division allows keywords for each question. Those keywords are usable for tracing
results.

7.3.2. ISO/SAE 21434 Question catalog analysis
Annex D of ISO/SAE 21434 [54] provides a flow chart (see Figure 7.2) with four
questions targeting a primary line of damage criteria and attack surfaces: Safety,
privacy, and interfaces.
The questions of ISO/SAE 21434 start with the origin of the function: “Is the
candidate an E/E item or component?” [54]. This question narrows the scope of
the evaluation to E/E items. The question’s relevance depends on the develop-
ment structure and the input data for the SRE. It is unnecessary if the company’s
structure strictly divides between E/E and non-EE functions.
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"#$%#&'!()*+*,(-().'/

! EXAMPLE Motion control modules and modules with automotive safety integrity level (ASIL) designations.
" EXAMPLE Data related to drivers or passengers, or to potentially sensitive information such as location 
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& EXAMPLE Internal connections -- CAN, Ethernet, media-oriented systems transport (MOST), transmission 

control protocol/internet protocol (TCP/IP).
# EXAMPLE External connections -- function interface to backend server; cellular telecommunications 

network, on- board diagnostic (OBD-II) interface.
' EXAMPLE Wireless connected sensors or actuators – remote key-less entry (RKE), near field communication 

(NFC), tyre pressure monitoring system (TPMS).
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Cybersecurity relevance can also be determined based on experience and multiple expert judgements, 
e.g. involving safety experts and cybersecurity experts.
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Figure 7.2.: Flow Chart for the SRE, taken from Annex D of [54].
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Also, an annotated function list denoting whether a function is an E/E function
makes this question useless.
Question two determines the damage potential of the item regarding safety. Safety
and security interrelate and its cohabitation makes the safety-related evaluation of
security relevance important. For example, safety degradation may negatively influ-
ence availability [115]. However, also security mechanisms affect safety mechanisms
making a distinct consideration and evaluation necessary. Safety and security fol-
low the same development process structure. Based on a relevance evaluation, the
consecutive safety analysis takes place.
Nevertheless, the evaluation timing differs between safety and security. Therefore,
it is better to incorporate this damage criterion in the questionnaire than to rely
on getting the safety evaluation results from the safety department on time. The
development team might have the results earlier.
The scope of question three is privacy which is crucial regarding the user information
inside the automotive system. Especially since [32] privacy is a primary concern
in each connected system. Information disclosure analysis depends on the data
communicated and saved in the function. The details of such data reveal successively
through the design process. Nevertheless, the general information, which type of
data the function needs, should be known at the beginning of the development cycle.
Otherwise, no algorithm design is possible. Therefore, privacy is an important asset,
and the question is answerable, at least in general, at the time the SRE takes place.
Nevertheless, the scope of the question is too narrow. The scope should include
general confidentiality information like intellectual property of the OEM or car-
related critical data, e.g., mileage. The former denotes critical information of the
OEM. The latter prevents manipulation of the car, which also targets customer
needs. Examples are car sale manipulations, e.g., turning the mileage indicator
down to get a higher sales price.
The last question is regarding the system’s attack surface, asking for the network
capabilities of the item (internal and external interfaces and wirelessly connected
sensors and actuators). This question targets the exposure to accomplish the dam-
ages defined in questions two, and three. While this question is essential to evaluate
the items’ vulnerability, the design of the question mixes all interfaces. Therefore,
when the item has any interface, it is security-relevant independent of the interface
type. This view is again too narrow. A comprehensive evaluation demands dividing
this question into several questions or levels of answers.
In conclusion, the assets determining security relevance are relatively narrow. Espe-
cially the possible damage criteria in the financial and legal area, also OEM specific,
should be more comprehensive. An extension provides a better understanding of the
security impact of the item. Additionally, interpreting the attack surface question
as exposure and an extension to several levels gives a comprehensive picture of the
item. It allows the objective identification of an initial criticality.
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7.3.3. Damage Criteria
[96, pp. 1 sq.] states that four damage criteria are relevant for future automotive
systems. The financial area targets transactions like unauthorized feature activation
and vehicle theft. Operational criteria affect the performance of the vehicle func-
tions. Main damage scenarios involve interference with vehicle communications.
Privacy and safety relate to the already mentioned factors: The driver’s identity
data and the vehicle’s safe operation. Those descriptions follow the demands of
ISO/SAE 21434 for the risk analysis. [96, pp. 1 sq.] adds to privacy, vehicle iden-
tification data, and system design. This approach goes along with the demand of
this work to incorporate the OEMs intellectual property and car-related data.
Nevertheless, the discussed sources miss regulation-related criteria. Besides UNECE
No. R155 and ISO/SAE 21434, other regulations demand specific security-related
actions in the development process. Those are relevant for type approval, in general,
or country-dependent. Omitting these criteria from the questionnaire may leave
essential functions unattended in the security process.
The existing SRE template includes the following damage criteria:

Safety: Rating of A-SIL Levels or appropriate
Finance: Impact on production, product recall, financial loss to OEM

or road user
Legal/Regulations: Theft protection, type approval, privacy, manipulations
Quality decline: Product quality

The criteria integrate the ISO/SAE 21434s question regarding privacy in the legal
and regulations category. The other categories target the described automotive
systems’ most significant damage criteria.
In conclusion, the existing template is extensive enough to target the stakeholders’
needs. The detailed question analysis is subject to the template section.

7.3.4. Exposure
One element in the question catalog of ISO/SAE 21434 is regarding the interfaces of
the item. This question asks for external and internal network capabilities, wireless
sensors, and actuators.
The items’ communication capabilities are interpretable as exposure, like in the
risk analysis. Therefore, splitting this question to target each attack surface is
reasonable. This extension allows a comprehensive picture of the attack surfaces
the item has.
There are items where an attack is only possible through the ECU or software. For
them, a correlating option is necessary. The exposure question already uses a split
between the different surfaces in the current process. This question has possible
answers which are too deeply nested.

69



7. Security Relevance Evaluation

The proposed answers are as follows:
• External wireless interfaces
• External wired interfaces
• In-vehicle interfaces
• No ECU-external interfaces

7.3.5. Criticality
The evaluated version of the template provides pre-defined answers. Each answer
leads to a damage potential level from one to five (very low to very high), extending
the suggestion of ISO/SAE 21434. This work suggests using levels one to four (very
low to high) like in ISO/SAE 21434 see Table 7.1. An extension to five levels has
no additional value in the SRE.
The template provides several answers leading to the same damage potential. Also,
sometimes the answers are very detailed. Depending on the possible level of in-
formation detail before serial development, it may be necessary to formulate fewer
thresholds. It is easier for the responsible persons to find a suitable answer. Other-
wise, it may be the case that the question is left open or answered incorrectly due
to the lack of information.
Reducing the provided answers lowers the level of detail in the resulting initial criti-
cality. Nevertheless, the initial criticality is still rated objectively over the evaluated
items. Security planning uses criticality to determine the next steps. Minor detail
in the evaluation in this step is better than missing damage scenarios.
Also, there is the possibility that a damage scenario is impossible for this item.
Therefore, a negative answer is necessary. This answer level is zero to exclude it
from the criticality rating.
Additionally to the depicted levels, another possible answer for each damage sce-
nario is unknown. Unknown explicitly states the uncertainty or lack of information.
The resulting criticality is, for the moment, not thoroughly evaluated but still allows
to proceed in the process without delay. Such uncertainty is typical for early devel-
opment stages. Including it explicitly makes the analysis more comprehensive and
honest. Tracing this uncertainty through the development process allows follow-up
on those items and a later recap of necessary changes.
An example question in the finance category is as follows:

Is a product recall necessary in case of an attack?
4 Yes, a global product recall is possibly needed
2 Yes, a product recall is possibly needed
0 No recall necessary
-1 I cannot answer this question
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For the exposure, levels one to four also apply. Since an item without ECU-external
interfaces is attackable through the ECU, the lowest level is one. An item can have
several interfaces. If so, the responsible person marks all suitable answers. The crit-
icality determination uses the highest possible exposure level. These deliberations
lead to the following rating of the exposure:

4 External wireless interfaces
3 External wired interfaces
2 In-vehicle interfaces
1 No ECU-external interfaces

In order to use the described ratings, the criticality determination follows from the
damage scenarios and the attack surface. The evaluation combines the highest pos-
sible damage potential over all damage scenarios and the highest exposure level (see
Equation 7.1. In the case where all damage potentials rating is zero (no damage po-
tential), the item evaluates to not relevant for security. This evaluation aligns with
ISO/SAE 21434, where items are irrelevant or relevant. The additional criticality
levels allow a detailed evaluation of the risk assessment report.

Criticality = max(Damage P otential) × max(Exposure) (7.1)

ISO/SAE 21434 allows three levels for risk recommendation in the assessment re-
port: accepting, conditionally accepting, or rejecting the risk [54]. Transferring this
to SRE leads to different ways to proceed in consecutive security development pro-
cess. In cases where all damage scenarios answer is no, the item is subject to risk
rejection. A level below a defined threshold leads to risk acceptance. Cases with
conditional risk acceptance are subject to a subsequent SRA.

7.3.6. Template
The described contents incorporate a template for accomplishing the SRE. This
work adjusts the existing spreadsheet-based template for the SRE to include the
cluster idea, the adjusted damage scenario levels, and the adjusted exposure an-
swers. This template has three sections: the general information, the damage sce-
narios, and the exposure. Each input field must incorporate single items or item
lists for the cluster approach. Therefore, the following inputs are valid:

• single item id, e.g., 42
• list of items, e.g., {21, 42}
• none
• all

General information comprise the information needed to identify the SRE:
• Department / Team incorporated in the SRE
• Name of the cluster/function
• Ids of the function(s)
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• Platform or vehicle project
• Which other function(s) use / are used by this function(s)
• If known, the deployment of the function
• If this function(s) was/were subject to a SRA

Damage scenarios incorporate the different questions out of the four damage cri-
teria sections. Each question has up to four qualified answers. Additionally, each
question has one answer for dismissing this question as inappropriate and not avail-
able information (unknown) (R7.2).
The damage scenarios include the safety relevance of the item, covering the user and
the environment as protective goods. Others are questions regarding the users’ pri-
vacy and the OEMs intellectual property. Those questions demand confidentiality,
as well as integrity of information.
Other questions target the integrity of the vehicle’s functionality. Those evaluate
possibilities for tuning and activating functions and relate to the OEMs income of
purchases.
Prevention of theft and therefore protecting the system and user is the goal of
questions regarding physical access to the vehicle.

Exposure describes the four possible types of interfaces. This part of the template
relates to which attack surfaces the item has. By that, the exposure of the damage
scenarios to the attacker is evaluable.

7.4. SRE Analysis
The improved SRE enables different analysis steps. A distinction between single
and cluster SRE is necessary. Single SRE are directly analyzable while cluster
SRE allow for possibilities. Also, the follow-up analysis differs in the development
timeline - before and after the start of serial production.

7.4.1. Tool Support
In general, tracking the SRE procedure, e.g., via a ticket system, is necessary. This
ticket system should allow to include the clusters and link to the single items. By
that, it is easy to recap the relation of the SRE process. This structure reveals
uncertainties that need clarification before the SRA step.
The SRE results are subject to versioning systems. This system is necessary to fulfill
the demand of ISO/SAE 21434 and UNECE No. R155 to track changes. It needs
to be impossible to change any results without the possibility of reconstructing the
original result and recap the changes.

7.4.2. Criticality of Single SRE
Single SREs are analyzable like before the presented changes. The damage scenario
with the highest damage potential and the highest exposure level determines the
criticality of the item. Nevertheless, answers which depict uncertainty (unknown)
are subject to follow-up.
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Cluster SRE

Split Up into
Single SRE

Evaluate Single SRE

Analyze Cluster

Built Cluster
below threshold

Built Cluster
above threshold

Recap before serial devel-
opment

Evaluate reuse of cluster
for SRA

Figure 7.3.: Different possibilities for analyzing cluster SRE

This recap is necessary if the criticality of the item is less than the threshold for
subsequent analysis. In this case, the item must be marked in the ticket system and
evaluated later.

7.4.3. Criticality of Cluster SRE
Cluster SREs allow different types of analysis (see Figure 7.3). First, the single
items are evaluable by splitting up the cluster. The resulting SREs follows the
described process for single SRE.
The cluster itself is usable for different evaluations. The most practical possibility is
to evaluate the different criticality levels to build new clusters. One cluster depicts
items whether criticality is lower than the threshold and which drop out of the
subsequent process. The other items build the cluster, which might be reusable for
the SRA. For that reuse, the security engineer evaluates similarities and differences
in the SRE results and decides whether this cluster is suitable for a cluster SRA in
Chapter 8.
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7.4.4. Automatic Analysis
The questionnaires spreadsheet structure allows for automatic analysis (R7.4) and
tracking (R7.3) of the results. For this analysis, a script can parse the template and
build the data structure of the results. This analysis script is adjustable to different
tools that use the results as input format.
Such a script is adjustable to several other use cases. One idea is to design the
output in the format suitable to stream it into the ticket system used for tracking
the SRE system. Also, it is possible to insert the results into the versioning system
directly. Another idea is to fill ToDo Lists with the item IDs having uncertainties.
Those ideas are directly realizable by adjusting the output formats of the analysis
script to the formats needed for the other tools.
In the end, the script is linkable to a script that parses the integrated architectural
model for changes before the start of serial development. This additional analysis
is especially relevant for those items which drop out of the security development
process. Changes in those items might lead to re-include them in the process.

7.4.5. Trace Uncertainties
The presented SRE structure explicitly states uncertainties by the answer possibility
of “unknown” (R7.2). The analysis marks those answers for a later recap on this
item. This recap is necessary whenever the item drops out of the subsequent process.
If the criticality of the item is above the defined threshold, the item is subject to a
SRA, which makes a recap on the SRE unnecessary.

Before the start of serial development there is no holistic architectural model.
Therefore, at his time, the recap of SRE is impossible to automatize. Depending
on the timeline of the security process, it may be necessary to do recaps manually.
This approach is helpful in cases where a cluster SRA could incorporate an item
that is uncertain to be security-relevant. Combining the recap with coordinating
dates and needed information for the cluster SRA is practical in those cases.

After the start of serial development the tracing of uncertainties is automatable by
evaluating architectural modeling tools. For that, the model serves as a database.
The different questionnaire contents serve as variables for querying the model.
An integrated model should also include safety. Therefore, the question regarding
an Automotive Safety Integrity Level (ASIL) classification is easy to verify. More
complex is the questions regarding sensitive data, personal data, and influence on
the vehicle. These questions demand an appropriate tagging of the model.
The recommendation is to design a catalog with essential data categories and reuse
it with every design cycle for tagging the model. This catalog contains data known
to be related to the damage categories. Data where the developer is unsure whether
it is relevant is subject to a recap with the security department. In the case of a
security-relevant function, the SRA does this recap automatically. The developer
directly contacts the security department to discuss the issue in case of irrelevant
functions.
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Unauthorized activation is only relevant for tagging in the model if the function is
an add-on. All mandatory functions for the vehicle that are not configurable during
the purchase are irrelevant for unauthorized activation.
Typically, functions that allow vehicle access are subject to the same development
department. Therefore, it is easy to identify such functions at first glance during
the SRE. Nevertheless, an open window also allows physical access, which is not
subject to the same development department. Such information is therefore difficult
to identify. Automation is intricate since there are too many possibilities based on
the function. In case of uncertain answers to this question, the security engineers
have to contact the responsible developers to clarify this.
The exposure is easy to automatize using an integrated model. The model incorpo-
rates the interfaces by nature. Therefore, uncertainties in this part of the SRE are
resolvable automatically.
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There is nothing more practical than a good
theory.

Kurt Lewin

8
Function-oriented Security Risk Analysis

The SRA is the next analysis step after the SRE. The function-oriented SRA uses
the SRE results - the relevant functions - and determine their security risks. In
function-oriented development, the SRA scope is at first the function’s intended
behavior and possible negative influences through incorrect data.
In general, security risk analysis (sometimes called risk assessment) aims to forecast
actions an attacker might take to introduce external faults into the system and
launch an attack. Therefore, risk analysis identifies asset damage scenarios and
derives possible attacks to realize these scenarios. The combination of the damage
scenario impacts and the attack feasibilities lead to the risks to the system.
Some sources include risk treatment in risk analysis (e.g., [17]) and also in practice,
both development steps sometimes intertwine. Also, for some defense methods
like network segmentation, it is necessary to introduce them in earlier development
steps. The SRA needs to consider their influence on the security risk. However, the
overall risk treatment should always take place at least on a hardware-global basis,
after the system SRA. Chapter 10 further elaborates on this topic.

8.1. Process Description
UNECE No. R155 relates risk analysis to vehicle types and refers to ISO/SAE 21434
for further information. Section 8.1.1 illustrates the risk analysis steps of ISO/SAE
21434, followed by a short introduction of the method used in the evaluated de-
velopment process (Section 8.1.2). In the literature, several different approaches to
risk analysis exist. While the approach’s idea is always the same, the procedure
differs depending on the subject of analysis. Related work (Section 8.1.3) depicts
other approaches for risk analysis in the automotive sector. The subsequent Section
8.1.5 describes improvement potentials and their solution approach.
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Item Definition

Asset Identification/
Damage Scenarios

Threat Scenario
Identification

Attack Path
Analysis

Attack Feasibility
Rating

Risk Determination

Impact Rating

Figure 8.1.: Structure of the SRA according to ISO/SAE 21434. The item definition is a pre-
liminary activity in the SRA not belonging to the core activities.

8.1.1. Normative Background
ISO/SAE 21434 [54] states the general risk analysis structure in Clause 9. The
detailed description of the procedural steps is subject to Clause 15. Figure 8.1
provides an overview of the different activities in the SRA.
The preliminary step in risk analysis is the item definition. This work product
is a model of the evaluation target consisting of the boundary, the functions, and
assumptions about the environment. Those assumptions are expectations about
the environment’s behavior or specific facts, e.g., a certain level of encryption [38,
p. 23]. This step is crucial in the analysis since it defines the system boundary of
the current analysis [17] which is the point of fault introduction[65].
Asset identification includes the formulation of damage scenarios as a description
of adverse consequences to an item element with potential harm and an asset, e.g.,
“disclosure of the personal information without the customer’s consent resulting
from the loss of confidentiality” [54]. Those assets and assigned damage scenarios
give rise to the targeted security objectives [27].

78



8.1. Process Description

Impact Rating assesses each damage scenario regarding its “magnitude of damage or
physical harm from a damage scenario” [54] to the road user. The consecutive rating
uses safety, financial, operational, and privacy categories, each rated as negligible,
moderate, major, or severe.
Threat Scenarios define how the damage scenarios are realizable. Each asset is
subject to evaluation regarding the compromised security objective and the possible
causes (vulnerable states) of this compromise. This description may also include
technical limitations or attack surfaces.
The Attack Path Analysis further evaluates the identified threat scenarios. It aims
to annotate an attacker’s steps to realize the threat scenarios. Therefore, bottom-up
and top-down approaches are usable. The former derives the attack path from the
threat scenarios, e.g., by attack trees. The latter builds the path from the identified
vulnerable state.
To complete the attack evaluation, attack feasibility rating analyzes the likelihood
of the attack paths. Each attack path gets a rating from very low to high based on
either an attack potential-based, a Common Vulnerability Scoring System (CVSS)-
based, or an attack vector-based approach. All three approaches target the attacker
in behalves of his necessary capabilities and possibilities to attack the system. The
Annex of ISO/SAE 21434 [54] introduces the different approaches so that the in-
terested reader might use it as a reference.
The Risk value determination combines the results from the impact rating of the
damage scenarios and the attack feasibility rating. Each threat scenario gets a
rating from 1 to 5 (very low to very high) based on risk matrices or formulas.
UNECE No. R155 demands the identification of risks but leaves the execution
specifics to the accomplishing company. Nevertheless, the UNECE No. R155 pro-
vides a threat catalog in the Annex, which must be part of the security risk analysis.

Requirements - The evaluation of the normative references, the SRE improve-
ments, the risk treatment requirements, and the overall aim of the thesis lead to
the following requirements:

R8.1 Function-oriented SRAs must be realizable in a time efficient way.
R8.2 The function-oriented SRA damage criteria catalog and the SRE ques-

tionnaire must be consistent.
R8.3 The function-oriented SRA implementation must maintain the differen-

tiation between risks to the OEM and the road user in accordance with
ISO/SAE 21434

R8.4 The used method must internally support tracing, and the embedding in
the overall security development process must use the tracing capabilities.

8.1.2. Implementation in the Process
The evaluated implementation of the security development process uses the Modular
Risk Assessment (MoRA) method (see Figure 8.2) [10, 9, 8, 30]. It relies on incor-
porating multiple stakeholders into the analysis procedure. Therefore, the method
provides a modular and iterative approach, accompanied by several catalogs, e.g.,
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for controls and assumptions. Those are adjustable, for example, by deriving them
from the security policy at the beginning of the development cycle [30, 9, 10].
In the item definition step, MoRA models the item in four steps. At first, the
functions are subject to identification and decomposition into components and in-
terfaces. A mapping from the components to the interfaces enables the identification
of relations between those. Assumptions limit the scope of the analysis, e.g., by as-
suming a secure backend. Functions produce or consume data while components
are the units storing data or hosting functions [58]. The result is a model which
depicts, starting from the functions, the relations to data, components, and data
flows.
The next step determines the assets by assigning security objectives to the item
definitions elements and rating the impact using the damage criteria catalog (R8.2).
All combinations which result in a non-zero impact are assets [9]. Combining the
assets with identical consequences results in the damage scenarios. Their impact
results from the security objective with the highest impact [38, p. 60].
In contrast to ISO/SAE 21434, MoRA allows for assessing the impact on the road
user and the OEM. As a result, the highest impact value sustains through the
MoRA. This method is in line with the opening clause of ISO/SAE 21434 and the
suggested extension of Chapter 7 for the SRE.
In the next step, the threat analysis takes place. This step identifies the trust bound-
aries of the item definition and maps potential threats to the security objectives.
The threat analysis uses a previously defined threat catalog following the STRIDE
approach [30]. Each threat in the catalog has an attack surface, the target layer,
and the technology assigned, allowing easy identification of relevant threats for the
item. Together with additional assumptions and preparational attacks, this enables
the modeling of different attack paths for each threat. Thereby, assumptions lever-
age damage scenarios’ potential by transforming or deleting them. Preparational
attacks show different ways to start an attack [58].
The feasibility determination uses a predefined attacker model for each threat. The
attacker model in MoRA follows a capability-centric approach [38, p. 22]. The
maximum from each capability category depicts the feasibility of the attack path.
The sum of the categories and a defined threshold table defines the required attack
potential for the attack path.
MoRA defines a risk for each attack path that links to the attack feasibility. The
attack paths connect to the functions, components, and interfaces and, through
them, to the damage scenarios [30]. The risk estimation represents a combination
of the damage scenarios’ impact and the attack potential. A risk matrix, like Table
7.1 allows for identifying the risk. This risk number is a numerical ranking of the
potential attack and the damage impact, like in failure mode and effects analysis
(FMEA) (see [23, p. 44]).
In the end, the MoRA approach has the risk assessment as the resulting work
product. This documents the identified damage scenarios and impacts, threats,
attack paths, feasibility, and determined risks. Therefore, it allows to follow the
references through the model and enables tracing inside the MoRA process (R8.4).
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Figure 8.2.: Overview about the MoRA steps redrawn from [7].
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Threat Class Description Security Goal

Spoofing Attacker identifies as another one Authentication
Tampering Intentional modification Integrity
Repudiation Manipulation in the name of others Non-repudiation
Information disclosure Sharing of confidential material Confidentiality
Denial of service Disruption of Service Availability
Elevation of privilege Exploiting a design flaw to gain ele-

vated access
Authorization

Table 8.1.: Threat classification according to the Microsoft STRIDE model [41]

Another result from the MoRA is the list of open issues, if applicable, which depicts
necessary re-caps to complete the analysis.

8.1.3. Related Work
As [91, p. 508] states, it is beneficial to have risk analysis processes as a blueprint but
it is necessary to adapt them to the system under consideration. ISO/SAE 21434
suggests four approaches to derive the threat scenarios and attack paths. Those
are EVITA [96], Process for Attack Simulation and Threat Analysis (PASTA) [83],
Threat, Vulnerability and Risk Assessment (TVRA) [31], and STRIDE [41].
TVRA [31] targets telecommunication and PASTA [83] focuses on the software
development life-cycle and web applications. Both projects may serve as information
sources for an automotive risk analysis method, but it is impossible to directly
transfer them to the specialties of the automotive domain.

Microsofts’ STRIDE model provides a threat model which classifies threats into six
categories [41]. Thereby it is no integrated approach for the complete risk analysis
process but supports the threat scenario definition. Also, it is useful to incorporate
it in other approaches, like in the currently used MoRA approach.
STRIDE provides six threat classes, each combined with the respective security
attribute. This categorization allows to focus the subsequent risk analysis steps
on specific security attributes or identify the ratio of the security attributes. This
combination leads to a classification of threats to the system like in Table 8.1.
While [41] suggests using the STRIDE model on the decomposed system, it is also
possible to use the provided categories for a general threat model instantiated in
the risk assessment step. Such a model incorporates known threats and attacks
from former developments and threat databases as suggested by [38]. Thereby it is
made sure that in a distributed and heterogeneous system like in the automotive
industry, the risk analysis of the different system parts uses the same assumptions.

The EVITA project focuses on vehicle intrusion detection. Besides the idea of
hardware security through a Hardware Security Module (HSM) it defines a complete
risk analysis process. The threat scenario and attack path identification follow an
attacker-centric approach by deriving threats from the attacker’s motivation. This
motivation spread from harming the user and passengers to mass terrorism [96].
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The EVITA project uses attack trees to model the attack paths. Attack trees,
like fault trees, are top-down modeling methods. Starting from the attack goal,
the attack tree incorporates the attack objectives, methods, and attack steps in its
layers. The attack path modeling uses boolean algebra to depict the relation of the
attack steps [96, 103, 80].
The attack trees’ attack objectives are the damage scenarios, rated against the
categories from ISO/SAE 21434: Safety, financial, operational, and privacy. EVITA
assigns an impact vector to each attack objective (damage scenario).
For the attack feasibility rating, EVITA uses, like MoRA and ISO/SAE 21434 a
threshold-based approach. The categories of the attack model have four levels,
like in ISO/SAE 21434 assigned to the attack steps in the tree. The combined
attack potential for an attack path is calculated using a min/max approach for the
boolean relationships of the attack steps and assigned to the attack method layer
in the attack tree [96, pp. 86 sqq.].
The risk determination of EVITA differs from MoRA due to the vector representa-
tion of the impact. EVITA designates a risk value for each impact category. For
safety-relevant risks, a controllability value is utilizable to leverage the risk based
on ISO 26262:2018 evaluation results [96, pp. 90 sqq.].
Using severity and risk as a vector depicting values for each impact category has
advantages. This view allows to rank the risks according to impact category prior-
ities, e.g., prioritize safety risks. By that, it is easily possible to make trade-offs in
the subsequent risk treatment procedure. This method has no overhead since the
impact analysis evaluates all categories separately. Also, the attack trees support a
distinct and traceable modeling and analysis of the threat scenarios. MoRA uses the
item definition and threat models to derive the threat scenarios and attack paths.
From that, it is impossible to identify the relationships of the attack path at one
glance.
On the other hand, it is difficult to include the necessary documentation, e.g.,
comments, into the attack tree without a suitable tool. Those tools are typically
subject to changes, and backward compatibility is difficult to maintain. This issue
undermines the UNECE No. R155s demand to be able to reproduce work products
at any time, also after finishing the development cycle.
Another drawback is the direct incorporation of hardware into the analysis. One
of the constraints in this work is the function-oriented development methodology
before serial development. Therefore, EVITA is not usable without major changes.

The HEAVENS project targets vulnerabilities in automotive systems and provides
methods and tools to evaluate the security and the interrelationship of safety and
security. HEAling Vulnerabilities to ENhance Software Security and Safety (HEAV-
ENS) risk analysis method also starts by modeling the item. In this case, the chosen
modeling technique is Data Flow Diagrams (DFD) consisting of the trust boundary,
the functions, external entities, data storage, and data flow [74].
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The DFD serves as input for deriving the threats using STRIDE and deriving dam-
age scenarios from them. Like EVITA, HEAVENS uses attack trees for modeling
attack paths.
In contrast to MoRA and EVITA, HEAVENS uses a logarithmic scale to rate the
impact and emphasize the financial and safety category by decreasing the other
factors by one magnitude. The overall impact derives from rating and normalizing
the impact categories.
Attack feasibility rating in HEAVENS uses an attack potential-based approach and
normalizes the ratings from the categories (expertise, knowledge, equipment, win-
dow of opportunity). Each category has four levels with values in a linear scale
[51].
Using the impact and the feasibility rating, the risk value is determinable according
to a risk table [74]. This step follows the approach of MoRA where the impact and
the feasibility is a scalar used to derive the risk value for the attack path.
The HEAVENS model got an update to align with ISO/SAE 21434. With this
update, the approach is a combination of MoRA and EVITA. The threat scenario
derivation uses attack trees like in EVITA while the risk determination follows the
straight-forward approach from MoRA.
The HEAVENS approach to introduce weights for the impact and the feasibility
rating is interesting since it provides the possibility for several trade-offs and pri-
oritization already in the SRA. Nevertheless, the weights should be defined at the
beginning of the development process to keep them static over all SRAs. Otherwise,
the security engineers can introduce different adjustments for similar scenarios and
leverage the comparability between the analysis results.
While HEAVENS is an interesting approach for incorporating safety and security,
it is not directly usable in the evaluated process design. In a function-oriented
setting it is impossible to define the complete data flow in the function level of the
development process. Transferring the risk analysis step into a later development
time, would contradict to the idea of security-by-design. Therefore, HEAVENS
is suitable for integrated development processes and in parts it is reusable in the
system SRA method.

8.1.4. Problem Description
The evaluated process implementation uses two types of MoRA implementations:
A spread-sheet-based template and the Yakindu security analyst1. The Yakindu
security analysis is a proprietary tool that implements MoRA besides other methods.
Both implementations have their advantages and disadvantages. The Yakindu se-
curity analyst uses a versioning system to track changes in the model, which is
a significant advantage over a spread-sheet-based approach. On the other hand,
proprietary tools are subject to license fees. Also, software-based SRAs have the
problem that updates may destroy backward compatibility, making it difficult to
re-open existing models. This problem prevents the reproducibility of results and

1https://www.itemis.com/de/yakindu/security-analyst/
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the update of existing analysis, which must be possible until the end of the vehicle
type’s life cycle (R8.4). A template keeps its structure; backward compatibility
is excellent in most spreadsheet programs. Therefore, a spreadsheet-based tem-
plate might be preferable. It needs no solutions to keep backward compatibility
or old implementations running. Especially, a mixture of both worlds is inconve-
nient since it raises the need to maintain the analysis foundations. The decision
for one implementation and version should be part of the planning step and kept
till the end of one development cycle. Nevertheless, those decisions lie with the
security department and are out of the scope of this thesis. This thesis focuses on
the spreadsheet-based implementation of MoRA since it is possible to modify and
adjust this.
The SRA needs many preparations for the input data and from experience, at
least three meetings between the security engineering department, the responsible
person for the function, and the security analysts accomplishing the SRA. Therefore,
efficiency (R8.1) is one issue with the SRA step.
Another point in the SRA step is the damage criteria scope compared to the SRE
(R8.2). Both process steps evaluate an item’s damage criteria and rate them ac-
cording to certain thresholds. In the SRE steps, this is an explicit step through the
question catalog and the pre-defined answers. The SRA incorporates this through
the impact rating, which uses pre-defined impact categories and levels. Both process
steps should match the scope of the damage criteria.
Using additional damage criteria in the MoRA has two main drawbacks. The con-
tact person from the development team needs to know the differences. Otherwise,
he might not prepare all the necessary information for the SRA (R8.1). Also, the
other actors in the analysis need to be aware of those differences to prevent missing
ratings.
On the other hand, less damage criteria in the SRE is adverse. If the criteria
are essential, then the SRE should also target them. Otherwise, it might lead to
functions rated irrelevant that are relevant according to the missing criteria.
Also, the security development process is subject to continuous audits. The auditors
evaluate whether the process aligns with the UNECE No. R155 and whether the
tools and methods are suitable to cover the demands. The auditors analyze different
use cases according to completeness, traceability, and reproducibility. Different
catalogs in the SRE and the SRA give rise to questions regarding completeness of
those two analysis parts.
Therefore, for completeness reasons, the catalog should be consistent regarding
their topics and, if possible, the levels (R8.2). Differences should be assessed and
documented during the security planning step (R8.4). The differences through
composing levels in the SRE are unproblematic since the evaluation targets the
same criteria and levels but merges some for a more accessible overview. By that,
the function-oriented SRA is a expansion and refinement of the previous SRE.
ISO/SAE 21434 demands to evaluate risks against the road user. While it is rel-
evant for the OEM whether the function-oriented SRA also reveals risks against
his interests, it is not necessary to align with ISO/SAE 21434. Therefore, to pro-
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vide both information separately, it is reasonable to differentiate between those risk
types (R8.3).
Tracing (R8.4) targets two directions in the case of the function-oriented SRA.
Decisions need to be traceable through the development cycle. This case is already
integral to the MoRA method. MoRA accomplishes the complete SRA step in one
integrated tool and links the steps to the underlying item definition and between
themselves. Comments provide the possibility to annotate further information. By
that, it is possible to trace all decisions taken. The other direction of tracing is
regarding the underlying catalogs. Those might be subject to changes during the
development or life cycle. Such a change makes it necessary to re-evaluate the
SRAs. This re-opening has to be implementable in a time-efficient way by tracing
the necessary information throughout the complete life-cycle of the vehicle type.
The MoRA spreadsheet incorporates the explicit formulation of uncertainties by
including a particular part for open issues. Nevertheless, those issues are part of a
necessary recap subject to tracing.

8.1.5. Approach
Like in the SRE also the items of the function-oriented SRA show many similarities.
Therefore, also for the SRA, clustering the items is a way to raise time efficiency
in the security and development departments (R8.1). Clustering the SRAs reduces
costs in this process steps, since the effort for the cluster SRA is less compared to
single SRAs. The reduction results from fewer meetings necessary and less effort to
introduce the items. Clustering also reduces inconsistencies between SRA results
since all items in the cluster follow the same deliberations, e.g., about assump-
tions. On the other hand, single SRAs might be more comprehensible and complete.
Clustering may lead to missing assumptions, damage scenarios, or threats. MoRA
provides several catalogs which support the consistency between different SRAs
and completeness. Together with the analysts’ experience, this overcomes the issue.
Therefore, Section 8.2 elaborates about strategies for clustering and needed changes
in the MoRA template. The evaluation of necessary changes to the MoRA method
is part of Section 8.4.
The biggest issue in risk analysis is tracing. This issue incorporates the consistency
of damage criteria between the SRE and the SRA (R8.2), open issues remaining
after completing a SRA, and the used catalogs of the MoRA method (R8.4). Section
8.3 discusses the different approaches and necessities to enable tracing.
One necessary adjustment in the MoRA template is due to requirement R8.3.
ISO/SAE 21434 demands to evaluate the risk against the road user but not against
the OEM. MoRA uses the highest impact for the risk determination. Therefore, it
is unclear whether the resulting risks are crucial according to ISO/SAE 21434. This
also influences the efficiency of subsequent process steps. Therefore, it is necessary
to designate the risks according to the road user and the OEM separately. Section
8.3 targets this adjustment and others arising from the preceding sections.
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8.2. Cluster SRA
Clustering the SRA process follows the same idea like with the SRE (see Section
7.2). Therefore, it has identical evaluation criteria for the clustering technique.
The straightforward approach for clustering the SRAs is to use the clusters with
the relevant functions of the SRE (R8.1). Those show a low number of contact
persons, which is essential since in the SRA process are typically at least 2-3 meet-
ings necessary. Participants of those meetings are representatives from the security
department, the development team contact person, and the analysts. Therefore,
they have many participants from different departments and companies (in case of
outsourcing), making it challenging to adjust meetings.
Also, the functions in the criticality cluster show high similarity. This criterion
is necessary to prevent unnecessary complex results in the SRA. Clustering SRAs
leads to more damage scenarios, threats, and risks. Similarities in the functions
reduce this number since at least threats and damage scenarios should intersect.
Additional criteria for clustering SRA might be to limit the cluster to functions of
the same component in the deployment. This limit reduces the number of functions
in the cluster. However, it can also lead to a high number of single SRAs. High
integration ECUs tend to manage many different functions, which would all be the
target of a cluster SRA. Other ECUs typically have only one function deployed. In
both cases, the ECU has a close bond to other related ECUs, e.g., from the light
domain. In this case, it is unnecessary to split the SRA because the item definition
includes the function’s environment and, by that, would include the other functions
of the cluster. It is not easy to find an all-purpose answer. Therefore, this criterion
is left to the security engineer to decide if a criticality cluster is not subject to
splitting.
The clustering scheme (see Figure 8.3) is a categorization the security engineer
can use to validate the clusters before the SRA takes place. Also, the security
engineer must verify that there are no functions below the criticality threshold for
risk acceptance that have open uncertainties (R8.4). This information is visible
in the SRE results and, if used, in the ticket system. In such cases, the security
engineer must contact the responsible person of the development team and complete
the questionnaire. Otherwise, it might be possible that relevant functions drop out
of the development process.

8.3. Traceability of SRA
The MoRA method inherently supports tracing [30]. Therefore, analysis further
tracing possibilities inside MoRA is out of scope of this work.
However, the MoRA results and the relation to the SRE and risk treatment are
subject to evaluation. This evaluation incorporates the damage criteria catalog of
both process steps, the open issues and assumptions of the SRA results, the MoRA
catalogs, and the issues which trigger a reopening of completed SRAs (R8.4, R8.2).
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Cluster SRE

Cluster with
Criticality relevant

Cluster with Crit-
icality irrelevant

Uncertainties?

Clarify Uncertainties
Items drop out

of security devel-
opment process

Cluster suitable?

Proceed to SRA Built Sub-Cluster

yes no yes no

Figure 8.3.: Process from the cluster SRE to the cluster SRA depicting the clarifying of uncer-
tainties and re-clustering.

8.3.1. Damage Criteria Alignment
The impact rating of damage scenarios in MoRA uses a damage criteria catalog.
This catalog provides impact levels to the road user and the OEM in the same
categories and with the same issues as the SRE questionnaire.
Comparing the unimproved SRE template and the MoRA template reveals some
inconsistencies. While the criteria catalog in MoRA incorporates all categories and
levels like in the basic SRE version, the catalog merges the levels in the categories.
Since MoRA allows only one impact level per category, only the highest impact per
category is noticeable. This notation diminishes other damage criteria (R8.3).
Also, sometimes the naming differs substantially, which is especially problematic in
the safety category. The automotive development process commonly uses the nam-
ing of the severity levels used for determining the ASIL according to ISO 26262:2018
[53, Part III]. Also the SRE template uses this levels but the MoRA template not
(R8.4). In the template, the safety levels are differentiated not in S0 to S3 but
verbally and different to ISO 26262:2018, which is no mistake but an inconsistency
with the common naming scheme. For example: In the SRE template, the lowest
level is “(S0) No injuries” and in the MoRA it is “Potentially dangerous situation”.
For supporting the consistency (R8.2) between the damage criteria in SRE and SRA
a comparison overview is usable in the security development process planning. The
idea is to update the overview in case of tool changes and maintain consistency.
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In contrast to the SRE, it is not necessary to have levels for uncertainty or irrelevant
damage criteria in SRA. Uncertainties in the analysis lead to open issues separately
declared in the analysis results. Since analysts accomplish the SRA, it is not nec-
essary to explicitly target irrelevant damage criteria level. It is assumable that the
analysts either completely target all damage criteria or declare open issues.

8.3.2. Open Issues
It is necessary to track the progress of the security development process (R8.4),
which incorporates the tracking of open issues.
As proposed in the SRE analysis section (Section 7.4), it is reasonable to use a kind
of ticket system to maintain the progress of the security development process. In
this case, this system should be able to mark that SRAs which has open issues or
even assign them as tickets.

8.3.3. MoRA Catalog Changes
The MoRA method provides several catalogs for the analysis: damage criteria,
threat classes, attacker model, and assumptions. At the beginning of the develop-
ment project, security planning defines the catalog contents. In order to maintain
consistent analysis, the catalogs should be static for the complete development cycle.
Nevertheless, the demand for static catalogs is unsustainable due to the constant
change in the knowledge base. Regularly, new threats reveal, and with them also
new attack paths. With rising computing power, assumptions about the strength
of cryptographic algorithms break. Those may make changes in the MoRA catalogs
necessary (R8.4).

Threat catalog - Newly revealed threats during the development process can impact
already accomplished or open SRAs. Also, the threat catalog must be updated after
the start of production and during the vehicle architecture’s lifetime. Therefore, the
security engineers include new threats according to the threat class in the catalog
and assign an appropriate attack potential.
The other case is where the attack potential of an existing threat changes. This
change might be due to published vulnerabilities or because the potential attack
rating reveals to be wrong. Those changes led to a modified version of the existing
threat catalog.
Also, the attacker model itself is subject to change by adding new attacker capabil-
ities. However, those changes do not lead to a reevaluation of SRA but an updated
attack model in the next development cycle.

Damage criteria - MoRA uses the damage criteria catalog to rate the impact of
damage scenarios. Therefore, they do not introduce or change risks in the analysis.
Nevertheless, it might be that the rating of a damage scenario class changes, e.g.,
due to precedential law cases. Those situations are scarce and are negligible in
most cases. Also, the need for more damage criteria in the catalog may arise.
However, it is unlikely that new criteria reveal which are that important that existing
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development processes need an update. Therefore, the damage criteria catalog needs
no additional tracing besides its link to the SRE.

Assumptions - The use of assumptions limits the scope of the SRA or changes the
impact or feasibility of risks. MoRA provides several assumptions regarding the
attacker model, scope, operational environment, and cryptography.
An example that limits the scope is that attacks from workshop employees are not
in scope. This limit is reasonable since, if the workshop employees would attack
vehicle security, they are subject to civil and employment law, and it is acceptable
that they would not risk that. The security planning step defines those limits, which
are static throughout the development and life-cycle.
Assumptions regarding cryptography target, for example, random number genera-
tors or hash functions. Those also limit the scope from a different perspective and
are also static. Security planning defines the defense method catalog and limits the
use of insecure or insufficient cryptography. If cryptographic functions or procedures
break, the risk treatment is the change target, not the SRA.
The operational environment, e.g., excludes the backend from the analysis. This
limit is reasonable since the backend is subject to IT security in the sense of ISO/IEC
27001 [56]. Therefore, the scope and procedure of the analysis differ significantly,
and it is not advisable to include that in the SRA. Those assumptions do not change
throughout the development and life cycle.
Nevertheless, there is also the possibility of limiting the scope of the analysis by self-
defined assumptions. Those assume that specific parts of the analysis are targeted
to the SRA of other functions since they are their responsibility. Such assumptions
are subject to tracing. Before proceeding to risk treatment, a reconciliation is
necessary to ensure these assumptions hold. Therefore, the recommendation is to
include those assumptions in the open issues to clarify the uncertainty about the
dissolution.

8.3.4. Re-Evaluating SRAs
The elements identified for tracing, as well as the item definition, might lead to
substantial changes. In such cases, it might be necessary to re-open SRAs and
evaluate if they lead to new risks or change risk determinations.

Newly revealed Threats - can impact already accomplished SRAs and make it
necessary to re-evaluate them. Based on the information, the security planning
updates the threat catalog, and the security engineers need to evaluate to which
SRAs this update affects.
The threat catalog incorporates the following information:

Target Layer describes the architecture part the threat relates to, e.g., data
flow, component

Attack Surface the interface or location the attacker uses to execute the threat
Technology interfaces or technologies where the external fault introduction

takes place, e.g., signal communication
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Based on this information and the integrated architecture model, it is possible to
identify affected system parts for new threats. The system engineers filter the model
for all system parts which use the affected technology and provide the attack surface.
This filtering provides the directly affected SRAs which may need reevaluation. The
same filtering is also suitable for attack paths resulting from vulnerabilities in the
component.
Newly revealed threats and attack paths may propagate through the vehicle net-
work. Therefore, it is necessary to evaluate communication paths starting from
affected functions. This evaluation takes place after the reevaluation of affected
SRAs. Since those analyses provide insight if the threat that can propagate through
the network.

Attack Potential - Changes in the attack potential of threat classes “occur due
to updated ratings, new use cases, or processes that impose penalties” [38, p. 99].
Typical reasons are changes in the rating of COTS system parts [38, pp. 99 sq.].
In case of such changes, the threat catalog changes, and all affected SRAs need
reevaluation. The determination of affected analysis has two dimensions.
If the change relates to specific system parts, e.g., COTS, the affected SRAs are
determinable using the integrated architectural model. Otherwise, if the change is
due to updated threat classes or specific threats, it is necessary to make a look-up
which SRAs includes those threats. Depending on how elaborate the ticket system
annotations are, this system is usable. Otherwise, an analysis script that parses the
SRA results is suitable.

Input Data - After accomplishing the SRA, changes in the function might also
change risk analysis results. Therefore, the developer must push those changes into
the security department. It is suitable to have update cycles for the SRA to prevent
inconsistencies by missing updates. After the start of serial development, this is
automatable by using the integrated model usable at this time.
In case of updates, it is necessary to evaluate if these changes affect the SRA re-
sults. The primary concern of the SRA is evaluating communication and stored
data. Therefore, additional communication or changing communication technology
demands a reevaluation. Also, changed storage patterns or amounts make this step
necessary.
Changes like timing patterns or resource usage, in general, might be irrelevant.
Nevertheless, the recommendation is to reassure with the development team.

Open Issues and Assumptions - Missing information during the SRA and assump-
tions regarding the analysis responsibility between different functions lead to open
issues. The security department needs to re-cap them before proceeding to the risk
treatment step. In cases where the assumptions break or the open issues reveal
necessary changes, it is necessary to re-open the SRA and dissolve those issues.
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8.4. Template Adjustments
For the clustering approach (R8.1), it is necessary to relate each part of MoRA to
the function ID. This idea is the same as in the cluster SRE. Each entry in the SRA
gets an additional annotation for the function ID(s). If an entry relates to more
than one function, the analyst assigns the list of function IDs.
As mentioned in the process description section (Section 8.1), one approach is to
split the risks to the OEM and the road user (R8.3). MoRA derives the risk from
the attack feasibility and the damage scenario impact. While the former relates
to the attacker model, independent of road user and OEM, the latter derives from
the damage potential catalog, which has different levels for the road user and the
OEM impact. Therefore, the damage scenarios need an adjustment to designate
them separately. The most comprehensive way is to triple each damage scenario
and rate it against the road user, the OEM and like as of yet to both. This approach
has another advantage: How the combined impact composes is clear. Splitting the
damage scenario makes the implicit maximization explicit.
The identification of risks follows the damage scenario example. The analysis result
triples each risk, and the resulting evaluation is the risk level with the impact against
the road user, the OEM and the maximum of both. With this, it is obvious which
risks have a high rating against the road user and are thereby crucial according to
the prioritization of ISO/SAE 21434.
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Anyone who has never made a mistake has
never tried anything new.

Albert Einstein

9
Security Risk Analysis on System Level

Typically, the function-oriented SRA takes place before the final deployment of the
functions to the hardware. Therefore, it has incomplete information about the de-
ployment and the used hardware. Also, it has a different scope: It concentrates on
the functions’ behavior, communication and environment. Nevertheless, also the
hardware poses threats to the system. Ignoring them leads to threat propagation
from the hardware development into the resulting system (see Section 5.3.5). There-
fore, a complete and consistent security development process needs to supplement
the function-oriented SRA results with a system view.
The system SRA completes the risk analysis cycle: The criticality evaluation of
the SRE followed by the function-oriented SRA concentrating on the specifics of
the function until the system view, introducing the threats resulting from the used
hardware.

9.1. Process Description
To the authors’ knowledge, the division between system and function-oriented SRA
is unique to the evaluated development process. Therefore, no specific related work
exists. Also, the evaluated security development process does currently not have a
specific system SRA step, which is why no description and experience exist.
The normative reference section depicts the differences between the system and
function-oriented SRA. The problem and approach sections describe the system
SRA idea of whether development is subject to the remaining chapter.
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9.1.1. Normative Background
ISO/SAE 21434 elaborates not separately about system SRA. The only difference
lies in the attack path analysis.
In the sense of ISO/SAE 21434, a component is a “part that is logically and tech-
nically separable” [54]. This separation possibility does not necessarily relate to
components in the sense of ECUs like in this thesis. Nevertheless, as defined before-
hand, the items in a function-oriented development security analysis are the func-
tions, e.g., park assistant, deployed to components (hardware) and system software,
e.g., operating systems. Therefore, this hardware and system software combina-
tion is the technically and logically separable unit in the development process - the
component.
The function-oriented SRA attack path analysis relies on the item definition and
threat scenarios. For components, ISO/SAE 21434 suggests using the cybersecurity
specifications and the threat scenarios [54].
Cybersecurity specifications regarding ISO/SAE 21434 are specifications on differ-
ent architectural abstraction layers. They include the results from the security
analysis: the item definition with the interfaces between sub-components, security
requirements, configuration, and calibration parameters and, if applicable, already
assigned defense methods (see Chapter 10).
Therefore, the attack path analysis of the system SRA uses the function-oriented
SRA results. The system itself does not introduce separate damage scenarios and
impacts. However, it introduces new attack path steps influencing the functions’
feasibility ratings and risks.

Requirements - Based on the normative background and the evaluation of the
function SRAs scope, the following requirements for the system SRA arise:

R9.1 The system SRA must extend the attack paths to include system influ-
ences.

R9.2 The system SRA must re-evaluate the risks from the function-oriented
SRA

R9.3 The method should efficiently re-use the results from the function-oriented
SRA.

R9.4 The method must support tracing by connecting the item definition and
inputs.

R9.5 The method must maintain consistency between the different system
SRA.

R9.6 The method must align with the normative references.

9.1.2. Problem Description
The change of the analysis perspective prevents a direct transfer of the function-
oriented SRA method. In contrast to the function-oriented SRA, the component
analysis aims to identify and rate the hardware influence on the attack paths and
thereby risks (R9.1, R9.2). Therefore, also the starting point differs between both
analysis steps. The system SRA relies upon two types of input data: The capabili-
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9.1. Process Description

ties and structure of the system and the function-oriented SRA results of assigned
functions.
Modeling the system includes the hardware structure, system software, and ca-
pabilities. Therefore, it is necessary to define the amount and representation of
information. One example is the incorporation of separate processors or virtualiza-
tion.
In order to use the function-oriented SRA results (R9.3), it is necessary to compose
those into an integrated representation.
Also, the system SRA must maintain traceability (R9.4). The normative references
demand the reproducibility of accomplished process steps. Besides, it is necessary
to be able to backtrack from the implementation throughout the analysis steps till
the beginning of the security development process.
The security planning step defines the basic templates and catalogs used throughout
the security development process. Therefore, it is reasonable to ground also the
system SRA on a distinct basis. This approach maintains conciseness between
different system SRA (R9.5).

9.1.3. Approach
In order to design a methodology for system SRA it is possible to evaluate the
general SRA steps from the normative references (R9.6). The aim is to define the
method based on the necessary information for a system viewpoint. This approach
enables the derivation of the input data structure and necessary input data (see
Section 9.2).
The item definition of the system SRA is twofold. One part is the function-oriented
SRA results providing the function information, and the other depicts the hardware
and system software information. The latter results from the deployment informa-
tion, including the function placement. The idea is to reduce the modeling effort to
a few compatible model elements (see Section 9.3). This approach allows varying
abstraction levels for the analysis.
For the function-oriented SRA results, it is necessary to compose them in a data
structure suitable to support the system SRA. Therefore, the analysis results need a
separation according to their deployment (R9.3). This step is necessary since cluster
SRA can include functions from several different components. Therefore, annotating
the hardware deployment in the function-oriented SRA is necessary (R9.4). The
MoRA method allows this annotation already. Nevertheless, in most situations,
the deployment is not fixed during the function-oriented SRA. In such cases, it is
necessary to complete this information. Alternatively, it is possible to backtrack
the results based on the components item definition. Therefore, this information is
also used to divide the function-oriented SRA results in order to use them in the
system SRA item definition.
The central part of the system SRA is the identification of threats to the hardware
and system software in order to supplement the attack paths and update the attack
feasibility rating (R9.1). Therefore, it is necessary to have a concise data basis
for the threats and the attacker model (R9.5). Following the MoRA approach
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Figure 9.1.: Influences from the function SRA results on the system SRA and steps necessary
to accomplish in the system SRA.

of providing catalogs for those analysis parts, Section 9.4 provides an overview of
threat and attacker models and examples for basic threat classes. This threat model
is usable for the system SRA analysis (see Section 9.5), which aims to identify the
additional attack path steps and update the attack feasibility rating and, therefore,
the risks.

9.2. Method Design
The system SRA uses the same normative background like the function-oriented
SRA. Nevertheless, it has a different scope and approach. This section outlines the
method for the system SRA, starting with the analysis scope. The remaining part
of the section transfers the SRA steps to the system viewpoint and develops the
idea of the method.

9.2.1. Scope
The start of each analysis method design is its scope. In function-oriented devel-
opment, the functions define the systems’ value and harm. The function-oriented
SRA targets a function’s internal structure and the communicated data to evaluate
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9.2. Method Design

risks to the system. For the system SRA, the scope changes onto the data handling
in terms of data storage and flow.

9.2.2. System Viewpoint SRA Steps
The system viewpoint adds attack path steps, reassessing the feasibility of the at-
tacks and, therefore, the risk levels. This approach requires including the supporting
SRA steps and leaving others aside.

The item definition aims to model the system under consideration, its boundaries,
the relationship between the systems, and its environment [17]. In the case of a
system SRA, these are the hardware elements and system software: the ECUs,
high integration platforms1, sensors, actuators, and according network interfaces,
operating system and middle-ware.
The system SRA focuses on data storage and flow making it necessary to model
the system with its deployed functions. Therefore, the item definition includes the
results from the function SRAs of the deployed (sub-) functions (R9.3).

The Asset Identification/Damage Scenarios includes identifying the assets in the
item model and the relation between the item parts and adverse consequences.
Assigning security objectives to the assets leads to the damage scenarios [54].
Security risk analysis targets the risks against the vehicle functionality. Therefore,
system SRA does not add damage scenarios but takes over the damage scenarios
result from the function-oriented SRA.

Impact Rating assesses the damage scenarios against adverse consequences regard-
ing safety, financial, operational, and privacy [54]. Therefore, each damage scenario
gets an impact level (negligible to severe) for the different categories.
The system SRA adds no additional damage scenarios. Therefore, the results from
the function-oriented SRA need no update.

Threat Scenario Identification evaluates which threats can realize a damage sce-
nario. It is possible to use information besides the damage scenarios: “technical
interdependencies between assets, attackers, methods, tools, and attack surfaces”
[54].
Threat modeling approaches support deriving the threat scenarios. MoRA uses
a threat catalog following the STRIDE model [30]. This attempt is reasonable
and maintains a high degree of confidence in completeness. Also, a threat catalog
provides standardized attack potentials, which maintains consistency between the
different system SRA.
Incorporating a system threat catalog helps to identify threats arising from the
system and maintains conciseness (R9.5). Section 9.4 covers the details of the
threat catalog for the system SRA.

1Regarding conciseness, the remaining chapter incorporates high integration platforms into the
term ECU if it is not necessary to emphasize the difference.

97
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Attack Path Analysis and feasibility rating evaluates the threat scenarios regarding
the necessary steps to accomplish the threats and rates their feasibility. Since the
system adds steps to the functions’ attack paths, it is necessary to update also the
feasibility ratings.
The attack path analysis and feasibility update are part of the analysis section (see
Section 9.5).

Risk Value Determination combines the attack path feasibility and the associated
damage scenario impact.
Following the approach of MoRA is reasonable to maintain consistency. Therefore,
the method reuses the existing damage scenario impacts from the function-oriented
SRA and updated attack paths from the preceding steps (R9.3).
The function-oriented SRA chapter (Chapter 8) suggested designating the risk
against the road user and the OEM separately. The system SRA follows this sug-
gestion. Using the evaluated attack feasibility ratings allows us to re-evaluate also
the functions’ risks. The result of the risk value determination is an updated version
of the composed function-oriented SRA risks. The system influence either raises or
lowers the function-oriented SRA risks.

9.3. Item Definition for System SRAs
Each risk analysis begins with the item definition. In the case of the system SRA,
the data basis is available through the ECU information in the vehicle project and
should contain the following items:

• ID of the ECU
• Hardware resources, e.g., virtualization, network interfaces, HSM, storage
• Operating systems and middle-ware
• Deployed (sub-) functions
• Connections to other ECUs

The ID of the ECU is necessary for tracing the input and output of the analysis
and throughout the remaining process. System resources provide the functional
environment for the functions and are therefore primary part of the data flow - the
scope of the analysis. Storage resources handle data and provide access through
shared or multiplied interfaces [1]. Network interfaces give rise to aspects of data
handling and security threats on the platform [2]. Virtualization techniques lead
to an extended hardware modeling to incorporate the different isolation units. Al-
ready assigned defense mechanisms are part of the ECU technologies. They secure
the system but pose threats to it, e.g., secure key storage in a HSM vs. insecure
interfaces to the HSM.
The system software incorporates the operating system and middle-ware(s). These
provide the run-time environment for the deployed functions and, thereby, the in-
formation for determining the data flow in the system.
The (sub-) functions of the system depict the functionality and give rise to the
damage scenarios for the system. They access data through interfaces of the holding
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Figure 9.2.: Example architecture for a high-integration platform with two CPUs and different
network interfaces.

resource. Also, the list of deployed (sub-) functions is the criterion for the function-
oriented SRA result composition.
The item definition consists of the component model and the function-oriented SRA
results. Since these are static inhabitants, it is reasonable to include the operating
system and middle-ware into the resource part of the item definition. This approach
divides the analysis parts of the system SRA between the already covered function-
oriented SRA results and the new analysis subjects, the hardware, and system
software (operating system and middle-ware).
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9.3.1. Hardware Architecture Hierarchy
The basis for the item model is the system architecture providing the run-time
environment for the functions. Figure 9.2 provides an example for a high-integration
platform with virtualization, and different operating systems.
This architecture provides a hierarchy that depicts the nesting of the hardware
structure, the system software, and the deployed (sub-) functions:

Functions access data via interfaces to the providing resource. For the system SRA
the autonomously deployed sub-functions are the subject of the analysis. Therefore,
they are functions in the sense of this analysis part.

System Software provides the run-time environment for the deployed functions.
Thereby, it can be hierarchically structured and encapsulated. For example, a
CPU hosts an operating system with an assigned middle-ware and a function in
the system hierarchy. The operating system and the middle-ware encapsulate the
function from direct CPU access.

Interfaces allow different ECU inhabitants to access resources. They establish a
connection between the requester and data. Resources can directly provide in-
terfaces (e.g., a memory module) or indirectly through nesting (e.g., by using a
middle-ware).
External interfaces depict connected sensors/actuators and different network in-
terfaces. They are accessible through interfaces to send or receive data.
Network interfaces are the connections to other ECUs providing insights about the
overall system architecture.
Therefore, a system architecture consists of the hardware, the system software, and
the provided software functionalities decomposed into autonomous functions. The
example ECU in Figure 9.2 is one component out of the complete system archi-
tecture. It consists of two CPUs, different storage resources, network technologies
(CAN and Ethernet), and an embedded Ethernet Switch. In automotive systems,
Ethernet switches tend to be embedded into an ECU and often have firewall capabil-
ities. Storage resources can be either encapsulated in a CPU or the ECU providing
unrestricted access to all CPUs.

9.3.2. Structural Model
The structural model represents the system architecture as a connected graph GH .
The graph takes the viewpoint of the function, where every hardware element and
system software is a resource. Therefore, the graph depicts the system hierarchy of
hardware with assigned system software and the functions as “leaf” nodes.
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GH = (P, R, X, Y )

P =
⋃

i

Pi : partition of F where F is the set of all functions

R : set of resources

X ⊆
{

{p, r}
∣∣ p ∈ P, r ∈ R

}
, ∀p ∈ P : ∃! {p, r} ∈ X

Y ⊆
{

{r1, r2}
∣∣ r1, r2 ∈ R ∧ r1 ̸= r2}

The set of functions F is partitioned into sets Pi, representing the functions as-
signment to units of isolation deployed to a resource element. Resource elements
R are the different CPUs, storage technologies, networking interfaces, and system
software. Those resource elements depict the system’s hierarchical architecture. In-
terfaces X and Y connect resources and requester. Therefore, the model representa-
tion depicts a relation between both as edges. This relation is possibly hierarchical
in the case of indirect access through nesting. Those cases lead to an access path
through different levels until resource access.
For the presented example architecture excerpt, Figure 9.3 shows the resulting ar-
chitecture graph. The graph consists of all functions deployed to the two CPUs,
their corresponding encapsulation, and their connection to networking technologies.
In reality, the architecture graph represents the complete system architecture.

9.3.3. Communication Flow Model
The system SRA aims to add the influence of data flow to the attack paths of
the functions. A communication flow graph illustrates the communication links
between the collaborating functions. The composed function-oriented SRA results
provide the necessary information, i.e., if they have a proper abstraction level.
Otherwise, they only provide the sender and receiver of messages, and other models
are necessary to complete the information.
For the composition of the function SRAs, the deployment information of the func-
tions is the main composition criterion. Combining the function-oriented SRA re-
sults concerning their deployment to the units of isolation in the architecture graph
leads to the set of risks for each unit of isolation.
The easiest way to accomplish the composition is to parse the MoRA results and
copy them into a new template for each isolation unit. It is also possible to use one
integrated template per component and annotate the isolation units for each entry.
The result is the necessary input for the system SRA communication flow model.
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Figure 9.4.: Example of a communication flow graph of function F 1.

GD = (F, C, W, D)
F = set of all functions

C ⊆
{

{fS , fR} ∈ F × F
}

D = set of all data items
W : C → D

A communication flow graph is a connected graph GD including the functions F
and communication links C (see Figure 9.4). The item modeling builds such a
graph for each function in the system. Each communication link gets an annotation
W of the communicated data item D.i. If this data item is an aggregation, e.g.,
D.4 = D.1 + D.2, the aggregations serves as the annotation.
The presented graph is undirected, meaning all information can flow in both direc-
tions. While this is true in many cases, it leads to an overestimation in the other
situations. Nevertheless, it reduces the model overhead, leading to higher efficiency.

9.4. Threat Catalog for System SRAs
As proposed in the approach, it is reasonable to use a threat catalog for analyzing
attack paths and feasibility. Following the literature, a threat catalog incorporates
the attacker and possible threats to the system [106]. The former defines possi-
ble attackers with their motivation, equipment, and possibilities. The latter part
describes threats to the system.
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The threat catalog in MoRA includes several threat classes and example threats
whether feasibility is rated with an attacker model. This section develops a threat
class catalog for system SRA. At first, the section elaborates on threat models and
attacker models before presenting example threat classes for the system SRA.

9.4.1. Threat Model
A threat model narrows the threat identification step of the risk analysis process.
To prevent a too-narrow or too-wide risk determination, it is necessary to define a
distinct threat model for each system type [58]. The security planning step defines
the threat model for the complete development cycle. Therefore, the system SRA
of the different system parts use the same assumptions. If there is a newly detected
threat to the system, the threat model needs an adjustment leading to possible
reevaluations of the completed risk analysis. For that, the deliberations of Section
8.3 apply.
While the content of threat models can be different, the basics they should define
are the same: the threat surface, the threat type, the threatened security objective,
and the interfaces or technologies.

Attack Surface is the interface or location the attacker uses to execute the threat
[120, p. 25]. The distinct formulation of the attack surface leads to structured
threat analysis. Thereby, the attack surface definition can have different levels of
detail. An abstract attack surface definition for automotive systems differentiates
two surfaces attackers may use, independent of their motivation:

Local attack: The local attacker has physical access to the vehicle, its ECUs,
the vehicle network, and all its interfaces. It is unnecessary to
distinguish whether or not the attacker has legitimate access to
the vehicle.

Remote attack: A remote attacker has no physical access to the vehicle but at-
tacks the termination points of the vehicle’s external interfaces.

For the subsequent analysis steps, it is notable that the attack surface influences
the assumptions on attack probabilities. A local attack does not scale since it has
to be performed manually on each vehicle. Also, the local attacker can access all
vehicle interfaces and perform remote attacks but prefers easier local attacks. On
the other hand, remote attacks potentially scale to the entire fleet. Since remote
attacks use external interfaces of the vehicle as entry points, it is assumable that a
remote attacker compromises the first termination points of online communication
(wireless local area network (WLAN), Bluetooth). Therefore, also communication
on connected buses may be compromised.
The attack surface classification allows distinguishing the threats according to local
and remote threats. It is also possible to exclude threats based on stated assump-
tions, explicitly accompanied by an appropriate reason. An example is threats
that are achievable easier than by threatening cyber security, e.g., by mechanical
manipulation.

104



9.4. Threat Catalog for System SRAs

Threats denote the goal of the attack [106]. Microsofts’ STRIDE model classifies
threats into six categories (see Table 8.1) [41]. While [41] suggests using the STRIDE
model on the decomposed system, it is also possible to use the provided categories
for establishing a general threat model, later usable in the risk assessment process.
This model incorporates known threats and attacks from former development and
threat databases suggested by [38]. Thereby it is made sure that in a distributed
and heterogeneous system like in the automotive industry, the risk analysis of the
different system parts uses the same assumptions.
The combination of threats with the respective security attribute allows to focus
the subsequent security process steps on specific security attributes or identify the
ratio of the security objectives. This combination leads to a classification of threats
to the system like in Table 8.1.

Technology allows to identify of attack patterns [41]. Those are preconditions for
executing the threat. On the other hand, technologies introduce new threats, mak-
ing the threat model more comprehensive.
For that, it is necessary to enumerate the interfaces and technologies which con-
cretize the threat classes regarding the (access) type for each system class [17] –
defining and combining the nature of the interfaces and technologies with the threat
classes narrows analysis objectives, and the setting in which the security analysis
takes place.
An example would be internal communication interfaces not exposed to the vehicle
user. Those are distinguishable into signal communication and service communica-
tion combined with the attack surface and security attributes, e.g. local extraction
of data via signal communication, where the target layer is data, the technology is
signal communication, and the affected security attribute is confidentiality.

9.4.2. Attacker Model
Attacker models are dual to threat models. They define the classification of attacker
capabilities to execute a threat. Later in the risk assessment process, the feasibility
rating of threats and attack paths instantiates this attacker model.
[38, p. 22] distinguishes attacker models into attacker-centric and capability-centric
ones. Attacker-centric models focus on the attacker’s type and capabilities, e.g., if
he is a system user or an external attacker. They define the type of attacker who
generally may attack the system. Capability-centric attacker models focus on the
access, the time, expertise, knowledge, and equipment needed to execute the threat
[17, 38, 120], e.g., hacker vs. vehicle owner performing chip-tuning.. Therefore
they relate to certain system threats and rate-defined threats. Since the attacker
model is usable as a schema to rate defined threats and attack paths of the system,
this work follows the idea of MoRA. It uses the idea of capability-centric attacker
models.
Table A.1 provides an overview of the categories incorporated in the attacker model.
Each category has several levels with assigned values based on a discrete scale [38,
p. 57]. Those values provide the rating for the minimum effort in this category [96,
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Threshold RAP Number

0 Very low 1
14 Low 2
20 Moderate 3
25 High 4
35 Beyond high 5

Table 9.1.: Thresholds for estimating the required attack potential

p. 86]. Comparing the sum of these values with the threshold matrix (see Table 9.1)
provides the required attack potential - the capability and effort an attacker needs
to possess to successfully realizes the attack [38, p. 57].
Interested readers may have a look into Appendix A for further information about
the attacker model categories.

9.4.3. Threat Classes
[102] states that each item element is attackable directly by modifying the entity
or indirectly through the data flow. This view leads to the following general threat
classes for data flow and data storage, taken from [102]:

• Data flow:
Tampering of the data flow, e.g., man-in-the-middle attacks.
Information disclosure on a communication channel, e.g., recording of un-

encrypted radio signals.
Denial of Service of a data flow, e.g., GSM jammer.

• Data storage (processes, external entities, storage):
Tampering of data storage leads to modified behavior, e.g.,

attacks by altering the ECU firmware.
Denial of Service of data storage leads to timing, omission faults, or

crash faults, e.g., attacks by uncontrolled resource
acquisition

Information Disclosure includes not only intellectual property but also
cryptographic keys or passwords, e.g., attacks by
reverse engineering or side-channel attacks.

Transferring those general threat classes onto the hierarchical hardware model (see
Section 9.3) leads to threat classes for the system SRA. As already stated, the data
flow uses interfaces between the requester and the data. Therefore, for each attack,
it is necessary to target an interface that makes them the threat classes’ primary
concern.
An elaborated threat catalog is necessary for usage in the system SRA. Building
such a catalog is out of the scope of this work. Table B.1 provides an illustrative
example for basic threat classes. This example does not include the technology and
surfaces. Each threat class is possible for a local and a remote attacker and different
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technologies. For usage in real use cases, the threat classes need an extension for
the different surfaces and technologies. Also, the provided attack potential has
no claim for correctness. In order to complete and adjust the threat classes, it is
recommendable to include the information from CAPEC [82] which is an attack
pattern catalog maintained by MITRE.

9.5. System SRA Analysis
The analysis step aims to extend the function-oriented SRA attack paths to include
the systems’ influence. To accomplish this, it is necessary to annotate the attack
potential to the provided item model. Subsequently, the graphs are transformable
to evaluate attack paths from the system view and re-evaluate the risks by prop-
agating the required attack potential elements. Thus, not the Required Attack
Potential (RAP) but its underlying category levels are the exciting information.
The remaining section uses the term RAP level for these category levels.

9.5.1. Annotating the Attack Potential
In order to complete the architecture graph and the communication flow graph, it
is necessary to annotate the attack feasibility of the interfaces and communication
links. The function-oriented SRA results provide parts of them in the threat def-
initions. The threats relate to the functions, the components, and the data flows.
Also, they give rise to the used technology, thereby providing the information that
interfaces the data flow.
By annotating the graph relations, the threats may provide different RAP infor-
mation for the same model element. The higher the RAP is, the more the effort
for an attacker to accomplish this step, and better defense methods are necessary.
Therefore, in the case of contradictory RAP information, it is reasonable to use the
minimum of the different elements.
Missing relations are subject to completion by using the threat classes for the system
SRA. Each edge in the architecture graph and communication flow graph has the
RAP levels as an assigned vector.
Therefore, the complete definition of the architecture graph is as follows:
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GH = (P, R, X, Y, Wx, Wy , RAP )

P =
⋃

i

Pi : partition of F where F is the set of all functions

T = set of resources

X ⊆
{

{p, r}
∣∣ p ∈ P, r ∈ R

}
, ∀p ∈ P : ∃! {p, r} ∈ X

Y ⊆
{

{r1, r2}
∣∣ r1, r2 ∈ R ∧ r1 ̸= r2}

RAP = The set of the required attack potentials as vectors
Wx : X → RAP

Wy : Y → RAP

For the communication flow graph, the weight function changes to include the RAP :

GD = (F, C, W, D, RAP )
F = set of all functions

C ⊆
{

{fS , fR} ∈ F × F
}

D = set of all data items
RAP = The set of the required attack potentials as vectors

W : C → D × RAP

9.5.2. Graph Embedding
The evaluation of attack paths demands a graph embedding of the communication
flow graph into the architecture graph. This approach allows for evaluating chains
of actions in the data flow. The embedding is a composition of the communication
flow graph for each function and the architecture graph of the system architecture.
For each link in the data flow graph, the path in the architecture graph is evaluated
(see Algorithm 1). The result is a tuple representing the data flow through the
involved resources. Thereby, in case of an aggregated weight at the communication
link (e.g., D.4 = D.1 + D.2), the pathfinding includes the sub-parts (e.g., D.1
and D.2), too. The path’s first and last elements are the requester and provider
of the information, thereby leaving the architecture graph. The path from the
incorporated functions in the architecture graph conserves the order of the functions
and resources along this path. The tuple is merged into a set of tuples representing
the union of all paths for each function.
Over these paths, it is possible to derive the attack potentials of the functions by
propagating the minimum RAP levels through the paths (see Algorithm 2). The
result is a vector allowing to estimate the RAP of the data flow (see Algorithm 2).
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Algorithm 1 Estimate Paths for the functions
Require:
1: GH = (P, R, X, Y )
2: GD = (F, C, W, D)
3: visited = C ▷ Set of all edges in GD
4: paths = ∅

Ensure: |paths| = C ▷ Each edge is part of a path

5: while c ∈ visited do
6: paths = paths ∪ path(c, GD) ▷ Determines the path for {x0, x1} ∈ C in the graph GD
7: visited = visited \ c
8: end while

Algorithm 2 Evaluate RAPs over the paths
Require:
1: paths ▷ Input from the path estimation algorithm
2: data ▷ Set of data items for annotating the RAP per item

Ensure: paths = ∅ ▷ every path is handled

3: while p ∈ paths do
4: min = empty vector
5:
6: while i ∈ p do elem_min(min, i) ▷ Determines the element-wise minimum of the path

elements RAP and the current minimum
7: p = \ i
8: end while
9: update_data(data,min)n ▷ Annotates the resulting RAP

10: paths = paths \ p
11: end while
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Algorithm 3 Re-evaluation of the risk levels from the function-oriented SRA
Require:
1: risks as array of ID× Data_items
2: data ▷ Set of data items with annotated RAP

3: while d ∈ data do
4: r ⊆ risks : d ∈ Data_items
5: while i ∈ r do
6: Assigns result of element-wise minimum to the RAP of the risk
7:
8: r = \ i
9: end while

10:
11: data = \ d
12: end while
13: update_risks(risks) ▷ Re-evaluates all risk levels based on the changed RAP values

This re-evaluated RAP allows to update the risks from the function-oriented SRA
(see Algorithm 3). Therefore, each item in the data item set leads to an update of
the risks and whether the attack path incorporates them. Ultimately, all risks are
re-evaluated based on the changed RAPs.

110



Premature optimization is the root of all evil.
Donald Knuth

10
Risk Treatment

After the risk analysis, risk treatment leverages the risks by assigning defense meth-
ods. Trade-offs and cost analysis help to optimize the treatment solution [91, p. 507]
still ensuring a suitable level of protection [38, p. 2].

10.1. Process Description
While it is possible, and often done in practice, to include risk treatment into the risk
analysis process, this work implements it as a separate process step (see Chapter 8
for rational). This section evaluates the normative background and current process
implementation before it proceeds to related work, the problem description, and
the approach.

10.1.1. Normative Background
In the case of risk treatment, ISO/SAE 21434 and UNECE No. R155 have specific
demands for the security development process and the system design.
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UNECE No. R155 demands to protect the vehicle type and to implement “all
mitigations [...] which are relevant for the risks identified”[85].
Besides the general demand for implementing defense methods, the UNECE No.
R155 states three concrete demands:

• Intrusion-Detection for the vehicles
• A central monitoring facility for new threats and vulnerabilities
• The use of up-to-date cryptographic modules

Annex 5 of [85] provides a list of possible risks and appropriate defense methods.
The list in the Annex are not concrete implementations, but rather categories of
defense methods, e.g., “The vehicle shall verify the authenticity and integrity of
messages it receives” [85]. The OEM may differ from the provided list of defense
methods if the list is insufficient to mitigate a specific risk.
In conclusion, the UNECE No. R155 demands risk treatment according to the
provided categories in the Annex. The general demands are only OEM-related, one
regarding the monitoring facility, and two vehicle-related demands. There is no
suggestion regarding threat mitigation techniques or methods.

ISO/SAE 21434 demands using the item definition, the identified attack paths, and
the risk values resulting from the risk analysis. Optional inputs are cybersecurity
specifications, previous risk treatment decisions, damage scenarios with impact rat-
ings, and attack paths with feasibility ratings.
Thereby, ISO/SAE 21434 requires the risk treatment for all identified risks by using
one or more treatment options. Those options are the classical ones (see Section
5.5): threat prevention, threat reduction, and the security planning options risk-
sharing or retaining. The process documentation must record the decision to retain
or share risk. Therefore, ISO/SAE 21434 explicitly allows risk acceptance up to
a certain level, as long as the assessment report documents this threshold and the
retained risks. Like the UNECE No. R155, the ISO/SAE 21434 does not provide
possible methods for risk treatment.

Requirements - Following the normative references and the aim of this work, the
following requirements apply:

R10.1 The risk treatment method must support different levels of defense.
R10.2 Risk treatment must align with the normative references and policies.
R10.3 The risk treatment process must support different trade-offs.
R10.4 Risk treatment must be realizable in an efficient way.

10.1.2. Implementation in the Process
Currently, the function-oriented SRA includes risk treatment semi-automatic (R10.4).
The MoRA template assigns defense methods to the attack paths based on the
threat classes and the security objective [2]. To enable this semi-automatic assign-
ment, MoRA provides a defense method catalog.
The defense method catalog results from the security planning step and defines four
different groups of defense methods:
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Perimeter security targets wired and wireless external interfaces.
Domain separation reduces the remote attack surface by separating the external

interfaces from the vehicle network.
ECU security targets the interfaces to prevent manipulation at rest and

during run-time.
Function security aims to secure the system’s functions higher than other cat-

egories.

In the semi-automatic assignment, the process compares the defense methods with
the attack paths regarding the following properties: Technology, attack surface, sup-
ported security objectives, and dependencies. The first properties are straightfor-
ward. Technology describes the underlying technical implementation, e.g., Ethernet.
The attack surface provides information against which kind of attack the defense
method is usable - local or remote. In order to apply suitable defense methods, se-
curity objectives information is necessary. The dependencies target the reliance of
the defense method on other defense methods, e.g., a cryptographic protocol might
rely on a HSM for secure key storage.
The defense method catalog provides the standard defense methods used in the
development process. Nevertheless, it is not exhaustive, meaning that there might
be cases in which the catalog is not sufficient. In such cases, it is necessary to
include other defense methods manually in the security development process.

10.1.3. Related Work
In [66] the authors define several levels for the selection of defense methods. Their
categorization is very exhaustive, e.g., to the circuit level. In practice, the risk anal-
ysis for components grounds on a selected hardware platform. Therefore, at this
point in the development process it is complicated to change certain specifics, mak-
ing it most of the times unnecessary to take such detailed levels for hardware into
account. Therefore, staying on more abstract and less detailed control categories is
sufficient. Their approach to risk treatment is a rich and detailed data model. The
data model allows a very comprehensive analysis of dependencies between defense
methods. On the other hand, this also demands the use of their entire framework for
the security process. Otherwise, the demanded input data model may be impossible
to acquire.
[91] describes a categorization of defense methods. The main categories are en-
cryption, software, hardware, and physical. Typically, encryption is no stand-alone
method but a feature of another defense method, e.g., secure boot or Transport
Layer Security (TLS). Also, the authors integrate defense methods implemented as
separate functions like intrusion detection systems and password checkers into soft-
ware and hardware levels. In contrast, this work differentiates between the level a
control has its impact on and the technical and functional control categories. Those
include all applicable controls the authors mention, just in a different categorization.
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Also [24] describes the categorization of security requirements into different lay-
ers. Those are the points where the information situates: internally, externally or
both. Additionally, the author differentiates between the development stage and
the methods’ scope. In contrast, this work concentrates only on the product devel-
opment and the customer usage time of the system, leaving process demands aside.
Procedural methods are not assignable to the system in the risk treatment step
but accompany the complete development process. Therefore, they are subject to
security planning and are out of the scope of this work.
The literature review of [5] results in a thematic taxonomy regarding the different
layers of software-defined networks. The categorization is very comprehensive but
not easily transferable to other system domains.
[4] presents another taxonomy based on literature research. The scope of this work
is regarding software integrity protection techniques only. Different system views
build the basis for the categorization: system view, defense view, and attack view.
They evaluate related work, map it onto the views, and evaluate correlations. Nev-
ertheless, besides the different scopes, the granularity of the taxonomy is not helpful
for the approach in this work. The author aims for a flexible approach to clarify
the terminology needed for the defense method assignment.

10.1.4. Problem Description
The vast amount of different terminology is the first problem when looking for
demands and approaches for component-global risk treatment. Unclear terminology
makes it difficult to understand demands and compare approaches. An example is
UNECE No. R155 [85]. While its main section uses the term mitigation, the
Annex uses security control, measure, and mitigation without proper definition.
The same applies to other sources in the literature. Security requirement demands
from system external sources, like normative or organizational policies, are often
mixed with requirements related to specifics of the target of evaluation (R10.1).
After risk treatment, applied trade-offs must adhere to a system’s external security
demands. Otherwise, the system might be cost-effective but infeasible from a legal
point of view (R10.2).
Risk treatment assigns defense methods to the system elements. Those defense
methods rely on specific system capabilities, e.g., a HSM. In the case of function
level risk treatment, it may be that assigned defense methods are impossible on
the available hardware platform. Also, function level risk treatment may lead to
different defense methods with the same or similar influence. Such results lead to
higher resource demands. Besides, this assignment method is less efficient than as-
signing defense methods on a global component level, using a by-catch test for other
functions (R10.4). This approach makes it possible to introduce defense methods
on different abstraction levels and with different trade-offs (R10.3) [24, p. 198].
Security always relates to the system environment [40]. Regarding risk treatment,
this relation is twofold. On the one hand, assumptions in the function-oriented SRA
limit the analysis scope and make statements about the security of other system
elements. Verifying these assumptions is part of the subsequent system validation
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and verification. On the other hand, risk treatment introduces defense methods to
interfaces and communication channels that might interfere with the capabilities on
the receiver side.

10.1.5. Approach
There is a need to find a distinct definition of the terms used for the risk treat-
ment in automotive systems. Such a structured data basis enables efficient risk
treatment (R10.1, R10.2, R10.4). Introducing a division between the origin of the
requirement also supports verification of the results regarding the normative de-
mands. Therefore, Section 10.2 defines a simple structured taxonomy based on a
distinct terminology to support the division between requirements origins, types,
and methods. The derived defense method catalog allows for efficient risk treatment.
As already stated, defense methods may influence several risks in the system. There-
fore, it is recommendable to accomplish risk treatment on a high abstraction level
to support a by-catch-test on other risks (R10.4). On the other hand, this approach
may lead to state space explosion. This issue makes it necessary to find a suitable
level of abstraction. Section 10.3 discusses this issue and provides a method for risk
treatment assignment on a component global basis.
Risk treatment aims to minimize system threats by reducing the impact or the
feasibility. Prioritizing the defense method assignment increases this process step’s
efficiency (see Section R10.4). Besides, those priorities allow trade-offs between
different impact categories or attacker model categories (R10.3). The presented
approach (see Section 10.3) aims for a flexible prioritization of the risk treatment
procedure and the risk impact categories to allow different trade-off points.
Risk analysis determines threats to the system based on attack paths. Those have
different configurations. Single threats (one-element attack paths) are either com-
parable to single point of failure (SPOF) in reliability or are preparation attacks for
other paths. Prioritizing them in the treatment process mitigates crucial threats
(SPOF) and preparation attacks. The latter directly cut attack paths, reducing
the effort of treating those. Updating the risks by determining the impact of the
defense method on other risks raises the by-catch and reduces the overall effort of
implementing defense methods (R10.4).
Another problem is the maintenance of assumption tracing and dependencies be-
tween hardware items. Without further tool support, validating those automatically
in a component-level view is impossible. Therefore, this is left open for future work,
making it necessary for the security engineers to validate the dependencies and
assumptions manually.

10.2. Security Defense Methods
Security defense methods have a variety of names, definitions, and granularity [38,
p. 66]. This section aims to overcome this problem by describing a structure and
classification for a common understanding of the risk treatment methodology. The
resulting taxonomy completes the overall security taxonomy (see Section 5) by pro-
viding the development process-related defense methods for threat mitigations.
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Security Requirements Types
Measures

Controls

Structural

Technical

Functional

Origin
System-relevant

General Conditions

Methods

Isolation

Virtualization

Intrusion Detection

Access Control

Interface Security

Figure 10.1.: Taxonomy of Security Defense Methods.

The taxonomy (see Figure 10.1) has three categories: the origin, the type, and the
defense methods. The objective of the taxonomy is the use in the risk treatment
step. Therefore, the scope is on those requirements that apply to the vehicle and
directly influence its behavior. Process requirements (e.g., audit, testing) and sup-
porting processes (e.g., documentation) relate to the ecosystem in the development
process and are therefore out of scope.
Including related work and the presented methods for threat mitigations (see Sec-
tion 5.5) aims to achieve completeness of the taxonomy. The use in the risk treat-
ment process and the possibility to combine it with the security taxonomy enables
usefulness and completeness of taxonomies [50].

10.2.1. Security Requirements
A taxonomy of security requirements aims to support the security planning pro-
cess. It helps to define the threat mitigation processes and thereby categorize the
influences to risk treatment. Threat mitigation procedures incorporate organiza-
tional and regulatory requirements (R10.2) and state-of-the-art requirements for
the system type [105, p. 11].
The resulting set of requirements is a set of “security-motivated constraints” to
the system [15]. Therefore, risk treatment assigns defense methods to leverage the
identified risks and supplements the system constraints.
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10.2.2. Origin
As already stated, security requirements arise from different sources: General con-
ditions from normative references and organizational policies and system-related
requirements from the items security analysis.

General conditions, or extrinsic security requirements [38, p. 26], arise from external
sources. They may not directly support accomplishing a security objective, but non-
fulfillment provokes a failure of the development.
Regulatory organizations are the most critical source for those requirements (R10.2).
Norms like UNECE No. R155 [85] and ISO/SAE 21434 [54], but also country-
specific regulations like GB/T 40856-2021 [107] demand certain types of security
requirements in a varying level of detail. Examples are the intrusion detection
demand of UNECE No. R155. Those regulatory requirements are relevant for the
type approval of the vehicle project. Therefore, a non-accomplishment endangers
the possibility of selling the vehicle type, at least in certain countries or regions,
e.g. Europe.
Security-in-depth and security-by-design demand to define certain basic security
standards on varying organizational level [105]. Those are also a source for general
conditions. A non-accomplishment of those policies does not lead to the loss of type
approval but endangers the company’s internal vehicle audit, e.g., during quality
assurance. Also, company policies may have a varying level of detail from distinct
methods in a certain variation to general demands.
The nature of general conditions is that they have varying levels of detail. They may
not explicitly project to specific defense methods but categories of those. Therefore,
they may not directly support accomplishing a security objective (e.g., Confiden-
tiality) to a certain degree but demand a defense method that supports this goal.

System-related Requirements, or intrinsic requirements [38, p. 26] arise from the
security risk analysis.
The system-related requirements are distinct since they base on specific risks accord-
ing to threats against security objectives and impacts regarding their damage and
attack potential. Therefore, system-related requirements can be refined and trans-
formed until it is possible to map a defined variation of specific defense method to
leverage the risk.

10.2.3. Types of Security Requirements
The type of security requirements defines the nature of the security requirements.
The taxonomy categorizes them into those directly recognizable in the resulting
system or not.

Measures are those requirements that are not directly recognizable in the system.
They instead depict threat prevention methods that can be non-technical, proce-
dural, or logical methods against violating a security objective [38, p. 23], [17].
Examples are preventing specific information flows or removing unused software
libraries instead of applying expensive defense methods. Measures are typically
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general conditions or system-related requirements. Therefore, they are not directly
used in the risk treatment step but are rules to verify after risk treatment.

Controls are directly or indirectly recognizable requirements in the system. They
accomplish the means of threat reduction and threat tolerance through risk treat-
ment [54, 17], [38, p. 23], [91, p. 7], [105, p. 2]: reduce or detect risks. Risk treatment
refines those requirements till they depict specific defense methods in certain vari-
ations. Examples are safeguards on all system levels like access control, intrusion
detection system (IDS) or secure communication protocols.
The different layers of the controls represent the defense-in-depth onion model:
structural, technical, and functional controls (R10.1). Structural controls relate
to the overall system structure, e.g., network segmentation. Technical controls
defend threats from the internal processing or component side. Functional controls
complete the onion model by providing defense on the functional level. Those
controls define the behavior of connections to and within the system, e.g., with
communication protocols and access controls.

10.2.4. Method categories
The last part of the security requirement taxonomy is the defense method categories.
Those categories depend on the development project and are adjustable for every
vehicle type in automotive development projects. This adjustment ensures that the
categories are up-to-date and complete.
In principle, the categories depict classes of defense methods and allow a more
straightforward assignment in the risk treatment process (R10.1, R10.3, R10.4).
One option is to align the classes with classical general conditions, e.g., intrusion
detection, isolation, and segmentation. Examples of typical classes for automotive
development projects show Figure 10.1 without a claim for completeness.
Another possibility is to align the categories on the threat mitigations: prevention,
detection, and response [113, p. 235]. Nevertheless, this classification is contrary
to the origin of the requirements. Those typically demand categories like intrusion
detection or segmentation. Also, this classification is not distinct since defense
methods may fall into more than one category, e.g., correcting codes that detect
and respond.
The presented taxonomy allows a cross-product of types and method categories. by
assigning concrete defense methods (see Table 10.1). This assignment clusters the
set of available defense methods into the categories from the taxonomy (R10.2) and
annotates them with the type of control. Demands from general conditions either
map to the categories or limit the scope of the available methods. The UNECE No.
R155 demand for intrusion detection leads during risk treatment to the use of this
category. Policies demanding, e.g., only whitelist firewalls, limit the category (in
this case, isolation).
Defense methods may be configurable (R10.1). Those variations can be directly
included in the catalog or hidden as variants in the method’s properties. Encryption
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Control Types
Implementations S T F

Is
ol

at
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n

NW Segmentation
VLAN x x
Physical x
Firewall x x x

Host Segmentation
CPU x x

Virtualization
SOA Domain
Hypervisor
Sandboxing x x

In
tr

us
io

n
D

et
ec

ti
on

Run-time

IDS x x x
Logging x
Runtime Protection x x

Startup
Secure Boot x x
Authenticated Boot x x

In
te

rf
ac

e
Se

cu
ri

ty

Communication
TLS x
IPsec x
SecOC x
ViWi

Table 10.1.: Classes and Implementations of Defense methods. Columns are the types of con-
trols (S=Structural, T=Technical, F=Functional). Rows indicate the class hier-
archy and examples for concrete implementations. “x” indicates that this imple-
mentation is usable for this control type.
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types are not direct defense methods but are usable by defense methods, e.g., secure
communication protocols. They are, therefore, variants of the using method.
Defense methods may have no direct impact on the security objectives. The impact
may be emergent only in combination with other controls, e.g., a HSM is only helpful
in combination with a defense method that uses the cryptographic algorithms and
the secure key storage provided by the HSM. Therefore, those methods are not
included in the catalog but are variants of the benefiting defense method. An
example would be TLS combined with a present HSM [118]. In this case, there
would be at least two variants of TLS, with and without an HSM.
The catalog of defense methods is also subject to change. The catalog must be
updated and refined in every development cycle, e.g., every vehicle type. Arising
new threats may lead to changes during a development cycle. In this case, the
responsible security engineers must be informed about deleted methods and possible
substitutions.

10.2.5. Properties of Defense Methods
Defense methods mitigate threats to security objectives. Thereby, they have several
different properties, and as stated before, they may have variations [50] e.g., use
different encryption mechanisms. Those variations configure the level of restriction
a method poses to the system. On the other hand, the system SRA model restricts
the applicability of defense methods on behalf of their dependencies. Those vari-
ations configure the level of restriction a method poses to the system [66, p. 1].
A structured list of defense method properties enables the building of a defense
method catalog, suitable for semi-automatic assignment [38, p. 77].
The property categories incorporate the dependencies onto the system SRA model,
the impact on the security objectives, the effect on the RAP and the damage poten-
tial, the surface they target, and the implementation overhead and costs. The re-
maining section briefly describes those categories, while Annex C.1 gives an overview
of them, accompanied by example properties without a claim of completeness.

Dependencies limit the applicability of defense methods. They relate to supporting
processes needed from the technical side for this method (variant) to work, or the
limited scope of a defense method, e.g., virtual local area network (VLAN) technol-
ogy is only applicable for Ethernet Local Area Network (LAN). They characterize
the supporting environmental properties of the ECU and the intended data flow
[49].

Overhead and Cost annotations support the requirement assignment and enable
an efficient risk treatment solution (R10.4). The overhead represents the resource
usage in the case of implementing this method. Examples would be processor clocks
per byte [50]. [118] provides different ways to derive the cryptographic algorithms’
costs and examples. Cost definitions allow to include risk treatment directly into
resource scheduling procedures [50] which is out of scope in this work.
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Impact information is necessary to assign defense methods suitable for the damage
scenarios security objective. [91, p. 522] suggests a range from -2 to +2 for each
security objectives. The positive part depicts the advantages of the defense method
on security objectives, while the negative part illustrates that defense methods may
negatively influence certain security objectives. A rating with +2 means that the
defense method is a primary candidate for mitigating threats against this security
objective. Rating a security objective with 1 marks it as a secondary candidate
since they do not provide the best possible mitigation. The negative ratings are the
dual of the positive ones.
Different evaluation techniques are possible for them, e.g., the strength of the cryp-
tographic algorithm or the quality of an authentication mechanism [49].
Assigning such ratings for each security objective provides a qualitative rating of
the advantages and disadvantages of the defense methods.

The Surface limits the applicability regarding the attack surface, which this defense
method mitigates. This property is necessary since some defense methods mitigate
only local attacks, e.g., physically disabling a JTAG interface.

Effect denotes a defense method’s influence on the attack potential of specific
threats. This step reuses the method from the risk analysis, for the attack’s potential
impact may include the influence on the needed time, knowledge, tools, expertise,
and access of the attacker.

10.2.6. Defense Method Catalog
During security planning, one step is preparing the defense method catalog for risk
treatment. This catalog is a cross-product of the defense method categories and
properties to build an instantiable defense method catalog. Therefore, the security
engineers assign the functional variants and properties to each defense method.
Table 10.2 provides an example for securing JTAG. One variant physically disables
JTAG, e.g., through blowing fuses. This variant is the most secure one but highly
influences the system’s availability since it removes the interface. Another variant by
utilizing cryptography, e.g., Secure Sockets Layer (SSL) [75] which has a compared
high effort since it needs TLS support in the system and has a higher resource usage.

10.3. Assignment of Security Requirements
The goal of risk treatment is twofold: Minimizing the risk, which means reducing
the costs of non-implementation of defense methods, and minimizing the effort by
reducing the costs of implementing defense methods.
General conditions are relevant for the type of approval or necessary to fulfill OEM
demands. Therefore, their costs for not-implementation are infinite. On the other
hand, the costs for implementing general conditions are most of the time variable.
They are typically related to categories of defense methods. Therefore, the im-
plementation costs depend on the chosen method of the respective category. For
system-related requirements, it is necessary to trade the costs of not-implementation
against the implementation costs R10.3.
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Property Variants
Physical
(Blow fuses)

Cryptographic
(Typically available
procedures)

Technology JTAG JTAG
Costs 0 ?

Im
pa

ct Confidentiality +2 +1
Integrity +2 +1
Availability -2 -1

Surface Local Local
Dependencies - SSL
Effect RAP: ?; Impact: ? RAP: ?; Impact: ?

Table 10.2.: Example of defense method properties for securing the JTAG port without claim
for completeness. The values for cost, impact, and effect are variables to assign
based on the given setup.

Also, if risk treatment cannot consider implementation costs directly, it needs to
consider those cost-related problems, at least indirectly. This observance is possi-
ble by reducing the overall number of defense methods through structured method
assignment, e.g., by first cutting attack paths before treating the risk. Another pos-
sibility is to assign methods that impact several security objectives at once instead
of using a method per security objective.
The remaining section proceeds through the risk treatment process. Because of the
already discussed problems with acquiring the costs of defense methods, this work
counts for efficiency (R10.4) through a structured method assignment. It illustrates
possible trade-offs and optimization points (R10.3).

10.3.1. Prerequisites
According to ISO/SAE 21434 [54] and UNECE No. R155 [85] risk treatment relates
to identified risks and attack paths of the SRA. Concrete, those risks whose impact
is against the road user. While it is possible to consider other impact categories, this
work concentrates on those risks (R10.4). The treatment of other risks is subject
to by-catch of assigned methods and trade-offs (R10.3).

10.3.2. Strategy
In general, risk treatment should be done holistically over the complete system. A
global approach demands formal constraints for all defense methods and a distinct
format for the input data. The latter is a big problem, especially in distributed de-
velopment environments like the automotive industry. Also, tools for risk analysis
allow different levels of abstraction and typically use natural language to formu-
late the damage scenarios and threats. Therefore, the bigger the input space for
the risk treatment, the more significant the divergence between the input data.
This divergence is also because the automotive functionalities and components are
diverse. The vehicle combines service-oriented functionalities with hard real-time
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classic development strands. This problem is minor on a lower level of abstraction,
e.g., on the component level. Single components typically combine functions from
similar development strands and complexity. Therefore, their analysis results are
less diverse. Nevertheless, a global brute force approach would lead to a state-space
explosion due to the nature of such NP problems.
Another strategy could be to assign all possible defense methods on the component
level to minimize the impact of the threats. On the one hand, less can depend more
on the defense methods [41]. Assigning more defense methods leads to higher costs
and might lead to new risks to the system. Also, automotive systems are embedded
systems with limited resources. Therefore, an overestimation of defense methods
might leave the system infeasible.
An even lower level of abstraction would be assigning the defense methods in the
decomposed system to each function individually. This strategy has the lowest
probability of a state-space explosion and is accomplishable by brute force leading
to an optimal solution for the different functions. On the other hand, a complete
individual risk treatment might lead to various defense methods deployed to one
component and its functionalities. The result is high costs for implementing defense
methods and high resource usage, which might leave the system infeasible.
A good strategy for efficient and cost-effective risk treatment is a component-level
heuristic approach (R10.1) – the defense methods assignments basis is prioritizing
the threats on the system. A by-catch test reveals a positive impact of the defense
method on other components or functions.

Possible Heuristics for risk treatment provides related work. [96] presents the
straightforward idea of the highest risk first. Risk is a combination of the damage
potential and the required attack potential of the attack path and allows a global
ranking of the relative priority. Therefore, a risk-based heuristic is coarse-grained
and does not allow to, e.g., prefer certain types of damage potentials.
In [105, p. 12] the suggestion is a prioritization according to the highest impact or
the highest likelihood first. Such a prioritization enables a ranking of risks according
to the impact regarding their damage or the attack potential. Depending on the
level of detail of the input model, this approach allows even heuristics with several
layers, e.g., highest safety impact first.
A prominent approach for risk treatment are the defense-in-depth layers [105, p. 12].
The idea is to assign defense methods from different types onto the system to have
an onion-like security defense. While this approach leads to the stated cost and
state-space problems when done globally, the idea is usable component-globally
and heuristically by iterating through the defense method types.
Another idea is to group security requirements according to viewpoints [118], e.g.,
according to the user’s view on the system. This approach is highly dependent on
the input data model. Therefore, it must be part of a method suite where the risk
analysis produces the required output. If so, the approach allows, in principle, the
same heuristics as highest impact/likelihood first.
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10. Risk Treatment

The sources do not prioritize one element attacks paths. That single risks are
either single points of failure (using the reliability language) or preparation attacks.
The first case is essential to solving since these attack paths have only one step to
accomplish the attack. For the latter case, prioritizing single risks mitigate parts of
several attack paths. This prioritization reduces the overall effort for risk treatment.

Heuristic Layers that prioritizes single risks before tackling the highest impact is
the approach used in this work. Also, the approach uses the defense-in-depth idea
to assign methods from as many control types as possible to result in a layered
security defense model.
The prioritization allows the extension to varying levels of detail (R10.3). Possible
additional layers include specific impacts, e.g., safety, likelihood impacts, certain
attack surfaces, time, or knowledge level.

10.3.3. Input Data Composition
Risk treatment aims to secure the risks analyzed before. Therefore, the primary
input for the risk treatment procedure is the resulting attack paths and assigned
risks from the system SRA.
According to ISO/SAE 21434, risk treatment excludes those risks whether the risk
is below a defined threshold. This approach reflects that critical assets must have
the highest possible security. However, items where the implementation costs for
defense methods are above the unlikely impact can stay unsecured [38, p. 77]. On
the other hand, it is reasonable to secure all risks with the assumption that someone
might also launch unlikely attacks with a low impact.
In practice, there is typically a threshold for the risk level below which the functions
drop out of the risk treatment process. Nevertheless, defense method assignment
on the complete set of risks enables tracing the by-catch of excluded risks and
evaluating their resulting risk level. This approach might reveal that mitigating
even those risks onto a deficient level or entirely is possible and by that follow the
rule that someone will carry out every threat [96]. Therefore, the method assignment
in our approach takes place on the relevant risks, while a final by-catch test allows
a complete overview of the remaining risk levels.
Due to the timeline of the development process, there may be already assigned
defense methods, especially on a structural level. This information is critical for the
risk treatment process. Otherwise, the semi-automatic assignment might deploy
already-used defense methods.

10.3.4. Approach
Following the presented taxonomy, the approach is twofold. The first step is regard-
ing the general conditions and therefore demands necessary to fulfill (R10.2). The
second step accomplishes the system-related requirements. The remaining section
elaborates on the two assignment steps. In order to support the comprehension of
the system-related requirements assignment, this part provides the sketch for an
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Algorithm 4 Handle risks against road users with system-related requirements
Require:
1: risks as array of threat× attack_path× Item_element× applied_means ▷ at the start, for

all risks: applied_methods can be = ∅
2: criticality_threshold
3: means ▷ all available means to possibly increase security

Ensure: Rrel = ∅ ▷ relevant risks

4: Rrel ← all elements r of risk with criticality(r)>criticality_threshold
5: while risk∈ Rrel with empty attack path exists do
6: assign(Rrel,current_risk, criticality_threshold, means)
7: Rrel ← all elements r of risk with criticality(r)>criticality_threshold
8: end while
9: repeat

10: current_risk ← element of Rrel with maximal damage_potential(current_risk)
11: assign(Rrel,current_risk, criticality_threshold, means)
12: Rrel ← all elements r of risk with criticality(r)>criticality_threshold
13: until Rrel = ∅

assignment algorithm. This algorithm does not include every step in detail but
provides an overview of the idea.

General Conditions are security requirements that apply to all security-relevant
items. Therefore, they need no heuristic approach. They can be applied by hand
or by formally defining the rules for assignment, e.g., in a logical language.
General conditions may lead to assigning defense method categories (e.g., network
segmentation, intrusion detection) or detailed methods (e.g., whitelist firewall on
each Ethernet node). Typically, the general conditions resulting from normative
references match with organizational policies. Therefore it is possible to define rules
and concrete defense methods to assign to fulfill the general conditions demands.

System-related requirements - For the system-related defense methods, algorithm
4 uses a set of risks as input. Each risk (line 1) is a set consisting of the threat, the
attack path, the relation to the item element and applied defense methods
(applied_means). The set applied_means may not be empty at the beginning
reflecting already applied defense methods, e.g., structural network segmentation.
Risk value determination provides function CRITICALITY(risk) (Algorithm 6)
which combines the impact functions DAMAGE_P OT ENT IAL(risk) and REQU−
IRED_AT T ACK_P OT ENT IAL(risk). The two functions provide the impact
level using the risk matrix (see 7.1) and the feasibility test for the defense methods.
The feasibility test uses the defense method properties to test if this defense method
is usable for this risk under consideration. Please note that the algorithm does not
define those functions in detail.
The idea of Algorithm 4 is to assign defense methods to the set of relevant risks
Rrel as long as their risk value is above the defined threshold criticality_threshold
(e.g., low).
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10. Risk Treatment

Algorithm 5 Assign defense methods to the currently processed risk.
1: procedure assign(ref R, ref current_risk, criticality_threshold, means)
2: const means_category ← [structural, technical, functional]
3: i← 0
4: fail ← 0
5: while criticality(current_risk) ≥ criticality_threshold & fail ̸= 3 do
6: highest_impact ← 0
7: highest_impact_mean ← none
8: for all dm ∈ means do ▷ find mean with highest impact
9: if category(dm)=means_category[i] & dm ̸∈ current_risk.applied_means then

10: if criticality(current_risk with dm applied) > highest_impact then
11: highest_impact_mean ← dm
12: highest_impact ← criticality(current_risk with dm applied)
13: end if
14: end if
15: end for
16: if highest_impact_mean ̸= none then
17: Apply highest_impact_mean to current_risk
18: Apply highest_impact_mean to all elements of R where it can be applied
19: else
20: fail ← fail +1
21: end if
22: i← (i + 1) mod 3
23: end while
24: if fail = 3 & criticality(current_risk) ≥ criticality_threshold then
25: Deal otherwise with current_risk
26: R ← R − current_risk
27: end if
28: end procedure

Algorithm 6 Determine updated risk from damage potential and required attack
potential.
1: function criticality(risk)
2: return damage_potential(risk)·required_attack_potential(risk)
3: end function
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10.3. Assignment of Security Requirements

The first loop (lines 5-8) evaluates all risks without an assigned attack path. Those
are SPOF or preparation attacks. After their mitigation, the second loop evaluates
the remaining risks in descending order of their impact (lines 10-13).
Function ASSIGN (algorithm 5) shows the assignment of defense methods. As
long as the risk under consideration is not below the threshold, it tries to find a
defense method dm and assigns it to the risk (loop line 5-23). Through the impact
functions (lines 10-13), the algorithm tests whether the feasibility and properties
of the method fit the risk. Therefore, it also takes dependencies and technology
into account. This step assigns methods with the highest impact on the risk value.
Other heuristic layers are easy to integrate and lead to new iteration conditions.
To find a defense-in-depth solution, which means using all control categories, the
algorithm iterates over the structural, technical, and functional defense methods
(lines 5, 20, 22) until the risk is mitigated or no possible method is available (fail =
3). Other possibilities would be to use as many methods as possible from each
category or until the impact is below a defined threshold. Both possibilities have a
high probability of one-sided methods, which is against the defense-in-depth onion
model.
If a risk is impossible to mitigate, the threat remains in the resulting risk value
(line 24). Depending on the type of damage (e.g., Safety vs. Financial), other
possibilities for mitigation are necessary, e.g., change deployment, or add isolation.
Therefore, the algorithm leaves this risk for dealing otherwise with it and excludes
the risk from the set Rrel. This problem should be a corner case since the defense
method catalogs provide a variety of possibilities. Nevertheless, such situations are
also possible in non-automatic risk treatment procedures.
After each successful assignment, the function tries to assign the defense method
to other risks (lines 16-18). The assignment test in the impact functions adheres
(depending on the defense method) to the components’ units of isolation. For
example, a run-time protection mechanism on a virtual machine applies only to
functions on the virtual machine. This component global assignment applies the
by-catch test not only on attack paths but also on the component level.
Before mitigating the subsequent risk, the algorithm updates the relevant risks
Rrel. This update excludes the currently mitigated risk and those mitigated with
the by-catch-test from the set.

Further Trade-offs (R10.3) - Currently, the algorithm does not include cost in-
formation. Those are especially helpful if defense methods with equal impact can
assign [50]. The algorithm currently uses the first method found and assigns it to
the threat. Without considering costs [91, p. 507], other defense methods could be
annotated as possible substitutions, leaving the option for the security engineer to
swap them.
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10. Risk Treatment

Defense methods may have several variants with different impacts. The algorithm
uses the variant with the highest impact. Therefore, one trade-off point is to mark
those variant points and annotate the different impacts. The security engineer
validates the results and adjusts the method variant to the preferable one. This
work follows the approach to have a more secure variant than less instead.

10.3.5. Open Issues
The costs for the introduced defense methods should be less than the damage sce-
narios impact. Otherwise, the effort is not reasonable [38, p. 26]. The presented
method and the taxonomy incorporate cost factors. Also, in the algorithm, cost
information is easily includable. Nevertheless, as already stated in the taxonomy,
the derivation of such information is not easily accomplishable, and there is no in-
formation for the presented defense methods available. Therefore, this is an open
issue.
Another issue is the possibility of misjudgment. Every (semi-) automatic assignment
has [38, p. 75]. In order to prevent misjudgment by the algorithm, an experienced
security engineer must review the algorithm results.
The re-opening of risks is currently left out of the algorithm if the algorithm assigns
a defense method with a negative influence to a security objective. The same counts
for assignments that negatively influence the systems functionality [38, p. 75], e.g.,
through excessive resource usage.
As already included in the algorithm break statements, there might be a case where
no suitable defense methods are assignable [118, p. 23]. Examples are, e.g., protect-
ing damage scenarios regarding availability against local attackers. Those attackers,
especially car owners, have unlimited access to the vehicle and can physically break
the communication. In such cases, the security engineer might be able to find cre-
ative solutions. Otherwise, other threat mitigation techniques or risk acceptance
are the only possibilities to leverage such risks.
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Use Cases and Evaluation
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Measure what is measurable, and make mea-
surable what is not so.

Galileo Galilei

11
Evaluation Criteria

Every development process needs an evaluation regarding defined criteria. The basic
criteria for evaluating the security development process presented in the previous
chapters derive from the capability maturity model.

11.1. Automotive SPICE
Typically, the evaluation of development processes uses capability maturity mod-
els. Those models can identify improvement activities and measure the process
alignment to the defined process model [95, p. 12].
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11. Evaluation Criteria

Automotive development uses Automotive Software Process Improvement and Ca-
pability Determination (Automotive SPICE) as capability maturity model. The
model divides the process alignment into six levels [112]:

0: Incomplete - The process is not implemented or working.
1: Performed - The process is implemented and functioning.
2: Managed - The process is implemented and managed.
3: Established - The process is working in the desired fashion.
4: Predictable - The process allows quantitative evaluation and alignment.
5: Innovating - The process aligns to improvements and change.

The development process design should at least fulfill the demands of level 2 of the
process assessment model. This demand leads to requirements for the definition
and implementation of the process [95, p. 10].
A key aspect of Automotive SPICE is continuous process monitoring and improve-
ment. The idea is to analyze the development process to identify issues continually.
Those are subject to identifying improvement goals and process changes. The next
step implements and evaluates the changes [112]. This work identified several is-
sues and suggested process adjustments. Following the Automotive SPICE process,
those are subject to evaluation according to improvement goals.

11.2. Improvement Goals
Automotive SPICE does not clearly define how improvement goals and resulting
evaluation criteria for process improvement look like. During accompanying the
security development process several issues revealed. Those lead to the following
criteria for evaluating the suggested changes:

EC1 Time efficiency in the security department
EC2 Acceptance in the development departments

• Time efficiency
• Low repetition of similar process steps
• Reduction of inquiries for clarification
• Provision of information about necessary inputs for the process steps

EC3 Process implementation
• Tracing decisions
• Explicit formulation of uncertainties
• Alignment to ISO/SAE 21434 and UNECE No. R155

In the first development cycle, according to the evaluated security development
process, the most significant drawback was the high effort for the development
process steps in the security department. Independent of the effort needed for each
process step, the process steps themselves have the potential for more time efficiency.
Therefore, each process improvement needs to lower the time and effort spent [27].
Also, accepting the security development process in the development departments
is subject to improvement. Each development department is responsible for various
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11.2. Improvement Goals

items, and each item participates in the security development process to a certain
extent. The main work area of the development departments is the development
of the next vehicle. Processes for accomplishing meta-functional aspects like safety
and security are often seen as extraordinary charges since they are no selling ar-
gument. Therefore, the more time the responsible persons spend to accomplish
meta-functional analysis, the less acceptance they have for those process steps.
Currently, the development teams and the security department repeat the same
analysis with just a little difference between the targeted items. This approach is
time inefficient, annoying, and lowers the acceptance. Therefore, improvements in
lowering the repetition rate support the time efficiency in the security department
and the acceptance in the development departments.
A clear structuring and distinct formulation of the process templates helps avoid
inquiries for clarification. Providing information about necessary information, e.g.,
input documents for each process step, lower the additional effort in the development
departments. That information enables the development departments to prepare
for the security development process steps leading to a higher support [100]. This
information lowers the rate of additional effort for accomplishing this information.
The existing process structure is suitable to cover the security development pro-
cess. Nevertheless, existing drawbacks reveal evaluation criteria for the suggested
improvements of the process and tools. In the evaluated form, the process requires
many manual steps. These manual steps are error-prone for the tracing of decisions
and changes. Therefore, the process improvements need to support automation for
data exchange between the tools [27].
Parts of the security development process take place before serial development.
At this time, there is a lack for detail information about the items. The security
development process must adhere to this and should be able to explicitly state
uncertainties. Making uncertainties explicit supports the tracing of decisions and
changes. Additionally, it enables the security development process for structured
recaps of analysis steps as early as possible.
ISO/SAE 21434 and UNECE No. R155 define the security development process
steps. Therefore, the goal of each improvement in the process is to keep or raise
the alignment with the standards. This goal adheres that the security development
process is relatively new. It literally is fledgling. Therefore, improvements may raise
the alignment with the standards. Other improvements need to keep the alignment,
meaning they do not contravene to requirements of the normative references.
The stated improvement goals are qualitative. Therefore, the use case and evalu-
ation chapters qualitatively show the goals’ fulfillment. Also, some process steps
are challenging to accomplish without all the input information. Suggested im-
provements may make it necessary to repeat the same analysis with the same item
to show the improvement rate. This repetition is impossible for some steps. The
following chapters try to overcome these issues as far as possible.
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We can easily forgive a child who is afraid of
the dark; the real tragedy of life is when men
are afraid of the light.

Plato

12
Use Case: Security Relevance Evaluation

Chapter 7 discussed several issues and improvements of the SRE. This chapter
presents a use case showing the SRE method in the adjusted version. Based on the
estimated effort for accomplishing SRE in the last development cycle, the evaluation
section discusses how the improvements accomplish the stated evaluation criteria.
The evaluation uses light functions. Other use cases for the occupant and pedestrian
domain and advanced driver assistant functions showed similar results.

12.1. Light Functions
The 49 light functions of the use case vary, e.g., between interior and exterior
light. Those functions situate in one department, making using the filter for the
development teams necessary. This filtering results in 2 clusters. The smaller one
has 13 light functions with one contact person. The bigger cluster shows 36 light
functions divided into six contact persons. Those contact persons are responsible
for one, up to 24 light functions. Figure 12.1 shows the division onto the clustering.
Table 12.1 shows the resulting criticalities for the biggest cluster of 24 items. In sum-
mary, four items have no damage potential and are therefore not security-relevant.
Nine items have a very low security relevance. Depending on the company’s risk
appetite, they are subject to risk retaining and dropping out of the security devel-
opment process. The other 11 items have a low security relevance. They are likely
subject to the subsequent security process and proceed into the SRA.
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Item Safety Finance L & R Quality Exposure Criticality

1332 0 0 0 0 1 0 None
1334 0 0 0 0 1 0 None
1336 0 0 0 0 1 0 None
1355 0 0 3 0 1 1 Very Low
1358 0 0 3 0 1 1 Very Low

1360 0 0 3 0 1 1 Very Low
1384 2 0 3 0 2 2 Low
1386 2 0 0 0 1 1 Very Low
1388 0 0 3 0 1 1 Very Low
1392 2 0 2 0 2 2 Low

1394 2 0 2 0 2 2 Low
1396 2 0 2 0 2 2 Low
1398 0 0 2 0 2 2 Low
1400 0 0 3 0 1 1 Very Low
1404 0 0 0 0 1 0 None

1406 0 0 2 0 2 2 Low
1408 0 0 2 0 2 2 Low
1410 0 0 3 0 1 1 Very Low
1412 0 0 3 0 1 1 Very Low
1414 0 0 3 0 2 2 Low

1416 1 0 2 0 2 2 Low
1418 0 0 3 0 1 1 Very Low
1420 0 0 2 0 2 2 Low
1422 0 0 2 0 2 2 Low

Table 12.1.: Results for the cluster SRE of the standard light functions.

136



12.2. Improvement Evaluation

Light Functions (49) Interieur (49)

ER-5 (36)

EI-3 (13)

B. F. (5)

B. M. (1)

B. A. (24)

K. T. (3)

M. T. (1)

R. J. (2)

Figure 12.1.: Resulting clustering for the SRE Use Case in the light domain. This domain
situates in the interior department. Two development teams have light functions,
one with six reference persons.

12.2. Improvement Evaluation
The presented use case already shows good results for the intended improvements.
The cluster technique reduces the number of SREs from 49 in the light domain
to seven. In the first run, it took about one hour for the security department to
accomplish a SRE together with the development department. These are 49 hours
for the light domain. Due to the clustering, the effort reduces to seven hours. This
is approximately 85 % less time effort. Other use cases show similar results. For
example, the time effort in the occupant and pedestrian domain reduces by 63.83
% (EC1, EC2).
Without evaluation of all domains and possible clusters, it is assumable that the
time effort reduces significantly. In the previous run, more than 400 SRE took place.
The presented improvements reduce the effort at least by 50 %, which is more than
200 hours. Also, the template enables the responsible persons to act autonomously
in the SRE. In combination with the evaluation script, this drastically reduces the
time and effort in the security department (EC1).
For the development departments, the rise in the time efficiency is the same (EC2).
Deleting the relevance questions from the template enhances the time effort for
irrelevant functions. For relevant functions, the effort lowers. Due to the clustering,
it is unlikely that a complete cluster is irrelevant. Only in this case does the effort
for the SRE raise. In all other cases, the deletion of the duplicate questions lowers
the effort.
Also, the clustering reduces the repetition rate of similar process steps (EC2). The
responsible person must fill in only one template instead of 24 in the use case
example. This approach also reduces the effort in case of clarification needs. The
responsible person prepares the SRE for all items in a row as far as possible. Arising
questions are clarifiable at once. The presented template is used for autonomous
filling by the responsible persons. Therefore, they can acquire all necessary input
data before they start to accomplish the SRE. Overall, the presented improvements
are suitable to raise the acceptance in the development teams.
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Within the clusters, the results show similarities. In the light cluster, three different
results arise. Those arrange in a non-relevant cluster, one with low criticality and
one with moderate criticality. The new template allows to identify those clusters
directly and reuse them in the SRA (EC3). This identification makes decisions for
tailoring subsequent process steps more obvious. The automatic evaluation possi-
bilities allow automatizing also the feedback into the tools for modeling and tracing
the development process (EC3). This method is less error-prone than manual main-
tenance of the data basis.
The template gives the possibility to mark a damage potential question as irrele-
vant (EC3). By that, items may be non-relevant for security. Therefore, not only
the questions in the template but also the results align with ISO/SAE 21434 and
UNECE No. R155. The question’s answer regarding lack of knowledge about the
correct answer allows the explicit formulation of uncertainties. Combined with
suitable tools, the follow-up process is automatable and, therefore, less error-prone.
Table 12.2 provides an overview of the achieved improvements.

Requirement Goal Current Process Improvement

EC1/EC2 Time Efficiency 49 h = 100% 7 h = -85%

EC2 Development Depart-
ment

Repetition Rate 24 SREs 1 SRE

Inquiries up to 24 meetings approx. up to 1 meet-
ing

Input information Questionnaire with
duplicates and deep-
ly nested levels

Clear questionnaire,
autonomous fill-out
possible

EC3 Process
Implementation

Tracing decisions - Automatic evaluation

Formulation of uncer-
tainties

not possible explicitly possible

Alignment with Norms All items are relevant Not relevant is possible

Table 12.2.: Overview about the achievements regarding the improvement goals in the use case.
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Only a fool doesn’t experiment
Charles Darwin

13
Use Case: Function-oriented Security Risk

Analysis

The SRA chapter discusses the MoRA method and its embedding in the security de-
velopment process. From the process evaluation, several improvements arise, which
are subject to evaluation in this chapter. Therefore, this chapter continues the stan-
dard light use case from Chapter 12 followed by an evaluation of the improvement
goals.

13.1. Light Functions
In the pre-evaluation (SRE) 11 functions resulted in a moderate criticality. Those
proceed in the security development process and are subject to the SRA.
Starting with the item definition, the SRA incorporates all functions whereby the
“emergency braking lights” function has a relation to the “braking lights” function.
Therefore, if the braking lights function sustains damage due to security issues, the
emergency braking lights function is likely to have similar issues. The 11 functions
communicate 16 data items, resulting in 61 data flows (different receivers and trans-
mission paths). The standard procedure already considers the deployment if it is
known. In the case of the standard light functions, they incorporate 21 hardware
components consisting of standard ECUs, high integration ECUs but also buttons
(e.g., emergency light) and the power supply themselves. As for the assumptions,
two limit the scope according to the environment, and two relate to the item.
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The next step in the SRA is to evaluate the assets according to security objectives
and damage potential. The use cases template is an early version that defines no
damage scenarios but only security goals. Therefore, the asset and the security
objective are subject to impact rating.
This use case does not provide the differentiation between damage criteria against
the road user and the OEM as suggested in Section 8.4. Therefore, the author did
this differentiation manually, and the results intention is not to be exhaustive. The
safety damage always relates to the road user (RU). Therefore, in this case, the
differentiation is unproblematic. Also, the use case does not designate damages in
the law category. For the financial and the quality category, the differentiation has
more issues. In the case of a very low impact for one stakeholder, the other cannot
have a higher impact level. This result is due to the maximum approach for the
impact on the stakeholders. If the impact is higher rated, it might be that the other
stakeholder also has a lower impact in this category. In this case, the use case loses
an impact rating. Nevertheless, this is not crucial for evaluating the improvements.
MoRA supports the analyst by providing a security goal template. This template
is a permutation of security objectives, functions, and data. Thereby, it is likely
that the template incorporates irrelevant security goal suggestions. In this use case,
no relevant security goal with an impact on confidentiality exists. Therefore, this
security objective is not relevant for standard lights. The overall result of the 143
security goals is as follows:

• 46 according to confidentiality which is irrelevant
• 32 integrity damage scenarios where 11 are irrelevant
• 48 for availability where 11 are irrelevant
• the rest are authenticity damage scenarios which are no primary goal and

therefore not in the scope of this thesis
The threat scenario evaluation reveals 25 threats from nine threat classes with an
attack potential: low (5), moderate (6), high (13), and beyond high (1). This
version of MoRA does not depict preparation attacks as separate risks but only
complete attack paths. Therefore, the resulting risk assessment has 18 attack paths
with associated risk evaluations. Those attack paths evaluate low (4) and moderate
(14) risks. The remaining seven threats are preparation attacks.

13.2. Improvement Evaluation
The cluster SRA for the standard light functions needed four meetings between the
security department, the development team, and the analysts. This number is one
more than the basic structure: one inaugural meeting, one intermediate meeting,
and one final presentation meeting. Nevertheless, the experience reveals that often
one more meeting is necessary. Therefore, the meeting effort in the development
team and the security department does not change in the cluster approach but is
much lower than with single SRAs (EC1, EC2). If the 11 functions had single SRAs
33 up to 44 meetings would have been necessary.
The item definition gets bigger through the clustering since more ECUs are in the
analysis scope. On the other hand, high integration ECUs tends to have functions
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playing a central coordination role, for example, for maintaining the front or rear
lights. Those would be in the scope of all functional SRAs connected to this central
function. Therefore, the item definition grows, but the effort for repetition lowers
(EC2). The same is true also for the other evaluated use cases.
The damage scenarios and security goals grow primarily because they incorporate
the assignment of security objectives, leading to many similar entries. This issue
is subject to further evaluation if it is suitable to divide the damage scenarios and
attack goals and assign the item ID. The damage scenarios would be abstract but
linked to the ID instead of directly incorporating the item name. This adjustment
also simplifies tracing through the MoRA and parsing of results into other tools
(EC3). The current version leads to similar damage scenarios that differentiate
because of the item name. Nevertheless, this needs an adjustment and evaluation of
the MoRA method, which is left for future work and discussion with the developers.
In contrast to the damage scenarios, the threat scenarios do not grow much, resulting
from the different template structures. The threat scenario formulation is rather
abstract and links to the security goals. By that, it is possible to describe a threat
related to security goals from several functions – the same counts for the risks.
Overall, the effort for accomplishing the cluster SRA is not much different than for
a single SRA. Since there are no comparable numbers, the estimate in Table 13.1
is one quarter higher to incorporate the preparation of information for the cluster
items. The remaining time effort stays the same, since there are no extra meetings
for the cluster. Besides, the effort of the security analyst is not of primary concern
since the analysis is subject to outsourcing.
In the development departments, the time efficiency rises with the clustering (EC2).
Also, the repetition rate lowers due to the lower number of analyses. The core infor-
mation necessary for the process steps differs between the functions. Nevertheless,
due to the central coordinator functions and the aim for high integration, much
information is similar between the single SRA. This similarity reduces the effort
to provide the information. Especially the general information and introduction
for the overview of the functions do not repeat, which raises the acceptance in the
development departments and lowers their time.
The evaluated cluster SRA does not include an extra identifier for the different
cluster items. Therefore, tracing is only indirectly possible through backtracking
from the risks to the function in the item definition (EC3). The MoRA template
provides a separate overview of the risks per security goal. This overview is usable to
identify the risks for each function. Nevertheless, it provides only the risk numbers
and the resulting risk but not the other relevant information. Therefore, including
the suggested id in the analysis to trace the original item of the damage scenarios,
threats and risks make the analysis more comprehensive.
Table 12.2 provides an overview of the achieved improvements.
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13. Use Case: Function-oriented Security Risk Analysis

Requirement Goal Current Process Improvement

EC1/EC2 Time Efficiency approx. 16 h per func-
tion

approx. 20 h per
cluster

EC2 Development Depart-
ment

Repetition Rate 11 function SRAs 1 function-oriented
SRA

Inquiries approx. 3-4 meetings
per function

approx. up to 4
meetings per cluster

EC3 Process
Implementation

Tracing decisions only inside MoRA

Formulation of uncer-
tainties

through open issues through open issues

Alignment with
Norms

overestimation of
risks

division of risks be-
tween road user and
OEM

Table 13.1.: Overview about the achievements regarding the improvement goals in the use case.
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The most exciting phrase to hear in science,
the one that heralds new discoveries, is not
’Eureka!’ (I’ve found it!), but ’That’s funny...’

Isaac Asimov

14
Use Case: System Security Risk Analysis

The chapter about the system SRA step (Chapter 9) differed from the preceding
ones since this is a development step currently not implemented in the process under
consideration.
Therefore, also the use case chapter differs slightly. There is no primary use case
that is adjustable to improvements. Instead, it is necessary to build it from the
ground up. Due to NDA and information source reasons, it is impossible to provide
the complete content and results. Nevertheless, the aim is to provide sufficient
insights into the use case to evaluate the achievements.
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K2

CPU1

AUTOSAR

F4

F5

CPU2

F6

HSM

RAM NVM

NVMRAM

Vehicle Network (Ethernet) Vehicle Network (CAN)

Figure 14.1.: Example architecture for the use case: A high-integration ECU with two CPUs
and an Ethernet and CAN interface.
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Figure 14.2.: Architecture graph for the example architecture of Figure 9.2. Circles represent
functions and system software. Rounded rectangles represent hardware structural
elements.
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14.1. Light Functions
The evaluated function-oriented cluster SRA of the light functions serves as a basis
for the system SRA use case. In order to keep the use case comprehensive, the
system SRA focuses on one component with deployed light functions, keeping other
deployed functions and other components aside. The presented models are much
bigger in reality since they incorporate the overall system architecture and every
communication path.
From the light use case, the deployment assigns three of the functions to the same
ECU. Figure 14.1 shows the hardware structure of this ECU consisting of two CPUs.
One of them incorporates an AUTomotive Open System ARchitecture (AUTOSAR)
operating system with two assigned functions. The third function runs on the other
CPU natively. Furthermore, the CPU has an HSM with its RAM and NVM, an
Ethernet and a CAN interface, and storage facilities (NVM, RAM). Figure 14.2
provides the according architecture graph for the hardware structure.
In order to further narrow the use case, only one function is in scope (F 6), which
runs natively on the second CPU. This function has four communication partners.
Two are the functions deployed to CP U1 (F 4, F 5). The other run on other ECUs.
Therefore, it is necessary to communicate via the CAN interface to realize those
communication links. Figure 14.3 provides the according to communication flow
graph, which has labels for the communication interfaces for more comprehensive-
ness.
Analyzing the system SRA models requires a graph embedding to derive the archi-
tecture’s communication paths for each risk. The next step of the analysis demands
the propagation of the RAP category levels through the path. For this, in case of
contradicting assignments, the propagation uses the minimum levels. The following
environment provides the communication paths with the resulting RAP level and
the evaluation.

D.15, D.16 : F 6− CP U2−K2− CP U1− AUT OSAR− F 4→ very low
D.1, D.2, D.8, D.10 : F 6− CP U2−K2− CP U1− AUT OSAR− F 5→ very low

D.5 : F 6− CP U2−K2− CAN(F 14)→ low
D.7 : F 6− CP U2−K2− CAN(F 17)→ very low

In the end, the analysis updates the according risks. This means that the risks for
F 6, F 4, F 14 and F 17 gets the minimum of the resulting RAP values. For F 6 and
F 5 this would be 31043 = 1 = very low. For F 4 and F 17 it is 31143 = 1 = very low
and for F 14: 61143 = 2 = low. This change triggers a re-evaluation of the risk
values for these functions. The result is an updated risk value that incorporates the
functional and the system influence.
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Figure 14.3.: Communication flow graph for the use case architecture.

14.2. Method Evaluation
The evaluation criteria in Chapter 11 focus on process improvements. In the case of
the system SRA, some of them are inapplicable. This is especially true for those who
target time efficiency and acceptance raising. Those need a comparison between the
former process and the improvements. Nevertheless, this section tries to target all
evaluation criteria as far as possible, incorporating the general requirements to the
process step (see Section 9.1).
The developed system SRA method includes the function-oriented SRA results and
supplements them by extending the attack paths (R9.1). Due to the spreadsheet
character of the function-oriented SRA it is possible to parse the results automat-
ically into the system SRA (R9.3). This approach raises time efficiency and the
repetition rate for information acquisition (EC1, EC2).
During the analysis, the graph embedding method is efficient regarding the analysis
of attack paths. Also the minimum computation of the RAP supports an efficient
reevaluation of the RAP and therefore the risks (R9.2). The results from the analysis
are usable for tracing decisions (EC3). During the analysis, the method evaluates
the communication paths with the according RAP. Supporting this approach by
a tools allows varying outputs, usable in versioning systems and ticket systems to
monitor the decision process.
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On the other hand, the method is able to use inputs from architectural modeling
tools. Therefore, it is possible to directly include those information and maintain
tracing of input data changes (R9.4).
The system SRA method aligns with the normative references since it re-uses the
results from the function-oriented SRA and supplements them if necessary (R9.6).
These extensions include the attack paths, the attack feasibility, and, therefore also,
the risk levels.
In order to maintain consistency between the system SRA (R9.5), Section 9.4 pro-
vides example threat classes adjustable to the specific settings. This threat catalog
also raises time efficiency since it narrows the time needed to evaluate possible
attack targets according to RAP information (EC1).
The method needs some manual adjustments to the input data. Examples are
annotating the deployment information and clarifying uncertainties in the function-
oriented SRA results. Nevertheless, these are necessary steps independent of the
system SRA method.
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But we do not think there is much sense in
trying to deal with the devil in the detail right
away - and ignoring his grandparents, who may
be hidden in an inappropriate, mistaken, or
non-existent overall concept.

[37, p. 28]

15
Use Case: Risk Treatment

This work proposed to divide the risk analysis and risk treatment steps. By that,
it is possible to include the system SRA results and accomplish a component-global
risk treatment. Therefore, it is (again) impossible to base the evaluation on an
existing use case adjusted to the improvements, but building the use case with
narrow data is necessary.
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15.1. Light Functions
Throughout the use case and evaluation, the standard light cluster served as the
basic use case. In the system SRA the scope laid on one ECU and to make it
more comprehensive only on function F 6. The risk treatment method aims to
use the component global risk analysis results. Therefore, it also concentrates on
F 6 of the example ECU. First, it assigns the general condition requirements before
prioritizing the single risks, before proceeding to those with an assigned attack path
in descending order of their impact.
The available data narrows to the information gathered from the function-oriented
SRA and fictive component information. Therefore, applying the algorithm to the
complete component information is impossible. However, using the available infor-
mation to illustrate the procedure should be suitable. The advantage is that the
results are more comprehensive than a complete component.
Also, the suggested method is not yet in place, and the proposed taxonomy was
not subject to a security planning step, which leaves it incomplete. Therefore,
this evaluation has no claim for completeness. Using the proposed taxonomy and
method, the result would be different. A component-global risk treatment would
prioritize the highest impact risks on overall functions. Other assignments may
mitigate certain risks of F 6 in the by-catch test resulting in a different defense
method assignment.

15.1.1. General Conditions
General conditions arise from company policies or normative references. According
to the attack paths, and UNECE No. R155 it is necessary to implement an IDS
method.

15.1.2. System-related Requirements
For the application of system-related requirements, the method first targets single
risks before proceeding with the highest impact first. Thereby, the method takes
risks against the road user for the application. Risks against the OEM are only
subject to the by-catch test (R10.3, R10.4).
F 6 has no risk without an assigned attack path (no single risk). Therefore, the first
assignment round has no input, and the algorithm proceeds directly to the highest
impact first loop.
For the system-related requirements, the assumption is that the risk acceptance
threshold is at “very low” meaning that every risk above this level is subject to
risk treatment. Relevant for the function F 6 are nine risks arising from 13 damage
scenarios. Those risks are six with a moderate and three with a low risk level. The
damage scenarios have a low impact, and all have a safety impact. Therefore, the
algorithm starts with the first of six moderate risks assigning a suitable defense
method.
Overall, the algorithm applies three defense methods, one of which is a demand from
normative references. Through the deployment, the function F 6 is directly hardware
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isolated on CPU2. Therefore, no additional technical isolation method is necessary.
Another technical defense method is secure boot, which secures the storage integrity
and thereby the integrity of the functions running on it. Communication over the
CAN Bus is in focus for the functional defense methods. Therefore, applying SecOC
is a good result.
On a real component-global basis, the by-catch test would provide the following
result: The IDS system (general condition) is host-based. Therefore it targets only
CPU2 where the function is running. Secure boot is a component-global method
that can secure all software running on the ECU. On the other hand, the SecOC
protocol restraints data flows. Since the ECU supports SecOC, the other data flows
may also use it. Secure boot and SecOC demands the existence of a trust anchor.
Secure boot for general usability, SecOC depending on the configuration and the
security level to be reachable (R10.1). However, since the component natively has
an HSM deployed, this demand is no problem. In the result, the algorithm applies
three defense methods with a high by-catch usage. There are no open risks necessary
to treat in another way.

15.2. Method Evaluation
The function risk analysis step in the current process implementation also incor-
porates risk treatment. The introduction of the system SRA and efficiency issues
(R10.4) made it necessary to divide risk treatment from the function-oriented SRA.
The described risk treatment method supports variations of defense methods. Thereby,
it supports different levels of defense (R10.1). Those different levels of defense also
provide trade-offs with respect to resource usage and implementation costs (EC3,
R10.3).
Currently, the algorithm prefers methods with the highest impact on all threatened
security objectives. This priority led to the assignment of defense methods that
impact more than one security objective before only one. Typically it is cheaper
to implement one costly defense method, which impacts more security objectives
than to implement several defense methods which target fewer security objectives.
Nevertheless, this preference might lead to higher costs in some cases. Including
the implementation costs into the assignment leads to a higher state space and a
more optimal solution regarding the costs (R10.3).
On the other hand, it is costly and challenging to achieve the implementation costs
of the defense methods. Since, for some defense methods, the costs are hardware
and implementation-dependent, the costs change for each hardware type. Average
costs might prevent this problem while still optimizing the assignment. At least
for each vehicle project, the costs have to be newly evaluated during the defense
method catalog update.
The approach incorporates different origins of defense methods. Normative and
organizational security demands must be adhered to in the development (R10.2).
Otherwise, the system is infeasible from those points of view. Therefore, the method
differentiates between those security demands and risks revealed in the risk analysis
step (EC3). On the one hand, this distinction allows tracing the source of assigned
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defense methods (EC3). On the other hand, this enables trade-offs in the assignment
of system-related defense methods (EC3, R10.3).
Efficient risk treatment (EC3, R10.4) demands a particular structure in the assign-
ment process. Therefore, the approach mitigates threats without attack paths first.
Single threats are either single-points-of failure or preparation attacks: The former
needs mitigations for a high-security defense. The latter has a high by-catch rate
since they directly cut attack paths. After that, we prioritize the attack path with
the highest impact against the road user.
Automatic assignments of defense methods always have the probability of misjudg-
ment [38]. This limitation also accounts for the current version of the presented
approach. Therefore, the result needs manual validation. Nevertheless, this semi-
automatic assignment is more efficient than a function-local or complete manual
assignment (EC1).
ISO/SAE 21434 clearly defines impacts only to the road user. Therefore, the current
algorithm version mitigates only threats impacting the road user by raising efficiency
and lowering costs (EC3). Typically, threats have an impact on both stakeholders
to a varying degree. Only a few threats remain untreated by targeting the threats
with impact against the road user. Those are only regarding the OEM, or the road
user impact is below the threshold while the OEM impact is above the threshold.
Untreated threats might benefit from assigned defense methods. A global by-catch
test on the complete list of threats reveals such situations. Nevertheless, this is
a possible point to optimize the system setup. A second threshold for the OEM
impact allows a second run of the algorithm over those threats. Combined with a
cost limit, it is possible to mitigate OEM-related threats to a certain degree (EC1).
Besides the advantages for the system implementation, the presented approach pro-
vides benefits for the security and development departments. A direct evaluation
against the current process implementation is complex since the risk treatment step
is not separate and does not include the component risks. However, a component-
global and semi-automatic risk treatment provides a high time efficiency for the
security department (EC1). The security department needs to accomplish another
separate process step. However, this step directly targets a complete component
leading to fewer contradictions. Applying defense methods in the function-oriented
SRA, also based on a narrow catalog, may lead to contradictions between applied
methods. Also, it may be that the component does not support the defense method,
e.g., due to a missing HSM. This issue arises from the early point in time of the
function-oriented SRA. At this point, the deployment is unfinished, leading to in-
sufficient information about the hardware and system software structure.
For the development departments, a component-global defense method approach
is beneficial. The development departments have less different defense method de-
mands for the implementation and therefore lowering implementation costs (EC1,
EC2). Also, this reduction lowers hardware resource demands, which is again ben-
eficial in terms of run-time efficiency and costs.
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Science is a wonderful thing if one does not
have to earn one’s living at it.

Albert Einstein

16
Discussion

The preceding chapters discussed several improvements to the evaluated develop-
ment process. For the SRE and the function-oriented SRA only minor changes
already raise efficiency and traceability. The system SRA and explicit risk treat-
ment are new steps with the same aim. This chapter discusses other ideas for
improving the security development process.
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16.1. Security development planning
The core of defense-in-depth core is a continuous refinement of the company’s devel-
opment policies and procedures. This approach reduces the number of “unwritten”
policies. Therefore, decisions are traceable and results are reproducible [105, p. 12].
Planning is the first step in the security development process and was out of the
scope of this work. The evaluated development process focuses mainly on one vehicle
project at a time. Combined with the function-oriented development approach,
this leads to a long development time where the component view is out of scope.
Parallel to that, component development starts, and the security department assigns
defense methods to the components based on experience. This approach may lead
to overestimation because it does not ground on analysis results.
An idea to reduce the possibility of overestimation is to run two development strands
in parallel. The project with the next start of production starts with the functional
development layer. Then it proceeds to the system view and risk treatment. While
it is in this progress, the next project starts in the functional view.
This idea might seem impossible at first glance. At the start of serial production,
several functions drop out of the development process. Typically, most of them
are subject to the subsequent development project. Therefore, it is reasonable to
directly push them into the next iteration of the security development process.
Other functions are part of future vehicle projects. Those are transferable and are
then part of a re-use analysis in function-oriented development.

16.2. Emergency
The nature of meta-functional aspects is that their complete influence on the system
gets known only in a holistic view. Examples are interactions that lead to former
immune functions being vulnerable in the composed system [41]. In such cases, the
system composition invalidates assumptions taken on the subsystem level.
The evaluated development process only verifies meta-functional aspects by testing
at the end of the development time. Chapter 18 shows ideas for a holistic develop-
ment process that allows verification of meta-functional aspects during the complete
development cycle.

16.3. Safety and Security
Automotive systems are risk-prone to safety and security. Therefore, both meta-
functional aspects co-habitat in vehicles leading to continuous interference. Safety
targets protecting the vehicle environment from harm (Definition 7). Security, how-
ever, targets the system’s resistance against introducing malicious external faults
from the vehicle’s environment. Both aspects target the system from dual view-
points.
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Those differences result in ways to reduce a systems risk [76]. The introduced
safety measures and security defense methods can either support or impede each
other. Including both aspects in a holistic development process enables a complete
overview of the system’s risks. This idea is subject to the idea of architectural
verification in Chapter 18.

16.4. Formal Methods
The development teams work with different modeling and analysis tools in complex
distributed development environments. With the start of serial production, the
companies work with an integrated architectural model parallel to other develop-
ment tools. The resulting requirements are part of Doors sheets [19, p. 328].
This vast amount of different tools and models makes the development process
unclear and can lead to inconsistencies. The use of formal methods starting with
the development process makes it possible to reveal development flaws at any time
[122]. Also, it directly supports the analysis of meta-functional aspects. Formal
methods typically allow the import with different formats, making it possible to
include the models from the development department tools.
Chapter 18 introduces the idea of development contracts to cope with these issues.
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Embedded software, the field in which I’ve
spent most of my career, faces an existential
crisis.

Marilyn Wolf

17
Conclusion

This work aimed to design a complete, consistent, and efficient security development
process for the automotive industry. The design of the resulting process used two
sources of criteria: The methodology from Chapter 3 and the evaluation criteria of
Chapter 11. Those served as guidelines to answer the research questions stated in
the motivation (see Section 1.1):

RQ 1: What is a suitable terminology for the security development process? This
work targets readers from academia and industry. Chapter 4 incorporates them
by introducing the general concept of dependability using the Laprie model. The
presented definitions use related work from normative references, the Laprie model,
research, and industry publications. This chapter also serves as a baseline to transfer
the Laprie model into a security taxonomy.
Since automotive security is a relatively new topic, Chapter 5 introduces a security
taxonomy to present a distinct terminology. This taxonomy aligns with the struc-
ture of the Laprie model and subdivides it into security objectives, threats, and
mitigations. The presented definitions have the same sources as in the dependabil-
ity chapter. A security threat and propagation chain emphasize the correlations
between the defined terms. Thereby, the threat chain targets the course within the
security terminology. The propagation chain also incorporates dependability as-
pects and presents the course within the systems development and customer usage
time.
Chapter 10 completes the terminology by providing a taxonomy of defense methods.
This taxonomy targets structuring the terminology and sources of security defense
methods. The resulting structure is easily adjustable in every development cycle
and other industry areas. Also, the structure allows for deriving a defense method
catalog usable during risk treatment.

159



17. Conclusion

RQ 2: What are the demands of the normative references? and RQ 3: What are the
necessary analysis and treatment steps? Evaluating the normative references reveals
that the security development process under consideration covers the development
steps demanded in the normative references. Nevertheless, it only indirectly incor-
porates threats introduced by the system level. Therefore, Chapter 9 provides a
methodology for a system SRA. This is no new risk analysis step but supplements
the results from the function-oriented SRA. The aim is to derive additional steps in
the attack paths which arise from hardware and system software. A suitable anal-
ysis method updates the attack feasibilities and risks from the function-oriented
SRA.

RQ 4: What are the possibilities to raise efficiency in the security development
process? Chapter 7 and Chapter 8 suggest clustering as one solution to raise effi-
ciency. The security relevance evaluation defines clusters of functions based on a
presented clustering scheme. This cluster is subject to a simultaneous evaluation.
A new analysis scheme provides efficiency and acceptance by dividing the results
into single functions and providing information about resulting criticality clusters.
This clustering is re-usable in the function-oriented SRA, enhancing efficiency both
in the development and the security teams. The automatized process also raises
acceptance in the development teams.
While the normative references do not define whether risk treatment and SRA need
different development steps, it is reasonable to divide them. The evaluated develop-
ment process includes risk treatment in the function-oriented SRA. This abstraction
level is too narrow for efficient risk treatment because a higher abstraction leaves
room for trade-offs and lowers the effort. Also, introducing a system SRA as part
of the risk analysis step makes a division necessary.
Chapter 10 suggests a method for heuristic risk treatment that allows for different
prioritization and trade-offs. This method prioritizes at first single risks, comparable
to SPOF or preparation attacks. In both cases, it is recommendable to treat them
first to prevent single entry points or to make risk treatment more efficient by
cutting attack paths. The second step of the method prioritizes risks with the
highest impact since they have a high damage potential. Besides, this method
aligns with ISO/SAE 21434 by first treating risks to the road user. Risks to the
OEM are subject to the by-catch test. This step tries to apply assigned defense
methods to other risks to leverage them without further effort.

RQ 5: Where is tracing necessary? How can tracing be introduced? It is impossi-
ble to have negative or uncertain answers in the SRE, as defined in the normative
references and the evaluated process description. Therefore, every function is rel-
evant to some extent, and if the necessary information is currently missing, it is
impossible to complete the SRE without assuming data. Chapter 7 suggests an
extension of the questionnaire to overcome this issues. The analysis script evaluates
answers which result in no damage potential with 0 and uncertainty with −1. The
illustrated result depicts uncertainties in supporting tracing. Before proceeding to
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the function-oriented SRA, those uncertainties are subject to re-cap if the function
would be irrelevant without this answer.
Chapter 8 proposes to align the damage potential catalog with the SRE question-
naire. This alignment enables the tracing of information and makes the overall
development process comprehensive. Besides, this chapter elaborates on the neces-
sity to trace open issues remaining from the analysis and catalog changes primarily
arising from the threat model.
The future work (Chapter 18) links to these issues by providing the idea of contract-
based development to establish a holistic and formally supported development pro-
cess. This approach allows the identification of necessary reevaluations in case of
changes in the underlying policies, e.g., the threat model.
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Dissertations are not finished; they are aban-
doned.

Fred Brooks

18
Future Work

The presented work evaluated a currently implemented security development pro-
cess limited to the V-Models left leg. The evaluated security development process
is successfully audited. In order to not endanger the audit certification, only minor
process adjustments were possible. Nevertheless, the different process methodolo-
gies and tools make overall traceability hard to achieve. Especially the transfer onto
the V-Models right leg is difficult.
Relinquishing the constraints of this work enables a different view of the develop-
ment process. The idea to overcome this is to accompany the security development
process with a holistic modeling methodology that allows incorporating the analysis
results from the functional and meta-functional development strands to overcome
this issue. Nevertheless, this approach demands profound adjustments in those
development strands.
Therefore, future work aims to develop the idea of a holistic development process
using development contracts. Such a development process enables fast reactions
to changes in the system, during the development time and also during customer
usage time. Transferred to meta-functional aspects, it enables safety- and security-
by-design from the beginning in the development process [48].
In the following chapter, this idea is subject to evaluation. It starts by introduc-
ing the idea of development contracts as an overall formal method. In order to
stay comprehensive, the subsequent description of the transfer onto the automo-
tive development process limits the security development process. However, the
same procedure also counts for the functional and other meta-functional system
properties.
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18.1. Holistic View on the Development Process
Currently, the development process, also in the security department, uses different
separate methods and tools to accomplish the necessary development modeling and
analysis. Verification and validation are complicated process steps without a good
companionship with a framework. This difficulty prevents a fast reaction to system
changes.
As described by [34] and [57] modern automotive systems demand updates, also
during run-time. The concept of dynamic composition supports those frequent
system changes with the need for continuous validation and verification.
The idea of dynamic composition is to support the development process by models
and define constraints that guarantee a correct system composition. Thereby it is
possible to compose the system parts on differing levels of abstraction continuously.
This continuous composition follows the idea of correctness-by-construction.
The concept of dynamic composition uses formal models as a basis and formal
constraints for composition and refinement. The remaining chapter presents the
idea of contract-based development as a formal basis for composition and refinement
during the development process.

18.2. Assumption Guarantee Contracts
Assumption-guarantee contracts specify the allowed design contexts and charac-
teristics on functional and meta-functional level [26]. The contract defines items’
behavioral properties, where an item is the unit of design [20]. Therefore, those
contracts support system decomposition and development methodologies, e.g., V-
Model, spiral model.
Each contract consists of assumptions and guarantees. The guarantee defines the
design artifacts [26] or the guaranteed behavior under correct usage. Therefore,
each guarantee specifies the required properties of the system [19]. Those guarantees
directly support the systems engineering idea of different requirement levels. During
decomposition, each abstraction level refines the guarantees, and validation and
verification steps evaluate if the system fulfills the guarantees.
Contract assumptions specify the design context [26] or constraints the item has for
correct behavior. Those assumptions are not under the control of the item, mean-
ing they relate to the contract’s environment [20]. Therefore, assumptions allow
specifying the usage constraints of items. Assumptions limit responsibilities in dis-
tributed development environments. Also, they provide information for validation
and verification, e.g., for test case generation.
Since contracts support decomposition and composition operators, they can repre-
sent the system decomposition and composition steps throughout the development
process. It is also possible to divide the functional and meta-functional parts into
different contracts and examine their compatibility during composition.
The structure of assumption-guarantee contracts also supports the development
process’s verification and validation phase. Contracts support virtual integration
testing by allowing different system viewpoints [26].
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Figure 18.1.: Idea of contract-based development and correctness-by-construction in the secu-
rity V-Model

18.3. Contract based Security Development
Automotive systems incorporate many different software functions whether cor-
rect behavior demands close cooperation between each other [16]. Therefore, the
development process has several different viewpoints and analysis steps. Trac-
ing the analysis results, requirements derivation, and refinement is possible with
assumption-guarantee contracts. Therefore, accompanying the development pro-
cess with contracts is a suitable method. This idea uses different contracts for the
systems engineering abstraction layers and system viewpoints, e.g., safety, security,
and function. The evolution of the development process uses contract refinement
and composition to supplement the security contracts.
The preceding chapters of this work described the security development process
steps along with the current implementation. Accompanying this process steps by
security contracts leads to the layout in Figure 18.1.
In the function-oriented part, decomposing the system contract into one contract
per function and viewpoint describes the function’s behavior in a functional and
meta-functional manner. Each process step refines the contracts: The input to the
process step refines the assumptions; the work products refine the guarantees.
For the component level, composing the function-based contracts per component
guarantees correctness-by-construction. Extending this composed contract by hard-
ware and system software contracts leads to a holistic view.
The resulting contracts are usable as requirement specifications for the implementa-
tion. Also, the composition of the contracts fulfills the system contract and bridges
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the gap back to the initial requirements. The remaining section highlights the pro-
cedure and advantages of the security development process. Those are transferable
to the other viewpoints, e.g., safety.

18.3.1. Risk Analysis
The risk analysis according to ISO/SAE 21434 comprises three parts: The SRE,
function, and system SRA. Contract-based security development has several advan-
tages for this process step.

SRE - Contract decomposition and refinement leads to high automation possibili-
ties for the SRE. The functional contract includes most of the necessary information
to evaluate the security relevance of the function. Therefore, the security contract
refines to the “answers” from the template. Through the formal nature of the
contract, it is possible to include uncertainty and trace changes directly.

SRA - The SRA part of the risk analysis step aims to identify assets, damage
scenarios, and threats and rate them according to their impact and attack potential.
Contract-based development supports this step by providing most of the necessary
input information from the applicable contracts. The SRA then refine the security
contract by introducing the mentioned parts. Also, the applicable contracts support
the derivation of information for attack tree modeling. This approach makes the
attack path estimation more comprehensive and reproducible. Also, it reduces the
informality of the SRA leading to an easier tracing of influences in case of changes.

18.3.2. Risk Treatment
The current approach for risk treatment excludes compatibility validation of the
assigned defense methods for interface security between different communication
partners. This limitation is due to the state space explosion problem in system-
global risk treatment and can lead to inconsistencies between the components. Using
contract-based development overcomes this issue. The risk treatment step extends
the security contract of the functions and components. This extension enables the
inclusion of composition operators in the risk treatment procedure, which directly
ensures compatibility through correctness-by-construction.

18.3.3. Requirement Specification
The derivation of requirement specifications was out of the scope of this work’s pro-
cess evaluation. Currently, most requirement specifications are informal documents,
like Doors sheets or Writer documents enhanced by (semi-) formal information.
Those documents lack comprehensiveness and the possibility of tracing.
Contract-based development allows deriving requirement specifications from the
composed contracts directly. Therefore, the responsible person links the assump-
tions and guarantees to the requirement specification. This approach ensures com-
pleteness and traceability of requirements.
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18.3.4. Validation and Verification
Contract-based development directly supports the V-Models right leg. The se-
curity validation and verification steps aim to ensure the implementation of the
requirements defined in the V-Models left leg. Typically, these steps use test case
generation, e.g., for penetration testing.
This approach is subject to the main drawback of testing: There is no possibility
to ensure the absence of mistakes, but only the existence - 100 % test coverage is
impossible in an efficient way. Also, testing reveals inconsistencies and interference
too late in the development process. A holistic design process through contract-
based development allows virtual integration testing in the early design phases.

18.3.5. Other Advantages
A holistic development process has several advantages in terms of architectural
verification. Besides the challenges mentioned in the authors’ work ([57, 58, 61]),
two critical open issues remain after this work. Those are answerable through a
holistic approach:

Confidentiality - Including the architectural view and global information flow anal-
ysis into the analysis and risk treatment steps enables efficient isolation and encryp-
tion techniques. Through the global and distinct view of the system, it is possible
to evaluate the borders where it is necessary to introduce defense methods.

Availability - The property of being accessible and usable is a property related
to the underlying logical and physical communication architecture. Therefore, it
needs architectural analysis regarding the availability of the hardware, as well as
the logical architecture utilizing the hardware. The analysis of availability demands
the transfer of the demanded communication structure onto the physical-logical
architecture regarding mechanisms preventing the information flow, e.g., Firewalls,
Routers. This analysis is impossible using scattered analysis procedures and various
data sources but needs a holistic view of the system.
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A
Attacker Model Categories and Rating

The following paragraphs briefly describe the attacker model categories.

Category Level Description Value

E
xp

er
ti

se

Layman Typical vehicle owner/driver 0
Proficient Technically interested driver/garage

staff
3

Expert Garage staff with special expertise (<20
%), e.g., installation of corrupted smart
cards

6

Specialist Highly qualified person (< 1%), e.g.,
side-channel attacks, cryptanalysis

8

A
cc

es
s

Remote Remote access without the need for di-
rect access to a vehicle

0

Easy Simple direct access to the vehicle 1
Moderate Complex access to vehicle parts re-

quired, e.g., access to flash memory in-
side an ECU

4

Hard Access on micro-electronic level, e.g.,
voltage or current measurement

10

T
im

e
N

ee
d Hours 0

Days 1
Weeks 3
Months 7
Decades 35

E
qu

ip
m

en
t Standard Common IT-equipment, e.g., notebook,

freely available OBD diagnosis-tools
0

Specialized Professional garage-equipment, e.g.,
CAN-cards, diagnosis-equipment

4

Bespoke 7
Multiple bespoke Multiple bespoke tools 9

K
no

w
le

dg
e Public Public information 0

Internal Internal information 3
Classified Classified information: information

leak can endanger product- or
project-goals

7

Confidential Confidential information: critical to the
enterprise

11

Table A.1.: Attack potential categories and levels.
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Appendix A. Attacker Model Categories and Rating

Expertise - Each threat to a system needs a level of general knowledge, or external
knowledge, from the attacker. A typical car owner cannot hack into the infotainment
system without, e.g., a detailed attack blueprint. Therefore, the attacker model
allows defining the needed capabilities for each threat [54], [96, p. 86].

Knowledge - The knowledge to acquire a threat is distinguishable from the ex-
pertise. The knowledge is regarding the internal information about the system
to attack, while the expertise is general knowledge needed about the attack type
[54], [96, p. 86]. The knowledge is differentiable between publicly available up to
confidential information [25].

Needed Time - Another necessary information about the attacker is the needed
time to identify the vulnerability and execute the attack [54], [96, p. 86]. Some
attacks may take only minutes, while others, like breaking keys, may take months
or even years. Rating threats according to the elapsed time helps to rate the im-
portance of the attack. If the attack needs long periods to execute, an attacker will
diminish this threat and look for an easier way. On the other hand, especially for
cryptography, the elapsed time needs to be traceable throughout the whole life-cycle
of the automotive system. If a vulnerability in a cryptographic algorithm reveals
later, the elapsed time may change dramatically, changing the complete rating of a
given class of threats.

Access - The access category of the attacker model depicts which type and duration
of access to resources the attacker needs [54]. It is a more detailed rating of the
threat model attack surface combined with the execution part of the elapsed time
[96, p. 86]. On the one hand, for remote threats, also the access is remote. For
local threats, the access is distinguishable from the difficulty of gaining access.
This difference is no general answer given in the threat model but is continuously
adjustable to the system under consideration.

Equipment - Depending on the system under consideration and the threat, differ-
ent tools are necessary to accomplish the attack [54]. Those are distinguishable,
e.g., between standard tools and those only available to OEMs. This difference
gives rise to the probability that the threat is accomplishable. Threats with a high
categorization in the equipment class are less attractive than those with standard
tools.
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B
Basic Threat Classes for System SRA

ID Class Ob Lay Ex Ac T Eq Kn RAP

1 Tampering of data by using
an interface

I DF P Ea D St In Vl

2 Tampering of data by
providing an interface

I DS E Ea H Sp Cl Lo

3 Information disclosure of
data by using an interface

C DF L Ea H St In Vl

4 Information disclosure of
data by providing an
interface

C DS P M H Sp Cl Lo

5 Information disclosure of
data by tapping an interface

C DS E M W Sp Cl Mod

6 Denial of service of data by
interrupting an interface

A DF/
DS L Ea H St Pub Vl

7 Tampering of resource
behavior at rest

I DS S M M Be Cl Hi

8 Tampering of resource
behavior during run-time

I DS S M M Be In Hi

Abbreviations:
Objective – Confidentiality; Integrity; Availability
Layer – Data Flow; Data Storage
Expertise – Proficient; Layman; Expert; Specialist
Time – Mths; Weeks; Days; Hours
Access – Easy; Moderate
Equipment – Standard; Specialized; Bespoke
Knowledge – Classified; Internal; Public
RAP – Very low; Low; Moderate; High

Table B.1.: Basic threat classes for system SRA and example attack potential.
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C
Categories of Defense Method Properties

Dependencies Overhead Impact Requirements Surface Effect

In
te

rf
ac

e CAN load (%) Confid.

O
S

Secure
Timer

remote Ex

LIN run-time
peaks

Integrity Watchdog local Ac

Ethernet Avail. RNG T

P
ro

to
co

l

TLS 1.2

R
oo

t
of

T
ru

st HSM Eq
SOME/IP external Kn
VIWI coupled at

CPU
RAP

MQTT Trust
Zone

SOCKS TEE

MOSE

So
ft

w
ar

e

FDS
SOA VKMS

Table C.1.: Categories of Properties and Examples. Bold indicates sub-categories, italic indi-
cates variants.
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