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Vorwort des Herausgebers

Die Fahrzeugtechnik ist kontinuierlich Veränderungen unterworfen. Klima-
wandel, die Verknappung einiger für Fahrzeugbau und -betrieb benötigter
Rohstoffe, globaler Wettbewerb, gesellschaftlicher Wandel und das rapide
Wachstum großer Städte erfordern neue Mobilitätslösungen, die vielfach ei-
ne Neudefinition des Fahrzeugs erforderlich machen. Die Forderungen nach
Steigerung der Energieeffizienz, Emissionsreduktion, erhöhter Fahr- und Ar-
beitssicherheit, Benutzerfreundlichkeit und angemessenen Kosten sowie die
Möglichkeiten der Digitalisierung und Vernetzung finden ihre Antworten nicht
aus der singulären Verbesserung einzelner technischer Elemente, sondern be-
nötigen Systemverständnis und eine domänenübergreifende Optimierung der
Lösungen.

Hierzu will die Karlsruher Schriftenreihe für Fahrzeugsystemtechnik einen
Beitrag leisten. Für die Fahrzeuggattungen Pkw, Nfz, Mobile Arbeitsmaschi-
nen und Bahnfahrzeuge werden Forschungsarbeiten vorgestellt, die Fahrzeug-
systemtechnik auf vier Ebenen beleuchten: das Fahrzeug als komplexes, di-
gitalisiertes mechatronisches System, die Mensch-Fahrzeug-Interaktion, das
Fahrzeug in Verkehr und Infrastruktur sowie das Fahrzeug in Gesellschaft und
Umwelt.

Die Absicherung hoch automatisierter Fahrfunktionen ist allein im Fahrver-
such nicht realisierbar. Die schier unendlich hohe Anzahl verschiedener Ver-
kehrsszenarien würde bei einer reinen Teilnahme am Straßenverkehr sehr hohe
Fahrstrecken erfordern, um jeder möglichen Konstellation zu begegnen. Dabei
würde der Großteil der gefahrenen Strecke keine besonderen Herausforderun-
gen für Sensorik, Algorithmik und Aktorik darstellen. Nur ein kleiner Teil der
Fahrsituationen wäre zum Überprüfen eines angemessenen Fahrzeugverhaltens
geeignet. Zur Steigerung der Effektivität und Effizienz von Absicherungsver-
fahren ist die Identifikation sicherheitskritischer Verkehrssituationen und deren
gezielten Verwendung zum Funktionstest erforderlich.
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Vorwort des Herausgebers

Hier setzt die Arbeit von Herrn Elgharbawy an, in der er im Fahrversuch gewon-
nene wissensbasierte Sammlungen risikobehafteter Szenarien durch automati-
siert generierte Testfälle ergänzt, um so den vorgesehenen Betriebsbereich des
Fahrzeugs möglichst vollständig abzudecken. Das Fahrzeugverhalten in diesen
Testfällen bestimmt er in der Simulation oder auch ergänzt durch Hardware-in-
the-Loop-Verfahren und leitet daraus die Wahrscheinlichkeit definierter Fehler-
fälle sowie über eine Akzeptanzschwelle den Abbruch des Verifikationslaufs
nach Erreichen der gewünschten Vorhersagegüte ab.

Frank Gauterin

Karlsruhe, im September 2022
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Kurzfassung

Fahrerassistenzsysteme sowie automatisiertes Fahren leisten einen wesentli-
chen Beitrag zur Verbesserung der Verkehrssicherheit von Kraftfahrzeugen,
insbesondere von Nutzfahrzeugen. Mit der Weiterentwicklung des automa-
tisierten Fahrens steigt hierbei die funktionale Leistungsfähigkeit, woraus
Anforderungen an neue, gesamtheitliche Erprobungskonzepte entstehen. Um
die Absicherung höherer Stufen von automatisierten Fahrfunktionen zu garan-
tieren, sind neuartige Verifikations- und Validierungsmethoden erforderlich.

Ziel dieser Arbeit ist es, durch die Aggregation von Testergebnissen aus wis-
sensbasierten und datengetriebenen Testplattformen den Übergang von einer
quantitativen Kilometerzahl zu einer qualitativen Testabdeckung zu ermögli-
chen. Die adaptive Testabdeckung zielt somit auf einen Kompromiss zwischen
Effizienz- und Effektivitätskriterien für die Absicherung von automatisier-
ten Fahrfunktionen in der Produktentstehung von Nutzfahrzeugen ab. Diese
Arbeit umfasst die Konzeption und Implementierung eines modularen Frame-
works zur kundenorientierten Absicherung automatisierter Fahrfunktionen mit
vertretbarem Aufwand. Ausgehend vom Konfliktmanagement für die Anfor-
derungen der Teststrategie werden hochautomatisierte Testansätze entwickelt.
Dementsprechend wird jeder Testansatz mit seinen jeweiligen Testzielen inte-
griert, um die Basis eines kontextgesteuerten Testkonzepts zu realisieren. Die
wesentlichen Beiträge dieser Arbeit befassen sich mit vier Schwerpunkten:

• Zunächst wird ein Co-Simulationsansatz präsentiert, mit dem sich die
Sensoreingänge in einem Hardware-in-the-Loop-Prüfstand mithilfe syn-
thetischer Fahrszenarien simulieren und/ oder stimulieren lassen. Der
vorgestellte Aufbau bietet einen phänomenologischen Modellierungsan-
satz, um einen Kompromiss zwischen der Modellgranularität und dem
Rechenaufwand der Echtzeitsimulation zu erreichen. Diese Methode
wird für eine modulare Integration von Simulationskomponenten, wie
Verkehrssimulation und Fahrdynamik, verwendet, um relevante Phäno-
mene in kritischen Fahrszenarien zu modellieren.
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Kurzfassung

• Danach wird ein Messtechnik- und Datenanalysekonzept für die weltwei-
te Absicherung von automatisierten Fahrfunktionen vorgestellt, welches
eine Skalierbarkeit zur Aufzeichnung von Fahrzeugsensor- und/ oder
Umfeldsensordaten von spezifischen Fahrereignissen einerseits und per-
manenten Daten zur statistischen Absicherung und Softwareentwicklung
andererseits erlaubt. Messdaten aus länderspezifischen Feldversuchen
werden aufgezeichnet und zentral in einer Cloud-Datenbank gespeichert.

• Anschließend wird ein ontologiebasierter Ansatz zur Integration einer
komplementären Wissensquelle aus Feldbeobachtungen in ein Wissens-
managementsystem beschrieben. Die Gruppierung von Aufzeichnungen
wird mittels einer ereignisbasierten Zeitreihenanalyse mit hierarchischer
Clusterbildung und normalisierter Kreuzkorrelation realisiert. Aus dem
extrahierten Cluster und seinem Parameterraum lassen sich die Eintritts-
wahrscheinlichkeit jedes logischen Szenarios und die Wahrscheinlich-
keitsverteilungen der zugehörigen Parameter ableiten. Durch die Kor-
relationsanalyse von synthetischen und naturalistischen Fahrszenarien
wird die anforderungsbasierte Testabdeckung adaptiv und systematisch
durch ausführbare Szenario-Spezifikationen erweitert.

• Schließlich wird eine prospektive Risikobewertung als invertiertes Kon-
fidenzniveau der messbaren Sicherheit mithilfe von Sensitivitäts- und
Zuverlässigkeitsanalysen durchgeführt. Der Versagensbereich kann im
Parameterraum identifiziert werden, um die Versagenswahrscheinlich-
keit für jedes extrahierte logische Szenario durch verschiedene Stich-
probenverfahren, wie beispielsweise die Monte-Carlo-Simulation und
Adaptive-Importance-Sampling, vorherzusagen. Dabei führt die ge-
schätzte Wahrscheinlichkeit einer Sicherheitsverletzung für jedes grup-
pierte logische Szenario zu einer messbaren Sicherheitsvorhersage.

Das vorgestellte Framework erlaubt es, die Lücke zwischen wissensbasierten
und datengetriebenen Testplattformen zu schließen, um die Wissensbasis für
die Abdeckung der Operational Design Domains konsequent zu erweitern. Zu-
sammenfassend zeigen die Ergebnisse den Nutzen und die Herausforderungen
des entwickelten Frameworks für messbare Sicherheit durch ein Vertrauens-
maß der Risikobewertung. Dies ermöglicht eine kosteneffiziente Erweiterung
der Validität der Testdomäne im gesamten Softwareentwicklungsprozess, um
die erforderlichen Testabbruchkriterien zu erreichen.
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Abstract

Driver assistance systems and automated driving make a significant contribu-
tion in improving the road safety for vehicles, particularly the commercial motor
vehicles. With the further development of automated driving, the functional
performance increases resulting in the need for new and comprehensive testing
concepts. New verification and validation methods are therefore required to
cope up with the testing of higher levels of the automated driving functions.

This doctoral thesis aims to enable the transition from quantitative mileage to
qualitative test coverage by aggregating the results of both knowledge-based
and data-driven test platforms. The adaptive test coverage thus seeks to achieve
a compromise between efficiency and effectiveness criteria of the assessment
of automated driving functions in the product development of commercial
motor vehicles. The systematic approach of this work includes the conception
and implementation of a modular framework for the customer-oriented testing
of the automated driving functions with reasonable efforts. Based on conflict
management for the requirements of the test strategy, highly automated test
approaches are developed. Accordingly, each test approach is integrated with
its respective test objectives to realize the basis of a context-driven test concept.
The main contributions of this thesis are fourfold:

• First, a co-simulation approach is presented which allows the perception
sensor inputs to be simulated and/or stimulated in a Hardware-in-the-
Loop test bench using synthetic driving scenarios. The presented setup
offers a phenomenological modeling approach to achieve a compro-
mise between the model granularity and the computational effort of the
real-time simulation. This approach is used in a modular integration of
simulation components such as traffic simulation and vehicle dynamics
to model the relevant phenomena in critical driving scenarios.

• Next, a data-logging and analysis approach for the worldwide validation
of the automated driving functions is presented. This approach provides
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Abstract

scalability for the acquisition of vehicle sensor and/or environment-
perception-sensor data of specific driving events on one hand and per-
manent data for statistical coverage and software development on the
other hand. A cloud database centrally stores the acquired measurement
data from the country-specific field tests.

• Subsequently, an ontology-based approach is described for integrating a
complementary knowledge source from field observations into a knowl-
edge management system. The clustering of recordings is realized by
the means of an event-based time-series analysis with hierarchical clus-
tering and normalized cross-correlation. The extracted clusters and their
parameter space define the probability of occurrence of each logical
scenario and the probability distributions of the associated parameters.
Thereby, the correlation analysis of synthetic and naturalistic driving
scenarios enlarges the requirements-based test coverage adaptively and
systematically by executable scenario specifications.

• Eventually, a prospective risk assessment is carried out as an inverted
confidence level of measurable safety using sensitivity and reliabili-
ty analyses. The failure region is identified in the parameter space to
predict the failure probability for each extracted logical scenario using
sampling methods such as Monte-Carlo simulation and Adaptive Impor-
tance Sampling. The estimated probability of a safety violation for each
clustered logical scenario results in a measurable safety prediction.

The presented framework allows a patching of the gap between knowledge-
based and data-driven test platforms, thus consistently expanding the knowledge
database of the Operational Design Domain coverage. In summary, the results
show the benefits and challenges of the developed framework for measurable
safety through a risk assessment confidence level. As a result, the validity
of the test domain can be extended cost-effectively throughout the software
development process to achieve meaningful test termination criteria.
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1 Introduction

The so-called Commercial Motor Vehicles (CMVs) are motor vehicles spe-
cially designed to acquire economic value by transporting goods or individuals
[FL+20]. Therefore, CMVs are highly specialized in fulfilling specific tasks
and are primarily controlled by economic efficiency [Abe08]. In addition, the
CMVs are characterized by a large number of series and models with tractors,
semi-trailers or trailer combinations [T+17]. In most nations, the legislation
regulates the concepts and functions of CMVs up to a specific vehicle system
[ZMMFm13]. Moreover, the current challenges consist of improving road
safety, addressing the scarcity of CMV drivers and making the profession
of a CMV driver more attractive [Kir15]. The vision of autonomous and
accident-free driving thus, forces the further development of the automated
driving technologies to be a current topic of high relevance in the transport
sector [WRM+19]. Consequently, a broad range of political and economic
stakeholders support this innovation in the expectation of reducing congestion,
fuel consumption and accidents [MV19].

1.1 Background

In accordance with the World Health Organization (WHO), road accidents
cause almost 1.35 million deaths and 20 to 50 million injuries every year
[WHO20]. According to truck accident statistics, most accidents are caused
by driver fatigue, lack of route information, as well as job pressure and
aggressive driving [Kop22]. As reported by the United States Department
of Transportation (USDOT), driver fatigue is a major cause of nearly 4,000
fatalities in truck accidents on United States (U.S.) roads annually [Ass20].
Therefore, the United Nations General Assembly (UNGA) has launched a
decade of road safety measures between 2011 and 2020 in order to reduce the
risk of road accidents and injuries [fSIRTA22].
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1 Introduction

In 2015, the Federal STATIStical Office of Germany (DESTATIS) recorded
a total of 29,480 accidents involving personal injury with the participation
of at least one heavy-duty truck in Germany. In spite of the accident variety
with heavy-duty trucks, the statistics shows that rear collisions and unintended
lane departures are the common types of CMV accidents with 68% of 32,500
truck drivers [DES16]. Figure 1.1 depicts that the number of killed road users
represent 2% of the total number of injuries and deaths with 787 fatalities.
The three pie charts illustrate the percentage of types and causes of accidents
involving the commercial trucks and the individuals involved on German roads
in 2015.

  29,480
accidents
involving 
personal 
  injury

  40,230
  injuries 
     and
 fatalities

    32,500
truck drivers  
 involved in 
   accidents

 rear-end
collisions

others

accidents
involving 
pedestrians

accidents at crossroads

unintended lane departure 
accidents

slightly injured road users

heavily injuried road users

killed road usersaccidents 
involving
passenger cars

accidents involving
bicycles & motorcycles

accidents 
involving 
pedestrians

others

single-vehicle accidents

Types of accident consequencesTypes of accident participants

Types of accident causes

Figure 1.1: Retrospective accident analysis of heavy-duty trucks on German roads according to
the DESTATIS report for 2015 [DES16].
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1.1 Background

On one hand, the truck accidents often have serious consequences such as injury
and death, along with considerable financial impacts and environmental risks.
Beyond the health and economic consequences, the truck accidents potential-
ly cause significant losses on several levels such as reducing the efficiency
of traffic flow and causing congestion [SWZ12]. On the other hand, freight
traffic continues to increase globally and is the dominant means of transport.
According to the traffic forecast for 2030, the volume of road freight transport
in Germany will increase by 38% compared to the level of 2010 [M+20a].
Between 1992 and 2021, the number of truck accidents involving seriously
injured road users has fallen by more than 59.0%. While the volume of truck
traffic increased by 92.7% over the same period, the number of people who
died in these accidents fell by more than 67.3%, as shown in figure 1.2.

Figure 1.2: Fatalities and seriously injured persons in truck accidents on German roads compared
to truck transport performance between 1992 and 2021 [uEB22].
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1 Introduction

From a legal perspective, the road safety of commercial vehicles is an essential
aspect of civil society. The European Commission (EC) has adopted the United
Nations Regulation (UNR) nos. 130 and 131 to improve the safety of heavy-
duty vehicles in the framework of the general safety regulation no. 661/2009.
As a result, the installation of Autonomous Emergency Braking (AEB) and
Lane Departure Warning (LDW) systems has become mandatory in Europe
for all the new heavy-duty vehicles with a permissible gross weight of more
than 3.5 tonnes. Only the off-road vehicles and trucks with more than three
axles are exempt from these regulations [Elg12]. Moreover, the United Nations
Economic Commission for Europe (UN/ECE) has introduced amendments to
the Vienna Convention on Road Traffic (VCRT) in 2016 to explicitly allow the
transfer of Dynamic Driving Tasks (DDTs) to Automated Driving Functions
(ADFs) under the condition that these functions can be bypassed or switched
off by the driver [MO17].

Definition 1.1 (AEB):An Advanced Driver Assistance System (ADAS) that
can automatically determine the time required to perform the warning cascade
and emergency braking in order to prevent the collision. Therefore, the AEB
system represents an active safety function in the forward control of the CMV,
in particular the control of the truck’s braking system. The AEB function
includes a detection unit for measuring a distance between the Ego-vehicle and
the relevant object ahead [ESS+19c].

Definition 1.2 (LDW):An ADAS that can warn the driver to prevent uninten-
tional lane departure due to driver inattention or distraction. For this purpose,
the LDW function utilizes the inputs from a front camera Electronic Control
Unit (ECU) installed in the middle of the CMV behind the windshield. The
camera ECU detects the lane markings and operates at speeds above 60 [km/h]
to minimize false alarms related to construction sites and urban traffic [ESF19].

The VCRT of 1968 provides governments with a regulatory automobile
framework for their national highways to ensure a high level of road safety
for the contracting parties. For this reason, the Automatically Commanded
Steering Function (ACSF) Category E within the UN/ECE Regulation no. 79
corresponds to a function which is activated by the driver and which can con-
tinuously identify the possibility of a maneuver (e.g. lane change) and perform
these maneuvers over extended periods of time without driver confirmation
[BHS17].
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1.1 Background

In addition, the USDOT published a framework in 2016 to support the safe
development, testing and integration of automated vehicles [NHT17a]. More-
over, in 2018, the Ministry of Industry and Information Technology (MIIT)
of the Chinese government launched guidelines for the building of intelligent
connected vehicles to expedite the development and review of standards for
autonomous driving safety [WRM+19].

From a commercial perspective, heavy-duty and passenger vehicles differ in
both their economic significance and the vehicle technology. The trucking
business focuses on economic factors such as fuel consumption, truck utiliza-
tion, driver demand and hours of service [LBS19]. A potential cut off in the
cost therefore is a motivation for high driving automation in the long distance
trucking. For fleet owners, financial benefits are of paramount importance in
this context concerning the proposal of a new business case or insurance incen-
tives [P+19a]. Thus, one of the key business cases is to achieve more service
times for trucks and buses by supporting drivers or even substituting them with
automated driving technologies [LSW18]. In this context, the niche strategy
requires starting an application domain with a controllable environment in
order to gradually expand the intended Operational Design Domain (ODD).
According to the American Trucking Associations (ATA), the annual turnover
rate of CMV fleet drivers is increasing, which indicates a strong demand for
truck drivers [McN18]. In addition, it is expected that by 2026 the scarcity of
truck drivers in the U.S. will reach over 174,000 drivers [CS15]. Accordingly,
fleets respond to the scarcity of drivers by increasing the salaries to make the
truck driver’s profession more attractive [McN19, BLS22].

From a technical perspective, there are several challenges to be overcome that
affect the functionality of driving automation, such as significant variations in
the state of vehicle loading, dimensions, weight, center of gravity position and
braking performance of the heavy-duty truck. Despite the rapid advances in
driving dynamics for enhanced safety, the requirements for heavy-duty vehicles
differ considerably from those for passenger cars. In addition, CMV manufac-
turers face special challenges of the relatively large numbers of variants with
significantly lower production volumes and longer product life cycles. Table 1.1
summarizes the different technical requirements for automation of passenger
cars and CMVs. Therefore, long-haul CMVs are heavier, larger and less ma-
neuverable than passenger cars [Har03].
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1 Introduction

CMV characteristics (e.g. dimension, low-speed transient off-tracking, braking
distance, number of variants, etc.) therefore pose new challenges for ADFs.
The off-tracking refers to a phenomenon in which the rear wheels track inside
the path, traced by the front wheels, when a vehicle turns [ESS+19b]. However,
automated driving systems in the CMV sector are the most important business
cases due to long-distance journeys, which sometimes reach more than 100,000
kilometers per year on long and monotonous routes [Kir15].

Property Automated passenger car Automated CMV
Niche market urban automation highway automation
Mainstream market vehicle on demand services road freight transport services
Potential user groups people with age-related or

medical constraints, teenagers
and long-distance commuters

logistics and haulage
companies

360° surround detection feasible full rear view not feasible
Detection range well standardized extended range due to

longer braking distance
Vehicle setup single body with

well-known structure
multi-body with decoupled
cabin and unknown trailer
structures

Number of variants limited numerous
Off-tracking negligible effect non-negligible effect within

curve driving scenarios
Tire type single mixture of single and twin
Trailer hardly probable articulated trailers without

environment sensing
Supposed driver skills basic professional
Driving scenarios complex selected routes on highway

Table 1.1: Overview of the differences in automation requirements between passenger cars and
CMVs.

1.2 Automated Truck Driving

Driver assisted trucks seek to improve the road safety either by warning the
driver to avoid truck accidents or by directly taking control of the vehicle.
With no claim to completeness compared with the relevant market, in 2006,
Mercedes-Benz Trucks launched Active Brake Assist (ABA) 1 [TZ15] as the
first emergency braking assistant in trucks that can prevent rear-end collisions.
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1.2 Automated Truck Driving

Consequently, since 2011 the Adaptive Cruise Control (ACC) has been sup-
plemented with the Stop and Go function as an automatic distance control
system. The ACC can identify the relevant preceding vehicles and calculate
both the deceleration as well as the possible acceleration required to main-
tain a safe distance. Due to the protection of Vulnerable Road Users (VRUs),
such as pedestrians and cyclists, being a central aspect of safety development,
ABA 4 and Side Guard Assist (SGA), both featuring pedestrian detection,
were launched in 2016. The SGA can assist the truck driver in turning at low
speeds when an object is laterally next to the heavy-duty truck or when the
visibility is restricted by the vehicle length or due to adverse weather condi-
tions. Furthermore, the SGA can detect moving and stationary objects in the
warning zone on the co-driver’s side or in the turning curve and warn the driver
visually and acoustically in critical driving situations [HSP19].

The ABA 4 can detect obstacles and VRUs by using multi-mode RAdio
Detection And Ranging (RADAR) systems for short and long ranges and
warn the driver of imminent collisions with pedestrians and simultaneously
automatically initiate partial braking. The ABA 4 therefore allows the driver to
avoid a collision by means of an emergency braking or a steering maneuver. In
addition, the driver can warn pedestrians at risk by sounding the horn [Gol18].
In 2019, the fifth generation of the ABA has been launched into series produc-
tion with improved pedestrian detection using a camera and RADAR system
to monitor and detect the relevant preceding objects. The ABA 5 can warn the
driver by a combination of optical, acoustic or haptic signals. Furthermore, the
system can automatically determine the time required to perform the warning
cascade and emergency braking in order to prevent the collision [Tru18].

In parallel, a partially automated driving system called Active Drive Assist
(ADA) was launched in the market which can assist the driver in steering, ac-
celerating and decelerating. In the case of lateral control, ADA can detect lane
markings to keep the vehicle actively in lane via an electronically controlled
steering system. As a result, the steering torque is designed to allow the driver
to retain control of the vehicle at all times. The ADA also includes another
function, called Lane Departure Protection (LDP), which can smoothly guide
the vehicle back to the center of the lane in the event of an unintended crossing
of lane markings following an acoustic warning. In the case of longitudinal
control, ADA allows the truck to slow down on the approach to other vehicles
in traffic and to accelerate again as the preceding traffic moves away.
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1 Introduction

Accordingly, Daimler Trucks and Buses already met many important legal re-
quirements in the area of road safety for CMVs many years prior to their entry
into force [AG19, WRM+19, SB08]. For the self-driving trucks, the National
Highway Traffic Safety Administration (NHTSA) has defined a set of safety
design elements for the development and safeguarding of ADFs [NHT17b].
NHTSA encourages the automotive industry to provide these elements in the
form of Voluntary Safety Self Assessment (VSSA) reports as guidelines for
a safe deployment of ADFs on U.S. roadways. Potential users of truck auto-
mation technology are logistics and freight forwarding companies as buyers
of trucks [Flä16]. One of the motivations for a higher degree of automation in
long-distance haulage is therefore a possible reduction in operating costs. The
greatest potential benefit for users therefore arises when the driver is replaced
by the technology. In fact, the prevailing shortage of truck drivers, rising cost
pressure and low margins, as well as the growing need for efficient logistics
processes, are driving the demand for automated trucks [MV19].

By law, the companies that actively test their self-driving trucks on California’s
public highways are required to disclose the number of kilometers driven in
autonomous mode and the number of disengagements in which the test driver
disengages the autonomous mode and takes immediate manual control of the
self-driving truck. Accordingly, the vision of automated road transport in the
logistics industry can serve to address the driver shortage, reduce costs and thus
increase profit margins, and achieve greater process reliability by leveraging
business cases, e.g. truck platooning and hub-to-hub autonomous trucking
[MV19].

Definition 1.3 (Truck Platooning):A linkage of two or more vehicles in con-
voy, where the leading vehicle would be manned by a driver and the following
vehicles would be electrically coupled trailers for certain parts of a journey.
Truck platooning enables a business case for truck automation to increase road
capability and reduce fuel consumption [ESFG18].

Definition 1.4 (Hub-to-Hub Autonomous Trucking):An application of the
Transport-as-a-Service (TaaS) model that deploys trucks on predefined routes
between depots or scheduled waypoints for shippers, carriers, logistics service
providers and freight brokers [Sjo22].
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1.3 Problem Statement

With no claim to completeness compared with the relevant market, various
autonomous truck companies have recently introduced concepts and prototypes
for self-driving trucks and released their VSSA disclosures or disengagement
reports according to the safety design elements outlined by the NHTSA, such
as Daimler Trucks1, Waymo2, Volvo3, Tesla4, Einride5, Embark6 [Rod19],
TuSimple7 [TuS19], Kodiak Robotics8 [Kod20] and Aurora9 [Aur21].

1.3 Problem Statement

The digital transformation has led to rapid and profound changes in the CMV
industry. As a result, the future of road freight transport is changing in the
era of connected and automated driving. From today’s perspective, global re-
search and development activities are encouraging the Technology Readiness
Level (TRL) of automated driving in the automotive industry. The digital
transformation journey is thus fueled by the new driving force that is the data.
The use of Field Operational Tests (FOTs) is indispensable to demonstrate the
safety and reliability of these innovative technologies. Furthermore, the test
CMVs equipped with data logging devices produce massive quantity of data
on regular from public roads with the corresponding geographical distribution
patterns.

On one hand, their validation methods necessitate a higher level of bandwidth
and storage of measurement recordings (e.g. automotive data communication
buses, raw sensor detection lists, reference video streams, etc.). On the other
hand, the use of these recorded data-sets is essential within software reprocess-
ing and repeatable regression testing for a data-driven development of driving
automation.

1 https://www.daimlertruck.com/innovation/autonomous-driving/our-path-to-
autonomous-trucks.html

2 https://waymo.com/waymo-via/
3 https://www.volvogroup.com/en-en/innovation/automation.html
4 https://www.tesla.com/semi
5 https://www.einride.tech/
6 https://embarktrucks.com/
7 https://www.tusimple.com/
8 https://kodiak.ai/
9 https://aurora.tech/
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1 Introduction

Apart from random hardware failures, logical and statistical failures can be
distinguished as two categories of systematic software failures. The identifica-
tion of logical errors demands meticulous analysis, convenient test equipment
and proper functional decomposition. In contrast, the estimation of statisti-
cal errors often requires a stochastic analysis of unintended reactions of the
ADF in the recorded data-sets with the dynamic traffic situations of daily life.
Consequently, the new highly complex technologies for automated driving
need appropriate test strategies for a reliable and safe heavy-duty vehicle.

The Automotive Systems Engineering (ASE) has established data-driven
and knowledge-based test methods to ensure the required reliability and
safety of ADFs. Data-driven approaches provide empirical evidence for the
validation based on the Key Performance Indicators (KPIs). Moreover, vari-
ous X(something)-in-the-Loop (XiL) simulations, ranging from microscopic
to macroscopic traffic simulations and proving grounds, are used to enable
efficient verification within the process of software product engineering. These
knowledge-based approaches are often applied in a closed-loop setting to en-
sure a requirement-based test coverage, defined by expert knowledge in the
form of Natural Language (NL) statements. Consequently, implicit knowledge
sources are extracted to transform them into explicit test specifications with
the required granularity. Despite the systematic of the top-down approach, one
of its major drawbacks is the assumption of knowledge completeness with
restricted change of requirements during development. Besides, route-based
assessment procedures offer a variety of situations with real traffic condi-
tions [KRK+19]. Nevertheless, a significant reduction of the required driving
mileages is unavoidable [JS+19a].

According to the Society of Automotive Engineers (SAE) J3016, the status
quo of ADFs extends to partially automated driving (SAE L2) [Int18]. In these
systems, the driver retains control of the vehicle and remains obliged to mon-
itor the functional intervention on a regular basis and, if necessary, to take
over vehicle control. The decisive factors for the series development of these
systems are the controllability of system interventions and the effectiveness
in real traffic with minimal unintended reactions [WW16]. But a heavy-duty
truck equipped with automated drive controlling can still be identified as a
cyber-physical vehicle system in which the driving functions are designed to
cope with dynamic traffic situations in an extremely safety-critical context.
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1.3 Problem Statement

Starting from SAE L3, a new type of vehicle guidance is implemented, in which
the established test methods are neither sufficient nor appropriate [Win16b].
The main difference is that driver assistance may have unintended interventions
that can be corrected by the driver. In the presence of functional inadequacies,
the driver supervises the automated driving controller and performs the Object
and Event Detection and Response (OEDR) sub-task [BDF+14]. Accordingly,
the human assisted driving functions are designed to be controllable at any
time, but this can reduce their benefits [Wei13]. The controllability of system
interventions and the effectiveness in the field with minimal undesired con-
sequences are therefore decisive for the series development of these driving
systems [W+18]. As a result, the ASE requires state-of-the-art evaluation pro-
cedures to verify and validate these systems. The FOT is carried out to define
thresholds for intervening systems based on the collected data. On one hand,
trigger algorithms can be optimized to minimize the frequency and impact of
falsely triggered interventions and, on the other hand, to maximize the number
of legitimate responses. Nevertheless, driving automation requires the system
to exploit the limits of DDTs and to master most environmental conditions
controlled by a human driver [Sch15].

The International Organization for Standardization (ISO) 26262:2018 standard
extends the functional safety regulations of Electrical and/or Electronic (E/E)
systems for motorcycles and CMVs. However, the safety standard is limited to
avoiding potentially safety-critical situations caused by systematic software and
random hardware failures [AW17]. Safety violations due to technological and
technical deficiencies remain outside the scope of ISO 26262:2018 (e.g. insuf-
ficient robustness, uncertainty issues with perception sensors, etc.) [BGH17].
Specifically, automated driving without driver monitoring can also lead to po-
tentially safety-critical situations resulting from deficiencies in the estimation,
interpretation and perception processes. Therefore, critical driving situations
due to systematic software and random hardware failures can be handled within
the ISO 26262:2018 standard. The ISO/ Publicly Available Specification (PAS)
21448:2019 standard regulates the absence of unreasonable risk due to haz-
ards resulting from functional insufficiencies of the intended functionality or
by reasonably foreseeable misuse by persons [SH19b].
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1 Introduction

Definition 1.5 (ISO 26262): It specifies a development process for the func-
tional safety of E/E systems in the automotive industry. It outlines a risk
classification system and aims to reduce possible hazards caused by the mal-
functioning behavior of E/E systems [Hil12].

Definition 1.6 (ISO/PAS 21448): It presents a guidance on the applicable
design, verification and validation measures needed to demonstrate that there
are no unreasonable risks arising from hazards due to performance limitations
of the intended behavior [fS+19b].

While there are no generally accepted test procedures at present that enable
ADFs to be validated in affordable efforts, ongoing and completed German Fed-
eral Ministry for Economic Affairs and Energy (BMWi) research projects (e.g.
PEGASUS [WLFM19], AdaptIVe [Ete17], SafeMove [GA+18a, ADPZ19],
KI-Absicherung [GGSB19], SET Level4to5 [HTR+20] and VVM [ZRBE20])
show the relevance of research for new test methods. Accordingly, the main
research questions are formulated as follows:

RQ1: How can the knowledge-based and data-driven test platforms be
combined in a complementary and collaborative manner?

RQ2: How can the ADFs be effectively and efficiently tested?

RQ3: How can the prospective risk be measured in order to achieve rea-
sonable termination criteria for the testing of the ADFs?

1.4 Research Objectives

The statistical analysis of road accidents predicts the required mileage for
levels of automation without driver involvement as a basis for the safety of
new systems compared to their predecessors [JWKW18]. These technologies
face an unsolved challenge when it comes to proving safety during the de-
velopment phase by means of FOTs. While the ADF uncertainties remain
before automated driving is released for widespread use, it is essential to de-
velop performance assessments for the safety confidence. Furthermore, highly
automated test approaches are integrated to safeguard the ADFs. Black-box,
grey-box and white-box tests are associated with their respective test objectives
and form the basis for a context-driven test concept, as depicted in figure 1.3.
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Figure 1.3: Development and testing of ADFs using a trade-off between the efficiency and effec-
tiveness criteria of a context-driven test concept [ESS+19c].
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The safeguarding process of the ADFs takes place in three stages in compliance
with Automotive Software Process Improvement and Capability dEtermination
(ASPICE) [VDA17, fS+19a]. In the first stage, there are two parts, namely
white-box testing and grey-box testing according to the process of ASPICE
Software Engineering Process Group (SWE).4 software unit verification. The
white-box testing requires knowledge of internal software structures for func-
tional and non-functional tests. The grey-box testing is the typical combination
of the black-box testing and the white-box testing assessments that verify the
functions of various components, systems or sub-systems to ensure maximized
test coverage.

The second stage is the database enrichment for open-loop and closed-loop
tests according to the process of ASPICE SWE.5 software integration and
integration test. The data of situation/scenario database goes through the open-
loop test as well as the closed-loop test depending on the type of data ex-
tracted [P+17a]. The ADF shall be adequately safe in the event of unintended
reactions that could violate the safety goals. For this reason, the driver’s con-
trollability or the Minimal Risk Condition (MRC) fallback shall confirm the
probability of overcoming the system limits and failures. Also, the regression
and progression testing ensure that the previously tested software remains at
the same performance level, even if it is modified or combined with other
software. Regression testing ensures that the maturity level of the software
is retained while adding new logic and fixing issues. Meanwhile, progression
testing tracks progress against specific ODD features. The progression tests
serve as a benchmark against which developers can measure their progress.
Based on the Minimum Viable Product (MVP) levels, the result of this stage
decides whether more simulation tests are required or more test kilometers are
needed. The MVP defines a version of a product with features to be usable by
early customers who can then provide feedback for future product development.

According to the process of ASPICE SWE.6 software qualification test, the
development of ADFs is carried out using field based-observation. In the
black-box testing, the data from various on-road tests, which are both func-
tional as well as non-functional, is extracted. Depending on these test results,
data-driven development provides the decision as to whether type approval is
recommended or not [P+17b].
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1.4 Research Objectives

The presented framework uses the standard Quality Gates (QGs)10 for de-
velopment of ADFs within an agile development process. Accordingly, the
proposed concept aims to bridge the gap between knowledge-based and data-
driven test approaches to enable continuous extensibility of experience in an
adaptive test coverage manner. The final sign-off is carried out at the end of the
development process to ensure that the system meets the specified and intended
requirements. This thesis describes a risk-based framework that provides a test
process of sensing, perception, prediction and planning and motion control
software modules.

Definition 1.7 (Sensing):A software module indicates the ability of an ADF
to receive adequate information from the vehicle’s internal and external envi-
ronment through connected sensors [Ste16].

Definition 1.8 (Perception):A software module denotes the ability of an ADF
to interpret information about its environment obtained through its sensors
[Ber19].

Definition 1.9 (Planning):A software module defines the ability of an ADF
to establish and navigate the route it will take on the way to its destination
[SHE+17].

Definition 1.10 (Motion Control):A software module characterizes the sys-
tem’s ability to execute the driving functions necessary to carry out a contin-
uously updated driving plan by delivering appropriate control inputs such as
steering and braking [AKM17].

The modular framework represents a virtual testing for verifying ADFs on
the ECU in the laboratory. The test bench offers an efficient compromise
between the requirements of simulation realism and the real-time performance
of the simulation environment. In this scheme, the real-world testing includes
hierarchical clustering of recorded time-series signals to identify and assign
the necessary test cases for different appropriate test environments. In addition,
the structure employed utilizes a back-end database that is filled with catalogs
of extracted driving scenarios from field-based observations.

10 The QG indicates a special milestone that highlights the qualitative aspect of the deliverables
at a defined point in a project.
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Using an ontology-based method, a category of adequate and relevant logical
scenarios for existing field tests is extracted. A semantic representation of
concrete scenarios can be obtained using data mining techniques, and sys-
tematically processed into executable requirements for ODD coverage. These
new test cases then complement the existing test cases, which were developed
from expert knowledge with NL based statements, in an adaptive test coverage
manner. Moreover, the extracted scenarios and their parameter space define the
probability of occurrence of each extracted logical scenario and the probabili-
ty distributions of the associated parameters. The stochastic analysis methods
employ surrogate models and sampling methods to calculate the probability of
failure for each clustered logical scenario [Tar12]. The surrogate model refers
to an interpretable model that is trained using input-output data to approximate
the predictions of a black-box model [M+17]. The proposed procedure there-
fore offers an optimized test strategy for extending the requirement-based test
coverage in an adaptive manner.

1.5 Structure of the Thesis

The thesis is structured based on the flow required to support the above-
mentioned research objectives. In this chapter, the thesis and its contributions
are outlined. Chapter 2 discusses the safety assessment concepts of ADFs
for long-distance CMVs. Furthermore, the ASE processes are reviewed. The
fundamental concepts of software fault tolerance, which take deficiencies in en-
vironmental perception and their management by multi-sensor data fusion and
fail-operational architectures into account, are presented [Tun19]. In addition,
the requirements for a measurable safety framework for different levels of
automated driving are described. Chapter 3 presents an overview of the current
state of scientific and technical knowledge on the test methods used in the
work, which leads to all subsequent chapters. In addition, the challenges of test
procedures for ADFs are discussed with respect to current research projects
and standardization activities.

Chapter 4 presents the integration of traffic simulation and truck dynamics into
a co-simulation configuration based on trajectory-based control of road users.
The sensor systems for the perception of the vehicle environment are simulated
and evaluated. Thereafter, a round-trip latency in the distributed heterogeneous
co-simulation environment is estimated.
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1.5 Structure of the Thesis

Chapter 5 illustrates various measurement methods for scenario mining. The
data handling process of the in-vehicle data logging system and its main el-
ements are explained with regard to event-based time-series analysis. Subse-
quently, various methods of cluster analysis are discussed based on case studies
of customer-oriented testing.

Chapter 6 proposes the systematic process to complement virtual testing by
extracting insights from field testing database using sensitivity analysis. In this
thesis, the prototypical safety margin is the minimum Time To Collision (TTC).
Thereby, the sensitivity analysis employs meta-model techniques, where the
parameters extracted from cluster analysis are considered as input and the safety
margins as output. In addition, the integration of ontology-based test scenario
synthesis enables a systematic scenario enlargement. Chapter 7 concludes
the framework implementation with the use of reliability analysis to estimate
the probability of exceeding the safety margin. Accordingly, the reliability
analysis explores the unsafe region in the parameter space to predict the failure
probability for each logical scenario using sampling methods. Furthermore,
some conclusions on the overall approach, limitations and recommendations
for further possible developments are described in chapter 8 of this work. The
mentioned flow is portrayed in figure 1.4.
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Figure 1.4: Comprehensive overview of the thesis research process with three key parts (prelimi-
naries, framework conception and implementation).
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2 Safety Assurance in the Open
Context

The active and passive safety systems in the automotive industry differ in their
assessment methods. A standard evaluation approach for the passive safety
systems has been developed to assess the behavior in an appropriate number
of crash test cases under certain critical conditions [Win16a]. Considering
the active safety systems, there are many challenges to be overcome in safety
Verification and Validation (V&V) under real traffic conditions, namely the
diversity of scenarios and environmental conditions, system complexity, and
functional deficiencies [HPT10]. Despite strong support from the industries
and academia, questions are often raised about the business cases, ethical
dilemmas, legal liability and safety regarding automated driving. The SAE
J3016 automation levels are therefore expected to overlap and not be available
on the market back to back. Due to a complex, uncertain and unpredictable
traffic environment, the motion control and path planning algorithms have to
deal with uncertainties in measurements and predictions [AB15]. Therefore,
the automated driving relies on intelligent algorithms that receive input from
a variety of environmental perception sensors to control real-time actions in a
highly safety-critical context [ESW+16].

2.1 Definition of Terms and Categories

This section gives an overview of the basic terminologies and highlights the
meaning of the basic terms used in this thesis. The essential phrases are
categorized thematically to clarify the scope of the work.
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2 Safety Assurance in the Open Context

2.1.1 Scene, Situation, Scenario and Test Case

The interaction of ADFs, in conjunction with the traffic environment, increases
the complexity of functional testing [M+18]. Thereby, the use case specifies
the application, its desired behavior and its functional system boundaries. The
use case description typically does not include a detailed list of all relevant
scenarios for this use case. Instead, a rather abstract description of the deployed
scenarios is used.

Definition 2.1 (Scene):A snapshot of an environment with a certain state
containing the scenery, dynamic elements, all actors and their relationships.
The scenery includes all spatial stationary elements such as lane markings,
traffic signs, obstacles and traffic lights [S+18a].

Definition 2.2 (Situation):A selection of behavioral patterns for a specif-
ic triggering event. The behavior reflects the interaction of the ADF with
the environment. While the behavioral patterns deal with the allocation of
responsibilities between the Ego-vehicle and its surroundings, the triggering
event induces a traffic situation with certain conditions and subsequent system
reactions [HSSB14].

Definition 2.3 (Scenario):A historical development between several scenes
in a chronological sequence of situations leading to a potentially hazardous
consequence [BLO+17].

Definition 2.4 (Test Case):A specification of the inputs, execution conditions,
testing procedure and expected results that aims to prove a particular property
of a test object. Therefore, the test case contains a logical scenario with a set of
parameters to determine whether a function operates according to its intended
functionality [L+18a].

2.1.2 Functional, Logical and Concrete Scenarios

The layered structure of the automated driving system can be described as a
cyber-physical system with a sensor system, an automated driving ECU and an
actuator system, whereby the responsibility between the driver and the ADF is
classified according to the SAE J3016 [Int18].
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2.1 Definition of Terms and Categories

Both the road and environment constraints consist of four layers of scenario
description structured as follows:

• Layer 1: road geometry (e.g. road curvature, lane marking, etc.),

• Layer 2: static objects (e.g. speed limits, construction barriers, etc.),

• Layer 3: dynamic objects (e.g. cars, pedestrians, trucks, etc.) and

• Layer 4: weather conditions (e.g. fog, rain, snow, etc.).

The scenarios can be classified into three levels of abstraction. One is functional,
the second is logical and the third one is concrete. The functional scenarios
specify the application, the desired behavior and the functional system bound-
aries. The description of the functional scenarios doesn’t typically contain
a detailed list of all relevant scenarios. Therefore, the functional scenarios
illustrate the most abstract level of the scenario representations as high-level
requirements with a textual or graphical description. The entities and their
relationships are represented within the functional scenarios in NL statements.
The logical scenarios represent precise specifications based on the parameter
spaces in the stated space and contain a formal scenario description [BOS17].
The concrete scenarios define test cases and describe the concrete representa-
tion of a logical scenario with predefined values in the stated space [Web19].

2.1.3 Structure-based, Open-loop and Closed-loop Testing

The ADF contains software components that interact with an unstructured,
public real-world environment to support and automate DDTs. Figure 2.1
depicts the differences between structure-based, situation-based open-loop and
scenario-based closed-loop testing in the time sequence. The particular func-
tion provides the in-/output behavior or the reaction to sensor input variables
in the automated driving system [SBWE19].

Definition 2.5 (Structure-based Testing): It is performed to determine the
code coverage of software structure components such as specific software
functions and code parts [Wil16].
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Definition 2.6 (Situation-based Open-loop Testing): It generates driving sit-
uations from the required behavior and evaluates the function reaction without
referring to future conditions [U+15].

Definition 2.7 (Scenario-based Closed-loop Testing):It is used to test the
behavior in a closed loop within a traffic sequence of scenes associated with
actions of the Ego-vehicle, events from the environment and goals for the ADF
[FHW16].
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Figure 2.1: Illustration of the logical relationships between structure-based, situation-based open-
loop and scenario-based closed-loop testing [ESO+19].

2.1.4 Operational Design Domain and Fallback

The fallback method provides a MRC to reduce the risk of a collision if a
particular route cannot be completed within the ODD.

Definition 2.8 (ODD):According to SAE J3016, the ODD refers to the operat-
ing conditions under which a given driving automation system or feature thereof
is specifically designed to function, including environmental, geographical and
time-of-day restrictions, and/or the requisite presence or absence of certain
traffic or roadway characteristics [Cza18].
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Definition 2.9 (MRC):The MRC allows a driver or an ADF to switch to a
low-risk operating condition using a DDT fallback. In case of a MRC, various
fault tolerance strategies can be implemented to avoid a hazard to the system,
so that the system continues with fail-safe, fail-degraded or fail-operational
characteristic [CFHL07].

The fail-safe behavior characterizes the transition of the system to a safe state
despite the presence of hardware or software failures. The fail-degraded be-
havior provides the safe-degraded property to run an intended degraded safe
operation. In this context, degradation is defined as the reduced performance of
the function which can still provide safe operation in the presence of hazardous
events [Xi08]. The fail-operational behavior describes the ability to continue
normal operation through redundancy of the components so that the loss of
safety-related functions does not lead to a hazard [WRM+19].

2.1.5 Verification, Validation and Accreditation

In accordance with the Institute of Electrical and Electronics Engineers (IEEE)
Std 610-1990, software verification denotes the process of evaluating software
to determine whether the products of a given development phase satisfy the
conditions imposed at the start of that phase. Meanwhilst, software validation
describes the process of evaluating software during or at the end of the de-
velopment process to determine whether it meets specified requirements. The
ISO/ International Electrotechnical Commission (IEC)/IEEE 15288 describes
a framework for characterizing the life cycle of systems and software engi-
neering. The testing process requires three interrelated but distinct procedures,
namely Verification, Validation and Accreditation (VVA), in order to develop
a realization for a purpose to be fulfilled in a specific context [JS+19b].

Definition 2.10 (Functional Verification):According to the ISO/IEC/IEEE
15288:2015, the functional verification refers to a procedure of confirmation
by objective evidence that the specified requirements have been met [fS+15].

Definition 2.11 (Functional Validation): It concerns a confirmation procedure
by objectively demonstrating that the requirements of a specific intended use
or application have been fulfilled [P+17b].
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Definition 2.12 (Functional Accreditation):It relates to a confirmatory
procedure by objective evidence that the function is acceptable for use in a
specific purpose [fS+15].

These procedures collect and evaluate evidence to credibly determine whether
an ADF can be safely used in a real-world ODD. Thereby, the deductive gap
between required, specified and implemented behaviors refers to the presence
of invalid hypotheses on different levels of abstraction that cause unintended
functionality. Figure 2.2 represents three sets ofS,M, andN in the set diagram,
which create several overlapping areas when they intersect. The verification
refers to a procedure that proves the correct implementation of each individual
requirement to minimize the intersection area,K, so it is the set (M∩S∩N̄ ).
The validation is a procedure that compares the results with observed empirical
data to confirm the correctness of the requirements to minimize the intersection
area,J , so it is the set (M∩(S ∪ N)). The accreditation is aimed at minimizing
the areas A and D, so they are the sets (N ∩ (M ∪ S)) and (N ∩ S ∩ M̄),
respectively. The adaptive functional testing aims to maximize the optimized
behavior with the intersection area, C, so it is the set (S ∩ M ∩ N ) and
thus minimizes the deductive gap. If the deductive gaps are less than the
reasonable risk, the continuous test process can be terminated according to the
optimization goals by sign-off recommendations of ADFs. The areas B and L
are not critical where they have no safety-related impacts, so they are the sets
(N ∩M ∩ S̄) and (S ∩ (M ∪N)), respectively [ESFG19a].

va
lid

at
io

n

verification

accred
itation

intended 
behavior
  (N)

B

J K L
C

D

A

implemented 
   behavior
    (M)

specified
behavior
  (S)

missing implementation of 

implementation behaves as 

specified as well as intended

correct specification 

missing implementation of 

wrong specification  

wrong specification or 

technical limitation  

unexpected wrong 

behavior  

robust unspecified 

behavior  

missing specification of 

intended behavior  

Figure 2.2: Three-circles model of the VVA challenges due to the deductive gap between required,
specified, and implemented behaviors [SBP+19].
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2.1.6 Top-Down, Bottom-Up and Middle-Out Approaches

Software engineering is the systematic application of methods, principles
and techniques to develop software-based systems in a consistent manner.
Consequently, the top-down and bottom-up approaches refer to the design
philosophies that are executed either from the top or the bottom for the
requirements engineering [SS06]. In the software development process, the
top-down approach requires a detailed design perspective of the system before
the actual implementation can begin. In contrast, the bottom-up approach
emphasizes developing the system by integrating the designed components.
The middle-out approach is a mixture of the top-down and bottom-up ap-
proaches and offers advantages over these when evaluating automated driving
applications. The hardware and software development process is divided into
several layers according to a V-shaped model (component, subsystem, system
and vehicle), as shown in figure 2.3.

Definition 2.13 (V-shaped model): It is a software development process model
that combines the requirements and design on the left side with V&V on
the right side. While the V-shaped model has established itself for series
development in the automotive industry, it provides a procedure of abstraction
and does not necessarily describe the test methods directly [Bac18].
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The components consist of hardware as well as of software elements on the
bottom layer. The subsystem therefore includes more than one component.
Thus, the system can be divided into sub-systems with a hierarchical structure.
The vehicle is comprised of one or more systems, whereby one system consists
of at least one sensor, one processing unit and one actuator. A system imple-
ments one or more functions, but a function can also be applied in several
systems.

2.1.7 Black-Box, White-Box and Grey-Box Testing

The closed-loop testing uses XiL techniques for functional verification of
software in synthetic simulation environments. For example, Hardware-in-the-
Loop (HiL) platforms describe the functional verification of the embedded
software integrated on the target ECU via technical interfaces. At the same
time, open-loop recomputing performs logged data simulations and repeatable
regression tests with many iterations to achieve functional improvements and
parameter calibrations using recorded real-world data. The logged data simula-
tions are based on sensor data-sets collected from physical test drives to select
the most appropriate release version. The extensive data-sets are collected
worldwide under realistic driving conditions with CMV fleets. The evaluation
of algorithms requires an efficient search and interpretation of relevant traffic
situations with the help of Root Cause Analysis (RCA) to modify the algorithm
accordingly.

The automated driving ECU shall be sufficiently safe in the event of unintend-
ed reactions that could violate the safety goals. For this reason, the driver’s
controllability or the fail-operational modes must confirm the probability of
overcoming the system’s limits and failures. Moreover, the regression testing
ensures that the previously tested software remains at the same performance
level even if it is modified or combined with other software. A correlation
between the various test coverage criteria intends to support the controlling
whether to collect more kilometers or to carry out more simulations. To ensure
that the system meets the specified requirements, a sign-off is carried out at the
end of the development process [Lat08].

Definition 2.14 (Black-box Testing):It involves functional and non-functional
tests with system description regardless of the component or system internal
structures, such as on-road vehicle testing [Sax08].
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Definition 2.15 (White-box Testing): It requires knowledge of internal soft-
ware structures for functional and non-functional tests. The code coverage then
defines the parts of the software that are executed and those that are not, such
as the Modified Condition/Decision Coverage (MC/DC) [Wil15].

Definition 2.16 (Grey-box Testing):It is a mixture of white-box and black-box
assessments that verify the functional specifications of a component, subsys-
tem, or system to ensure maximized test coverage [ESO+19].

2.1.8 Software Development Process Models

The software process is a set of activities for specifying, designing, implement-
ing and testing software systems. The software process model is an abstract
representation of a process that presents a description of a process from par-
ticular perspective [P+19b]. The Software Development Life Cycle (SDLC)
models specify the various stages of the process and the order in which they
are carried out. Thereby, the SDLC models can essentially be divided into the
following model types (Waterfall, V-shaped, Incremental, Spiral and Agile).
The Waterfall model is a breakdown of project activities into sequential linear
phases, where each phase depends on the deliverables of the previous one and
corresponds to a specialization of tasks. In the V-shaped model, the relation-
ships between each phase of the SDLC and its associated phase of testing are
represented. The Incremental model is a method of software development in
which the model is designed, implemented and tested incrementally until the
product is finalized. The Spiral model is a risk-driven SDLC model in which
the project is executed in loops. Each loop of the Spiral is referred to as a phase
of the SDLC. In the Agile model, iterative development is used where iterations
and continuous feedback are deployed to refine and deliver a software system.

2.1.9 Requirements Specification Notations

Requirements engineering refers to the process of eliciting, specifying and
evaluating the desired behavior of a software-intensive system. The functional
requirements form the backbone of a comprehensive technical understanding
of the developed system.
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Requirements as such, therefore, need to be unambiguous and understandable
to allow an external testing organization to perform independent tests of the
system. The NL-based requirements can be engineered in a straight-forward
way without explicit knowledge of the syntax. Meanwhile, the model-based re-
quirements facilitate the clarity of a complex software product and enable a sim-
plified representation of the system with diagrams and axioms. The approaches
of requirements management can essentially be divided into five notation types
by using natural language and model-based notations as follows:

• Ad-hoc notation in NL is a free writing style that offers a high degree
of flexibility in specifying requirements, but at the same time leads to
ambiguity and a lack of expressiveness, completeness and consistency.

• Structured NL notation has less potential for ambiguity than an ad-hoc
informal approach by requiring the use of NL in a structured format
[CI14].

• Ontology-based NL notation uses a formal description language to
describe an ontological knowledge base with a glossary of terms
and relationships specified by a set of rules [STZ+11]. The ontology-
based NL notation is a semantic human- and machine-understandable
representation of knowledge terms and their inference rules. The ontolo-
gies support the verification of the consistency and completeness of the
requirements.

• Graphical modeling notation, based on finite state machines and sets
using Unified Modeling Language (UML), represents use cases and/or
sequence diagrams. The graphical model-based notation facilitates the
clarity of a complex software product and enables a simplified repre-
sentation of the system with diagrams or axioms. In spite of improved
human readability, it may not be suitable for large systems where the
graphical modeling notations are not easily maintainable.

• Mathematical notation provides a formal machine-readable format based
on a set theory with Z notation specification [Bow01]. The Z notation
is a formal specification language used for describing and modeling
functional specifications. Therefore, the Z notation is a mixture of formal
mathematical statements and informal text. The formal mathematical
statements give a precise description of the system.
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The informal text describes the meaning of the mathematical statements
in NL to make the specification more readable. Large systems with a
complex domain may not be easily specified in the Z notation, where
formal specification is probably not readable and understandable to the
client.

Table 2.1 refers to a comparable evaluation where the scale ranges in require-
ment notations from poor to optimal. The development of functional require-
ments presents a joint process between the client and the contractor, in which
the technical knowledge of the client and the software development competence
of the contractor become accessible. Siegemund et al. [STZ+11] introduced a
meta model for ontology-driven goal-oriented requirements engineering. In his
dissertation, Siegemund [Sie14] derives the following quality criteria, which
serve to analyze the requirements specification notations.

Quality criteria Requirements specification notations
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Table 2.1: Comparable evaluation of notation types in functional requirements engineering
[ESO+19].
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2.1.10 Software Process Assessments

In safety-critical automotive software engineering, some quality process
standards apply to organizational processes to achieve a high degree of soft-
ware quality. ASPICE is a process reference model developed by organizations
within the automotive industry to create a more automotive-focused reference
model compared to ASPICE or Capability Maturity Model Integration (CMMI)
[Bär08]. There are two dimensions in ASPICE: a process dimension and a ma-
turity level dimension according to ISO/IEC 33001:2015.

The ISO/IEC 33001 contains a set of technical standards for process evaluation
to assess the achievement of process quality characteristics. The process dimen-
sion includes various software development processes. The second dimension
allows an averaged assessment of the maturity of a single process on a scale
of 0 to 5, as illustrated in figure 2.4. The maturity level is determined by
certified assessors who perform a comparison based on the processes defined
in ASPICE [Win13]. The ASPICE enables the assessment and classification of
their own process in relation to the state-of-the-art. Furthermore, the suppliers
can be selected in a qualified manner and the improvement potential can be
identified [BOS19].
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2.1.11 Safety, Reliability and Availability

The safety requirements are intended to ensure the absence of unreasonable
risks at each stage of the development process of safety-critical automotive
systems [IEC+10]. Consequently, operational safety includes passive and active
safety technologies to minimize the occurrence and consequences of traffic
conditions. For this purpose, operational safety is divided into three main
aspects: Functional safety, Safety Of the Intended Functionality (SOTIF) and
behavioral safety.

The functional safety describes the probability that a function does not go
into an unsafe condition if an independent event may cause an accident. The
functional safety focuses on system design to identify hazards using Hazard
Analysis and Risk Assessment (HARA) and to alleviate the consequences of
E/E malfunctions that may occur in the components of an automated driv-
ing system. However, the goal of SOTIF is to validate the ADFs, including
perception and decision making, in all the relevant environmental scenarios.
Behavioral safety, meanwhile, focuses on the system design to behave safely
in its environment to avoid hazards and reduce the risk of failures.

Definition 2.17 (Reliability): It can be defined as the probability that a function
fulfills its intended functionality in an ODD and over a certain period of time.
The reliability requirements shall ensure that the system does not reach an
unreasonable number of failures [Mul85]. Therefore, the reliability can be
defined by the Mean Time Between Failures (MTBF) and the failure rate.
While the MTBF describes the expected time between two failures of system
components, the failure rate, in contrast, indicates the frequency with which a
system component fails, in terms of failures per unit time [BA92].

Definition 2.18 (Availability): It is the probability that a system is available for
operation at a certain point in time, i.e. the time period during which a system
is actually in operation as a percentage of the total time that the system should
be in operation. In parallel, robustness defines the degree to which a system or
subsystem or component can operate correctly under invalid inputs or stressful
environmental conditions [IEC+90].
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2.1.12 Fault, Error and Failure

The error propagation model follows the subsequent steps: fault, error, failure,
hazard and accident. The active errors are error classes that are caused by
faults and cause failures, but the latent errors are error classes that are caused
by faults and don’t cause failures [KM05].

Definition 2.19 (Fault):An abnormal condition or defect that can cause an
element or an item to fail. The faults occur as logical, Type I or Type II errors,
which either lead to active errors or remain in the test object as latent errors
[P+01].

The Type I error, also called False Positive (FP) event, is an error type that
occurs as a false alarm if the null hypothesis (H0) is true, although the given
condition doesn’t exist. While the Type II error, also called False Negative (FN)
event, is an error type that occurs as missed detection if the null hypothesis
(H0) is false but the given condition erroneously fails to be recognized.

Definition 2.20 (Error):A discrepancy from the intended design, which can
lead to an unintended condition at the test object boundary. After that, a failure
depicts the deviation from specified behavior due to undetected errors within
the component, subsystem or system [SWB+20].

The occurrence of Type I and Type II errors summarizes the uncertainties
resulting from the restriction of environmental perception and the variability
of predictive situations. The Type I errors can provoke a new critical situation
for endangering road safety. The Type II errors lead to a loss of the safety
benefit concerning the system specification. However, each Type I or Type
II detection error does not change the assessment of a situation as safe or
hazardous. Therefore, the error criterion defines the formulation of the safety
envelope that determines whether a situation is safe or hazardous. In addition, a
safety-critical ghost or miss can be caused by measurement errors, e.g. a noisy
distance measurement, or by detection errors, e.g. missing detection. For each
detection or measurement error, there are two types of error for each signal
value. The first describes the systematic error and the second the statistical
error. The systematic error represents an error in the algorithm according to
knowledge-based design. In contrast, the statistical error represents an error
that occurs during operation due to environmental influences.

32



2.1 Definition of Terms and Categories

Safety-critical ghosts represent the rate of situations that are erroneously con-
sidered hazardous, where ghosts can occur at any time. Safety-critical misses
represent the situations that are erroneously considered safe, where safety-
critical misses can only occur when a hazardous situation exists [SWB+20].

2.1.13 Microscopic and Macroscopic Risk Metrics

The risk of the system can be estimated using a statistical approach to the
frequency of accidents. Hazards at the system level are the physical situa-
tions that may cause an accident. The accident is an unplanned or undesirable
event that leads to an unrecoverable loss of service that typically brings loss
and/or injury. Due to the long distance between two road traffic accidents, the
macroscopic risk cannot be estimated without large field data. Therefore, an
enormous mileage is required to collect enough accident data for a meaning-
ful statistical analysis [JSW19]. Microscopic risk refers to the risk for single
vehicle type or fleet of identical vehicles, e.g. a prospective risk of an ADF
using Time To React (TTR) metrics. The macroscopic risk represents the av-
erage risk in road traffic within a fleet of different vehicles, e.g. the occurrence
rate of fatal accidents. If the investigated event is a critical scenario rather than
an accident, the accident frequency rate increases and therefore less mileage
is required for the equivalent statistical significance. Junietz [Jun19] applies
microscopic risk metrics to evaluate critical scenarios and uses extreme value
theory to extrapolate frequency of accidents using macroscopic risk metrics.
The extrapolation is assumed with a hypothesis that is applied to ADFs to
estimate the probability of accidents using macroscopic risk assessments.

2.1.14 Sensitivity, Specificity and Precision

The intended events contribute towards improving the safety of the ADFs. The
True Positive (TP) event represents an intended reaction in which the system
responds correctly to a critical situation. Similarly, the True Negative (TN)
event refers to an intended reaction in which the system reacts correctly to a
non-critical situation. The unintended events, in contrast, have different conse-
quences: The FP event, also called Type I error, refers to an unintended reaction
in which the system reacts incorrectly to a non-critical situation [Ste16]. As
a result, the safety benefit is lost in this critical situation with regard to the
system specifications.
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The FN event, also called Type II error, means an unintended reaction that is
not associated with a critical situation but can provoke a new critical situation
[Hel14].

Definition 2.21 (Sensitivity): It evaluates how good the test is at detecting
a critical situation and indicates the conditional probability that the system
performs intended reactions to critical situations according to the system spec-
ifications.

The sensitivity, also called TP-rate, is calculated by dividing the number of TP
events by the total number of TP and FN events, as defined in Equation 2.1.
High sensitivity then refers to a low number of FN events [Ber16].

sensitivity = P(positive reactions|critical situations) = TP
TP + FN

(2.1)

Definition 2.22 (Specificity): It estimates how likely non-critical situations
can be correctly ruled out and describes the conditional probability for the
proportion of non-critical situations treated by the system.

The specificity, also called TN-rate, is calculated by dividing the number of
TN events by the total number of TN and FP events, as defined in Equation
2.2. High specificity then refers to a low number of FP events.

specificity = P(negative reactions|non-critical situations) = TN
TN + FP

(2.2)

The Receiver Operating Characteristic (ROC) curve is a graphical represen-
tation of the relationship between sensitivity and specificity as performance
measures for model selection. According to the German Insitute for Stan-
dardization (DIN) ISO 5725-1:1997-11, precision is described by the standard
deviation of the measured signal. In contrast, the accuracy is used to describe
the signal bias to the ground truth value. The precision, also called Positive
Predictive Value (PPV), is calculated by dividing the number of TP events by
the total number of TP and FP events, as described in Equation 2.3.

precision =
TP

TP + FP
= 1 − FP

TP + FP
(2.3)
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2.1.15 Supervised, Unsupervised and Reinforcement
Learning

Machine learning approaches rely on computational statistics to make accurate
predictions. In general, there are three categories of machine learning approach-
es: supervised learning, unsupervised learning and reinforcement learning.

Definition 2.23 (Supervised Learning): It focuses on approximating functions
from a labeled data-set that can be used for classification and regression, i.e.
Support Vector Machine (SVM), Naive Bayes, Logistic Regression, Decision
Trees, Random Forest and K nearest neighbors. The supervised learning ap-
proaches utilize inductive learning, in which a run-time algorithm uses the
results of a learning process to perform algorithmic operations [K+19b].

Therefore, machine learning algorithms are evaluated to avoid systematic fail-
ures during the training and validation process. Their specifications are there-
fore not in the V-shaped model of a set of functional requirements for the
system itself, but rather in a set of training data or a plan for capturing the
set of training data [KW16]. If the machine learning process is not trained
with a certain driving situation, the algorithm cannot recognize this situation
and therefore the respective situation is considered as a Black Swan1 situation.
Therefore, the verification philosophy should consider Black Swan situations
by robustness testing and run-time fault injection techniques. Thereby, the
data collection process needs to reduce hazards such as unintended bias or
distortion in the gathered data. The offline machine learning process starts
with the acquisition of a training database using a collection of data from the
on-road and proving ground tests. The data is then annotated to learn specific
features (e.g. cars, pedestrians, trucks, etc.) and the scene labeling is used for
the determination of parameters through training. The process of scene labeling
is implemented by introducing artificial markers into a scene with the purpose
of marking positions in a three-dimensional space.

1 Black Swan refers to a surprising event that is not observed by the system. Behind this term lies
the story that in medieval Europe, people believed that there were no swans except white ones.
After the discovery of the Black Swans in Australia, this surprising event broke the previous
thinking [Tal10]. Therefore, the Black Swan is a metaphor that describes an event that comes
as a surprise.
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Concerning self-verification, the training result is then verified with the train-
ing data on the basis of acceptance criteria, such as acceptable Type I and Type
II error rates. The acceptance criteria refer to conditions that are defined to
determine whether the test object can be delivered to the respective next test
level. If the self-verification fails, the process can be restarted after collecting
the additional data for the test abort criteria. The abort criteria relate to condi-
tions under which the tests are terminated prematurely as continuation is not
advisable. The self-assessment could be insufficient because it is difficult to
ensure that the learning system has been trained for the essential features of
training data rather than coincidental correlations.

The coincidental correlation relates to a non-caused correlation of self-
verification assessment criteria with training and validation data, which are
consistent but are not caused by each other. Therefore, cross-verification is
used to verify the learning process using a separately collected and annotated
database with acceptable pass and fail criteria. The adaptive machine learning
systems that change weights at run-time are relevant for the high and full auto-
mated driving systems and go beyond the scope of the annotation and labeling
process.

Definition 2.24 (Unsupervised Learning): It focuses on discovering pattern
in unlabeled data-sets with a minimum human supervision, i.e. hierarchical
clustering, k-means, Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) and Principal Component Analysis (PCA) [KWB18].

Definition 2.25 (Reinforcement Learning):It focuses on learning interaction
from trial and error to take a decision in an environment based on maximizing
the cumulative rewards, i.e. Markov Decision Process.

The uncertainty quantification can provide information that is employed in ob-
ject plausibility within sensor fusion algorithms [Min17]. There are two types
of uncertainty that can be distinguished (Aleatoric and Epistemic uncertainties)
[GB12]. Moreover, Type I errors (e.g. ghost objects, etc.), Type II errors (e.g.
not detected objects, etc.) and misclassification issues can be tuned by the cov-
erage of the training data-set. The performance of machine learning algorithms
relies on the amount of training data-sets. The statistically relevant spread
of operational situations can ensure adequate coverage during training for
environmental perception tasks.
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Definition 2.26 (Aleatoric Uncertainty): It comprises noises that are inher-
ent to the observation (e.g. sensor or motion noises) [ODR+02]. Since the
Aleatoric uncertainty refers to the self-noise of the observation, this uncertainty
cannot be reduced by increasing the training data [R+20]. Therefore, Aleatoric
uncertainty captures the observation noises that are inherent in the sensor
systems, while the detection of a distant object may result in high Aleatoric
uncertainty [VR15]. The Aleatoric uncertainty may lead to Type II errors and
can be resolved by the complementarity of the environmental perception sensor
systems [FRD18].

Definition 2.27 (Epistemic Uncertainty): It has the effect that the system op-
erates inconsistently for a given input class within a certain error range [VR15].
Therefore, the Epistemic uncertainty indicates that the model hypotheses may
not adequately reflect reality for the intended functionality [HALZ19]. The
Epistemic uncertainty or model uncertainty indicates how uncertain an object
detector is to explain the object from the observed training data-set. The Epis-
temic uncertainty may lead to Type I errors and can be addressed by more
training data. For example, the detection of an abnormal object, different from
the training data-set, may result in high Epistemic uncertainty [SKOK18].

2.1.16 Known, Unforeseeable and Unknowable Black
Swans

Safety reflects a result of the absence of unreasonable risks. Beyond the
challenges of complying with accepted safety engineering procedures, a key
challenge in the safety validation of automated driving is to behave appropri-
ately in the presence of surprises. Thereby, it can be difficult or impossible for
human reviewers to experience these events in advance [KW16]. The Black
Swan events comprise three major categories of surprising critical scenarios
in relation to present knowledge to verify ADFs, as follows:

• The first type of Black Swan events comprises known critical scenarios
that occur despite the fact that the probability of occurrence is judged to
be negligible. Thus, acceptable risks shall not be determined exclusively
by the probability assessment. The risk is a combination of the proba-
bility of occurrence of harm and the severity of that harm.
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In addition, the prudence and precautionary principles are fundamental
elements of the risk management linked to such Black Swans.

• The second category of Black Swan events is unforeseen scenarios that
are not covered by the corresponding risk assessment and management.
Dealing with unforeseeable Black Swans demands improved risk assess-
ment as well as knowledge discovery in order to identify unforeseeable
surprises and include them in the relevant verification process to com-
plement the present knowledge base.

• Unknowable Black Swan events represent the third category of uncertain-
ty scenarios, which are completely unknown and only become known
after the deployment of ADFs. The handling of unknowable critical
scenarios demands that the ADF can automatically detect surprises in
order to behave robustly and resiliently to uncertainties [WK15].

2.1.17 Safety Integrity Requirements for Automated Driving

The SAE J3016 represents the levels of automation from 0 to 5, whereby SAE
L0 means no automation, SAE L1 applies to driver assistance, SAE L2 stands
for partially automated driving, SAE L3 for conditional automated driving,
SAE L4 for highly automated driving and SAE L5 for fully automated driving
[Int18]. The ADF is a combination of both hardware and software that can be
equipped with one or more systems. ADFs with an automation level below SAE
L3 enhance safety or assist the driver, but are not capable of controlling or oper-
ating the truck without active physical control or monitoring of a human driver.
ADFs with an automation level higher than SAE L2 are capable of performing
the DDTs without active physical control or supervision by a human driver
physically present in the truck cab. The safety integrity describes the reliability
of a confidence indicator in conjunction with the functional requirements for
the various automated driving levels. The safety integrity requirements for the
respective automation levels are described, as follows:

• The driver assistance and partially automated driving (SAE L0-L2) han-
dle tasks of limited complexity autonomously in a precisely specified
context. These functions perform limited tasks in a defined context and
do not learn during operation.
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Since the collaboration is a restricted task in a determined context, co-
operation is therefore limited to the exchange of information on the
system context. The safety integrity of ADAS and semi-automated driv-
ing is aimed at ensuring the ISO 26262 HARA [SH19a] and ISO 21448
SOTIF requirements [Hil12].

• The highly automated driving (SAE L3) accomplishes a sequence of
tasks, in which every single task is controllable, but the sequence and
transitions between them are situation-dependent. While the system is
not learning during operation, it optimizes its trajectories during the
control process according to the defined objectives such as time or other
resources. The co-operation with other systems is therefore limited to
the exchange of information about the system context and the system
itself. The safety integrity of highly automated driving shall ensure the
feedback model from ISO 26262 HARA, SOTIF triggering events, and
post-deployment driver experience to deal with the known Black Swan
events in fail-operational mode using the cautionary and precautionary
risk management principles [DH17].

• The fully automated driving (SAE L4) is able to work together with
other systems to perform their task. They negotiate their goals, plans
and actions with other systems and adapt their behavior to the negoti-
ated procedure. Since the system boundaries change dynamically due
to the collaborative relationship, mechanisms for distributed planning
and co-ordination of interpretations are required to ensure safe system
functionality. Beyond the need to follow accepted safety engineering
practices, the fully automated driving focuses on the safety requirements
of ISO 26262 HARA, ISO 21448 SOTIF, ISO/DIS 34502 [fS+22a] and
ODD coverage [fS+22b] to ensure reasonable behavior against unfore-
seeable Black Swans using improved risk assessment and knowledge
discovery principles [DH17].

• Full automation (SAE L5) can expand the environmental perception, sit-
uational awareness and actions with the ability of unsupervised learning
and has some sort of fail-operational autonomy capability. The ANSI/UL
4600 [UL22] safety case and continuous improvement feedback shall be
required for the Autopoietic driving to safeguard a possible online ex-
pansion.
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The Safety Performance Indicators (SPIs) and lifecycle feedback demon-
strate the self-recognition and deal with unknowable Black Swans by
defining the reasonable behavior. The SPIs are used to assess opera-
tional safety performance through monitoring and measure validity of
a safety case claim, e.g. violation of a safe clearance limit [KFFW19].
Therefore, the system needs to be good enough to recognize surprises
and ensure that the behavior remains relatively modest until the uncer-
tainty is resolved. One of the safety skills is that the human driver has
enough self-awareness to recognize an unclear driving situation and to
minimize the risk until the uncertainty is eliminated. Therefore, contin-
uous supervision and learning from field observations help in coping
with rare and dangerous events. As a result, understanding the system’s
own limits is essential when dealing with unknowable Black Swans.
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0 no driving automation not available
1 driver assistance limited
2 partially driving automation limited
3 conditional driving automation limited
4 high driving automation limited
5 full driving automation unlimited

: human driver
: human driver and/or system
: system

Table 2.2: ODD scope and role-sharing between the human driver and the system at each automa-
tion level, adapted from the SAE J3016 automation levels [Int18], [ESO+19], [DH17].
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The ODD scope and DDT fallback requirements for each level of automa-
tion, as illustrated in table 2.2 [Smi17]. The DDTs comprise all real-time
operational functions required for the operation of a vehicle in road traffic,
including environment perception, longitudinal and lateral motion control and
maneuver planning.

2.2 Uncertainties in the Environment Perception

Since automated driving depends on the perception of the vehicle’s environ-
ment, safety violations can be caused by system restrictions due to physical or
technical limitations of the intended functionality [Cho16]. Table 2.3 refers to
a comparable evaluation with a scale from poor to optimal using the following
twelve sensor capability criteria applied to the environment perception of
CMVs. The perception and map-based prediction sensors have different mea-
surement principles, which are generally divided into camera, RADAR, Light
Detection And Ranging (LiDAR) and electronic Horizon (eHorizon) sensors.

Steinmeyer et al. [S+18b] introduced a method for improved data fusion in an
environment detection. In his dissertation, Steinmeyer [Ste14] evaluates the
environment perception sensors based on different sensor capability criteria,
e.g. maximum longitudinal range, lateral Field of View (FOV), etc. The object
recognition and classification tasks are performed by machine learning tech-
niques to extract relevant characteristics in an unstructured operational context.
While machine learning paradigms offer a promising perception performance,
high levels of Type I and Type II error rates can decisively influence the
functional safety of the overall system. Therefore, the performance evaluation of
the environment perception should be defined to ensure a sufficiently safe level
of residual risk associated with functional deficiencies in machine learning
algorithms. For this, various sensors must be verified not only concerning
their failure rates, but also about the possible causes of technical shortcomings
in machine learning. Consequently, the quantitative evaluation of perception
sensors and algorithms should consist of Type I and Type II error rates, in which
some assumptions about the system context are implied. Thus, the robustness
in real traffic can be achieved by the creative fusion of sensor data as well as
appropriate system design.
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Sensor capability criteria Environment perception sensors
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Maximum longitudinal range
Lateral field of view
Longitudinal range accuracy
Lateral range accuracy
Relative object speed estimation
Moving object dimension
Moving object classification
Adverse weather conditions
Behavior at darkness
Sensor installation flexibility
Sensor cost requirements
Road classification

: optimal : fairly optimal
: natural : fairly poor
: poor

Table 2.3: Comparable evaluation of environmental perception and situation prediction sensors
[Ste14].

2.2.1 Camera-based Perception

The camera sensors measure the incident light using an optical system and cap-
ture visible cues similar to human perception. The exposure control regulates
the exposure with constant contrast regardless of changes in brightness and
direction. However, no depth or speed information can be measured directly,
whereby the three-dimensional world is projected onto the two-dimensional
image. The recognized object features are mapped to a vector representing an
object hypothesis in the state space of the used classifier.

42



2.2 Uncertainties in the Environment Perception

The stereo vision sensors consist of two monocular cameras with a certain
distance between each other, typically known as base width, and measure an
environment detail from different perspectives. The measurements are carried
out synchronously, whereby a depth estimation is generated in the two images
by comparing the displacement (disparity) of individual pixels or patterns.
Besides, the distance accuracy is limited by the resolution, especially at long
distances. Today’s automotive cameras play a vital role in environment per-
ception due to the high information density present in images. However, its
drawbacks are, similar to automotive LiDAR, weather sensitivity and limited
detection range. The following causes can lead to Type I errors when camera-
based perception has low specificity:

• False object hypotheses due to ghost objects or bright lights.

• Ambiguities in the disparity calculation through repetitive patterns.

• Underexposed backgrounds due to color distortions.

Type II errors due to low sensitivity can have the following causes:

• Poorly illuminated objects.

• No pattern matching within the training data-set.

• Objects with low disparity due to homogeneous surfaces.

• Objects with low height due to no separation by layer.

• Overexposed backgrounds due to direct sunlight.

• Overexposed backgrounds due to adverse weather conditions (e.g. fog,
snow, rain, etc.).

2.2.2 RADAR-based Perception

Range Sensors such as LiDAR and RADAR calculate the distance, angle and
signal power to detect targets in a particular region of interest. Automotive
RADAR sensors observe the position and velocity of moving objects as well as
stationary roadside objects with precise range information and high resistance
to adverse weather conditions.
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However, RADAR detection is afflicted with a limited angular resolution in the
case of stationary or longitudinally moving pedestrians. Automotive RADAR
sensors transmit and receive radio waves to determine the velocity, range
and angle of objects in the 76-81 GHz band. Its strengths derive from an
extended longitudinal range, an optimal accuracy of the range rate with weath-
er independence. RADAR sensors, however, can poorly resolve closely spaced
objects over long distances. The Type I errors due to low specificity can have
the following causes:

• Extended metallic objects that can be driven over (e.g. road sign gantries,
road bridges and overpasses, tunnel fans, corrugated sheets, etc.).

• Extended metallic objects that can be driven under (e.g. guard rails,
movable manhole covers, beverage cans, etc.).

• Ambiguity effects in object classification due to insufficient resolution
in frequency tuning (e.g. through alley situations).

• Ambiguities with an extended activated field of view due to the higher
deceleration time of commercial vehicles.

• Specular reflections and noise detections during Constant False Alarm
Rate (CFAR) detection.

The following causes can lead to Type II errors when RADAR-based perception
has low sensitivity:

• Objects with low Radar Cross Section (RCS) values.

• Aging affected radome behind the bumper with different damping char-
acteristics. The radome is a plastic housing to shield the RADAR antenna
from weather influences.

2.2.3 LiDAR-based Perception

Automotive LiDAR sensors are based on an optical measurement principle
to locate and measure the distance of objects in space. The LiDAR sensors
typically use the time of flight principle for distance measurement where a
laser pulse is emitted and the elapsed time is measured until the reflected
signal is received again.
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The time delay between transmission and reception is directly proportional to
the distance due to the proportionality between the time of flight and distance.
The possible causes of Type I errors for LiDAR-based perception are poorly
illuminated objects and high road inclination. At the same time, those for the
Type II errors are light-absorbing objects, planer surface objects and adverse
weather conditions.

2.2.4 eHorizon-based Perception

There are several standardized solutions related to High Definition (HD) maps
to meet the challenges of further developing the driver assistance to a higher
level of automated driving [Sas17]. The SENSOR Interface Specification
(SENSORIS) protocol defines a standard to collect data from the sensors
of environment perception to the map provider. The Ego-vehicle receives the
necessary traffic information from the map provider via the Transport Protocol
Experts Group (TPEG) protocol. The cloud-based exchange maintains incre-
mental updates for digital maps in navigation and infotainment systems via the
Navigation Data Standard (NDS) protocol, as demonstrated in figure 2.5.

The ADAS Interface Specification (ADASIS) protocol defines a standardized
data model and interface that ensures regular interaction between the ADFs
that generate or use the eHorizon. In the example of a Traffic Sign Recognition
(TSR) function, the fusion of information sources, i.e. data from the eHorizon,
image processing data and vehicle data, makes it possible to recognize the
maximum admissible speed more reliably and conveniently [J+11].

The hybrid data representation of detailed digital maps and physical automo-
tive sensors provide an extended view of the Ego-vehicle environment and
thereby facilitate improved inferences and more competent decision-making
[MPS+15]. Incidentally, digital maps are designed to be updated from time to
time. Janssen et al. used the Dempster-Shafer fusion technique to merge digital
map road signs with road signs detected by a video system [JN04]. Nienhuser et
al. also employed the same fusion technique to give the corresponding priority
to each data source [N+09]. The decision level fusion functions to validate
inputs of higher levels and increase the robustness of the overall system in
complex scenarios.
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Figure 2.5: Proposed architecture by Open AutoDrive Forum in the context of HD 3D maps using
the example of TSR function [Sas17].

Since today’s standard vehicle sensor measurements contain relatively limited
information content, the eHorizon data serves as a predictive sensor to antici-
pate the driving path. The eHorizon sensors employ the digital map data and
Global Positioning System (GPS) sensors to predict the driving route. The GPS
sensor determines the vehicle position in world co-ordinates [Bra13]. The map
matching transforms this place into map coordinates and assigns it to a specific
road on the map [ZBIG12]. Subsequently, the Most Probable Path (MPP) ex-
tracts and processes the relevant map characteristics along the most likely future
route using prediction algorithms [Kv07]. The eHorizon data includes vehicle
position data and road segment attributes such as road geometry, road class,
number of lanes and speed limits [JS14]. On the transmitter side, eHorizon
data is extracted by an eHorizon provider along the MPP and delivered to the
vehicle bus system.
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On the receiver side, an eHorizon re-constructor decodes the vehicle bus mes-
sages and transfers the data to the fusion module [DS11]. The discrepancies
between GPS position data and matching maps are the probable causes of the
Type I errors, while the usage of non-updated map data in memory due to the
changes in traffic conditions are the possible causes of the Type II errors.

2.3 Data Fusion of Environment-Perception
Sensors

Despite the recent rapid growth of human assisted driving systems to consoli-
date road safety, they still have various challenges when coping with dynamic
traffic situations of daily life. Moreover, the issue of protecting VRUs is that
their movement is mostly unpredictable [CAR15]. The VRUs are defined as
non-motorized road users who use a road including sidewalk and other adja-
cent spaces, such as pedestrians, cyclists and persons with disabilities or limited
mobility and orientation. Hence, there is an urgent need to locate the spatial and
temporal coverage problems using an adequate environment model for situation
evaluation, which is based on a synergistic approach between the existing
sensors located on the body surface present in the truck’s sensor network
[OPLS11]. Thereby, the collaborative multi-sensor data fusion becomes in-
creasingly critical to provide a better understanding of the monitored area. As
a result, fusion algorithms analyze and interpret the traffic situation to provide
a clear situation analysis and derive suitable control measures.

There are various ways to categorize the structures and methods of data fusion
approaches. A distinction can be made between the architecture, the abstrac-
tion level of the input data and the sensor integration. Also, it is possible to
distinguish between implicit and explicit fusion approaches as well as grid-
based and parametric approaches. Basically, the fusion system can be divided
into three primary fusion types: complementary to supplement incomplete
sensor data, redundant to reduce erroneous measurements and cooperative to
improve quality of environment model [Ott13]. The recognition of the vehicle
environment for a comprehensive understanding of the scene is one of the
most important elements for the realization of an ADF. Therefore, the use of
different sensor technologies like camera, RADAR, LiDAR and eHorizon with
different detection capabilities is necessary to provide both complementary
and redundant information for the data fusion unit.
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The fusion unit analyzes and evaluates the different sensor signals and generates
a dynamic surround model with a good scene understanding. Although current
ADFs (SAE L0-L2) can only use objects to generate a simple surround model,
future stages of automated driving (SAE L3-L5) will need to combine not only
the objects but also the sensor-specific features and characteristics of these
objects. Hence, data fusion can often occur at three logical interface levels
(detection, feature and object level). First, detection level fusion performs
fused detections in the earlier steps of the processing chain to validate lower
level inputs and increase the robustness of the overall system in complex
scenarios. However, detection level fusion combines recognized detections
without classification, model-based filtering and tracking. The origin of the
detection co-ordinate system is the position of the sensor mounting in the ve-
hicle co-ordinate system. Next, the feature level fusion provides recognized
features that are merged based on classified sensor-specific attributes in the
vehicle co-ordinate system without model-based filtering or tracking. Finally,
the recognized object entities are tracked and filtered over time. Model-based
algorithms classify the object entities (e.g. potentially moving objects, static
objects and road markings) and evaluate them with existence probability values.
Therefore, each recognized object entity has a unique object identification
value that does not change over time. The object identification value can only
be reused when the object is no longer visible.

The ISO/ Draft International Standard (DIS) 23150 is an automotive standard
that addresses the logical interface of data communication between perception
sensors and data fusion unit for ADFs [fS+21]. The data fusion unit intends to
utilize the overlapping FOVs of the employed environment perception sensors
and produces accurate information with a low rate of false-alarm detections
[S+09]. Duraisamy and Schwarz have given a survey of the track-to-track data
association methods using a decentralized sensor fusion architecture in order
to achieve an optimal fused result [DS15]. Despite its significant contribu-
tion to situation awareness, one of its primary drawbacks is the increased
software complexity caused by multiple interconnecting sensors [DFS+10].
The abstraction level at which the data fusion takes place is a trade-off between
information context and complexity. While environmental perception sensors
are still afflicted with adverse weather conditions, such as snowing or raining,
HD maps can cope well with implicit traffic information such as speed limit
changes through the highway-to-city transition [W+14].
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Intelligent transportation systems use various sensor technologies to perceive
the vehicle environment. Automotive RADAR sensors are commonly employed
for object and pedestrian detection with precise range information and high re-
sistance to adverse weather conditions. However, RADAR detection is afflicted
with limited angular resolution in the case of stationary or longitudinally mov-
ing pedestrians. These days, the automotive cameras also play a decisive role
in environment perception due to the high information density in images.

Figure 2.6 illustrates the functional components of an automated driving sys-
tem relying on object-level data fusion. The tracked object properties with
corresponding object list are shown in table 2.4. The layered structure of the
multi-sensor fusion system can be described as a cyber-physical vehicle sys-
tem with a sequence of sensor nodes Ns, where k ∈ [1,Ns]. Each sensor node
S(k) maps a set of sensor detected objects P(k) =

{
p(k)i

}
i∈

[
1,N(k)p

] from the

Ego-vehicle’s environment to a set of tracked objects Q(k) =
{
q(k)j

}
j∈

[
1,N(k)q

]
into the object-level data fusion algorithm, where the indices i and j enumerate
the objects in the respective set. The detections of object and lane boundaries
refer to unique IDs. The existence probability represents the detection quality
and certainty of an object. A higher value indicates an object which exists with
high probability and a lower value indicates a potential false alarm object.
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Figure 2.6: Functional components of an automated driving system including an object-level data
fusion module [ESW+16].
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Object property Object list Q(k)

Object ID unique ID of the detected object or lane marking
Detection history time stamp at the global synchronized time
Relative distance longitudinal and lateral
Relative velocity longitudinal and lateral
Relative acceleration longitudinal and lateral
Object deviation longitudinal and lateral
Relevance object selection lane assignment (e.g. left, ego and right lane)
Bounding box dimension width and height
Movement status object state (e.g. stopped, moving, stationary, etc.)
Classification probability object type (e.g. truck, pedestrian, etc.)
Existence probability object detection quality and certainty
Lane boundary type and color of the classified lane marking
Criticality level confidence of the classified object or lane boundary type
Road specific data route information (e.g. construction area, exit lane, etc.)
Additional data sensor specific data (e.g. angular velocity, etc.)

Table 2.4: Data structure of object level fusion for environment perception sensors [ESFG19b].

In general, the existence probability depends on two factors: quality and confi-
dence of the measurement used to generate the object and the object’s observ-
ability over time. The measurement quality model is usually closely associated
with a sensor’s specific characteristics, for example RCS or a camera classifier.
Equation 2.4 represents the signal flow chain of sensor S(k) , where A(k) ,
B(k) and C(k) represent characteristics of measuring principle, processing and
observation, respectively.

S(k)
{
B(k) ,C(k)

}
: P(k) → Q(k) (2.4)

Each of the elements p(k)i in P(k) and q(k)j in Q(k) is a vector containing
the object properties. The Kalman filter is typically used for a multi-sensor
data algorithm that employs Bayesian rules for the noisy environmental sensor
measurements to produce reliable estimates of unknown quantities.
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2.4 Retrospective and Prospective Safety
Evaluation

The vehicle-based safety evaluation can be categorized as retrospective and
prospective. The major difference is the timing of the assessment with regard
to the life cycle of the development process. Real accident databases are used
for the retrospective analysis. In contrast, prospective analysis estimates the
number of critical situations that may occur in the future [FSLL19]. In a given
ADF, human drivers encounter an average number of kilometers between
events as a benchmark of human performance. The human-driver failure rate
is assumed to have a Binomial distribution.

A safety case exists when the system under test has a failure rate lower than
or equal to the benchmark reference with a particular level of confidence.
Therefore, the number of test kilometers required for statistical evidence of an
automated driving system can be calculated by a benchmark reference for the
expected interval between accidents of equivalent severity. The total fatality
rate in Germany caused by heavy-duty trucks in 2015 was 787 fatalities — as
indicated in chapter 1 — , totaling 58, 93 billion kilometers [DES16]. Accord-
ing to the Binomial distribution, the equation 2.5 represents the confidence
level C[%] for an ADF with m failures during a cumulative driving distance
dc [km].

C(Z=m) = 1 −
m∑︁
Z=0

dc!
Z! (dc − Z)!_

Z (1 − _)dc−Z (2.5)

If the failure rate of a CMV is _[1/km], then the reliability 𝛾 [1/km] is (1−_)
and can be interpreted as the probability that there is no failure in the route
driven. A hypothesis about the scenario (failure-free driving) can be used to
estimate a lower limit for the number of failure-free kilometers to determine the
reliability of automated CMVs with a confidence level C[%]. Consequently,
the safety can be claimed for a certain number of failure-free kilometers at a
particular confidence level, as shown in equation 2.6 [KP16].

C(Z=0) = 1 − (1 − _)dc (2.6)
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Equation 2.7 gives the required driving distance dc [km] without failures for
given confidence C[%] and reliability 𝛾 [1/km].

dc =
ln

(
1 − C(Z=0)

)
ln (1 − _) (2.7)

The required driving distance dc [km] is calculated by substituting the failure
rate _ with 787

58.934∗109 = 1.34 ∗ 10−8 [1/km] and the confidence level C with
95%, as indicated in equation 2.8.

dc =
ln (1 − 0.95)

ln
(
1 −

(
1.34 ∗ 10−8) ) ≈ 220 ∗ 106km (2.8)

Figure 2.7 depicts the failure rate factor (_A÷_H), where _A [1/km] is the
failure rate of an ADF and _H [1/km] is the benchmark failure rate of a human
driver. For the CMVs these days, such long distance validations at which the
controllability of the driver provides the necessary Proof of Safety (PoS) is un-
necessary. However, in case of a fully automated driving system, the 2 million
kilometers used to validate the current driver assistance systems are sufficient
to prove the fatality factor Λ. The fatality factor Λ (2∗106km) is 25.5 times
that of the humans, with about 50% confidence. Moreover, about 340 million
kilometers are needed to prove that an automated driving system has a failure
rate similar to that of human drivers in 2015 as the benchmark failure rate. This
is done assuming that CMV has no failure (m = 0) during the FOT, with 99%
confidence level. For this reason, it is economically impossible to demonstrate
the safety of automated driving systems with widespread usage statistically
before introduction, defined as an approval trap.

While the critical traffic events are typically rare and not reproducible, early
identification of functional deficiencies is essential for automated driving.
Despite the difficulty of predicting all possible operating scenarios a priori,
the coverage of critical driving scenarios needs to be adequately investigated.
Recent research suggests the hypothesis of Poisson distribution to calculate the
required validation distance with the following assumptions [Wac17, KP16].
The Poisson distribution is a discrete probability distribution that expresses the
probability of a given number of events in a continuum of time or space. Here,
the route used is representative, while the critical events occur independently
of each other within a random process.
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Figure 2.7: Prospective failure-free kilometers for a failure rate factor compared to human-driven
CMV fatality rate of the year 2015 [ESO+19].

In the equation 2.9, m corresponds to the number of accident events and
_[1/km] is the predicted distance at which this event occurs at a given confi-
dence level.

C(Z=m) =
_Z

Z!
e−_; Z = 0, 1, 2, · · · ,m (2.9)

The MTBF can be determined at a given confidence level using the hypothesis
of the Chi-square distribution according to ISO 26262:2018. The Chi-square
distribution is a probability density function that calculates the MTBF failure
rate based on observed failures. Accordingly, an exponential failure distribu-
tion with a constant failure rate is assumed. Regarding the safeguarding of
driver assistance systems, there are no legal requirements for the validation
distance.
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Since unintended reactions are rare events, a Chi-square distribution can be
applied. If no critical event occurs at a sample distance with a required failure
rate of one million kilometers each, the necessary validation requires around
three million kilometers. In this case, no event should occur during the driv-
en interval to argue the residual risk with a confidence level of 95%. The
required mileage will increase if more events occur during validation (e.g.
dc= 4.8 ∗ 106[km] at Z= 1, dc= 6.3 ∗ 106[km] at Z= 2, dc= 7.8 ∗ 106[km] at
Z= 3, etc.), as illustrated in figure 2.8. In practice, the validation distance does
not play the central role, but the variance of test conditions do, in order to cover
maximum possible rate operating situations (e.g. different weather conditions,
time of day, road conditions, traffic conditions, pedestrian conditions, etc.).
Therefore, route diversity in physical road tests is a significant measure of the
probability distribution.

Figure 2.8: Required validation distance for various accident events using the Chi-square distribu-
tion with confidence level (C = 95%) [ESO+19].
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However, statistical evidence of the accumulated road kilometers is potentially
invalid with each software upgrade. Even if the FOT continues in the Spiral
model of software development until no more errors are found, the safety case
argument does not provide any proof that the ADF is absolutely safe due to
the Pesticide paradox phenomenon [Bac18]. In software testing, the Pesticide
paradox is an error detection phenomenon, where if the same test matrix is
performed repeatedly, the same test matrix will eventually find no more errors
[KW18]. It means that an automated driving algorithm that passes the same
repetitive tests eventually builds up resistance to them. Consequently, it will
not be viable to prove safety of the required level of system performance
through driving test hours alone during the development phase. Furthermore,
there is no complete public set of machine-interpretable traffic regulation with
exception-handling rules.

The functional requirements for ADFs become thus implicit and incomplete by
the learning process from machine learning data-sets, which are used to perform
algorithmic operations. The reliance on data-driven mileage accumulation as
the only credible safety argument points to an impractical safety validation
strategy. Also, the real-world testing may not accumulate enough hours of
exposure to observe critical scenarios that occur by chance. On the other hand,
knowledge-based assessments can accelerate exposure to the known critical
scenarios but suffer from the possibility of not verifying the unanticipated
scenarios.

Alternative methods of safety assessment are therefore required, as the val-
idation distance in the FOT will increase dramatically by using the current
test concepts for automate driving without driver engagement. It is therefore
obvious that a safety argument for these algorithms from SAE L3 onwards,
based solely on the accumulation of road kilometers through endurance test
campaigns, is no longer feasible. Therefore, knowledge-based test platforms
can fulfill the associated test objectives in a time and cost efficient manner.
However, these techniques alone cannot guarantee a sufficient confidence of
safety for large-scale deployment without giving particular attention to data
acquisition and analysis from the FOT [Z+18b].
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2.5 Measurable Safety Methodology

The functional safety is an absence of unreasonable risks due to hazards caused
by malfunctioning behavior of E/E systems. Therefore, the ISO 26262:2018
norm is a risk-based approach for the development of safety-critical software
systems in passenger cars, motorcycles and commercial vehicles. The ISO
26262:2018 includes a hazard analysis and risk assessment to determine the
required Automotive Safety Integrity Level (ASIL) and to assess the potential
risks of E/E malfunctions that may violate the safety goals. The risk-oriented
approach classifies the risk R for each potentially hazardous driving situation,
as shown in equation 2.10 [Hun18].

R ≈
h∈H∑︁

0
(Sh ∗ Xh ∗ Oh) (2.10)

The hazard classification defines each potentially hazardous driving situation
with the following three impact factors, where H corresponds to the set of
hazardous driving situations [HKM17]:

• Severity levelSh of a hazardous driving situation h with the consequence
of injuries or fatalities, where Sh ∈ { S0

h , S1
h , S2

h , S3
h }.

• Exposure probability levelXh of hazardous driving situations, whereXh
∈ { X0

h , X1
h , X2

h , X3
h , X4

h }.

• Controllability probability level Oh of not avoiding an accident in a
harmful situation, where Oh ∈ { O0

h , O1
h , O2

h , O3
h }.

In this context, the system follows one of five classes to define risk reduction
requirements, where ASIL D is the highest and Quality Management (QM)
the lowest risk reduction class (ASIL 26262-1:2018). For example, a system
specified for the implementation of a truck platooning may exhibit undesirable
behavior due to a misclassification of objects and require driver intervention.
Therefore, controllability presents the probability of controlling driving situa-
tions within system limits and failures. The processes and methods for assessing
the controllability of unintended driver assistance reactions are specified in the
Code of Practice (CoP) for the design and evaluation of human assisted driving
systems [KNB+09].

56



2.5 Measurable Safety Methodology

The ASIL determination can be assigned to the level O3
h of controllability for

automated driving without driver intervention, where the intended function is
difficult to control or uncontrollable, as illustrated in table 2.5 [KW16].

ASIL level
S1

h

X1
h

S1
h

X2
h

S1
h

X3
h

S1
h

X4
h

S2
h

X1
h

S2
h

X2
h

S2
h

X3
h

S2
h

X4
h

S3
h

X1
h

S3
h

X2
h

S3
h

X3
h

S3
h

X4
h

QM
ASIL A
ASIL B
ASIL C
ASIL D

: relevant
: irrelevant

Table 2.5: ASIL requirements for automated driving devices without driver monitoring using
uncontrollable level O3

h according to ISO 26262.

Despite the updating of the scope of the ISO 26262:2018 norm for the inclusion
of CMVs in Edition 2, its safety goals mainly address undetected random
hardware failures of the system components and systematic software failures
[SH19c]. Assuming that the E/E system malfunctions are managed using ISO
26262:2018, the safety violations, which may be caused by the environmental
perception sensors, remain outside the scope [SH20]. Redundancy, diversity
and functional restrictions can compensate system limitations [SH19a].

The ISO/PAS 21448:2019 serves as an extension scheme to specify the in-
tended function in such a way that it is robust and safe enough to take the
variations in sensor inputs and the different environmental conditions into
account [fS+19b]. The OEDR examines whether the vehicle can correctly
detect objects and events and execute an appropriate response. Therefore, the
context of the OEDR is similar to the case in SOTIF, but with a different
designation given by the NHTSA. However, new verification and validation
measures are needed to assess unintended system behavior due to technological
and systemic deficiencies. At the same time, the ISO/PAS 21448:2019 activities
complement the ISO 26262:2018 norm with its focus on driver assistance rather
than automated driving without driver engagement.
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2 Safety Assurance in the Open Context

On 22. Mai 2022, the German Federal Council (Bundesrat) approved an ordi-
nance that regulates the operation of motor vehicles, in particular CMVs, with
SAE L4 ADFs (Verordnung zur Regelung des Betriebs von Kraftfahrzeugen
mit automatisierter und autonomer Fahrfunktion und zur Änderung straßen-
verkehrsrechtlicher Vorschriften) on public roads within a specified operating
range [Bun22]. The ordinance supplements the German act on autonomous
driving (Gesetz zur Änderung des Straßenverkehrsgesetzes und des Pflichtver-
sicherungsgesetzes – Gesetz zum autonomen Fahren) and establishes a legal
framework for the safe deployment of CMVs with a SAE L4 ADF for operation
on public roads in Germany [KML22]. In addition, the ordinance introduces a
uniform procedure for the approval of tests by the German Federal Motor Trans-
port Authority (Kraftfahrt-Bundesamt) in order to standardize and centralize
the tests pursuant to §1i of the German Road Traffic Act2 (Straßenverkehrsge-
setz – Erprobung von automatisierten und autonomen Fahrfunktionen), with
the provision of a safety concept for functional safety.

2 https://www.gesetze-im-internet.de/stvg/BJNR004370909.html
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3 State-of-the-Art and Research
Perspectives

The systems engineering process requires the state-of-the-art evaluation pro-
cedures to verify and validate ADFs [SZS+15]. The evaluation of software
releases needs to be carried out in different phases up to the start of production
to prove that the residual risk is below an acceptable level. Initially, the driving
simulator tests are used to evaluate various system concepts of a CMV [Has14].
Testing programs are carried out in XiL, on test tracks and in environments un-
der real traffic conditions, as already defined in subsection 2.1.7. Several tools
are used in this context including the following: Hardware/ Software (HW/SW)-
open-Loop reprocessing, HW/SW-in-the-closed-Loop simulation, customer
studies in driving simulator as well as real-world test drive open-loop and
closed-loop, as already defined in subsection 2.1.3. The scenario databases
are then integrated into the data analysis and assessment tools. Therefore,
the induced traffic situations with unintended reactions continuously extend
the scenario databases. Finally, homologation is used to indicate that the
approval requirements for the market-specific type are met, based on the evi-
dence collected during the development process [R+18a]. Appropriate quality
measures are essential to achieve sufficient reliability, safety and availability
in the framework of the software quality management process.

3.1 Data-driven and Knowledge-based Test
Platforms

The data-driven test methods use empirical data to obtain new insights into the
system behavior under specific traffic situations or field conditions, while the
knowledge-based test methods convert the implicit information into explicit
ones.
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Data-driven test methods require many prerequisites such as fleet vehicles
equipped with additional high performance measurement systems and data
processing pipelines. Meanwhile, knowledge-based test methods use abstract
information to create functional, logical or even directly concrete scenarios for
the database. The information can be in the form of abstract knowledge from
experts, standards and guidelines. Table 3.1 illustrates various data-driven
and knowledge-based test methods (e.g. New Car Assessment Programme
(NCAP) tests, requirements test metrics, FOT and scenario databases) for safe-
ty and reliability assessments [ZKK+16]. Although ISO 26262:2018 and its
V-framework reflect generally accepted practices to ensure functional safety,
ADFs present unique challenges in mapping the technical and functional re-
quirements to the classical V&V methods [KW17]. Therefore, the validation
procedures offer a range of activities to generate confidence that an ADF can
achieve its intended purpose and goals.

Scope Inference

Data-driven testing
(induction)

Knowledge-based testing
(deduction)

Case-by-case
analysis

Empirical data
(e.g. NCAP tests)

System use cases
(e.g. requirements test matrix)

Traffic-based
evaluation

Route profile
(e.g. on-road field tests)

Scenario meta-model
(e.g. scenario databases)

Table 3.1: Classification of data-driven and knowledge-based test methods for safety and reliability
assessment [ESm+19]

3.1.1 HW/SW-in-the-open-Loop Simulation

Figure 3.1 depicts the general data flow of a regression test using the example
of an eliminated software error within the object detection of a monocular
camera sensor. The relevant situations for the camera ECU are recorded by the
Ego-vehicle with an appropriate measurement equipment and collected within
a data ingestion process. A software update occurs within a software develop-
ment process. While the environmental perception sensors react sensitively to
the target hardware constraints, the monocular camera sensor without camera
optics is integrated for regression tests with recorded sequences.
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3.1 Data-driven and Knowledge-based Test Platforms

This is followed by the Hardware-in-the-open-Loop (HoL) test bench stimu-
lating the optical interfaces of the monocular camera sensor with the recorded
data to verify the functionality of the new software release [WRM+19].

Definition 3.1 (Open-Loop Reprocessing):It verifies the error correction by
reprocessing of field measurements with new software releases. In the case of
software reprocessing, the target software is executed on prototypical hardware,
whereby the software decisions have no influence on the stimulus. In the case
of hardware processing, the target software is executed on the target hardware,
while the hardware outputs have no influence on the hardware inputs.

Definition 3.2 (HoL Test Platform):A Hardware-open-Loop reprocessing
platform to enable reprocessing of the target software on the target hardware,
while the hardware outputs have no effect on the hardware inputs. The test
platform is typically conducted within a validated environment for components
and subsystems of the environmental perception.

Therefore, the HoL test bench stimulates the external interfaces in real-time
by utilizing a recorded sequence of on-road tests with an original detection
result (v) to generate a new detection result (ṽ) after updating the application
software of the target hardware, as illustrated in figure 3.1. Thus, original and
new results can be compared to decide whether the error is fixed according
to defined pass/fail criteria. The hardware open-loop reprocessing generates
driving situations from the test-case description and evaluates the behavioral
response without feeding it back into future situations.

Figure 3.1: Regression test process with the HoL test bench using the example of detection of
oncoming objects drel

x (left) with a monocular camera sensor (right) [E+16].
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3.1.2 HW/SW-in-the-closed-Loop Simulation

The HW/SW-in-the-closed-Loop simulation verifies the behavior in a closed-
loop to prove functional correctness of an artifact against its functional
specification. A scenario-based testing requires various technical requirements
for the simulation environment of roads, traffic objects, environmental per-
ception sensors, the driver of the Ego-vehicle, commercial vehicle dynamics
and actuators. For a camera HiL test bench, the traffic environment shall be
animated in 3D perspective to display the traffic scenes in a virtual world in the
form of a video sequence recorded by a monocular camera sensor, as illustrated
in figure 3.2. Therefore, closed-loop testing specifies an entire scenario in a
test case that contains a sequence of scenes, actions, events and goals for the
ADF. The behavioral reactions are used to influence future scenes and thus
also future situations. The HiL test method integrates the ADF into the traffic
environment and vehicle dynamics simulations by combining the simulation
models and the ECU hardware into a real-time ECU test bench. However, the
Software-in-the-Loop (SiL) test platform integrates the executable software
code generated from the same source as for the automotive ECU.

Definition 3.3 (HiL Test Platform): It refers to a test bench to enable process-
ing of the target software on the target hardware, with the hardware outputs
influencing the hardware inputs. The test platform can be used either at com-
ponent, subsystem or system level.

The monocular camera ECU is connected to the HiL via a Controller Area
Network (CAN) bus for rest-bus simulation purposes [TH13]. By the means
of a monitor positioned in front of the camera, the camera is stimulated to
pretend reality by processing the displayed realistic images under real-time
conditions. Figure 3.2 illustrates an example with a lane change scenario, which
is applied to a LDW function. As an objective of benchmarking, the reference
values are compared with the detected values by the camera projection of
the monocular camera ECU within the real-time simulation environment; e.g.
dlt

y [m] and 𝜐lt
y [m/s] for the left lane and drt

y [m] and 𝜐rt
y [m/s] for the right lane.

In chapter 4, a detailed approach to HiL techniques, with their implementation
is discussed.
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3.1 Data-driven and Knowledge-based Test Platforms

Figure 3.2: Verification process with the closed-loop HiL test bench using the example of the
detection of left lane markings (left) and right lane markings (right) on the basis of a
monocular camera sensor [ESW+16].

3.1.3 Model-based Back-to-Back Testing

Model-based software development in the automotive industry uses tools such
as Simulink®or dSPACE TargetLink to implement a software module within
the ADF. Simulink®is a graphical programming environment for modeling
and simulating of automotive dynamical systems. The dSPACE TargetLink
is a tool for automatic C and C++ code generation based on a subset of
Simulink®/Stateflow®models. Tools such as Simulink Coder™or dSPACE
TargetLink are then used to automatically generate C source code from the
resulting models. Simulink Coder™is a tool for automatic code generation from
Simulink®diagrams, Stateflow®charts and MATLAB®functions. Automated
test data generation can be applied if a test oracle can be defined automatically
with its reference information.
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Definition 3.4 (Test Oracle):A mechanism in software testing to determine
whether a test case has passed or failed. For example, structural testing is
typically employed to generate test data based on the internal structure of the
test object. Therefore, the identification of input values depends on a selected
path or branch that is executed within the test object.

The ISO 26262:2018 demands that coverage metrics shall be taken into account
when testing at the model and software code level, such as MC/DC. A major
cause of such semantic differences is the application of scaling to variables
during the software code generation to optimize code efficiency and value
precision. In the figure 3.3, back-to-back tests generate a collection of structural
test cases to compare the software generated with the behavior of the underlying
model.

Definition 3.5 (Back-to-back Consistency): It is a type of software testing.
Two or more variants of a software module are generally tested with the same
stimulus inputs. Their corresponding outputs are compared and evaluated if
there are discrepancies in the software.

Figure 3.3 illustrates an example for defining a test oracle to evaluate the
automatically generated test cases according to the accepted time and value
tolerances. Therefore, both, the model and software are executed with the same
input data and then the corresponding output data entries are compared. The
value tolerance is determined by the difference between the vMiL and vSiL of
the longitudinal acceleration aego

x [m/s2] within an ACC function, as illustrated
in the left side of figure 3.3. In contrast, the time tolerance is determined
by the difference between the vMiL and vSiL of the required mode rollmode
within an ACC function, as depicted in the right side of figure 3.3. The model
runs with the Model-in-the-Loop (MiL) test suite and is verified back-to-back
with the C code running on the SiL test suite. Wilmes introduces a hybrid
test data generation approach to combine static analysis and dynamic test
data generation [Wil15]. The test data finding problem is converted into an
optimization problem by defining a cost function. As a result, the generated
test data is evaluated to distinguish between relevant and irrelevant test data and
to generate new test data in each iterative cycle [Wil16]. In addition, the static
analysis serves to accelerate the automatic search by identifying unreachable
model states.
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Figure 3.3: Back-to-back test process with the model-based code generator (dSPACE TargetLink)
using the example of an ACC function based on value tolerance (left) and time tolerance
(right) [ESO+19].

3.2 Goal-based Safety Case Assessments

The ISO 26262:2018 standard represents the state-of-the-art with respect to
functional safety for safety-critical E/E systems in road vehicles. The CoP for
the design of human assisted driving includes the evaluation of the human
assisted driving functionality and is based on the driver’s controllability to
maneuver the CMV’s reliability in road traffic [KNB+09]. These practices
assume that the human driver remains responsible for CMV behavior to over-
ride or deactivate the system at any time. If the driver is no longer responsible
for the behavior of the CMV, which is already the case with intervening
emergency functions, the driver’s controllability test catalogs are no longer
sufficient. The evidence shall also be provided that the Type I and Type II rates
are reasonably low [AW17].
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The approaches of safety validation for ADFs beyond the mileage accumulation
are in high demand. Thereby, a falsification approach shall be coupled with
concrete, verifiable safety objectives and requirements. In parallel, the verifica-
tion procedures according to the ISO 26262:2018 V-shaped model assume that
high-quality requirements for implementation are further developed. There-
fore, the traditional V-shaped model engineering process can pose a challenge
in articulating the functional requirements of machine learning algorithms
[KW16]. With the V-shaped model, the training set is more related to the
functional requirements and the validation set to a test plan. The verification
arguments with sufficient training and validation data leads to the need to de-
velop the data ingestion system according to safety-critical software standards
[Hil12].

The American National Standards Institute (ANSI)/ Underwriters Laboratories
(UL) 4600 is a standardization activity to address the ability to autonomous
products to perform the intended function without human intervention. This
is based on their current state and sensing the operating environment. The
standard intends to apply a goal-based approach that specifies tasks that need
to be addressed in creating a safety case [UL22]. The safety case shall argue
that relevant objects from existing sensors can be successfully detected and
classified within the intended ODD, rather than determining whether a system
design with a new sensor setup is required. Meanwhilst, the safety case should
provide an argumentation to ensure an appropriate safety level through a robust
combination of analysis, simulation and testing, rather than deciding how many
kilometers have to be accumulated for safety demonstration purposes [KW17].

The Goal Structuring Notation (GSN) presents a safety case to highlight
the verification methods for automated truck driving. The GSN is a graph-
ical structure notation for structuring an assurance case in connection with
argument, context, assumptions and evidence. The safety case is a reasoned
and verifiable artifact that supports the contention that its top level claim is
satisfied, including systematic reasoning, its underlying evidence and explic-
it assumptions that support the claim according to ISO/IEC 15026-2:2011.
Therefore, the assurance case ensures that sufficient evidence is systematically
gathered to argue a tolerable residual risk through adaptive verification for
ADFs, as illustrated in figure 3.4. Each hypothesis identifies the residual risks
for a test or simulation environment. The assumptions that are covered by other
verification approaches are a part of the safety argumentation chain [BGH17].
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Figure 3.4: Argument structure of context-driven test concept based on the ODD coverage using
GSN [ESO+19].

The goal-based safety case approach follows a decomposition approach on
functional, logical and concrete levels. Therefore, the test scenarios can be
described either as functional with NL description without values, logical with
an assignment of value ranges or concrete with an association of fixed values.
A major challenge in achieving the decomposition approach is to classify the
test objectives and the coverage criteria according to their respective test en-
vironments [Ame20]. Therefore, the test objectives imply measurable quality
criteria for the V&V strategy.
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Strategy (S1): It describes the verification case strategy to define the required
termination criteria for testing through adaptive test coverage with the con-
text elements {C5,C6}. Subsequently, the following sub-goals {G2, · · · , G7}
provide the evidence arguments {E1, · · · , E6} of test coverage within the
verification case [GMB18].

Goal (G1): It is the main goal to constitute the top-level claim of the verifi-
cation case scope with the context elements {C1, · · · , C4}. The G1 argues
a sufficiently low level of residual risk associated with individual hazards in
automated driving, although all possible driving situations might not be verified
during the development phase, detailed in section 6.1.

Goal (G2):The proof of functional correctness verifies that the test object
fulfils the required functionality according to its specifications by leveraging
synthetic and real-world data, discussed in subsections 3.1.2 and 5.3.3.

Goal (G3):The proof of back-to-back consistency is the verification of the
required consistency between the various execution platforms (e.g. model
and code) within the permissible discrepancies by back-to-back tests for
algorithmic-based software structures, illustrated in subsection 3.1.3.

Goal (G4):The proof of system integration and variation is the evidence to
the validity of the system maturity to cover the system variations that may
include static and dynamic tolerances of truck-trailer combinations, expound
in subsections 4.2.1 and 4.2.2.

Goal (G5):The proof of software robustness shall provide a sufficient probabil-
ity of coping with system boundaries and faults using fault injection techniques,
as explained in subsections 3.3.2 and 3.3.3.

Goal (G6):The proof of sensor availability and functional effectiveness focus-
es on the presence of the environment perception sensor within the defined
deviation and tolerance limits of the specified time and range using regression
tests and re-simulations, as focused within subsection 3.1.1.
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Goal (G7):The proof of the software reliability and functional safety is the
proof that the test object is reliable enough with respect to functionality and
safety mechanisms by leveraging field observations with FOTs and synthetic
data. The proof of functional safety refers to the functional safety requirements
of ISO 26262:2018 in order to avoid systematic software and random hardware
failures, as portrayed in sections 6.2, 7.1, 7.2 and 7.3.

Table 3.2 explains the assignment of different possible test environments with
the respective test objectives. The selection of suitable test environments from
XiL to FOT depends on the effectiveness and efficiency criteria of the test
conditions and their validity. The effectiveness criteria indicate the intended
results such as representative valid and observable interfaces. However, the
efficiency criteria reflect the desired performance in comparison with the re-
sources used to achieve the economic use, reproducibility and promptness. The
proving ground is an area dedicated to putting a vehicle’s performance to the
test. In the driving simulator, the driver is in an artificial environment designed
to replace one or more aspects of real driving behavior.

Test environments Test objectives
G2 G3 G4 G5 G6 G7

MiL tests
SiL tests
Component HiL tests
Subsystem HiL tests
System HiL tests
Proving ground tests
Driving simulator studies
Naturalistic FOTs
HW/SW reprocessing & regression tests

: recommended test objective
: not useful

Table 3.2: Assignment of potential test environments to the corresponding test objectives — driven
from figure 3.4 — [ESO+19].
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Table 3.3 explains the assignment of different possible test suites with the
respective test coverage criteria. The test coverage criteria provide an indicator
of the software testing effort during a test run within the V&V strategy.

Test environments Test coverage criteria
E1 E2 E3 E4 E5 E6

MiL tests
SiL tests
Component HiL tests
Subsystem HiL tests
System HiL tests
Test tracks & proving grounds
Driving simulator studies
Naturalistic FOTs
HW/SW reprocessing & regression tests

: recommended test coverage
: not useful

Table 3.3: Assignment of possible test environments to the corresponding test coverage criteria —
driven from figure 3.4 — [ESO+19].

Evidence (E1):The functional requirements coverage defines a relationship
between the functional requirements and the executed test cases, whereby at
least one test case is defined for each requirement.

Evidence (E2):The software structure coverage provides the code coverage of
model-based software structure components, such as MC/DC.

Evidence (E3):The system integration coverage includes detected failures in
the interfaces and interactions between integrated components, subsystems or
systems. The system variation coverage defines the robustness against varia-
tions in the system context. For example, when automated driving software
modules are developed, a variety of system variants which can include static
and dynamic tolerances within the Ego-vehicle, are put in.

Evidence (E4):The software performance coverage determines the robustness
of the software using fault injection techniques.
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Evidence (E5):The training data coverage specifies which training data is re-
quired for a particular application and which data leads to the most accurate
results, such as training of neural networks for image processing. The uncer-
tainty coverage quantifies the Aleatoric and Epistemic uncertainties of machine
learning algorithms.

Evidence (E6):The driving scenarios coverage identifies the known critical
scenarios, which should exhibit similar behavior, and minimizes unknown
critical scenarios.

3.3 Standardization Activities and Research
Projects

There are various standards that determine the assessment of SAE L0-L2
functions for commercial vehicles and buses based on the physical characteris-
tics of the vehicle. The ISO 19377:2017 describes a test method for determining
the path deviation of the braking maneuvers induced by an AEB of CMVs from
a predefined desired trajectory. If the AEB function is utilized in further stages
of the automated driving systems, the deviation needs to be compensated.

The ISO 15622:2018 presents the minimum requirements for failure reactions
and performance test procedures for ACC systems. The ISO 22839:2013 ap-
plies criticality assessment metrics on an AEB system to provide a certain ratio
of Type I and Type II errors within the receiver operating characteristic curve
space. The ISO 22839:2013 is a test method standard for defining the required
behaviors and test criteria of an AEB system. Shladover et al. [SN19], Takács et
al. [TDG+18] and Junietz et al. [JWKW18] provide a comprehensive overview
of the activities concerning regulations and standards for the type approval of
automated vehicles. These standardization activities can be considered as de-
velopment guidelines for manufacturers. In recent years, many research projects
have been completed dealing with the V&V activities for SAE L3 automated
vehicles. The following is a summary of representative completed projects:

• The research project PEGASUS (Project for Establishing Generally
Accepted good quality criteria, tools, methods, Scenarios and Situations
for the approval of highly ADFs) aimed at developing methods for en-
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suring the safety of ADFs [N+20]. The aim of the research project was
to develop uniform technical standards for the verification of condition-
al ADFs, and to define thresholds for a sufficiently high controllability
level of SAE L3 systems [Sch15]. The PEGASUS1 project has seeked to
define risk scenarios, assessment criteria for sufficient safety in various
traffic situations on the basis of a generally accepted method for evaluat-
ing the safety of conditional ADFs [WLFM19]. The project results were
demonstrated in the middle of 2019 on the basis of a highway chauffeur
as a SAE L3 system for passenger cars [M+16].

• The research project L3Pilot2 (large-scale Piloting of SAE L3 functions
on European roads) was concerned with large-scale field tests of SAE L3
functions under variable conditions with 1000 drivers and 100 vehicles
[HSK+19]. The field tests served to evaluate the technical aspects, user
acceptance, driving behavior and safety impacts for SAE L3 applications.
With the comprehensive piloting of ADFs in test vehicles, L3Pilot has
paved the way for large-scale field tests of series cars on public roads.

• The research project AdaptIVe3 (Automated driving applications and
technologies for Intelligent Vehicles) was an European research project
dealing with safety validation, technical system limits and legal aspects
of the release of automated driving applications. The project results have
presented best practices in systems engineering and safety validation to
establish a CoP for the design and evaluation of ADFs [Ete17].

• The research project SaLsA (Safe autonomous Logistics and transporta-
tion vehicles in outdoor Areas) focused on developing automated trucks
that can operate safely outside warehouses in a shared work environment
with conventional human-driven vehicles and pedestrians. The coopera-
tive scanning of the environment through mobile and stationary sensors
enables safe operation even at higher speeds [Wie17].

• The research project ATLaS4 (AuTomated and networked driving in
Logistics - opportunities for more added value) investigated the influ-

1 https://www.pegasusprojekt.de/en/home
2 https://www.l3pilot.eu/
3 https://www.adaptive-ip.eu/
4 https://www.tib.eu/de/suchen/id/TIBKAT:1697842658/
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ences of automated and connected driving on the logistics chain in order
to identify deployment scenarios accepted by stakeholders [FL+20].

• The research project ENABLE-S35 (European initiative to ENABLE
validation for highly automated safe and secure systems) was a research
project to enable an accelerated assessment of highly automated and
autonomous systems in the mobility domains (e.g. automotive, avion-
ics, rail and maritime) [LAH+19]. The project objective is to establish
cost-efficient cross-domain virtual and semi-virtual V&V platforms and
methods for autonomous cyber-physical systems [Lei20].

In parallel, numerous research projects have been launched to contribute to
developing a general consensus or uniform framework for safety validation
and reliability assessment of SAE L4-L5 automated driving. The representative
ongoing projects in industry and science to safeguard automated driving are
summarized as follows:

• The test field TAF-BW6 (Test Area Autonomous Driving Baden-Würt-
temberg) offers a testing environment under real traffic conditions for
automated and connected driving applications. The test area is funded
by the state of Baden-Württemberg and includes all relevant road types.
The aim of the test area is to promote the development of future-
oriented solutions for individual traffic and local public transport. The
ground truth data is derived from the infrastructure sensors for real-time
recording of traffic and its influencing factors as well as from 3D HD
maps of the road network in everyday road traffic [FDW+18].

• The research project VVM7 (Verification and Validation Methods for
SAE L4 and L5 automated vehicles) aims to develop procedures to
combine the virtual and the real-life tests. The developed procedures can
be used for legally compliant and efficient homologation of automated
vehicles [ZRBE20].

• The research project SET LEVEL 4to58 (Simulative dEvelopment and
Testing of LEVEL 4 and 5 systems) addresses the simulation-based

5 https://enable-s3.eu/
6 https://taf-bw.de/en/
7 https://www.vvm-projekt.de/
8 https://setlevel.de/
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development and testing of SAE L4 and L5 vehicles for urban areas.
The project intends to provide tool-oriented techniques for efficiently
designed simulation-based test and release procedures [HTR+20].

• The research project KI-Absicherung9 (Methods and measures to safe-
guard artificial intelligence-based perception functions for automated
driving) seeks to develop measures and methods to validate neural net-
work based perception and multi-model sensor fusion. The pedestrian
detection is identified as a representative function for the project in terms
of multi-sensory perception [GGSB19].

In addition, a significant number of publications on safety validation of
automated vehicles have been published in recent years in response to the
strong interest in a rapid market introduction of automated vehicles. Table 3.4
refers to a comparison with a scale from not applicable to optimal using the
following evaluation criteria. According to the current state of science and
technology, the diverse approaches of safety assessment for automated driving
can be divided into four categories: shadow-mode approach, formal safety
verification, traffic simulation-based approach and scenario-based approach,
as described in the following subsections 3.3.1, 3.3.2, 3.3.3 and 3.3.4.

First, the representativeness of scenarios reflects how realistic road traffic
conditions can be used. Second, efficiency in the identification of corner
cases is of crucial importance for system developers. Third, the scenario
space coverage represents how the permutation coverage is achieved within the
physically possible parameter space. Fourth, the safety assessment approaches
can be distinguished based on the system applicability for perception, pre-
diction and planning modules. Fifth, the computational feasibility shows the
applicability of the assessment approach for ADFs, e.g. truck platooning. Sixth,
the reliability of statements indicates which evidence exists for the safety ar-
guments. Then, the extrapolation of risk metrics illustrates the scalability by
transferring the microscopic assessment results to macroscopic assessment.

Next, the modeling dependencies define the model validation efforts to argue
the safety statement. After that, the dependence on safety drivers points to
the challenges to launch ADFs under supervision of safety drivers. Finally,
the closed-loop interactions define the approach validity for predication and

9 https://www.ki-absicherung-projekt.de/
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planning modules in which future trajectories of other road users are influenced
by the automated vehicle’s behavior.

Evaluation criteria Safety assessment approaches
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Representativeness of scenarios
Identification of corner cases
Scenario space coverage
System applicability
Computational feasibility
Reliability of statements
Extrapolation of risk metrics
Modeling dependencies
Dependence on safety drivers
Closed-Loop interactions

: optimal : fairly optimal
: natural : fairly poor
: not applicable

Table 3.4: Comparable evaluation according to the state-of-the-art of categorized safety assessment
approaches [SWB+20, Jun19].

3.3.1 Shadow Mode Approach

Wachenfeld proposes the use of stochastic methods for introduction of auto-
mated driving without driver supervision. Here, the safety of these automated
driving levels cannot be proven statistically using accumulated kilometers
of physical onroad testing under consideration of an estimated uncertainty
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[Wac17]. Wang and Winner [WW19] describe an approach in which the ADF
in end-customer vehicles is operated passively and is known as shadow mode.
The passive function is equipped with the relevant sensory perception and
logging devices, but does not have an access to the actuators [Wan21]. There-
fore, a large fleet of human-driven vehicles can collect raw sensor data for
HW/SW-open-Loop reprocessing. In addition, these open-Loop recordings are
retrieved to validate prediction and planning algorithms, so that the recorded
data can be used in a HW/SW-in-the-closed-Loop simulation environment. In
this way, the simulation can be used to evaluate the decisions of the ADF in
passive mode and thus determine the required safety level [Kar20]. One of
the major advantages is the absence of safety risks during the data acquisition
phase. However, one of the main disadvantages is that the behavior of the
objects in the simulation does not correspond to reality because other road
users also plan and execute their actions based on the actions of the active
driving function [Wag21]. Therefore, the results of the simulation need to
be argued. The car manufacturer (Tesla) announces to use the shadow mode
testing to validate new ADFs and new software versions of existing systems
[FBK17, Hul16].

3.3.2 Formal Safety Verification

Althoff et al. [ASB07] introduced a reachability analysis which argues the
safety of automated vehicles. Reachability analysis seeks to determine the
states that a system can reach from given initial states and possible inputs
and parameters [Alt10]. Through formal verification, a mathematical model
is used to formally demonstrate the safety of trajectory planning across the
entire ODD [AKM17]. The approach distinguishes between perceptual and
planning concerns. Using a safety envelope, the trajectory planner model is
defined as intrinsically safe [AL18]. The valid and explainable set of traffic
rules is aligned with the employed model that restricts the actions of the actual
trajectory planner and increases the transparency of the behavior planning.

The IEEE 2846 is a standardization activity to define a formal rules-based math-
ematical model for automated vehicle decision making using discrete mathe-
matics and logic. Arechiga [Are19] defines a set of rules for automated driving
and other road users that are formally verified using a formal language called
Signal Temporal Logic (STL). The argument is that the entire traffic system
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will be collision-free if all road users follow these rules. Loos et al. [LPN11]
used a formal proof calculus for safety verification by proofing safety separately
for adaptive cruise control cases applied in a distributed car-control system.
Nilsson et al. [N+15] verified an AEB system using closed-form expressions
for robust avoidance scenarios. The closed-form expressions are derived based
on worst-case performance as an optimization problem between FP and TP
interventions (elucidated in chapter 2). Since the model and its parameteriza-
tion take a central role, the modeling is a key challenge for this approach. The
concept of safety envelopes can be illustrated by a cut-out test scenario. In the
cut-out scenario, a vehicle in front suddenly leaves the lane to avoid a stopped
vehicle in its lane.

The situation gives the AEB function a short time to detect and react accord-
ingly. Figure 3.5 depicts a cut-out scenario in which the moving vehicle [obj2]
is triggered at a cut-out distance dco

x = 45[m] between the stationary vehicle
[obj1] and the moving vehicle [obj2] to change to the adjacent lane after a
cut-out delay time tco = 2[s].

 

stationary object
driven path

y
xψ

lane change

Ego-vehicle

safety envelopes : {no crash, crash}

obj2

obj2

obj1

Figure 3.5: Schematic diagram of a cut-out driving scenario with the safety envelopes.

Figure 3.6 shows the pass/fail envelopes either as crash or no crash with (E1
s ,

E2
s and E3

s ) as escalation levels of the AEB function. The driving scenario with
the different vehicles (ego, obj1 and obj2) is carried out on the HiL test bench
and controlled by a test script based on a track co-ordinate system.

The HiL platform includes perception sensor models for the RADAR and
monocular camera sensors that are used within the AEB function. Therefore,
the stationary vehicle [obj1] is occluded through the moving vehicle [obj2],
where the Ego-vehicle and the moving vehicle have the same constant velocities
on the same lane 𝜐ego

x = 𝜐
obj2
x = {30, 35, 40, 45}[km/h]. In the case of idealized
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sensor models without occlusion effects, the cut-out scenario cannot be realized
in which the RADAR sensor model provides the object list to the AEB function
for the moving as well as stationary objects. The idealized sensor models have
no occlusion effects, represented on the left hand of the figure 3.6. The cut-out
delay time tco [s] and distance dco

x [m] parameters of cut-out scenarios have no
influence on present crash events, while the idealized sensor model constantly
recognizes the object [obj1] as a relevant stationary object.

approaching with
occluded effect

approaching with
non-occluded effect

crash

Figure 3.6: Safety envelopes based on comparison between simulation results of idealized sensor
models (left) and high-fidelity sensor models (right) in the example of cut-out test
scenarios.

The left side of the figure 3.6 shows the three types of escalations (E1
s , E2

s and
E3

s ) that occur at different Ego-vehicle velocities 𝜐ego
x = {30, 35, 40, 45}[km/h],

respectively, while a collision with the non-occluded object [obj1] does not
occur. Due to the margin scale of the figure 3.6, though it might seem that the
Ego-vehicle collides with the object [obj1] after stopping, this is not the case.
A positive distance between the Ego-vehicle and the object [obj1] remains even

78



3.3 Standardization Activities and Research Projects

after the Ego-vehicle stops due to the emergency braking of the AEB function.
The same test scenarios are repeated with high-fidelity sensor models to show
the influence of cut-out scenario parameterization with a crash event in the case
of 𝜐ego

x = 45 [km/h], as illustrated on the right side of figure 3.6. Meanwhile,
an occluded object [obj1] is simulated to less idealize the driving scenario,
it is evident that the three types of escalations (E1

s , E2
s and E3

s ) happen at
drel

x = {24, 20, 7}[m], respectively, resulting in a crash (with 𝜐
ego
x = 45 [km/h])

due to insufficient time to respond. In chapter 4, the developed HiL test platform
is elaborately discussed with its implementation.

3.3.3 Traffic Simulation-based Approach

The introduction of automated vehicles will change the flow of road traffic.
Therefore, a macroscopic statement about the safety of automated vehicles can
be obtained by the traffic simulation based approach [PSS19]. The concept of
traffic simulation is to simulate not only a single driving scenario but a whole
road network with numerous road users (so-called Agents). Kitajima et al.
[K+19a] developed a multi-agent simulation for estimating the impact of au-
tomated vehicles on road traffic. Rösener et al. [R+18b] investigate the change
in the occurrence frequency of scenarios to assess the safety performance
of ADFs. Saraoglu et al. [SMJ19] present a framework called MOdel-Based
Autonomous Traffic Simulation Framework (MOBATSim) for the analysis of
traffic safety including automated vehicles with a focus on the fault-error-
failure chain. In traffic simulation, the entire ODD can be simulated to increase
the efficiency of the staged introduction of automated vehicles [Hal20]. Bach
et al. introduce a model-based specification of driving scenarios with the
example use case of an ACC system based on the abstraction of temporal and
spatial information [BOS16, BHOS17]. Otten et al. extend the model-based
scenario specification with an automated assessment and evaluation concept
for stochastic digital test drives [OBW+18].

To speed up the required FOT of the automated vehicles in car-following
scenarios, Zhao et al. propose an accelerated evaluation method using stochas-
tic optimization and importance sampling methods [Zha16]. Although the
simulation-based falsification is relatively similar to testing, a search is con-
ducted within a logical scenario for a parameter set, where the ADF violates
the requirements [AGZ18]. Koren et al. [K+18b] use a reinforcement learning
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formulation to identify the trajectories that are likely to be critical or lead to
collisions. Thus, the Adaptive Stress Testing (AST) framework searches for the
most likely path to a failure event [CDDCm19, L+15, L+18b]. Gangopadhyay
et al. [GKD+19] use a Bayesian optimization to learn parameter values by
observing the system’s output. Nabhan et al. [NSTH19] used a Random Forest
model to detect the maximum amount of faulty scenarios in the search space.

The falsification concept can be demonstrated using a driving scenario with
crossing pedestrians for the verification of a multi-sensor fusion unit utilizing
the implemented HiL test platform; Chapter 4 discusses such a concept in detail.
The driving scenario distinguishes between the own lane and the adjacent lane
with two classification areas. The pedestrian [obj1] crosses from the path of the
moving Ego-vehicle to the adjacent lane and another pedestrian [obj2] comes
from the opposite direction at the same velocity 𝜐ego

x = 𝜐
obj1
x = 𝜐

obj2
x = 5[km/h],

as seen in figure 3.7.

υ     = 5 km/h
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Ego-vehicle

obj1
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^

Figure 3.7: Schematic diagram of a pedestrian crossing scenario with simulation-based falsifica-
tion [ESW+16].

The falsification is implemented using the Lemniscate of Bernoulli’s equation
in the track co-ordinate system to obtain the lying-eight as a noise offset to
the camera sensor model for object detection. The parametric equations for the
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Lemniscate with a half-width [[m] are d̃rel
x [m] and d̃rel

y [m] of the camera-based
detection, as shown in equation 3.1.

d̃rel
x = ( cos(t)

sin2 (t) + 1
) ∗ [, d̃rel

y = ( cos(t) ∗ sin(t)
sin2 (t) + 1

) ∗ [ (3.1)

Figure 3.8 depicts the object detection from the RADAR sensor model (Ŝr
obj1

and Ŝr
obj2) and the camera sensor model (Ŝc

obj1 and Ŝc
obj2). The sensor models

assign the track IDs based on the criticality of the two pedestrians [obj1] and
[obj2]. While their walking paths cross each other, their track IDs are swapped.

Figure 3.8: Falsification of object detection (right) for verification of multi-sensor fusion using
the example of a pedestrian crossing scenario compared to object detection without
falsification (left) [ESS+16].

Thereby, the Lemniscate noise model is applied to the object motion from
the camera sensor model, so that the covariance matrix of the Mahalanobis
distance can be identified. The covariance matrix represents the uncertainty of
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the state estimation of longitudinal and lateral information. The Mahalanobis
distance of the object is manipulated using the Lemniscate noise model until
the fusion algorithm no longer associates the tracked object. Therefore, the
covariance matrix can be determined over the entire ellipse.

3.3.4 Scenario-based Approach

In Japan, Antona-Makoshi et al. [J+19] explains the impact of the scenario-
based approach on the safety assurance process for autonomous vehicles.
Krishna [Kri19] extracts the corner case scenarios that occur on the roads
of Singapore for automated vehicles. The corner-case scenario is one in which
two or more parameter values are each within the capabilities of the system,
but together constitute a rare condition that challenges its capabilities [fS+20],
[Pon21]. In the Netherlands, the StreetWise methodology provides scenario-
based safety validation of automated vehicles using a database of real-world
scenarios [EPG+18].

In Germany, the PEGASUS project relies on scenario-based testing to derive
scenarios from system knowledge, domain modeling and field observation
[WLFM19, PEG19]. The scenarios are applicable as test cases, which are
executed and evaluated in the simulation or on test tracks [DG18]. The corre-
sponding criticality metrics are employed to determine the automated driving
capabilities [BKB+19, Hau21]. Schuldt [Sch17b] proposes the use of equiva-
lence classes, boundary value analysis and combinational methods for identi-
fying the representative driving scenarios. The proposed approach of Schuldt
provides a systematic generation of test cases, but lacks a method to determine
a meaningful test coverage [S+18a]. Schuldt motivates a scenario-based test
process and presents a systematic test case generation by use of a four layer
abstraction model. The concept of criticality analysis can be explained using
the example of an off-tracking driving scenario.

Figure 3.9 illustrates the rear axle path prediction of the off-tracking phe-
nomenon based on Tractrix motion [ESS+19b]. The off-tracking phenomenon
occurs when a vehicle turns and its rear wheels do not follow the same path as
its front wheels [RA12].

The low-speed transient off-tracking describes the lateral offset between the
turning paths of the front and rear axle before steady-state off-tracking is
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reached. While commercial vehicles traverse shorter curves or curves of smaller
radius, non-steady-state off-tracking increases gradually at low-speed vehicle
turning scenarios. Thereby, the swept path width is the difference in paths
between the outside front tractor tire and the inside rear trailer tire.

Definition 3.6 (Tractrix Motion):The vehicle off-tracking behavior at low
speeds is approximated by a Tractrix motion, where the rear axle of a tractor-
semitrailer combination truck follows a given steering curve for low speed
turning scenarios. The rear axle is always moving in the direction of the front
axle based on a given wheelbase dw [m] [RA12]. The velocity of the rear axle
depends on the direction of the velocity vector of the front axle.

Definition 3.7 (TTC): It refers to the time required for two objects to collide; if
they are moving at their current velocity and following the same path [W+16].

υx
ego

dw

υ
f

r r

r f obj1

υr

 p1

p2

p3

p4

p5

Figure 3.9: Tractrix motion for low-speed transient off-tracking within a cornering scenario
[ESS+19b].

Figure 3.10 shows the criticality analysis with a stationary pedestrian at
different positions (p1, p2, p3, p4 and p5) and velocities of 𝜐ego

x [km/h]. The
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off-tracking scenario is executed on the HiL test bench and managed by a test
script for the right-hand turns with the SGA function.

Figure 3.10: TTC criticality analysis with a stationary pedestrian in the Tractrix zone using the
SGA function within a cornering scenario [ESS+19b].
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In the automotive industry, HiL-based test methods are commonly used and
they provide a significant advantage for the functional verification of software
components on the ECU in the laboratory [Düs10]. The integration capability
of perception sensors in HiL test benches reduces the dependence on simu-
lation models and their validation in contrast to those in SiL environments.
Accordingly, the Device under Test (DuT) can be evaluated at the hardware
level and also its influence on the system, such as poor performance due
to limited computing power or memory space [FBS09]. In addition, various
effects, such as message loss, time delays and limited signal value ranges
due to communication between hardware components, can be investigated.
There are three main architecture levels of the HiL test system (component,
subsystem and system). At the component level, each individual ECU can
be verified with respect to its functional correctness. While ADFs commonly
include several ECUs, the data flow can be verified at the subsystem or system
level. Although the integration of diverse ECUs in a virtual test environment
increases realism in simulation, the test system complexity can be unman-
ageable [NGB13]. Consequently, the design of the HiL test system needs to
meet the requirements derived from the desired test objective and not for every
degree of realism or fidelity [Tel14].

4.1 Simulation Co-ordinate Systems

The entire simulation relies on the right-handed inertial co-ordinate system
RI , where the x indicates the east direction, the y the north direction and the z
the elevation direction. The rotation matrix RI

E is generated from the intrinsic
Euler angles by multiplying the three matrices generated by rotations around
the axes.
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According to the ISO 8855:2011 for right-handed vehicle co-ordination
systems [fS+11c], the rotation matrix RI

E follows a z-, y- and x- rotation
sequence, as depicted in equation 4.1.

RI
E =


cos𝜓 −sin𝜓 0
sin𝜓 cos𝜓 0

0 0 1




cos\ 0 sin\
0 1 0
−sin\ 0 cos\



1 0 0
0 cos𝜙 −sin𝜙
0 sin𝜙 cos𝜙

 (4.1)

4.1.1 Ego-vehicle Co-ordinate System

The origin of the Ego-vehicle co-ordinate system RE in neutral loading
conditions is on road level at the center of the truck rear axle. The Ego-vehicle
co-ordinate system determines the position of environmental perception sen-
sors and detected objects. The rotation matrix RE

S is an identity matrix, where
the sensor co-ordinate orientation corresponds to the Ego-vehicle orientation,
as illustrated in equation 4.2. The origin of the RADAR sensor co-ordinate
system RS is at the installation position of the RADAR, mounted on the front
of the Ego-vehicle.

RE
S =


1 0 0
0 1 0
0 0 1

 (4.2)

The rotation matrix RS
I describes the rotation from the inertial co-ordinates to

the RADAR sensor co-ordinates, as shown in equation 4.3.

RS
I =

(
RI

E.R
E
S

)−1
(4.3)

The transformation matrix TS
I is calculated from the inversion matrix of the

sub-transformations from Ego-vehicle into inertial co-ordinate systems TI
E

and from sensor into Ego-vehicle co-ordinate systems TE
S , as represented in

equation 4.4. The distance vector tI
E specifies the distance between the origin

points of Ego-vehicle and inertial co-ordinate systems, while the distance vector
tE
S describes the distance between origin points of sensor and Ego-vehicle co-

ordinate systems.
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TS
I =

(
TI

E.T
E
S

)−1
=

([
RI

E tI
E

0T 1

]
.

[
RE

S tE
S

0T 1

])−1

(4.4)

4.1.2 Object Co-ordinate System

The origin of the object co-ordinate system RO corresponds to the origin point
of the detected object in front. Equation 4.5 represents the transformation
matrix TI

O from the object to inertial co-ordinate systems, where the distance
vector tI

O describes the distance between origin points of object and inertial
co-ordinate systems.

TI
O =

[
RI

O tI
O

0T 1

]
(4.5)

The origin of the detection co-ordinate system RD allocates on road level
at the center of the rear bumper of the detected preceding object. Figure 4.1
depicts the various simulation reference co-ordinate systems of environmental
perception sensors [Amm15].
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Figure 4.1: Simulation reference co-ordinate systems of environmental perception sensors in the
example of detection of a vehicle ahead.
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The equation 4.6 describes the Ego-vehicle velocity and acceleration vector
components at the sensor co-ordinate system RS as follows:

[𝝊ego]S =


𝜐

ego
x

𝜐
ego
y

𝜐
ego
z

S

= RS
I . [𝝊

ego]I , [aego]S =


aego

x

aego
y

aego
z

S

= RS
I . [a

ego]I (4.6)

The equations 4.7, 4.8 and 4.9 depict the relative vector movement components
at the sensor co-ordinate system RS as follows:

[
drel]

S =


drel

x
drel

y
drel

z

S

=

(
TS

I .T
I
O

)
.
[
drel]

O (4.7)

[
𝝊rel]

S =


𝜐rel

x
𝜐rel

y
𝜐rel

z

S

=

(
RS

I .R
I
O

)
.
[
𝝊obj]

O − [𝝊
ego]S (4.8)

[
arel]

S =


arel

x
arel

y
arel

z

S

=

(
RS

I .R
I
O

)
.
[
aobj]

O − [a
ego]S (4.9)

The relative longitudinal movement components are represented by drel
x [m],

𝜐rel
x [m/s] and arel

x [m/s2], while the relative lateral movement components
are defined by drel

y [m], 𝜐rel
y [m/s] and arel

y [m/s2]. Also, the variables drel
z [m],

𝜐rel
z [m/s] and arel

z [m/s2] represent the relative vertical movement components.
The relative start reference co-ordinate system RR is a special co-ordinate
system to allow the zero initialization of the external vehicle dynamics simu-
lation at its own origin points, when the Ego-vehicle needs to be initialized at
a non-zero location or orientation within the driving scenario. In addition, the
track co-ordinate system RT is used to allocate and control objects through the
reactive test automation. The co-ordinate axes are defined on the road, which
are applied along the reference road center.
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4.2 Vehicle Dynamics Simulation

Equation 4.10 depicts the curvature of the driven distance of the Ego-vehicle
in the sensor co-ordinate system.

^ego =
𝜓

𝜐
ego
x

(4.10)

In case of the simulation of an eHorizon sensor via an OpenDRIVE[ASA21]
database, the geographic co-ordinate system should be applied to the geo-
graphical data based on World Geodetic System 1984 (WGS84) co-ordinates.
The OpenDRIVE provides an open file format for the logical description
of road networks[ASA21]. The camera co-ordinate system RC represents the
co-ordinate axes of the physical camera ECU. If the camera sensor is stimulated
via a monitor, the monitor co-ordinate system RM is used, which represents a
2D co-ordinate system. The origin of the monitor is located in the lower left
corner [Nen14]. The co-ordinates of the monitor are normalized and valid in a
range between 0.0 and 1.0.

4.2 Vehicle Dynamics Simulation

The dynamic behavior of heavy-duty trucks differs considerably from that
of passenger cars due to the geometry and dimensions of the truck-trailer
combinations. Also, the loading conditions have a considerable influence on
the longitudinal and vertical positions of the vehicle center of gravity. The
wheel configuration variants influence the off-tracking behavior of the trailer in
cornering situations with different wheelbases, drawbars and kick angles. Pitch
and roll movements need to be taken into account, which are strongly influenced
by the aforementioned factors. Therefore, vehicle dynamics is an important
topic to discuss. Moreover, a CMV consists of a driver’s cabin suspended from
the vehicle frame in order to reduce mechanical road excitation. As a result,
the environmental perception sensors have to cope with static and dynamic
tolerances of truck-trailer combinations. The static tolerances relate mainly to
sensor mounting position, vehicle type, tire pressure, type of cab suspension
and load condition [SMAN08]. Additionally, the dynamic tolerances refer to
the tractor cab movements. The vertical movement shifts the sensor height in
relation to the road surface. The cabin pitch and roll angles change the optical
axis position of the forward-facing camera mounted behind the windshield in
relation to the horizontal axis.
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4 Hardware-in-the-Loop Simulation

Moreover, the steady-state behavior of a truck is determined in accordance
with ISO 14792:2011 by the steady-state circular tests [fS+11b]. The change in
the required steering as a function of lateral acceleration is represented by the
under-steer gradient, which shall be positive for heavy vehicles. The negative
under-steer gradient leads to instability at a certain critical velocity [MP17].

4.2.1 Truck Cabin Simulation

Figure 4.2 shows the pitch movements when braking in straight ahead direction
using a parameterized simulation model of the Mercedes-Benz Actros [Tru18]
tractor with 4x2 axle configuration and a weight of 18 tonnes [Mar04]. The
truck’s braking and driving dynamics differ from those of a passenger car. The
pneumatic brake system has a time delay and slower response than the hydraulic
brake system in passenger cars. Therefore, the load condition influences both
dynamic stability and braking dynamics, whereby the difference between full
and empty weight is very large.

Figure 4.2: Step-shaped half and full braking in a straight line with Mercedes-Benz Actros 4x2
tractor simulation model at a constant longitudinal velocity of 80 [km/h] including
braking torques (left) and pitch angles (right).
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4.2 Vehicle Dynamics Simulation

Moreover, the process of stopping a CMV in an emergency requires a complex
interaction between the braking system, the CMV tires, the CMV’s dimen-
sions, the loading conditions and the road surface characteristics. The realistic
simulation of CMV dynamics enables the virtual movements of the envi-
ronmental perception sensors to investigate the effects of cabin dynamics in
braking situations. Therefore, the multi-body vehicle dynamics need to sim-
ulate the roll and pitch movements of the truck’s tractor cabin. Meanwhile,
the pitching movements during braking affect the detection performance of
the perception sensors. If the brake pedals are set in a step-wise manner to Pb
= 50% and 100%, braking torques are applied at half and full braking with
Mb ≈ 6.3 [kNm] and 16.5 [kNm] respectively. The pitch angles of the truck’s
tractor cabin are shifted from \b ≈ 2.2◦ to 3.2◦ with an initial offset of 1◦ at a
constant longitudinal velocity 𝜐

ego
x = 80 [km/h]. Figure 4.3 represents the roll

movements when driving around a tight curve using the same parameterization
of the employed simulation model.

Figure 4.3: Driving around a tight curve at lateral acceleration of 6 [m/s2 ] and longitudinal
velocity of 80 [km/h] including roll movement compared to weight force on the rear
axle (left) and Ego-vehicle trajectory (right).
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4 Hardware-in-the-Loop Simulation

The roll-over angle of the truck’s tractor cabin can be estimated on the basis of
the tight curve maneuvers according to ISO 16333:2011 [fS+11a]. The calcu-
lation of the tire lift-off and roll-over limits specifies the stability limit of the
vehicle when the rear axle tires are lifted off the road. Thus, ISO 16333:2011
presents a test method for estimating the maximum lateral acceleration that a
CMV could withstand in steady-state turning maneuvers without rolling over
[fS+11a]. From the right side of the figure 4.3, the Ego-vehicle accelerates in
a tight curve maneuver, which is expressed in the left side of the figure 4.3 in
terms of a corresponding roll angle of 6.53◦ with a weight of 0 [kN], which
means that the rear axle of the Ego-vehicle does not exert any force. The roll
movement of the truck’s tractor cabin is shifted to 𝜙max

c = 6.53◦ at actual weight
on rear axle with Fr = 0 [kN], lateral acceleration with aego

y = 6 [m/s2] and
longitudinal velocity with 𝜐

ego
x = 80 [km/h].

4.2.2 Run-time Analysis of Vehicle Dynamics

The applied vehicle dynamics simulation uses an explicit Euler integration
method based on Simulink® with a sampling rate of 1000[Hz]. While the
turn-around time represents the computing time required to calculate the ex-
ecuted tasks, the sampling time indicates the time interval for the integration
step of the simulation. Therefore, the turn-around time should be shorter than
the sampling time to ensure that the simulation is executed in real-time. The
explicit Euler integration method utilizes the equations 4.11 and 4.12 for each
Simulink® block at each simulation time step ts= 1[ms]. The [mdlOutputs]
task comprises the output part and the [mdlUpdate] task contains the update
part of the discrete state-space equation. The [mdlUpdate] task updates the
block inputs us with the discrete state xd+1 for each Simulink® block that has a
discrete state xd, while the [mdlOutputs] task calculates the block outputs yo

yo = mdlOutputs(us, xd, ts) (4.11)

xd+1 = mdlUpdate(us, xd, ts) (4.12)

As distinct from a general-purpose operating system, a Real Time Operating
System (RTOS) is expected to meet computational time constraints when exe-
cuting software applications. The implemented HiL simulator uses a 2.1 GHz
Intel Quad-Core Ivy-Bridge processor with a VxWorks® RTOS.
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4.2 Vehicle Dynamics Simulation

Definition 4.1 (VxWorks® ):An embedded RTOS developed as proprietary
software by Wind River Systems. The VxWorks® kernel utilizes a shared mem-
ory model to control the communication between task states based on preemp-
tive scheduling, where a first-in-first-out policy is used to schedule all tasks.
The binary semaphores of VxWorks® provide a synchronization between the
tasks controlled by the functions [semTake] or [semGive]. The semaphore is a
binary variable for multi-process access control of a common resource within a
RTOS, where a binary semaphore acts as a flag that can be blocked or released
[HVJ14].

The test cases are graphically modeled with special state machines on the host
computer and transformed as byte code to the virtual machine task [JavaVM].
The compiled test cases thus run on the real-time HiL simulator using the
[JavaVM] task and reactively control the synthetic driving scenario. Figure 4.4
shows the turn-around time t𝜚 [s] of each task at the HiL simulator, where the
total turn-around time does not exceed the sampling time ts = 0.001[s].

Figure 4.4: Turn-around time of task of vehicle dynamics, hardware in-/output and test automation
under hard real-time conditions.
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In this way, the [HWIO] task sets up the communication between the HiL
simulation and the DuT. The entire execution time at the HiL is represented
by the turn-around time and can be summarized in terms of [mdlOutputs],
[mdlUpdate], [JavaVM] and [HWIO] tasks. The highest processing usage is
provided by the [JavaVM] task, and then by the [HWIO] task, as illustrated in
figure 4.4. For this reason, an optimization is required to use the available time
and hardware resources better for further necessary simulation components.
Consequently, the employed HiL test bench utilizes a distributed heteroge-
neous co-simulation environment in order to realize a real-time capable system
architecture. The co-simulation environment provides the core functionality of
task and data management for the simulation of road traffic as well as Ego-
vehicle driver and environmental perception sensors at a different sampling
time.

4.3 Road Traffic Simulation

The fidelity of road traffic simulations can be divided into four categories:
Macroscopic, mesoscopic, microscopic and nanoscopic. First, macroscopic
simulations characterize the traffic flow, velocity and density of traffic (e.g. the
number of road users who travel a certain distance per unit of time). Therefore,
macroscopic fidelity is well suited for the analysis of large or complex road
networks. Second, traffic units can be grouped in the mesoscopic models, where
each group is treated as a single traffic unit (e.g. queues of vehicles). Third, the
microscopic models simulate the behavior and interactions of each simulated
traffic unit individually with specific state variables such as position, velocity
and acceleration. The rules of vehicle behavior such as speed and lane changes
are also taken into account. Fourth, an additional level of detail in nanoscopic
models is achieved by dividing each vehicle into a number of sub-units. The
nanoscopic model thus allows an extension of the vehicle dynamics modeling
and the driver behavior fidelity. In this way, vehicle dynamics, complex driver
decision-making processes or interaction with the vehicle environment can be
modeled in more detail. In general, the computing time for traffic simulation
increases considerably with increasing fidelity. Consequently, the HiL test
system requires a compromise between fidelity level and computing effort for
real-time traffic simulation under the given real-time conditions.
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4.3 Road Traffic Simulation

4.3.1 Multi-rate Co-simulation Setting

The developed real-time co-simulation platform is utilized to evaluate the ADFs
in a closed-loop HiL configuration. The Functional Mock-up Interface (FMI)
co-simulation manages the scheduling and data exchange between multiple
simulation units with independent solvers using VxWorks® callback routines
[Sch16b], [Sch17]. As a result, the FMI integrates the heterogeneous modules
to make one real-time-capable application for the HiL simulation. Figure 4.5
illustrates the co-simulation integration scheme to provide the Ego-vehicle
dynamics simulation with contact point information at a sampling rate of
1000[Hz]. In order to place the Ego-vehicle correctly in the 3D space, the
computation of the road contact is necessary.
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new package 

   new 
package

Xw,Yw

tasks of Ego-vehicle 
         dynamics 

Tx Rx

VxWork®-based HiL simulator

task management

road traffic
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Figure 4.5: Sequence and schematic diagrams of the road traffic co-simulation with exchange of
contact point information using asynchronous real-time simulation.
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The number of contact points between the tires of the truck-trailer combination
and the road surface is 10 points (one contact point per tire) as the maximum
number of contact points for the applied vehicle dynamics model, described
in section 4.2. The real-time vehicle dynamics simulation needs contact point
information at a higher frequency fd = 1000[Hz] than the frequency of the sim-
ulation task management fm = 120[Hz]. Real-time operation in asynchronous
mode utilizes a common time domain between simulation components to run
them in real-time. The gradients are computed by each simulation component
to handle and align asynchronously computed results. The data packages of
tire-road contact points introduce the road profile in correspondence of the tire
contact points. The task of Ego-vehicle dynamics interacts with the task of tire-
road contact points to provide the tire longitudinal and vertical positions Xw,
Yw respectively. The vertical displacement Zw of all road-tire contact points
is determined and sent back to the task of Ego-vehicle dynamics, especially in
uphill/downhill driving situations. The vector of road’s longitudinal gradient
𝜶

long
w , lateral slope 𝜶lat

w and friction coefficient 𝝁w are assumed with constant
values.

4.3.2 Integration of HiL Simulation Modules

The data management through equivalent FMI implementation provides the
co-simulation scheme with high portability between various HiL simulation
platforms and enables the run-time fault injection scheme triggered by the test
execution, where as, the FMI standardization of interfaces are set in table 4.1.
The road traffic simulation supports the traffic scenarios with visual and logical
databases stored in an eXtensible Markup Language (XML) format [vNC14].
The scenario database is based on de-facto standard formats OpenDRIVE
[ASA21] and OpenSCENARIO [ASA22] for specifying road networks and
dynamic contents respectively [vNCDW09]. While OpenDRIVE road net-
works assign static features to the driving scenario (e.g. lane, traffic sign,
intersection, junction, crossing, etc.) [ASA21], OpenSCENARIO databases
provide the synthetic scenario with the detailed dynamic contents of objects
(e.g. actor, object, trigger, action, etc.) [ASA22]. Due to performance reasons,
the change between a non-animated and an animated pedestrian depends on the
distance between the Ego-vehicle position and the pedestrian position. If the
distance to the pedestrian is less than a certain minimum distance, the animated
pedestrian is used.
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4.3 Road Traffic Simulation

FMI category Description
Actor vehicle:

• vehicle category (e.g. car, truck, motorcyclist and bicyclist)
• position (x[m], y[m], z[m]) and orientation (𝜙[◦ ], \ [◦ ], 𝜓[◦ ])
• driver behaviors (e.g. distraction and drowsiness)
• vehicle behaviors (e.g. overtaking and rear-ending)
• wheel information (e.g. steering angle, radius and forces)
• power-train information (e.g. speed and torque)

pedestrian:
• pedestrian category (e.g. single and group)
• position (x[m], y[m], z[m]) and orientation (𝜙[◦ ], \ [◦ ], 𝜓[◦ ])
• pedestrian behaviors (e.g. crossing, inattentiveness and failure

to obey traffic laws)
• gesture and motion pattern (e.g. run and walk)

Road traffic road information:
• road geometry (e.g. curvature information, intersections,

roundabouts and rural areas)
• road condition (e.g. road damage, uneven surfaces and road

construction)
• road type (e.g. urban, rural and highway)
• traffic condition (e.g. traffic sign, traffic light, high speed limit,

heavy flows and potential accidents)
• lane marking (e.g. type, color, broken/missing markings and

irregular lane/road shapes)
• drive lane information (e.g. width and ID)
• static objects (e.g. fence, pole, vegetation and curbstone)

Camera ECU image generator:
• image height and width
• depth and camera information

ambient conditions:
• time of day, sky state and visiblity
• illumination (e.g. shadow, night, dawn/dusk and directly facing

the sun)
• road conditions (e.g. dry and wet)
• weather conditions (e.g. fog, rain and snow)

RADAR ECU sensor stimulation:
• Over-The-Air movable antennas for the horizontal positions
• distance, velocity, and size of the RADAR objects
• radial distance, Doppler velocity, azimuth angle and elevation

angle of the RADAR detections.
Virtual sensor sensor simulation:

• data communication (e.g. detection, feature and object level)
• sensor position and orientation
• relative movement of recognized objects (drel

x [m], drel
y [m], 𝜐rel

x [m/s],
𝜐rel

y [m/s], arel
x [m/s2 ], arel

y [m/s2 ])

Table 4.1: List of information categories of data management with equivalent FMI modules via
well-defined in-/output interfaces.
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The developed real-time co-simulation platform is utilized to evaluate the
automated driving ECUs in a HiL configuration, as demonstrated in figure 4.6.
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Figure 4.6: Schematic diagram of the dynamic behavior testability of ADFs within a HiL frame-
work. Partially mentioned in chapter 3, and is integrated within chapter 4.
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The multi-rate numerical simulation enables the integration of heterogeneous
simulation modules (sensor models, vehicle dynamics and test automation)
using the User Datagram Protocol (UDP) socket interface mechanism. The
real-time HiL simulator uses two Ethernet connectors to access both the sim-
ulation environment via Transmission Control Protocol (TCP)/UDP ports and
the host computer via TCP ports. In addition, the monitor camera box is con-
nected to the HiL simulator for the Over-The-Air (OTA) stimulation of the
camera ECU. The monitor is connected to the simulation environment via a
Digital Visual Interface (DVI) connector [Elg12].

The ECU in-/outputs can be plugged into the break out box for measurement and
hardware fault injection purposes. The Automotive Data and Time-triggered
Framework (ADTF) tool provides a measurement framework for image recog-
nition algorithms based on received data. The test automation program manages
the actions of all actors, such as lane changes or speed changes by the traffic
module, to control the Ego-vehicle and other traffic objects. The target accel-
eration and steering are translated with the vehicle dynamics simulation into
throttle, brake and steering wheel positions within the applicable limits.

The model-based test methods support reactive tests, where the execution of
a test case depends on what the DuT is doing while being tested [ESW+16].
Therefore, the model-based testing is integrated into the closed-loop HiL plat-
form, as illustrated in figure 4.6. Furthermore, the robustness tests are integrated
by run-time fault injection to assess the degree of correct functionality under
invalid inputs or in stressful environmental conditions. For the minimization
of human effort in test execution, test automation provides computer-aided
execution of dynamic verification of a function’s behavior on a limited number
of test cases against the specified expected behavior.

4.3.3 Round-Trip Time Estimation

The delta time of each simulation step is identical (fixed-step solver) but the
real-world time between the steps differs and, therefore, influences the correla-
tion between simulation time and real-world time. A system that accumulates
simulation time in-sync with the progress of real-world time is called a real-
time system.
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4 Hardware-in-the-Loop Simulation

There is a distinction between hard and soft real-time systems based on the
consequences in case of a violation of the real-time requirements. While the
hard real-time systems must reliably deliver the correct result within the
required response time, the soft real-time systems can statistically meet the
required response time within a tolerance margin [LSE12]. Consequently,
the co-simulation framework allows the execution of heterogeneous real-time
simulation components, whereby the real-time data exchange must not exceed
the defined tolerance margin. The real-time requirements have to be fulfilled
for the HiL test bench for ADFs. Hence, the real-time behavior validation of
the distributed HiL components is typically as important as their functional
correctness. Accordingly, a case study is conducted to investigate the time
constraints using a multi-sensor data fusion module, a camera sensor model Ŝc

and a RADAR sensor model Ŝr, as demonstrated in figure 4.7.

camera sensor model [Sc]

au
to

m
at

ed
 d

ri
vi

ng
 E

C
U

3D
 s

im
ul

at
io

n 
en

vi
ro

nm
en

t

 

 

Θc

˄

 

˄

˄

,dx
c

,dx
r

RADAR sensor model [Sr]

V
xW

or
k®

-b
as

ed
 H

iL
 s

im
ul

at
or

au
to

m
ot

iv
e 

C
A

N
 b

us
 in

te
rf

ac
e

obj1
approaching a stationary object

ψ

y
x

Θf

Θr

Θf

Θc

Θr

Ego-vehicle

^

^

soft real-time conditionshard real-time 
  conditions

m
ul

ti
-s

en
so

r 
fu

si
on

 m
od

ul
e

Figure 4.7: Driving scenario setup with approaching a stationary object for validation of the timing
constraints within the HiL co-simulation framework.
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The camera sensor model calculates the relative longitudinal distance dc
x be-

tween the Ego-vehicle and the stationary object. Similarly, the RADAR sen-
sor model computes the relative longitudinal distance dr

x between these two
vehicles. The sent timestamp message Θ̂f is employed for the fusion of non-
synchronized measurements from heterogeneous sensor models using received
timestamp messages Θ̂c and Θ̂r.

The above-mentioned case study applies a driving scenario in which the Ego-
vehicle approaches a stationary object. The driving scenario integrates an AEB
function with reaction to the stationary object within the HiL co-simulation
framework. Consequently, approaching a stationary object is carried out at
different velocities 𝜐

ego
x = {5, 10, · · ·, 105} [km/h] to evaluate the time con-

straints. If the Ego-vehicle velocity is increased, the temporal longitudinal
distance to the stationary object is shortened. The number of corresponding
timestamps decreases accordingly. In order to determine the Round Trip Time
(RTT) at the soft real-time communication, the difference between dc

x [m] and
dr

x [m] is calculated. The RTT can be calculated at the start time of the same
sent and received timestamp messages, as described in equation 4.13. Thus,
the RTT describes the time interval to send a message from a starting point to
a destination and return to the same starting point.

RTT =
dc

x − dr
x

𝜐
ego
x

,∀ Θ̂f = Θ̂c = Θ̂r (4.13)

The co-simulation interface introduces latency that determines the limits of
the real-time capability for the entire framework based on the configuration
frequencies, where fd = 1000[Hz] and fm = 120[Hz]. Figure 4.8 presents the la-
tency between timestamp measurements from the camera and RADAR sensor
models without taking the additional delay, caused by the CAN bus interface,
into account. Although the Ego-vehicle velocity increases, the RTT remains
at fm = 120[Hz] with a variation between ±2 simulation cycles with a reduced
number of matching timestamps. This variation is considered as an accepted
tolerance for the soft real-time conditions.
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Figure 4.8: RTT calculation at start time of the same timestamp messages for sensor fusion using
different velocities of the Ego-vehicle in the scenario with approach to a stationary
object.

4.4 Perception Sensor Simulation

The HiL-based test approaches can provide an efficient functional evaluation
of environmental perception sensors under reproducible conditions. There are
different methods, which can be practiced at three logical interface levels
(detection, feature and object level) [fS+21] to stimulate the sensor behavior
in a HiL environment. Therefore, the quality of the environment simulation
depends on the layer of injection into the DuT. While injecting the data via
the physical sensor layer or the unprocessed raw data, the simulated data has
to represent the real world at a high fidelity level [NS11].
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4.4 Perception Sensor Simulation

4.4.1 Sensor-in-the-Loop Testing

Diewald et al. presented an antenna coupling approach for an OTA RADAR
sensor stimulation, which considers the three subsequent processing steps
(measurement, processing and observation) [Die15]. The stimulation describes
the act of manipulating an entity in which its state corresponds to a driving
scenario. The antenna coupling simulator allows dynamic simulation of moving
objects using opposite RADAR antennas. Gowdu et al. improved the anten-
na coupling approach to stimulate automotive RADAR sensors in a virtual
electromagnetic environment using an OTA interface with wideband horn an-
tennas at 77 GHz [GA+18a]. The employed RADAR target simulator generates
back-scattered radar signals to emulate the DuT by synthetic RADAR target
signatures with specific attributes like RCS, range and velocity.

Weiskopf et al. described various approaches of digital RADAR signal injection-
based integration for RADAR ECUs in a HiL setup [W+15]. Furthermore,
Hanke et al. proposed a way to design a realistic description of the automotive
RADAR system with the help of sophisticated sensor models, whereby the data
is generated synthetically at a phenomenological level [H+15, H+12]. The same
integration approaches can also be employed to verify the camera based functi-
ons in a 3D synthetic testing environment. Nentwig and Stamminger worked on
the applicability of real-time generated computer graphics for camera-based
detection algorithms [NS11]. Tan and Hassan presented a projection-based
approach which is used to stimulate the camera ECU using synthetic traffic
scenes [TH13]. The 3D scenes are visualized in real-time on a flat monitor. The
3D orientation of the camera is estimated within a global frame of reference,
whereby the video is displayed in a 3D virtual environment [HH15].

The 3D orientation is converted into the Camera Reference Frame (CRF),
which is compared to the FOV of the camera ECU [SS13]. In order to match
each monitor pixel with a point in the CRF, the camera ECU calibration with
respect to the monitor is to be performed [NMS12]. In particular, the camera
ECU is characterized in terms of its intrinsic parameters, e.g. focal length,
skew coefficient and distortion coefficient [HM+14]. The extrinsic parameters
of the camera ECU with respect to the 2D screen are the rotation matrix
and the translation vector [Kan16]. The screen co-ordinate system is a 2D
system, where the x-axis corresponds to the right hand direction and the y-axis
corresponds to the upward direction.
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The camera ECU records the artificial scene and provides the image process-
ing unit with the raw image data in a digital form. The image processing unit
generates the object list from the resulting image data to the CAN vehicle
bus interface and tracks the objects based on the simulated Ego-vehicle state
data. Pfeffer and Haselhoff illustrated the injection-based approach, in which
the synthetic raw image data is injected directly into the image processing
unit via the bypass of the image sensor module [PH16]. The standardization
of sensor injection interfaces play a crucial role, while the current stimuli
injection interfaces are highly product-specific.

Table 4.2 — terminologies are discussed in section 2.3 — summarizes the man-
ifold ways of injecting synthetically generated stimuli into the DuT. Because
of the technical limitations of covering all the sensor physical characteristics,
the suitability of each approach should be determined according to the required
test objective of the environmental perception sensor.

Stimulus
injection

Over-The-Air
stimulation

Raw-data
simulation

Target-list
simulation

Object-list
simulation

DuT hardware
modification

not
required

sensor
specific

not
required

not
required

DuT software modification not
required

software
bypass

software
bypass

not
required

Additional hardware sensor
dependent

hardware
adapter

not
required

not
required

Simulation quality sensor
dependent

high simplified simplified

Sensor ECU pipeline complete excluding
measurement

excluding
measurement
& processing

excluding
measurement,
processing &
observation

Table 4.2: Overview of different Sensor-in-the-Loop approaches and their advantages and draw-
backs [FHW16, Fei18].

4.4.2 Object-list based Sensor Models

The environmental perception sensor simulation is positioned on the Ego-
vehicle and detects the objects within its pyramid-shaped cone. The sensor
position is computed relative to the carrying CMV’s reference point (typically
the center of the rear axle on ground level).
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The sensor uses a purely geometrical approach, which calculates the nearest
point of extended object within the applied FOV. The modular architecture
enables an iterative development of the phenomenological sensor model to
achieve increased realism, as presented in figure 4.9.
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Figure 4.9: Modular architecture of the phenomenological sensor simulation [ESFG19b].

Equations 4.14 and 4.15 describe the sensor model components. Therefore,
the sensor model Ŝm maps a set of detected objects P̂m from the Ego-vehicle’s
environment to a set of tracked objects Q̂m into the object-level data fusion
algorithm. The characteristics of the sensor mapping H are divided into Hm

𝜐

modules with 𝜐 ∈ [1,Nh]. The set of configuration parameters for module Hm
𝜐

is denoted by 𝛽m
𝜐 and comprises the relevant subset of sensor properties.

Ŝm : P̂m → Q̂m (4.14)

H = Hm
Nh

[
𝛽m

Nh

]
◦ · · · ◦ Hm

2
[
𝛽m

2
]
◦ Hm

1
[
𝛽m

1
]

(4.15)

Therefore, an incremental development process of simulation models is pro-
posed to reproduce the physical relationship of reality with proper modeling
depth. The procedure consists of the analysis step, the implementation step,
the verification step, and the accreditation step.
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The analysis step obtains a conceptual model from reality through analyzing the
physical principle of the real component. The goal of this action is to construct
specified instructions for the implementation of an executable model. The
executable model is a computer program, which should be verified based on
its specifications. The accreditation process compares the test results with its
component test bench to determine whether the executable model’s accuracy
is adequate to accomplish its intended function. The influence of sensor mod-
eling is investigated on the simulation results using typical driving scenarios
from the scenario database.

The ADASIS interface is applied as a proper interface for information exchange
to enable access to relevant map data via the CAN vehicle bus interface for
advanced assistance features. Therefore, the eHorizon can be perceived as a
virtual sensor to anticipate the driving path based on a non-physical measuring
principle [BMBL06, KP+14]. The eHorizon is implemented as a sensor model
with a predefined declaration of input information and defined output signals.
The sensor model has an access to the map provided by the environment simu-
lation and the position of the Ego-vehicle in this map. Using this information,
the relevant section of the map is parsed and the position of the Ego-vehicle is
obtained in path co-ordinates [HS15]. Along the aforementioned MPP, all the
information is extracted and ADASIS v2.0 conform messages are generated.
The configuration of the sensor model can be set up from the test automation,
allowing the test cases to be linked to specific sensor configurations.

The modular architecture enables iterative development of the eHorizon sensor
model to achieve increased realism. The MPP consists of data structures that
are provided through an OpenDRIVE parser [ASA21]. In reality, discrepancy
between visual and map data is omnipresent due to map errors, old map data or
optical detection failure. Through fault injection, defined inconsistencies can
be produced within the HiL simulation environment. Amongst others, the fault
injection covers the placement and value of traffic signs. These failures can be
used for robustness testing of the fusion algorithms. The implementation of
the eHorizon sensor model focuses on the basic road geometry and attributes
(e.g. speed limits, overtaking signs) along the MPP, as shown in table 4.3. The
ADASIS v2.0 is based on a path offset model, where the path is the first entity
that must be obtained to retrieve the required information identified by a path
identifier [ESA+17].
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4.4 Perception Sensor Simulation

Message Description
META DATA semi-permanent data (e.g. country code)
POSITION vehicle positioning in geographic co-ordinates
SEGMENT road ahead data (e.g. speed limits, tunnel)
STUB branch points (e.g. turn angle, intersection)
PROFILE SHORT road’s course data (e.g. curvature, slope)
PROFILE LONG road specific data (e.g. longitude, latitude)

Table 4.3: List of eHorizon sensor messages and their descriptions [Are16].

The [META DATA] message contains country-specific information, where
implicit speed limits are included implicitly for each relevant country. The
[POSITION] message is determined by a path identifier and an offset along
the path. The start of each path is defined to be at offset 0. The [SEGMENT]
summarizes the most important attributes for a part of path. The [STUB] mes-
sage defines the relationship between the paths. While the [PROFILE SHORT]
message contains 10-bit variables for road’s course data, the [PROFILE LONG]
message holds 32-bit variables for geographical co-ordinate information. The
data of interest are either on the same path or on one of the sub-paths ahead of
the Ego-vehicle. In order to fulfill the highly automated driving requirements,
the ADASIS v3.0 is responsible for transferring high precision and up-to-date
map data from the cloud to the ECU. Up-to-date information about traffic and
road conditions are not provided by the ADASIS v2.0 protocol.

The capability to integrate vehicle-independent information sources by ex-
tending the environment simulation makes the proposed framework adaptable
for further applications, such as Vehicle to X(everything) (V2X) communica-
tion1. The eHorizon data contains vehicle position data as well as road segment
attributes, such as road geometry, road class, number of lanes, speed limits,
etc. The iterative development process enables the re-design of the modular
simulation models based on the claimed modeling depth ranging from ideal to
phenomenological sensor models.

1 The V2X communication summarizes various vehicle technologies that enable a vehicle to
communicate, e.g. with other vehicles, with systems integrated into the infrastructure, with
pedestrains’ mobile devices, or to a database.
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4.5 Ontology-based Scenario Management

The ontology-based NL notations are meta-data representations of the data
elements and their semantic relationships in a structure that is understandable
for humans and machines [Z+18a]. An ontology is equivalent to a Description
Logic (DL) knowledge base [HPSVH03]. While knowledge representation in
an ontology is based on DL, the Ontology Web Language (OWL) is a common
popular file format for storing ontologies based on the Resource Description
Framework (RDF) data graphs [M+15]. Therefore, the ontology comprises
Terminological Box (TBox) and Assertional Box (ABox) statements [EH16].
The TBox statements describe object-oriented classes within a knowledge base
as a schema or data model. In contrast, the ABox statements are associated
with instances of these classes [CK18].

Automated driving involves the use of ontologies in various applications,
especially in situation assessment, scene understanding and behavioral planning
[BMM18]. Armand et al. describes the application of ontologies to model
interactions based on spatial-temporal relationships between road users and
infrastructure [AIGZ17]. The sensor data is employed as ABoxs of an ontolo-
gy to develop a human-like understanding of scenes. The scene understanding
relies on object tracking, map data and the dynamic states of the subject vehicle.
Behavior rules are stored in the semantic web rule language to infer knowledge
from the TBoxs to a given ABox from the sensor data [KLN+18].

Ulbrich et al. proposes an environmental model derived from a knowledge base
with hierarchical classes and relations between the entities [UNMH14]. The
environmental model is updated by sensor data and utilized for online deci-
sions. Geyer et al. proposes nomenclatures of a unified ontology for generating
test cases and scenario catalogs [GBF+13]. However, Geyer et al. describes
that each scenario catalog shall have its own nomenclature and concepts for
knowledge organization.

Figure 4.10 shows an ontology-based test scenario synthesis based on knowl-
edge discovery from triggered FOT events. The systematic test case generation
leads to concrete scenarios and test cases based on a generic model consisting
of four layers of scenario description. The first layer belongs to road geometry,
the second layer to static objects, the third layer to dynamic objects and finally
the fourth layer to weather conditions.

108



4.5 Ontology-based Scenario Management

The test cases are also deduced from the functional specification, which results
from the top-level requirements and the use cases, whereby the use cases are
also inferred from the top-level requirements. A category of adequate and
relevant scenarios for existing field tests is extracted using the ontology-based
scenario management. The semantic representation of worst-case scenarios
can be obtained by using data mining techniques and systematically processed
in requirements for ODD coverage.
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Figure 4.10: Coverage-driven test concept with systematic test case generation based on field-
based observation.
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Definition 4.2 (Data Mining): It is an integrated Knowledge Discovery in
Databases (KDD) process for the automatic identification of useful informa-
tion in big data repositories [FPSS96]. Therefore, the data mining process
comprises several transformation steps, from data pre-processing tasks to post-
processing of the data mining results. The knowledge management process
serves to obtain representative driving situations that are recorded by FOTs in
the form of time-series of environmental perception sensor data.

The implemented framework facilitates a functional verification of ADFs pre-
cisely and more efficiently on the target ECU in the laboratory. The test cases
are executed on a HiL co-simulation platform. The ontology combines relevant
entities in natural language and assigns a formal order through conceptu-
alization. Irrelevant entities or relations are excluded for the traceability of
parameter changes associated with an ontology-based scenario synthesis. The
ontology provides a method to derive possible observations of ABoxs from
modeled knowledge of TBoxs [LTW20]. Subsequently, the ontology-based
scenario synthesis can be converted into de facto simulation data formats (e.g.
OpenDRIVE [ASA21], OpenSCENARIO [ASA22], etc.).

The identification of situations from FOTs using data mining techniques offers
a valuable solution for the generation of simulated test scenarios to extend the
validity of test coverage of ADFs more cost-effectively [EUA+19]. Although
the corner case scenarios occur rarely in real traffic, the ontology-based ap-
proach provides the relevant parameter space from open-loop sensor signals
to ensure the validity of the generated closed-loop test cases. The ontology-
based transformation rules provide the syntheses of relevant driving scenarios
based on the parameterized characteristic waveforms for the HiL scenarios. In
case of further induced traffic situations, the classification maps them into one
of the predefined categorical classes. Subsequently, the ADFs can be verified
effectively and efficiently through an ODD coverage using test oracles based on
envelope components of pass and fail criteria [L+19]. The proposed test con-
cept complements the traditional knowledge-based text matrix and enriches
the test cases with a maximum test coverage. Furthermore, the context-driven
verification approach determines how such an argument can be formed by de-
composing the test coverage and objectives. Therefore, the proposed approach
is complemented by the systematic provision of various evidence of ODD
coverage to meet the required test termination criteria.
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Safety in automated truck driving can be maximized if human-like errors
of automated CMVs can be avoided. Hence, the sense-plan-act robot control
procedure is an essential part of the automated CMV’s response to the dynamic
driving environment. Functions of the environmental perception and situation
analysis are responsible for the recognition of the vehicle environment and the
associated situational awareness. While the planning function is responsible
for determining the driving trajectory, the motion control function operates
the throttle or brakes, turns the wheels and otherwise actuates the vehicle to
follow the plan precisely [Smi17]. To validate these functions, the field tests
are carried out after verifying the absence of logical errors and determining
the required total mileage and geographical variation [Ebn14]. Accordingly,
the automated CMV fleet is equipped with data-logging devices for recording
automotive communication buses, sensor raw data, additional context cameras
and inertial measurement systems (e.g. Inertial Measurement Unit (IMU) and
Global Navigation Satellite System (GNSS) sensors) for precise vehicle posi-
tioning. Then, data mining techniques are usually used to retrieve novel and
useful patterns from large databases [FPSS96].

5.1 Measurement Methods for Scenario Mining

Scenario-based testing relies on the measurement data from real-world scenar-
ios to derive the required knowledge within the scenario elicitation process.
Consequently, the measurement method requirements include the acquisition of
data with reasonable effort, while ensuring an adequate quality of the dynamic
scenario description and the naturalistic behavior of the road users [Kri19].
Common measurement methods for obtaining data in scenario-based testing are
vehicle data loggers, drones equipped with cameras and roadside infrastructure
sensors.
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Various publications identify the requirements of automated driving systems
based on the German In-Depth Accident Study (GIDAS) accident database
to prevent as many such human-like accidents as possible [S+19a, S+19b,
FWP+19]. According to the National Motor Vehicle Crash Causation Survey
(NMVCCS) database conducted by NHTSA for U.S. police-reported passen-
ger vehicle crashes, driver-related contributing factors can be divided into five
categories: First, the sensing and perception factors contribute with 24% to
accidents caused by unrecognized hazards. Second, the incapacitation factors
represent 10% of accidents due to drivers who are alcohol-impaired or other-
wise incapacitated drivers. Third, the prediction factors due to a misjudgment
of the other vehicle behavior account for 17%. Fourth, the factors of planning
due to illegal maneuvers or poor decision making behind compliance with
traffic rules and defensive driving cause 39% of the accidents. Fifth, the factors
of execution and performance share with 23% due to inappropriate vehicle
control. While a crash event can result in multiple common factors, the total
percentage is more than 100% [M+20b].

5.1.1 In-vehicle Data Loggers

The development of automated driving algorithms requires extensive tests
on real-world driving scenarios, which are collected and aggregated from
the FOT [L+18a]. The FOT represents a study undertaken to evaluate an
ADF under normal operating conditions in road traffic environments [Mas19].
Consequently, data loggers are installed in test fleet CMVs to record raw
data from the perception sensors and data from vehicle networks in a time-
synchronous way [AADN+16]. Thus, the data loggers for test fleets allow an
in-depth analysis of the entire data flow from sensing, perception, prediction
and planning to motion control software modules [ZWZ18, GKS18, KYB18].
In addition, a number of public data-sets, such as the Karsruhe Institute of
Technology and Toyota technological Institute data-set (KITTI) [GLSU13], the
Cityscapes data-set [COR+16] and the truck-specific TuSimple data-set [N+18],
were published, which can be utilized for scenario-based testing. Section 5.2
discusses in-vehicle data loggers describing their implementation.
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5.1.2 Drones Equipped with Cameras

Trajectories of individual road users can be extracted from an aerial perspective
using drones equipped with high-resolution cameras. While the traffic is not
affected by the measurement, computer vision algorithms are used to process
the extracted naturalistic images [K+18c]. Several public data-sets provide
vehicle trajectory data with the bounding-box based annotation of the detected
vehicles. The highway Drone data-set (highD) provides a large-scale data-set
of naturalistic trajectories of vehicles such as cars, trucks and buses on German
highways using unmanned aerial vehicles [KBKE18]. The Stanford drone data-
set consists trajectories of VRUs, such as pedestrians and bicyclists, extracted
from drone video recordings of the university campus [R+16]. The intersection
Drone data-set (inD) contains trajectories of naturalistic road users at German
urban intersections [BKM+19]. The road user trajectory data-sets can be used
for scenario-based testing of prediction and path-planning software modules.

5.1.3 Roadside Infrastructure Sensors

The infrastructure can be equipped with sensors installed on roadside masts
to detect traffic or weather conditions. Ground truth bounding boxes can be
extracted by permanently monitoring a certain road segment. If both vehicle and
infrastructure data are collected separately, the two data-sets need to be time-
synchronized with a GNSS clock for scenario reconstruction. The TAF-BW
test field provides a distributed intelligent infrastructure that can handle traffic
light states, road topology and data about monitored road users [FDW+18].
The test field in Lower Saxony covers sections of motorway with a variety of
traffic environments and situations [R+15].

5.2 In-vehicle Data Logging System

The Automated Driving Data Recorder (ADDR) gathers data from the ADFs
and from sensors mounted on the truck. Figure 5.1 shows an in-vehicle data
logging system and data analysis concept for the worldwide validation of ADFs.
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In accordance with the circular buffer concept, representative driving situations
in FOT at object list level can be separated from permanent recording in the
form of time-series data from environmental perception sensors. The triggering
events can be individually defined in the data logger depending on the DuT
reaction, so that the event-based recordings are transported to the databases
[BBLF19]. The recordings include vehicle bus data, sensor object lists and
reference video streams for data analysis purposes.

 scenario database

(replay simulation & scenario fuzzing)

cloud-based data storage
automated driving

(scenario identification)

data logger

corner case detection

data ingest station

(scenario extraction)

data recorder

Figure 5.1: Data handling structure of the in-vehicle data logging system with its main elements.

The geographically distributed data sources constitute a challenge for existing
development processes and information technology infrastructures. Therefore,
a data ingest station is necessary for data storage and retrieval, where the corner
cases can be identified for replay purposes. Also, the cloud-based data storage
contains big data tools, architectures and analytics, that provide the database
infrastructure for ingesting, storing, accessing and processing of logged data
simulations [SPW+19]. For an objective assessment of the driving function
used, suitable evaluation criteria are integrated into the database.

5.2.1 Automated Driving Data Recorder

According to the California Code of Regulations (CCRs) §228.06, ADDR
is a mechanism installed in a CMV under test. This test CMV is equipped
with an ADF to record technical information about the status and operation
of the environmental perception sensors either continuously or for 30 seconds
preceding a critical event (e.g. disengagement, crash, etc.) [LS19]. The data
captured by the ADDR and stored in a read-only format shall be accessible and
retrievable with a commercially available tool [DMV18]. According to SAE
J3197, the ADDR does not interfere with the ability of the ADF to perform the
DDT [Int20]. While the automated driving technology is still being developed
and is not yet commercially deployed, the data included in the ADDR is used
for validation and replay purposes.
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Meanwhile, the SAE J1698 Event Data Recorder (EDR) is mainly used for
traditional accident reconstruction analysis [Int17]. Since 2017, the German
law requires data processing of disengagements with storage of the position
and time data captured by a GPS antenna for vehicles with highly or fully ADFs
[BMV17]. Therefore, data has to be timestamped in a way that allows perfect
synchronization of multiple data streams within the ADDR using a Precision
Time Protocol (PTP) grand-master. According to the IEEE 1588-2019, PTP
is a protocol used to synchronize clocks in a networked measurement system
[IEC+19]. Figure 5.2 illustrates an ADDR with real-time streaming of data
source and sink components [BES+21].

component data logger

(environment perception)
HMI and operating computer 

(diagnosis of operating conditions)

GPS antenna

(PTP grand-master clock)

system data logger

(automated driving function)

measurement trigger

(manual/automatic/permanent)

reference cameras
(contextual monitoring)

Ethernet switch with IEEE 1588 support

real-time streaming of data source and sink components

diagnostic computer

(breakout boxes)

data transmission
(Ethernet or LTE)

logical communication
temporary connection

Figure 5.2: Schematic diagram of an ADDR with its main components.

The component data logger records the raw data of the environmental per-
ception sensors, which can be regarded as a data source. For the component
data logger, the Plug On Device (POD) interface allows access to the internal
ECU software of environmental perception sensors as a standardized hardware
interface [ASA17a]. Additionally, the system data logger collects the ADFs
data as a data sink, which is communicated via an Ethernet switch capable of
supporting IEEE 1588. The CMV driver utilizes the Human-Machine Interface
(HMI) and operating computer to start, stop and monitor the measurements.
Moreover, the HMI acquires the health status of the various measuring com-
ponents via diagnostics interfaces, such as Universal (X) Measurement and
Calibration Protocol (XCP) [ASA17b] and REpresentational State Transfer
- Application Programming Interface (REST-API), to control the start/stop
of the measurements. The ADDR provides contextual monitoring to gather
information about the surrounding traffic.
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Therefore, the reference cameras assist the analysis process to understand the
underlying context in relation to the surroundings. For commissioning, the
diagnostic computer is temporarily connected to check the prerequisites of the
measuring components and ECUs via breakout boxes. The triggered measure-
ments typically use a ring buffer to record data before and after the relevant
event. The triggering events serve as a supplementary source of information to
identify relevant driving scenarios occurring in the FOT [K+18a].

In practice, two types of recording have become established: Continuous and
triggered measurements. If the recording is continuous, a reduced set is record-
ed with the most important measurement signals for statistical statements in
order to keep the data volume manageable. If certain situations are triggered,
the entire vehicle bus can be recorded. For each event, a recorded video snip-
pet of the traffic situation around the vehicle is generated, supplemented by
information on system states and signal characteristics. The triggered measure-
ments cover a shorter period of time, which is concentrated on certain driving
situations and is automatically triggered when predefined conditions are met
[dGP17]. In case of false negative events, a manual trigger button provides the
trigger to record situations in which the system intervention is missing.

As mentioned in section 2.5 to the ordinance implementing the act amending
the road traffic act and the compulsory insurance act, the CMV with a SAE
L4 ADF needs to be equipped with a digital data storage system [Bun22], as
follows:

Ordinance (Event-based Data Storage):
Ä data storage system must be integrated in the motor vehicle with autonomous
driving function that collects, uses and stores data concerning the motor vehic-
le with autonomous driving function on an event basis and during operation in
accordance with §9(5) and §15 only for the purpose of improving road safety.
The data to be collected is conclusively laid down in §1g(1) of the road traffic
act in conjunction with Annex 2 to this ordinance."
Ïm Kraftfahrzeug mit autonomer Fahrfunktion muss ein entsprechender Da-
tenspeicher integriert sein, der ereignisbasiert und während des Betriebs nach
§Absatz 5 und §15 Daten des Kraftfahrzeugs mit autonomer Fahrfunktion
ausschließlich zu dem Zweck der Verbesserung der Verkehrssicherheit erfasst,
speichert und verwendet. Die zu erfassenden Daten sind in §1g Absatz 1 des
Straßenverkehrsgesetzes in Verbindung mit Anlage 2 zu dieser Verordnung
abschließend geregelt."
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5.2.2 Corner Case Detection

The data retrieval procedures are needed to make sure that all collected data is
backed-up and stored in a safe place. The FESTA handbook compares the dif-
ferent data transfer modes, either manual data ingestion via external hard disks
and Network Attached Storage (NAS) devices or data transfer via Ethernet
cable or Long Term Evolution (LTE) connection [FC11]. In the first step,
the measurements of test CMVs are transferred to an ingest station. For this
purpose, the geographically distributed data sources are collected according to
a predefined ingest process [TM20]. The second step is the extraction of corner
cases from the recorded measurements using data pre-processing methods. The
data logistics process can either be stored on an on-premise data storage, or a
cloud-based one. The optimization is executed via pre-processing of the data
snippets, that are extracted from the computing services (e.g. Amazon Web
Services (AWS)1), such a technique is illustrated in section 5.3.1.

Numerous literature on time-series representations is available to facilitate the
tasks of data search and knowledge discovery [AFS93, ANR74, DTS+08].
In addition, the data is converted from the automotive data formats such
as Measurement Data Format (MDF) [ASA19] and ADTF data format into
big data file formats such as Comma-Separated Values (CSV) and Hadoop
Distributed File System (HDFS) [AJK+17].

5.2.3 Cloud-based Data Storage

Statistical statements can be derived from the recorded naturalistic data and
the real customer behavior can be identified. Meanwhilst, the simulation of
logged data is a well-known technique for generating virtual open-loop test
drives based on sensor data collected from field tests. Figure 5.3 shows the
worldwide FOTs in CMVs over different periods of time. Therefore, the com-
mon workflow for the development of automated driving algorithms includes
many iterations of simulations.

1 https://aws.amazon.com/what-is-cloud-computing/
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color legend:
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Figure 5.3: Web-based ODD coverage for worldwide FOTs of an AEB function over various
periods of time in CMVs [BES+21].

Each iteration consists of three steps. First, the relevant input data is selected.
Second, the playback simulation is performed. Third, the output of the logged
data simulation is post-processed to evaluate the functional performance of
the algorithm in terms of KPIs. In such a way, the measurement data of the
test vehicles is automatically processed and stored on central servers, while
the meta-information is stored in a database. An adaptable user interface is
used to visualize, operate and monitor the database and the measurement data
procedures. Consequently, logged data simulations with different sensor data-
sets are performed with modified versions of the algorithm to select the most
suitable version for release in automated CMVs.
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5.3 Analysis and Triage of Time-Series Data

The time-series analysis allows the extraction of representative situations ob-
served during on-road test drives [ESFG18]. The data consists of processed
object lists of environmental perception sensors that change over time. The
cluster analysis refers to an unsupervised classification to group the time-
series data, based on the information retrieved in the data that describes the
time-series signals and their relationships [W+19]. Consequently, the cluster
analysis is performed to extract homogeneous groups (clusters) from data-sets
according to a defined similarity metrics [Pfe20].

The time-series within a cluster should be similar to each other and different
from the time-series in other clusters. In prototype-based clustering, a cluster
consists of a set of time-series in which each signal is similar to the prototype
describing the cluster compared to the prototype of another cluster. The ob-
jective of clustering is to extract clusters from a data-set, where the distance
between members of a cluster is minimized and the distance between different
clusters is maximized. The efficiency of the cluster analysis is determined by
the selection of the time-series to be analyzed, the distance measures to be
used and the clustering algorithm to be employed.

5.3.1 Time-Series Data Pre-processing

The time-series data refers to a specific type of sequential data, where each
data-set represents a time-series, i.e. a sequence of values that change over time.
The outliers represent values of time-series data that have some characteristics
that differ from most other time-series in the data-set. After filtering out the
outliers from the time-series signals, the rolling standard deviation method
is used to quantify the degree of variation of each value in the time-series
and to select the optimized time interval around the triggering event. The low
standard deviation indicates that the time-series tends to be closed to the mean,
while high standard deviation implies that the time-series tends to be spread
over a wider range of values. The determination of the optimized time interval
depends on the assumption that time intervals with high variations of the sensor
values are more representative for an efficient cluster analysis of time-series
signals. Therefore, the interval around the trigger event is selected with a higher
rolling standard deviation than other intervals.
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Equation 5.1 represents the normalized rolling standard deviation of each
point u(ai) of the time-series A= {ai}mi=1 to determine the corresponding time
intervals of the measured sensor variables, where āi+j =

1
w

∑w
j=1 ai+j indicates

the rolling mean and w indicates the rolling window.

u(ai) =
∑w

j=1 (ai+j − āi+j)2

w ∗
√︃

1
w2

∑w
j=1 a2

i+j

(5.1)

The proximity between the two time-series signals is a numerical measure
of the degree to which the two signals are equal. Proximities are usually not
negative and are often between 0 for no similarity and 1 for full similarity. The
time-series proximity can be performed with the Minkowski distance metric, as
in the equation 5.2 to compare the original time-series with each other, where
r = 1 for the distance from Manhattan (L1 norm), r = 2 for Euclidean distance
(L2 norm) and r = 8 for Supremum distance (L 8 norm) [Els18].

Dr (A, B) =
( m∑︁

i=1
|ai − bi |r

) 1
r

(5.2)

Although the Normalized Cross Correlation (NCC) is often used in image
and signal processing for template matching, similar traffic situations can be
effectively described by similarities in sensor measurements with time shifts
and sliding windows. Therefore, the NCC provides as a suitable measure
for the proximity in the time-series analysis of the measurements from the
environmental perception sensors. Equation 5.3 refers to the NCC calculation
between two different time-series A = {ai}mi=1 and B = {bi}mi=1 with a time shift
sj ∈ {s−m, · · ·, sm} and a time interval j ∈ {−m, · · ·,m}.

Dsj
NCC (A, B) =

1
m

m∑︁
i=1

(ai − ā)
(
bi+j − b̄

)
𝜎a𝜎b

,∀ i + j ∈ [1, m] (5.3)

The mean and standard deviation of the time-series A indicates ā = 1
m

∑m
i=1 ai

and 𝜎a =
√︃

1
m

∑m
i (ai − ā)2. The mean and standard deviation of the time-series

B gives b̄ = 1
m

∑m
i=1 bi and 𝜎b =

√︃
1
m

∑m
i=1

(
bi − b̄

)2 respectively.
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5.3 Analysis and Triage of Time-Series Data

Based on the equation 5.3, the distance measureDsj
NCC shows a value between

[−1, 1] for a certain time shift j ∈ {−m, · · ·,m} , where −1 indicates a com-
plete dissimilarity and 1 denotes a perfect match. Equation 5.4 searches for a
shift with the maximum proximity between the two given time-series over all
possible shifts and converts the selected shift into a distance measure DNCC.
The computed distance is then defined in the range [0, 1], where 0 indicates a
minimum distance for perfect match and 1 indicates a maximum distance for
complete dissimilarity.

DNCC (A, B) =
1
2

(
1 −max

j
DSj

NCC (A, B)
)
,∀ j ∈ [−m, m] (5.4)

5.3.2 Principal Component Analysis

Data-driven test development necessitates continuous extraction of knowledge
from the recorded sequences. In this context, reducing complexity of data is
essential in order to perform meaningful analysis [BSMH18]. To this end, PCA
has been widely used as a simple, non-parametric method of extracting useful
information from complex data-sets. This principal was defined in chapter 2,
through subsection 5.3.2, a discussion providing its integration is unraveled.

The PCA aims to reduce dimensionality variance of data using principle com-
ponents. This is achieved by orthogonal transformation of the multivariate
data-set into a new basis which best expresses the data-set. As a case study,
the PCA is applied to a LDW function in CMVs during the FOTs. The cluster
analysis of the right side lane departures is based on the lateral distance to
the right lane drt

y [m] and takes into account a total of 250 triggered events
from FOTs, as depicted in figure 5.4. The time-series patterns of drt

y [m] are
divided into three clusters, as illustrated in 5.5. The cluster C1

rt shows 236
events for different driving situations with a deviation to the detected right lane
marking and a return from this deviation. The cluster C2

rt illustrates 16 events
for a number of driving situations with a sudden jump in the distance to lane
indicating the detection of new lane lines. The cluster C3

rt shows 3 events for
driving situations with a deviation and a temporary sudden change of distance
to the right line and back to normal deviation due to painted islands.
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Crt3

Crt2Crt1

Figure 5.4: Cluster analysis of 250 events with right lane departures using the PCA of time-series
data from drt

y [m] [ESF19].

Figure 5.5: Time-series data of drt
y [m] for each observed cluster from 250 events with right lane

departures using a PCA algorithm [ESF19].
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5.3.3 Hierarchical Agglomerative Clustering

The hierarchical clustering technique is one of the popular clustering techni-
ques in multivariate time-series analysis and is often represented graphically
in a cluster-map consisting of a dendrogram and a heat map [E+18]. The
dendrogram is a tree-like diagram that shows the cluster-subcluster relation-
ships and the order in which clusters are merged. The heat map represents the
proximity matrix after the merge operations. The Hierarchical Agglomerative
Clustering (HAC) produces a hierarchy of nested clusters. The cluster analy-
sis method follows a bottom-up approach in performing clustering, starting
at the lowest level where each time-series is a cluster and performing merge
operations in sequence until one cluster including all time-series is left.

In addition, the inputs of the HAC algorithm consist of a pairwise distance
matrix and a linkage criterion to update the matrix during the merge operations.
Three of the most popular linkage criteria are: Single, average and complete.
First, the single linkage defines new distances between clusters as the minimum
distance between any two series in the different clusters when merging two
clusters. Next, the average linkage defines the distance between two clusters as
the average pairwise distance between all time-series in both clusters. Finally,
the complete linkage defines new distances as the maximum distance between
any two time-series in the different clusters. The choice of the appropriate
matrix and the corresponding linkage criterion play a major role for the HAC
algorithm to effectively update the proximity matrix during the merge process.
Therefore, a complete linkage for the algorithm fHAC is chosen to be less
susceptible to noise and outliers, as shown in algorithm 1.

Algorithm 1 HAC algorithm with NCC-based distance measure and complete
linkage.

1: procedure fHAC(G =

{
g(t)

}T

t=1
, DNCC, complete linkage)

2: while length(G) > 1 do
3: g(1) , g(2) ← max

g(𝑖) ,g( 𝑗) ∈G
DNCC (g(i) , g(j) ) ∀ g(𝑖) ≠ g( 𝑗 )

4: G = (G \
{
g(1) , g(2)

}
) ∪

{
g(1) ∪ g(2)

}
5: return G
6: end while
7: end procedure
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The hierarchical clustering is executed by starting with each element as a
singleton cluster G and then recursively merging the two nearest clusters g(1)
and g(2) until a single cluster remains. As a further case study on cluster ana-
lysis, the HAC is applied to an AEB function in response to stationary objects.
The emergency braking operation is initiated to achieve a predetermined target
safety distance between the Ego-vehicle and the preceding object. Two ob-
ject list variables measured by the RADAR sensor are selected to characterize
the event-based driving situations, namely the lateral deviation drel

y [m] of the
relevant stationary object and the predicted road curvature ^ego [1/km].

The three types of escalation levels where abstractly mentioned in 3, as type
1, 2 and 3; in which, the first escalation level E1

s , visual and audible alarms
are emitted as a warning for the driver as long as a relevant object is within a
predefined distance and closing speed. If the truck driver does not react to the
haptic and automatic partial braking of the second escalation level E2

s , and if the
threat worsens further, then emergency braking occurs in the third escalation
level E3

s at a point where the collision is imminent. Figure 5.6 shows the signal
prototype of selected sensor data variables. The positive curvature ^ego [1/km]
values indicate driving in a left turn, while the negative ones indicate right turn
driving. A positive lateral distance drel

y [m] indicates that the object is on the
left side of the Ego vehicle, while a negative lateral distance indicates that the
object is on the right side.

Figure 5.7 shows a clustermap to visualize the hierarchical clustering of time-
series events using complete linkage within four clusters of unlabeled trigger-
events caused by stationary objects with only the escalation levels E1

s and
E2

s . No triggering events were recorded for the escalation level E3
s of the entire

FOT campaign. The well-separated clusters show a very strong, block-diagonal
pattern in the reordered proximity matrix.

The clusterC1
s displays 179 driving situations with 53% in total of 337 triggered

events in which the Ego-vehicle triggers a false alarm in a left turn due to an
irrelevant obstacle on the right lane. The characteristic waveforms of cluster
C1

s represent driving in a left turn. This cluster indicates an increasing negative
lateral distance drel

y [m] to the object in front, which indicates that the truck is
moving to the left. The driving in a left-hand curve is also evident from the
increasing value of road curvature positively.
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This zone doesn't represent
any reliable lateral deviations
after passing the stationary
object.

Figure 5.6: Characteristic waveforms of the trajectories based on the road curvature of the Ego-
vehicle ^ego [1/km] and the lateral distance of the stationary object in front of the
Ego-vehicle drel

y [m] for each cluster [ESFG20].

The cluster C2
s indicates 58 driving situations with 17% in which the Ego-

vehicle erroneously triggers a warning with an unrelated obstacle located on
a left-hand traffic island. This cluster shows events where the truck has driven
to the right and subsequently to the left, basically driving around the object
from the right-hand side. As a result, characteristic signal courses of the cluster
C2

s show driving around an object from the right-hand side. Furthermore, the
cluster C3

s collects 32 driving situations with 10% in which the Ego-vehicle
triggers a false-triggered event with an unrelated obstacle located on a right-
hand traffic island. The cluster C3

s demonstrates that trucks drove around an
object from the left-hand side. Eventually, the cluster C4

s represents 68 driving
situations with 20% in which the Ego-vehicle triggers an inappropriate warning
in a right turn due to an irrelevant obstacle on the left lane. The cluster C4

s
indicates events where trucks are driving in a right curve.
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Cs

Cs

Cs

Cs

1

2

3

4

Figure 5.7: Clustermap of hierarchical clustering with complete linkage from 337 driving situa-
tions using the HAC of time-series data from ^ego [1/km] and drel

y [m] [ESS+19c].
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Figure 5.8 illustrates the four clusters, which cause false warnings of the AEB
function by detecting bounding objects of the road as relevant objects, and
which can be identified by trigger conditions. In the highway engineering, the
transition curve is an essential design element in the horizontal projection of
the road design besides the straight line and the circular arc. The transition
curve is a curve in which curvature ^road [1/km] varies uniformly with respect
to its length. It allows a gradual change from one radius to another or from
a straight line to a circular curve, since a straight line is merely a curve of
infinite radius. Therefore, a circle has a constant curvature and a straight line
has a curvature of 0. The most common transition curve is the clothoid, which
ensures a smooth transition between the horizontal alignment elements with a
constant curvature. As a transition curve type, the combined curve follows the
sequence (clothoid - circular arc – clothoid). As a further type of the transition
curve, the S-shaped clothoid, also called inflection line, consists of two clothoid
branches with curvature in opposite directions [Küh13].
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179 driving situations for the cluster       with the combined curve to the left  

58 driving situations for the cluster       with the S-shaped clothoid to the rightCS
2

32 driving situations for the cluster       with the S-shaped clothoid to the left CS
3

68 driving situations for the cluster       with the combined curve to the rightCS
4

CS   
1

Figure 5.8: Characterization of 337 driving situations on the basis of recorded sensor signals for
environment perception and their system reactions during the FOTs [BES+21]. In real-
world footage (Source: documentation camera).
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Coverage

As expound in chapters 2,3 and 4, the vision of accident-free driving acceler-
ates the development of intelligent, connected and complex driving functions
in CMVs. The conventional test methods pose two major challenges for the
testing of ADFs. The numerous combinations of relevant driving scenarios
present a challenge to meet a complete set of functional requirements. On the
other hand, ADFs employ machine learning algorithms with opaque functional
requirements. As discussed in chapters 3 and 4, the release of automated CMVs
requires not only comprehensive testing against realistic driving scenarios, but
also the KPIs to evaluate the ADFs with respect to dealing with uncertain-
ties [Rös20]. Consequently, the further development and market introduction
of ADFs have led to a need for new methods of software development and
evaluation [HS10].

The road traffic expresses an open parameter space in which an infinite
number of different traffic situations can occur. But it is also not possible
to guarantee absolute safety for automated CMVs. Due to the complexity
of the development of ADFs, SOTIF recommends continuous improvement
iteratively, so that the residual risk can be accepted [SH19b]. Although a
human driver doesn’t drive perfectly at times, especially during the first few
driving lessons, the development of his predictive mental model enables him
to expand his accumulated driving skills. Therefore, the software product lines
have established knowledge-based and data-driven test methods to ensure the
functionality of their products in terms of robustness, reliability and safety.
Moreover, a functional decomposition is necessary to present appropriate ar-
guments by measuring and addressing the residual risks caused by deficiencies
in the environmental perception sensors [Hül18]. Accordingly, the measurable
safety framework provides a data-driven test method that complements the
knowledge-based test method and adaptively enriches test cases with an ODD
coverage.
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6.1 Measurable Safety Framework

There are numerous steps in the data mining process to ensure continuous mon-
itoring and learning from field observations. For this purpose, the measurable
safety framework aims at bridging the gap between the knowledge-based and
the data-driven test methods by continuously expanding knowledge in an ODD
coverage. In addition, the framework provides a meaningful termination cri-
teria for testing the ADFs based on the performance evaluation of individual
components as well as that of the entire system. Figure 6.1 schematically
illustrates a test method using the measurable safety framework.

risk assessment matrix

(reliability analysis)

measureable safety assessment

III

Operational Design Domain coverage 

exploration of parameter space

(correlation and sensitivity analysis)

ontology-based scenario management

(equivalence class partitioning)

knowledge-based test method

(requirements-based testing)

virtual testing

data-driven test method

(scenario-based testing)

Field Operational Testing

V

II

I

IV

risk acceptance threshold

severity
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eq

ue
nc
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no injuries fatal

lo
w

h
ig

h

acceptable risk

unacceptable risk

VI

VII

Further Development and Optimization of the DuT

VIII

Figure 6.1: Overview of the measurable safety framework with its main elements by means of test
termination criteria and ODD coverage [ESS+19c].
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All ADFs are required to be compliant with the ISO 26262:2018 for functional
safety and shall not adversely affect each other. Consequently, the ADFs need
to be adequately safeguarded to ensure that the functional safety requirements
of ISO 26262:2018 are met, in particular with regard to unintended interven-
tions. The following steps are obligatory steps performed in the test method
to evaluate the optimization quality of ADFs within the ODD of the vehicle.
They do not need to always be in same sequence as mentioned below, their
order can vary as per requirement.

(I) Verification of the absence of logical errors for the ADF by leveraging
the HiL test bench according to the knowledge-based requirements, as
presented in section 6.2.

(II) Identification of statistical errors within the ADF by scenario-based
testing using cluster analysis of time-series data in a cloud database, as
shown in section 5.3.

(III) Determination of criticality metrics for the ADF through correlation
analysis between the criticality threshold of synthetic driving scenarios
and events from the various clustered naturalistic driving situations, as
displayed in section 6.4.

(IV) Execution of test cases on the HiL test bench for the extracted logical
scenarios with the ontology-based scenario management after converting
the open-loop detection data to closed-loop control data within the ODD
coverage, as presented in section 6.3

(V) Exploration of the parameter space for the observed logical scenarios
using sensitivity analysis to generate an approximation model of the
parameters under consideration, as demonstrated in section 6.5.

(VI) Prediction of the risk acceptance threshold as a confidence level using
reliability analysis to estimate the probability of exceeding the safety
margin using various sampling methods, as exposed in section 7.2.

(VII) Definition of the test termination criteria on the basis of the generated
tolerable risk curve as reference safety threshold for the further develop-
ment of the ADFs and the decision whether more kilometers are needed
or more simulations have to be carried out, as shown in section 7.1.
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Another approach to account for additional field data is specified as an optional
method step:

(VIII) Comparison of the additional field data with observed logical scenarios,
possible extension of the number of clusters, repetition and application
of the steps (II) to (VII).

6.2 Demonstration Case Study

The AEB function comprises a detection unit to determine the distance
and speed of the Ego-vehicle relative to the leading object or obstacle. The
emergency braking procedure is initiated in steps to achieve a predetermined
target safety distance between the Ego-vehicle and the object or obstacle in
front. The target safety distance corresponds to the latest time at which full
braking must be initiated to avoid a collision. As per seen in chapters 3 and
4, the process of bringing a CMV to standstill requires a complex interaction
between the brake actuator, the CMV tires, the CMV dimensions, the load
conditions and the road surface.

False interventions can be avoided or at least significantly reduced by the de-
tection of edge structures and boundary objects of the road (e.g. guideposts,
crash barriers, traffic signs, etc.). Such constructions and objects depend on
the road type and are taken into account when triggering the escalation levels
E1

s , E2
s and E3

s by adapting the triggering conditions to the road classification.
The ISO 22839:2013 specifies a test method to define the minimum func-
tionality requirements of the AEB system with respect to FP and FN events.
The scenario-based test concept emphasizes the testing of particularly critical
traffic scenarios. Most typical traffic situations are not regarded as particularly
dangerous and therefore contribute relatively less to the PoS. The identification
of critical scenarios therefore requires indicators that quantify the criticality of
traffic situations [Sch17a]. The deterministic TTR indicators are used, which
describe the remaining time until a critical event occurs, such as Time HeadWay
(THW) and TTC. The THW describes the required time for the Ego-vehicle to
reach the current position of the relevant object, as illustrated in equation 6.1.

THW =
drel

x

𝜐
ego
x

,∀ 𝜐
ego
x > 0 (6.1)
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The TTC describes the time at which a collision occurs, if Ego-vehicle and
detected object don’t change their speed and direction. Nevertheless, TTC is
used as a generic KPI for the functional evaluation even with constant relative
speeds and accelerations. Equation 6.2 presents the mathematical description
of the TTC at a constant relative velocity between the Ego-vehicle and the
stationary object for each escalation level (E1

s , E2
s and E3

s ) with emergency
braking of the Ego-vehicle until standstill.

TTC =
drel

x

𝜐rel
x

,∀ arel
x = 0, 𝜐rel

x > 0, drel
x > 0 (6.2)

In case of a constant relative acceleration between the Ego-vehicle and the pre-
ceding object for each escalation level (E1

s , E2
s and E3

s ) with emergency braking
of the Ego-vehicle until standstill, the equation 6.3 gives the mathematical
description of the TTC, as follows:

TTC =
−𝜐rel

x +
√︃(

𝜐rel
x

)2 + 2 ∗ arel
x ∗ drel

x

arel
x

,∀ arel
x < 0, 𝜐rel

x > 0, drel
x > 0

(6.3)
The developed test method executes step (I) by elimination of logical errors
through verification of the AEB function using the HiL platform — briefed
in chapter 3, and detailed in chapter 4 — according to the knowledge-based
requirements, as depicted in figure 6.2. The logical errors represent a subset of
the discrepancies between the specified and implemented behavior of the AEB
algorithm. The simulation results rely on synthetic data from a camera ECU
and a RADAR sensor model, which are applied to the HiL test bench.

The TTC parameters are determined on the basis of the temporal progression
of the Ego-vehicle’s braking when approaching a stationary object at different
longitudinal velocities 𝜐rel

x [km/h] at the various escalation levels (E1
s , E2

s and
E3

s ). If the braking cascade of AEB controller is triggered when approaching a
stationary object, the minimum TTC can be evaluated accordingly. Therefore,
the pass/fail criteria use criticality parameters such as THW and TTC for
the criticality assessment of the test results [JBKW18]. Other deterministic
indicators use vehicle dynamics parameters and physical capabilities of the
CMV to assess criticality, such as the required braking acceleration.

The deficit of these indicators is their reliance on the assumption of proper
trajectory prediction. Consequently, small changes in motion prediction can
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Figure 6.2: Identification of the TTC parameters using the HiL platform by scenarios approaching
a stationary object with a straight road at different longitudinal velocities of the Ego-
vehicle [ESS+19c].

lead to significantly different results [W+16]. In step (II), the measurement data
from country-specific field tests are recorded and stored centrally in a cloud
database. Then, the cluster analysis takes place to identify the FP and FN errors
(elucidated in chapter 2) from the field observation. These error types occur due
to environmental influences during operation and are statistical in nature for
the discrepancy between the intended and specified behavior. The criticality
thresholds are derived in step (III) from the simulation results using an ap-
propriate regression function. Subsequently, a correlation analysis is applied
between the proposed criticality threshold from synthetic driving scenarios and
events from the individual grouped naturalistic driving situations. In step (IV),
the HiL platform employs systematic test case generation to extend the test
coverage within the applied ODD using ontologies and equivalence classes.
The conversion rules derive the control data of concrete scenarios from the
characteristic waveforms of the acquired sensor signals from the FOT.
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6.3 Test Case Generation

Figure 6.3 illustrates exemplary time-series of the detected sensor signals of
the cluster C1

s . The cluster C1
s presents driving situations in a combined curve

to the left, where the predicted road curvature ^ego[1/km] is increased. At
the same time, the lateral deviation to the stationary object in front drel

y [m] is
decreased.

Figure 6.3: Event-based data acquisition of the curvature of the Ego-vehicle ^ego[1/km] (left) and
lateral offset of the stationary object in front drel

y [m] (right) for the cluster C1
s [ESD20].

On the basis of the stochastic variation within the parameter space of the logical
scenarios, the process of generating the concrete parameter sets for the ontolo-
gies is ensured. Thereby, the identification of a concrete set of parameters
within the ODD coverage follows the search for critical parameter sets within
the parameter space. Accordingly, each concrete parameter set corresponds to
a concrete scenario and vice versa.
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Figure 6.4 depicts a logical scenario from the cluster C1
s . The characteristic

waveforms of cluster C1
s represent driving in a left turn, as seen in figures 5.6

and 5.8. The ontology uses a [consists_of] statement to model the elements of a
road network layout with two lane classes and one class for a hard shoulder. The
statements [has_right_neighbour] and [has_left_neighbour] are used to arrange
road elements to each other. The position instances are generated on the basis
of a relation [offers_position] for the ontology road elements. The statements
[left_of], [right_of], [front_of] and [rear_of] are utilized to arrange the position
instances with logic reasoning. The statements [driving_on] and [located_on]
are employed to control the dynamic objects with different position instances.
The object [obj1] is defined as a stationary object on the hard shoulder. The
ontology specifies axioms that define constraints on attributes and relationships
for specific concepts.

The semantic transformation rules utilize the open-loop sensor signals acquired
by the ADDR to generate the respective closed-loop control data within the
scenario synthesis process. These rules are applied, for example, to express
the obtained curvature data ^ego [1/km] as Ego-vehicle trajectory data within
Cartesian co-ordinates for the concrete scenarios. The direction angle 𝜔i [◦] is
measured between the tangent in the current position (i) of the clothoid and
the initial direction with (^road≈ 0). The formula [𝜔i = 0.5 ∗ Li ∗ ^i] calculates
the direction angle 𝜔i [◦] based on the length of the clothoid arc to the current
point Li [km] and the current curvature ^i[1/km] [Kol10]. Equations 6.4 and
6.5 calculate the xi [m] and yi [m] in Cartesian co-ordinates as follows:

xi =

√︂
2Li
^i
∗ √𝜔i ∗

{
1 −

𝜔2
i

(5)2!
+

𝜔4
i

(9)4!
− · · ·

}
(6.4)

yi =

√︂
2Li
^i
∗ √𝜔i ∗

{
𝜔i
3
−

𝜔3
i

(7)3!
+

𝜔5
i

(11)5!
− · · ·

}
(6.5)

The OWL is implemented in the ontology for each logical scenario, that allows
the Semantic Web Rule Language (SWRL)1 to combine logic operators into
rules. Therefore, invalid or forbidden combinations can be eliminated from the
scenario catalog.

1 https://www.w3.org/Submission/SWRL/

136

https://www.w3.org/Submission/SWRL/


6.3 Test Case Generation

driv
en path

rigid path
Ego-vehicle

d y

position #3

positi
on #2

position #1

obj1

hard 
shoulder #1

lane #1

lane #2

position 
    #3

position 
    #2

Ego-vehicle obj1

driving_on

located_onleft_of

right_of

 hard 
shoulder 
   #1

lane
#1 has_left_neighbour

has_right_neighbour

has_left_neighbour

has_right_neighbour

offers_position
offers_

positi
on

logical scenario 
        #1

consists_of consists_
of

consists_of

lane 
#2

κego

ψ x

y

position 
    #1

rear_of

front_of

located_on

of
fe

rs
_p

os
it

io
n

Figure 6.4: Logical scenario synthesis of cluster C1
s when driving on a left curve during coming

close to a stationary object with 179 events [ESD20].
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The SWRL rules are included in the ontology file2 to extend the axioms of the
logical scenario by inferring knowledge [UNGO21]. The context-driven test
concept requires the overall probability PT that an AEB function is faulty and
executes a set of scenarios FT in which the AEB function performed incorrectly.
Since the logical scenario FC for combined curves presents clusters C1

s and
C4

s as a set of scenarios in which the Ego-vehicle drives in a combined curve
with a stationary object on the side, its conditional probability is determined by
P(FT |FC) as probability that the system operates erroneously when driving in
a curve with a stationary object on the side. P(FC) represents the probability,
whereby driving in curves with the object standing sideways occurs in all traffic
scenarios. If the clusters C2

s and C3
s have to be considered, the ontology has

to be expanded with the functional scenario FS for S-shaped clothoid curves.
The combined curve consists of a sequence of a clothoid, then a circular, and
then a clothoid again. Meanwhile, the S-shaped clothoid consists two clothoid
branches with curvature in the opposite direction and abutting at their zero
point [Küh13].

Since the logical scenario FS describes the set of scenarios in which the vehicle
goes around a stationary object, its conditional probability is determined by
P(FT |FS) as probability that the system operates erroneously when driving
around a stationary object. P(FS) represents the probability, whereby driving
around a stationary object occurs in all traffic scenarios. Equation 6.6 presents
the overall probability PT to fulfill the functional scenario catalogs extracted
from cluster analysis of triggered events for an AEB function.

PT = P(FT) = P(FT |FC) ∗ P(FC) + P(FT |FS) ∗ P(FS) (6.6)

In general, a functional scenario can be defined as a combination of logical
scenarios U = [U1,U2, · · · ,Un] of n-dimension. The overall probability of
functional scenarios can be generally formulated as in equation 6.7.

PT = P(Ψ) =
n∑︁

i=1
P(Ψ|Ui) ∗ P(Ui) (6.7)

2 https://protege.stanford.edu/

138

https://protege.stanford.edu/


6.4 Correlation Analysis

6.4 Correlation Analysis

The curve fitting process uses an appropriate regression function to generate an
ideal criticality threshold from the simulation calculations applied to the HiL
test bench. While the variable slope sigmoidal equation is often used for a re-
gression analysis of pharmacological dose-response curves, the four-parameter
logistic regression is generally also employed for curve fitting analysis. The
dose-response curve takes the form of a sigmoid curve that is shaped like the
letter S.

Equation 6.8 uses the four-parameter logistic nonlinear regression to fit the
curve of the TTCE1

ref [s] measurements, where P1 denotes the baseline response,
P2 the maximum response, P3 the turning point of 𝜐E1

x [km/h] giving a halfway
response between the baseline and maximum, and P4 the curve slope. The
TTCE1

ref [s] refers to the ideal criticality threshold of the TTC for the escalation
level E1

s based on synthetic data using driving scenarios approaching of a
stationary object with a straight road at different longitudinal velocities of the
Ego-vehicle.

TTCE1
ref = P1 + P2 − P1

1 +
[

10P3

10𝜐E1
x

]P4 = P1 + P2 − P1
1 + 10(P3−𝜐E1

x )∗P4
,∀ 𝜐E1

x > 0 (6.8)

The sigmoidal dose-response equation extracts the logistic curve parame-
ters based on the TTCE1

ref [s] measurements from the HiL test bench, where
(P1= 0.52, P2= 4.24, P3= 37.6 and P4= 0.02). Subsequently, the correlation
analysis measures the statistical relationship between the FOT data and the
ideal criticality threshold to a standardized covariance ranging between −1
and 1. The direction and strength of the linear dependence between the two
time-series are quantified by that coefficient. The estimated Pearson Product-
Moment Correlation Coefficient (PPMCC) becomes more inaccurate, as its
value is closer to zero. If both variables have a strong positive correlation, the
PPMCC is close to one, for a strong negative correlation is close to minus one.
The linear dependence between TTCE1

ref [s] and TTCE1
fot [s] can be expressed as

ratio between the covariance and the product of standard deviations.
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6 Operational Design Domain Coverage

The TTCE1
fot [s] designates the TTC of the escalation level E1

s for the cluster
C1

s events with the combined curve to the left. Equation 6.9 calculates the
PPMCC= 0.8055, where cov(TTCE1

ref ,TTCE1
fot ) refers to the covariance,𝜎TTCE1

ref

is the standard deviation of TTCE1
ref [s] and 𝜎TTCE1

fot
is the standard deviation of

TTCE1
fot [s].

PPMCC = 𝜌 (TTCE1
ref ,TTCE1

fot )
=

cov(TTCE1
ref ,TTCE1

fot )
𝜎TTCE1

ref
∗ 𝜎TTCE1

fot

(6.9)

Equations 6.10 and 6.11 calculate the covariance and the standard deviations
for TTCE1

ref [s] and TTCE1
fot [s], where `TTCE1

ref
and `TTCE1

fot
are the estimates of the

mean values, respectively.

cov(TTCE1
ref ,TTCE1

fot ) =
n∑︁

i=1
(TTCE1

ref − `TTCE1
ref
) (TTCE1

fot − `TTCE1
fot
) (6.10)

𝜎TTCE1
ref

=

√√ n∑︁
i=1

(
TTCE1

ref − `TTCE1
ref

)2
, 𝜎TTCE1

fot
=

√√ n∑︁
i=1

(
TTCE1

fot − `TTCE1
fot

)2

(6.11)

The coefficient of determination, denoted R2, is the square of PPMCC with
(R2= 0.6488) and evaluates the strength of the linear relationship between
the two time-series TTCE1

ref [s] and TTCE1
fot [s]. While the PPMCC and R2 val-

ues show a strong positive correlation between TTCE1
ref [s] and TTCE1

fot [s], the
equation 6.12 calculates the dE1

TTC [s], which is assumed as a quantifiable error
indicator of the environment perception.

dE1
TTC = TTCE1

fot − TTCE1
ref (6.12)

The TTCE1
fot parameters of triggered events from FOT can be correlated with

the pass/fail criteria obtained from the HiL to identify the criticality of each
triggered event. Figure 6.5 shows the parameter identification of dE1

TTC [s] based
on the correlation and regression analysis between TTCE1

ref criticality threshold
and the TTCE1

fot for 179 events of cluster C1
s at the escalation level E1

s .
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6.4 Correlation Analysis

Figure 6.5: Correlation and regression analysis between digital and physical tests with the example
of the TTC criticality assessment [ESD20].

To avoid accidents, CMVs need greater distance and time to come to a complete
stop compared to passenger cars. The braking distance of a truck is even longer
when it is hauling a heavy load and/or there are adverse road conditions such
as snow, ice or rain, as demonstrated in chapter 4. At the same time, the
AEB function requires to operate in the robust detection ranges, so the TTCE1

fot
curve saturates at higher velocities of 𝜐E1

x above 50[km/h] to keep the reaction
distance increasing linearly with the 𝜐rel

x and thus optimize the sensitivity and
specificity of the AEB. The TTCE1

ref is calculated by the HiL test platform
based on synthetic sensor models, whereby the simulation environment is
communicating with the embedded ECU for AEB function under real-time
conditions. The dE1

TTC [s] represents the subtraction between TTCE1
ref [s] and

TTCE1
fot [s] values and is expressed as a numerical value denoting a quantifiable

error indicator.
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6 Operational Design Domain Coverage

6.5 Sensitivity Analysis

Saltelli et al. [S+08] defines the sensitivity analysis as a study of how the
uncertainty in the output of a model or system can be apportioned and allo-
cated to different sources of variation in its inputs. After defining the input
variables and model responses, the sensitivity analysis then scans the param-
eter space with Design of Experiments (DoE) or sampling methods. Ebert et
al. [EGK+20] applies the sensitivity analysis to reduce the dimension of the
DoE to the most important factors as a part of the engine calibration process
within the Real Driving Emissions (RDE) test cycle. Accordingly, the sensi-
tivity analysis can be used to analyze the contribution of each input variable to
the scatter of each model response. Each scattering input specifies a distribu-
tion type including mean value and variance, whereby the input variables are
defined as random variables. The dependencies between the input variables
can be formulated in terms of linear correlations. The meta-models are also
used to represent the model responses by surrogate functions in terms of
the model inputs [BSH17]. Meta-model approaches such as Kriging approx-
imation, Metamodel of Optimal Prognosis (MOP) approximation, Support
Vector Regression (SVR) and Artifical Neural Network (ANN) provide an
automatic reduction of the variable space. The meta-model applied in this
work is based on the anisotropic kriging approach using the Metamodel of
Optimal Prognosis (MOP) solver [MW08].

Most et al. defines the coefficient of prognosis as a sensitivity measure to
determine the optimal input variable subspace together with the optimal meta-
model approach. The sensitivity analysis is applied in the example of the
cluster C1

s at the escalation level E1
s . The sensitivity measures are determined

in step (V) using the sensitivity analysis, whereby the input variables of the
approximation model are (𝜐E1

x [km/h],dE1
x [m], dE1

y [m], ^E1
ego[1/km] and dE1

TTC[s])
and the approximation model output is TTCE1

min [s]. The scalar random variables
can be used to model the scattering inputs. The MOP solver reduced the input
variables from [𝜐E1

x ,dE1
x ,dE1

y ,^E1
ego,dE1

TTC] into [𝜐E1
x ,dE1

TTC]. While it is important
to note that the variable ^E1

ego was eliminated by the MOP solver, although
curvature could play a role in determining TTCE1

min for such FP events — as
shown in the figure 6.4 — , it did not, arguing that correlation does not imply
causation.

142



6.6 Exploration of Parameter Space

Definition 6.1 (minimum TTC): It describes the lowest time-to-collision in
which an environmental perception sensor reports a tracked object list with
objects classified as relevant for the ADF. The minimum TTC relates to the
error-object classification in an inverse-proportional sense; the lower the value
of TTCE1

min, the more prominent the error in classifying the object for such FP
events in the cluster C1

s [BES+21].

6.6 Exploration of Parameter Space

In general, the mean value and the standard deviation are used to describe the
variation of a random variable. However, the shape of the distribution function
can have a significant influence on the results of a stochastic analysis. Accord-
ingly, the parameter space exploration requires the definition of distribution
types including mean value and standard deviation for all random input vari-
ables. The truncated normal distribution is chosen as a suitable distribution type
for the measurements of Ego-vehicle curvature ^E1

ego[1/km], lateral deviation
to the stationary object dE1

y [m] and error indicator of environment perception
dE1

TTC[s] at the escalation level E1
s of the cluster C1

s . The truncated normal
distribution is a normal Gaussian distribution that is restricted to lie within a
finite range, i.e. [^min

ego ≤ ^E1
ego ≤ ^max

ego ]. The truncated normal distribution can
be expressed in terms of the normal Gaussian distribution as follows:

fPDF (^E1
ego; ^min

ego , ^
max
ego , `, 𝜎) =

1
𝜎

Ω

(
^E1

ego−`
𝜎

)
Φ

(
^max

ego −`
𝜎

)
−Φ

(
^min

ego −`
𝜎

) , ^min
ego ≤ ^E1

ego ≤ ^max
ego

(6.13)

fCDF (^E1
ego; ^min

ego , ^
max
ego , `, 𝜎) =

Φ( ^
E1
ego−`
𝜎
) −Φ( ^

min
ego −`
𝜎
)

Φ( ^
max
ego −`
𝜎
) −Φ( ^

min
ego −`
𝜎
)
, ^min

ego ≤ ^E1
ego ≤ ^max

ego

(6.14)

where ` and 𝜎 denote the mean and standard deviation of the parent normal
distribution and ^min

ego= −4.5[1/km] and ^max
ego = 3.9[1/km] as the lower and upper

truncation points respectively.
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6 Operational Design Domain Coverage

The Ω and Φ designate the Probability Distribution Function (PDF) and the
Cumulative Distribution Function (CDF) for the normal Gaussian distribution
respectively. Figure 6.6 illustrates the PDF and CDF estimations using the
truncated normal distribution. Equations 6.15 and 6.16 estimate the mean and
standard deviation of the truncated normal distribution.

Figure 6.6: Estimation of the PDF and CDF of the Ego-vehicle curvature ^E1
ego[1/km] (top) and the

lateral deviation to the stationary object dE1
y [m] (bottom) at the escalation level E1

s of
the cluster C1

s .

`^ = ` + 𝜎 ∗
Ω( ^

min
ego −`
𝜎
) −Ω( ^

max
ego −`
𝜎
)

Φ( ^
max
ego −`
𝜎
) −Φ( ^

min
ego −`
𝜎
)

(6.15)
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6.6 Exploration of Parameter Space

𝜎^ = 𝜎 ∗

√√√√√
1 +
( ^

min
ego −`
𝜎
)Ω( ^

min
ego −`
𝜎
) − ( ^

max
ego −`
𝜎
)Ω( ^

max
ego −`
𝜎
)

Φ( ^
max
ego −`
𝜎
) −Φ( ^

min
ego −`
𝜎
)

−

Ω( ^

min
ego −`
𝜎
) −Ω( ^

max
ego −`
𝜎
)

Φ( ^
max
ego −`
𝜎
) −Φ( ^

min
ego −`
𝜎
)


2

(6.16)

The same calculations are applied for the lateral deviation to the stationary
object dE1

y [m], where dmin
y = −2.6[m] and dmax

y = 0.8[m] as the lower and upper
truncation points respectively. The false warnings from the cluster C1

s are
presented as an example for the sensitivity analysis. Accordingly, the sensitivity
measures are analyzed to define the important input variables in relation to the
response variable TTCE1

min[s].

The triangular distribution is chosen as a suitable distribution type for the
measurements of the Ego-vehicle longitudinal velocity 𝜐E1

x [km/h] and the
minimum time to collision TTCE1

min[s] at the escalation level E1
s of the cluster

C1
s . The following equations calculate the PDF, CDF, mean and standard

deviation of the Ego-vehicle longitudinal velocity 𝜐E1
x [km/h] based on the tri-

angular distribution respectively, where 𝜐min
x = 7.9[km/h], 𝜐max

x = 83.4[km/h]
and 𝜐

peak
x = 59.6[km/h] as the lower limit, upper limit and mode respectively.

Equations 6.19 and 6.20 estimate the mean and standard deviation of the
triangular distribution of the 𝜐E1

x [km/h].

fPDF (𝜐E1
x ; 𝜐min

x , 𝜐max
x , 𝜐

peak
x ) =


2[𝜐E1

x −𝜐min
x ]

[𝜐max
x −𝜐min

x ] [𝜐peak
x −𝜐min

x ]
, ∀𝜐min

x ≤ 𝜐E1
x ≤ 𝜐

peak
x

2[𝜐max
x −𝜐E1

x ]
[𝜐max

x −𝜐min
x ] [𝜐max

x −𝜐peak
x ]

, ∀𝜐peak
x < 𝜐E1

x ≤ 𝜐max
x

(6.17)

fCDF (𝜐E1
x ; 𝜐min

x , 𝜐max
x , 𝜐

peak
x ) =


[𝜐E1

x −𝜐min
x ]2

[𝜐max
x −𝜐min

x ] [𝜐peak
x −𝜐min

x ]
, ∀𝜐min

x ≤ 𝜐E1
x ≤ 𝜐

peak
x

1 − [𝜐max
x −𝜐E1

x ]2

[𝜐max
x −𝜐min

x ] [𝜐max
x −𝜐peak

x ]
, ∀𝜐peak

x < 𝜐E1
x ≤ 𝜐max

x

(6.18)
`𝜐 =

1
3
[𝜐min

x + 𝜐max
x + 𝜐peak

x ] (6.19)
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𝜎𝜐 =

√︄
[𝜐min

x ]2 + [𝜐max
x ]2 + [𝜐

peak
x ]2 − [𝜐min

x ∗ 𝜐max
x ] − [𝜐min

x ∗ 𝜐peak
x ] − [𝜐max

x ∗ 𝜐peak
x ]

18
(6.20)

The same calculations are applied for the minimum time to collision TTCE1
min[s]

on the basis of the triangular distribution function. Figure 6.7 shows the PDF
and CDF estimations of the 𝜐E1

x [km/h] using the triangular distribution and the
dE1

TTC[s] using the truncated normal distribution. The calculations are applied
for the error indicator of environment perception dE1

TTC[s], where the minimum
value of dE1

TTC = −1.5[s] and the maximum value of dE1
TTC = 0.14[s] are the

lower and upper truncation points respectively.

Figure 6.7: Estimation of the PDF and CDF of the error indicator of environment perception
dE1

TTC[s] (top) and the Ego-vehicle longitudinal velocity 𝜐E1
x [m] (bottom) at the esca-

lation level E1
s of the cluster C1

s .
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7 Reliability Analysis Using
Sampling Methods

The ADFs in a vehicle have to comply with the ISO 26262:2018 standard
for functional safety and are not allowed to influence each other negatively.
The Regulation No. 79 applies to the steering equipment of CMVs for lane
change operations. Meanwhilst, the ACSF of Category E requires minimum
monitoring ranges for the front, rear and side detection of automated vehi-
cles [EST+17]. If a motorcycle approaches the Ego-vehicle from behind, the
rear detection has to take place early enough to prevent the motorcycle from
braking abruptly when the Ego-vehicle changes lanes. If the distance is below
a critical range, the lane change request must be suppressed. At the same time,
the CMVs include a variety of series and models with tractors, semi-tractors
or trailer combinations. Consequently, the tractor-mounted environmental per-
ception sensors cannot provide a full 360° surround-view when a trailer is
coupled to the tractor. In Germany, according to Section 4 of the German road
traffic regulations, the Ego-vehicle in front must not brake suddenly without
a compelling reason. Therefore, compliance with ISO 26262:2018 is achieved
if an ADF represents an acceptable residual risk for the subsequent traffic.
A probabilistic safety analysis is needed to quantify the uncertainties and to
enable a prospective risk assessment for the testing and further development
of ADFs [BRW+17].

7.1 Probabilistic Safety Assessment

Following the application of cluster and sensitivity analysis to the real traffic
data-set — interpreted in chapters 5 and 6 — , the data is then used to deter-
mine the probability distributions of the input variables and the probability of
occurrence of the response variables [Mul18].
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7 Reliability Analysis Using Sampling Methods

In accordance with ISO 26262:2018, the reference values of the tolerable risk
curve are derived in step (VI) as a confidence level for the optimization quality
of ADFs. The measurable safety methodology aims at evaluating the SOTIF-
or OEDR-related capabilities of ADFs. Accordingly, the reliability analysis
aims at identifying the probability of safety violation for each logical scenario
[AKK+19]. The parameter space is searched with a suitable sampling method to
determine the probability that a predefined safety margin is exceeded [Roo02].
The scattering input variables are considered as random variables within the
framework of probabilistic safety analysis. Therefore, the probability of failure
Pf is defined as the probability of the event that a random vector Z falls into the
failure domain. The failure mode involves defining a failure criterion known
as the Limit State Function (LSF) or safety margin. A direct formulation of the
LSF in dependence of the input random variables is often not possible, but is
implicitly given by the simulation results of the investigated system [Bay99].
The LSF forms the basis for the reliability calculations and denoted by g(Z).
The function expresses Resistance-Load as a function of Z, where Z is a vector
of all uncertainty variables describing the loads and resistances. The failure
criterion is consequently defined as g(Z) ≤ 𝛾, where 𝛾 denotes a predefined
safety margin. For a given LSF with g(Z), the probability of failure Pf is defined
as follows:

Pf = P[g(Z) ≤ 𝛾] =
∫

· · ·
{z∈Rn |g(z)≤𝛾}

∫
fZ (z)dz (7.1)

where {z ∈ Rn |g(z) ≤ 𝛾} represents the failure domain, (z) designates the re-
alization of Z in the variable space and fZ (z) denotes the joint density function
for Z. Accordingly, the probability of failure is the integral of the joint PDF over
the failure domain. While the probability of failure is the complementary of
reliability, the failure criteria do not have to indicate a system breakdown. Such
failure criteria can be defined by the violation of quality or safety requirements.
The probability integral can be expressed as the expectation of the indicator
function I (g(z)), where I (g(z))= 1 if g(z) ≤ 𝛾 and I (g(z))= 0 otherwise. The
probability integral can be interpreted as the expected value E of the indicator
I (g(z)) as follows:

Pf = E[I (g(z))] =
∫ ∞

−∞
· · ·

∫ ∞

−∞
I (g(z))fZ (z)dz (7.2)
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7.1 Probabilistic Safety Assessment

While the space of all random variables can be separated into a safe domain and
a failure domain, the indicator’s expected value E[I (g(z))] calculates the prob-
ability of severity violations within the prospective risk assessment. The relia-
bility analysis identifies the failure region in the parameter space to predict the
probability of failure for each logical scenario. While the analytical calculation
of expected values E[I (g(z))] with the dimensional increase of input random
variables is no longer suitable for practical use, the Monte Carlo integration
approximates the indicator’s expectation E[I (g(z))] by simulation-based ap-
proximation. The simulation of rare events approximates the integral solution
using Monte Carlo Sampling (MCS) and Adaptive Importance Sampling (AIS)
methods [WPZ19]. In compliance with the HARA of the ISO 26262:2018, the
failure criteria present the different levels of severity [LPP11], whereby the
TTCE1

min[s] defines the different severity levels in an exemplary way.

The TTCE1
min describes the lowest TTC in which an environmental perception

sensor reports a tracked object list with objects classified as relevant for the
AEB function of the cluster C1

s at the escalation level E1
s . The sensitivity

analysis defines the variables 𝜐E1
x [km/h] and dE1

TTC[s] as the most important
factors influencing the variable TTCE1

min[s] as a response within the probabilistic
safety assessment. The selection is determined by the variables with the greatest
impact on the model output TTCE1

min[s]. Accordingly, the reliability analysis is
applied to the inputs and response of the cluster C1

s at the escalation level E1
s . As

discussed in section 5.3.3, theE1
s events represent phantom warnings, where the

situation was safe and a warning was erroneously signaled. The prospective
risk assessment R

(
C1

s
)

is defined as the combination of the probability of
occurrence P(C1

s ) of harm and the severity of that harm. Table 7.1 shows the
severity levels, which are divided into four regions as follows:

Severity level condition Hypothetical severity level

S3
s B [ TTCE1

min ≤ 0.5s] critical severity

S2
s B [0.5s < TTCE1

min ≤ 1s] high severity

S1
s B [1s < TTCE1

min ≤ 2s] medium severity

S0
s B [ TTCE1

min > 2s] low severity

Table 7.1: Hypothetical severity levels for object classification error based on the criticality indi-
cator TTCE1

min[s].
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7 Reliability Analysis Using Sampling Methods

Equation 7.3 represents the prospective risk for the cluster C1
s with the com-

bined curve to the left. In step (VII), the tolerable risk curve is generated as
a reference safety threshold with respect to the logical scenarios. Thereby, the
logical scenario with combined curve to the left is shown as an example in
order to prospectively estimate the risk regarding false alarms on subsequent
traffic.

R
(
C1

s

)
≈

[
Pf (S3

s | C1
s ) ∗ P(C1

s )
]
+

[
Pf (S2

s | C1
s ) ∗ P(C1

s )
]
+[

Pf (S1
s | C1

s ) ∗ P(C1
s )

]
+

[
Pf (S0

s | C1
s ) ∗ P(C1

s )
]

(7.3)

Figure 7.1 represents the PDF and CDF estimations of the minimum time to
collision TTCE1

min[s] using the triangular distribution function with the corre-
sponding severity levels. The TTCE1

min[s] is used as a prototypical safety measure
for the reliability analysis. The original measurements of TTCE1

min range between
0.03[s] and 2.27[s]. The triangular distribution is selected to approximate the
TTCE1

min distribution, where the lower bound of TTCE1
min = −0.3[s] and the upper

bound and mode of TTCE1
min = 1.91[s].

S   
3

S
S   

1

S
S   

0

SS   
2

S

Figure 7.1: Estimation of the PDF and CDF of the response variable TTCE1
min[s] of the cluster C1

s
at the escalation level E1

s .
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7.2 Monte Carlo Simulation

7.2 Monte Carlo Simulation

The MCS method estimates Pf by generating independent samples from the
PDF of fZ (z) and taking the average of the sample indicator values as an
unbiased estimator of the expected probability of failure [Zio13]. While the
joint density function fZ (z) depends on random input variables, the estimator
of its probability failure P̄f is also a random variable [Buc09]. Equation 7.4
represents the probability failure estimator P̄f as follows:

P̄f = Ē[I (g(z))] =
1

Nmc

Nmc∑︁
k=1

I (g(zk)) (7.4)

The estimator variance Var(P̄f) can be computed approximately from the gen-
erated samples. In accordance with the central limit theorem, the standard
deviation converges towards 0 for a large number of samples Nmc→∞. If
the estimator’s variance converges towards 0, the confidence interval of the
estimator becomes narrower and thus the estimator gets more confident. The
number of samples is used to normalize the standard deviation of the unbiased
estimator P̄f of the target failure probability Pf [P+14]. The normalized stan-
dard deviation is used as measure for the completion of the required number
of generated samples and is known as standard error eP̄f

.

eP̄f
=

√︄
Var(P̄f)

Nmc
(7.5)

The MCS method evaluates the probability of failure by determining whether
the LSFs are exceeded. The trial is repeated many times to ensure the con-
vergence of the statistical results. In each trail, a sample value is generated
and evaluated as a Hit or Miss (relevant or irrelevant) according to the LSF
definition. The MCS requires a large number of samples to accurately predict
the probability of failure, especially if the expected value is small. Figure 7.2
illustrates the result of MCS method used to obtain the failure probability of
the severity level S3

s . As shown in figure 7.2, the failure probability P̄f (S3
s |C1

s )
and the standard error eP̄f

(S3
s |C1

s ) are plotted against the number of samples
Nmc.
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7 Reliability Analysis Using Sampling Methods

The MCS sampling is a Hit-or-Miss sampling method. Here, the blue dots indi-
cate the target Hit samples at which the corresponding LSF condition for each
severity level is met. Meanwhilst, the yellow spots show the Miss condition, that
means they don’t fulfill the conditions required for the severity level. The Hit-
or-Miss MCS method generates Nmc samples with 1000 (assumed budget of
samples), where the number of Hits is 99 and the number of Misses is 901. The
failure probability P̄f (S3

s |C1
s ) is calculated to be 99

1000 = 0.1. For this severity
level, the Hit samples are very little compared to Miss samples and are located
for the lower values of 𝜐E1

x [km/h] towards the left end of the plot. The target
is missed for the values of 𝜐E1

x higher than 50[km/h] (In which 𝜐E1
x indicates

the velocity at escalation level 1). The footage representing such a scenario —
cluster 1 — is depicted in chapter 5. The stopping criteria of simulation depend
on the comparison between the standard error of the exceedance probability1

eP̄f
(S3

s |C1
s ) = 0.0094 and the target standard error 𝛿P̄f

= 0.05.

δPf = 0.05

Figure 7.2: Estimation of the failure probability for the severity level S3
s using the MCS method.

1 The exceedance probability represents a probability of exceeding a certain limit that can be
quantified and demonstrated to be less than an acceptable value.
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7.2 Monte Carlo Simulation

Figure 7.3 shows the failure probability of the severity level S2
s using the MCS

method with a number of samples Nmc = 1800. The number of Hits is 335 and
the number of Misses is 1465. Considering the graph for severity level S2

s as
shown in figure 7.3, here, the condition seems to be fulfilled for more numbers
of samples. This means that the number of Hit samples is increased and also
the value of 𝜐E1

x [km/h] for which the condition seems to be fulfilled. After the
first few samplings, this failure probability value falls and then becomes stable
at a level P̄f (S2

s |C1
s ) = 335

1800 = 0.19. In addition, the standard error becomes
stable gradually at the value eP̄f

(S2
s |C1

s ) = 0.0092 to be less than the required
standard error 𝛿P̄f

with 0.05. Ultimately, the standard error does not seem to be
entirely nullified, but is really low. It makes a cloud of the Hit samples slightly
shifted towards the right side. It is important to note that the figure 7.3 shows
the ratio of Hits and their corresponding velocity 𝜐E1

x [km/h]. It is obvious that
as the velocity 𝜐E1

x [km/h] increases, the sensor error dE1
TTC[s] also increases for

the specified criticality range S2
s .

δPf = 0.05

Figure 7.3: Estimation of the failure probability for the severity level S2
s using the MCS method.
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7 Reliability Analysis Using Sampling Methods

Figure 7.4 illustrates the failure probability of the severity level S1
s using the

MCS method, with a number of samples Nmc= 500. The number of Hits is
257 and the number of Misses is 243. Here, the Hit condition is improved as
compared to the previous severity level. For the severity level S1

s , the values
of 𝜐E1

x [km/h] have also increased and the cloud of Hit samples moves right-
wards again. According to the results of this sampling, the failure probability
of this level of severity is high at the beginning of sampling. It falls imme-
diately after some samples and then stabilizes at a certain level of P̄f (S1

s |C1
s )

= 257
500 = 0.51 with infinitesimal difference in each sampled value. The standard

error eP̄f
(S1

s |C1
s ) gives the value 0.022 as abort criterion of the simulation,

which is smaller than the target standard error 𝛿P̄f
.

δPf = 0.05

Figure 7.4: Estimation of the failure probability for the severity level S1
s using the MCS method.

Figure 7.5 describes the failure probability for the severity level S0
s using the

MCS with a number of samples Nmc = 1600. The number of Hits is 321 and the
number of Misses is 1279. This sampling does show the stability in the failure
probability with P̄f (S0

s |C1
s )= 321

1600 = 0.2. The value of the standard error is less
than the previous case with eP̄f

(S0
s |C1

s ) = 0.01.
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7.3 Adaptive Importance Sampling

Finally switching to the figure 7.5, the cloud of Hit samples lies to the right
side of the graph for the severity levelS0

s . Here, the target Hits are a little less in
number compared to severity levelsS1

s andS2
s . It is significant to note, that with

correspondence to figure 7.1 the studied range contains only a small number of
events. Thus, rendering this statistic improbable. However, the indication from
the graph follow accordingly to the expected flow.

δPf = 0.05

Figure 7.5: Estimation of the failure probability for the severity level S0
s using the MCS method.

The figures 7.2 to 7.5 illustrate that there is a movement in the position of the
target Hits starting from the bottom left moving towards the top right through
the severity levels, looking like a cloud of Hits.

7.3 Adaptive Importance Sampling

Since the estimator variance corresponds to the confidence, variance reduction
techniques aim at influencing the sampling in such a way that the estimator
variance becomes smaller.
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7 Reliability Analysis Using Sampling Methods

The Importance Sampling is a variance reduction method to guide the sampling
using biased normal distribution for variance reduction. The estimator includes
the Importance Sampling weight to warrant unbiasedness of the estimator. The
samples are not generated following the prescribed joint PDF of fZ (z), but with
an importance sampling density denoted as hY (y). Setting hY (y)/hY (y) into
the probability integral does not change its value, but the integral provides the
expected value.

Pf = E

[
I (g(y)) fZ (y)

hY (y)

]
=

∫ ∞

−∞
· · ·

∫ ∞

−∞
I (g(y)) fZ (y)

hY (y)
hY (y)dy (7.6)

P̄f = Ē

[
I (g(y)) fZ (y)

hY (y)

]
=

1
Nas

Nas∑︁
k=1

I (g(yk))
fZ (yk)
hY (yk)

(7.7)

The AIS reduces the estimator variance and involves several simulation
runs [O+18]. The importance sampling density hY (y) may have a larg-
er scatter. In the first iteration, the samples falling into the failure domain
{z ∈ Rn |g(z) < 𝛾} : Z |g(z) ≤ 𝛾 are statistically evaluated. The result is used
to define the parameter of normal Gaussian distribution type for the subse-
quent Importance Sampling iterations. To increase the number of Hits, the AIS
method is managed through the use of information about the LSF domain. Each
sample is weighted according to the ratio of the original density function fZ (z)
to the importance density function hY (y) to ensure correct statistics [KS13].
Furthermore, the AIS techniques can be applied to efficiently search for critical
scenarios by speeding up the parameter space exploration [O+18]. Equations
7.8 and 7.9 show the expected values of the importance sampling density hY (y)
according to the estimated mean and covariance of the samples in the failure
domain in iterative steps [Li07].

E[Y] = E[Z |g(z) ≤ 𝛾] (7.8)

E[YYT ] = E[ZZT |g(z) ≤ 𝛾] (7.9)
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7.3 Adaptive Importance Sampling

The third iteration should be performed to prove the stability of the results in an
iterative adaption scheme. Accordingly, the goal of the importance sampling
density hY (y) is to converge the estimator standard error to zero by adjusting
the importance sampling density hY (y) iteratively [BMC15]. Typically, the
target standard error for the termination criteria is set to 0.1, but in order to
conduct more samples, the target standard error was set to 0.05. (The value
= 0.05 was previously utilized in MCS sampling).

Figure 7.6 shows the estimation of failure probability of the severity level
S3

s using the AIS method with number of samples Nas = 800. The AIS algo-
rithm applies four iterations, where each iteration consists of 200 samples. The
number of Hits is 512 and the number of Misses is 288. The standard error
is calculated to be eP̄f

(S3
s |C1

s ) = 0.0088. The standard error of the estimator
doesn’t appear to be entirely eliminated, but is extremely low. The failure
probability is computed to be P̄f (S3

s |C1
s ) = 0.1 as confirmation of the MCS

result for the same severity level.

δPf = 0.05

Figure 7.6: Estimation of failure probability for the severity level S3
s using the AIS method. For

comparative purposes, these calculations in MCS are shown in figure 7.2.
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7 Reliability Analysis Using Sampling Methods

The figure 7.7 describes the behavior of the failure probability and standard
error after sampling using number of samples Nas = 900. The sampling is
performed in five iterations, with the first three iterations having a budget of
100 samples, the fourth with 200 samples, and the fifth with 400 samples.
The number of Hits is 434 and the number of Misses is 446. The standard
error is computed to be eP̄f

(S2
s |C1

s ) = 0.0088. This shows that with AIS,
the variance is successfully eliminated. This proves that the AIS method is
effective in eliminating the variance with less numbers of samples compared
to the MCS method. The failure probability is calculated to be P̄f (S2

s |C1
s )

= 0.18 as confirmation of the MCS result for the severity level S2
s .

δPf = 0.05

Figure 7.7: Estimation of failure probability for the severity level S2
s using the AIS method. For

comparative purposes, these calculations in MCS are shown in figure 7.3.

As shown in figure 7.8, the probability of failure P̄f (S1
s |C1

s ) with 0.52 using the
AIS method confirms the result extracted from the MCS method for the same
severity level. The convergence of the AIS method occurs with the required
standard error of 0.05 using a number of samples Nas = 800. Accordingly, the
standard error eP̄f

(S1 |C1
s ) of 0.036 is used as abort criteria for the simulation

runs.
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7.3 Adaptive Importance Sampling

The sampling is performed in four iterations, with the first three iterations
having a budget of 100 samples and the fourth with 500 samples. The number
of Hits is 616 and the number of Misses is 184.

δPf = 0.05

Figure 7.8: Estimation of failure probability for the severity level S1
s using the AIS method. For

comparative purposes, these calculations in MCS are shown in figure 7.4.

Figure 7.9 shows that the failure probability at severity level S0
s using the AIS

method and number of samples Nas = 800. The sampling is executed in four
iterations, with the first three iterations having a budget of 100 samples and the
fourth with 500 samples. The number of Hits is 581 and the number of Misses
is 219. Because of the very few available TTCE1

min events of the cluster C1
s at the

severity level S0
s as shown in figure 7.1, the AIS method generates a statistical

uncertainty with the result of the failure probability. As aforementioned, due to
poor sampling in the region of TTCE1

min > 2[𝑠], there were not enough sample
to explorate the values within the specific used budget of samples, resulting in
an non-coherent probability failure not achieving eP̄f

(S0 |C1
s ) less than 0.05.

Figure 7.9 shows that AIS method is the least suitable for these error ranges of
TTCE1

min and MCS method ought to be used instead.
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7 Reliability Analysis Using Sampling Methods

δPf = 0.05

Figure 7.9: Estimation of failure probability for the severity level S0
s using the AIS method. For

comparative purposes, these calculations in MCS are shown in figure 7.5.

Figures 7.6 to 7.9 show a similar type of movement of the Hit cloud from
the bottom left to the top right in comparison with figures 7.2 to 7.5. In
many cases, the AIS method requires fewer samples to achieve the required
standard error. For several iterations, the parameters of the importance sampling
density function hY (y) can be determined adaptively. The probability of failure
decreases from S1

s to S3
s , while S0

s occurs with a bigger probability than S1
s .

The safety statement can be obtained in that the failure probability for each
traffic scenario is approximated by estimating the exceedance region in the
parameter space. At the beginning of the AIS method, the required standard
error 𝛿P̄f

of 0.1 is chosen for the investigations, which generally represents a
good confidence in the result. While the AIS fulfills its required standard error
of 0.1 after a few simulation runs, but the iteration results differ strongly, the
required standard error is reduced to 𝛿P̄f

= 0.05 to force more iterations for the
AIS method. For comparability reasons, 𝛿P̄f

= 0.05 is also given for the MCS
algorithm in all severity levels. The MCS method is used as a reference, where
the results of MCS and AIS methods confirm each other.

160



8 Conclusions

The incomplete and implicit requirements are a part of the verification
challenges of ADFs. There is no complete public computer-aided traffic
simulator that contains the rules for dealing with exceptions. Moreover, testing
can detect the presence of errors, but not their absence. In addition, the Pesticide
paradox phenomenon occurs after fixing the software errors found by a scenario
catalog. As a consequence, the same catalog may no longer be suitable for the
residual errors. The incompleteness of the functional requirements can thus
be covered by requirements extraction from the field observation. The on-road
testing plays a decisive role to identify the missing functional requirements and
transform these requirements adaptively into the deployed scenario catalogs.
The scenario-based testing assumes that the majority of the mileage on the
motorway is accomplished without particular events, while critical scenarios
in real traffic are rather rare and randomly distributed. The identification and
reproducibility of critical scenarios from the KDD of on-road testing in lab-
oratory simulations or proving grounds leads to a significant reduction of the
FOT distances required for statistical approval. The scenario-based functional
decomposition, therefore, splits complex functions into sub-functions in order
to identify relevant driving scenarios that reduce the approval effort for ADFs.

8.1 Executive Summary

The status quo evaluation refers to large-scale verification as one of the decisive
challenges for the economical, reliable and safe use of ADFs in CMV product
engineering. Therefore, the systems engineering has established data-based
and knowledge-driven test methods to assure the required dependability of
their products.
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8 Conclusions

The required test distance is approximately 220 million kilometers with error-
free driving to show that the automated CMV operates with a confidence level
of 95% as safely as a human driver, as indicated in section 2.4.

RQ1: How can the knowledge-based and data-driven test platforms be
combined in a complementary and collaborative manner?

Due the rare nature of critical events, the FOTs will require a prohibitive
number of driving hours to prove the statistical superiority. At the same time,
the required total mileage is increased if an error occurs during the validation
process. Therefore, the sole reliance on FOTs is inadequate and, in particular,
time and cost-intensive when applied to the next generation of ADFs, e.g.
truck platooning and hub-to-hub transportation. Owing to the complexity of
the ADFs, a test oracle for safety certification is unlikely to be provided by a
single test platform. Therefore, innovative approaches are required to enable
systematic testing under reproducible conditions with regard to robustness,
reliability and safety, as discussed in chapters 3 and 5. In addition, functional
decomposition is also necessary to support the argumentation for a reasonably
low residual risk resulting from imperfections of the environmental perception
sensors, as elucidated in chapter 4.

RQ2: How can the ADFs be effectively and efficiently tested?

The context-driven approach — as indicated in section 3.2 — employs a
grey-box test strategy that combines the insights from the observed road data
with functional requirements within the ODD coverage. In figure 3.4, the
argument structure of the context-driven test concept is shown with the help
of the GSN. The required test termination criteria can be met by quantify-
ing the conflicts between the test concept requirements, and thus, achieving a
trade-off between efficiency and effectiveness criteria of the test procedures.
The correlation between the various test coverage criteria intends to support
controlling the decision of choosing whether more test kilometers need to
be collected or more simulations require to be carried out. The optimized test
strategy requires a selection of the necessary test methods for various scenarios
and their interaction with other test methods. Thereby, new and innovative
approaches need to be designed, especially in simulation and in the laboratory.
The knowledge-based test platforms are executed at component and system
levels to generate the corresponding test evidence, as explained in chapter 4.
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8.1 Executive Summary

Moreover, the test results of the data-driven test platforms are evaluated using
statistical extrapolation techniques and field-based observations within the
ODD coverage, as discussed in chapter 5.

RQ3: How can the prospective risk be measured in order to achieve rea-
sonable termination criteria for the testing of the ADFs?

As indicated in chapter 5, the measurable safety approach envisages the identi-
fication of failure types to break down the functional complexity. Furthermore,
the presented framework structure utilizes a back-end database filled with
catalogs of corner driving scenarios from different sources of field-based ob-
servations. The extensive data-sets are collected world-wide under realistic
driving conditions with test CMV fleets. The evaluation of algorithms requires
an efficient search and interpretation of relevant traffic situations with help of
RCA to modify the algorithm accordingly. In this scheme, the processing chain
includes clustering of multivariate time-series data-sets and finding critical
driving situations to identify and allocate the necessary test cases for various
suitable test environments. The platform-independent mechanism is intended
to offer a consistent scenario description format for the various test envi-
ronments. Further, these new test cases complement the existing test cases
developed from expert knowledge in an adaptive ODD coverage manner.

A case study is provided to illustrate the measurable safety framework, in
which the behavior of CMVs equipped with an AEB system with respect to
stationary objects is discussed. The AEB can also unexpectedly issue warnings
and brake the vehicle if it detects stationary objects next to the vehicle’s own
lane, e.g. broken-down vehicles, signs, bridges and traffic islands. The extracted
clusters and their parameter space define the probability distributions of the
associated parameters of each logical scenario. The minimum TTC is used
as a prototypical safety measure. Thereby, the sensitivity analysis reduces the
number of input variables to the most important ones — as discussed in chapter
6 — , which influence the safety measure. Subsequently, the reliability analysis
identifies the failure region in the parameter space to predict the probability of
failure for each logical scenario using MCS and AIS methods, as indicated in
chapter 7. The generated tolerable risk curve is then used as a reference safety
threshold — as portrayed in figure 6.1 — for the test termination criteria.

163



8 Conclusions

Meanwhilst, the real PoS can only be provided after the market introduction of
automated CMVs in which the probability of collisions can be estimated based
on the relevant parameter space within the ODD. However, the probability
of failure can be approximated by estimating the exceedance probability of
parameters with higher criticality while validating the performance of existing
levels of automation. Accordingly, there is a hypothesis based on the assump-
tion that erroneous triggering events of the present ADFs during the field
observation can be considered as disengagement events for automated CMVs.
Therefore, the prospective risk assessment of an existing ADF provides refer-
ence values for the risk acceptance threshold. Such reference values act as a
benchmark for the further development and optimization of a similar ADF at
the next level of automation.

8.2 Technical and Scientific Contributions

The proposed framework enables functional verification of ADFs on the
embedded ECUs in complex automotive sensor networks. The framework
utilizes a real-time capable system architecture in a distributed heteroge-
neous co-simulation environment. In this architecture, object-list-based sensor
models are designed to simulate realistic sensor behavior. The real-time
interaction between the HiL test bench and the DuT imposes timing constraints
to ensure traceability and reproducibility of the test results. The described
architecture contains both the structural design and time-efficient integration
into the test bench and is applied to RADAR and camera sensors. An impor-
tant feature of the architecture is the high portability between various driving
simulation frameworks due to well-defined in-/output interfaces [BMK+16].
Furthermore, a run-time fault injection has been introduced to simulate sensor
failures, such as latency, detection failure and false one-to-many object labeling.
These failures are used for testing the robustness of the ADFs. Accordingly, a
phenomenological sensor model can be developed iteratively. Sensor failures
can be added in a continuous manner in order to achieve increasing degrees
of realism. For efficient verification, an astute selection of relevant test sce-
narios is conducted to avoid repetitive test scenarios. The research results of
this thesis have been published in internationally well-recognized journals and
peer-reviewed conferences.
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8.2 Technical and Scientific Contributions

Six invention disclosures focusing on test procedures have been filed and used
as references in this work. In the DE 102017009971A1, the invention relates
to a method for testing a lane assistance system for a vehicle by extracting
an ontology-based category of adequate and relevant scenarios for existing
field tests [ESF19]. In the DE 102018004429A1, the invention deals with
a cluster analytical characterization of driving situations based on detected
sensor signals for the detection of surroundings and their system reactions in
the driving operation of the vehicle [ESS+19c]. In the DE 102018005864A1,
the invention relates to a method for testing a blind spot assistance system for
a vehicle, particularly for a truck. On the basis of the Tractrix zone of the Ego-
vehicle, objects are detected by sensors and their distance and relative speed
to the Ego-vehicle are measured. The cluster analysis is applied to determine
the criticality of the detected ambient objects [ESS+19b].

In the DE 102018005865A1, the invention relates to a method for testing a
map-based system for speed limit in a vehicle. The system detects traffic signs
based on maps and fused image, wherein acquired information to be tested are
classified by means of a cluster analysis for scenarios into equivalence classes
[ESS+19a]. In the DE 102020005507A1, the invention refers to a method for
testing an emergency braking function of a vehicle based on a confidence for
existing field tests. Thereby, the sensitivity and reliability analysis identifies a
failure range in the parameter space to predict a failure probability for each
extracted logical scenario using sampling methods [ESD20].

In the DE 102020006644A1, the invention relates to a method for evaluating
systematic and statistical errors of multi-radar-based recognition systems of a
vehicle. According to the invention, exceptions from field-based observations
and knowledge experience are identified by means of processes of knowledge
development by clustering acquired data records and determining the excep-
tions in order to identify and assign necessary test data records for various
suitable test environments. By means of the determined test data-sets, test
data-sets developed on the basis of expert knowledge are completed in an
adaptive test coverage [EDA20].
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8 Conclusions

8.3 Future Research Directions

The presented work raises several issues that require substantial future research
activities. The quality of ADFs depends primarily on the environmental sensors
providing the vehicle’s environmental perception as the basis for situation
analysis and decision making. An acceptable level of maturity of these sensors
must be accomplished as a prerequisite for an adequate field validation. The
logical and statistical errors or functional deficiencies are assessed by objective
and subjective evaluation criteria.

Since it is not possible to guarantee complete safety for automated CMVs, one
of the major challenges in automated truck driving is to argue for a reasonably
low residual risk resulting from limitations of the environmental perception
sensor. Currently, relevant safety norms do not support such arguments. While
the Threat Assessment and Remediation Analysis (TARA) is one of the key
activities defined in the ISO/SAE 21434 for automotive cyber-security, a SOTIF
similar standard is also required for security issues.

Moreover, the standards for safety (ISO 26262 and ISO/PAS 21448) and se-
curity (ISO/SAE 21434) need to be more harmonized. The cyber-security is a
condition in which assets are adequately protected against threat scenarios to
electrical or electronic components of road vehicles and their functions [fS+20].
Therefore, further research will include the application of the test method for
security issues. These activities have to be integrated into an ASE approach
that supports the structure of the context-driven test concept. This research
work needs to be complemented by activities with standard organizations to
form a consensus on risk evaluation and acceptable argumentation structures
that would feed into future standards and CoP guidelines for the safeguarding
of ADFs.
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9 Glossary

9.1 List of Acronyms

Preliminaries

ABA Active Brake Assist
ACC Adaptive Cruise Control
ACSF Automatically Commanded Steering Function
ADA Active Drive Assist
ADAS Advanced Driver Assistance System
ADASIS ADAS Interface Specification
ADF Automated Driving Function
AEB Autonomous Emergency Braking
ANSI American National Standards Institute
ASE Automotive Systems Engineering
ASIL Automotive Safety Integrity Level
ASPICE Automotive Software Process Improvement and Capability

dEtermination
AST Adaptive Stress Testing
ATA American Trucking Associations
BMWi German Federal Ministry for Economic Affairs and Energy
CAN Controller Area Network
CFAR Constant False Alarm Rate
CMMI Capability Maturity Model Integration
CMV Commercial Motor Vehicle
CoP Code of Practice
DBSCAN Density-Based Spatial Clustering of Applications with Noise
DDT Dynamic Driving Task
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List of Acronyms

DESTATIS Federal STATIStical Office of Germany
DIN German Insitute for Standardization
DIS Draft International Standard
EC European Commission
ECU Electronic Control Unit
E/E Electrical and/or Electronic
eHorizon electronic Horizon
FMI Functional Mock-up Interface
FN False Negative
FOT Field Operational Test
FOV Field of View
FP False Positive
GPS Global Positioning System
GSN Goal Structuring Notation
HARA Hazard Analysis and Risk Assessment
HD High Definition
HiL Hardware-in-the-Loop
HoL Hardware-in-the-open-Loop
HW/SW Hardware/ Software
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers
ISO International Organization for Standardization
KPI Key Performance Indicator
LDP Lane Departure Protection
LDW Lane Departure Warning
LiDAR Light Detection And Ranging
MC/DC Modified Condition/Decision Coverage
MIIT Ministry of Industry and Information Technology
MiL Model-in-the-Loop
MOBATSim MOdel-Based Autonomous Traffic Simulation Framework
MOP Metamodel of Optimal Prognosis
MPP Most Probable Path
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List of Acronyms

MRC Minimal Risk Condition
MTBF Mean Time Between Failures
MVP Minimum Viable Product
NCAP New Car Assessment Programme
NDS Navigation Data Standard
NHTSA National Highway Traffic Safety Administration
NL Natural Language
ODD Operational Design Domain
OEDR Object and Event Detection and Response
PAS Publicly Available Specification
PCA Principal Component Analysis
PoS Proof of Safety
PPV Positive Predictive Value
QG Quality Gate
QM Quality Management
RADAR RAdio Detection And Ranging
RCA Root Cause Analysis
RCS Radar Cross Section
ROC Receiver Operating Characteristic
SAE Society of Automotive Engineers
SDLC Software Development Life Cycle
SWE Software Engineering Process Group
SENSORIS SENSOR Interface Specification
SGA Side Guard Assist
SiL Software-in-the-Loop
SOTIF Safety Of the Intended Functionality
SPI Safety Performance Indicator
STL Signal Temporal Logic
SVM Support Vector Machine
TaaS Transport-as-a-Service
TN True Negative
TP True Positive
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List of Acronyms

TPEG Transport Protocol Experts Group
TRL Technology Readiness Level
TSR Traffic Sign Recognition
TTC Time To Collision
TTR Time To React
UL Underwriters Laboratories
UML Unified Modeling Language
UN/ECE United Nations Economic Commission for Europe
UNGA United Nations General Assembly
UNR United Nations Regulation
U.S. United States
USDOT United States Department of Transportation
VCRT Vienna Convention on Road Traffic
VRU Vulnerable Road User
VSSA Voluntary Safety Self Assessment
V&V Verification and Validation
VVA Verification, Validation and Accreditation
WHO World Health Organization
XiL X(something)-in-the-Loop

Framework Conception

ABox Assertional Box
ADDR Automated Driving Data Recorder
ADTF Automotive Data and Time-triggered Framework
AWS Amazon Web Services
CCR California Code of Regulation
CRF Camera Reference Frame
CSV Comma-Separated Values
DL Description Logic
DuT Device under Test
DVI Digital Visual Interface
EDR Event Data Recorder
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List of Acronyms

GIDAS German In-Depth Accident Study
GNSS Global Navigation Satellite System
HAC Hierarchical Agglomerative Clustering
HDFS Hadoop Distributed File System
highD highway Drone data-set
HMI Human-Machine Interface
KDD Knowledge Discovery in Databases
IMU Inertial Measurement Unit
inD intersection Drone data-set
KITTI Karsruhe Institute of Technology and Toyota technological

Institute data-set
LTE Long Term Evolution
MDF Measurement Data Format
NAS Network Attached Storage
NCC Normalized Cross Correlation
NMVCCS National Motor Vehicle Crash Causation Survey
OTA Over-The-Air
OWL Ontology Web Language
POD Plug On Device
PTP Precision Time Protocol
RDF Resource Description Framework
REST-API REpresentational State Transfer - Application Programming

Interface
RTT Round Trip Time
RTOS Real Time Operating System
TBox Terminological Box
TCP Transmission Control Protocol
UDP User Datagram Protocol
V2X Vehicle to X(everything)
WGS84 World Geodetic System 1984
XCP Universal (X) Measurement and Calibration Protocol
XML eXtensible Markup Language
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List of Acronyms

Framework Implementation

AIS Adaptive Importance Sampling
ANN Artifical Neural Network
CDF Cumulative Distribution Function
DoE Design of Experiments
LSF Limit State Function
MCS Monte Carlo Sampling
MLS Moving Least Squares
MOP Metamodel of Optimal Prognosis
PDF Probability Distribution Function
PPMCC Pearson Product-Moment Correlation Coefficient
RDE Real Driving Emissions
SVR Support Vector Regression
SWRL Semantic Web Rule Language
TARA Threat Assessment and Remediation Analysis
THW Time HeadWay
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9.2 List of Variables and Constants

9.2 List of Variables and Constants

Preliminaries

aego
x longitundinal acceleration of the Ego-vehicle.

C confidence level of the Binomial distribution.
dc accumulated driving distance for the statistical PoS.
d̃rel

x falsified relative longitudinal distance of the preceding pedestrian.
d̃rel

y falsified relative lateral distance of the preceding pedestrian.
dlt

y relative lateral distance to the left lane marking.
drt

y relative lateral distance to the right lane marking.
dco

x cut-out distance for lane change of the following vehicle.
dw wheelbase of the Ego-vehicle tractor.
h index of the hazardous driving situations.
H set of the hazardous driving situations.
i index of the number of detected objects.
j index of the number of tracked objects.
k index of the sensor node.
m number of the hazardous events along the cumulative driving

distance for the statistical PoS.
Ns number of the sensor nodes for environmental perception within

the vehicle-mounted sensor setup module.
_ failure rate of the hazardous events.
_A failure rate of an ADF without driver supervision.
_H benchmark failure rate of a human driver.
Λ fatality factor of the ADF without driver supervision in relation to

the benchmark failure rate of a human driver.
𝛾 reliability as a complementary of the failure rate _.
Z number of the hazardous events observed by field operational

tests.
rollmode required mode of rolling within an ACC function.
tco cut-out delay time for lane change of the following vehicle.
𝜐

ego
x longitudinal velocity of the Ego-vehicle.
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List of Variables and Constants

𝜐
obj1
x longitudinal velocity of the object with the identification number

1.
𝜐

obj2
x longitudinal velocity of the preceding object with the

identification number 2.
𝜐lt

y relative lateral velocity to the left lane marking.
𝜐rt

y relative lateral velocity to the right lane marking.
[ distance from crossing point at the origin to a horizontal

extremity of a Lemniscate elliptic function.

Framework Conception

aego
y lateral acceleration of the Ego-vehicle.

arel
x longitudinal acceleration between the Ego-vehicle and the object

ahead.
arel

y lateral acceleration between the Ego-vehicle and the object ahead.
arel

z vertical acceleration between the Ego-vehicle and the object
ahead.

drel
x longitudinal distance between the Ego-vehicle and the object

ahead.
drel

y lateral distance between the Ego-vehicle and the object ahead.
drel

z vertical distance between the Ego-vehicle and the object ahead.
dc

x longitudinal distance between the Ego-vehicle and the stationary
vehicle in front, which is detected by the camera sensor model.

dr
x longitudinal distance between the Ego-vehicle and the stationary

object in front, which is detected by the RADAR sensor model.
fd sampling rate of the VxWorks® RTOS-based HiL simulator.
fm sampling rate of the 3D simulation environment.
Fr weight force on the rear axle.
^ego RADAR-based estimation of curvature for the Ego-vehicle

trajectory.
Mb braking torque of the Ego-vehicle.
Pb foot placement on the brake pedal.
r proximity distance index between two time series vectors.
ts sampling period of the vehicle dynamics model.
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List of Variables and Constants

t𝜚 turn-around time.
𝜐 number of subsets for features of sensor modelling.
𝜐

ego
x longitudinal velocity of the Ego-vehicle.

𝜐rel
x longitudinal velocity between the Ego-vehicle and the object

ahead.
𝜐rel

y lateral velocity between the Ego-vehicle and the object ahead.
𝜐rel

z vertical velocity between the Ego-vehicle and the object ahead.
x longitudinal position of the Ego-vehicle in Cartesian

co-ordinates.
y lateral position of the Ego-vehicle in Cartesian co-ordinates.
z vertical position of the Ego-vehicle in Cartesian co-ordinates.
𝜙 roll angle of the Ego-vehicle.
\ pitch angle of the Ego-vehicle.
𝜓 heading (yaw) angle of the Ego-vehicle.
𝜙max

c maximum roll angle with zero weight force acting on the rear
axle.

\b pitch angle while braking in the straight-ahead direction.

Framework Implementation

dE1
x longitudinal distance between the Ego-vehicle and the object

ahead at the time of triggering the first escalation event.
dE1

y lateral distance between the Ego-vehicle and the object ahead at
the time of triggering the first escalation event.

dE1
TTC distance between the TTC of FOT and the theoretical ideal TTC

curve from HiL testing.
dmin

y lower bound of the truncated normal distribution of the lateral
distance between the Ego-vehicle and the object ahead at the time
of triggering the first escalation event.

dmax
y upper bound of the truncation normal distribution of the lateral

distance between the Ego-vehicle and the object ahead at the time
of triggering the first escalation event.

eP̄f
(S3

s |C1
s ) standard error of S3

s of the cluster C1
s at the escalation level E1

s .
eP̄f
(S2

s |C1
s ) standard error of S2

s of the cluster C1
s at the escalation level E1

s .
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eP̄f
(S1

s |C1
s ) standard error of S1

s of the cluster C1
s at the escalation level E1

s .
eP̄f
(S0

s |C1
s ) standard error of S0

s of the cluster C1
s at the escalation level E1

s .
^road actual road curvature.
^i road curvature at the position (i) of the clothoid.
^E1

ego curvature of the Ego-vehicle at the time of triggering the first
escalation event.

^min
ego lower bound of the truncated normal distribution for the road

curvature at the time of triggering the first escalation event.
^max

ego upper bound of the truncated normal distribution for the road
curvature at the time of triggering the first escalation event.

Li length of the clothoid arc to the point (i).
P̄f (S3

s |C1
s ) failure probability of S3

s of the cluster C1
s at the escalation level

E1
s .

P̄f (S2
s |C1

s ) failure probability of S2
s of the cluster C1

s at the escalation level
E1

s .
P̄f (S1

s |C1
s ) failure probability of S1

s of the cluster C1
s at the escalation level

E1
s .

P̄f (S0
s |C1

s ) failure probability of S0
s of the cluster C1

s at the escalation level
E1

s .
TTCE1

ref Time to Collision from the HiL testing.
TTCE1

fot Time to Collision from the on-road testing.
TTCE1

min minimum Time to Collision at the last moment when the object is
classified as relevant.

𝜐E1
x longitudinal velocity of the Ego-vehicle at the time of triggering

the first escalation event.
𝜐min

x lower bound of the triangular distribution of the longitudinal
velocity at the time of triggering the first escalation event.

𝜐max
x upper bound of the triangular distribution of the longitudinal

velocity at the time of triggering the first escalation event.
𝜐

peak
x mode of the triangular distribution of the longitudinal velocity at

the time of triggering the first escalation event.
xi longitudinal position at the position (i) of the clothoid.
yi lateral position at the position (i) of the clothoid.
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𝜔i direction angle between the tangent of the current position (i) of
the clothoid and the initial direction of the straight line.
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9.3 List of Quantities and States

Preliminaries

A set of missing specifications for the intended behavior within the
three-circle Venn diagram.

B set of robust unspecified behaviors within the three-circle Venn
diagram.

C intersection of the three Venn diagram sets of the specified,
implemented and intended behaviors.

D Venn diagram set of the missing implementations for correct
specifications.

J set of unexpected wrong behaviors within the three-circle Venn
diagram.

K set of wrong specifications or technical limitations within the
three-circle Venn diagram.

L set of missing implementations for wrong specifications within
the three-circle Venn diagram.

M set of implemented behaviors within the three-circle Venn
diagram.

N set of intended behaviors within the three-circle Venn diagram.
S set of specified behaviors within the three-circle Venn diagram.
E1

s first escalation event, where visual and acoustic alarms are issued
to warn the driver about a possible collision with a stationary
object.

E2
s second escalation event, where haptic and automatic particle

braking is applied to assist the driver in braking in order to
prevent a collision with a stationary object.

E3
s third escalation event, where emergency braking occurs at a point

where the collision with a stationary object is imminent.
p1 first position of the stationary object within the Tractrix area of

the Ego-vehicle defined in the Cartesian co-ordinates.
p2 second position of the stationary object within the Tractrix area

of the Ego-vehicle defined in the Cartesian co-ordinates.
p3 third position of the stationary object within the Tractrix area of

the Ego-vehicle defined in the Cartesian co-ordinates.
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p4 fourth position of the stationary object within the Tractrix area of
the Ego-vehicle defined in the Cartesian co-ordinates.

p5 fifth position of the stationary object within the Tractrix area of
the Ego-vehicle defined in the Cartesian co-ordinates.

v recorded sequence during on-road testing by reporting an event
of measurement and detection errors.

ṽ newly produced sequence after updating of the ECU software
with bug fixing of the faulty object detection during regression
and progression tests.

vMiL model result of a back-to-back test within a MiL test setup.
vSiL generated code result of a back-to-back test within a SiL test

setup.

Framework Conception

ā mean of the time-series vector of the variable A.
b̄ mean of the time-series vector of the variable B.
𝜎a standard deviation of the time-series vector of the variable A.
𝜎b standard deviation of the time-series vector of the variable B.
C1

s group of driving situations with a combined curve to the left.
C2

s group of driving situations with a S-shaped clothoid to the right.
C3

s group of driving situations with a S-shaped clothoid to the left.
C4

s group of driving situations with a combined curve to the right.
C1

rt group of driving situations with a deviation to the detected right
lane marking and a return afterwards from this deviation.

C2
rt group of driving situations with a sudden jump in the distance to

the lane, which indicates the detection of new lane lines.
C3

rt group of driving situations with a deviation and a temporary
sudden change of the distance to the right line and back to normal
deviations due to painted islands.

DNCC distance measure of the NCC algorithm.
Dsj

NCC distance measure of the NCC algorithm with a time shift sj.
fHAC HAC function.
G resulting cluster of the HAC algorithm.
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g(1) merged cluster according to the complete-linkage criterion.
g(2) merged cluster according to the complete-linkage criterion.
Ŝc radar sensor model.
Ŝm 3D cone model of a perception sensor.
Ŝr camera sensor model.
Ŝc

obj1 first relevant object detected by the camera sensor model.

Ŝc
obj2 second relevant object detected by the camera sensor model.

Ŝr
obj1 first relevant object detected by the radar sensor model.

Ŝr
obj2 second relevant object detected by the radar sensor model.

Θ̂c timestamp message of the camera sensor model.
Θ̂f timestamp message of the fusion module.
Θ̂r timestamp message of the radar sensor model.
u(ai) point of the normalized rolling standard deviation.
w rolling window of the NCC algorithm.
us input of discrete state.
xd+1 input update of discrete state.
xd input of discrete state.
yo output of continuous state.

Framework Implementation

E expectation of a target indicator function.
eP̄f

standard error of the failure probability estimator.
fZ (z) joint density function for the random vector Z.
I (g(z)) indicator function.
hY (y) importance sampling density.
g(Z) limit state function.
Nmc number of samples according to the MCS method.
Nas number of samples according to the AIS method.
Pf probability of failure.
P̄f estimator of the failure probability.
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P(C1
s ) prbability of occurrence for the group of driving situations with a

combined curve to the left.
PT overall probability of occurrence for a functional scenario.
Var(P̄f) variance of the failure probability estimator.
R2 coefficient of determination.
R

(
C1

s
)

prospective risk assessment for the group of driving situations
with a combined curve to the left.

S0
s hypothesis for low severity.
S1

s hypothesis for medium severity.
S2

s hypothesis for high severity.
S3

s hypothesis for critical severity.
𝛾 predefined safety margin.
𝛿P̄f

required standard error for the failure probability estimator.
` mean of the parent normal distribution.
`TTCE1

ref
mean of the variable TTCE1

ref .

`TTCE1
fot

mean of the variable TTCE1
fot .

𝜎 standard deviation of the parent normal distribution.
𝜎TTCE1

ref
standard deviation of the variable TTCE1

ref .

𝜎TTCE1
fot

standard deviation of the variable TTCE1
fot .

Ω PDF of the normal Gaussian distribution.
Φ CDF of the normal Gaussian distribution.
z realization of Z in the variable space.
Z random vector.
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9.4 List of Matrices and Vectors

Preliminaries

Oh controllability of hazardous events.
O0

h controllable hazardous event in general.
O1

h simply controllable event, where 99% or more of all drivers or
other traffic participants are usually able to avoid hazardous event.

O2
h normally controllable event, where 90% or more of all drivers or

other traffic participants are usually to avoid hazardous event.
O3

h difficult to control or uncontrollable event, where less than 90%
of all drivers or other traffic participants are usually able, or
barely able, to avoid the hazardous event.

P(k) set of sensor properties at detection level for each sensor node.
Q(k) set of sensor properties at object level for each sensor node.
p(k)i subset of the sensor properties at detection level for each sensor

node.
q(k)j subset of the sensor properties at object level for each sensor

node.
R scenario-based risk assessment of ADFs.
S(k) number of sensor nodes for environmental perception within the

vehicle-mounted sensor setup module.
Sh severity of the hazardous events.
S0

h no injuries.
S1

h light and moderate injuries.
S2

h severe and life-threatening injuries (survival probable).
S3

h life-threatening injuries (survival uncertain or fatal injuries).
Xh exposure of the hazardous events.
X0

h probability of unlikely occurrence of hazardous events.
X1

h very low probability of hazardous events.
X2

h low probability of hazardous events.
X3

h medium probability of hazardous events.
X4

h high probability of hazardous events.
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Framework Conception

A time series vector of the variable A.
B time series vector of the variable B.
H overall set of the implemented features of a sensor model.
Hm

𝜐 subset of the implemented features of a sensor model.
𝛽m
𝜐 set of configuration parameters for each subset of the

implemented features of a sensor model.
P̂m set of detection-level sensor properties for a sensor model.
Q̂m set of object-level sensor properties for a sensor model.
RI

E rotation matrix from Ego-vehicle co-ordinate system to inertial
co-ordinate system.

RE
S rotation matrix from sensor co-ordinate system to Ego-vehicle

co-ordinate system.
RS

I rotation matrix from inertial co-ordinate system to sensor
co-ordinate system.

tI
E translation vector from Ego-vehicle to initial co-ordinate system.

tE
S translation vector from sensor co-ordinate system to Ego-vehicle

co-ordinate system.
tI
O translation vector from object co-ordinate system to initial

co-ordinate system.
TS

I roto-translation matrix from initial co-ordinate system to sensor
co-ordinate system.

TI
E roto-translation matrix from Ego-vehicle co-ordinate system to

initial co-ordinate system.
TE

S roto-translation matrix from sensor co-ordinate system to
Ego-vehicle co-ordinate system.

TI
O roto-translation matrix from object co-ordinate system to initial

co-ordinate system.
sj time shift vector.
Xw longitudinal contact point vector from Ego-vehicle dynamics

model to road model.
Yw lateral contact point vector from Ego-vehicle dynamics model to

road model.
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Zw vertical contact point vector from road model to Ego-vehicle
dynamics model.

𝝁w friction coefficient of road surface in contact with the Ego-vehicle
wheels from road model to Ego-vehicle model.

𝜶
long
w longitudinal gradient of road surface in contact with the

Ego-vehicle wheels from road model to Ego-vehicle model.
𝜶lat

w lateral gradient vector of road surface in contact with the
Ego-vehicle wheels from road model to Ego-vehicle model.

Framework Implementation

FC logical scenario for driving situations with a stationary object on
the side.

FS logical scenario for driving situations with the Ego-vehicle
driving around a stationary object.

FT functional scenario catalog.
U set of logical scenarios with (n) dimension.
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9.5 List of Notations and Co-ordinate Systems

Preliminaries

A(k) measuring principle block that generates a detection list for each
environmental perception sensor.

B(k) processing block that generates a feature list for each
environmental perception sensor.

C(k) observation block that generates an object list for each
environmental perception sensor.

C1 context element to define the safety requirements according to the
various automated driving levels.

C4 context element to use the test platforms according to the
effectiveness and efficiency criteria.

C5 context element to use a measurement system for field-based
observations.

C6 context element to define the criticality matrices for safety
envelopes.

E1 sub-evidence to define the coverage of functional requirements.
E2 sub-evidence to define the coverage of value and time tolerances

within software structures.
E3 sub-evidence to define the coverage of system integration and

variation.
E4 sub-evidence to define the coverage of system performance.
E5 sub-evidence to define the coverage of training data and sensor

uncertainties.
E6 sub-evidence to define the coverage of driving scenarios.
G1 main goal to provide a safety argumentation based on an accepted

residual risk of an ADF.
G2 sub-goal to track functional correctness for an ADF.
G3 sub-goal to ensure the back-to-back consistency for a

model-based code generator employed to software development.
G4 sub-goal to specify the system integration and variation for

deployment of an automated driving function.
G5 sub-goal to present the software robustness.

185



List of Functions and Co-ordinate Systems

G6 sub-goal to deliver the sensor availability and functional
effectiveness of an automated driving function.

G7 sub-goal to supply the software reliability and functional safety of
an automated driving function.

S1 strategy of the GSN safety case based on the test termination
criteria.

Framework Conception

RC camera reference co-ordinate system.
RD detected object point co-ordinate system.
RE subject vehicle reference co-ordinate system.
RI inertial (global) reference co-ordinate system.
RM 2D monitor reference co-ordinate system.
RS sensor reference co-ordinate system.
RO target object reference co-ordinate system.
RR relative start reference co-ordinate system.
RT track co-ordinate system.

Framework Implementation

P1 baseline response of the logistic regression function.
P2 maximum response of the logistic regression function.
P3 turning point giving a halfway response between the baseline and

maximum of the logistic regression function.
P4 curve slope of the logistic regression function.
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