
En vue de l'obtention du

DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE
Délivré par :

Institut National Polytechnique de Toulouse (INP Toulouse)
Discipline ou spécialité :

Informatique et systèmes embarqués

Présentée et soutenue par :
M. LUDOVIC PINTARD

le jeudi 28 mai 2015

Titre :

Unité de recherche :

Ecole doctorale :

DES ANALYSES DE SECURITE A LA VALIDATION EXPERIMENTALE
PAR INJECTION DE FAUTES - LE CAS DES SYSTEMES EMBARQUES

AUTOMOBILES

Systèmes (Systèmes)

Laboratoire d'Analyse et d'Architecture des Systèmes (L.A.A.S.)
Directeur(s) de Thèse :
MME KARAMA KANOUN

M. JEAN CHARLES FABRE

Rapporteurs :
M. LAURENT PAUTET, TELECOM PARISTECH

M. PÉDRO-JOAQUIN GIL VICENTE, UNIVERSITAT POLITECNICA DE VALENCE

Membre(s) du jury :
1 M. GILLES MOTET, INSA TOULOUSE, Président
2 M. JEAN CHARLES FABRE, INP TOULOUSE, Membre
2 M. MICHEL LEEMAN, SOCIETE VALEO, Membre
2 M. PHILIPPE QUERE, RENAULT GUYANCOURT, Membre

We can only see a short distance ahead,

but we can see plenty there that needs to be done.

Alan Turing, 1950

i

Remerciements

Les travaux présentés dans ce mémoire ont été réalisés dans le cadre d’une thèse CIFRE entre le Labo-

ratoire d’Analyse et d’Architecture des Systèmes (LAAS) du Centre National de la Recherche Scienti-

fique (CNRS) de Toulouse, et du groupe Valeo.

Je remercie M. Jean Arlat qui assure la direction du LAAS-CNRS de m’avoir accueilli au sein de ce
laboratoire. Je tiens aussi à remercier Mme Karama Kanoun et M. Mohammed Kaaniche, responsables
successifs de l’équipe Tolérance aux fautes et Sûreté de Fonctionnement (TSF) du LAAS-CNRS dans
laquelle j’ai réalisé mes travaux de thèse.

Je tiens à remercier M. Xavier Levesque, directeur du Group Electronics Expertise and Development

Services (GEEDS), ainsi que M. Paul Degoul, responsable GEEDS Software/System/Safety/Simulation
de m’avoir accueilli dans leur service au sein du groupe Valeo.

J’exprime ma profonde gratitude à M. Gilles Motet, Professeur à l’INSA Toulouse, pour l’honneur
qu’il me fait en présidant mon jury de thèse, ainsi qu’à :

- M. Pedro Joaquín Gil-Vicente, Professeur, Universidad Politechnica de Valencia,
- M. Laurent Pautet, Professeur, TELECOM Paris,
- M. Philippe Quéré, Team Leader, Renault,
- M. Michel Leeman, Master Expert, Valeo,
- M. Jean-Charles Fabre, Professeur INP Toulouse,
- Mme Karama Kanoun, Directeur de Recherche, LAAS-CNRS,
- Et M. Matthieu Roy, Chargé de recherche, LAAS-CNRS,

d’avoir accepté de participer à mon jury de thèse.

Je remercie tout particulièrement MM. Pedro Joaquín Gil-Vicente et Laurent Pautet qui ont accepté la
charge de rapporteur.

J’exprime ma très sincère reconnaissance à Mme Karama Kanoun, Directeur de Recherche CNRS, et
MM. Jean-Charles Fabre et Matthieu Roy, respectivement Professeur de l’Institut National Polytech-

nique de Toulouse (INPT) et Maître de Conférences, pour m’avoir encadré, soutenu, et encouragé tout
au long de cette thèse. Je les remercie pour leurs conseils, leur soutien et leur disponibilité. Leurs ex-
périences et leur expertise ont été essentielles au bon déroulement de mes travaux.

Concernant mon encadrement industriel, je tiens à exprimer toute ma gratitude à M. Stéphane l’Hostis,
pour m’avoir accueilli dans le Département Safety du GEEDS à Créteil.

REMERCIEMENTS

ii

Je tiens à remercier tout particulièrement M. Michel Leeman pour son investissement durant ma thèse,
son soutien continu, sa disponibilité et ses conseils avisés. Je tiens à lui exprimer toute ma gratitude
pour le temps qu’il m’a accordé et sa pédagogie qui m’ont été très utiles. Je tiens aussi à remercier
M. Abdelillah Ymlahi-Ouazzani, je lui suis reconnaissant du temps et de sa patience pour tous les
problèmes de mise en œuvre qu’il a contribué à résoudre, ainsi que de la pertinence de ses remarques.
Merci également à Youness Kamel pour son aide à l’implémentation de l’outil de test.

Je tiens aussi à remercier toute l’équipe : Nieves, Abraham, Elmahdi, Abdelillah, Gilles, Ryad, Nabila,
Annabelle, Nicolas, Florent, Sylvain, Joris, Mohamed et Styven pour l’accueil qu’ils m’ont réservé,
leurs conseils, et pour les moments que nous avons partagés.

J’adresse un merci très spécial à Ivan Studnia, Pierre André, Hélène Martorell, Camille Fayollas et
Yann Bachy avec qui j’ai passé de très bons moments durant ces trois années et qui ont eu la gentil-
lesse de pardonner mes plus mauvaises blagues. Merci à Abraham Cherfi pour son soutien et particu-
lièrement sa précieuse aide durant la phase de rédaction du manuscrit. Enfin, je souhaite adresser mes
remerciements à Kalou Cabrera Castillos pour son aide dans la préparation de la soutenance.

Merci enfin à l’ensemble des doctorants TSF avec lesquels j’ai partagé de très bons moments, Ivan,
Hélène, Mathilde, Thibault, Pierre, Yann, Joris, Camille, Benoit, Roberto, Carla, Quynh Anh, Miguel,
Moussa, Kossi, Maxime, Miruna, Olivier, Anthony, Amira et celles/ceux que j’ai peut-être oublié de
nommer.

Enfin, je remercie ma famille et mes amis qui sont essentiels dans la réussite de mes projets et
l’accomplissement de ce travail. Je remercie plus particulièrement Nicolas et Diane. « Last but not

least », je remercie mes parents, dont la patience et le soutien ont été sans faille.

iii

Abstract

Due to the rising complexity of automotive Electric/Electronic embedded systems, Functional Safety
becomes a main issue in the automotive industry. This issue has been formalized by the introduction
of the ISO 26262 standard for functional safety in 2011. The challenges are, on the one hand to design
safe systems based on a systematic verification and validation approach, and on the other hand, the
fulfilment of the requirements of the ISO 26262 standard. Following ISO 26262 recommendations,
our approach, based on fault injection, aims at verifying fault tolerance mechanisms and non-
functional requirements at all steps of the development cycle, from early design phases down to im-
plementation.

Fault injection is a verification technique that has been investigated for a long time. However, the role
of fault injection during design phase and its complementarities with the experimental validation of the
target have not been explored. In this work, we investigate a fault injection continuum, from system
design validation to experiments on implemented targets. The proposed approach considers the safety
analyses as a starting point, with the identification of safety mechanisms and safety requirements, and
goes down to the validation of the implementation of safety mechanisms through fault injection ex-
periments. The whole approach is based on a key fault injection framework, called FARM (Fault, Ac-
tivation, Readouts and Measures).

We show that this approach can be integrated in the development process of the automotive embedded
systems described in the ISO 26262 standard. Our approach is illustrated on an automotive case study:
a Front-Light system.

Keywords: Fault Injection, Automotive, Embedded Systems, Safety, Verification, and ISO 26262

ABSTRACT

iv

v

Résumé

En raison de la complexité croissante des systèmes automobiles embarqués, la sûreté de fonctionne-
ment est devenue un enjeu majeur de l’industrie automobile. Cet intérêt croissant s’est traduit par la
sortie en 2011 de la norme ISO 26262 sur la sécurité fonctionnelle. Les défis auxquelles sont confron-
tés les acteurs du domaine sont donc les suivants : d’une part, la conception de systèmes sûrs, et
d’autre part, la conformité aux exigences de la norme ISO 26262. Notre approche se base sur
l’application systématique de l’injection de fautes pour la vérification et la validation des exigences de
sécurité, tout au long du cycle de développement, des phases de conception jusqu’à l’implémentation.
L’injection de fautes nous permet en particulier de vérifier que les mécanismes de tolérance aux fautes
sont efficaces et que les exigences non-fonctionnelles sont respectées.

L’injection de faute est une technique de vérification très ancienne. Cependant, son rôle lors de la
phase de conception et ses complémentarités avec la validation expérimentale, méritent d’être étudiés.
Notre approche s’appuie sur l’application du modèle FARM (Fautes, Activations, Relevés et Mesures)
tout au long du processus de développement. Les analyses de sûreté sont le point de départ de notre
approche, avec l'identification des mécanismes de tolérance aux fautes et des exigences non-
fonctionnelles, et se terminent par la validation de ces mécanismes par les expériences classiques d'in-
jection de fautes.

Enfin, nous montrons que notre approche peut être intégrée dans le processus de développement des
systèmes embarqués automobiles décrits dans la norme ISO 26262. Les contributions de la thèse sont
illustrées sur l’étude de cas d’un système d’éclairage avant d’une automobile.

Mots-clés : Injection de fautes, Automobile, Systèmes Embarqués, Sécurité, Vérification, et
ISO 26262

RÉSUMÉ

vi

vii

Contents

Remerciements ... i

Abstract ... iii

Résumé ... v

Contents .. vii

List of Figures ... xi

List of Tables ... xiii

Glossary .. xv

Introduction ... 1

Chapter 1 State of the Art & Context ... 5

1.1 Electric/Electronic Embedded Systems (E/E Systems) .. 6

1.1.1 Automotive E/E Systems .. 6

1.1.2 Standardization Needs: ISO 26262 ... 6

1.2 Basic Concepts of Dependability & ISO 26262 ... 8

1.2.1 From Dependability Attributes to Automotive Safety Integrity Levels 8

1.2.2 From Dependability Threats to Fault Model .. 9

1.2.3 From Dependability Means to Verification .. 11

1.3 Fault Injection for the Verification and Validation of Automotive E/E Systems 13

1.3.1 Known Approaches .. 13

1.3.2 FARM ... 14

1.3.3 Techniques .. 17

1.3.4 Related Work in Automotive Systems ... 19

1.4 Conclusion .. 21

Chapter 2 Development Process & Safety .. 23

2.1 Development Process of Automotive E/E Embedded Systems .. 24

2.1.1 Automotive Embedded Systems ... 24

CONTENTS

viii

2.1.2 System Engineering .. 25

2.2 V-Cycle Development Model ... 26

2.2.1 Requirements Analysis ... 27

2.2.2 Implementation, Integration and Testing Activities ... 27

2.2.3 Relationship between V Branches .. 28

2.3 Safety Development Process .. 28

2.3.1 Safety Analyses at System Level.. 28

2.3.2 Safety Analyses at Product Architecture Level and HW Architectural Level 30

2.3.3 Quantitative Safety Analyses.. 30

2.3.4 Safety Analyses at Software Architecture Level .. 31

2.3.5 Safety Tests .. 31

2.4 Fault Injection Requirement of ISO 26262 ... 32

2.4.1 Requirements during Pre-Implementation Phase ... 32

2.4.2 Requirements during Post-Implementation Phase .. 33

2.5 Thesis Orientation & Proposed Methodology Overview .. 36

Chapter 3 Integrating Fault Injection in the Pre-implementation Phase 39

3.1 Is Fault Injection Applicable During the Pre-Implementation Phase? 40

3.1.1 Preliminaries ... 40

3.1.2 Differences between Pre- and Post-Implementation Phases 42

3.2 Application of the FIA Flow at a Given Architectural Level ... 43

3.2.1 Applying FIA at the Product Level L1 .. 43

3.2.2 Relationship between FIA and other Safety Analyses ... 46

3.3 Links between FIA Levels .. 47

3.3.1 S- and Z-shaped Causal Chain.. 47

3.3.2 Initialization and Termination of the FIA Flow ... 50

3.4 Steering Column Locking System .. 50

3.4.1 System Description ... 50

3.4.2 Steering Column Locking System FIA (L0) .. 51

3.4.3 ESCL Product FIA Flow (L1) .. 52

3.5 Synthesis on Fault Injection Analyses .. 54

Chapter 4 Fault Injection During Post-implementation Phase .. 57

4.1 FIE Overview .. 58

4.2 From FIA to FIE: Definition of the Experiments ... 59

4.2.1 Application of FARM ... 59

CONTENTS

ix

4.2.2 Experiment Traceability ... 63

4.2.3 Determination of the FIE using FMECA ... 63

4.2.4 Conclusion on the Identification of the Experiments ... 67

4.3 Execution of the Experiments and Evaluation of the Measures 67

4.3.1 Optimization of the Experiments .. 67

4.3.2 Assessment of the FIA with regards to the FIE .. 69

4.3.3 Assessment of one Fault Injection Experiment .. 69

4.3.4 Synthesis of the FIE .. 70

4.4 Conclusion .. 71

Chapter 5 Case Study: Front-Light Manager .. 73

5.1 Application of FIA on the Front-Light Manager System ... 74

5.2 FIA at System Level: Front-Light System .. 75

5.3 FIA at Product Level: Front-Light-ECU ... 77

5.3.1 Safety Analysis of the Micro-Controller .. 78

5.3.2 Freedom From Interferences Analysis ... 78

5.4 FIA at SW Block Architectural Level .. 80

5.4.1 AUTomotive Open System Architecture – AUTOSAR ... 80

5.4.2 Partitioning Concept in AUTOSAR ... 81

5.4.3 Software Architecture of the Front-Light Manager .. 82

5.4.4 Behavioral Description of the Application ... 83

5.4.5 FIA of the Software Architecture ... 84

5.5 S-Shaped Causal Chain ... 86

5.6 SW Module Level: AUTOSAR Watchdog Manager ... 89

5.6.1 Alive Supervision ... 89

5.6.2 Deadline Monitoring .. 90

5.6.3 Control Flow Monitoring ... 90

5.7 FIA at SW Module Level .. 91

5.8 Lessons Learnt .. 93

Chapter 6 Fault Injection Experiments .. 95

6.1 Fault Injection Platform .. 96

6.1.1 Fault Injection Environment ... 96

6.1.2 Fault Injection Characterization of the Tool ... 97

6.2 WdgM Implementations Assessment ... 98

6.2.1 Error Detection and Error Recovery Coverage .. 98

CONTENTS

x

6.2.2 Timing Evaluation of the WdgM.. 99

6.2.3 Robustness of the implementation of the WdgM ... 100

6.3 Front-Light Software Verification .. 103

6.3.1 Verification of one Line of FMECA: S-Shaped Verification 103

6.3.2 Global Verification of the FMECA Spreadsheet .. 104

6.4 Conclusion .. 105

Conclusion/Perspectives .. 107

APPENDIX 1 ... 111

APPENDIX 2 ... 115

APPENDIX 3 ... 117

Publications .. 119

References .. 121

xi

List of Figures

Figure 1.1 The Ten Parts of the ISO 26262 (ISO 26262, 2011) .. 7

Figure 1.2 Recursive Chain of Dependability Threats ... 10

Figure 1.3 Diagnostic Test Interval, Reaction Time and Tolerance Time Interval 16

Figure 1.4 A Typical Fault Injection Environment (Hsueh, Tsai, & Iyer, 1997) 17

Figure 1.5 Fault Injection Techniques Classification ... 18

Figure 2.1 Architectural Abstraction Levels of a Vehicle .. 24

Figure 2.2 V-cycle Development Process and Terminology Used .. 26

Figure 2.3 Fault Injection Requirements of ISO 26262 within the Development Process 32

Figure 3.1 V-cycle Development Process Phase Addressed in Chapter 3 40

Figure 3.2 FIA Flow of the Product Level and its Interactions with other Activities 44

Figure 3.3 Results from the FIA Flow ... 45

Figure 3.4 Iteration of FIA Flow after the Modification of the Architecture 47

Figure 3.5 S-shaped Causal Chain ... 48

Figure 3.6 Multiple S-shaped Causal Chains from an Initial Failure Mode 48

Figure 3.7 Z-shaped Causal Chain ... 49

Figure 3.8 Multiple Z-shaped Causal Chain from an Initial Potential Cause 49

Figure 3.9 Steering Column Locking System Architecture ... 51

Figure 3.10 HW and SW Blocks at ESCL Product Level .. 53

Figure 3.11 S- and Z-Shaped Causal Chains in FTA and a FMECA Table 55

Figure 4.1 Contributions of Chapter 4 ... 58

Figure 4.2 Illustration of First Strategy .. 60

Figure 4.3 Illustration of Second Strategy for the Definition of Fault Model 60

Figure 4.4 Behavioral Description of the Locking Sequence of Motor at Product Level 65

Figure 4.5 S-Shaped Causal Chain in the Definition of Global Measures 66

Figure 4.6 Flowchart of Interpretation of FI Experiments ... 70

LIST OF FIGURES

xii

Figure 4.7 Product level FIE Flow ... 71

Figure 5.1 Architecture of the Front-Light System .. 74

Figure 5.2 Architecture of the Front-Light ECU .. 77

Figure 5.3 SPC56EL70 Architecture (STMicroelectronic, 2013) .. 78

Figure 5.4 Description of AUTOSAR Layers and Stacks of the Basic Software
(AUTOSAR, 2015) .. 80

Figure 5.5 Front-Light Software Architecture ... 82

Figure 5.6 Software Architecture of the Front-Light Manager with the critical path in red
of the SW-FMECA line ... 88

Figure 5.7 AUTOSAR WdgM: Control Flow Monitoring Example ... 90

Figure 5.8 WdgM Functional Description ... 91

Figure 5.9 Partial FTA of “No request of the Immediate MCU Reset” Failure Mode 92

Figure 6.1 Fault Injection Environment ... 96

Figure 6.2 Effectiveness of EDC/ERC of the two WdgM implementations (104
Experiments) .. 99

Figure 6.3 Robustness Campaign on the WdgM implementations (217 Experiments) 102

Figure 6.4 Verification of One FMECA Line (18 Experiments) ... 103

Figure 6.5 Global result of the violation of the Safety Requirements and the Triggered
Safety Mechanisms (218 Experiments) ... 104

xiii

List of Tables

Table 1.1 Definition of the Safety-ASIL Matrix (ISO 26262, 2011) ... 9

Table 1.2 Safety Analyses Methods ... 12

Table 2.1 Typical Qualitative FMECA Spreadsheet Line ... 29

Table 2.2 Example of Enriched FMECA Spreadsheet with Quantitative data 31

Table 2.3 ISO 26262 Requirements for Fault Injection Techniques .. 33

Table 2.4 Interpretation of ISO 26262 Requirements for Fault Injection Techniques 35

Table 3.1 Typical Qualitative FMECA Spreadsheet Line (ECSS-Q-30-02B, 2008) 46

Table 3.2 Representative FMECA Spreadsheet ... 47

Table 3.3 Functional Requirements of the Products .. 51

Table 3.4 Failure Modes of ESCL ... 52

Table 3.5 Partial FMECA of the Steering Column Locking System: ESCL Product 53

Table 3.6 Partial FMECA of the ESCL (Failure Mode of the Micro-Controller Block) 54

Table 4.1 Readouts Analysis .. 62

Table 4.2 Considered Line of ESCL Product FMECA .. 64

Table 4.3 System FMECA Leading to Violate Safety Goal 1 ... 67

Table 5.1 Front-Light System’s UEs ASIL Allocation .. 75

Table 5.2 Description of the Functions of the Front Light System. ... 75

Table 5.3 FMECA of the Front-Light System ... 76

Table 5.4 Software Block Undesired Events.. 80

Table 5.5 Software FMECA of the Front-Light Manager Module (Subset of the FMECA) 85

Table 5.6 Illustration of the S-Shaped Causal Chain ... 87

Table 6.1 Result of Timing Characterization of the WdgM ... 100

Table 6.2 AUTOSAR Specification of WdgM_GlobalStatusType (AUTOSAR-WDGM,
2014) .. 101

xv

Glossary

ABS Anti-lock Braking System
ADAS Advanced Driver Assistance Systems
API Application Programming Interface
ASIL Automotive Safety Integrity Level
AUTOSAR Automotive Open System Architecture
BSW Basic Software
CAN Controller Area Network
CCF Common Cause Failures
COTS Component Off-The-Shelf
CPU Central Processing Unit
CRC Cyclic Redundancy Check
DAL Design Assurance Level
DC Diagnostic Coverage
DFA Dependent Failure Analysis
DIO Digital Input Output
DTI Diagnosis Time Interval
E/E Electric/Electronic
EASIS Electronic Architecture System Engineering for Integrated Safety Systems
ECU Electronic Control Unit
EDC Error Detection Coverage
EPS Electronic Power Steering
ERC Error Recovery Coverage
ESCL Electronic Steering Column Lock
ESP Electronic Stability Program
FFI Freedom From Interferences
FI Fault Injection
FIA Fault Injection Analysis
FIE Fault Injection Experiment
FMEA Failure Mode Effects Analysis
FMECA Failure Mode Effects and Criticality Analysis
FMEDA Fault Mode and Effect Diagnosis Analysis
FMF Fault Management Framework
FSC Functional Safety Concept

GLOSSARY

xvi

FTA Fault Tree Analysis
HiL Hardware in the Loop
HMI Human-Machine Interface
HW Hardware
I/O Input/Output
LFM Latent Fault Metric
LIN Local Interconnect Network
MCU Micro Controller Unit
MiL Model in-the-Loop
MMU Memory Management Unit
MPU Memory Protection Unit
N/A Not available or Not applicable
NA Not Applicable
OEM Original Equipment Manufacturer
OS Operating System
OSEK,

OSEK/VDX

Offene Système und deren Schnittstellen für die Elektronik im Kraftfahrzeug,
“Open Systems and the Corresponding Interfaces for Automotive Electronics”

PHA Preliminary Hazard Analysis
PiL Processor in-the-Loop
PMHF Probabilistic Metric of Hardware Fault
QM Quality Management
RAM Random Access Memory
ROM Read-Only Memory
RT Reaction Time
RTE Run Time Environment
RTOS Real-Time Operating System
SEU Single Event Upset
SG Safety Goal
SiL Software in-the-Loop
SM Safety Mechanism
SPFM Single Point Fault Metric
SW Software
SW-C Software Component
SWIFI Software-Implemented Fault Injection
TTI Tolerance Time Interval
UE Undesired Event
V&V Verification and Validation

1

Introduction

The criticality of automotive embedded systems is becoming a major issue. Indeed, the growing com-
plexity of these systems due to the integration of more functionalities as well as the integration of
mixed criticality functionalities into electronic systems, may lead to hazardous behavior if the devel-
opment process is not improved. The introduction of comfort system (e.g., Electronic Power Steer-
ing—EPS), active safety systems (e.g., airbags, brake assist) and, in a near future, of autonomous cars
necessitates more stringent verification and validation methods.

Safety is a major issue in the automotive domain, due to the cost of vehicle recall when a critical de-
fect is discovered. Major car manufacturers have been confronted to these massive recalls
(Shepardson, 2015) (Strong, 2015). In addition, several class actions sued car manufacturers (BARR
Group, 2014) (Koopman P. , 2014) for defect of electric/electronic devices. Hence, activities must
tend toward a rigorous development process, which closely integrates safety design activities (e.g.,
definition of safety requirements, definition of safety mechanisms) and the verification activities.

The introduction of ISO 26262 standard for functional safety, in 2011, in the automotive industry, is
an important step in this direction. The ISO 26262 standard proposes methods and techniques that
should be integrated in the development process in order to ensure safety. ISO 26262 notably high-
lights that fault injection should be used in the development process. All the verification and validation
activities are impacted, even for the verification of the design. This recommendation raised the issue
of the role of fault injection in the design phase, which is, as far as we know, a difficult problem that
has not been investigated yet.

Fault Injection is a verification technique that has been investigated for a long time (end of the 80’s -
early 90’s). Today, fault injection has been applied to many different targets: Operating System – OS,
Middleware, web services, web servers, embedded systems, etc. The results of fault injection cam-
paigns are twofold: the verification of the fault tolerance mechanisms, with the estimation of error
detection and error recovery coverage, and the experimental evaluation of the robustness of the target,
i.e. the identification of the failure modes.

In this dissertation, we investigate a fault injection continuum, from system design validation to exper-
iments on implemented targets. The proposed approach considers the safety analyses as a starting
point, with the identification of safety mechanisms and safety requirements, and goes down to the
validation of safety mechanisms implementation with fault injection experiments.

INTRODUCTION

2

Previous work performed on implemented targets has shown the relevance of the FARM fault injec-
tion model. FARM stands for Fault, Activation, Readouts and Measures. FARM is a key concept
enabling a precise definition of fault injection experiments on implemented targets. Most fault injec-
tion studies are based on this model and all studies are compatible with this model.

Our study starts with the investigations of the two following questions: Can the FARM method be

applied at the early design phase? What are the expected fault injection’s outcomes in the early

validation of safety requirements?

As we will see, these two questions can be refined:

- What are the targets? Can we use the models as targets?

- What are the measures? Is the final aim to check that a safety mechanism exists, or to look
for possible violations of a given property?

- What is the fault model? Do we define it from system design, which results in an abstract
fault model, or from system semantics, i.e., application-oriented?

- What does activation mean? How behavioral description, defining when fault injection is
triggered, can be provided? Should we derive it from use cases, state diagrams or sequence di-
agrams?

A deep analysis of these questions led us to develop an approach covering the whole development

process, which enables the validation of critical embedded. Our approach shows the link between
safety analysis and the application of fault injection in a seamless fashion; it shows the complementa-
rities of both approaches in the design and validation process. We show that this approach can be part
of the development process of the automotive embedded systems described in the ISO 26262 standard.

This dissertation is structured in six chapters.

Chapter 1 and Chapter 2 present definitions and general notions about automotive systems, dependa-
bility, and development process.

Chapter 1 discusses dependability notions (dependability attributes, threats and means) and their ap-
plicability in the automotive industry, particularly in the context of the ISO 26262 standard. Finally,
we focus on a specific verification and validation method: Fault Injection. The state of the art of Fault
injection addresses the different objectives of this method, the developed techniques and tools that
have been developed and the recent automotive studies related to this topic.

Chapter 2 aims at highlighting the integration of fault injection into the development cycle of an auto-
motive system in the context of ISO 26262. We describe separately the activities of the functional
development process and the safety development process. Then, we discuss the impacts and the objec-
tives of fault injection in the various phases of the development cycle. This discussion raises the main
issue of the thesis: the continuous application of fault injection activity all along the development cy-
cle of an automotive embedded system.

This question is answered in Chapter 3 and Chapter 4. Our approach enables to manage fault injection
in all phases of the development cycle, beginning in the pre-implementation phase (Chapter 3) and
ending by the post implementation phase (Chapter 4). The meaning of fault injection during this phase
is investigated using FARM model as a framework in all phases. We show the complementarities be-

INTRODUCTION

3

tween the safety analyses and fault injection. In addition, we show how fault injection experiments
should be guided using the results of pre-implementation phases, and we discuss the measures ob-
tained in the post-implementation phase on the analyses of the pre-implementation phase.

Chapter 5 and Chapter 6 illustrate the whole methodology on a case study, from analyses to experi-
ments. The case study is a Front-Light System, which controls the low-beam headlights of the vehicle.
Chapter 5 applies the proposed approach of Chapter 3 and Chapter 4 by performing FIA and identify-
ing the fault injection experiments. In Chapter 6, the experiments, defined in Chapter 5, are performed
on a prototype using a fault injection tool developed during the thesis.

Finally, we conclude by reminding the main problem addressed, and our principal achievements in
dealing with it and recommendations. Possible directions for the future research developments are also
presented.

INTRODUCTION

4

5

Chapter 1 STATE OF THE ART & CONTEXT

1.1 Electric/Electronic Embedded Systems (E/E Systems) .. 6

1.1.1 Automotive E/E Systems .. 6

1.1.2 Standardization Needs: ISO 26262 ... 6

1.2 Basic Concepts of Dependability & ISO 26262 ... 8

1.2.1 From Dependability Attributes to Automotive Safety Integrity Levels 8

1.2.2 From Dependability Threats to Fault Model .. 9

1.2.3 From Dependability Means to Verification .. 11

1.3 Fault Injection for the Verification and Validation of Automotive E/E Systems 13

1.3.1 Known Approaches .. 13

1.3.2 FARM ... 14

1.3.3 Techniques .. 17

1.3.4 Related Work in Automotive Systems ... 19

1.4 Conclusion .. 21

STATE OF THE ART & CONTEXT

6

In this chapter, our objective is to describe the overall context of this study. We recall here the recent
evolution of automotive embedded system, together with standardization of the development process,
particularly for safety. Then, we summarize the basic concepts of dependability. These concepts are
linked with safety issues and specific terminology of the automotive systems. Finally, the validation
technique, i.e., fault injection, is characterized by presenting its approaches, methods and techniques.

1.1 Electric/Electronic Embedded Systems (E/E Systems)

1.1.1 Automotive E/E Systems

Since the end of the 90’s, the automotive industry has changed its way to design vehicles and the un-
derlying systems that compose a vehicle. Back then, the systems were designed following a federal
architecture where a single ECU was dedicated to one function or service.

The innovation pace has risen quite rapidly, particularly regarding electronic and computing facilities
that lead to replace mechanic and hydraulic commands by electronic components. Before that, each
function/system of a car was developed independently from the others.

Today’s embedded systems cover a large spectrum of automotive systems: motor control (e.g., fuel
injection), passive safety (e.g., airbags), braking systems (e.g., Anti-Lock Blocking System – ABS,
Electronic Stability Control - ESP), steering (e.g., Electronic Power Steering - EPS).

These systems exhibit now the following properties:

 systems are interconnected. Microcontrollers (or Electronic Control Unit ECU) of the
vehicle communicate with each other.

 functions/services are integrated in complex systems. A system provides several func-
tions, e.g., the Body Controller of the vehicle controls windows, lights, immobilizes the
vehicle, etc.

 functions are distributed on multiple systems. Several parts of a function are hosted by
different systems (microcontrollers). For example, the steering column locking system,
or the air conditioning system are distributed.

The main advantage of these solutions is the reduction of the number of ECU in the vehicle. However,
it increases significantly the complexity of each ECU. The development efforts are larger and the de-
velopment process must be improved in order to ensure a correct behavior of the system, particularly
regarding dependability aspects.

1.1.2 Standardization Needs: ISO 26262

The integration of E/E systems raised the problem of the coexistence of functions or services having
different levels of criticality in a single system. Indeed, current systems integrate both critical and non-
critical functions. A critical function can lead to an Undesired Event—UE, i.e., an accident in the
worst case. In addition, many actors are involved in the development process of a car: a car manufac-
turer (Original Equipment Manufacturer – OEM), and several suppliers (Tier 1, Tier 2) which develop
products for the system defined by the OEM. Each company has its own development process, there-
fore it is necessary to define and follow robust design rules in order to justify work methods and doc-
umentation at all development steps. Hence, all activities ensuring dependability have to be traced.

STATE OF THE ART & CONTEXT

7

It is worth noting that there are neither regulations nor directives on functional safety in the automo-
tive industry. Besides, there is no legal requirement for certification of automotive E/E systems. First,
several actors decided to adhere (voluntary) to the state of the art defined in the IEC 61508 (IEC
61508, 2010). Contrary to ARP 4754/ED-79 (SAE International, 2010) Guidelines For Development

Of Civil Aircraft and Systems, ED-12#/DO-178#(RTCA & EUROCAE, 2011) (with # = A in 1985,
B in 1992 and C in 2011) for Software Considerations in Airborne Systems and Equipment Certi-

fication, or the safety guides (e.g. 50-SG-D3 and 50-SG-D8) in nuclear industry, this standard is not
reserved to only one domain. Indeed, it proposes an approach applicable to generic embedded systems.
The IEC 61508 standard focuses on the overall development process of a system and the steps that
have to be respected in order to achieve safety. Particularly, it defines achievable goals for the specifi-
cation, the design, the implementation and the assessment of Electrical/ Electronic/ Electronic Pro-
grammable Systems (E/E/EP).

Since 2011, a derived version called ISO 26262 (ISO 26262, 2011) is used. This standard is the result
of a joint work between the major actors of the automotive domain aiming at specifying best practices
for the documentation, the interactions between actors and the methods and techniques to justify func-
tional safety of systems. This standard facilitates exchanges between OEMs and suppliers by exhibit-
ing requirements to achieve.

The scope of the ISO 26262 is the functional safety, i.e., “the absence of unreasonable risk due to

hazards caused by malfunctioning behavior of E/E systems”. “Non functional safety” aspects are out
of the scope of the study, e.g., a cause of a malfunction could not be a fire caused by external condi-
tions, such that a humid environment on an E/E system, or an electrical shock with a contact to a high
voltage source. Instead, functional safety covers fire due to an over excitation of an alternator within
the system in operation (design bug, aging of wires, etc.).

The ISO 26262 is divided in ten parts as described in Figure 1.1.

FIGURE 1.1 THE TEN PARTS OF THE ISO 26262 (ISO 26262, 2011)

Our work deals with Parts 4, 5 and 6, which provide all the requirements for the development of an
automotive system. However, other parts are also very helpful for understanding these requirements:
Parts 1, 8, 9 and 10.

STATE OF THE ART & CONTEXT

8

1.2 Basic Concepts of Dependability & ISO 26262

The definition of dependability emerged from the work done in the IFIP WG10.4 working group on
Dependable Computing and Fault Tolerance: Dependability is defined as the “trustworthiness of a

computing system which allows reliance to be justifiably placed on the service to deliver”. (IFIP WG
10.4, 2015)

Dependability is a key concept for any critical system. It could be seen as the aptitude to avoid the
failures that occur during service delivery. The service corresponds to behavior perceived by the users
(human or not) or services in interaction with it.

Dependability is also a well-documented concept, and a complete taxonomy can be found in
(Avizienis, Laprie, Randell, & Landwehr, 2004). Indeed, dependability is defined by six attributes,
three threats and four categories of means.

1.2.1 From Dependability Attributes to Automotive Safety Integrity Levels

1.2.1.1 Dependability Attributes

Dependability encompasses the following attributes, which characterize the quality of the delivered
service:

 Availability: readiness for correct service;
 Reliability: continuity of correct service;
 Safety: absence of catastrophic consequences on the user(s) and the environment;
 Confidentiality: absence of unauthorized disclosure of information;
 Integrity: absence of improper system alterations;
 Maintainability: ability to undergo modifications and repairs.

Depending on the industrial field, the significance of each attribute varies. This choice relies on the
objectives that should be achieved for a given service. For example, in transportation fields, reliability
and safety are of prime priority; in communication system, availability, reliability and confidentiality
are the target attributes.

Historically, in automotive industry, the effort was on the achievement of reliability and availability.
The improvement of the reliability of components was sufficient to improve the quality of service.
Then, the growing complexity and the criticality of E/E systems lead to focus on safety. Today, securi-
ty importance is rising quickly, in parallel with car’s connectivity. In the following of this work, we
will mainly concentrate on safety aspects.

1.2.1.2 Safety & Automotive Safety-Integrity Level

Considering the dependability attributes, the actor of a given domain can define a scale of criticality
for the given attribute. Indeed, all systems should be developed correctly! However, depending on
their level of criticality, they do not require the same development efforts, in terms of both design and
validation. For example, car audio and video systems do not require the same safety effort than a fuel
injection system.

The ISO 26262 standard introduces the concept of Automotive Safety Integrity Level (ASIL). They
are four levels: from ASIL A (the less critical) to ASIL D (the most critical). There is also a level,

STATE OF THE ART & CONTEXT

9

noted Quality Management (QM), which is not associated with any specific requirements. Hence, no
safety-related activities are required by ISO 26262 in this case. The ASIL is determined by the highest
criticality of hazards, situations at vehicle level that may lead to harm person the system is interacting
with.

When assigning these levels, three parameters must be taken into account, see Table 1.1:

1. severity that is based on the seriousness of injuries caused by incidents or accidents
(S1: Light and moderate injuries, S2: Severe and life-threatening injuries (survival
probable), S3: Life-threatening injuries (survival uncertain), fatal injuries);

2. probability of exposure. Occurrence of the use case: E1: very low probability, E2:
Low probability E3: Medium probability, E4: High probability;

3. controllability. It is a subjective concept that is based on the abilities of the “road us-

er” (e.g., drivers, pedestrians, etc.) to handle the hazard (C1: Simply controllable, C2:
Normally controllable, C3: Difficult to control or uncontrollable).

The objective of these criticality levels is to quantify the level of “trust” at which the system should be
designed to provide its functions correctly. The more safety critical the system is, the higher the ASIL
is, resulting in stringent efforts to comply with the standard.

TABLE 1.1 DEFINITION OF THE SAFETY-ASIL MATRIX (ISO 26262, 2011)

 Controllability

Severity of the

harm

Probability
of expo-

sure
C1 C2 C3

S1

E1 QM QM QM
E2 QM QM QM
E3 QM QM ASIL A
E4 QM ASIL A ASIL B

S2

E1 QM QM QM
E2 QM QM ASIL A
E3 QM ASIL A ASIL B
E4 ASIL A ASIL B ASIL C

S3

E1 QM QM ASIL A
E2 QM ASIL A ASIL B
E3 ASIL A ASIL B ASIL C
E4 ASIL B ASIL C ASIL D

Due to the imperfections inherent to all systems, dependability attributes have to be interpreted in a
relative sense, not in an absolute, deterministic one. The requirements for the attributes are therefore
specified according to levels and some of them may not be required for a given system.

1.2.2 From Dependability Threats to Fault Model

1.2.2.1 Dependability Threats

The threats to dependability are faults, errors, failures. A service failure, also abbreviated to failure,
is an event that occurs when the service delivered by the implemented system function deviates from
the correct service. Hence, it affects the targeted level of satisfaction of one or several dependability
attributes. They are linked within the chain of dependability threats illustrated in Figure 1.2.

STATE OF THE ART & CONTEXT

10

FIGURE 1.2 RECURSIVE CHAIN OF DEPENDABILITY THREATS

At the beginning of a service failure, there is a fault, i.e. the origin of a potential failure. A fault is a
defect that can be internal or external to a system. They have been classified into three major overlap-
ping categories (Avizienis, Laprie, Randell, & Landwehr, 2004):

 development faults, that include all fault classes occurring during development;
 physical faults, that include all fault classes that affect hardware;
 interaction faults, that include all external faults.

Although a system may contain a fault, its input and state conditions may never cause this fault to be
activated so that an error occurs; in this case, the fault is referred as dormant. Then, as soon as a fault
has been activated, it produces an error, i.e., a part of the system state that may cause a subsequent
service failure. The failure occurs when a propagating error –internal propagation– reaches and alters
the interface of the considered system service.

Finally, the failure may propagate to the interface of another system service (external propagation),
that appears as an external fault to this service. It is referred to as causation.

1.2.2.2 Fault Model in Automotive Embedded Systems

An automotive embedded system may fail in operation due to either physical faults (hardware aging,
EMC, etc.) or residual bugs from design or development phase.

Regarding the faults of systems and specific hardware elements, a classification is proposed in the
Annex D of ISO 26262-5 (ISO 26262, 2011). In the table, given in APPENDIX 1, each type of ele-
ment is considered: E/E System, relays, communication links, sensors, processing units, etc.

Then, for each component, a set of typical faults, errors or failures of hardware is described. The pro-
posed listing “does not claim exhaustiveness and can be adjusted based on additional known faults or

depending on the application”. This is intended to provide a representative guideline of the fault mod-
el that should be considered in the automotive domain. For example, sensor fault model encompasses
faults such as stuck-out of range, stuck-in range, oscillations and offsets.

This table also proposes a guideline for the diagnostic coverage achievable by a safety mechanism.
According to this table, a safety mechanism that covers a category (each component has three catego-
ries) of faults has the ability to achieve low (60%), medium (90%) or high (99%) diagnostic coverage.
For example, a safety mechanism covering all the sensor faults described previously can pretend to
achieve a high, 99% DC. “Input comparison/voting (1oo2, 2oo3 or better redundancy” is a proposed
measure to achieve this high DC.

It should be noted that a similar classification of the Appendix D of ISO 26262-5 has been also done
in the Electronic Architecture and System engineering for Integrated Safety systems—EASIS Europe-
an project (Lu, 2009a). However, EASIS classification does not propose an achievable DC level.

System BSystem A

FailureErrorFault
Activation Propagation Causation

Fault

STATE OF THE ART & CONTEXT

11

Specifically, in software applications, physical faults are modeled as permanent fault (leading to hang
or crash) and transient faults (e.g. bit-flips and stuck-at in the code and data memory segments leading
to value errors). Such faults are always possible due to the aggressive environment of automotive ap-
plications and the increasing complexity of the hardware components and system architecture.

To take into account such aggressive environments and complex architectures, ISO 26262-6 (highly)
recommends injection of arbitrary values (e.g., by corrupting values of variables, by introducing code
mutations, or by corrupting values of CPU registers).

Regarding software faults, also called systematic faults, they may occur due to non-respected rules
during the design. The errors could be introduced in system, hardware or software design, because of a
misinterpretation of the specifications. In software, the following are potential causes of these design
errors: wrong temporal design (sizing, execution order, etc.), wrong resource sizing, wrong data usage
(wrong choice of data for usage, wrong handling of a data, etc.) or non-expected modes. These bugs
are introduced during manual coding, or with compiler or linker’s default.

1.2.3 From Dependability Means to Verification

Finally, dependability means, whose objective is to ensure dependability attributes from dependability
threats, are grouped in four categories:

 fault prevention aims to prevent the occurrence or introduction of faults;
 fault tolerance aims to avoid service failure in the presence of faults;
 fault removal aims to reduce the number and the severity of faults;
 fault forecasting aims to provide an estimation of the present number of faults, future

incidence and possible consequences of faults.

Fault prevention is ensured by quality control techniques, such as adherence to design rules, through-
out the development and the manufacturing process of the system.

1.2.3.1 Fault Tolerance

In order to prevent a service failure, a fault tolerant system needs to integrate in its design error han-
dling techniques, including error detection, error correction, error recovery, redundancy and diversi-

fication (for systematic faults).

All these techniques, when integrated in a design, provide a fault tolerant architecture against pre-
defined faults. Various architectures have been studied and each industrial domain has developed solu-
tions that meet its constraints. For example, triplication with majority vote is a common solution for
railways, avionic or aerospace systems since decades, contrary to the automotive domain where this
robust solution is usually not necessary, and fail-safe designs are used.

1.2.3.2 Fault Forecasting

Fault forecasting is conducted by performing an evaluation of the system behavior with respect to fault
occurrence or activation. The evaluation is composed of two aspects:

 qualitative, or ordinal, evaluation. This aims at identifying, classifying, ranking the
failure modes, or the event combinations (components failures or environmental condi-
tions) which may lead to system failures,

STATE OF THE ART & CONTEXT

12

 quantitative, or probabilistic, evaluation. This aims at evaluating in terms of probabili-
ties the extent to which some of the attributes of dependability are satisfied; those a t-
tributes are then viewed as measures of dependability. This evaluation is based on the
alternation of correct and incorrect service delivery, to define reliability, availability and
maintainability measures.

Particularly in the automotive domain, specific metrics have to be calculated: Probabilistic Metric of
Hardware Failure (PMHF), Single Point Fault Metric (SPFM) and Latent-Fault Metric (LFM).

Numerous methods enable to evaluate qualitative and quantitative aspects. Table 1.2 lists safety analy-
sis methods.

TABLE 1.2 SAFETY ANALYSES METHODS
Safety analysis

method
Qualitative Quantitative Automotive Industry Specific Information

HA&RA
1

Also referred to as Preliminary Hazard Anal-
ysis (PHA) in automotive industry

FME(C)A
2

FMEDA
3

Specific to automotive industry. Enables the
calculation of architectural metrics from the

ISO 26262 (SPFM and LFM)

DFA
4

Analyzes independence, and non-interference
between elements of the component

CPA
FTA

5

RBD
6

Markov Chain
7

Stochastic Petri Nets
ETA

8

Then, the evaluation of the measures can be performed using modeling and analyses but also through
testing. This experiment-based approach is tackled with fault injection techniques.

1.2.3.3 Fault Removal

Here, we focus on the fault removal activities during development phase. In this phase, the objective is
to perform preventive or corrective maintenance, by patching software, replacement of electronic de-
vices, etc.

The fault removal activity consists mainly in a verification process, which leads to diagnose the threats
and finally to proceed to the necessary corrections. Then, the process must be repeated in order to
check that the fault removal process has not inserted new faults. In practice, this step is referred to as
non-regression verifications.

1 Hazard Analysis & Risk Assessment (e.g., HAZOP) (M2OS, 2014)
2 Failure Mode, Effect (and Criticality) Analysis (Bouti & Kadi, 1994), (Department of the Army, 2006), (ECSS-Q-30-02B,
2008)
3 Failure Mode, Effect and Diagnosis Analysis (L'Hostis, 2013)
4 Dependant Failure Analysis (ISO 26262, 2011)
5 Fault Tree Analysis (Barlow & Lambert, 1975)
6 Reliability Block Diagram (SaRS: Safety and Reliability Society, 2011)
7 (SaRS: Safety and Reliability Society, 2011)
8 Event Tree Analysis (M2OS, 2014)

STATE OF THE ART & CONTEXT

13

Verification techniques can be classified according to whether or not they involve exercising the sys-
tem. One the one hand, if the system is not activated these are called static verification techniques.
Static analyses can be performed manually or automatically. Manual ones are “inspections”, “re-
views”, “walkthrough” techniques (Aurum, Petersson, & Wohlin, 2002), consisting in a detailed anal-
ysis of a system artifact (specifications, design, source code, etc.). Even if this technique is time con-
suming, a large number of faults can be identified prior to any execution of the system. Automatic
ones based on software tools give informative metrics or lists of anomalies. Static analyses also in-
clude theorem proving (requires formal specifications in this case) and model-checking techniques.

On the other hand, the dynamic verification techniques of the system are usually referred to as test-

ing. A test aims at providing inputs to a system, and verifying that the observed behavior is correct
with respect to the specifications. Due to complexity of modern automotive systems, it is not manage-
able to verify exhaustively a system (except for very specific simple cases). Indeed, a test campaign
does not provide a proof of the zero-default behavior of the system; nevertheless, it enables to increase
designers and developers’ trust in the system quality.

Moreover, a test is driven by verification objectives: performance, functional requirement, robustness,
etc. Each of the test categories is important and provides complementary information on the systems.
Among testing objectives, the introduction of dependability raises the issue of the verification of fault
tolerance mechanisms. Similarly to other verification techniques mentioned before, it is mandatory to
introduce faults or errors in the system to validate the fault tolerance mechanism during the testing
phase. This technique called fault injection (FI) will be discussed in the following section.

1.3 Fault Injection for the Verification and Validation of Automotive

E/E Systems

The introduction of fault injection in ISO 26262, in 2011, has renewed the interest of this method in
the automotive industry. However, this well-established verification method is now used by many
industries in several domains. Fault injection (Barbosa, Karlsson, Madeira, & Vieira, 2012) is a key
technique in the evaluation of the dependability of systems. We have seen in the previous section that
fault injection was a dedicated method for both fault forecasting, by predicting the post-deployment
behavior of the systems under real threats and fault removal, by identifying weaknesses or defects in
the implementation of safety mechanisms.

In this section, we first identify the objectives of fault injection campaigns, and show how to charac-
terize a fault injection environment, particularly the attributes of fault injection. We also give an over-
view of typical fault injection techniques and tools, and finally several studies related to the automo-
tive domain are discussed.

1.3.1 Known Approaches

The insertion of faults into systems during the verification phase has been recognized useful in many
works to enhance the quality of service regarding fault handling, and thus to improve the dependability
of a system. The first approach is based on the idea that the environment of the target is corrupted.
Hence, the goal is to evaluate the ability of the system to handle unexpected inputs, caused by a fault
in the environment of the system under test. This approach has been investigated in RIFLE (Madeira,
Rela, Moreira, & Silva, 1994), BALLISTA project (Koopman, DeVale, & DeVale, 2008).

STATE OF THE ART & CONTEXT

14

A second approach consists in performing a modification of the target by inserting an artificial fault
and observing the behavior of the reaction of the target. The objective of the latter is the validation of
the internal fault tolerance mechanisms or/and the evaluation of the failure modes distribution
(Albinet, Arlat, & Fabre, 2004).

Both approaches can be applied to perform robustness testing and dependability benchmarking
(DBench, 2004). A framework for defining dependability benchmarks for computer systems was de-
veloped in the DBench European project. This framework emphasizes the validation of Commercial-
Of-The Shelf (COTS) components, in particular operating systems (e.g. several Linux and Windows
versions).

Finally, another fault injection approach evaluates the ability of the tests cases to detect faults: Muta-

tion testing (DeMillo, Guindi, McCracken, Offutt, & King, 1988). This well-known technique allows
the improvement of software quality during the development. In this approach, bugs are introduced in
a program: manually – hand-seeded faults –, or automatically generated (mutants) using rules intro-
ducing defects. In the following, we will concentrate on safety related, deterministic testing, hence this
last fault injection technique will not be developed.

1.3.2 FARM

Several studies have proposed a structure for fault injection environments. To set up a fault injection
campaign (Christmansson & Chillarege, 1996), several questions need to be addressed:

1. What is the appropriate error model that mimics representative software faults?

2. Where should the error be injected to emulate a particular software fault?

3. When should the error be injected?

4. How should a representative operational profile (i.e. a probabilistic description of sys-

tem usage) be designed that will maintain reasonable experiment times?

5. What readouts should be collected, and which measures should be calculated?

6. How should the calculated measures be related to analytical models of dependability?

Among the various fault injection environment models based on the above key issues, one has been
particularly used in different works to characterize fault injection on a Target: the FARM model
(Arlat, et al., 1990), (Arlat, Costes, Crouzet, Laprie, & Powell, 1993), (Benso A., 2011). The FARM
model is composed of the four following attributes:

 the set of faults to be injected (the Fault model),
 the system activities under which the faults are injected (the Activation),
 the Readouts of the experiment results,
 and the Measures evaluated, based on data of the experiments < F, A, R >.

The FARM model characterizes in an effective way the fault injection environment, and it is used in
this study as a reference for the definition of fault injection experiments.

1.3.2.1 Fault Model

The set of faults to be injected into the target is also called a fault list. Each fault is characterized by a
model (e.g. stuck-at, bit-flip, etc.), a location (e.g. memory address, a pin, etc.) and an injection time
(e.g. event-driven, after a given time, etc.).

STATE OF THE ART & CONTEXT

15

Generally, the size of the fault list is assumed to be infinite. An exhaustive set of experiments covering
the full fault list in fault injection campaign is impossible to achieve. In practice, the fault list used to
perform the experiments is a subset of the entire fault list that can be injected in a reasonable time but
still able to provide significant results: the main criteria here is the representativeness of the fault
model. Many studies have dealt with this problem (Natella R. , 2011) (Costa, Silva, & Madeira, 2009)
(Natella, Cotroneo, Duraes, & Madeira, 2013).

Orthogonal Defect Classification (ODC) (Christmansson & Chillarege, 1996) is a measurement tech-
nology that is consistently applied to a large number of IBM projects. The fault types, representing the
defects in the source code, are classified in six types, as follows: Assignment, Checking, Algorithm,
Timing/Serialization, Interface, and Function.

1.3.2.2 Activation Model

The set of activations A specifies how the target is exercised (its functional behavior) during the ex-
periment. It corresponds to a set of functional inputs applied to the target. The complexity of the Acti-
vation model directly influences the length of an experiment, as the injection time is directly depend-
ent of the Activation length. This Activation model is often referred as the Workload of the fault injec-
tion campaign. An important characteristic of the workload is again its representativeness; ideally, it
should be similar to the real behavior of the system in operation. However, most of activation models
are implemented with synthetic workload, not representative of the real behavior, but easy to handle
and to observe (readouts). An incorrect activation model A may result in the two main consequences:
i) incomplete or non-significant results — the inferred measures obtained on the target are biased; or
ii) no effect of the faults is perceived — when the fault is not activated by the workload. In this case,
the experiment is categorized as harmless whereas it could lead to a critical failure using a different
activation set. The Activation model could be defined based on operational profiles to be representa-
tive of the activation of the target or scenario-based test from the use cases defined during system def-
inition.

1.3.2.3 Readouts Model

The set of Readouts corresponds to the logged behavior of the system, data and events, execution
flow, etc. It encompasses all the observations that can be made on the target system. This is strongly
dependent on the target system and the fault injection tools. A simulated execution of a system is easi-
er to monitor than a prototype. However, the choice of R must be done carefully since it has a strong
impact on the results and the analysis. The set of readouts R is composed of variables values, states of
the system, detection timing, etc.

1.3.2.4 Measures Model

The Measures are obtained from the Readouts during or after an experiment. Different types of
Measures can be assessed. First, the behavior of the target system in the presence of faults can be
evaluated, particularly the failure mode distribution. A severity scale called CRASH has been defined
in BALLISTA project (Koopman, DeVale, & DeVale, 2008) to characterize the behavior of Operating
System and middleware. CRASH is an acronym for: Catastrophic, Restart, Abort, Silent, Hindering.
In BALLISTA, a fault corresponds to the corruption of the parameters of a system call executed by a
process. The semantics of these failure modes is thus the following:

- Catastrophic: the target computer crashes;
- Restart: the benchmark process hangs and needs a restart;

STATE OF THE ART & CONTEXT

16

- Abort: the benchmark process aborts (e.g. core dump);
- Silent: no error code is returned when one should have been;
- Hindering: an incorrect error code is generated

It is worth noting a specific scale must be defined for a given target, although some similarities can be
found with other existing scales. The definition of these categories is a major issue. Moreover, the
measure should not only tackle the first occurrence of a failure mode but also next ones. The work
presented in (Albinet, Arlat, & Fabre, 2004) has shown that the first occurrence of a failure is not al-
ways sufficient to characterize a fault injection experiment. The detection of the error may occur and
in that case, the system is restarted. However, the restart can be insufficient, as another catastrophic
failure may occur. Hence, the verification that a reaction has been performed is not sufficient to char-
acterize if the system is safe, and the target should be observed for a second failure.

The main measures concern error detection coverage (EDC) and error recovery coverage (ERC).
Most of the time these measures are illustrated with pie diagrams distinguishing an error detection
sector and another sector giving the distribution of failure modes when the error is not detected. EDC
is computed according to Equation 1.1.

 Equation 1.1

Another important set of measures is the determination of error handling timings, and the Error han-
dling timings of the fault tolerance mechanisms.

The timing requirements of fault tolerance are defined in the ISO 26262 part 1 (ISO 26262, 2011), and
Figure 1.3 illustrates the associated terminology.

FIGURE 1.3 DIAGNOSTIC TEST INTERVAL, REACTION TIME AND TOLERANCE TIME INTERVAL

First, before the occurrence of the fault, the whole system is in a fault free state or normal operation.
Then, when the fault is activated, the system enters in an abnormal system state, in which the error
detection mechanisms should handle the error. The error can also remain latent or lead to a failure
when there is propagation of the error. When the error is detected, a recovery procedure is needed to
handle the error and put the system in a fail-safe state or trigger a degraded mode of operation. The
Diagnostic Test Interval (DTI) is the upper bound of the interval between the occurrence of the fault
and the detection, this time is defined according to the period of the recurrent test use to detect the
error. The Reaction Time (RT) is the time between the detection and the end of the recovery.

Finally, a Tolerance Time Interval (TTI) is the delay between the fault activation and the violation of
a safety goal. The Tolerance Time Interval is an intrinsic characteristic of a system. It should be noted

Normal

Operation
Latent Error Failure Safe Mode

Error
Propagation

Error
tolerated

Reaction timeDiagnostic Test Interval

Fault
Activation

Error
Detection

Tolerance Time Interval

Fault
Activation

Normal

Operation
Latent Error Failure

Unsafe

Mode

Violation of
a Safety Goal

STATE OF THE ART & CONTEXT

17

that the transition to a failure mode may not be sufficient, as a failure mode could be tolerated a short
amount of time. For example, the loss of the headlights while driving on a motorway is a failure, how-
ever, it is considered “safe” if the failure is tolerated within 500 ms.

The TTI is difficult to estimate in practice. However, the following relation must be ensured:

 Equation 1.2

To conclude, it is worth to mention that the Measures to be evaluated have to be defined first, since
they guide the whole fault injection process. However, their values are evaluated in the last step, by
processing information given by the Readouts. The Fault model, the system Activation and the
Readouts have to be defined to obtain the significant Measures in an efficient way.

1.3.3 Techniques

Several Fault injection techniques have been applied to different types of targets (hardware, software,
simulation models, etc.). While these techniques are very different in their implementation, they all
share the same environment described in the following section. Then, a section is dedicated to an
overview the existing fault injection techniques and tools.

1.3.3.1 Environment

A fault injection environment (Hsueh, Tsai, & Iyer, 1997) of a Target System should encompass the
following components, as defined in Figure 1.4:

 The Target System.

 The Controller controls the whole experiment, i.e., the Workload Generator, the
Fault Injector and the Monitor.

 The Fault Injector injects faults selected from the Fault Library into the target system.
 The Workload Generator generates the inputs, selected from the Workload Library,

for the target system.
 The Monitor tracks the execution of the fault injection experiment for the Controller

and the Data Collector
 The Data Collector collects the data (Readouts) during the experiment.
 The Data Analyzer analyzes the Readouts collected by the Data Collector

FIGURE 1.4 A TYPICAL FAULT INJECTION ENVIRONMENT (HSUEH, TSAI, & IYER, 1997)

Fault Injection System

Target System

MonitorFault InjectorWorkload Generator

Data Analyzer

Data Collector

Controller

Fault
library

Workload
library

STATE OF THE ART & CONTEXT

18

1.3.3.2 Techniques and Tools

Fault injection is a mature technology that has been successfully applied using several techniques on
different targets. It is important to notice that the number and the diversity of fault injection techniques
is a consequence of the type of targets that have been investigated (hardware, software, models). Many
techniques are based on specific tools, often developed for a different purpose (e.g. debugging), to
perform fault injection. These tools allow either to inject a specific fault model or to control a specific
target.

Fault injection techniques can be categorized depending on the target type (Hsueh, Tsai, & Iyer,
1997), (Ziade, Ayoubi, & Velazco, 2004), (Svenningsson R. , 2011). The classification is illustrated in
Figure 1.5.

FIGURE 1.5 FAULT INJECTION TECHNIQUES CLASSIFICATION

Physical fault injection can be performed by bombarding the system with either heavy-ions (Karlsson,
et al., 1998) or electromagnetic interferences (EMI) (Karlsson, Liden, Dahlgren, Johansson, &
Gunneflo, 1994), to mimic Single Event Upset (SEU) that could happen in operation. Today, this
technique is less applied as the major drawbacks are the low controllability, and the lack of repeatabil-
ity of experiments with this method.

Then physical fault injection is divided into two parts:

i) Injection of faults in the hardware of the system (e.g. stuck-at faults), i.e. Hardware
Implemented Fault Injection— HIFI, and

ii) Simulation of physical faults in the software of a system, i.e. Software Implemented
Fault Injection—SWIFI.

Typically, HIFI corresponds to pin-level fault injection and test-port based fault injection. Pin-level
fault injection encompassed techniques that emulate faults by affecting the state of pins of an integrat-
ed circuit (Madeira, Rela, Moreira, & Silva, 1994) (Arlat, et al., 1990). Test-port based fault injection
techniques rely on debug ports available on several microcontrollers and CPU in order to access the
memory of a chip and simulating the effects of hardware faults. One variant of this technique is based
on the Nexus standard or IEEE-ISTO 5001-2003 (Nexus5001) (Dees, 2012) that defines a standard
debugging interface. This technique has been used in GOOFI (Aidemark, Vinter, Folkesson, &
Karlsson, 2001) (Skarin, Barbosa, & Karlsson, 2010) and INERTE (Yuste, de Andrès, Lemus,
Serrano, & Gil, 2003). This standard is indeed integrated in the microcontrollers used in the automo-
tive industry.

STATE OF THE ART & CONTEXT

19

SWIFI techniques are widely used today, as they are easy to deploy. They can be divided into pre-
runtime techniques, i.e. the fault is injected in the software before its deployment on the target system
(Han, Shin, & Rosenberg, 1995), and runtime techniques. In the latter, the faults are injected during
the execution of the software on the target (Benso, et al., 2003) (Kanawati, Kanawati, & Abraham,
1995) (Barbosa, Silva, & Cunha, 2013) (Carreira, Madeira, & Silva, 1998).

Model Implemented Fault Injection has been introduced in (Svenningsson R. , 2011). The injection of
faults is performed on models using Simulation-based techniques on VHDL-models of hardware com-
ponents. This technique was developed when no physical injection solution was manageable on these
targets. Hence, the idea was the modeling and the simulation of the fault injection experiments (Jenn
E. , Arlat, Rimen, Ohlsson, & Karlsson, 1994) (Jenn E. , Arlat, Rimbn, Ohlsson, & Karlsson, 1994). In
recent years, fault injection on model has grown in interest, together with Model Based Development.
Indeed, some software modules are not developed in programming language, like C, but with behav-
ioral modeling, e.g. Simulink, from which the source code is automatically generated. It is thus possi-
ble to test the behavior in presence of fault of the component design when these behavioral models are
executed. These techniques have been developed on Simulink (Svenningsson R. , 2011) and SCADE
(Vinter, Bromander, Raistrick, & Edler, 2007).

1.3.4 Related Work in Automotive Systems

A quick overview of fault injection has been presented in this chapter. Recently, the introduction of
fault injection requirements in the ISO 26262 has renewed the interest of this topic in the automotive
industry (Silva, Barbosa, Cunha, & Vieira, 2013) (Rana, et al., 2013). Several subjects have been ad-
dressed.

1.3.4.1 Fault Injection in AUTOSAR architecture

First, several studies proposed techniques and tools to perform fault injection in automotive systems,
in particular on AUTOSAR-based software architecture. In (Lu, 2009a) (Lu, Fabre, & Kilijian, 2009b)
hooks provided by AUTOSAR are used to inject faults in the application but also to monitor its behav-
ior. The same SWIFI technique is used in (Lanigan, Narasimhan, & Fuhrman, 2010), with hooks, to
develop a framework based on CANoe from Vector, in order to control the whole experiment through
the CAN Network. The approach developed in (Piper, Winter, Manns, & Suri, 2012), is based on the
“instrumentation” of the software component of an AUTOSAR application. In this case, the instru-
mentation is done using a wrapper at the interface between two software components to capture all
communication signals. The wrappers allow the implementation of add-on functionalities to control
the fault injection experiments.

A similar approach is evaluated in (Islam, Karunakaran, Haraldsson, Bernin, & Karlsson, 2014)
(Karunakaran, 2013), where the instrumentation of the wrapper is done at binary level to perform Bi-
nary Level Fault Injection (BLFI). This is an intrusive method as the size of the binary integrates the
wrapper code. However, the source code of the target application is not modified. In this study, the
execution time overhead is quite low but it generally depends on the functionalities added in the wrap-
pers and the number of wrappers. Finally, (Salkham, Pecchia, & Silva, 2013) proposes an approach
based on the AUTOSAR’s Complex Device Driver (CDD) in order to control the experiment. The
objective here is to take advantage of the generic implementation of AUTOSAR to provide a frame-
work in which the controller can be easily implemented in several projects without modifying the
basic software.

STATE OF THE ART & CONTEXT

20

1.3.4.2 Fault Injection in Simulink Models

Then, as it has already been discussed in the previous section, several works have tackled the injection
of faults in Simulink models, as in the MODIFI project (Svenningsson, Eriksson, Vinter, & Törngren,
2010) (Svenningsson R. , 2011) (Svenningsson, Vinter, Eriksson, & Törngren, 2010). Moreover, the
tests performed on models have been validated by injection of the same error on a prototype target.
(Rana, et al., 2013) also proposed a similar approach to perform fault injection on Simulink models.
Again, the choice of Simulink models is driven by their frequent use in the development of application
and embedded functions.

1.3.4.3 Fault Injection Experiment definition using Safety Analysis

Few studies have investigated the similarities between safety analysis and fault injection. The main
objective is to use the results of safety analyses as FMEA in order to improve the fault injection cam-
paigns. Yogitech (Yogitech, 2015) proposed a method (Mariani & Boschi, 2007), (Mariani, Boschi, &
Colucci, 2007), (Mariani, Fuhrmann, & Vittorelli, 2006), to perform the verification at System-on-
Chip (SoC) level, according to IEC 61508, using FMEA. The approach use FMEA to determine the
“sensible zones” in which the faults are injected. Then, the fault injection experiments are simulated,
using IEEE e standard Verification Language (IEEE Std., 2006) in Specman tool from Cadence. The
main objective is to verify SoC architecture using fault injection.

Moreover, (Bidokhti, 2009) discusses the complementarity between FMEA and fault insertion tests.
These tests, hardware implemented fault injection experiments, are performed on hardware parts to
improve verification. Fault injection helps to validate FMEA.

1.3.4.4 Other Studies

The work described in (Blin, Laarouchi, & Quéré, 2014) proposes two interesting techniques (one
using virtualization and one using emulation) to inject errors in memories without altering the source
code of the application. Concerning the emulation techniques, a major advantage is that the entire con-
trol of timing aspects of emulated OS, i.e., the temporal impact on behavior of the application, is low.
Moreover, emulation allows quick unit testing without deploying the software application. The main
drawback of this method is the need of an emulation framework and its cost.

The BeSafe project defines the foundation of functional safety benchmarking of automotive E/E sys-
tems. The work presented in (Islam, et al., 2013) tackles the problem of the benchmark targets and the
benchmark measures on Safety Elements out of Context – SEooC. SEooC is a concept defined in the
part 10 of the ISO 26262. It addresses safety-related elements that are not developed in the context of
a particular vehicle but assumptions that have to be validated before integration into the final system.
Finally, fault injection has been used in several studies in order to verify automotive products
(Trawczynski, Sosnowski, & Gawkowski, 2008), for instance the verification of an Anti Breaking
System (ABS). This is a key concept also in the EASIS project, where fault injection has been used to
validate fault tolerant architectures. These architectures centralise error detection and error handling in
a dedicated software safety mechanisms called Fault Management Framework—FMF (Xi, 2008).

STATE OF THE ART & CONTEXT

21

1.4 Conclusion

In this chapter, we have shown that ISO 26262 Standard has motivated new safety practices in the
automotive industry. The ISO 26262 redefined specific dependability concepts that should be applied
by the actors of the automotive domain.

Fault injection is now a highly recommended method in the ISO 26262, and is required in early phases
of the development process. However, we have shown that fault injection has been studied on concrete
targets, but to our knowledge, no evaluation of its integration in the development process has been
performed yet. The next chapter will describe the development cycle of an automotive embedded sys-
tem, and the integration of fault injection according to ISO 26262 in this process will be investigated.

23

Chapter 2 DEVELOPMENT PROCESS &

SAFETY

2.1 Development Process of Automotive E/E Embedded Systems .. 24

2.1.1 Automotive Embedded Systems ... 24

2.1.2 System Engineering .. 25

2.2 V-Cycle Development Model ... 26

2.2.1 Requirements Analysis ... 27

2.2.2 Implementation, Integration and Testing Activities ... 27

2.2.3 Relationship between V Branches .. 28

2.3 Safety Development Process .. 28

2.3.1 Safety Analyses at System Level.. 28

2.3.2 Safety Analyses at Product Architecture Level and HW Architectural Level 30

2.3.3 Quantitative Safety Analyses.. 30

2.3.4 Safety Analyses at Software Architecture Level .. 31

2.3.5 Safety Tests .. 31

2.4 Fault Injection Requirement of ISO 26262 ... 32

2.4.1 Requirements during Pre-Implementation Phase ... 32

2.4.2 Requirements during Post-Implementation Phase .. 33

2.5 Thesis Orientation & Proposed Methodology Overview .. 36

DEVELOPMENT PROCESS & SAFETY

24

Our objective is to describe a generic development process of Automotive E/E Systems. First, we start
by defining the terminology of automotive embedded systems, in compliance with the ISO 26262
norm. Then, the functional development process and the safety development process are detailed.
Those form the foundations we will base on for our study, since our final goal is to integrate fault in-
jection in this process. Then, ISO 26262 requirements on fault injection are identified. They represent
a second set of constraints our approach must comply with. The final section describes the thesis ex-
pected outcomes.

2.1 Development Process of Automotive E/E Embedded Systems

2.1.1 Automotive Embedded Systems

The final objective of the development process in the automotive industry is the production of vehi-
cles. Today, the design of a vehicle is complex as it imposes to integrate a large number of systems to
be competitive on the market and to offer the functionalities requested by the customers. There is a
wide range of systems: thermal regulation (heater, air conditioning), driving assistance (ABS, ESP…),
combustion engine system, electrical systems, Advanced Driver Assistance Systems (ADAS), visibil-
ity systems (headlights, wipers), etc. All these systems are specified by OEMs, which integrate them
in the vehicle.

An E/E system performs functions that drive actuators of mechanical, electromagnetic, hydraulic or
chemical nature, according to information gathered by sensors (Human Machine Interfaces (HMI),
sensors of a physical quantity (e.g., voltage, current, pressure)).

To develop these systems in a project, the functions are refined at different levels, numbered from (L0)
up to (L3), until elementary components are reached. System is the highest level of abstraction (L0),
and (L3) deals with elementary components. All these levels are illustrated in Figure 2.1.

FIGURE 2.1 ARCHITECTURAL ABSTRACTION LEVELS OF A VEHICLE

It should be noted that the terminology used in the thesis is slightly different from the ISO 26262.
However, this terminology is completely compatible with the terminology of the ISO 26262, and re-
fines it to comply with the terminology used in Valeo. The differences will be highlighted in the de-
scription.

The System (level L0) is decomposed into several Products (L1). The functions of the system are dis-
tributed between these products and they share information via a network. Finally, a product is com-

System (1) L0System (n)

Product (1) Product (2)

Vehicle

Product (n)

SW Block (1) HW Block(1) HW Block (n)SW Block (n)

SW Module (1) HW Part (1) HW Part (n)SW Module (n)

…

…

… …

… …

L1

L2

L3

DEVELOPMENT PROCESS & SAFETY

25

posed of at least a microcontroller that will handle a part of the function of the system, e.g., handle one
sensor, drive one actuator, etc. This level is not mandatory but most of the systems involve more than
one product to achieve a function.

In the ISO 26262 standard, no difference is made between System and Product levels. They corre-
spond to two consecutive System level and Sub-System level. The main difference with our terminolo-
gy is that it may exist as many sub-system levels as required. We considered a special case with two
levels.

Then, functional requirements of a Product can be refined into Functional Blocks requirements (L2).
These requirements are then allocated to hardware, software or both. Then, this allocation defines
Hardware Blocks and Software Blocks (L2). In ISO 26262, they are referred to as Hardware compo-

nent level and Software component level respectively.

The Software Blocks encompass both the static and the dynamic architectures of the software. The
static architecture describes the structure of the software in layers and stacks. It also defines the inter-
faces between the functions gathered into Software Modules (L3). Then, the dynamic architecture de-
scribes the configuration of the operating system (tasks priorities and periodicity, interruptions, events,
etc.), and the mapping of the “function calls” on these tasks.

The designed architecture, populated with implementation of SW Modules, must meet the real-time
constraints when executed or programmed on the HW Blocks. In ISO 26262, Software modules are
referred to as Software Units.

The HW Block architecture is the description of HW parts used in order to complete Product require-
ments. This final terminology is the same than the one used in the ISO 26262 Standard. A HW Block
may contain two categories of HW Parts (L3):

 Integrated circuits: Microcontrollers, Field-Programmable Gate Array (FPGA),
RAM, ROM, etc. that support the execution of the SW Blocks.

 Electronic/electric components: Transistor, diodes, capacitor, resistor, connector,
relay, bus interfaces (e.g., CAN, LIN, FlexRay, and Ethernet), etc.

2.1.2 System Engineering

System engineering aims at rationalizing the production of a system and the follow-up of the different
phases of the life cycle, by taking into account all activities of system lifecycle in a progressive and
methodological approach. The system life cycle refers to the following phases: concept, design, pro-
duction distribution, maintenance and elimination. System engineering is focused on answering the
needs expressed by the client at the beginning of the concept phase.

In this work, we focus on several development phases, which encompass the following activities: defi-
nition of functional requirements, definition of architectures, implementation, integration, and testing.

These activities enable us to detail the functional requirements, then to propose technical solutions,
and finally to verify that the solution answers the needs. In parallel to these technical solutions, envi-
ronment issues, cost, planning, project management and maintenance will constrain the development
process. Hence, the envisioned process should establish strategies in order to comply with the client
needs and expected quality, while ensuring a trade-off between cost and time.

DEVELOPMENT PROCESS & SAFETY

26

In practice, several methods and models have been proposed for system engineering: waterfall, V-
cycle, spiral, incremental, prototype-based development, agile development etc. They mainly differ in
their phase flow but the types of activities are not different. The choice of the method depends on the
system to be built, the company design expertise, etc.

A specificity of the automotive industry imposes the coordination of interaction between OEM and
Tier-1, Tier-2 and Tier-3 suppliers. A common automotive design process starts with the OEM, which
describes and provides the system architecture and the products functional requirements to the Tier-1
that, in turn, may delegate the design of lower level elements (L2 or L3) to a Tier-2, etc.

The V-cycle development model described hereafter is widely used in the automotive industry.

2.2 V-Cycle Development Model

The V-cycle development model, as depicted in Figure 2.2, describes the relationship between the
different activities of the design phase.

The goal of the development activities in the left hand side of the V is to refine the functional require-
ments at each level of design (levels are referred to as L0 to L3). They are consistently refined from
the highest level, L0 (system) to the lowest one, L3 (hardware parts or software modules).

The right hand side of the V cycle corresponds to the verification and validation activities of the sys-
tem.

In the context of this work, we use the terms pre-implementation and post-implementation phases,
referring respectively to the left hand side of the V, and the right hand side, since the software modules
and hardware parts are implemented only at the end of the pre-implementation phase. Software mod-
ule’s implementation corresponds to coding activities

FIGURE 2.2 V-CYCLE DEVELOPMENT PROCESS AND TERMINOLOGY USED

Post-implementation
Phase

Pre-implementation Phase

System
functional needs

System
architecture

Product
architecture

Functional

requirements

Preliminary hazards
analysis (PHA)

Safety requirements

& undesirable events (UEs)

System
validation

System integration
& verification

Product integration
& verification

HW block integ-
ration & verification

HW block
architecture

SW block
architecture

Products safety
analyses

System safety
analyses

HW block safety
analyses

SW safety
analyses

Implementation of SW modules & HW parts

L0

L1

L2

L3

Modification or improvement of the design

SW module integ-
ration & verification

DEVELOPMENT PROCESS & SAFETY

27

2.2.1 Requirements Analysis

Functional requirements express the services a system must perform, accordingly to the needs defined
by the client. The performance of these services (set of functions), e.g. timing constraints, the envi-
ronmental conditions where the system is used, and the eventual operating modes, must be taken into
account in the analysis of these requirements.

The functional requirements could be expressed with various forms:
 Textual description: natural language, formal or graphical language;
 Drawings/diagrams:

o Giving clear definition of the operation of the components involved at a
given level. (Static view/ Architectural view);

o Describing the various interactions and dependencies between these
components (Behavioral view/Dynamic view).

 Models of the functions with the following properties:
o Granularity: brief or detailed;
o Architectural/behavioral;
o Executable with software simulation tools

The definition of functional requirements starts with system functional needs at L0, which are refined
in system functional requirements. Then, the system functional requirements are refined in product

functional requirements, which are, in turn, refined in hardware blocks functional requirements and
software Blocks functional requirements respectively. Finally, the hardware blocks requirements are
refined in hardware parts functional requirements and software blocks requirements are refined in
Software modules functional requirements.

Today, the system development trend is to use models. Model-based systems engineering (MBSE)
tries to formalize modeling for all the activities of the development process, from system requirements
to V&V activities. This formalization or abstraction of the real world can be done at all architectural
levels. In software design, several languages (Simulink), (Stateflow), (Statemate) are used in the au-
tomotive industry; they put forward the development of graphical programming, and hence have been
adopted and integrated in current development processes.

2.2.2 Implementation, Integration and Testing Activities

The implementation is a pivot point in the development process. Practically, it consists in the coding
activity of SW modules and the integration of HW parts on the E/E circuit. After the implementation,
there are two main activities at each architectural level: integration of the considered components of
the level, and integration testing. All these tests are part of the verification and validation activities,
which are of prime importance in the development process. Indeed, at each level, tests must verify that
a given component complies with its specifications. Many tests must be performed at each level, from
requirement-based tests to performance tests. The testing process follows a bottom-up approach. It
starts with the verification of L3 components, with SW modules unit testing performed on personal
computer—PC (SW in-the-loop—SiL) and then executed on the targeted processor (Processor in-the-
loop—PiL). HW parts are tested on hardware mock-ups in order to check specific hardware schemat-
ics. At L2, SW integration is also tested with PiL, but HW integration is performed on manual test
benches.

At L1, testing starts with HW/SW integration tests on HW manual test bench, and often necessitates
an emulator or a debugger in order to verify the behavior of the software. Then, the product tests are

DEVELOPMENT PROCESS & SAFETY

28

performed on automatic test bench. Here, the environment of the product can be simulated. At L0,
integration test is performed on the System integration bench, where all products are integrated (the
system products are no longer simulated). The final validation is performed by integrating the system
into a vehicle.

2.2.3 Relationship between V Branches

The V-cycle model also describes relationships between the two branches of the V (Laprie, et al.,
1995). Indeed, at each architectural level, the results of the tests may induce modifications and im-
provements on design activities. This is the main drawback of this model: as testing is done at the end
of the development, the detection of errors in functional requirements or the implementation may sig-
nificantly affect the development of the project.

Practically, the activities of the V-cycle are not fixed. A system may integrate evolutions in the speci-
fications due to the integration of new functionalities from the client or because of problems identified
during a detailed design.

It has been shown that dependability activities must be integrated in the development process, particu-
larly for safety. These activities are introduced at all the steps of the system development process. The
safety process is described in the following section.

2.3 Safety Development Process

The complete safety process aims at properly handling functional safety in a project at all architectural
levels. The safety process aims at identifying the potential faults leading to a possible hazard and de-
fining the safety concepts, which encompass the specifications of safety requirements (safe state, safe-
ty mechanisms independence, ASIL, etc.). In Figure 2.2, activities belonging to the safety process are
marked in green. Activities of the safety process and their integration in the development process are
now described9.

2.3.1 Safety Analyses at System Level

The safety process begins with the Preliminary Hazard Analysis (PHA) activity that covers the Hazard
Analysis and Risk Assessment—HA&RA requirements of the ISO 26262. The main objective of PHA
is to identify the system Undesired Events (UE) and to rate them according to their ASIL. Then for
each UE, a safety goal (SG), i.e. the top-level safety requirements, is defined.

Then, at system level (L0), in parallel to the definition of the System architecture, the following safety
activities are performed. The first step is the definition of the Functional Safety Concept—FSC. The
safety concept formally describes how functional safety will be achieved at the considered level. It
refines the safety goals into detailed functional safety requirements that are mapped to the system ar-
chitecture. These more detailed functional safety requirements correspond to the product safety re-
quirements. The definition of FSC is supported by qualitative and quantitative safety analyses.

9 For the sake of completeness, Valeo strategy regarding ISO 26262 and the Safety process deployment is described in
(Leeman, 2013)

DEVELOPMENT PROCESS & SAFETY

29

Then, in the automotive safety process, at least one of the two following qualitative analyses is per-
formed: FME(C)A and FTA. These analyses are not specific to the automotive industry and are ap-
plied to most development processes when safety is a concern.

2.3.1.1 Failure Mode Effect (and Criticality) Analysis – FME(C)A

FMECA (Bouti & Kadi, 1994), (Department of the Army, 2006), (ECSS-Q-30-02B, 2008) is an induc-
tive approach whose principle is to analyze, for each element (a component or a functional require-
ment), the consequences of its possible failure modes to identify systematically all the effects on other
components and, at the system level, Undesired Events. It can be applied as an accompanying process
from the design to the system use phase. In general, the application of an FMECA consists in listing in
a table (as exemplified in Table 2.1), based on the functional and structural description of the system,
the various failure modes of each component and their characterization. Each failure mode is charac-
terized by:

 (3) Its possible causes.
 (4) The mission phase or a specific operational mode of the element.
 (5-6) Its effect, which can be local, i.e., only the element behavior is affected, or can

propagate up to the system level.
 (7) Its criticality.
 (8) The associated detection means and the corrective actions, especially when dealing

with a highly critical failure mode.
 (9) The effect in presence of detection and corrective means.

TABLE 2.1 TYPICAL QUALITATIVE FMECA SPREADSHEET LINE

1 2 3 4 5 6 7 8 9
Element Failure

Modes
Potential
Causes

Mission Phase/
Operational Mode

Local
Effects

Upper-
Level

Effects

Criticality/
Risk Level

Failure Detection
Method

/Compensating
Provisions

Upper-Level
Effect with

SM

The criticality of a given failure mode is a categorization of this failure mode based on its severity, its
frequency of occurrence, and sometimes, the possibility of detecting earlier symptoms. In automotive
systems, it is determined according to the ASIL.

When the criticality of the failure mode is not taken into account, this analysis is referred to as FMEA.

During the operational phase, FME(C)A spreadsheet can be used as a guide for collecting field data
for assessing analysis accuracy, aiming at developing maintenance troubleshooting procedures.

However, it is worth noting that the approach has some limitations. For a complex system, it is practi-
cally impossible to reach failure modes exhaustiveness. In addition, the approach is not designed to
address combinations of failures, since each failure mode is addressed separately. Actually, given the
number of failure modes that may be identified, considering their combination raises the problem of
combinatorial explosion. Deductive approaches as fault tree analysis intrinsically copes with combina-
tion of failures.

DEVELOPMENT PROCESS & SAFETY

30

2.3.1.2 Fault Tree Analysis

Fault tree analysis (FTA) is a deductive approach, which consists in describing the combinations of
events that may lead to a top-level event, which is usually an Undesired Event.

An FTA is based on a graphical representation of the events using logical connectors or gates. Many
logical connectors can be found in the literature but the fundamental ones are the AND and OR gates.
The resulting diagram, called fault tree, consists in successive levels of events. The top-level event,
i.e., the tree root, is the UE. Then, recursively, one determines the causes using a systematic back-
ward-stepping process, until reaching basic events.

FTA is a qualitative analysis activity, but the obtained fault tree may also assist quantitative evalua-
tion.

In Valeo process, FMECA is performed for all ASIL to fulfill the ISO 26262 requirement of an induc-
tive approach. Then, FTA is produced for ASIL C & ASIL D where deductive approach is required by
the standard. More generally, FMECA is easy to produce and helps to achieve the exhaustiveness of
the analysis of all the potential causes. FTA is also widely used as its graphical formalism is easy to
understand and helps identify the critical paths.

2.3.2 Safety Analyses at Product Architecture Level and HW Architectural Level

The qualitative safety analyses at one architectural level could be summarized as follows. Considering
the UEs identified at Li-1 and the failure modes of the component of the considered level Li, the goal of
safety analyses is the identification of the critical paths between the failures and the UEs. The analysis
could be performed in a top-down approach (e.g., FTA) or a bottom-up approach (e.g., FMECA). Fi-
nally, the critical path identified enables to determine the UEs of Li+1, the safety requirements and their
ASIL. This could be repeated recursively at all following levels, especially at product (L1) and hard-
ware (L2) levels.

2.3.3 Quantitative Safety Analyses

In order to assess the system, product and hardware architecture, ISO 26262 defines three metrics that
should be fulfilled. These metrics are calculated based on the hardware parts’ failure rate (the fre-
quency of a component failure expressed in failures per hour) and the diagnostic coverage (DC) of

the safety mechanisms (estimation of the coverage of the safety mechanisms). These inputs are given
by component suppliers that test intensively samples of their components or by standard tables from
historical database of industrial, government or commercial sources. Regarding diagnostic coverage,
Annex D of the ISO 26262 standard provides estimations of the achievable coverage depending on the
failure modes considered in the safety analyses. Concerning the metrics (PMHF, SPFM and LFM,
see Section 1.2.3.2), they must fit within the budgets fixed for each ASIL level and defined in the
ISO 26262. More information can be found on the definition and the computation of architectural met-
rics in (Leeman, 2013), (L'Hostis, 2013), (Cherfi, Leeman, & Rauzy, 2014).

These metrics can be obtained from the qualitative safety analyses by enriching the analysis with
numbers. This can be computed from the FMECA, when the failure mode could be associated with a
failure rate (for HW parts) and the proposed safety mechanisms could be associated with a DC,

DEVELOPMENT PROCESS & SAFETY

31

see Table 2.2. The FMECA including the quantitative analyses are often referred to as: Failure Mode,
Effect and Diagnosis Analysis (FMEDA), in the automotive industry. Similarly, the same approach is
done with FTA. Then, the FMECA tables or the FTA trees enriched with quantitative values are used
to compute the different metrics.

TABLE 2.2 EXAMPLE OF ENRICHED FMECA SPREADSHEET WITH QUANTITATIVE DATA

Eleme
nt

Failure
modes

Failure
rate

Potential
causes

Mission
Phase/

Operational
Mode

Local
effects

Upper-
level

effects

Criticality /
Risk level

Failure detec-
tion method /
compensating

provisions

Diagnostic Cover-
age (error detection
or tolerance cover-

age)

Upper-
level
effect

with SM

2.3.4 Safety Analyses at Software Architecture Level

Similarly to other levels of architecture, the safety analyses must consider the propagation of failures
between software modules and verify that they are mitigated by safety mechanisms. These activities
also lead to refine the SW safety requirements and the allocation of ASILs to the SW modules.
ISO 26262 explicitly requires the use of specific methods, such as FMECA, FTA and Critical Path
Analysis (CPA).

A major aspect in software is the evaluation of the Freedom From Interference (FFI) property.
Nowadays, the processing capabilities of the microcontrollers used for automotive systems allow
designing more complex products. The software design takes advantage of these resources, by
proposing an integration of several applications on one microcontroller. In parallel, these systems also
embed more critical functions. An important safety issue appears with the integration of applications
with different ASIL levels in the same microcontroller. According to ISO 26262, all the modules on a
given microcontroller should be developed according to the highest ASIL that apply on the
microcontroller, because of the strong interrelationship between these applications. The main
drawback is that the application with the lower ASIL is required to be developed with unnecessary
efforts. Indeed, higher ASIL modules require applying more complex techniques and methods.

However, the ISO 26262 standard allows the integration of modules with different ASILs, but imposes
to prove that the FFI is ensured. FFI is defined as the “absence of cascading failures between two or
more elements that could lead to the violation of a safety requirement”. As an example, the integration
of a Quality Management (QM) or lower ASIL module is allowed if and only if it can be proven that it
does not interfere directly or indirectly with the behavior of any higher ASIL co-located modules. The
following interferences have to be considered between the two software applications: i) corruption of
shared-data, ii) calls of Application Programming Interface (API) service, iii) the real-time behavior
(e.g., scheduling, task pre-emption), iv) shared-memory access and v) shared hardware peripherals.
Safety mechanisms may be added to handle such inteferences. This activity is referred to as a FFI
Analysis—FFIA.

2.3.5 Safety Tests

Depending on the ASIL allocated to the component under test, it may be necessary to strengthen the
existing test strategy to ensure that appropriate combinations of the many test methods required in
part 4, part 5 and part 6 of ISO 26262 (ISO 26262, 2011) are used. All safety tests are specified and
performed within testing activities, and the test strategy must cover all safety requirements.

In practice, proper testing of the safety mechanisms often requires a stronger involvement of safety
engineers. Indeed, robustness tests on a target implementing safety mechanisms are performed with
respect to external faults. For instance, incoherent network frames (e.g., CAN, LIN) or out of range

DEVELOPMENT PROCESS & SAFETY

32

values are sent as inputs to the tested product. However, currently, the injection of arbitrary faults in
memory in order to verify software safety mechanisms or the instrumentation of highly integrated
hardware is not fully integrated in the process.

2.4 Fault Injection Requirement of ISO 26262

The previous section highlighted that today fault injection is not completely integrated into the
development process of automotive systems, yet ISO 26262 requires fault injection all along the
development process.

Indeed, the standard highly recommends the use of fault injection techniques throughout the
development process, considering both pre- and post-implementations phases, to verify if safety
requirements are correctly handled by safety mechanisms.
THE REQUIREMENTS OF THE ISO 26262, WHICH RECOMMEND FAULT INJECTION, ARE RECAPITULATED

IN

Table 2.3, and the activities impacted in the development process illustrated in Figure 2.3.

2.4.1 Requirements during Pre-Implementation Phase

TWO REQUIREMENTS PROPOSE FAULT INJECTION DURING PRE-IMPLEMENTATION PHASE. ONE AT SYS-
TEM LEVEL (REQUIREMENT 1) AND ONE AT HARDWARE LEVEL (REQUIREMENT 8). THE PRE-

IMPLEMENTATION REQUIREMENTS ARE HIGHLIGHTED IN LIGHT GREY IN

Table 2.3. Here, fault injection is a part of simulation-based tests, and aims at “verifying the safety

requirements for compliance and completeness”. We have shown in the Section 1.3.3 that fault injec-
tion can be performed on models.

Particularly, fault injection should check some aspects of the design for which “analytical methods”

such as safety analyses are not considered sufficient. However, the exact objectives of performing
fault injection during this phase and the possible links with safety analyses needs to be clarified.

FIGURE 2.3 FAULT INJECTION REQUIREMENTS OF ISO 26262 WITHIN THE DEVELOPMENT PROCESS

System
functional needs

System
architecture

Product
architecture

Preliminary hazards
analysis (PHA)

System
validation

System integration
& verification

Product integration
& verification

HW block integ-
ration & verification

HW block
architecture

SW block
architecture

Products safety
analyses

System safety
analyses

HW block safety
analyses

SW safety
analyses

Implementation of SW modules & HW parts

SW module integ-
ration & verification

Req. 1

Req. 1

Req. 6

Req 4

Req 2

Req. 9

Req. 11

Req. 8

Req. #
Requirements #

of Table 2.3

Req. 10

Req 3

Req 5

Req. 7

DEVELOPMENT PROCESS & SAFETY

33

TABLE 2.3 ISO 26262 REQUIREMENTS FOR FAULT INJECTION TECHNIQUES

Requir
ement

ISO 26262 Chapter Reference to recommendation

Highly
Recommended

ASILs (++)

1

Part 4

7.4.8.1
Verification of
system design

The system design shall be verified for compliance and completeness with

regard to the technical safety concept using the verification methods.
• Table 3 —System design verification

ASIL C & D

2
8.4.2.2

Hardware-
software integra-
tion and testing

The correct implementation of the technical safety requirements at the hard-

ware-software level shall be demonstrated using feasible test methods.
• Table 5 — Correct implementation of technical safety requirements at the
hardware-software level

ASIL B, C & D

3

The effectiveness of the diagnostic coverage of the hardware fault detection
mechanisms, with respect to the fault models, shall be ensured by applying

feasible test methods.
• Table 8 — Effectiveness of a safety mechanism’s diagnostic coverage at the
hardware-software level

ASIL C & D

4 8.4.3.2
System

integration and
testing

The correct implementation of the functional and technical requirements at the

system level shall be demonstrated using feasible test methods.
• Table 10 — Correct implementation of functional safety and technical safety
requirements at the system level

ASIL C & D

5

The effectiveness of the safety mechanisms' failure coverage at the system level

shall be demonstrated using feasible test methods.
• Table 13 — Effectiveness of a safety mechanism's failure coverage at the
system level

ASIL C & D

6 8.4.4.2
Vehicle

integration
and testing

The correct implementation of the functional safety requirements at the vehicle

level shall be demonstrated using feasible test methods.
• Table 15 — Correct implementation of the functional safety requirements at
the vehicle level

ASIL A, B, C
& D

7

The effectiveness of the safety mechanisms' failure coverage at the vehicle level
shall be demonstrated using feasible test methods.
• Table 18 — Effectiveness of a safety mechanism's failure coverage at the
vehicle level

ASIL C & D

8

Part 5

7.4.4.1
Verification of
the Hardware

Design

The hardware design shall be verified for compliance and completeness with

regard to the hardware safety requirements.
• Table 3 —Hardware design verification

N/A

9

10.4.5
Hardware

integration and
Testing

The hardware integration and testing activities shall verify the completeness

and correctness of the implementation of safety mechanisms with respect to

hardware safety requirements.
• Table 11 — Hardware integration tests to verify the completeness and correct-
ness of the safety mechanisms implementation with respect to the hardware
safety requirements

ASIL C & D

10

Part 6

9.4.3
Software unit

testing

The software unit testing methods shall be applied to demonstrate that the

software units achieve:

 compliance with the software unit design specification;

 compliance with the specification of the hardware-software interface

 the specified functionality;

 confidence in the absence of unintended functionality;

 robustness; and

 sufficient resources to support their functionality.
• Table 10 — Methods for software unit testing

ASIL D

11

10.4.3
Software

integration and
testing

The software integration test methods listed in Table 13 shall be applied to

demonstrate that both the software components and the embedded software

achieve:

 compliance with the software architectural design;

 compliance with the specification of the hardware-software inter-
face;

 the specified functionality;

 robustness; and

 sufficient resources to support the functionality.
• Table 13 — Methods for software integration testing

ASIL C & D

2.4.2 Requirements during Post-Implementation Phase

In the post-implementation phase, the objectives of fault injection are well defined. These require-
ments tackle hardware, software, product, system and vehicle levels. Besides software level, fault in-
jection is a method, which aims at:

1. demonstrating the effectiveness of the safety mechanisms diagnostic coverage.

DEVELOPMENT PROCESS & SAFETY

34

2. demonstrating the correct implementation of the safety requirements.

The first objective is to evaluate the efficiency of the implementation, the design or the integration of
the safety mechanisms. Fault injection is there defined as a dedicated method, with “error guessing
test”, to verify these mechanisms. This is only required for high ASILs (ASIL C & ASIL D), and rep-
resents a huge amount of work. The entire fault model handled by the safety mechanism should be
identified, and the fault injection experiments defined accordingly. Indeed, it is required to estimate
the error detection and recovery coverage of the safety mechanisms, and verify that the implementa-
tion of the safety mechanism is robust to arbitrary faults or interferences from its environment. This
requirement is very demanding, as the fault injection campaign must inject a non-restrictive fault
model. However, this is highly recommended for ASIL C & D safety mechanisms. This objective is
specified by Requirement 3, Requirement 5, and Requirement 7.

The second objective, i.e., the correct implementation of safety requirements, must be verified at
different architectural levels, and also applies to components with lower ASILs (depending on the
considered level, see

TABLE 2.3).The verification of the absence of violation of safety requirements must be ensured by
fault injection, Requirement-based tests or Back-to-back tests. Fault injection helps in the verification
of non-occurence of an Undesired Event in the presence of faults. This second objective covers a
wider set of critical systems. Indeed, according to ISO 26262, fault injection is required at least for
ASIL C and even for ASIL B at HW/SW integration level.

Fault injection must be consistent with other validation activities for all ASILs. Indeed, the
Requirement-based test (both functional requirements and safety requirements) is another dedicated
method to address this objective, but the method is required for all ASILs (from ASIL A to ASIL D).
This activity may lead to define fault injection experiments to exercise a safety mechanisms for a
given ASIL. This is why fault injection can also be required to ensure that a safety requirement is
satisfied at all ASILs.

Contrary to the the first objective, there is no need for injecting an exhaustive fault model. For
example, the verification of a safety mechanism should only check its implementation with respect to
the failures modes identified in the safety analyses.

This objective is specified by Requirement 2, Requirement 4, Requirement 6, and Requirement 9.

2.4.2.1 SW Unit Testing & SW Integration Testing

At software level, fault injection is a dedicated method for software integration testing and software
unit testing, together with Requirements-based test, Interface test, Resource usage test, and Back-to-

back comparison test between model and code. The objectives of these methods is to demonstrate that
the software module or the software architecture achieves (Requirement 10, Requirement 11):

a) compliance with the software unit design specification;

b) compliance with the specification of the hardware-software interface;

c) the specified functionality;

d) confidence in the absence of unintended functionality;

e) robustness, e.g., the absence of inaccessible software / dead code, the effectiveness of

error detection and error handling mechanisms ;

f) sufficient resources to support their functionality.

DEVELOPMENT PROCESS & SAFETY

35

On software, fault injection that includes the injection of arbitrary faults (by corrupting values of
variables, by introducing code mutation, or by corrupting values of CPU registers) is at least
recommended for all ASILs, and is highly recommended for ASIL D and specifically for ASIL C
regarding SW Integration testing.

A distinction can be made between the objective of “compliance with the specifications”and
“robustness”. The first one can be associated with the “demonstration of the correct implementation

of the safety requirements” required at all safety levels by means of Requirement-based tests. Then
“robustness” should be evaluated for highly critical software units (i.e., ASIL D) or software
integration (i.e., ASIL C and D), by the “demonstration of the effectiveness of the safety mechanisms

diagnostic coverage.”

To conclude, at all levels fault injection should be used for all ASILs in order to verify the propagation
of the potential causes of failures identified in the safety analyses. On the one hand, fault injection is a
dedicated method to verify the correctness of safety analyses. On the other hand, fault injection should
also be used in order to verify the robustness of a given component at different levels. Hence, our
interpretation of the ISO 26262 standard leads us to apply fault injection tests to all ASILs. Our
interpretation is summurized in Table 2.4.

TABLE 2.4 INTERPRETATION OF ISO 26262 REQUIREMENTS FOR FAULT INJECTION TECHNIQUES
Requirement

Reference to recommendation

Highly Recom-

mended ASILs

(++)

Our interpreta-

tion of the

ISO 26262 (++)

1
The system design shall be verified for compliance and completeness with

regard to the technical safety concept using the verification methods. ASIL C & D

2
The correct implementation of the technical safety requirements at the hard-

ware-software level shall be demonstrated using feasible test methods. ASIL B, C & D ASIL A, B, C & D

3

The effectiveness of the diagnostic coverage of the hardware fault detection

mechanisms, with respect to the fault models, shall be ensured by applying
feasible test methods.

ASIL C & D

4
The correct implementation of the functional and technical requirements at

the system level shall be demonstrated using feasible test methods. ASIL C & D ASIL A, B, C & D

5
The effectiveness of the safety mechanisms' failure coverage at the system
level shall be demonstrated using feasible test methods. ASIL C & D

6
The correct implementation of the functional safety requirements at the

vehicle level shall be demonstrated using feasible test methods. ASIL A, B, C & D

7
The effectiveness of the safety mechanisms' failure coverage at the vehicle
level shall be demonstrated using feasible test methods. ASIL C & D

8
The hardware design shall be verified for compliance and completeness with

regard to the hardware safety requirements. N/A

9

The hardware integration and testing activities shall verify the completeness
and correctness of the implementation of safety mechanisms with respect to

hardware safety requirements.
ASIL C & D

10 a)

The software unit testing methods shall be applied to demonstrate that the
software units achieve:

a) compliance with the software unit design specification;

b) compliance with the specification of the hardware-software interface
c) the specified functionality;

d) confidence in the absence of unintended functionality;

e) sufficient resources to support their functionality.

ASIL D ASIL A, B, C & D

10 b)
The software unit testing methods shall be applied to demonstrate that the

software units achieve robustness
ASIL D

11 a)

The software integration test methods shall be applied to demonstrate that

both the software components and the embedded software achieve:
compliance with the software architectural design;

compliance with the specification of the hardware-software interface;

the specified functionality;
sufficient resources to support the functionality.

ASIL C & D ASIL A, B, C & D

11 b) The software integration test methods shall be applied to demonstrate that

both the software components and the embedded software achieve robustness
ASIL C & D

DEVELOPMENT PROCESS & SAFETY

36

2.5 Thesis Orientation & Proposed Methodology Overview

In this chapter, the development process of automotive systems has been described and
ISO 26262 requirements on fault injection have been discussed.

Firstly, we have shown that fault injection is required during the pre-implementation phase. Several
tools have been developed to inject faults or failures into specific models used in various industrial
domains, see Section 1.3.3.2 However, these studies do not provide a justification of the interest of
fault injection during this phase. There is no continuous process to integrate fault injection at all steps
of development cycle. Moreover, as far as we know, only a few works have investigated the integra-
tion of fault injection at multiple levels of abstraction, even in the post-implementation phase
(Kaâniche, Romano, Kalbarczyk, Iyer, & Karcich, 1998). Hence, we have tried to explore the various
facets of fault injection in the different phases.

To reach this goal, we focused on the application of FARM method at each step. FARM is a keystone
of our approach, and we consider that fault injection must be based on FARM to be well defined.

In Chapter 3, we will investigate the applicability of FARM during the pre-implementation phase.
What are the targets? What are the objectives? Which fault model and activation model should be
considered? Then, we will integrate the obtained results into the development process described in this
chapter. What are the relationships between fault injection and the requirements? Which links can be
drawn with the safety analyses? Finally, the continuum between the different levels of architecture
will be explored, by showing how fault injection can be guided between several levels of abstraction.

This contribution will be illustrated on a case study: an Electronic Steering Column Lock (ESCL)
System.

We will also tackle, in Chapter 4, the problem of the identification of the fault injection experiments.
Following FARM, we define the fault injection experiments during the post-implementation phase.
The main problem is the fulfillment of ISO 26262 requirements on fault injection:

1. the demonstration of the effectiveness of the safety mechanisms.
2. the demonstration the correct implementation of the safety requirements.

Moreover, fault injection campaign may lead to the definition of intensive tests. An objective is to put
necessary efforts on the right component. This is why we need to exploit the results of the contribution
on pre-implementation phase to prevent unnecessary costly campaigns. However, this must not lead to
bias the evaluation of the two previous objectives.

The definition of fault injection experiments during the post implementation phase is important to
maintain the traceability of the requirements (functional or safety ones) defined in the pre-
implementation phase. This last issue corresponds to the analysis of the fault injection experiments,
which can lead to validate, or identify improvements and modifications of the design. In conclusion, in
Chapter 4, we will investigate complementarities of fault injection with safety analyses. What are the
hypotheses during the pre-implementation (safety analysis) that can be validated by fault injection by
experiments?

In Chapter 5, we will apply the overall approach on a case study: a Front-Light System. We will first
show using different safety analyses how FIA helps in the definition of the design. We then illustrate
the importance of one particular software safety mechanisms in this architecture: the AUTOSAR

DEVELOPMENT PROCESS & SAFETY

37

Watchdog Manager. We will also show between different levels of abstraction what the critical paths
are.

Finally, in Chapter 6, we depict our fault injection environment and give the measures of the experi-
ments resulted from the FIA. These experiments enable to validate the objectives of fault injection in
the development process, according to the ISO 26262.

39

Chapter 3 INTEGRATING FAULT INJECTION

IN THE PRE-IMPLEMENTATION PHASE

3.1 Is Fault Injection Applicable During the Pre-Implementation Phase? 40

3.1.1 Preliminaries ... 40

3.1.2 Differences between Pre- and Post-Implementation Phases 42

3.2 Application of the FIA Flow at a Given Architectural Level ... 43

3.2.1 Applying FIA at the Product Level L1 .. 43

3.2.2 Relationship between FIA and other Safety Analyses ... 46

3.3 Links between FIA Levels .. 47

3.3.1 S- and Z-shaped Causal Chain.. 47

3.3.2 Initialization and Termination of the FIA Flow ... 50

3.4 Steering Column Locking System .. 50

3.4.1 System Description ... 50

3.4.2 Steering Column Locking System FIA (L0) .. 51

3.4.3 ESCL Product FIA Flow (L1) .. 52

3.5 Synthesis on Fault Injection Analyses .. 54

INTEGRATING FAULT INJECTION IN THE PRE-IMPLEMENTATION PHASE

40

We have shown that ISO 26262 recommends major efforts for the integration of verification and vali-
dation techniques in the safety development process. A particular emphasis should be put on the defi-
nition of “state of the art” methods and techniques allocated according to the ASIL of the considered
system or entity, and on the improvement of traceability for safety and V&V requirements.

In this chapter, we will present our contribution to fault injection integration during the pre-
implementation phase, which is recommended by the ISO 26262 standard, as explained in Chapter 2.
Our investigations propose a continuous way to perform safety analyses, during the whole develop-
ment process.

The chapter ends with an illustration of the method on an Electronic Steering Column Lock (ESCL).

3.1 Is Fault Injection Applicable During the Pre-Implementation

Phase?

3.1.1 Preliminaries

We have shown, in Chapter 1, that fault injection covers a large spectrum of techniques, verification
and validation activities: from model verification, to software and electrical and electronic devices
verification. As Fault Injection is generally used to evaluate implemented targets, we propose to apply
a Fault Injection method among those presented in Section 1.3.2 on elements, which exist during the
post-implementation phase. In the rest of this section we will explore the meaning of FARM on these
elements, starting with the post-implementation phase (where Fault injection is commonly used), then
considering the pre-implementation phase. The latter constitutes our contribution to the integration of
fault injection in the early phases of the development. Figure 3.1 recalls the terminology used in the
whole document.

FIGURE 3.1 V-CYCLE DEVELOPMENT PROCESS PHASE ADDRESSED IN CHAPTER 3

Modification or improvement of the design Chapter Contribution

Pre-implementation Phase

System
functional needs

System
architecture

Product
architecture

Functional

requirements

Preliminary hazards
analysis (PHA)

Safety requirements

& undesirable events (UEs)

System
validation

System integration
& verification

Product integration
& verification

HW block integ-
ration & verification

HW block
architecture

SW block
architecture

Products safety
analyses

System safety
analyses

HW block safety
analyses

SW safety
analyses

Implementation of SW modules & HW parts

L0

L1

L2

L3

SW module integ-
ration & verification

Post-implementation
Phase

INTEGRATING FAULT INJECTION IN THE PRE-IMPLEMENTATION PHASE

41

Targets

During the post-implementation phase, a fault injection Target will be a set of elements: system /
products / HW parts / SW modules that can be accessed/corrupted by using tools. In theory, fault in-
jection experiments may be applied on any target. However, it is usually used to assess the efficiency
of the safety mechanisms and the robustness of the architecture with regards to the fault model. Fault
injection experiments also aim to verify that fault model does not impact the functions of the target.
Hence, Fault Injection target is at least an implementation of functions/actions/tasks, on which
measures can be assessed, e.g., the robustness.

During the pre-implementation phase, all existing elements are in the form of functional requirements
together with their associated safety requirements and analyses. Fault injection possible targets corre-
spond thus to the Functional Requirements and all their representations that are produced by a de-
signer/developer along pre-implementation phase, and this, at each considered level. Indeed, these are
the only representations that allow us to analyze or compute (when this kind of model is available) the
propagation of a fault model.

Hence, we consider that the target of a given level (Li) is composed of (Li) functional requirements.
For example, at System Level (L0) we target (L0) functional requirements: the System functional Re-
quirements.

As the “Targets” are now defined, let us explore the meaning of the FARM method in this context.

Measures

The aim of a measure is to check if a defined safety requirement is handled correctly and to ensure that
a safety requirement violation is mitigated as much as possible. These Measures can be either qualita-
tive or quantitative.

 Qualitative: characterize the fact whether a specified safety property or a set of properties
holds.

 Quantitative: correspond to probabilistic or statistical measures on the occurrence of states
characterized by property combinations.

During pre-implementation, we cannot define the measures of particular systems or of a given archi-
tecture. Particularly, we cannot estimate the distribution of failure modes of the system/element. How-
ever, we can identify defense mechanisms that must be evaluated when implemented or we can also
identify missing mechanisms that can be added in order to prevent the violation of a safety require-
ment.

Fault Model

On an implementation, the Fault Model is defined with respect to the Measures of the target to be ana-
lyzed. Hence, the fault models are different for distinct measures. A measure can be the distribution of
failure modes, or the coverage of a safety mechanism. In addition, the Fault Model heavily depends on
the accessibility to the target and on the capabilities of the used fault injection tool.

Hence, at a given architectural level, we can consider:
 failure modes of the elements of the targets,
 errors of the elements of the targets,
 faults of the elements of the targets.

INTEGRATING FAULT INJECTION IN THE PRE-IMPLEMENTATION PHASE

42

During the pre-implementation phase, Errors and Faults cannot be defined precisely; they are referred
to as potential causes of failure modes. We consider that, in the pre-implementation phase, the poten-
tial causes of all failure modes at a given level create the set of faults of the considered level. Moreo-
ver, the fault model at a considered abstraction level cannot be more precise than the potential causes
that are identified at this level. However, such potential causes can be triggered by low-level faults
(i.e., software and hardware faults).

Activation

During post-implementation phase, the fault activation model consists in a set of defined data patterns
aimed at exercising the injected faults. This model describes where and when the faults should be in-
jected. It is strongly correlated with the target nature.

This can be specific, or described by representative scenarios in which the fault may be injected at
several instants. Depending on this instant, the fault will activate and the error may propagate. These
tests cases should be selected in order to mimic scenario that can be encountered during the system
lifetime. Additionally, these scenarios have to be chosen carefully to minimize testing complexity.

During the pre-implementation phase, the activation model of an element is related to its functional
specification. The definition of the system activation at this step requires the description of the differ-
ent activation modes, use cases of the target. The more detailed is the modeling of the behavior at the
considered level, the more relevant experiment sequences or use cases can be defined.

It is worth to emphasize the primary role of behavioral models during the pre-implementation phase.
They allow a thorough understanding of system functions and behavior. In particular, they allow i) an
easy identification of potential failure causes, and ii) a precise analysis of fault propagation.

Readouts

In a fault injection campaign, readouts refer to the observed reactions of the system where a fault F has
been injected following an activation model A.

Therefore, during pre-implementation, the readouts are related to the state of the element resulting
from the propagation of the injected fault(s). At a given level, they are the effects, which can be ana-
lyzed or computed, resulting from the application of the fault model on target assuming an activation
model.

Therefore, the failure modes of the considered level are part of the readouts. However, again probabil-
ity distribution cannot be obtained through experiments in the pre-implementation phase.

3.1.2 Differences between Pre- and Post-Implementation Phases

Performing FI according to the FARM method is meaningful during the pre-implementation phase.
Moreover, we also clearly defined the various elements of the method for this phase.

Hence, the main difference between FI during the pre- and post-implementation phases lies in the na-
ture of faults that can be injected, in the control of the fault propagation, and in the measures that can
be assessed.

 In the pre-implementation phase, one has to take into account all faults (or at least as much as
possible) that may impact safety requirements, in order to analyze their effects and propose

INTEGRATING FAULT INJECTION IN THE PRE-IMPLEMENTATION PHASE

43

architectural solutions to reduce the effects. During post-implementation phase, all faults may
not easily be injected. A detailed analysis might be necessary to group faults into Equivalent

Classes when they share the same effects. It is a way for optimizing the campaign by reducing
the number of FI experiments.

 In the pre-implementation phase, fault propagation must be performed based on assumptions
that are applied to the element functional description, either directly or by using executable
models or not. In the latter case, model building requires a significant effort, but a tool may
help handling the complexity in order to perform a faster analysis. On the other hand, for post-
implementation, fault propagation is directly related to the system activity and does not re-
quire any specific control.

 In the pre-implementation phase, the measures cannot be estimated or assessed. This is due to
the control of the fault propagation and the accuracy of the assumptions regarding the element
behavior and fault effects behavior. Therefore, during pre-implementation phase, we can only
define the measures that will be later estimated during post–implementation phase.

FI activities related to a system design (description or a model) will be referred to as “Fault Injection

Analysis”, FIA. Conventional FI techniques targeting the real system or a prototype will be referred
to as “Fault Injection by Experimentation”, FIE. With respect to Figure 3.1, FIA corresponds to FI
during pre-implementation and FIE to FI during the post-implementation phase.

3.2 Application of the FIA Flow at a Given Architectural Level

We investigate FIA and activities to be performed to produce a well-structured FIA considering the
whole pre-implementation phase. These activities are similar at all levels and are illustrated on the
product functional requirements level (L1) considered as an example.

3.2.1 Applying FIA at the Product Level L1

The different steps of the FIA at the product level are summarized in Figure 3.2 (p.44). This figure
also indicates the interactions of this FIA with the upper and lower levels (L0) and (L2), as well as the
interactions with the safety analyses (for other products at the same level due to fault propagation be-
tween products and the system safety analysis).

The outputs of the analyses at the product level correspond to the functional requirements of the HW
and SW blocks together with the safety analyses of these blocks.

Definition of the FIA Target at Product Level:

At Product level, the FIA target is a critical product composed of HW & SW Block architecture that
follows the functional and the safety requirements. We consider the product as a “grey box”.

Definition of the Measures at Product Level:

Fault injection aims to determine if the target handles correctly the effects of the Fault Model.
1) A first measure concerns the criticality of the effects. The effect of our Fault Model at

Product Level may be a failure mode of the Product, which in turn leads to the violation of a
system safety requirement. Hence, the effect of the Fault Model leads to a Product Undesired
Events, classified at system level according to its impact on safety. The first measure is the set
of analyzed faults that lead to Product UEs. Similarly, we also obtain the set of analyzed faults
that do not affect the product safety requirements.

INTEGRATING FAULT INJECTION IN THE PRE-IMPLEMENTATION PHASE

44

FIGURE 3.2 FIA FLOW OF THE PRODUCT LEVEL AND ITS INTERACTIONS WITH OTHER ACTIVITIES

In addition, it can assess a partial loss of the product, i.e., degradation of functions, safe mode,
etc.
This measure is linked to the occurrence of associated Product Undesired Event (for quantita-
tive dependability measures). Their distribution will be evaluated during the post-
implementation phase based on experiments.

2) A second measure concerns the mitigations means of the fault model. When analyzing the
propagation of the faults, it can be verified if a safety mechanism is included in order to:

o Detect possible failure modes (or their causes)
o Inhibit (or cover) their effects

During this phase, it is only possible to assess the existence of mechanisms for all failure
modes. Their efficiency corresponds to their error detection and recovery coverage (prevent-
ing a failure to occur and placing the system in a safe state). In addition, it is not possible to
evaluate these numerical values, they only can be evaluated based on experimentation during
the post-implementation phase.10

At product level, the FIA enables to identify the critical fault model and to propose appropriate safety
mechanisms in order to reduce the risk by diminishing the effects and the occurrences of critical fail-
ure modes. It is important to note that the measures can be deduced from dependencies and interfer-
ences (safety analyses) between the blocks. It is of prime importance at this level with the definition of
HW &SW Blocks, which are strongly interlaced. This is an implementation dependency.

10 It should be noted that the considered evaluation does not correspond to the evaluation of the Diagnostic Coverage, which
fault model encompasses an estimation of residual faults. However, it is possible to assess the DC based on given fault model
and safety mechanisms.

Product FIA flow

Define the FIA Target

Identify the Fault

Model

Product
architecture

Product safety level

HW & SW blocks

safety level

Product architecture

modifications

HW & SW

block

functional

requirements

HW and SW Block FIA

System FIA

Define the Measures

L0

L1

L2

Product safety

requirements

System Safety

Analyses

1

2

3

Assessment of the

Measures
5

Failure

Modes of

the product

Failure modes of

HW & SW blocks

Interactions between development

activities and FIA flow

Refinement of the fault

model of upper levels
Interactions between

safety analyses

Analyze Fault

Propagation & Identify

Readouts

4
Product Safety

Analyses

Dependencies

and interferences

Modification

of the Safety

Analyses

INTEGRATING FAULT INJECTION IN THE PRE-IMPLEMENTATION PHASE

45

Fault Model Identification at Product Level:

This activity relates to the identification of the possible causes of the product failure modes, i.e., the
determination of the possible failure modes of HW & SW block functional requirements. The propa-
gation of these failure modes has to be analyzed. However, the causes of the latter will be completed
with information provided by the lower architectural levels (via the link from the Measures of HW and
SW block FIA, in Figure 3.2).

The above shows that even though the FIAs should be carried out starting from the highest (system)
level down to HW and SW modules, each level needs more detailed information from lower levels to
be completed.

Fault Propagation Analysis & Readouts Identification:

Faults are propagated from lower levels to the considered level and from the considered level to upper
levels. At product level, the failure modes of the SW & HW Blocks functional Requirements propa-
gate to the product level. Their effects on the target should be assessed. These effects are referred to
as local effects (local with respect to the considered level)

The analysis can be based on the knowledge of the architecture and the behavior defined in the Prod-
uct Architecture activity. If the definition of the product functional requirements is given by a textual
description, the only way to perform this activity is by hand. However, if an executable model exists
(model that simulates the propagation of failures) getting the effects can be automated.

Assessment of the Measures:

Based on the knowledge of the Undesired Events at the system level, the analysis of failure modes
propagation allows us to attribute a criticality level (or a risk level) to the failure modes of the HW&
SW blocks

The FIA enables to determine if there is a defined defense mechanism in order to mitigate the effects
of several HW&SW block failure modes. Then, if a mechanism already exists and handles correctly
the fault propagation, then the mechanism should be identified and associated with the corresponding
failure modes. Otherwise, the product architecture should be modified (as indicated in Figure 3.2), as
well as the other safety Analyses of the same product (FMECA/FIA/DFA, etc.)

These modifications and improvements, safety mechanisms, have also to be associated with the miti-
gated HW&SW block failure mode, in order to trace the mechanisms responsible of the mitigation of
the fault model.

To conclude this section, at a given level, the FIA flow helps to summarize the results as in Figure 3.3.

FIGURE 3.3 RESULTS FROM THE FIA FLOW

Measures:

Violation of

a Safety
requitement

Faultpropagation:

Activation + Readouts

Fault Model

Existence of

a Safety
Mechanism

Target Failure

Modes

Potential

Causes

Local

effects

Upper-level

effects

Risk

level

Safety

Mechanisms

(SM)

INTEGRATING FAULT INJECTION IN THE PRE-IMPLEMENTATION PHASE

46

3.2.2 Relationship between FIA and other Safety Analyses

The various qualitative safety analyses, such as Fault Tree Analyses, Reliability Block Diagrams or
cut sets, address the propagation of specific faults at each architectural level and between levels in
Section 2.3. Their ultimate aim is the identification of critical paths. This is also the aim of FI during
the pre-implementation phase.

More precisely, for a given level, FI and Failure Modes, Effects and (Criticality) Analysis
FME(C)A exhibit strong similarities and share several common objectives. An important objective
shared between fault injection and FMECA is the identification of all critical faults/failures of the sys-
tem. This objective is achieved by analyzing the effects of the potential causes of failures on the sys-
tem in a FMECA, and by analyzing system behavior in the presence of faults for the FIA. Both are
based on the same kind of analyses. Moreover, both aims at identifying elements that require specific
safety mechanisms for error detection or error recovery to mitigate the effects of the critical causes.

From a practical point of view, we can illustrate this analogy by comparing the results of FIA de-
scribed in the Figure 3.3 with typical information reported in a FMECA spreadsheet, represented in
Table 3.1. In this FMECA spreadsheet, an element has to be understood as a function or an entity.

TABLE 3.1 TYPICAL QUALITATIVE FMECA SPREADSHEET LINE (ECSS-Q-30-02B, 2008)
1 2 3 4 5 6 7 8 9

Element Failure
Modes

Potential
Causes

Mission Phase/
Operational Mode

Local
Effects

Upper-
Level

Effects

Criticality/
Risk Level

Failure Detection
Method/Compensating

Provisions

Upper-Level
Effect with

SM

A FMECA line is guided by the failure modes and their potential causes, supposing the worst activa-
tion mode of the system that may propagate the failure mode. However, the activation model is not
described in this FMECA line. It is usually provided by the underlying analyses performed to build the
FMECA spreadsheet. When necessary, a column “Mission Phase/Operational Mode” (Column 4 of
Table 3.1) can be added, in order to precise a static mode of the element, in which the failure mode is
considered if the fault propagation is different.

Thus, the activation model and the readouts are represented in the FMECA spreadsheet by:
 Column 4: Mission Phase/Operational Mode
 Column 5: Local Effects
 Column 6: Upper-Level Effects

It is worth to mention that Column 7 in Table 3.1 is related to what is usually called Criticality/Risk
level in the FMECA spreadsheet. In the automotive domain, the criticality of the failure modes are
usually related to the ASIL Safety level introduced in Section 1.2.1.2. These two notions are two fac-
ets of the same phenomena.

Column 9 of Table 3.1 is typical in a FMECA. It analyzes the effects on the upper-level, in the pres-
ence of the defense mechanisms. According to our analogy, it represents a different FI analysis that is
done on the same Element, but with another architecture where the fault activation and propagation is
modified, for the same target and fault model.

If two FI analyses are performed on the same target (with without the safety mechanisms) for the same
fault model, respectively FIAi and FIAi+1, the two obtained results show the impact of the added safety
mechanisms. This is illustrated in Figure 3.4. Usually the FMECA spreadsheet takes into account the-
se two FIAs, on only one line by aggregating the different propagations and the Measures.

INTEGRATING FAULT INJECTION IN THE PRE-IMPLEMENTATION PHASE

47

FIGURE 3.4 ITERATION OF FIA FLOW AFTER THE MODIFICATION OF THE ARCHITECTURE

Finally, a set of FI analyses, using as fault model the set of potential causes of failure modes, lead to
the identification of the related failure modes of an element in a FMECA. A line of a FMECA spread-
sheet can be seen as summarizing the results of a set of FI analyses. In other words, FIA makes visible
and explicit the analyses supporting the FMECA spreadsheets.

3.3 Links between FIA Levels

We have introduced the basis of FI analyses at one level during the pre-implementation phase. We
have demonstrated the analogy with other safety analyses, particularly FMECA. From now, the
FMECA spreadsheet described in Table 3.2 is used to describe the results of the FIA at a defined level.

TABLE 3.2 REPRESENTATIVE FMECA SPREADSHEET
1 2 3 4 5 6 7 8

Element Failure
Modes

Potential
Causes

Local
Effects

Upper-Level
Effects

Risk
Level

Safety
Mechanisms (SM)

Upper-Level
Effect with SM

In the following section, the main interest is to link the FIA at various levels in order to link the vari-
ous analyses and measures.

It is important to note that the links between safety analyses at different architectural levels are well-
known. The use of FMECA at multiple levels is already described in various works (ECSS-Q-30-02B,
2008) and is used in projects, particularly in Valeo. However, this is of interest when addressing FIA.
Only few works have addressed FI on various levels of abstractions. This is why it is interesting to
address what can the results at each level induce on the others. As far as we are aware, hierarchical FI
has only been investigated in DEPEND, a simulation-based environment, by injecting faults at several
levels of abstraction (Kaâniche, Romano, Kalbarczyk, Iyer, & Karcich, 1998).

3.3.1 S- and Z-shaped Causal Chain

The various levels of the FIA can be linked, based on the propagation of failure modes from one level
to the upper level. Two links are of particular interest, based on the following considerations (using the
column of Table 3.2):

 link-A: level Li Failure modes (Column 2) corresponds to level Li-1 Upper-
level effects (Column 5).

 link-B: level Li-1 Potential causes (Column 3) corresponds to level Li Failure
modes (Column 2).

Measures

Faultpropagation:

Activation + ReadoutsFault Model

Target Failure

Modes

Potential

Causes

Local

effects

Upper-level

effects

Risk

level

Safety

Mechanisms

(SM)

Target Failure

Modes

Potential

Causes

Local

effects

Upper-level

effects

with SM

Risk

level

With SM

Safety

Mechanisms

(SM)

MeasuresFaultpropagation:

Activation + Readouts

Fault Model

FIAi

FIAi+1

INTEGRATING FAULT INJECTION IN THE PRE-IMPLEMENTATION PHASE

48

These two links are at the origin of two types of causal chains: S-shaped and Z-shaped causal chains.

The S-shaped Causal Chain is based on Link-A (see Figure 3.5). Li failure modes propagate to Li
upper level effects, which correspond to a Li-1 failure mode, which in turn propagates to Li-1 upper-level

effect.

FIGURE 3.5 S-SHAPED CAUSAL CHAIN

An S-shaped chain captures the propagation through the architectural levels of the effects of an initial
failure mode. Moreover, the propagation of the initial failure mode (level Li) of an element Ej may lead
to several Upper-level effects. Therefore, Li-1 failure modes of several elements can be reached. Figure
3.6 highlights this propagation from the element Ej at the level to the element at level Li-1. Then, several
elements (E1, E2,…, Ej,…, En) of a considered level can also lead to the same upper-level effect.

FIGURE 3.6 MULTIPLE S-SHAPED CAUSAL CHAINS FROM AN INITIAL FAILURE MODE

The S-shaped causal chain also provides traceability of the fault model with the safety level defined at
the upper-level. This property is due to the assessment of the Upper-level effect, which can be an Unde-
sired Event (associated with a safety level). Hence, the fault model of the considered level is associated
with the highest safety level.

This causal chain also enables the definition of safety mechanisms to handle error propagation at the
most appropriate architectural levels. It follows the same approach as the Failure Detection, Isolation
and Recovery (FDIR) in aerospace systems. This is defined in (NASA, 2005) as “The means to detect
off-nominal conditions, isolate the problem to a specific subsystem/entity, and recover of vehicle sys-
tems and capabilities. FDIR may be accomplished by the onboard crew, onboard software algorithms,
ground commanding, or a combination of the preceding methods.” This is a layered approach used to
define the different mechanisms (detection, isolation, reconfiguration...) use in order to ensure the de-
pendability of a critical system. In these systems the decision control can be done by ground control,
software algorithm or also by hardware protections.

1 2 3 4 5 6 7 8

Link-ALi-1

Li

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Link-A

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Li-1 E1

Li-1 E2

Li-1 En

Li E1

Li En

INTEGRATING FAULT INJECTION IN THE PRE-IMPLEMENTATION PHASE

49

Following one of these chains, it can be determined, what is the best level to handle (detect or recover)
the faults in order to mitigate the occurrence of an Undesired Event. For example, adding a safety
mechanism at higher level enables to handle a much larger fault model, but it will have a slow reaction
time, compared to low-level mechanisms that handles quickly the detected errors but will focus on a
dedicated and small fault model. Finally, the decision between several solutions will be done by a
tradeoff between advantages and drawbacks of each solution.

This causal chain also helps in the definition of the readouts of FI experiments (FIE) at the successive
architectural levels, during the post-implementation phase.

The Z-shaped Causal Chain starts from the potential causes column of level Li and propagates as a
failure mode of the same level, and continues on level Li-1 towards the failure mode column.
(See Figure 3.7).

FIGURE 3.7 Z-SHAPED CAUSAL CHAIN

A Z-shaped chain helps refining the fault model of the considered level by identifying equivalent
faults, i.e., faults leading to the same failure mode at the upper-level (with the same effects at the sys-
tem level).

Thus, it will help selecting the fault to be injected during FIE, taking into account the FI instrumenta-
tion and the FI accessibility of the target.

Indeed, this chain illustrates the link “Refinement of the fault model of upper levels” in the Figure 3.2.
Hence, the failure modes of the lower level, will be reported following the identified S-Shaped chain
in the column Potential Causes of the upper level

Hence, the failure modes of the lower level Li will be reported following the identified S-Shaped chain
in the column Potential Causes of the upper level Li-1. Then, it is possible to determine the Z-shaped
chains.

Similarly to the S-shaped chain, the Figure 3.8 shows a failure mode of a considered level Li-1, may
belong to more than one Z-shaped chains depending on the number of element contributing to the fail-
ure mode.

FIGURE 3.8 MULTIPLE Z-SHAPED CAUSAL CHAIN FROM AN INITIAL POTENTIAL CAUSE

1 2 3 4 5 6 7 8

Link-B
Li-1

Li

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Link-B

Li-1 E1

Li En

Li E2

Li E1

INTEGRATING FAULT INJECTION IN THE PRE-IMPLEMENTATION PHASE

50

3.3.2 Initialization and Termination of the FIA Flow

We described the FIA at a given level by highlighting the goals of each activity and showing how to
perform them. We have also shown the links between consecutive levels of FIA, using S- and Z-
shaped causal chains. In this section, we describe how the FIA flow can be initialized and terminated,
in the framework of the V-cycle of the Figure 3.1.

The FIA flow starts at System level L0 in which the Definition of the System Architecture has been (or
is being) performed. In order to define the measures to be assessed and to assign criticality levels of
the various failure modes, system safety level and system safety requirements need to be defined re-
spectively in the upper-level FIA and the upper-level safety analyses. In practice, these two activities
are part of Hazard and Risk Analyses. In our context, we will use the Preliminary Hazard Analysis
(PHA). The PHA aims at identifying undesired events (UEs) and the system safety requirements. The
latter are referred to as Safety Goals. Usually, the UEs and the SGs are labeled with the adequate safe-
ty level (ASIL according to ISO 26262).

In theory, the FIA flow ends when no targets can be decomposed in sub-elements, or when the lowest
fault model granularity is considered. Practically, following our V-cycle, it ends with HW & SW
Block level.

At the HW block level, the fault model considered is the set of physical faults that lead to the failure of
a HW part. HW parts are the elements that can be handled and for which it can be interesting to assess
if a safety mechanism is needed. For example, at this level, the considered failure modes are the
short/open circuit of capacitor, resistor, coil, etc. or a parameter change of these parts. There is also the
stuck-at model for integrated circuits, e.g., inputs or outputs of the circuit stuck at low value or high
value.

Going deeper in the fault model will only help a component manufacturer to improve the reliability of
the HW part, and this is out of the scope of our work.

At the SW Block level, the lowest fault granularity level is software development/coding faults as they
lead to the failure of SW Modules that are the elements of SW architecture.

These faults will be injected on the experimental side of the V-cycle.

3.4 Steering Column Locking System

In this section, we illustrate the application of FIA to a Steering Column Locking System.

3.4.1 System Description

This system controls a locking/unlocking motor on the steering column of the car (see Figure 3.9).

Conventionally steering column locks are purely mechanical and directly coupled to the ignition lock.
This decreases the degrees of freedom in the design of a dashboard and of the complete interior. This
system is mandatory in the design of vehicle for legal and insurance reasons. Indeed, this is a key sys-
tem for vehicle theft prevention. The mechanical locking bolt is driven by the Steering Column Lock-
ing System. It can be driven to lock the steering column, or by reversing the command, to unlock it.

INTEGRATING FAULT INJECTION IN THE PRE-IMPLEMENTATION PHASE

51

This is also a frequently used system to illustrate safety in the automotive industry, as it is quite sim-
ple, but also as it owns the highest level of criticality (ASIL D).

This system has two functional requirements, which are defined during the “system functional needs”
activity:

 The locking management of the steering column when the driver wants to immobilize the vehicle
and prevent theft of the vehicle.

 The unlocking management of the steering column when the driver wants to move off.

FIGURE 3.9 STEERING COLUMN LOCKING SYSTEM ARCHITECTURE

There are two system safety requirements, referred to as Safety Goals (SG) that must be ensured. The-
se SG are defined in the PHA and each SG is allocated an ASIL:

 SG1: The system shall not lock the steering column when the vehicle speed is over a pre-defined
threshold. It has the highest safety level, ASIL D.

 SG2: If the steering column is locked, the system shall prevent to start the engine of the vehicle.
SG2 has the lowest safety level, ASIL A.

In the rest of this section, we will first illustrate the FIA approach at system level L0, to identify fail-
ure modes that can violate the safety goals SG1 and SG2, and to check the existence of safety mecha-
nisms preventing their occurrence. Then, we will use results from the FIA at product level (L1) to
illustrate the S-shaped chain.

3.4.2 Steering Column Locking System FIA (L0)

FIA Target: Products Functional Requirements. The products must ensure the system functional
requirements and take into account system safety requirements. The product functional requirements
are allocated to the architecture given in Figure 3.9. They are extracted from the System Architecture
activity (Figure 3.1) and summarized in Table 3.3. The ESCL is the main product in the system. The
three other products provide common functions such as energy, information for safety purpose (“vehi-
cle in motion” information) or centralized information from the driver (the Body Controller collects
and transmits commands from the driver’ interfaces).

TABLE 3.3 FUNCTIONAL REQUIREMENTS OF THE PRODUCTS
Product Functional Requirements

ESCL: Electronic Steering
Column Locking

ESCL-F1: Lock the Steering column
ESCL-F2: Unlock the steering column

BC: Body Controller BC-F1: Transmit Lock Command from driver’s interfaces to ESCL
BC-F2: Transmit Unlock Command from driver’s interfaces to ESCL

BA: Break Assistance BA-F: Transmit “vehicle in motion” to the ESCL
PS: Power Supply PS-F: Supply a switched electrical power to ESCL

Key ON/OFF

Car speed

Engine state

Lock/Unlock

Command

Steering Column

Switched

power supply Electronic

Steering

Column

Lock

(ESCL)

Power Supply

(PS)

Break Assistance

(BA) MOTOR

Body Controller

(BC)

Vehicle in

motion

Lock/Unlock

request

Steering Column Locking System

INTEGRATING FAULT INJECTION IN THE PRE-IMPLEMENTATION PHASE

52

Measures: Two main measures can be considered, related respectively to the violation of one of the
safety goals SG1 and SG2.

Failure Modes: Table 3.4 lists the failure modes of the ESCL and their local effects. This table is
obtained by analyzing functional requirements of ESCL-F1 and ESCL-F2, as well as the propagation
of the failures at product level.

TABLE 3.4 FAILURE MODES OF ESCL
Functional

Requirement
Failure Mode Product Effects

ESCL-F1 FM1 Spurious Lock Erroneous lock command
FM2 ESCL-F1 Lost (No lock) No lock command is possible
FM3 ESCL-F1 stuck-at ESCL always performs lock command

ESCL-F2 FM1 Spurious Unlock Erroneous unlock command
FM2 ESCL-F2 Lost(No unlock) No unlock command is possible
FM3 ESCL-F2 stuck-at ESCL always performs unlock command

Fault Propagation and Readouts Identification:

We focus on the fault propagation of the ESCL-F1-FM1: spurious transmission of a lock command
when the vehicle is at high-speed leads to Steering column locked as a local effect while the speed is
over the pre-defined threshold. The result at system level is the locking of the steering column by the

ESCL while driving. The system effect violates the safety goal SG1.

The FIA aims at checking the existence of (or helping the definition of) safety mechanisms to prevent
this propagation and the violation of SG1. Two safety mechanisms are identified:

 Braking Assistance product sends vehicle in motion signal to the ESCL when the speed is higher

than a defined threshold, thus an ESCL mechanism must check this value before locking the mo-
tor. If vehicle in motion is true then SSM1 must inhibit lock command. (SSM1)

 The Power Supply product is a safety mechanism, as it must not power the ESCL when the car
engine is running, thus the ESCL is in a safe state. (SSM2)

The FIA of the ESCL-F1-FM1 results in the first line of FMECA in Table 3.5. Similarly, analyzing the
other failure modes, we obtain the complete System FMECA table available in APPENDIX 2.

Thus, FIA identifies three safety mechanisms (SSM1, SSM2, and SSM3) whose coverage will be
measured through experiments on real target using conventional fault injection. The failure modes will
be used to select the most appropriate faults to be injected, i.e., fault that should be handled by each
safety mechanisms.

3.4.3 ESCL Product FIA Flow (L1)

To illustrate our approach, we focus on ESCL product. The HW&SW Blocks functional requirements,
allocated to the product architecture of Figure 3.10, are:

 Micro-controller Block: it controls the state of the MDB.

 Communication Block: it transmits requests from BC and replies from ESCL.

INTEGRATING FAULT INJECTION IN THE PRE-IMPLEMENTATION PHASE

53

FIGURE 3.10 HW AND SW BLOCKS AT ESCL PRODUCT LEVEL

 Motor Drive Block (MDB): it powers the motor of the steering column. This power converter
output is controlled by the micro-controller using four switches: locking, unlocking, breaking the
motor and un-power the motor.

 Sensor Block: it senses the position of the motor of the steering column (locked, unlocked, un-
known).

Measures: We identified three critical failure modes (or UEs) at system level: Spurious lock (ESCL-
F1-FM1), ESCL-F1 stuck-at (ESCL-F1-FM3), No Unlock (ESCL-F2-FM2). At this level, the causes of
these UEs should have been identified.

TABLE 3.5 PARTIAL FMECA OF THE STEERING COLUMN LOCKING SYSTEM: ESCL PRODUCT11

Element Failure Modes Potential
Causes

Local
Effects Upper-Level Effect Safety

Level
System Safety

Mechanisms (SSM)

Upper-Level
Effect with

SSM

Lock
steering
column

ESCL-F1

Spurious Lock
ESCL-F1-

FM1

 Erroneous
lock

command

Steering column locked
while driving
SG1 Violated

ASIL
D

SSM1: Vehicle in
motion

SSM2: Switched
power supply

No effect *

ESCL-F1 Lost
(No lock)
ESCL-F1-

FM2

 No lock
command is

possible

Parked vehicle with steering
column unlocked NA

ESCL-F1
stuck-at

ESCL-F1-

FM3

 ESCL al-
ways per-
forms lock
command

Steering column remains
locked => vehicle starts with

locked column
SG2 Violated

ASIL
A

SSM3: Monitoring of
motor position should

be implemented No effect *

Unlock
steering
column

ESCL-F2

Spurious
Unlock

ESCL-F2-

FM1

 Erroneous
unlock

command

Parked vehicle with steering
column unlocked NA

ESCL-F2 Lost
No unlock)
ESCL-F2-

FM2

 No unlock
command is

possible

Steering column remains
locked ==> vehicle starts

with locked column
SG2 Violated

ASIL
A

SSM3: Monitoring of
motor position should

be implemented No effect *

ESCL-F2
stuck-at

ESCL-F2-

FM3

 ESCL al-
ways per-

forms unlock
command

Parked vehicle with steering
column unlocked NA

* assuming a perfect coverage of safety mechanisms

11 The complete table is available in APPENDIX 2

Steering Column

Lock/Unlock

Command
MOTOR

Power Supply

(PS)

Break Assistance

(BA)

Body Controller

(BC)

Motor Drive

Block
(MDB)

Micro

Controller
Block

(µC)
Communication

Block (CB)

Sensor

Block (SB)

Vehicle in motion

Switched Power supply

Lock/ Unlock

request

Motor
position

MDB
state

MDB
State
Cmd

Electronic Steering Column Lock (ESCL)

Steering Column Locking System

Engine state

Car speed

Key ON/OFF

INTEGRATING FAULT INJECTION IN THE PRE-IMPLEMENTATION PHASE

54

In this section, we focus on one critical failure mode: “Micro-Controller-F1-FM1, Erroneous assign-

ment of the outputs of the micro-controller delivered to the MDB” given in Table 3.6.

The Micro-Controller-F1-FM1 failure mode puts the MDB in a locking state, the MDB powering up
the motor in locking mode. In this case, the ESCL triggers a spurious lock of the steering column
(ESCL-F1-FM1 failure mode). Two mechanisms are proposed. The first one – PSM1 – is a hardware
watchdog which enables the detection of abnormal software behavior. This could be a cause of a spu-
rious locking command sent by the ESCL. Then, a fault tolerance mechanism is implemented to han-
dle single point failure; two independent software modules should be responsible for the locking
command of the MDB.

TABLE 3.6 PARTIAL FMECA OF THE ESCL (FAILURE MODE OF THE MICRO-CONTROLLER BLOCK)12

Element Failure Modes Potential
Causes Local Effects Upper-Level

Effect
Safety
Level

Safety Mechanisms
(SM)

Product
Effect with

SM

Control the state of
the MDB

µC-F1

Erroneous assign-
ment of outputs of

the micro-controller
µC-F1-FM1

Spurious activation of

the MDB locking
state.

Spurious lock
ESCL-F1-

FM1

ASIL D

PSM1: Watchdog
(HW),

PSM2: 2 different SW
modules should be

implemented to control
the µC-F1 (redundancy)

No effect*

* assuming a perfect coverage of safety mechanisms

This example illustrates the links between the product and system levels of the architecture, thanks to
the S-shaped chain whose elements are indicated in red in Table 3.6 and then in Table 3.5. For illustra-
tion purpose, during the pre-implementation phase, this chain helps in the following two activities:

 Propagation through the architectural levels of the effects of an initial failure mode and
traceability of the fault model with the safety level.

The failure mode Micro-Controller-F1-FM1 leads to the ESCL-F1-FM1 product failure mode
that affects SG1 at system level.

 Definition of safety mechanisms to handle error propagation at the most appropriate archi-
tectural levels.

The proposed design includes safety mechanisms (SM) at two levels. PSM1 detects and recovers
at product level Micro-Controller-F1-FM1 failure mode. However, if PSM1 fails, ESCL-F1-FM1
occurs but can be covered by SSM1 and SSM2 at system level. Indeed, the lack of coverage of
SM1 can be handled by the System safety mechanisms. Both safety mechanisms placed at two
different levels are motivated by the required high safety level.

3.5 Synthesis on Fault Injection Analyses

We have demonstrated the continuum in the validation process from fault injection point of view. In
addition, the methodology has been illustrated by the use of S and Z-shaped causal chains. We have
highlighted that the first one helps in the definition of the experimental measures and the other enables
to define the fault model for fault injection experiments. We have shown that FI analyses during the
system pre-implementation phase provide information that can be synthesized in FMECA spread-
sheets. However, as the critical path are clearly described with the fault model, the possible critical
consequences and the fault tolerance mechanisms, it is possible to describe a whole set of attributes of
fault injection. FTA or other safety analyses can help to answer fault injection requirements. The ad-

12 The complete table is available in APPENDIX 3

INTEGRATING FAULT INJECTION IN THE PRE-IMPLEMENTATION PHASE

55

vantage of FIA is to make visible and explicit all the detailed analyses performed manually or based
on models, and tools for activation and fault propagation analyzes.

It should be noted that, even if we have shown that FMECA are the most suitable analyses to answer
fault injection objectives, several actors of the industry are used to base their safety processes on FTA
rather than on FMECA.

From a practical point of view, FTA is a deductive approach whereas FIA and FMECA are inductive
approaches. They can be viewed as complementary. FTA gives an overview of fault propagation not
only between the levels but also between elements of the same level. They do not necessarily show
explicitly the details related to fault propagation and criticality. On the other hand, FIA and FMECA
give more details fault by fault, without showing all the relationships (or propagation) explicitly in the
lines. We proposed to analyze the S- and Z-shaped causal chains to provide such a view.

Fault trees representation is interesting for the representation of fault injection. First, the two causal
chains, S- and Z-shaped, are represented. Hence, the traceability between levels is shown. The S-
shaped correspond to bottom-up reading of a branch of the fault tree. However, the multiple effects of
a fault cannot be identified directly, on the fault tree, as a branch only represents a critical path. The Z-
shaped chain corresponds to the causes analyzed in the fault tree. S- and Z-shaped chains are respec-
tively illustrated in red and blue in Figure 3.11, in both a fault tree and a FMECA spreadsheet.

FIGURE 3.11 S- AND Z-SHAPED CAUSAL CHAINS IN FTA AND A FMECA TABLE

Another interesting point concerning FTA is its management of the combination of faults. For the
moment, we have only highlighted the effect of single failure, but fault injection is not reserved to
single failures. The injection of fault in multiple locations have already been studied, e.g., dual-point
fault in (Ayatolahi, Sangchoolie, Johansson, & Karlsson, 2013). Most of the time, these aspects are not
tackled by FMECA, therefore FTA can enrich the set of experiments, by adding combination of two or
more faults.

UE1

BE11 BE12

F1_FM1

BE22BE21 BE23

F2_FM1SM1 failure

1 2 3 4 5 6 7 8

BE12 F1_FM1 ASIL X

1 2 3 4 5 6 7 8

F1_FM1 BE11

BE12
UE1 ASIL X SM1 No ef fect

INTEGRATING FAULT INJECTION IN THE PRE-IMPLEMENTATION PHASE

56

In practice, the integration of these experiments in the campaign has to be analyzed. In most of the
cases, multiple failures are not exhaustively considered in the analyses, even for dual point faults. A
particular attention can be brought to the so-called “second order mechanism”13. In the automotive
industry, they detect the error of the first order safety mechanisms. In this case, performing a simple
fault injection is sufficient to evaluate these mechanisms.

Finally, in order to conform to the ISO 26262 standard, many actors in the automotive domain have
started looking for new approaches to FI in the early development phase, with the fear that integrating
FI in the early development process will incur a redefinition of the whole development process. Inter-
estingly, the analogy between FIA and safety analyses developed in this chapter shows that FI can
indeed be easily integrated in the existing process, and will even improve the efficiency of the global
process.

 Safety analyses, FMECA, must be integrated in the development process and, in practice,
FMECA is already integrated.

 Safety analyses are required by the ISO 26262 at all levels described before: system, product,
software and hardware. Moreover, they are required for all ASILs, even the lowest one.

In the next chapter, we will complete our approach with the determination of the fault injection exper-
iments based on the FIA. Our approach follows studies that have highlights the relationship between
FMECA and fault injection experiments.

13 More information about the characterization of the first and second order safety mechanisms can be founded in (Cherfi,
Rauzy, & Leeman, 2014)

57

Chapter 4 FAULT INJECTION DURING POST-
IMPLEMENTATION PHASE

4.1 FIE Overview .. 58

4.2 From FIA to FIE: Definition of the Experiments ... 59

4.2.1 Application of FARM ... 59

4.2.2 Experiment Traceability ... 63

4.2.3 Determination of the FIE using FMECA ... 63

4.2.4 Conclusion on the Identification of the Experiments ... 67

4.3 Execution of the Experiments and Evaluation of the Measures 67

4.3.1 Optimization of the Experiments .. 67

4.3.2 Assessment of the FIA with regards to the FIE .. 69

4.3.3 Assessment of one Fault Injection Experiment .. 69

4.3.4 Synthesis of the FIE .. 70

4.4 Conclusion .. 71

FAULT INJECTION DURING POST-IMPLEMENTATION PHASE

58

The objective of the chapter is the identification of fault injection experiments on concrete targets. The
Readouts and the Measures can be deduced from the S-shaped causal chains. Then, the Z-shaped
causal chains enable the identification of the Fault model. Finally, the Activation of the target corre-
sponds to the functional behavior of the targeted element. A fault injection campaign can be defined as
a whole for a target belonging to a particular level. Finally, we evaluate the benefits on the FIA of the
obtained measures of the FIE.

4.1 FIE Overview

The FIA enabled identifying the propagation of failure modes at different levels of architecture and
enabled defining the means (safety mechanisms) to mitigate the propagation at the most appropriate
level.

Our aim in the following section is to answer the following question: To what extent FIA is of interest

for conducting the FI experiments in real targets?

Fault Injection Experiments aim at checking, during the post-implementation phase, that the various
fault tolerance mechanisms defined during the pre-implementation phase are correctly implemented.
Another output of such experiments is the quantitative assessment of the most impacting safety pa-
rameters.

Firstly, we show how to use the results of pre-implementation phase (Chapter 3) to define the fault
injection experiments on targets. Particularly, S- and Z-shaped causal chains will be used to identify
the measures and the experiments.

Secondly, we investigate the continuum of the fault injection experiments between the different levels,
and we compare obtained measures with FIA. The objective is to validate the measures of the FIA:
identification of safety mechanisms and critical paths, with the results of the experiments. In addition,
the campaign can be optimized, guided by the FIAs and the causal chains, in order to select efficient
experiments. Then, we investigate the complementarity of experiments with analysis.

Finally, we discuss the process and the outcomes with the requirements of the ISO 26262.

The contributions tackled in this chapter with FIE are highlighted in Figure 4.1.

FIGURE 4.1 CONTRIBUTIONS OF CHAPTER 4

Modification or improvement of the design

Post-implementation
Phase

System
functional needs

System
architecture

Product
architecture

Functional

requirements

Preliminary hazards
analysis (PHA)

Safety requirements

& undesirable events (UEs)

System
validation

System integration
& verification

Product integration
& verification

HW block integ-
ration & verification

HW block
architecture

SW block
architecture

Products safety
analyses

System safety
analyses

HW block safety
analyses

SW safety
analyses

Implementation of SW modules & HW parts

L0

L1

L2

L3

SW module integ-
ration & verification

Pre-implementation Phase

Chapter Contribution

FAULT INJECTION DURING POST-IMPLEMENTATION PHASE

59

4.2 From FIA to FIE: Definition of the Experiments

In this section, the applicability of the FARM method for the identification of the attributes of fault
injection experiments and their planning is discussed.

4.2.1 Application of FARM

4.2.1.1 Definition of the Experimentation Targets

The FIA enables the identification of the most critical elements and propagation paths of the architec-
ture thanks to the traceability of ASILs of all the elements, and following the S-shaped causal chain.
These critical elements and paths should be particularly verified, in order to validate that the causes of
safety requirement violation have been properly mitigated. Considering a specific level of integration,
the targets chosen for the experiments have a decreasing ASIL.

The targets usually implement, at least, one safety mechanism (detection or tolerance).Fault injection
experiments must demonstrate the efficiency of safety mechanisms with respect to the considered fault
model.

4.2.1.2 Measures to be Assessed

Fault injection has two main objectives. On the one hand, FI verifies that the safety requirements are
not violated, i.e., the considered error (failures) identified in the safety analyses does not propagate
through critical paths to violate safety requirements. The violation of safety requirements can be quan-
tified by identifying the failure modes distribution, in which the failure modes are associated with
safety requirements. The failure modes distribution can be represented using “pie chart”, “bar graphs”
or “histograms”. In addition, the temporal behavior of error handling is important. The detection time
and the reaction time may be part of the definition of the assertion providing the measures. Indeed
safety requirements impose a detection or reaction time, to evaluate whether the system handles safely
the fault model. Experiments where there is a detection of an error, and experiments where the detec-
tion is within the timing requirements should be distinguished. The former are not safe if they do not
comply with the timing margins on the contrary to the latter. Finally, these measures enable the evalu-
ation of fault proportion that lead to violate a safety requirement.

On the other hand, FI addresses the verification of the effectiveness of the safety mechanisms, i.e.,
whether the fault model identified in safety analyses is mitigated by the safety mechanisms. This ob-
jective aims at assessing the Error Detection Coverage and / or the Error Recovery Coverage of the
safety mechanism. Generally, these results are represented as “pie chart”, in order to illustrate the dif-
ference between the faults correctly handled and the coverage deficiency.

These measures quantify the effectiveness of the safety mechanisms preventing the occurrence of un-
desired events.

4.2.1.3 Faults to be injected

Fault model is extracted from the failure modes of the elements identified for each element or path. If
the failure mode is too abstract, it will be refined using the Z-shaped causal chain. The potential causes
of the failure modes help identifying elements where the faults/errors can be injected. Two FI strate-
gies are possible, related to two complementary objectives:

FAULT INJECTION DURING POST-IMPLEMENTATION PHASE

60

 Objective 1: verification that a given failure mode identified by the FIA is handled correctly
by the implemented safety mechanisms. By injecting representative causes of failures leading
to the considered failure mode, the identified safety requirements will be solicited and by doing
so, will be easily tested. This strategy relies on the assumption that the failure modes of the el-
ement have been deeply analyzed (e.g., important background, former studies).

Figure 4.2 illustrates this strategy. We consider that there is “n” Equivalence Classes (EC) of the fail-
ure modes of the SW Module. At least one potential cause identified in the FIA is chosen for each EC.
Hence, this enables verifying that the safety mechanism mitigates correctly the Failure Mode of the
SW Module or identified a lack of coverage.

FIGURE 4.2 ILLUSTRATION OF FIRST STRATEGY

(Definition of Fault Model with “n” Potential Causes Representative of the “n” Equivalence Classes)

 Objective 2: verification that a set of identified causes of a failure mode will lead effectively to

this failure mode. In this case, experiments consist in injecting as much causes as possible to
check that the fault/failure propagation paths identified by FIA are valid. In this second strate-
gy, the objective is more exhaustive. This strategy should be applied when the failure mode
distribution of the potential causes is difficult to analyze.

Figure 4.3 illustrates this strategy. Here, the safety analyses lead to identify a set of potential causes.
All the potential causes should be injected to validate that they are real causes of the failure of the SW
Module. When a potential cause leads to a failure mode, the experiment checks whether the propaga-
tion is well mitigated.

FIGURE 4.3 ILLUSTRATION OF SECOND STRATEGY FOR THE DEFINITION OF FAULT MODEL

SW Architecture

SW Module
Failure

Mode of
SW

Module

EC 1

…

EC n

Safety
Mechanism

Failure
Mode of

SW
Architec

ture

Potential
Cause 1

Potential
Cause

Potential
Cause n

SW Architecture

SW Module
Failure

Mode of
SW

Module
Failure

Mode of
SW

Architec
ture

Set of
Potentials

Causes

Safety
Mechanism

FAULT INJECTION DURING POST-IMPLEMENTATION PHASE

61

At this stage (definition of the fault model), we assume that the strategy is selected independently from
FI capabilities provided by the available FI tool. The goal is to define the set of faults that should be
injected in order to obtain the desired measures.

4.2.1.4 Activation Model

In the case of FIE, the Activation model is a set of data patterns that aim sat exercising the injected
fault. For a general purpose, a solution consists in using a representative program. It aims at evaluating
the behavior of the systems in presence of faults during the representative uses of the target. They
could be chosen according to the frequency, the criticality, etc. of the program.

For the FIE, the Activation model is a set of input patterns that aims at exercising (i) the target Ele-
ment (EUT, Element Under Test) and (ii) the location of the injected fault to limit the number of in-
significant experiments. The best solution consists in using a representative program that aims at stim-
ulating the EUT in a realistic fashion and at evaluating its behavior in presence of faults. Activation
profiles can be selected according to criteria, e.g. the frequency, the criticality, etc.

Nonetheless, the determination of the Activation set could be significantly improved using behavioral
models of the dynamic behavior of the target in its environment. Our proposal is to use the behavioral
models developed during the FIA (sequence diagrams, timing diagrams or use cases). The goal is to
determine when to trigger the fault injection i) from the states of the target’s components and/or
ii) according to specific inputs from the environment.

4.2.1.5 Readouts

The readouts are obtained in order to verify and validate the system according to the safety require-
ments and to verify the effectiveness of the safety mechanisms, i.e., computation of relevant measures.

It is worth noting that the identification of the readouts should help in the identification of precise
oracle(s) of fault injection experiments. The oracle problem (Gaudel, 1995) is one of the main chal-
lenges for testers. Observing the tests outputs and deciding whether or not, verification conditions are
met is sometime difficult. In fault injection campaigns, there are three main forms of oracles:
i) specification, ii) error detection mechanisms and iii) golden run (Leeke & Jhumka, 2009). The spec-
ification and error detection mechanisms are related to the definition of a property that should be en-
forced during the experiment. These properties can then be formalized using observation points of the
targets, i.e. the Readouts. More information on the formalization of robustness tests can be found in
(Chu, 2011). The golden run is an execution of the system under normal conditions that generates a
reference run and its corresponding outputs. The outputs of reference run can be then compared to
those of the run when a fault has been injected. However, the golden run approach is recommended for
black box testing, but in our case, our measures are based on safety requirements evaluation.

To define the readouts, we recommend using the FIA. First, the fault model must be monitored as well
as the propagation of the faults (the local effects and higher levels effects). Second, the behavior of the
safety mechanisms must be monitored.

Data, variables (physical or digital) and events have to be observed and acquired on the target. Further
details about the measurement points (state or events e.g., timestamps, log files of variables, etc.)
should also be registered. This couple of variables/states indicates whether i) a safety mechanism has
been triggered and ii) the error handling is correct.

FAULT INJECTION DURING POST-IMPLEMENTATION PHASE

62

Then, from the readouts, a logical expression or a safety property based on the target states can be
established to detect when a safety requirement is violated.

4.2.1.6 Assessment of the Measures

The analysis of the readouts leads to assess the measures defined at the beginning of the process.
However, as we are performing tests, the results could be ambiguous and must be analyzed. We
choose to classify these experiments into four categories, see Table 4.1. We considered experiments
that implement at least one safety mechanism, and an experiment on which we verify that safety re-
quirements are ensured. This table ignores faults that have not been activated and that usually fall into
the “no observation” category.

TABLE 4.1 READOUTS ANALYSIS
Case α β γ δ

Activation of a
safety mechanism YES YES NO NO

Safety requirement
violated NO YES YES NO

Comments and further
analysis

Expected

results

Coverage

deficiency

Default of the

activation of the
safety mechanism(s)

Fault injected correctly but

no effects observed

The expected behavior – Case α – is the activation of safety mechanisms in the presence of faults pre-
venting the violation of the safety requirement. This behavior should have the highest probability.
Obviously, in all other cases, safety mechanisms need to be deeply analyzed thanks to detailed execu-
tion traces of experiments.

Case β corresponds to a coverage deficiency of the implemented safety mechanism(s). The safety
mechanism is activated, but the propagation of the fault is not mitigated correctly.

Case γ and δ often mean a design or implementation problem since the safety mechanisms have not
been activated.

Case γ is simpler to assess. Contrary to Case δ, it corresponds to critical faults, as it leads to the viola-
tion of a safety requirement. The non-activation of the safety mechanism can be due to a wrong de-
sign, in which this potential cause has been omitted or a wrong safety mechanism has been chosen. It
can also be an implementation error: bug in the design of the safety mechanism, a wrong integration.

Case δ, i.e., experiments where no effects are observed, corresponds to several categories that should
be analyzed. Firstly, it may result from the injection of “safe fault” (according to ISO 26262, part 5). A
safe fault is a fault whose occurrence will not significantly increase the probability of violation of a

safety goal. Hence, the nothing will be observed. Defaults in the fault injection experiments can also
be a reason for this last case: i) an error remains latent and has not been activated by an experiment
scenario, ii) the fault has been tolerated by another mechanism or by design (re-initialization of a data
corrupted by the injection before using it).

In a conventional fault injection campaign, the output of the experiments is represented as a pie chart
composed of the previous categories. Ideally, 100% of errors are detected and recovered, this ensures
that the safety requirement is not violated. In reality, some errors are not detected by internal error
detection mechanisms, or are not recovered. Upper level safety mechanisms should then prevent the
violation of safety requirement.

FAULT INJECTION DURING POST-IMPLEMENTATION PHASE

63

The observation of the time where the monitored event occurs (e.g., fault injection time, detection,
return to a safe state, etc.) is important. This observation enables to verify the timing requirements,
defined in Figure 1.3 are ensured: Diagnostic Test Interval (most of the time it corresponds to the De-
tection Time), the Reaction Time and the Tolerance Time Interval (TTI).

To conclude, safety analyses check/recommend safety mechanisms to be put in place, and FI experi-
ments quantify their efficiency, namely detection and recovery coverage. As the safety mechanisms
may prevent UEs to be reached, this will enable verifying the safety requirements (and the FFI proper-
ty) is ensured.

When a safety property is violated one of the two following conclusions holds:
 lack of coverage of a safety mechanism. The implementation of the mechanism should be ana-

lyzed in order to improve the coverage, if necessary.
 absence of a safety mechanism leading thus to a revision of the design.

4.2.2 Experiment Traceability

This link between the FIA and the FIE is important in a development process. The definition of the
experiments is linked to the assumptions used in the analyses. It is of paramount interest to link the
experiments with the safety requirements. The planning of the campaign must include all necessary
fault injection experiments to be able at the end to verify that all the requirements have been tested.

4.2.3 Determination of the FIE using FMECA

As we show in the Chapter 3, FIA is linked to FMECA spreadsheets. In this section, the objective is to
show how fault injection experiments can be defined from a FMECA row together with S- and Z-
shaped causal chains. Then, we define the measures that can be obtained by gathering the experiments
from several FMECA rows and how they are selected. This enables obtaining measures of the effec-
tiveness of a safety mechanism or the non-violation of a safety requirement.

4.2.3.1 Definition of Experiments using One Line of FMECA

We consider the FMECA line of Table 2.1 (p.29) has been done at one level Li. Firstly, the target is an
implementation / integration of the specified element at a given architectural level. The analysis of the
FMECA starts with the evaluation of the criticality/risk/safety level.

Secondly, the measures have to be assessed. They can be found in the column 5 and 6. Concerning the
demonstration that the safety requirements are not violated, we need the description of a physical
quantity, variables or signals, involved in the definition of the assertion to ensure that the system is
safe. In addition, column 7 helps to identify the safety mechanisms that should be monitored during
the experiments. These mechanisms have to be characterized according to their error handling capabil-
ities (detection and recovery).

More generally, if the target implements also upper levels, then following the S-Shaped causal, all
safety requirements that may be impacted at each level have to be assessed, that is to say all the safety
mechanisms must be evaluated.

The fault model is defined using columns 1, 2 and 3. Firstly, the failure modes of the entities (col-
umn 1) have to be considered. Depending on fault injection capabilities on the target, a given

FAULT INJECTION DURING POST-IMPLEMENTATION PHASE

64

fault/failure mode can be injected easily or not. In the latter case, the Z-shaped causal chain will help
determining the potential causes at level Li+1 or lower levels, and this way provides means to activate a
given fault at multiple levels. This would simplify the implementation of the experiments in many
cases, this being an interesting result of the FIA regarding the definition of the FIE.

Concerning the Readouts of the experiments, a similar analysis following the S-shaped causal chain
has to be performed. The following columns: failure mode (column 2), local effect (column 4), upper-
levels effects with or without safety mechanisms (column 5 and 8), and the safety mechanisms (col-
umn 7), must be taken into account in determination of the readouts. First, the failure mode must be
monitored to validate that an injected fault is activated. Then, the different effects enable defining the
assertions defining the propagation of the fault model, the safe states in order to assess the coverage of
the safety requirements. The column 7 focuses on the readouts needed for the assessment of the safety
mechanisms.

However, the Activation model can only be defined using the description of the functional require-
ments, i.e. the architectural and behavioral models. The latter gives a detailed specification of the ex-
pected activation profile, i.e. the software to be developed to perform the experiments, including stubs
and drivers for the target component.

4.2.3.2 Example using the Steering Column Locking System

Let's take as an example the line described in Table 4.2 of the Product FMECA of the ESCL.
TABLE 4.2 CONSIDERED LINE OF ESCL PRODUCT FMECA

Element Failure Modes Potential Causes Local Effects Upper-Level
Effect

Safety
Level

Product Safety
Mechanisms (PSM)

Product
Effect with

PSM

µC-F1:

Control the state
of the MDB

Erroneous assign-
ment of outputs of

the micro-
controller

µC-F1-FM1

RAM, Flash,
ROM Corrup-

tion,
Oscillator, SW

defect...

Spurious activation of
the MDB locking state.

Spurious lock
ESCL-F1-FM1

ASIL D

PSM1: Watchdog
(HW),

PSM2: 2 different SW
modules should be

implemented to control
the µC-F1 (redundancy)

No effect*

First, we consider that the whole product has been implemented and is now the considered target.
There are two important properties to evaluate. First, we must check that no spurious lock is observed
since this is a critical Product Undesired Event rated ASIL D. Then, the two safety mechanisms should
be assessed to verify that the proposed solution is able to handle the faults leading to the "Failure
Modes" identified in the FMECA spreadsheet.

The considered fault model at this level is “erroneous assignment of the outputs of the micro-
controller”. The potential causes of this failure mode are RAM, Flash, ROM corruptions from soft-
ware defects or the µC oscillator defects. A fault injection technique and tools have to be selected to
inject faults corresponding to this fault model. In our case, our tool provides appropriate facilities,
from SWIFI to Test-port based fault injection techniques (see Chapter 1).

Concerning the Readouts, the target should be monitored to ensure the injected fault/error has been
activated/propagated as required for the analysis. Then, different effects and particularly the Upper-
level effect have to be monitored in order to verify that a safety requirement is not violated. The non-
occurrence of undesired effect should be observed to ensure that the PSMs are efficient. This is the

FAULT INJECTION DURING POST-IMPLEMENTATION PHASE

65

case of PSM1. In our case study, PSM2 cannot contribute to the readouts of the experiments, as it is
only a recommendation for the implementation at a lower level.

To describe completely the experiment, the final step is the identification of the activation model. As
already mentioned, the activation model is not integrated in the FMECA spreadsheet but in the de-
scription of the functional architecture and the behavior of the product. The behavior of the locking
sequence is described in the sequence is described in the sequence diagram of the Figure 4.4.

When the Microcontroller receives a Lock request from the Communication block, then it must follow
the following sequence:

 Pre-activation of the MDB: the motor is stopped,
 MDB powers up the motor (Locking): the motor accelerates,
 MDB brakes the motor: the motor decelerates until stopping, and
 MDB returns to an inactive mode: the motor is off.

FIGURE 4.4 BEHAVIORAL DESCRIPTION OF THE LOCKING SEQUENCE OF MOTOR AT PRODUCT LEVEL

During this sequence, the motor should reach the Lock position. In the sequence diagram, we
identified six states where faults corresponding to the previously defined fault model could be
injected during the locking sequence to check the impact on the ESCL product.

4.2.3.3 Definition of Experiments using Multiple Lines of FMECA

We have shown that one line of FMECA helps to determine the experiments that enable assessing the
non-violation of a safety requirement and the coverage of safety mechanisms with respect to a fault
model. Similarly, the FMECA lines should be gathered in order to globally assess the robustness of

MDB in a
locking stateLock request

Communication

Block

Micro-

Controller

Motor Drive

Block (MDB)
MOTOR

Waiting for
a request

Waiting for
a request

Inactive

Inactive

Unlocked

Locked

Pre-
activation state

Power ON

Power OFF
Inactive

state

Breaking
state

Locking
state

FAULT INJECTION DURING POST-IMPLEMENTATION PHASE

66

safety mechanisms against the whole fault model of the system (i.e., the set of all the failure
modes/potential causes which have been identified), and the non-violation of the safety requirements.
The determination of the fault model is of course the main issue. The fault model is the set of potential
causes that, through the S-Shaped causal chains, leading to one or a set of UEs.

In the Figure 4.5, we illustrate the assessment of the occurrence of UE_1 (considered as a critical un-
desired event). In this case, we can see that two FMECA lines may lead to UE_1 due to two different
entities E1 and E2. Then, the causal chain highlights n potential causes of these failure modes at the
lower lever. Hence, the FIE must gather all the considered failure modes (FM1, FM2, FM3 … FMn),
that may lead to UE_1.

The same "causality link" approach can be applied to a safety mechanism, instead of an undesired
event, leading thus to the same kind of global analysis of experimental results.

FIGURE 4.5 S-SHAPED CAUSAL CHAIN IN THE DEFINITION OF GLOBAL MEASURES

4.2.3.4 Example using the Steering Column Locking System

In the case of the ESCL, we focus on the evaluation of the non-violation of SG1. Here we consider
two levels: system (SCL) and product (ESCL Product). At System level, there are two failure modes
that may violate SG1: ESCL_F1_FM1 and BC_F1_FM2. Then, considering the ESCL, all the follow-
ing failure modes will propagate through the S-Shaped Causal Chain: µC-F1-FM1, CB-F1-FM2,

MDB-F1-FM2, MDB-F4-FM1, MDB-F5-FM1, MDB-F5-FM2, SB-F-FM1, SB-F-FM2.

Finally, in order to verify that safety mechanisms have been well defined to prevent the violation of
the safety goal 1, the fault model encompasses all the failure modes identified in the FIA at System
and product levels.

We give a summary of this conclusion in the two lines of the System FMECA, hereafter. In

Table 4.3, the two failure modes of ESCL-F1 and BC-F1 are described as well as the potential causes
of the ESCL-F1-FM1. Faults leading to all the the failure modes highlighted in red should be injected.

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

UE_1

1 2 3 4 5 6 7 8

FM1

Li-1 E1

Li-1 E2

Li En

Li E1

Li E2
FM2

FMn

UE_1

FAULT INJECTION DURING POST-IMPLEMENTATION PHASE

67

TABLE 4.3 SYSTEM FMECA LEADING TO VIOLATE SAFETY GOAL 1

Element Failure Modes Potential Causes Local Effects Upper-Level Effect Safety
Level

System Safety Mechanisms
(SSM)

System
Effect with

SSM

ESCL-F1:
Lock steering

column

Spurious Lock
ESCL-F1-

FM1

µC-F1-FM1

CB-F1-FM2

MDB-F1-FM2

MDB-F4-FM1

MDB-F5-FM1

MDB-F5-FM2

SB-F-FM1

SB-F-FM2

Erroneous lock
command

Steering column locked
while driving
SG1 Violated

ASIL D
SSM1: Vehicle in motion
SSM2: Switched power

supply
No effect

BC-F1:
Transmit

Lock Com-
mand from

driver’s
interfaces to

ESCL

Unintended
BC-F1

BC-F1-FM2

Out of our scope

Unintended
Lock Command
transmits to the

ESCL

Steering column locked
while driving
SG1 Violated

ASIL D

SSM1: Vehicle in motion
SSM2: Switched power

supply
SSM4: Plausibility check in

the ESCL

No effects

4.2.4 Conclusion on the Identification of the Experiments

At this stage, we have shown how to identify the experiments of the fault injection campaign. These
experiments aim at demonstrating the robustness of the safety mechanisms and also at showing the
efficiency of the mechanisms to prevent undesired events. We have highlighted the importance of S-
and Z-causal chains in the definition of the Readouts and the Measures for the first one and in the def-
inition of the Fault model for the second one. Finally, the Activation model can easily be defined from
the behavioral description of the system or a component-system.

4.3 Execution of the Experiments and Evaluation of the Measures

In this section, we first analyze the way FI campaigns are carried out based on the identified experi-
ments. The first objective is the optimization of FIE. Indeed, the final fault model may be very large;
further analyses may help reducing the complexity without reducing the validity of the measures. The
second objective of this section is the assessment of the fault injection experiments with respect to the
safety analyses. A thorough investigation tackles the completeness of the approach.

4.3.1 Optimization of the Experiments

A first objective is the optimization of the number of experiments. There are several dimensions for
the optimization. Optimization is frequently tackled in all fault injection studies reported in the litera-
ture.

4.3.1.1 Fault Model

Following the conceptual causal chain fault-error-failure, it is worth noting that the faults injected are
in practice errors, i.e. subtle corruptions of system input and state. Hence, these errors represent a

FAULT INJECTION DURING POST-IMPLEMENTATION PHASE

68

class of equivalent faults. This is a first way to reduce the number of experiments. This issue has been
discussed in (Christmansson & Chillarege, 1996).

When all the faults cannot be exhaustively injected, two strategies can be used. The first one reduces
the fault model by selecting specific data type, range of values, boundary values, etc. The second strat-
egy is the injection of random faults using a probabilistic approach.

4.3.1.2 Activation Model

The activation model can also be optimized. The main objective is the improvement of the efficiency
of the experiment. In most of the cases, a fault could remain non-activated, but also errors may not be
propagated. To improve efficiency, the solution is to select the activation profile in order to make sure
that the fault will be activated or the error will propagate: considering the corruption of a variable in
the memory during the execution of an application, the corruption must be done before the actual read-
ing of the target variable. In this case, the corruption is going to propagate, contrary to cases where the
corruption is injected just before writing the variable. In the latter case, the error is overwritten. When
these cases are easy to determined, then it is possible to optimize the efficiency of the experiments and
to speed up the fault injection experiments. More details are also available in (Christmansson &
Chillarege, 1996).

4.3.1.3 Other Testing Activities

In the development process, several testing methods are required. These methods, which can be per-
ceived as fault injection experiments, have two purposes. First, it can be the verification of a safety
mechanism. The testing of the functional behaviour of the safety mechanism can be also done by a
fault injection approach. Second, robustness tests can be performed and in general lead to generate
fault injection tests cases.

This is why fault injection and other testing activities may lead to overlapping tests. An analysis of this
issue should avoid the repetition of tests cases and the help optimizing the purpose of each test case.
This means that fault injection tests are already carried out in practice, but they are not called fault
injection tests. This is something that can be argued to show that the development process of a given
provider takes ISO 26262 requirements into account regarding fault injection. But, this remains lim-
ited. The work presented in the thesis goes far beyond current tests to comply with ISO 26262 re-
quirements with respect to V&V by fault injection.

4.3.1.4 Results of FIE of Lower Level

Finally, the measures obtained on a target component at lower levels of FIE help reducing of the num-
ber of experiments when this target component is integrated into the tested entity. This is similar to
unit testing vs integration testing. When verifying the integration of the component, it is not necessary
to inject the entire fault model defined for this entity. Indeed, the remaining deficiencies of the com-
ponent should be triggered by fault injection to verify if an upper-level safety mechanism is able to
handle these deficiencies. The faults internally mitigated by the component EDC/ERC mechanisms are
not interesting at the upper level. This approach is only of interest when the system exhibits different

FAULT INJECTION DURING POST-IMPLEMENTATION PHASE

69

levels of integration, e.g., when a first target component (a product) is integrated into a system, the
measures obtained on the product can be used for the system.

4.3.2 Assessment of the FIA with regards to the FIE

We have shown that the FIA is a guide for the planning of the fault injection experiments. Then, the
FIE is used to validate the analyses done in the FIA. What we want to demonstrate in this thesis is the
mutual contribution of FIA and FIE.

When the whole FIE campaign has been performed and the measures obtained, the results of the FIE
have to be analyzed. At the end of the FIE, there are two types of results: the measures of the error
detection and error recovery coverage and the global measures of both (i) the coverage of safety re-
quirements (completeness) and (ii) the coverage of safety mechanisms (efficiency).

4.3.3 Assessment of one Fault Injection Experiment

We consider an experiment in which a set of faults corresponding to the fault model is injected, and
the set of safety mechanisms developed to prevent the propagation of the effects of the fault model.
The result of the experiment is either (i) the fault is detected/tolerated (c is the coverage value), or
(ii) a coverage deficiency . Finally, we consider that the experiment has been
identified in FIA.

It should be noted that the non-interference of the fault injection technique or tool in the obtain
readouts must be investigated before this assessment.

When at least one safety mechanism detects a fault, i.e., in the nominal case, the result of the experi-

ment is compliant with the FIA.

When experiments exhibit a coverage deficiency, then several causes can be identified:
1. the implementation or integration of a safety mechanism is wrong.
2. the implementation of a safety mechanism is correct but its definition is incomplete.

In the second case, the solution is the definition of a new appropriate safety mechanism to handle the
fault model.

If a new safety mechanism is required, the FIA is impacted. Considering a fault model, the main ques-
tion is the following:

Do the observed effects of the experiment are the same as those identified in the FIA?

If not, it means that the analysis is wrong. The FIA should be revised and corrected with the effects
observed on the target. Then, a new safety mechanism should be identified to prevent the observed
effects.

In addition, the new observed effect can lead to identify a new propagation causal chain between lev-
els. For instance, a low level fault may trigger a non-identify failure mode at upper level of abstraction
levels. Then, the whole propagation of this new failure mode should be analysed and its criticality
determined.

FAULT INJECTION DURING POST-IMPLEMENTATION PHASE

70

Figure 4.6 summarizes this assessment in a flowchart where the evaluation of the experiments leads to
modify the implementation of a safety mechanism and to modify the integration of the safety mecha-

nism, or need a correction of the FIA (e.g., the safety mechanism, the propagation of the fault between
levels).

FIGURE 4.6 FLOWCHART OF INTERPRETATION OF FI EXPERIMENTS

4.3.4 Synthesis of the FIE

We have synthesized the FIE flow at product level (as an example) in order to show its interactions
with the others activities. Figure 4.7 shows the main steps of FIE for the product level and its interac-
tions with other activities.

The first step of this flow is the definition of the FARM elements based on the results of the Pre-
implementation phase: namely the HW and SW Block functional requirements and the results of the
FIA. After the definition of the fault injection campaign, the set of experiments can be optimized by
reducing their number, thanks to the identification of redundancies with other testing activities, etc. At
this stage, the fault injection experiments can be run on the target using a fault injection environment.
Finally, the assessment of the measures will lead either to the validation of the identified fault toler-
ance mechanisms or to the modification of the implementation of the target or of the design.

The implementation or the
integration of the SM should be

modified

Fault Injection Experiment based
on FIA

Assessment of the implementation
and integration of SM

Assessment of the analyzed
propagation in the FIA

A new SM must be identified
A new SM must be identifiedand the
FIA must be modified according to

the observations

Analyzed behavior is identical to
experimental observations

Coverage of the
experiment ?

Coverage c

Coverage
deficiency

Yes

Yes

No

No

Identified defect in the
implementation or integration of the SM?

Analyzed effect are identical to
observation of the experiment?

FAULT INJECTION DURING POST-IMPLEMENTATION PHASE

71

FIGURE 4.7 PRODUCT LEVEL FIE FLOW

4.4 Conclusion

In this chapter, we have demonstrated the usefulness of the FIA in the definition of the FIE. We also
tackled issues regarding the contribution of fault injection experiments for the verification and the
validation of the safety analyses performed during pre-implementation phase

This chapter raises the issue of the completeness of the experiments definition with this method. In our
view, the use of early phase analyses cannot guarantee the completeness of the fault injection experi-
ments. However, a systematic approach for definition of the fault injection experiments, based on
systematic safety analysis, is at least a concrete guide to the definition of fault injection campaigns.
The defined campaigns enable the validation of the proposed safety mechanisms for the prevention of
hazards.

The main worry with this method is the definition of an erroneous fault model that does not encom-
pass a complete set of potential causes. However, this problem is not inherent to our approach; all fault
injection campaigns may have the same problem. Fault injection campaigns rely on the knowledge of
the target or on a specific fault model, and then the main benefit of our approach is to be able to trace
the fault model from the beginning of the design down to the experiments. Conversely, FIE results
enable to validate, at least partially, the safety analysis done during the pre-implementation phase.

The major difficulty of any fault injection campaign is the definition of the fault model. The injection
of large amount of faults may help finding non-analyzed critical paths and/or undesired events. How-
ever, this testing approach has often a low efficiency, i.e., most of the tests lead to no observation, and
huge campaigns are difficult to analyze. In our approach, we define a set of critical faults. These faults

Post-implementation
Phase

Pre-implementation Phase

Product
Architecture

Optimize testing

activities

Planning FIE

Interactions between development

activities and FIE flow

Reducing FIE through

S-shaped Causal chains

Interactions between Safety

activities and FIE flow

PRODUCT FIA

HW or SW BLOCKS FIE

SYSTEM FIE

PRODUCT FIE FLOW

Implement and

perform FIE

Define FARM elements

for the target

Assess Measures

Product

architectural Req.

Feedback

from FIE

Optimize the number

of experiments

HW&SW Blocks FIE

measures

Product FIE

measures

L0

L1

L2

Other product
tests

1

2

3

4

FAULT INJECTION DURING POST-IMPLEMENTATION PHASE

72

will more likely produce efficient experiments. The efficiency of the experiments is very important in
the industry as a high efficiency reduces testing efforts (time and cost).

The traceability of the experiments is very important in a development process, to make sure that no
experiment has been forgotten. In an industrial project, this is a major issue, as complex systems will
be developed by several engineers and tested by others. This approach helps the collaboration of safety
engineers and test engineers.

73

Chapter 5 CASE STUDY: FRONT-LIGHT

MANAGER

5.1 Application of FIA on the Front-Light Manager System ... 74

5.2 FIA at System Level: Front-Light System .. 75

5.3 FIA at Product Level: Front-Light-ECU ... 77

5.3.1 Safety Analysis of the Micro-Controller .. 78

5.3.2 Freedom From Interferences Analysis ... 78

5.4 FIA at SW Block Architectural Level .. 80

5.4.1 AUTomotive Open System Architecture – AUTOSAR ... 80

5.4.2 Partitioning Concept in AUTOSAR ... 81

5.4.3 Software Architecture of the Front-Light Manager .. 82

5.4.4 Behavioral Description of the Application ... 83

5.4.5 FIA of the Software Architecture ... 84

5.5 S-Shaped Causal Chain ... 86

5.6 SW Module Level: AUTOSAR Watchdog Manager ... 89

5.6.1 Alive Supervision ... 89

5.6.2 Deadline Monitoring .. 90

5.6.3 Control Flow Monitoring ... 90

5.7 FIA at SW Module Level .. 91

5.8 Lessons Learnt .. 93

CASE STUDY: FRONT-LIGHT MANAGER

74

The objective of this chapter is to apply the overall methodology to a representative automotive sys-
tem. The approach is illustrated on a Front-Light system. This electronic system controls the two
headlights of a car. This is a very simple system and this system has only a moderate safety criticality
level: ASIL B. At this level, all the requirements on fault injection are not “highly recommended” by
the ISO 26262 standard. However, a “proof of concept” of the proposed safety process can be done. In
this case study, we focus on the software architectural level and the software module level.

In order to contextualize the SW architecture, a first part is dedicated to the description of the system
level and the product level. Fault injection tests are based on assumptions and analyses done at higher
levels of architecture. They are determined from the traceability of the requirements leading thus to the
identification of efficient fault injection tests cases for the verification and validation of safety
mechanisms. The considered targets for the tests are especially the SW architecture and a SW module.
A particular attention has been paid to the design of the software architecture. The solution integrates a
partitionning between a QM application and an ASIL B application. We are able to tackle a specific
problem in the demonstration of safety that is of paramount importance: the verification of the
Freedom From Interferences (see Chapter 2). This problem is very important because of the
integration of multiple software modules with different ASILs on the same platform, a tendency that is
growing up in todays complex embedded automotive systems..

5.1 Application of FIA on the Front-Light Manager System

The Front-Light System controls the two Headlights of a car. This is a common automotive case study
often used to exemplify AUTOSAR concepts (Fürst, 2008). The proposed design of the Front-Light
System is not representative of a real automotive system, as the application is too simple. However, it
follows the development process and the design rules of any system according to ISO 26262.

The architecture of the Front-Light System is depicted in Figure 5.1. A 12V battery powers the Front-
Light System. Its main function consists in the control of the two headlights of the car to light the road
at night, in tunnels. It also controls an indicator on the Dashboard. This indicator signals to the driver
the state of the headlights. The Front-Light System communicates with the Dashboard ECU through
the CAN network of the car.

FIGURE 5.1 ARCHITECTURE OF THE FRONT-LIGHT SYSTEM

Ignition Switch ECU

ASIL B

Digital

Input
Digital output

Digital

output

CAN Network

QM

Dashboard (ECU)

QM

Headlight

Left

ASIL B

Headlight

Right

ASIL B

Light Switch

ASIL B

Power Supply 12V

ASIL B

ASIL B

Protected Ignition

Status ON/OFF
Dashboard

Request ON/OFF

Front-Light

ECU

ASIL B

Front-Light System

CASE STUDY: FRONT-LIGHT MANAGER

75

A Preliminary Hazard Analysis (PHA) identifies one Undesired Event: UE01, “Loss of the Head-

lights”, rated ASIL B

The ASIL is allocated by estimating the severity, exposure, controllability (Table 5.1) of the Undesir-
able Event, using the ASIL Matrix in Chapter 1.

TABLE 5.1 FRONT-LIGHT SYSTEM’S UES ASIL ALLOCATION

UEs Situation Severity Exposure Controllability

UE01

Loss of the

Headlights

Night/tunnel.
No street

lights

S3:
Life-threatening injuries
(survival uncertain), fatal

injuries

E2:
Low probability: at
night/tunnel without

street lights

C3:
Difficult to

control or un-
controllable

The PHA defines the following ASIL B safety goal.
 SG1: The system shall not spuriously cut off both Headlights (ASIL B)

The following section will describe the FIA process at System, Product and Software levels. The pro-
cess will highlight how the system should be designed to ensure the two safety goals, and will prepare
the fault injection experiments definition.

5.2 FIA at System Level: Front-Light System

The Front-Light System, depicted in Figure 5.1, encompasses four products. The main product is the
Front-Light ECU, which gathers information from Ignition Switch ECU and Light Switch ECU in
order to set the Headlights On or OFF and to light the Dashboard indicator. The control logic of the
Front-Light ECU is very simple: it must light the two headlights of the car and the Dashboard indica-
tor when both Light Switch status and Ignition switch status are ON.

All the product functional requirements are synthesized in Table 5.2

TABLE 5.2 DESCRIPTION OF THE FUNCTIONS OF THE FRONT LIGHT SYSTEM.

Product Product Function Id # Product Functional Requirements
Front-Light

ECU
FL-ECU_F01 Front-Light ECU must send Dashboard State (ON/OFF) through the

CAN Network
FL-ECU_F02 Front-Light ECU drives the Headlights state (ON/OFF) in less than

600ms
Light

Switch
LS The Light Switch provides a ON/OFF signal to the Front-Light ECU

Ignition
Switch
ECU

IS-ECU The Ignition Switch ECU must send periodically the Ignition Switch
Status (ON/OFF) through the CAN Network to the Front-Light ECU

CAN
Network

CAN-F01 Transmit Ignition Switch Status from Ignition Switch ECU to Front-
Light ECU

CAN-F02 Transmit Dashboard indicator status from Front-Light ECU to
Dashboard ECU

CASE STUDY: FRONT-LIGHT MANAGER

76

The FMECA spreadsheet, given in Table 5.3, summarizes the fault injection analysis carried out for
the six functional requirements.

TABLE 5.3 FMECA OF THE FRONT-LIGHT SYSTEM

Element Failure Modes Potential
Causes

Local Effects Upper-Level Effect Safety Element Failure
Modes

FL-

ECU_F01

Loss of Dashboard
indicator Status

No Dashboard Indicator
Status sent

The Dashboard Indicator
Status is not lighted

according to the specifi-
cation

QM

Erroneous Dash-
board indicator

Status sent

Erroneous Dashboard
Indicator Status sent

The Dashboard Indicator
Status is not lighted

according to the specifi-
cation

QM

FL-

ECU_F02

Unintended
Headlight state ON

Unintended Headlight
state ON Discharge of the battery QM

Loss of Headlights
state Loss of Headlights state Loss of the Headlights ASIL B Fail-safe implementa-

tion of the FL ECU ASIL B

LS

Loss of Light
Switch signal

Light Switch Status ON
not sent to the FL-ECU Loss of the Headlights ASIL B

Check done by the
FL-ECU (SW mecha-

nism)

No effect
*

Erroneous value
ON sent

Light Switch Status
OFF not sent to the FL-

ECU
Discharge of the battery QM

IS-ECU

Loss of Ignition
Switch Status

Ignition Switch Status
ON not sent to the FL-

ECU
Loss of the Headlights ASIL B

Check done by the
FL-ECU (SW mecha-

nism)

No effect
*

Unintended send-
ing of the Ignition
Switch Status ON

Erroneous Ignition
Switch Status ON sent

to the FL-ECU
Discharge of the battery QM

Erroneous Ignition
Status frequency
higher than ex-
pected (timing

error)

 CAN saturation Loss of the Headlights ASIL B

FL-ECU should
diagnostic the CAN
Network for Ignition

Switch Status

No effect
*

CAN-F01

Loss of CAN
communication

Ignition Switch Status
ON not received by the

FL-ECU
Loss of the Headlights ASIL B

CAN data integrity
(combination of CRC,

Frame counter,
timeout)

No effect
*

Erroneous CAN
communication
(interferences)

Corrupted Ignition
Switch Status received

by the FL-ECU
Loss of the Headlights ASIL B

CAN data integrity
(combination of CRC,

Frame counter,
timeout)

No effect
*

CAN-F02

Loss of CAN
communication

Dashboard indicator
status ON not received

by the FL-ECU

The Dashboard Indicator
Status is not lighted

according to the specifi-
cation

QM

Erroneous CAN
communication
(interferences)

Erroneous Dashboard
Indicator Status re-

ceived by the DB-ECU

The Dashboard Indicator
Status is not lighted

according to the specifi-
cation

QM

* assuming a perfect coverage of safety mechanisms

In the FMECA spreadsheet, we can identify six failures modes that may lead to violate the safety
goals. Most of the proposed mechanisms cannot be completely determined at this level. These mecha-
nisms will be refined at underlying levels. For example, the failure modes of the FL-ECU will not be
handled at System level but the choice has been made to design a fail-safe FL-ECU in order to miti-
gate the occurrence of failure modes.

CASE STUDY: FRONT-LIGHT MANAGER

77

In the spreadsheet given above, we have also identified that a checking of the outputs of LS, CAN and
IS-ECU must be verified to ensure that they are valid.

We also see that specific analyses must be done on the CAN network. Indeed, it transmits safety criti-
cal information that may lead to violate a safety goal. It should be designed according to ASIL B.
However, we consider the bus CAN to be QM. Then, an End to End—E2E protection is needed to
keep safe the critical signal from IS-ECU to FL-ECU. The purpose of E2E protection is to prevent the
data through serial communication from corruption, deletion, repetition, insertion, incorrect sequence,
delay, masquerading. The E2E protection involves CRC, time out monitoring or counter. The imple-
mentation of the E2E protection is sufficient to fulfill the safety requirements (ASIL B) of the com-
munication according to the ISO 26262.

5.3 FIA at Product Level: Front-Light-ECU

We focus on the development of the Front-Light ECU product. By analyzing the results of the
FMECA, we identify one line of the Front-Light ECU that lead to the violation of the safety goal. This
failure mode will later be referred to as Product-undesired event, “P-UE01: Loss of Headlights state”

At this, level,we consider the micro-controller that runs the software applications on the Front-Light
ECU. Because the inputs and outputs at product level are the same as those at system level, the failures
at product level are those observed at system level. Looking more carefully to the failure at product
level, in this simple example, the failure mode at product level are directly due to onefailure mode at
SW block level. P-UE01 can be considered as a SW-UE, software undesired event (SW-UE01).

The architecture of the Product level is described in Figure 5.2. The Front-Light Software Architecture
implements two functions, (i) the control of the Headlights status (FL-ECU_F02)—ASIL B, (ii) the
control of the Dashboard Indicator Request (FL-ECU_F01)—QM. The Software Architecture must
also manage the inputs from the Light Switch (ASIL B) and from the CAN network (QM). Hence the
Front-Light Software Architecture integrates mixed ASILs modules.

FIGURE 5.2 ARCHITECTURE OF THE FRONT-LIGHT ECU

Two interesting issues must be investigated at this level. These two issues are raised by the
implementations dependencies of the hardware blocks and the software blocks. First, as we will not

Micro-Controller µC

Front Light ECU

CAN Network

QM

Protected Ignition Status Dashboard Request

Dashboard

QM

Ignition Switch ECU

ASIL B

Headlight

Left

ASIL B

Headlight

Right

ASIL B

Light

Switch

ASIL B

Front-Light Software

Architecture

ASIL B

Power Supply 12V

ASIL B

CASE STUDY: FRONT-LIGHT MANAGER

78

investigate in more details the FIA of the hardware, we will at least evaluate the chosen micro-
controller. Then, we can easily identify that the Software architecture must integrate two functions
with differents ASIL levels. Hence, two solutions are proposed following the ISO 26262 standard:
i) the development of the two applications according to the highest level of criticality, or ii) the
integration of the two applications with different ASILs and a demonstration of the Freedom From
Interference.

5.3.1 Safety Analysis of the Micro-Controller

The chosen micro-controller is a Leopard SPC56EL70 (STMicroelectronic, 2013). This model is
based on a PowerPC architecture and includes two identical cores (e200z4d cores) connected to a
single shared main memory. This architecture as been defined by the manufacturer to design a µC that
fullfil the architectural metrics and the PMHF for ASIL D. The architecture is illustrated in Figure
5.3. The microcontroller can be configured into lockstep or decoupled modes.

FIGURE 5.3 SPC56EL70 ARCHITECTURE (STMICROELECTRONIC, 2013)

In lockstep mode, the two cores run the same instructions and the Redundancy Checker (RC)
compares the results. It is required to ensure the safety of critical functions (e.g., ASIL C and D) by
offering a tolerance to transient hardware faults. It can be noted that the safety level has been
demonstrated by the manufacturer as a Safety-Element out of Context (SEooC). The decoupled mode
enables different instructions to be executed on each core, and therefore execute several tasks in
parallel. This mode can be used in order to enhance the performance of the application and/or
implement safety mechanisms.

The lockstep mode has been adopted. This configuration of the µC enables handling most of the CPU
errors due to single Event Upsets (SEU) in the CPU.

5.3.2 Freedom From Interferences Analysis

The FFIA (Freedom From Interferences Analysis) enables several causes of malfunction of the higher
ASIL functions to be identified, by analyzing the interference propagation channels. These

CASE STUDY: FRONT-LIGHT MANAGER

79

interferences are by definition caused by the lower ASIL functionalities (here, QM funtions). The
identified causes also require mitigation means –definition of safety mechanisms– in order to prevent
the violation of safety goals.

Without going into details, two applications with different criticality levels have been allocated on the
microcontroller. There are an ASIL B application (the Headlight command and the Light Switch input
signal management) and a QM application (Dashboard Indicator Signal and CAN management).

In practice, the QM application must not interfere with the ASIL B application following these
channels:

1. Real-time behavior Interferences: e.g., erroneous execution of the QM application

(excessive execution time, erroneous period)
2. Service Calls Interferences: e.g., wrong input provided by the QM application to

ASIL B application.
3. Shared Data Interferences: e.g., corruption by the QM application of a critical data

used by the ASIL B application.
4. Shared Memory Interferences: e.g., corruption of Critical data by the QM application

through shared-memory (ROM, RAM, stack)

If the QM application interferes with the critical application a safety requirement may be violated.
Hence, the safety application should be protected up to an ASIL B against these interferences.

To enable the correct execution of the critical part of the software, temporal and spatial partionning
must be implemented. These mechanisms must protect the computational and communication
channels from the interferences due to non-safety software.

 Spatial Partitioning ensures that one software module cannot alter the code or private data of

another software module. It also prevents a software module from interfering with the control of
external devices (e. g., actuators) of other software module.

 Temporal Partitioning ensures that a software module cannot affect from a timing viewpoint the
ability of other software modules to access shared resources, such as the network or a shared
peripheral. This includes the temporal behavior of the services handling such resources (latency,
jitter, duration of resource usage during an access).

These two kinds of mechanisms must be implemented. However, the solutions retained cannot be de-
scribed precisely at product level as they depend on the detailed software architecture.

It is important to understand that the interferences given above are due to the implementation of the
application requirements. They introduce dependencies between applications that can lead to failures.
Such failure modes cannot be analyzed in the FIA since the FIA is carried out at a more abstract level.

Each interference model can be considered as a failure mode of the partitioning mechanism in pres-
ence of a potentially corrupted QM application (worst case). These failure modes may all lead to vio-
late the P-UEs. They are respectively referenced to as: SWB-UE02 to SWB-UE05. These software
blocks undesired events are all rated ASIL B as their occurrences can cause the violation of SG1 or

CASE STUDY: FRONT-LIGHT MANAGER

80

SG2. All the SWB-UEs are reported in Table 5.4. These failure modes will have to be refined at soft-
ware block architecture.

TABLE 5.4 SOFTWARE BLOCK UNDESIRED EVENTS
Software-UEs # Failure Mode Description ASIL

SWB-UE01 Loss of Headlights state ASIL B
SWB-UE02 Real-time behavior Interferences ASIL B
SWB-UE03 Service Calls Interferences ASIL B
SWB-UE04 Shared Data Interferences ASIL B
SWB-UE05 Service Calls Interferences ASIL B

5.4 FIA at SW Block Architectural Level

5.4.1 AUTomotive Open System Architecture – AUTOSAR

AUTOSAR (AUTOSAR, 2015) is a standard for automotive E/E software architectures developed by
major OEMs and suppliers. The core partners, which pilot the consortium, include Bosch, Continen-
tal, BMW, Volkswagen, PSA, Ford, General Motor, Toyota and Daimler Chrysler and. hundred part-
ners called premiums members, including Valeo, participate to the drafting of the specification of the
software modules. The associated members can use the standard. Today, AUTOSAR is a major trend
of software development in the automotive industry.

AUTOSAR supports an application-specific approach for automotive software development as op-
posed to an ECU-specific one. This approach provides means for developing applications that are plat-
form independent as long as they abide by a specified process and the interfaces provided. The
AUTOSAR architecture mainly encompasses an application layer (comprising Software Components
(SW-C), a Run-Time Environment (RTE) and the Basic Software (BSW).

The BSW is composed of three main layers: Service Layer, ECU Abstraction Layer, and
Microcontroller Layer (Figure 5.4). These layers are decomposed into five stacks (each stack is cross-
layer):

 the Service stack,
 the Memory stack,

FIGURE 5.4 DESCRIPTION OF AUTOSAR LAYERS AND STACKS OF THE BASIC SOFTWARE

(AUTOSAR, 2015)

CASE STUDY: FRONT-LIGHT MANAGER

81

 the Communication stack,
 the Input/Output Hardware Abstraction stack,
 and the Complex Devices Drivers stack.

One important component of the BSW is a priority-based task scheduler (called AUTOSAR-OS), each
task being composed of application runnables belonging to SW-Cs. A runnable is a processing step
belonging to a SW-C (a C function) that can be periodic and/or aperiodic. Runnables can be connected
through the RTE for data communication. Runnables are mapped to tasks depending on their
characteristics (e.g. period, input data scheme, etc.). In practice, AUTOSAR-OS is a module of the
basic software, derived from the OSEK/VDX Kernel, enabling the scheduling of tasks and Interrupt
Service Routines—ISRs.

5.4.2 Partitioning Concept in AUTOSAR

In order to implement the partitioning requirements imposed by FFIA, the following AUTOSAR
concepts and modules shall be involved.

OS-Application: The AUTOSAR-OS offers the possibility to group different OS objects (Tasks,
ISRs, Alarms, etc.) into so called OS-Applications. All objects within one OS-Application share their
memory protection scheme and the access rights.

According to AUTOSAR-OS Specifications (AUTOSAR_SWS_OS, 2014), OS-Applications can
either be trusted or non-trusted. Trusted OS-Applications are allowed to run in CPU Supervisor Mode
without restrictions and non-trusted ones are running in CPU User Mode with limited access to OS
and HW resources.

It should be noted that “trusted” and “non-trusted” definitions do not match with “safety” and “non
safety”. In a simple case, i.e. when there are only one safety OS-application and one QM OS-
application implemented, then the “trusted” application is the safety one. The QM one is “non-trusted”
and requires to be runned with limited access.

In other cases, it can exist multiple OS-Applications with different ASILs. Then, the “non-trusted”
mode shall be divided into multiple instance to protect separately each OS-Application.

The OS-Application enables both spatial and temporal partionning to be implemented, at least
partially.

MMU/MPU: The basic memory protection requirement to be fulfilled by the OS is to segregate data,
code and stack sections of an OS-Application. In the AUTOSAR OS standard, this protection is acti-
vated during the execution of the non-trusted OS-Applications in order to prevent the corruption of the
trusted OS-Application memory sections. Moreover, the MMU/MPU can also be used to protect pri-
vate data and stack within the same OS-Application if necessary.

The memory protection relies on a hardware support (MMU/MPU) integrated in the microcontroller.
The MPU/MMU provides spatial protection of the memory.

AUTOSAR Inter OS-Application Communicator – IOC: The communication between two OS-
Applications has also to be protected. Indeed, OS-Applications intend to create memory protection
boundaries, therefore dedicated communication mechanisms are needed to cross them. This feature is
implemented in AUTOSAR-OS and called IOC (AUTOSAR_SWS_OS, 2014). It is the dedicated

CASE STUDY: FRONT-LIGHT MANAGER

82

communication mean between OS-Applications, whether or not the OS-Applications are allocated to
the same core (the communication can be between two OS-Applications on the same core, or allocated
to two different cores in multi-core architectures). Its main function is to ensure the integrity of the
transmitted messages via a buffer. These messages can be data structures or notifications (activation of
a task, callback…).

5.4.3 Software Architecture of the Front-Light Manager

The software architecture is illustrated in Figure 5.5. The execution of the software is controlled by
AUTOSAR-OS that needs to be developed according the highest ASIL of applications running on the
microcontroller, i.e. ASIL B in our example.

According to the requirements on spatial and temporal partitioning to ensure the FFI, two OS-
Applications are defined. The first one manages the safety critical functionalities (ASIL B) and the
second one, non-safety (QM) functionalities. These OS-Application will be respectively referred as:
Front-Light OS-Application and DemoApp OS-Application. This implies that all the
modules of the critical OS-Application should be developped according to ASIL B.

FIGURE 5.5 FRONT-LIGHT SOFTWARE ARCHITECTURE

The Front-Light OS-Application ASIL B is composed of four Software Components (SW-C)
(Switch Event, Light Request, Front-Light Manager, and Headlight). These modules aim at producing
both headlights and dashboard indicator output according to the inputs received from the Ignition
Switch and the Light Switch. Their behavior will be detailed in the next Section.

ASIL B

Front-Light OS-Application

QM

DemoApp OS-Application

OS

Microcontroller
Drivers

On Board Device
Abstraction

System Services

I/O Drivers

I/O HW
Abstraction

Communication
Drivers

Communication
HW Abstraction

Communication
Services

IOC

SysStack

DemoApp

COMStack

DemoApp

Switch

Event

Light

Request

FrontLight

Manager
HeadLight

RTE
RTE

Ignition
Switch ECU

ASIL B
Dashboard
QM

Light Switch
ASIL B

HeadLights
ASIL B

IoHwAbs

Dio
Can

CanTrcv

CanIf

Com
WdgM

E2E

WdgIf

Wdg Driver

CASE STUDY: FRONT-LIGHT MANAGER

83

The basic software - BSW (Systems Services, IO HW Abstraction Stack, etc.) is ASIL B and enables
reading the input information from the Light Switch, and it enables the outputs of the µC to be set for
the Headlights.

An IOC is used by the DemoApp OS-Application to communicate with the Front-Light OS-
Application. Inputs from the QM OS-Application received by the ASIL B OS-Application must be
checked. The E2E protection mechanisms is used to protect the ignition switch status. Here, it enables
the data received through the CAN to be unwrapped and validated (this requirement comes from the
System FIA).

Besides, the DemoApp OS-Application QM is composed of two SW-Cs (ComStackDemoApp and
the SysStackDemoApp): (i) ComStackDemoApp is involved in the dispatching of messages between
CAN and SW-Cs, (ii) SysStackDemoApp is an independant SW-C in the functional behavior of the
application that is representative of others possible SW-Cs integrated into the software architecture.

In both cases, the RTE plays its role of communication middleware between software entities SW-C.
In both cases, it is composed of pre-defined communication channels interconnecting software
components belonging to the same OS-Application, either the Front-Light OS-Application or
the DemoApp OS-Application. It is important to mention that each OS Application has its own
instance of RTE managing the interaction between the SW-Cs previously described. The
Communication Stack that handles CAN transmissions and receptions is located within the QM OS-
Application.

Finally, the micro-controller enables addressing space protection through the MPU; hence, the execu-
tion of the DemoApp OS-Application is run in protected mode to prevent incorrect access to the
Front-Light OS-Application memory space.

5.4.4 Behavioral Description of the Application

The objective of this section is to describe the behavior of the Application. The Software architecture
is based on the AUTOSAR OS.

The safety critical OS-Application, i.e. the Front-Light OS-Application, is composed of two
tasks.

Task 1 encompasses the runnables of the safety critical software modules. The runnables are executed
in the following order every 10 ms:

o Switch Event:
 CheckSwitch(): It reads and checks the value of the Light Switch from

the IOHWAbs through the RTE, and sends a checked status to the Light
request module through the RTE.

o Light Request:
 Check_Plausibility(): It unwraps the E2E protection, reads and checks

the value of the Ignition Switch from the ComStackDemoApp through
the IOC and then compares this value with the value received from the
Switch event module. Finally, it writes the result in the global variable
u8PlausResult.

CASE STUDY: FRONT-LIGHT MANAGER

84

 Request_Light(): Based on the value of u8PlausResult, this runnable
sends the command to the Front Light Manager through the RTE.

o Front-Light Manager:
 Request_Check(): It reads and checks the command from the Light

request. Then, it sends the command for the indicator to the
COMStacksemoApp through the IOC, and also sets a global variable
u8IsReqValid with the command for the headlight.

 Set Light(): It reads the value of u8IsReqValid and sends the command to
the Headlight module through the RTE.

o Headlight:

 Set Command(): It reads the value sent by the Front-Light Manager
module and then sends the Command to the IO HW Abstraction module
through the RTE.

o IO Hardware Abstraction

 IOHWAbs_ReadWriteUpdate(): The module switches the headlights
throught the DIO (Digital Input Output) channels based on the command
from Headlight module. It also reads the inputs of the Light Switch from
the DIO and sends the value to the Light Switch module through the
RTE.

Task 2 contains the main functions of the basic software except COM stack. Each function is called
according to a specific periodic timing event at 10 ms (Watchdog Mgr, ECU Mgr, BSW Mgr,
diagnostic event managers, development error tracer, etc.). This task provides low level services for
the execution of our critical OS application.

The QM OS-Application is composed of one task which encompasses the COMStack_DemoApp and
the COM. This task is periodic at 5 ms.

The COM stack manages the communication between the Front-Light ECU and the other ECUs
through the CAN network. It receives and sends the messages defined by the COMStack_DemoApp.

The COMStack_DemoApp transmits the data between the SW modules of the safety critical OS-
Application and the COM Stack. It transmits the ignition switch wrapped signal to the Light Request
module and it transmits the Dashboard indicator status to the COM stack.

5.4.5 FIA of the Software Architecture

A FMECA has been done to detail the fault propagation paths through the software architecture.

We have considered 8 software modules that perform 26 functions. To simplify the analysis, the RTEs
and the IOC failures have not been considered in our analysis but their failures may affect the RTE
and the wrapped function. We have also decided to focus on one SW module only: the Front-Light
Manager Module that is highly critical in the Front-Light OS-Application.

It is worth noting that the complete table is composed of 116 lines. An extract of the complete
spreadsheet, which focus on the Front-Light Manager Module, is given in Table 5.5. The failure
modes considered are timing errors (e.g., task period too fast or too slow, an erroneous scheduling, an
execution timeout), data errors (Corrupted data like out of range, valid error, or data loss), function
call errors (function not called, function call with wrong arguments).

CASE STUDY: FRONT-LIGHT MANAGER

85

TABLE 5.5 SOFTWARE FMECA OF THE FRONT-LIGHT MANAGER MODULE (SUBSET OF THE FMECA)

Element Failure Modes Potential
Causes Local effects Upper-level

effect
Safety
level

Software Safety
Mechanisms (SM)

Upper-level
effect with SM

Front-LightManager
must (periodically

10 ms) read the
provided light request

Period too
slow

 Erroneous
u8IsReqValid

used

SWB-UE01
 ASIL B

WdgM alive
monitoring 2 (10

ms)

Reset + Safe
Mode

Erroneous
Scheduling

(Before/After)

 Erroneous
u8IsReqValid

used

SWB-UE01
 ASIL B

WdgM Control
Flow

Reset + Safe
Mode

Execution
Timeout

(more than
designed)

 Erroneous
u8IsReqValid

used

SWB-UE01
 ASIL B

WdgM Deadline
Monitoring

Reset + Safe
Mode

Erroneous
data red

 Erroneous
u8IsReqValid

used

SWB-UE01
 ASIL B

Range checks of
input and output

data

Lack for Valid
Errors

ASIL B
Front-LightManager
must (periodically

10 ms) refresh
u8IsReValid

Period too
slow

 Erroneous
u8IsReqValid

used

SWB-UE01
 ASIL B

WdgM alive
monitoring 2 (10

ms)

Reset + Safe
Mode

Erroneous
Scheduling

(Before/After)

 Erroneous
u8IsReqValid

used

SWB-UE01
 ASIL B

WdgM Control
Flow

Reset + Safe
Mode

Execution
Timeout

(more than
designed)

 Erroneous
u8IsReqValid

used

SWB-UE01
 ASIL B

WdgM Deadline
Monitoring

Reset + Safe
Mode

data not
refreshed

 Erroneous
u8IsReqValid

used

SWB-UE01
 ASIL B

WdgM alive
monitoring 2

(10 ms)

Lack for Valid
Errors

ASIL B
Erroneous

data refresh
 Erroneous

u8IsReqValid
used

SWB-UE01
 ASIL B

Range checks of
input and output

data,

Lack for Valid
Errors

ASIL B
Front-LightManager
must (periodically

10 ms) send Dashboard
Request to the

COMStackDemoApp
throught IOC based on

u8IsReqValid

Period too
slow

 Erroneous
Dashboard

Request used

SWB-UE03
SWB-UE04 QM

Erroneous
Scheduling

(Before/After)

 Erroneous
Dashboard

Request used

SWB-UE03
SWB-UE04 QM

Execution
Timeout

(more than
designed)

 Erroneous
Headlight
command

used

SWB-UE01
 ASIL B

WdgM Deadline
Monitoring

Reset + Safe
Mode

No data sent Erroneous
Dashboard

Request used

SWB-UE03
SWB-UE04 QM

Erroneous
Request sent

 Erroneous
Dashboard

Request used

SWB-UE03
SWB-UE04 QM

These failures may have multiple causes:
1. Software (systematic) faults:

a. wrong design of a software module
b. wrong design of the software architecture
c. wrong implementation of the requirements (including interferences)

2. Hardware failures: Corruption of the µC memories (RAM, ROM, registers, not handled
by Error Correcting Codes).

Safety mechanisms have been identified in order to handle the failure modes of the software modules.
Three alive supervision functions of the WdgM are configured to check that the critical SW-Cs are
still executed. Alive supervisions of ComStackDemoApp and theCan stack are implemented to
prevent interference on the Ignition Switch status provided to the Light Request. Control flow and
deadline supervision functions are implemented to monitor the execution of the ASIL B SW-Cs.

CASE STUDY: FRONT-LIGHT MANAGER

86

It should be noted that propagation of the above mentioned failures are risky in two cases:
 Use case 1: the headlights are already ON and the user does not change the inputs (Light

Switch OFF or Ignition OFF). In this case the loss of the headlights violates the safety
goal.

 Use case 2: the headlights are OFF and the user wants to change the state to ON. In this
case the safety goal may be violated if the lights are not put ON when requested by user
inputs (Light Switch ON or Ignition ON). In this case the loss of the headlights violates
the safety goal.

It is assumed that the response time to light the headlights must be less than 600 ms. The application
must reach the intended state (headlights ON in the considered use cases) within this time window.

Finally, we can observe in the FMECA that some failure modes have not been completely handled. In
this application, valid errors are potentially provided by several modules in the critical path. These
valid errors correspond to wrong values transmitted by a module, but the wrong value is within a valid
range. Then, the error cannot be detected by our architecture. They may lead to a safety requirement
violation. This lack of coverage has been neglected in this application example because of its low
probability of occurrence. This situation may be handled by a slight re-design and the inclusion of
fine-grain data checks and/or more complex runtime assertions.

5.5 S-Shaped Causal Chain

In this section, our objective is to illustrate how fault injection can be planned following the S-shaped
Causal chain in this Front-Light Manager application

First, we isolated the first line of Table 5.5 and we traced the propagation of the cause through product
and system level in Table 5.6.

The S-shaped causal chain highlights that the considered failure mode “period to slow of the Front-
Light Manager” may lead to the violation of the safety goals SG1. This critical path is highlighted red
in Figure 5.6. There are two identified mechanisms to recommend from this threat: the use of a robust
microcontroller and the integration of alive supervision in the WdgM software module.

The tables given above are extracted from the complete FIA analysis. In the low level reported in the
tables, we can see that a safety mechanism has been identified: the WdgM. In reality, several safety
mechanisms have been identified: alive monitoring, deadline monitoring and control flow checking.
All these individual safety mechanisms are implemented with the WdgM, a generic module providing
such safety mechanisms and that can be configured for a given application (window period the entity
is alive, deadline values, reference control flow graph). In the last chapter of the thesis, the WdgM will
be the target for the experiments.

Hence, to demonstrate the coverage of the safety requirement, the injection of potential causes of the
failure mode should demonstrate that there is no impact on the critical application outputs and that the
WdgM detects it and handles it correctly.

As soon as the fault injection target has been identified, experiments must be defined following the
FARM model explained in Chapter 1. Following this FARM model, we define here the experiments
that must be carried out.

CASE STUDY: FRONT-LIGHT MANAGER

87

TABLE 5.6 ILLUSTRATION OF THE S-SHAPED CAUSAL CHAIN

Then, the Fault model should be defined to mimic the occurrence of the failure mode “Period too
slow”. The causes of the failure mode have to be determined for our experiment. An easy example is
to kill the task responsible for the execution of the function. However, for taking into account more
failure mode variants, it has been decided to test different values of the period of the function. In
normal behavior, the period of the runnable is 10ms. The tests have been performed with period values
from 20 ms to 100 ms with a step of 10 ms.

Looking at the Activation model, two use cases (Section 5.4.5) may lead to the violation of a Safety
Goal. Remember that, in the Front-Light OS-Application, the global variable u8IsReValid has
an important role since it determines the setting of the headlights. As shown in Table 5.7, the local
effect affecting the Front-Light Manager Module is related to this variable (“Erroneous u8IsReqValid

used”). Indeed, the failure mode is critical when the Front-Light Manager cannot provide the new
value of u8IsReqValid.

The corruption of the u8IsReqValid must be carried out when the system is in two states:
 On the one hand, the error must be injected when the headlight are already ON. In this case, the

headlight may blink or switch OFF.
 On the other hand, it corresponds to a use case where the headlights are OFF, the Light Switch

already ON, and an Ignition Switch command is received through the CAN.

In this last case, if the Front-Light Manager period is too long, the headlight may light with a delay.

The following Readouts are needed to analyze the result of the experiment. The local effect of the
FMECA line “Erroneous u8IsReqValid used” should be monitored in the Light Request SW-C but
also the headlight state. Then, the WdgM should detect and handle correctly the error. Finally, if the

System

Element Failure Modes Potential Causes Local effects Upper-level
effect

Safety
level

System Safety
Mechanisms (SSM)

Upper-level
effect with

SSM

FL-ECU_F02

Loss of
Headlights state

FL-

ECU_F02_FM1

FL-

SW_F02_FM1
Loss of

Headlights state
Loss of the
Headlights

SG1 ASIL B Fail-safe implementation
of the FL ECU ASIL B

Product

Element Failure Modes Potential Causes Local effects Upper-level effect Safety
level

Product Safety
Mechanisms (PSM)

Upper-level
effect with

PSM

The Software
architecture must

handle the
Headlights status

FL-SW_F02

Loss of Headlights
status
FL-

SW_F02_FM1

FLM_F01_FM1 Loss of
Headlights state

Loss of the
Headlights

FL
FL-

ECU_F02_FM1

ASIL B

Fail-safe
implementation of the
SW architecture and

robust microcontroller

ASIL B

 SW Block

Element Failure Modes Potential Causes Local effects Upper-level effect Safety
level

Product Safety
Mechanisms (SW-

SM)

Upper-level
effect with

SW-SM
Front-Light

Manager must
(periodically

10ms) read the
provided light

request
FLM_F01

Period too slow
FLM_F01_FM1

ECU
overload,

Task timing
error

Erroneous
u8IsReqVali

d used

FL-

SW_F02_FM1

ASIL B

WdgM Alive
Supervision 2

(10 ms)

Reset +
Safe

Mode

CASE STUDY: FRONT-LIGHT MANAGER

88

safety mechanism is efficient the headlights will be ON, otherwise they will remain OFF. This is the
mode in which the system is put for safety.

FIGURE 5.6 SOFTWARE ARCHITECTURE OF THE FRONT-LIGHT MANAGER WITH THE CRITICAL PATH IN

RED OF THE SW-FMECA LINE

In this implementation, an important component for safety is the Watchdog Manager. This is why we
focus on the Watchdog Manager (WdgM) (AUTOSAR-WDGM, 2014), the mechanism identified in
the SW-FMECA in Table 5.6, in order to mitigate the considered SW module failure mode. The objec-
tive of the supervision of the WdgM in our application is to ensure FFI and prevent the violation of
safety goals. Moreover, the WdgM is an important safety mechanism that has the same ASIL as the
critical application (ASIL B in this example).

The WdgM is a generic mechanism to ensure liveness, deadline and control flow properties of an ap-
plication. It is worth noting that the WdgM must be configured for a given application, in terms of
deadline values, window period the Supervised Entity is alive, a graph representing the correct control
flow within a given application.

To comply with the ISO 26262 requirements about the verification of the robustness of a safety mech-
anism, the WdgM must be analyzed. The functional behavior of the WdgM, i.e., the effectiveness of
the WdgM coverage, both EDC and ERC, and the characterization of error handling timing must be
assessed. These tests aim at verifying that the WdgM is efficient as a safety mechanism. However,
these verifications do not prevent from wrong integrations or configurations.

Due to its importance, the WdgM has been analyzed to fulfill the requirements of ASIL B. Hence, we
have studied two implementations of the WdgM, a first one called “QM version” and a second one
called “safety version”, which integrates safety mechanisms for improving the robustness of the im-
plementation. We assess the robustness of the two WdgM implementations to evaluate the improve-
ments between versions. Particularly, we assess the behavior of the WdgM, in the presence of memory

ASIL B

Front-Light OS-Application

QM

DemoApp OS-Application

OS

Microcontroller
Drivers

On Board Device
Abstraction

System Services

I/O Drivers

I/O HW
Abstraction

Communication
Drivers

Communication
HW Abstraction

Communication
Services

IOC

SysStack

DemoApp

COMStack

DemoApp

Switch

Event

Light

Request

FrontLight

Manager
HeadLight

RTE
RTE

Ignition
Switch ECU

ASIL B
Dashboard
QM

Light Switch
ASIL B

HeadLights
ASIL B

IoHwAbs

Dio
Can

CanTrcv

CanIf

Com
WdgM

E2E

WdgIf

Wdg Driver

CASE STUDY: FRONT-LIGHT MANAGER

89

corruption (RAM/ROM/stack). This kind of experiment also evaluates the quality of the code and can
highlight weaknesses in the design. The experiments have shown that corruption of memory cells may
lead to the raising of false alarm, and the non-detection of liveness, deadline or control flow errors.

5.6 SW Module Level: AUTOSAR Watchdog Manager

The WdgM module is a key SW Module in AUTOSAR to ensure that the application works safely and
to detect the violation of timing and logical constraints. The WdgM is part of the System Services
layer and is responsible for error detection, isolation and recovery. It provides three supervision mech-
anisms

 Alive supervision,
 Deadline supervision,
 Control flow supervision;

and four error reactions:
 signaling errors to other AUTOSAR modules,
 logging the errors into a Diagnostic Event Manager or Development Error Tracer modules,
 partition reset: re-initialization of a specific OS-Application,
 and micro-controller reset: this will lead to a re-initialization of the MCU hardware and the

complete software.

The WdgM is also responsible for the management of a watchdog driver (Wdg) of system (integrated
in µC or external) via the watchdog interface (WdgIf): the watchdog driver periodically refreshes a
hardware counter. Hence, if the hardware counter is not refreshed, then a software reset is triggered.

The WdgM supervisions are based on the notion of Supervised Entities – SE. SEs have no fixed rela-
tionship with software blocks or software modules in AUTOSAR, e.g., SW-Cs, CDDs, RTE, BSW
modules, etc. However, a SE is linked to one or several software modules implementing a functionali-
ty that needs to be monitored: alive monitoring, deadline monitoring or control flow monitoring.

Concerning its implementation, the monitoring is based on numbered checkpoints and configured
transitions. A checkpoint is here defined as a step in the control flow within a SE. A SE sends a
checkpoint to the WdgM (call of the WdgM API: WdgM_CheckpointReached) depending on its exe-
cution (start and end of an action, each step of a process, etc.). In the AUTOSAR WdgM terminology,
a checkpoint is defined more precisely as a point in the control flow of a Supervised Entity where the activity

is reported to the Watchdog Manager. Then, the WdgM verify that the received checkpoint is coherent
with the defined supervision. These supervisions work as follow.

5.6.1 Alive Supervision

An alive supervision enables to verify that the “SE constraints on the number of times they are exe-

cuted within a given time span are respected. By means of Alive Supervision, Watchdog Manager

checks periodically if the Checkpoints of a Supervised Entity have been reached within the given lim-

its. This means that Watchdog Manager checks if a Supervised Entity is run not too frequently or not

too rarely”.

The alive supervision may filter the occurrence of a failure (too many or not enough received check-
points). Indeed, the verification of the counter of checkpoints received during the period is done within

CASE STUDY: FRONT-LIGHT MANAGER

90

a range. Counter_Min < CheckpointReceived < Counter_Max. Although this corresponds to error de-
tection, the alive supervision can be configured to confirm the defect during several periods before
triggering a reaction.

5.6.2 Deadline Monitoring

The deadline supervision checks the timing transition between two checkpoints (start checkpoint and
end checkpoint) of a SE. When the WdgM receives the start checkpoint, it starts a timing counter.
On the reception of the end checkpoint, the WdgM verifies that the timing counter is in the configured
bounds. If not, a reaction is triggered.

5.6.3 Control Flow Monitoring

In Control Flow monitoring, at runtime, the SEs call the WdgM API to send a checkpoint at each pre-
defined steps of a process. The WdgM checks that the checkpoints follow a graph of the valid se-
quences. These graphs are defined statically during the configuration of the WdgM.

An example is shown in Figure 5.7. We assumed that a supervised entity is a task in which there are
six checkpoints (CP). These checkpoints are called following two mandatory sequences (we consid-
ered that one runnable X sends one checkpoint CPX):

1. CP0 CP1CP2CP4

2. CP0 CP1CP3CP5CP4

Both valid sequences are represented in the reference graph (A). In the first example given, we illus-
trate a valid sequence (B): the execution in the proposed sequence is correct and will not trigger a re-
action. In the second example (C), we illustrate an incorrect sequence; indeed, in the second sequence,
there is no transition between CP1 and CP5, then the execution flow is incorrect and the WdgM trig-
gers a reaction.

(A) Reference graph (B) Correct control flow (C) Error detected
FIGURE 5.7 AUTOSAR WDGM: CONTROL FLOW MONITORING EXAMPLE

CP0

CP1

CP2 CP3

CP4

CP5

WdgM
Supervised

Entity

CheckpointReached(CP0)

CheckpointReached(CP1)

CheckpointReached(CP2)

CheckpointReached(CP4)

Correct

sequence

CheckpointReached(CP0)

CheckpointReached(CP5)

Error Handling

CheckpointReached(CP1)

WdgM
Supervised

Entity

CASE STUDY: FRONT-LIGHT MANAGER

91

The overall WdgM functions and the interactions with other software modules are synthesized in Fig-
ure 5.8.

FIGURE 5.8 WDGM FUNCTIONAL DESCRIPTION

5.7 FIA at SW Module Level

We performed Safety analyses on this software module, considering it as a SEooC. We first identify
the failure modes of this module. They can be categorized in:

 False alarm: the WdgM unexpectedly triggers a reaction (signaling an error, logging an
error, resetting the target, etc.). It should be noted that a false alarm is not safety-critical
for the system as a whole. However, it may have a bad impact on the availability of the
service.

 False negative: it is a bad coverage of the detection or the management of the error, i.e., the
WdgM does not detect an erroneous behavior. The consequences of this failure can be more
important. Indeed, the non-detection may lead the violation of a safety requirement in a case
of double failures.

 Timing error (too soon/too late): The most interesting case is when the WdgM detects and
handles an error, a timing delay, which is far beyond what is expected. This is often called er-
ror detection latency.

These failure modes categories are then detailed according to the interactions with Watchdog interface
WdgIf, the DEM, the MCU, the SEs and the BSWM. For example, considering the interaction with
the MCU, the role of the WdgM is the following: “The WdgM must request an immediate reset of the
microcontroller by calling Mcu_PerformReset”. In this case, the considered failure modes are the fol-
lowing:

1. No request of immediate MCU reset (False Negative)
2. Unintended request of immediate reset (False Alarm)
3. Timing error in the request of the reset (too soon/too late)

Supervised Entities
SEs

Watchdog Interface
WdgIf

Deadline
Supervision

Algorithm

Logical Supervision
Algorithm

Local
Supervision

Algorithm

Global
Supervision

Status State
Machine

Watchdog
Handling

Operating System
OS

Alive Supervision
Algorithm

WdgM_InitWdgM_DeInit

WdgM_GetVersionInfoWdgM_GetMode

WdgM_GetLocalStatus WdgM_GetGlobalStatusAlive Supervision
Status for each SE

Logical Supervision
Status for each SE

Checkpoint
reached

indication

Time elapsed

Deadline
Supervision

Status for
each SE

Legend

External SW Module

WdgM_MainFunction

WdgM_CheckpointReached

Other Functions

Change the mode of the WdgM

Local
Supervision

Status for
each SE

Global
Supervision

Status for the
whole ECU

Trigger
condition

Basic Software
Manager

BswM

DEMMCU

Notify SE with supervision Error

Partition Reset
Request

Request
Immediate reset

Local Error
Reporting

Global Error
Reaction

Local
Reaction

Global
Reporting

ECUM

Software Components /
Basic Software

Notify DEM a
supervision ErrorWdgM_SetMode

Watchdog Manager

CASE STUDY: FRONT-LIGHT MANAGER

92

Finally, we have identified 21 failure modes of the WdgM.

FTAs have been performed in order to find the possible causes of all WdgM failure modes. An exam-
ple is given in Figure 5.9 for the case “no request of the immediate MCU reset” failure mode. We
found potential causes and then proposed mechanisms. For example, there is a global variable used to
store the global state of the WdgM: WdgM_udteGlobalStatus. The corruption of the data in this global
variable is critical as it can lead to all the failure modes of the WdgM. To prevent these side effects, it
has been decided to triplicate the data in different memory cells, in order to mask the error affecting
one replica using, a majority voting technique.

FIGURE 5.9 PARTIAL FTA OF “NO REQUEST OF THE IMMEDIATE MCU RESET” FAILURE MODE

In addition, a safety analysis has highlighted that there was a deficiency in the implementation of the
QM version as some errors can remain undetected.

 Deadline Errors: the violation of a deadline may not be detected, or can be detected too late.
Indeed, if the final checkpoint is not received on time, no error is detected.

 Control Flow Errors: if the application stops sending its checkpoints in the middle of the con-
trol flow graph, no error will be detected by the WdgM and the graph is incomplete.

In order to handle these cases, it was decided to change the implementation of both the deadline and
the control flow supervision in order to check timing limits, whether or not the last checkpoint is re-
ceived by the WdgM.

Finally, two implementations of the WdgM have been developed to illustrate the efficiency of error
detection and recovery mechanisms provided by this generic module. The following instances are used
in the experiments reported in next chapter:

 A QM version, which implements AUTOSAR requirements, that is limited in terms of error
detection coverage, regarding deadline and control flow errors.

 A Safety version, which implements the requirements added by the safety analyses: enhance-
ment of the robustness of the implementation and error detection deficiencies.

The fault injection experiments have been defined according to the safety analyses reported Figure 5.9

Corruption of the value of the
variable global supervision status

"WdgM_udteGlobalStatus"

Corruption due to
RAM corruption

Corruption due to wrong
pointer arithmetic

Corruption due to control
flow error within WdgM

Wrong Calculation of the Global
Supervision Status of the WdgM

No Request of the immediate MCU
Reset

Wrong Calculation of the Local
Supervision Status of an SE

Corruption of the value of the
variable of WdgM stooped status

"WdgM_bGlobalStatusStop"

Corruption due to
RAM corruption

Corruption due to wrong
pointer arithmetic

Corruption due to control
flow error within WdgM

CASE STUDY: FRONT-LIGHT MANAGER

93

5.8 Lessons Learnt

In this chapter, we have illustrated the continuity between safety analysis and fault injection experi-
ments. Although our case study is a simple application, we have performed analyses on a realistic
system, starting from the top-level safety goals down to safety mechanisms at the software block level.
Such mechanisms are the targets for the fault injection experiments. Thank to our approach, these
mechanisms are linked through both S and Z chains to safety issues at upper levels, product and sys-
tem. This is a core benefit of our approach: traceability in the handling of safety requirements.

Our analysis started from Undesired Events (UEs) at system level and led to the identification of safe-
ty goals together with their ASIL allocation. At product level, some elements have been identified and
the FIA process was applied to precisely identify the failure modes of the corresponding functions. In
this step of the product-level analysis, we have shown that some failure modes may lead to the viola-
tion of the safety goals at upper-level, i.e. the system level. A list of safety mechanisms was identified
at product level then. Going one-step further in the analysis, i.e. considering SW blocks, we have
shown that product level mechanisms can be related to concrete safety mechanisms or implementation
choices. The WdgM is a concrete module responsible for the implementation of a collection of param-
eterized safety mechanisms, namely alive, deadline and control flow monitoring mechanisms. The
implementation choices may also lead to some safety issues. The AUTOSAR-based implementation
and the coexistence of QM and ASIL B OS application may lead to interference that are also part of
the analysis at low level. FFI can be solved thanks to partitioning concepts.

Fault injection in ISO 26262 must be perceived as a causal chain through the various development and
verification steps. Fault injection at the upper abstraction level can be interpreted as a “virtual” evalua-
tion by fault injection. The target here is not concrete. Going down to more detailed levels, one can see
that the target elements become more concrete. The “virtual” fault injection becomes then concrete
fault injection whose aim is to evaluate the efficiency of safety mechanisms (EDC and ERC). The S-
shaped causal chains trace this route from “virtual” fault injection down to concrete fault injection and
by the way determine what kind of fault injection experiments must be carried out.

Controversial questions can be raised now:

Is the notion of fault injection at upper level really sound?

The ISO 26262 standards advocate fault injection has early as possible in system design. That’s a fact
in the current version of the standard. A clear interpretation of this recommendation is necessary,
which is the main motivation for this work. Our interpretation is that fault injection at upper design
levels corresponds to detailed safety analyses, these being done using FMECA or FTA. A row in an
FMECA table represents the behaviour of a given element in the presence of fault: a fault (the poten-
tial cause) may lead to a failure mode of the element having thus a local effect on its behaviour (due to
an error), but also upper level effects (propagation) that must be handled by safety mechanisms (fault
tolerance design patterns). This phrasing is very similar to the definition of a fault injection experi-
ment, at least partially since measures cannot be computed at abstract levels. However, the recursion
ends as soon as concrete items are found (SW or HW blocks) and then conventional fault injection
experiments can be carried out to get EDC and ERC measures.

Was it possible to identify the fault injection experiments without FIA?

CASE STUDY: FRONT-LIGHT MANAGER

94

The answer is yes. Anyone can understand that the WdgM is a target for fault injection and that EDC
and ERC measures are of high interest. The benefit of FIA relies again on the traceability of the exper-
iments carried out regarding the upper level safety goals. Improving the traceability is essential to
demonstrate the completeness of the tests carried out with respect to the system safety goals and the
Undesired Events that must be avoided, closing thus the loop between FIE and FIA.

In the next Chapter, we describe the implementation of experiments carried out to illustrate the
measures that can be obtained by fault injection on a real target, namely the WdgM identified in our
case study.

95

Chapter 6 FAULT INJECTION EXPERIMENTS

6.1 Fault Injection Platform .. 96

6.1.1 Fault Injection Environment ... 96

6.1.2 Fault Injection Characterization of the Tool ... 97

6.2 WdgM Implementations Assessment ... 98

6.2.1 Error Detection and Error Recovery Coverage .. 98

6.2.2 Timing Evaluation of the WdgM.. 99

6.2.3 Robustness of the implementation of the WdgM ... 100

6.3 Front-Light Software Verification .. 103

6.3.1 Verification of one Line of FMECA: S-Shaped Verification 103

6.3.2 Global Verification of the FMECA Spreadsheet .. 104

6.4 Conclusion .. 105

FAULT INJECTION EXPERIMENTS

96

6.1 Fault Injection Platform

A fault injection tool has been developed at Valeo, in order to implement the FI campaigns designs
from the safety analyses. We mainly focus on the integration of two techniques: Software-
Implemented Fault Injection (SWIFI) and Nexus-Based Fault Injection. These two methods have been
introduced in Chapter 1.

6.1.1 Fault Injection Environment

Figure 6.1 shows an overview of the FI Environment

FIGURE 6.1 FAULT INJECTION ENVIRONMENT

This environment encompasses:

 The Target System is composed of the Front-Light Manager application (binary files
ELF compiled from sources with Wind River Compiler) running on the SPC56EL70
microcontroller described before.

 The Controller is composed of the interface of the debugger Lauterbach TRACE 32. It
enables fault injection experiments via scripts (PRACTICE Language). It also captures
the execution trace of the target, controls the access to the memory for monitoring some
variables, and provides commands to start the fault injection test cases according to a
specified workload.

 The Lauterbach debugger (Lauterbach, 2015) is a central component of the
Environment. It is connected to the controller via a USB link and to the target
throughout a Nexus Probe. The debugger provides access to all memory sections of the
microcontroller, particularly by monitoring the trace of the execution of the application
(Monitor).

Data
Collector

Data Analyzer

FI

Tests

Logs

ECU external

fault injection

ECU internal

fault injection

+

(Lauterbach tool

: Debugger)

NEXUS / JTAG Adapter

Debugger Interface

(Trace 32)

USB

Microcontroller SPC 56EL70

Application

Binary files

FI

Tests

Logs

FI

Tests

Logs

Application

Source files
Application

Source files
Application

Source files

Application

Source files

FI Specific

modification Workload
library

Funct.

Req.

&

Behavioral

models

Fault
library

Safety

Analyses

(FMECA,

FTA…)

Measures
Manual

Compiler

Wind River Flashing

FI

Tests

Logs

FI

Tests

Logs

FI

Tests

Scripts

Fault injector, Monitor and Workload
generator

Controller

Target

FAULT INJECTION EXPERIMENTS

97

 The Lauterbach debugger is also a Fault Injector, as it allows corrupting/modifying
memory locations of the application. These capabilities are provided by the
implementation of Nexus Class 3+ defined by the Nexus 5001 ForumTM (Nexus5001,
2015). This class of debugger enables two important features to perform read/write into
the memory without any impact on the real-time execution of the application. This “On-
the-fly” runtime memory access does not add temporal overhead. Moreover, the
debugger also takes advantages of on-chip watch points (a watch point enables the
activation of the fault injection experiments to be triggered or signaling application
events without stopping the application). Finally, the debugger enables monitoring the
behavior of the execution of the Software through the memory to collect observation
data (readouts) and to synchronize the activation of the experiments (Workload

Generator), and finally, modifying the memory to inject fault in memory, registers, etc.
(Fault Injector)

 We also use SWIFI method to inject specific fault/error/failure. Hence, we instrument
the code to mimic the faulty behavior directly by modifying the source code of the
faulty software module, and finaly compiling the mutant application.

 The Data Collector stores the data collected during the experiments into log files. The-
se are timing information, variables values and events.

 The Data Analyzer in our environment is mostly manual. The data is gathered automat-
ically in the logs, however the analysis of the results has to be done manually, e.g., the
categorization of the experiments.

6.1.2 Fault Injection Characterization of the Tool

We present the characterization of the fault injection techniques integrated in tool by considering the
following properties, defined in (Arlat, et al., 2003):

 Reachability: Using both pre-runtime SWIFI and Nexus-based fault injection, we are
able to manage a high level of reachability. Indeed, we are able to inject fault directly in
the memory, the CPU registers using the debugger. It is also possible using SWIFI to
corrupt higher levels of granularity, by injecting information explicitely processed by
the computing system.

 Controllability, with respect to space and time: The controllability is also high as the
fault can be triggered using low-level mechanisms from the debuggers (break and watch
points in the program flow, writing/reading access to specific data). It may also be used
together with SWIFI, for instance to trigger a branch of instrumented code.

 Repeatability (with respect to experiments) and Reproductibility (with respect to
results): A high repeatability is attained thanks to the high level of controllability.
However, a distributed architecture with complex environment (multiple ECU on the
network) may be more difficult to synchronize and thus, it would be more difficult to
ensure repeadability in this case. In our case the microcontroller behavior allows a high
repeatability

 Non-intrusiveness: The intrusiveness of the Nexus capabilities is very low. The
intrusion can also be related to the use of watch points, but there are few “real-time”
watch points in practice. In addition considering the SWIFI, it is clear that the
intrusiveness depends on the size of the corruption made in the source code. In our case,
this second type of intrusion is negligible. Then, the use of SWIFI does not modify the
behaviour or the structure of the safety mechanisms. Otherwise, the experiment results
may be biased.

 Time measurement (e.g., error detection latency): Here, time measurements are
performed by the debugger. It is possible to get the execution time between two events.

 Efficacy to generate significant experiments: Generally, this property aims at
characterizing a fault injection technique together with a fault model. In our approach,
the efficacy is based on the identification of the tests cases, more precisely the selection
of the fault to be injected.

FAULT INJECTION EXPERIMENTS

98

To conclude, the tool enables handling most of the Fault Injection experiments on any target
application running on any micro-controller.

6.2 WdgM Implementations Assessment

In the whole section, we consider two implementations of the WdgM. The QM version has been de-
veloped without specific mechanisms, and the so-called safety version that integrates these mecha-
nisms and additional improvements. The campaign described in this section does not run the Front-
Light Application. The software architecture involves another SW-C: the ComStackDemoApp, espe-
cially designed to generate the workload.

6.2.1 Error Detection and Error Recovery Coverage

Firstly, we have tested if the implementation was efficient to detect and recover from Alive / Deadline
/ Control Flow errors (in other words, the aim of these tests is to verify that the WdgM fulfills its func-
tional specification when integrated).

The measures and the target have been previously defined, the objective being the verification of the
effectiveness of the EDC and ERC of the WdgM. Another aspect is the verification that the weakness-
es identified in the QM implementation are well covered in the safety version of the WdgM. Now we
will focus on the definition of the fault model, the Activation model and the Readouts.

The considered Fault Model corresponds to a wrong behavior of a SE, particularly the
ComStackDemoApp. Two faulty SE behaviors have been used: too many checkpoints sent by the SE
or not enough.

For the deadline supervision, the following faults are considered:
 Reception of the end checkpoint first from the SE
 Reception of the start checkpoint only from the SE
 Reception of the end checkpoint too late from the SE. We made several experiments in

which we increase the sending instant of the end checkpoint by 5 ms at each experiment.

Concerning the control flow monitoring we use a reference graph as an oracle. This graph corresponds
to the correct behaviour of the application and it is established a priori. We have injected all the possi-
ble sequences without repetition. Hence all the sequences that do not comply with the graph must be
detected.

For the Activation model, we do not identify a specific use case. However, we have to make sure that
the initialization of the application is correct and completed before starting the experiment.

The objective is to evaluate Measures, i.e. the coverage of the error detection mechanisms implement-
ed in the WdgM and the identification of the corresponding failures. To this aim, we have to monitor
the local status variable of each SE, a sort of flag indicating if an error was detected by the WdgM
(Detection Coverage).

Then, we have to monitor the reaction of the WdgM (Recovery Coverage). In this case, we configured
the WdgM in order to perform an immediate reset by calling the Mcu_PerformReset function. The call
must be monitored as well as the reset (we put a watch point on the main() function of the application

FAULT INJECTION EXPERIMENTS

99

to trace the resets). The reset corresponds to the recovery action, i.e., the WdgM performed correctly
its recovery action.

104 different experiments were carried out in the fault injection campaign, and we obtained the results
presented in Figure 6.2. The WdgM QM version detects 94% of the errors. Among the detected errors,
49% lead to reset the application, and 45% lead to no reaction.

About 6% of the fault injection experiments led to undetected errors, i.e. no observation. These 6% of
undetected error are of prime importance. They correspond to experiments highlighted in the Safety
Analyses. For example, when an end checkpoint is never received by the WdgM, the error (control
flow or deadline monitoring) is not detected.

We have performed the same set of experiments for both the QM and the Safety implementation of the
WdgM. The objective is the verification of added features (timeout for the detection of deadline errors
and for the detection of a correct incomplete control flow sequence) and the evaluation of their effi-
ciency. We can observe in Figure 6.2, that the detection coverage of the Safety version is 100% with
the same experiments. It is worth noting that the previously undetected errors are now detected and
then the expected reaction is performed.

 (A) WdgM QM Version (B) WdgM Safety Version
FIGURE 6.2 EFFECTIVENESS OF EDC/ERC OF THE TWO WDGM IMPLEMENTATIONS (104 EXPERI-

MENTS)

We can conclude that this campaign improves our confidence in the error detection and Error Recov-
ery coverage of the WdgM against alive errors /deadline errors /control flow monitoring. We also val-
idate a solution, which take into account errors that are introduced by the implementation of functional
behavior of the WdgM.

6.2.2 Timing Evaluation of the WdgM

In parallel to the evaluation of both the EDC and the ERC, we also evaluate the timing behavior of the
corresponding error detection and recovery mechanisms. The objectives of these experiments are to
measure and evaluate the error detection time and the reaction time of the WdgM with regard to alive,
deadline and control flow monitoring.

0
0%

47
45%

57
55%

WdgM Safety version

No observation

Error Detection and
Tolerance

Error Detection and
Reconfiguration

6
6%

47
45%

51
49%

WdgM QM version

FAULT INJECTION EXPERIMENTS

100

According to the configuration of the WdgM that has been made, the period of execution of the main
function of the WdgM is 20 ms. Then, concerning the Deadline and control flow monitoring, we con-
sidered that the error is detected after the execution of the WdgM_MainFunction().

Moreover, the alive monitoring filters three failed periods before signaling the error. Then, in the
worst case, an alive error is detected in less than four periods, i.e., 80 ms.

We obtained results summarized in Table 6.1. The detection time of both alive monitoring and control
flow monitoring are within the range of the configuration. Considering the deadline monitoring for the
QM implementation, the detection time depends on the failure type. If the “end checkpoint” is re-
ceived very late, the detection will be as late as the reception of this checkpoint. In our tests cases, all
the detection delays were greater than 19 ms for the QM version. The detection delay has been im-
proved in the safety version. Indeed, the detection is also verified in the periodic main function of the
WdgM by verifying if the deadline is exceeded. In our case, the safety module detects the error be-
tween 14 ms and 20 ms. In the safety version of the WdgM, it is possible to set a time bound for the
detection.

TABLE 6.1 RESULT OF TIMING CHARACTERIZATION OF THE WDGM
Supervision Alive monitoring Deadline monitoring Control flow monitoring

WdgM version QM Safety QM Safety QM Safety

Detection Time ~63,9 ms ~62,7 ms 19 ms < Detection time 14 ms < Detection time <20 ms ~8.4 ms ~8.7 ms

Reaction time (Mean) ~ 36,8 ms ~ 27,7 ms ~ 37,7 ms ~ 27,1 ms ~ 36,4 ms ~ 26,5 ms

Then we also measure the reaction time. Here, we consider that the reaction is the time between the
detection and the start of the main function of the application after the reset. The reaction time is stable
in the two versions. However, the implementation in the safety version is 10 ms faster.

Even if the absolute values are not significant for all the configurations of the WdgM, the result shows
that the safety version improves the QM version from both coverage and timing viewpoint.

6.2.3 Robustness of the implementation of the WdgM

Finally, we have to evaluate the robustness of the WdgM implementation against interferences from
HW faults (bit-flip in the memory/registers), and from others software modules malfunctions during
runtime.

This assessment is important as we considered the AUTOSAR WdgM as a Component Off-The-
Shelf (COTS). This module can be reused on a different architecture, and thus a robust implementa-
tion should be made and assessed, especially when the WdgM will be used in highly safety critical
system.

It is interesting to note that the memory-related interferences in the WdgM do not impact the safety of
the System; such type of interference leads to false alarms and a reset. However, interferences may be
safety relevant with second order cut sets. In this case, no detection of deadline, alive or control flow
errors, may violate a safety goal.

All the faults have been defined using the Z-Shaped causal chain. Indeed, the fault model used for this
campaign is the corruption of variables of the WdgM, these variables have been identified as safety
critical in FTA performed in order to find causes of the WdgM failure modes. Then, for each identi-

FAULT INJECTION EXPERIMENTS

101

fied variables, we inject errors following a data type fault model. Basically, the injected values are
based on the data type of the variable, e.g., the global status of the WdgM is coded into the variable
WdgM_udteGlobalStatus which type is 8 bits unsigned integer, according to the AUTOSAR specifica-
tion. Moreover, there are five valid values from zero to four (see Table 6.2). To corrupt the variable,
we forced the value of WdgM_udteGlobalStatus to all the valid inputs and we add the maximum value
of the type , and a median variable

 .

TABLE 6.2 AUTOSAR SPECIFICATION OF WDGM_GLOBALSTATUSTYPE (AUTOSAR-WDGM, 2014)

Name: WdgM_GlobalStatusType
Type: Uint8

Range: WDGM_GLOBAL_STATUS_OK 0 Supervision did not show any failures.
WDGM_GLOBAL_STATUS_FAILED 1 Supervision has failed but is still within

the limit of allowed failures.
WDGM_GLOBAL_STATUS_EXPIRED 2 Supervision has failed, the allowed limit

of failures has been exceeded, but the
Watchdog Driver has not yet been

instructed to stop triggering.
WDGM_GLOBAL_STATUS_STOPPED 3 Supervision has failed, the allowed limit

of failures has been exceeded, but the
Watchdog Driver has been instructed to

stop triggering. A watchdog reset is
about to happen.

WDGM_GLOBAL_STATUS_DEACTIVATED 4 WdgM is not initialized and therefore
will not manage the watchdogs.

Description: This type shall be used for variables that represent the global supervision status of the Watchdog
Manager module

This type of corruption has been done with all the variables identified in the FTA from Figure 5.9.

Considering the activation model, we have shown in section 5.4 that there are two main cases where a
corruption of the WdgM may lead to the identified failure modes:

 Activation 1: In normal mode, i.e., in the use case the supervised entities work as de-
fined; they send checkpoints regularly for alive supervision, within deadlines and fol-
lowing the control flow graph. In this use case, the considered fault model may lead to
false alarms.

 Activation 2: In the second use case, we consider that an error is present in one super-
vised entity. Then, this corruption may remain undetected by the WdgM.

To correctly implement these two cases, we have to make sure that the corruption won’t be overwrit-
ten during the SE execution.

Concerning the readouts, we have to monitor the location of corrupted data by the fault injection.
Then, we monitor the entire set of variables that flag the error detected by the WdgM (WdgM global
status, local status, etc.). Then a reaction should be called by the WdgM: immediate reconfiguration
though WdgM_PerformReset and the reset should be monitored. In this campaign, the reset could be
due to the reaction of the WdgM after the detection of an error or because of the software watchdog is
not periodically kicked by the WdgM.

It is important to mention that we did not evaluate timing issues in this campaign. The robustness may
be even less when considering timing performance of the detection (error detection latency).

In this campaign, we have performed 217 experiments on each version.

FAULT INJECTION EXPERIMENTS

102

The experiments have been categorized as follows:
 “No deviation Observed” corresponds to tests where the behavior of the WdgM is identical

with or without the injected fault. (case α and δ of Table 4.1).
o the corrupted variable is refreshed with the correct value.
o In the case of Activation 2, i.e. in presence of a SE failure, it may correspond to ex-

periment where a false alarm has been raised.
o this also corresponds to test cases where the corrupted value is equal to the current

value.
 “Transient Internal Deviation Observed” corresponds to experiments where the error prop-

agates but is tolerated before leading to a failure mode of the WdgM. (case α and δ of Table
4.1). In fact, this case corresponds to experiments where the corruption leads to observe a de-
viation of the WdgM behavior (e.g., unintended detection of an error in Activation 1 case), but
there is no effect on the WdgM outputs. Here, the detection is tolerated by the WdgM and
there are no reaction called

 “Internal latent error” corresponds to experiments where no WdgM failure mode is ob-
served (false alarm or false positive). However, the corruption done or the propagation of this
error remain latent and is not activated by the activation of the target. (case α and δ of Table
4.1). It also corresponds to experiments where the corrupted variables are neither read nor
written. Latent errors highly depend on the activation of the target.

 “Failure mode reached”. Here, a false alarm or a false negative is observed (case β and γ of
Table 4.1).

The results of the campaign on the two implementation of the WdgM are presented in the Figure 6.3

 (A) WdgM QM Version (B) WdgM Safety Version
FIGURE 6.3 ROBUSTNESS CAMPAIGN ON THE WDGM IMPLEMENTATIONS (217 EXPERIMENTS)

First, a good result is that among the 214 tests cases, only 35% are non-significant tests cases (no ob-
servation). This shows that, in this particular case, the use of safety analyses in the determination of
experiment lead to efficient experiments, which is a major issue, in the industry and in the domain.
Moreover, we found that 35% of the experiments led to a failure mode of the WdgM. Particularly,
among the 76 experiments (with the QM version) that lead to a failure mode, alive/deadline/Control
flow error, have not been detected in 19 experiments (False negative) and 57 experiments leads to
unintended resets of the WdgM.

No
Deviation
Observed;

88; 40%

Internal
Transient
Deviation

Observed;
17; 8%

Internal
Latent

Error; 47;

22%

FM
Reached;
65; 30%

Fault injection Test Results

(WdgM ASIL B)

No
Deviation
Observed;

77; 35%

Internal
Transient
Deviation

Observed ;
17; 8%

Internal
Latent

Error; 47;

22%

FM
Reached;
76; 35%

Fault injection Test Results

(WdgM QM)

FAULT INJECTION EXPERIMENTS

103

Then, we can compare the two versions of the WdgM. First, we can easily observe that even if the
number of experiments leading to a failure mode has been reduced, the result is not significant.

This shows that the proposed robustness mechanisms are either not efficient or not well implemented.
In fact, in our case, the tested version implements few prescribed mechanisms. Then we have shown
that the coverage of the WdgM has been improved, but the robustness of the implementation remains
similar.

The results highlight that some efforts can be done on the implementation. A decision can be made to
improve or not the implementation. A tradeoff has to be made between memory consumption, perfor-
mances and WdgM implementation of safety requirements.

The improvement should focus on basic events that lead to Failure Modes (red) and errors that remain
latent (orange).

To conclude, we have illustrated all FI experiments that should be made according to the ISO 26262
on a software safety mechanism:

1. demonstration of the effectiveness of the safety mechanisms.
a. verification of the error detection and error recovery coverage
b. verification of timing requirements of the mechanisms

2. verification of the robustness of the implementation of the safety mechanism

6.3 Front-Light Software Verification

In the previous section we have shown that the safety mechanisms have been characterized. Now, we
will verify the correct implementation of the safety requirements of the front light software. In other
words, the objective is the verification of the S-shaped causal chain identified in the FMECA in Table
5.5

6.3.1 Verification of one Line of FMECA: S-Shaped Verification

18 tests cases have been performed for the considered critical path: 9 for each use cases. The results
could be categorized in (see Figure 6.4):

FIGURE 6.4 VERIFICATION OF ONE FMECA LINE (18 EXPERIMENTS)

 Tolerated errors: the WdgM does not detect error (according to his configuration) and
the system works even if the period is partially degraded (the output is refreshed less
than specified). [period = 20 ms]

 Detected errors and no reaction: the WdgM detects the error but does not perform any
recovery actions. The system works in a degraded mode (the output is refreshed less
than specified). [period = 30 ms or 40 ms]

FAULT INJECTION EXPERIMENTS

104

 Detected and recovered errors: in these cases, the WdgM detects the alive error, and
start a reset of the microcontroller. Then, in use case 1, there is a blinking where the
headlight are OFF during 37 ms (reset time) and then the system works properly
(headlights are ON). In use case 2, i.e. the headlights are OFF and the user requests to
switch them ON. The system will not switch the headlights ON before a delay of 220 ms
because of the injected error, that corresponds to the WdgM detection time and reset of
the application. [Periods between 50 ms and 100 ms].

All the tests could be put in cases α and δ of the Table 4.1.There is no violation of SG1 or SG2.

To conclude, the implemented application enables to meet the requirements and the safety
mechanisms handle correctly the faulty behavior within a bounded response time. Here, a single
failure is not sufficient to violate a safety goal alone, in the worst case, the failure mode occurs but a
reset is triggered fast enough to remain unnoticed.

6.3.2 Global Verification of the FMECA Spreadsheet

Finally, we consider the evaluation of the software architecture, and the impacts of all the software
faults on the system. The objective is to verify that there are no violations of the safety goals and that
the safety mechanisms proposed in the FIA process are efficient.

As we saw in Section 5.4.5, the complete FMECA spreadsheet encompasses 48 lines that may violate
the safety goal: SG1. For each failure mode, we defined a set of experiments similarly to the line con-
sidered in Section 5.5. The campaign is composed of 218 experiments.

These failure modes have been injected using SWIFI: modification of the RTE module to control the
flow of the executed runnables, and modification of the memory using the debugger, in order to modi-
fy several variables spuriously or permanently.

The result of the campaign is given in the left pie chart of Figure 6.5.

FIGURE 6.5 GLOBAL RESULT OF THE VIOLATION OF THE SAFETY REQUIREMENTS AND THE TRIGGERED

SAFETY MECHANISMS (218 EXPERIMENTS)

First, it should be noted that experiments have been categorized into three types:

Application remains operational: These are the experiments which lead to “No observation”, or “Er-
ror detected and/or reaction”. At the end of the experiment, the application is operational.

Application
remain

Operational;
184; 84%

Safe State;
12; 6%

Violation of
SG; 22; 10%

No
detection

or range
checks

detection
46%WdgM

Control

Flow
32%

WdgM
Deadline

8%

WdgM
Alive

4%

Internal
Wdg

10%

FAULT INJECTION EXPERIMENTS

105

Safe state reached: This category encompassed the experiments that lead to multiple resets of the tar-
get. In this case, this mainly encompassed permanent error corruption of critical variables. Then, it
leads to multiple reset of the target. This behavior is handled by a mechanism that stops the application
after three consecutive resets. The loss of the functionality is considered here as safe.

Violation of a safety goal: It corresponds to the blinking of the application or the loss of the headlights
while they should be ON. In fact, we found that these experiments correspond to the line of the
FMECA where a lack of coverage has been identified. The cause of this problem is the non-detection
of “valid errors”; a valid error should be understood as ‘ an incorrect OFF value has been sent instead
of a correct ON value’. However, the value is incorrect with respect to the system state. All other er-
rors correspond to incorrect values that could be given to the ON/OFF variable (different from ON and
OFF coded value) and thus easier to detect. In summary, the non-detection of permanent valid error is
a key issue.

To conclude the global coverage of the safety requirement is 90%, i.e., the system is safe in 90% of
fault injection experiments.

Then, we show that the error detection mechanisms prevent the violation of a safety goal. The results
are shown in the right pie chart of the Figure 6.5. The following categories have been found:

No detection: This category encompasses several types of experiments. First, it may correspond to
errors that are tolerated by the functional behavior of the application (periodically refreshed values). It
also corresponds to the errors detected by checking a range of correct values, but reported.

Then, other categories correspond to the proposed safety mechanisms:

 WdgM alive supervision of the runnables,
 WdgM Deadline monitoring of the execution of the critical runnables, and
 WdgM control flow monitoring.
 Finally, the internal watchdog is able to detect an infinite loop. In this case, the inter-

nal watchdog is responsible for the reset.

To conclude, this campaign intends to demonstrate that the safety requirements have been correctly
handled. The measures show the proposed architecture handles most of the failure modes defined in
the FIA.

Some problems have been found in the implementation of the front light manager. First, a wrong im-
plementation of a range checking has been found leading to the violation of a safety goal. Then, in
other experiments, a lack of coverage has been identified early in the FIA, i.e. some situations where a
safety mechanism was not proposed in the FIA.

We have found that, in some cases, the violation of the safety requirement only appears when there is
a permanent corruption of the critical value with a specific value. Improvements/modifications should
then be proposed to handle these remaining issues.

6.4 Conclusion

A proof of concept of the method has been realized on simple automotive application: Front-Light
System. The software architecture of this case study is based on AUTOSAR 4.X. The system has been
described at different levels of development together with safety analyses, to show the traceability of

FAULT INJECTION EXPERIMENTS

106

the requirements and their importance in the assessment of FI measures. At the end of the FIA process
applied to this example, we have identified safety mechanisms (WdgM) that are targets of fault
injection experiments.

In order to carry out the planned tests, we have developed a FI test platform. Two implementations of
the WdgM (QM and safety) have been evaluated by fault injection experiments.

A first interesting result obtained with the experimental measures is the efficiency of the injected
faults, i.e. the fact that all injected faults lead either to an error-detection or to the violation of safety
properties. The term efficiency may be misleading here, but it enables the error detection coverage of
the various implementations of the WdgM to be estimated. A non detection leads to the violation of a
safety property and that in turn requires to improve the WdgM.

In other words, the injected faults have an impact on the target (they lead to a failure mode or they
triggered a safety mechanism).

The obtained measures provide reasonable insights to demonstrate the effectiveness of the safety
mechanisms (the WdgM), the correct implementation of the safety requirements, and the FFI. Our
current work aims at obtaining global measures from FI experiments and optimizing the whole
development process by defining an optimal set of experiments.

To conclude, this method offers interesting results for the integration of the FI in an automotive
development process following the requirements of the ISO 26262. However, this may lead to
significant efforts and timing overhead on a complete architecture. Hence, the FI experiments must be
carefully selected.

107

Conclusion/Perspectives

The development of dependable systems has always been a challenge for engineers. With the growing
criticality of functions allocated to E/E systems, it is becoming increasingly important to guarantee
that the safety requirements have been correctly handled during the whole development process.
Therefore, it is essential to propose a structured and systematic validation process that provides con-
vincing evidences of their correct design and implementation. The work presented in this thesis is a
contribution towards the satisfaction of this need.

This means that safety issues must be correctly addressed at early stages of the system design, then
through all development phases down to the implementation and then intensively tested. Safety anal-
yses are very important since they identify potential causes of failures, their effect on the system in
order to identify, early in the development process, the required safety mechanisms to add in the de-
sign. Any omission at this stage means that, although the system is correctly developed, some failures
may lead to undesirable effects, some being critical, i.e. potentially leading to a hazard.

Testing is a challenge as far as critical systems are concerned. Any improvement of testing methods
regarding safety critical systems is of course of interest. Fault injection is a technique that comple-
ments functional testing since it focuses on the behavior of a system or a component in the presence of
faults. Its contribution is well known when targeting dependability mechanisms: verification of safety
mechanisms and evaluation of component robustness. Today, an open question relates to the contribu-
tion of fault injection when applied during the design phase.

More generally, the question tackled in this thesis is the complementarity between safety mechanisms
definition during the design and their practical evaluation by fault injection when implemented. To our
mind, this is an underlying question raised by the introduction of fault injection in the ISO 26262
standard, and this is a challenge.

The main contribution of this thesis concerns the integration of fault injection in the whole develop-
ment process. Fault injection was seen as an efficient method to assess the robustness of an imple-
mented target. Based on a method designed for experimental validation (FARM), we demonstrate that
the introduction of fault injection analyses was of interest for the overall development process. We
have shown that fault injection analysis is strongly related to detailed safety analyses: more specifical-

CONCLUSION/PERSPECTIVES

108

ly detailed FMECA. This analogy and its justification is a first contribution of the thesis that clarifies
the meaning of fault injection at early stages of the design.

The outcome of this work is that a process based on fault injection can be applied and advantageously
integrated in a standard development process for automotive systems. Fault injection analyses as de-
scribed in this thesis enrich the already existing safety analyses.

Our contribution shows the major role of fault injection in the verification and validation of safety,
during the whole development process.

The paradigm of S- and Z-shaped causal chains is of a great help for analyzing error propagation be-
tween the various development levels and entities. It is not only important during the design phase, but
also for fault injection on an implemented target. We have in particular demonstrated the importance
of the traceability of the fault propagation, using these causal chains. The first advantage of FIA is the
traceability of the fault injection experiments, since fault injection experiments are defined from the
FIA (S-chain), and conversely that the results of an experiment can be related to upper level items and
obligations in the design (reported in the FMECA spreadsheets). This work is a clear contribution to
the understanding of fault injection in the development process, since it is easier to demonstrate that a
safety requirement has been tested correctly. In addition, it is of major interest in the planning of FI
campaigns, as the concrete measures to assess can be identified early in the development process. The
second advantage is more practical for the testing team. The fault propagation enables the identifica-
tion of potential causes of a hazard to be injected into the target (Z-chain).

The proposed approach is of course compliant with the ISO 26262 standard. Indeed, safety analyses
are required for all safety critical elements, and we have highlighted the importance of fault injection
at all stages making a clear link between conventional fault injection on concrete targets and safety
analyses. Even if the fault injection activities imply efforts, our approach moderates the impact, by
reusing safety analyses, which are already performed. Now, these analyses will be used as inputs of
the fault injection campaigns.

From a practical point of view, a fault injection tool have been developed, which helped us to illustrate
successfully our approach on a simple example. Now, the objective is the development of this proto-
type, FIP, to enable the verification and validation of several targets. The next generation needs to be
easier to use, and with automatic assistance in the definition of the experiments. Finally, we expect
that a mature tool will be used within Valeo.

We are aware that the systematic application of our approach in the design of a system is time con-
suming and requires lot of efforts, particularly for performing detailed FMECA on software architec-
tures or HW parts. However, safety analysis is highly recommended by the standard, so this can be
managed. If analyses are correctly performed from the early development phases, then the experi-
mental part will be easier.

The scalability of the approach has not been demonstrated in this work, just proofs of concepts have
been done using two case studies. This is certainly something that should be done in a sizable industri-
al project. The first perspective of our work is thus its application to real systems.

To take advantage of this systematic approach, it is clear that the industrialization of the methodology
in tools is mandatory. For example, the outputs from the safety analyses should be investigated more
precisely, particularly regarding the fault model. Notably, the definition of a standardized fault model

CONCLUSION/PERSPECTIVES

109

can help choosing the most appropriate technique (or tool) for performing the fault injection experi-
ments. This problem is strategic in a project, as the tests means should be identified at the beginning of
a project. Another aspect is to use the tools to follow the S- and Z-chains and to look for completeness
of the experiments. The omission of a failure mode is still an open problem, but our approach limits
this drawback.

A second perspective is the definition of benchmarks for COTS. We partially illustrate this issue with
the WdgM, as it can be reused in several applications. Generally, this is particularly of interest for
AUTOSAR architecture. Similar campaign can be performed with different implementation of the
same WdgM module, but parameterized differently. The campaign, based on the safety analyses of the
COTS, leads to define a set of experiments that could be performed on different implementation of the
COTS. This approach is of prime importance in the case of safety mechanisms. This will help defining
the most appropriate version of the component, i.e., which mitigates the faults the more efficiently.

Finally, it is worth noting that the proposed approach can be applied to any critical system in many
domains: railways, avionics, medical devices (Park, Yi, Kwon, & Jeon, 2014), etc.

CONCLUSION/PERSPECTIVES

110

111

APPENDIX 1

Analyzed Faults or Failures Modes in the Derivation of Diag-
nostic Coverage (ISO 26262, Part 5, Annex D)

APPENDIX 1

112

Element Analysed failure modes for 60 %/99%

Low (60 %) Medium (90 %) High (99 %)

General elements

E.E Systems No generic fault model
available.

Detailed analysis neces-
sary.

No generic fault model
available.

Detailed analysis neces-
sary.

No generic fault model avail-
able.

Detailed analysis necessary.

Electrical elements

Relays Does not energize or de-
energize.

Welded contacts.

Does not energize or de-
energize.

Individual contacts weld-
ed

Does not energize or de-
energize.

Individual contacts welded

Hamesses including splice and connectors Open Circuit
Short Circuit to Ground

Open Circuit
Short Circuit to Ground

(d.c Coupled)
Short Circuit to Vbat
Short Circuit between

neighbouring pins

Open Circuit
Contact Resistance

Short Circuit to Ground (d.c
coupled)

Short Circuit to Vbat
Short Circuit between neigh-

bouring pins
Resistive drift between pins

Sensors including signal switches No generic fault model
available.

Detailed analysis neces-
sary. Typical failure
modes to be covered

include.
Out-of-range

Stuck in range

No generic fault model
available. Detailed analy-

sis necessary. Typical
failure modes to be cov-

ered include.
Out-of-range

Offsets
Stuck in range

No generic fault model avail-
able. Detailed analysis neces-
sary. Typical failure modes to

be covered include
Out-of-range

Offsets
Stuck in range
Oscillations

Final elements (actuators, lamps, buzzers,

screen)

No generic fault model
available.

Detailed analysis neces-
sary.

No generic fault model
available. Detailed analy-

sis necessary.

No generic fault model avail-
able. Detailed analysis neces-

sary.

General semiconductor elements

Power supply Under and over Voltage Drift
Under and over Voltage

Drift and oscillation
Under and over Voltage

Power spikes
Clock Stuck-ata d.c. fault modelb d.c. fault modelb

Incorrect frequency
Period jitter

Non-volatile memory Stuck-ata for data and
addresses and control

interface, lines and logic

d.c. fault modelb for data
and addresses (includes

address lines within same
block) and control inter-

face, lines and logic

d.c. fault modelb for data,
addresses (includes address

lines within same block) and
control interface, lines and

logic
Volatile memory Stuck-ata for data, ad-

dresses and control inter-
face, lines and logic

d.c. fault modelb for data,
addresses (includes

address lines within same
block and inability to

write to cell) and control
interface, lines and logic.
Soft error modelc for bit

cells

d.c. fault modelb for data,
addresses (includes address
lines within same block and
inability to write to cell) and
control interface, lines and

logic
Soft error modelc for bit cells

Digital I/O Stuck-ata (including signal
lines outside of the micro-

controller)

d.c. fault modelb (includ-
ing signal lines outside of

the microcontroller)

d.c. fault modelb (including
signal lines outside of the

microcontroller)
Drift and oscillation

Analogue I/O Stuck-ata (including signal
lines outside of the micro-

controller)

d.c. fault modelb (includ-
ing signal lines outside of

the microcontroller)
Drift and oscillation

d.c. fault modelb (including
signal lines outside of the

microcontroller)
Drift and oscillation

Specific semiconductor elements

P
r
o
c
e
ss

in
g
 u

n
it

s

ALU - Data Path Stuck-ata Stuck-ata at gate level d.c. fault modelb
Soft error modelc (for sequen-

tial parts

Registers (general purpose registers

bank, DMA transfer registers…),

internal RAM

Stuck-ata Stuck-ata at gate level
Soft error modelc

d.c. fault modelb including no,
wrong or multiple addressing

of
registers

Soft error modelc

Address calculation (Load/Store

Unit, DMA addressing logic,

Stuck-ata Stuck-ata at gate level
Soft error modelc (for

d.c. fault modelb including no,
wrong or multiple addressing

APPENDIX 1

113

Element Analysed failure modes for 60 %/99%

Low (60 %) Medium (90 %) High (99 %)

memory and bus interfaces) sequential parts) Soft error modelc (for sequen-
tial parts)

Interrupt handling Omission of or continu-
ous interrupts

Omission of or continu-
ous interrupts

Incorrect interrupt execut-
ed

Omission of or continuous
interrupts

Incorrect interrupt executed
Wrong priority

Slow or interfered interrupt
handling causing missed or
delayed interrupts service

Control logic (Sequencer, coding and

execution logic including flag regis-

ters and stack control)

No code execution
Execution too slow

Stack overflow/underflow

Wrong coding or no
execution

Execution too slow
Stack overflow/underflow

Wrong coding, wrong or no
execution

Execution out of order
Execution too fast or too slow

Stack overflow/underflow
Configuration Registers _ Stuck-ata wrong value Corruption of registers (soft

errors)
Stuck-ata fault model

Other sub-elements not belonging to

previous classes

Stuck-ata Stuck-ata at gate level d.c. fault modelb
Soft error modelc (for sequen-

tial part)

C
o

m
m

u
n

ic
a

ti
o

n

On-chip communication including

bus-arbitration

Stuck-ata (data, control,
address and arbitration

signals)

d.c. fault modelb (data,
control, address and
arbitration signals)

Time out
No or continuous arbitra-

tion

d.c. fault modelb (data, con-
trol, address and arbitration

signals)
Time out

No or continuous or wrong
arbitration

Soft errors (for sequential
part)

Data transmission

(to be analyzed

With ISO 26262-6:2011, Annex D)

Failure of communication
peer

Message corruption
Message delay
Message loss

Unintended message
repetition

Previous +
Resequencing

Insertion of message

Previous +
Masquerading

NOTE 1 Higher DC can be claimed based on analysis. Likewise, lower coverage would result if the dominant failure mode is not listed.
NOTE 2 Transient faults are considered when shown to be relevant due, for instance, to the technology used.
NOTE 3 Failure modes for Processing Units can be adjusted to recognize a.c. fault models, such as transition faults (slow to rise and slow to fall nodes at appli-
cation frequency) and path delays. Faults of this type are expected to be more prevalent with smaller process geometries. Usually tests for these types of faults
are done at start-up, or power-down, or both, due to their intrusive nature and their ability to detect failures early with margin tests. Since they are hard to quanti-
fy, these failure modes are generally not included in failure rate calculations.
NOTE 4 If properly exercised, methods derived from stuck-at simulations (e.g. N-detect testing), but executed at application conditions, are known to be effec-
tive for d.c. fault and transition models as well.
a “Stuck-at”: is a fault category that can be described with continuous “0” or “1” or “on” at the pins of an element. It is valid only for elements which have
element level pin interfaces.
b “d.c. fault model” (“direct current fault model”) includes the following failure modes: stuck-at faults, stuck-open, open or high impedance outputs, as well as
short circuits between signal lines. It is not intended here to require an exhaustive analysis, for example to require the exhaustive analysis of bridging faults that
can affect any theoretical combination of any signal inside a microcontroller or in a complex PCB. The analysis focuses on main signals or on very highly
coupled interconnections identified with a layout level analysis.
c “soft error model”: soft errors (e.g. bit flips) are the results of transient faults caused by alpha particles from package decay, neutrons, etc. These transient faults
are also referred as Single Event Upset (SEU) and Single Event Transient (SET).

115

APPENDIX 2

Steering Column Lock System FMECA

APPENDIX 2

116

Element Failure Modes Potential Causes Local effects Upper-Level Effect Safety
Level

System Safety Mechanisms
(SSM)

Upper-Level
Effect with

SSM

ESCL-F1:

Lock steering
column

Spurious Lock
ESCL-F1-FM1

µC-F1-FM1

CB-F1-FM2

MDB-F1-FM2

MDB-F4-FM1

MDB-F5-FM1

MDB-F5-FM2

SB-F-FM1

SB-F-FM2

Erroneous lock
command

Steering column
locked while driving

SG1 Violated

ASIL D
SSM1: Vehicle in motion
SSM2: Switched power

supply
No effect *

ESCL-F1 Lost
(No lock)

ESCL-F1-FM2

CB-F1-FM1

MDB-F1-FM1

No lock command
is possible

Parked vehicle with
steering column

unlocked
 NA

ESCL-F1 stuck-
at

ESCL-F1-FM3

MDB-F3-FM2

MDB-F4-FM2

ESCL always
performs lock

command

Steering column
remains locked =>
vehicle starts with

locked column
SG2 Violated

ASIL A
SSM3: Monitoring of

motor position should be
implemented

No effect *

ESCL-F2:
Unlock
steering
column

Spurious Un-
lock

ESCL-F2-FM1

CB-F2-FM2

MDB-F2-FM2

Erroneous unlock
command

Parked vehicle with
steering column

unlocked
 NA

ESCL-F2 Lost
No unlock)

ESCL-F2-FM2

µC-F1-FM2

CB-F2-FM1

No unlock com-
mand is possible

Steering column
remains locked
vehicle starts with

locked column
SG2 Violated

ASIL A
SSM3: Monitoring of

motor position should be
implemented

No effect *

ESCL-F2 stuck-
at

ESCL-F2-FM3

MDB-F2-FM1

ESCL always
performs unlock

command

Parked vehicle with
steering column

unlocked
 NA

BC-F1:
 Transmit

Lock Com-
mand from

driver’s
interfaces to

ESCL

Loss of BC-F1
BC-F1-FM1

Out of our scope
No Lock Com-

mand transmit to
the ESCL

Parked vehicle with
steering column

unlocked
 NA

Unintended BC-

F1
BC-F1-FM2

Out of our scope
Unintended Lock
Command trans-
mits to the ESCL

Steering column
locked while driving

SG1 Violated

ASIL D

SSM1: Vehicle in motion
SSM2: Switched power

supply
SSM4: Plausibility check

in the ESCL

No effects*

BC-F2:
Transmit
Unlock

Command
from driver’s
interfaces to

ESCL

Loss of BC-F2
BC-F2-FM1

Out of our scope
BC cannot transmit
Unlock Command

to the ESCL

Steering column
remains locked
vehicle starts with

locked column
SG2 Violated

ASIL A
SSM3: Monitoring of

motor position should be
implemented

No effects *

Unintended BC-
F2

BC-F2-FM2

Out of our scope

Unintended Un-
lock Command
transmits to the

ESCL

Parked vehicle with
steering column

unlocked
 NA

BA-F:
Transmit

“vehicle in
motion” to
the ESCL

Loss of BA-F
BA-F-FM1

Out of our scope

BA-F does not
provide “vehicle in

motion” to the
ESCL

Loss of ESCL-F1
and ESCL-F2 ASIL A

SSM3: Monitoring of
motor position should be

implemented
No effect *

Unintended
permanent BA-

F
BA-F-FM2

Out of our scope

BA-F provides
“vehicle in mo-

tion” to the ESCL
permanently

Loss of the safety
line “vehicle in

motion” protection

PS-F:
Supply a
switched
electrical
power to

ESCL

Loss of PS-F
PS-F-FM1

Out of our scope
PS-F does not

supply electrically
ESCL

Loss of ESCL-F1
and ESCL-F2 ASIL A

SSM3: Monitoring of
motor position should be

implemented
No effect *

Unintended
permanent PS-F

PS-F-FM2

Out of our scope
PS-F supply

permanently the
ESCL electrically

Loss of a switched
power supply protec-

tion

* assuming a perfect coverage of safety mechanisms

117

APPENDIX 3

Electronic Steering Column Lock (ESCL) Product FMECA

APPENDIX 3

118

Element Failure Modes Potential Causes Local Effects Upper-Level
Effect

Safety
Level

Product Safety
Mechanisms

(PSM)

Product Effect
with PSM

µC-F1:
Control the state

of the MDB

Erroneous as-
signment of

outputs of the
micro-controller

µC-F1-FM1

RAM, Flash,
ROM Corrup-

tion,
Oscillator, SW

defect...

Spurious activation of
the MDB locking state.

Spurious lock
ESCL-F1-FM1

ASIL D

PSM1: Watchdog
(HW),

PSM2: 2 different
SW modules

should be imple-
mented to control
the µC-F1 (redun-

dancy)

Safe State
(ESCL shut-

down)

Loss of µC-F1
µC-F1-FM2

RAM, Flash,
ROM Corrup-

tion,
Oscillator, SW

defect...

The MDB state cannot
be changed

ESCL-F2 Lost
(No unlock)

ESCL-F2-FM2

ASIL A

PSM3: The µC
should send period-
ically its status to

the BCM

Safe state
(ESCL shut-

down)

CB-F1:

Transmit Lock
requests from
BC to the µC

Loss of CB-F1
CB-F1-FM1

LIN saturated,
LIN opened...

No Lock Command
transmit to the µC

ESCL-F1 Lost
(no lock)

ESCL-F1-FM2

 NA

Unintended CB-
F1

CB -F1-FM2

LIN saturat-
ed/corruption...

Unintended Lock
Command transmits to

the µC

Spurious lock
ESCL-F1-FM1

ASIL D PSM4: Plausibility
check by µC

Safe state
(ESCL shut-

down)

CB-F2:

Transmit Un-
lock requests

from BC to the
µC

Loss of CB -F2
CB -F2-FM1

LIN saturated,
LIN opened...

CB cannot transmit
Unlock Command to

the µC

ESCL-F2 Lost
(No unlock)

ESCL-F2-FM2

ASIL A
PSM5: µC should
verify if CB-F2 is

alive

Safe state
(ESCL shut-

down)
Unintended CB-

F2
CB -F2-FM2

LIN saturat-
ed/corruption...

Unintended Unlock
Command transmits to

the µC

Spurious Unlock
ESCL-F2-FM1

 NA

MDB-F1:

The MDB locks
the motor

Loss
MDB-F1-FM1

MDB command
opened...

the MDB cannot lock
the motor

ESCL-F1 Lost
(No lock)

ESCL-F1-FM2

 NA

Unintended
MDB-F1-FM2

Internal closed
circuit...

Unintended lock of the
motor by the MDB

Spurious lock
ESCL-F1-FM1

ASIL D PSM6: Plausibility
check by µC

Safe state
(ESCL shut-

down)

MDB-F2:

The MDB
unlocks the

motor

Loss
MDB-F2-FM1

MDB command
opened...

the MDB cannot un-
lock the motor

ESCL-F2 stuck-
at

ESCL-F2-FM3

ASIL A
PSM7: µC should
verify if MDB-F2

is alive

Safe state
(ESCL shut-

down)
Unintended

MDB-F2-FM2

Internal closed
circuit...

Unintended unlock of
the motor by the MDB

Spurious Unlock
ESCL-F2-FM1

 NA

MDB-F3:
The MDB

brakes the motor

Loss
MDB-F3-FM1

MDB command
opened... Deteriorate the motor Not safety

related NA

Unintended
MDB-F3-FM2

Internal closed
circuit...

Unintended brake of
the motor by the MDB

during unlocking

ESCL-F1 stuck-
at

ESCL-F1-FM3

ASIL A PSM8: Plausibility
check by µC

Safe state
(ESCL shut-

down)

MDB-F4:

The MDB un-
supplies the

motor

Loss (motor
always supplied)
MDB-F4-FM1

MDB command
closed (short

circuit)

Unintended lock of the
motor

Spurious lock
ESCL-F1-FM1

ASIL D PSM9: Plausibility
check by µC

Safe state
(ESCL shut-

down)

Unintended
MDB-F4-FM2

MDB command
opened...

Unintended un-supply
of the motor by the

MDB

ESCL-F1 stuck-
at

ESCL-F1-FM3

ASIL A
PSM10: µC should
verify if MDB-F2

is alive

Safe state
(ESCL shut-

down)

MDB-F5:

The MDB send
the his status to

the µC

Erroneous
MDB-F5-FM1

Drift / value
coding

Erroneous MDB status
sent to the µC

Spurious lock
ESCL-F1-FM1

ASIL D

PSM11: µC must
check the plausibil-
ity of sensor state

input

Safe state
(ESCL shut-

down)

Loss
MDB-F5-FM2

Open circuit Erroneous MDB status
sent to the µC

Spurious lock
ESCL-F1-FM1

ASIL D
PSM12: µC must
check the if SB

alive

Safe state
(ESCL shut-

down)

SB-F:
Monitor the

position of the
steering column

Loss of SB-F
SB-F-FM1

Drift / value
coding

Erroneous sensor state
sent to the µC

Spurious lock
ESCL-F1-FM1

ASIL D
PSM13: µC must
check the if SB

alive

Safe state
(ESCL shut-

down)

Erroneous SB-F
SB-F-FM2

Open circuit Erroneous sensor state
sent to the µC

Spurious lock
ESCL-F1-FM1

ASIL D

PSM14: µC must
check the plausibil-
ity of sensor state

input

Safe state
(ESCL shut-

down)

* assuming a perfect coverage of safety mechanisms

119

PUBLICATIONS

Pintard, L., Fabre, J.-C., Kanoun, K., Leeman, M., Roy, M., 2013. Fault Injection in the Automotive
Standard ISO 26262: An Initial Approach, in: European Workshop on Dependable Computing 2013.
pp. 126–133. doi:10.1007/978-3-642-38789-0_11

Pintard, L., Fabre, J.-C., Kanoun, K., Leeman, M., Roy, M., 2014. Fault Injection and Automotive
Development, in: Embedded Real Time System and Software ERTS² 2014.

Pintard, L., Fabre, J.-C., Leeman, M., Kanoun, K., Roy, M., 2014. From Safety Analyses to Experi-
mental Validation of Automotive Embedded Systems, in: Dependable Computing (PRDC), 2014 IEEE
20th Pacific Rim International Symposium on. pp. 125–134. doi:10.1109/PRDC.2014.23

Pintard, L., Leeman, M., Ymlahi-Ouazzani, A., Fabre, J.-C., Kanoun, K., Roy, M., 2015. Using Fault
Injection to Verify an AUTOSAR Application According to the ISO 26262. SAE Technical Paper.
http://papers.sae.org/2015-01-0272/

doi:10.1007/978-3-642-38789-0_11
doi:10.1109/PRDC.2014.23
http://papers.sae.org/2015-01-0272/

PUBLICATIONS

120

121

REFERENCES

Aidemark, J., Vinter, J., Folkesson, P., & Karlsson, J. (2001). GOOFI: generic object-oriented fault
injection tool. Dependable Systems and Networks, 2001. DSN 2001. International Conference

on, (pp. 83-88). Retrieved from http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=941394

Albinet, A., Arlat, J., & Fabre, J.-C. (2004). Characterization of the Impact of Faulty Drivers on the
Robustness of the Linux Kernel. Proceedings of the 2004 International Conference on

Dependable Systems and Networks (DSN’04). IEEE.

Arlat, J., Aguera, M., Amat, L., Crouzet, Y., Fabre, J., Laprie, J., . . . Powell, D. (1990). Fault injection
for dependability validation: A methodology and some applications. Software Engineering,

IEEE Transactions on, 16(2), 166-182.

Arlat, J., Costes, A., Crouzet, Y., Laprie, J.-C., & Powell, D. (1993). Fault injection and dependability
evaluation of fault-tolerant systems. IEEE Transactions on Computers, 42(8), 913-923.

Arlat, J., Crouzet, Y., Karlsson, J., Folkesson, P., Fuchs, E., & Leber, G. H. (2003). Comparison of
physical and software-implemented fault injection techniques. Computers, IEEE Transactions

on, 52(9), 1115-1133. Retrieved from
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1228509

Aurum, A., Petersson, H., & Wohlin, C. (2002). State-of-the-Art: Software Inspections after 25 Years.
Software Testing, Verification and Reliability, 12(3), 133-154.

AUTOSAR. (2015). AUTOSAR Development Cooperation. Retrieved from http://www.autosar.org

AUTOSAR_SWS_OS. (2014). Specification of Operating System AUTOSAR Release 4.2.1.

AUTOSAR-WDGM. (2014). AUTOSAR Specification of Watchdog Manager AUTOSAR Release

4.2.1.

Avizienis, A., Laprie, J.-C., Randell, B., & Landwehr, C. (2004). Basic concepts and taxonomy of
dependable and secure computing. Dependable and Secure Computing, IEEE Transactions

on, 1(1), 11-33.

Ayatolahi, F., Sangchoolie, B., Johansson, R., & Karlsson, J. (2013). A Study of the Impact of Single
Bit-Flip and Double Bit-Flip Errors on Program Execution. In F. Bitsch, J. Guiochet, & M.
Kaâniche (Eds.), Computer Safety, Reliability, and Security (Vol. 8153, pp. 265-276).
Springer Berlin Heidelberg.

Barbosa, R., Karlsson, J., Madeira, H., & Vieira, M. (2012). Fault injection. In Resilience Assessment

and Evaluation of Computing Systems (pp. 263-281). Springer.

REFERENCES

122

Barbosa, R., Silva, N., & Cunha, J. M. (2013). csXception: First Steps to Provide Fault Injection. In
M. Vieira, & J. Cunha (Eds.), Dependable Computing, European Workshop on Dependable

Computing (Vol. 7869, pp. 202-205). Springer Berlin Heidelberg.

Barlow, R., & Lambert, H. (1975). Introduction to fault tree analysis. (R. (. Barlow, Ed.) Conference

on reliability and fault tree analysis, pp. 7-35.

BARR Group. (2014). Killer Apps: Embedded Software's Greatest Hit Jobs. Retrieved 1 1, 2015, from
http://www.barrgroup.com/killer-apps/

Benso A., D. C. (2011). The Art of Fault Injection. SRAIT, 13(4), 9-18.

Benso, A., Di Carlo, S., Di Natale, G., Prinetto, P., Solcia, I., & Tagliaferri, L. (2003). FAUST: fault-
injection script-based tool. 9th IEEE On-Line Testing Symposium, IOLTS 2003. Retrieved
from http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1214386

Bidokhti, N. (2009). FMEA Is Not Enough. Reliability and Maintainability Symposium, 2009. RAMS

2009. Annual (pp. 333-337). IEEE. Retrieved from
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4914698

Blin, A., Laarouchi, Y., & Quéré, P. (2014). Fault-Injection using Virtualization for Critical Software
Validation in Automotive. Embedded Real Time Software and Systems Congress (ERTS2),

Toulouse (France), (p. 8). Retrieved from http://www.erts2014.org/

Bouti, A., & Kadi, D. A. (1994). A state-of-the-art review of FMEA/FMECA. International Journal of

reliability, quality and safety engineering, 1(04), 515-543.

Carreira, J., Madeira, H., & Silva, J. (1998). Xception: A technique for the experimental evaluation of
dependability in modern computers. Software Engineering, IEEE Transactions on, 24(2), 125-
136.

Cherfi, A., Leeman, M., & Rauzy, A. (2014). Calculation of ISO 26262 Architectural Metrics From
Fault Trees. (p. 10). Dijon: 19e Congrès de Maitrise des Risques de Sûreté de
Fonctionnement.

Cherfi, A., Rauzy, A., & Leeman, M. (2014). AltaRica 3 Based Models for ISO 26262 Automotive
Safety Mechanisms. Model-Based Safety and Assessment IMBSA (pp. 123-136). Munchen:
Springer.

Christmansson, J., & Chillarege, R. (1996). Generation of an error set that emulates software faults
based on field data. Fault Tolerant Computing, 1996., Proceedings of Annual Symposium on,
(pp. 304-313). Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=534615

Chu, H. N. (2011). Test and Evaluation of the Robustness of the Functional Layer of. Institut National
Polytechnique de Toulouse.

Costa, P., Silva, J., & Madeira, H. (2009). Dependability Benchmarking Using Software Faults: How
to Create Practical and Representative Faultloads. Dependable Computing, 2009. PRDC '09.

15th IEEE Pacific Rim International Symposium on, (pp. 289-294). Retrieved from
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5369145

DBench. (2004). DBench, European Project on Dependability Benchmarking. (K. Kanoun, H.
Madeira, Y. Crouzet, M. D. Cin, F. Moreira, & J.-C. R. Garcia, Eds.) Retrieved from
http://www.laas.fr/DBench

REFERENCES

123

Dees, R. (2012). An Introduction to the IEEE-ISTO 5001 Nexus Debug Standard. AMT Publishing.

DeMillo, R., Guindi, D., McCracken, W., Offutt, A., & King, K. (1988). An extended overview of the
Mothra software testing environment. Software Testing, Verification, and Analysis, 1988.,

Proceedings of the Second Workshop on, (pp. 142-151).

Department of the Army, T. 5.-6.-4. (2006). Effects Criticality Analysis (FMECA) for Command,

Control, Communications, Computer, Intelligence, Surveillance, and Reconnaissance (C4ISR)

Facilities. Army Corp of engineers Power reliability enhancement Program (PreP).

ECSS-Q-30-02B. (2008). Space product assurance: Failure modes, effects (and criticality) analysis

(FMEA/FMECA). ESA Requirements and Standards Division. Retrieved from
http://www.ecss.nl/forums/ecss/dispatch.cgi/home/showFile/100704/d20080806093054/No/ec
ss-q-30-02b-draft2(30April2008).pdf

Fürst, S. (2008). AUTOSAR – An open standardized software architecture for the automotive industry.
Retrieved 1 2015, 1, from http://www.autosar.org/:
http://www.autosar.org/fileadmin/files/events/2008-10-23-1st-autosar-
open/03_AUTOSAR_Tutorial.pdf

Gaudel, M.-C. (1995). Testing can be formal, too. TAPSOFT '95: Theory and Practice of Software

Development. 915, pp. 82-96. Lecture Notes in Computer Science.

Han, S., Shin, K., & Rosenberg, H. (1995). DOCTOR: an integrated software fault injection
environment for distributed real-time systems. Computer Performance and Dependability

Symposium, 1995. Proceedings., International, (pp. 204-213). Retrieved from
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=395831

Hsueh, M.-C., Tsai, T. K., & Iyer, R. K. (1997). Fault injection techniques and tools. Computer, 30(4),
75-82. Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=585157

IEC 61508. (2010). Functional Safety of Electrical/Electronic/Programmable Electronic Safety-
Related Systems.

IEEE Std. (2006). IEEE Standard e Functional Verification Language. (1647). IEEE Standard.

IFIP WG 10.4. (2015). Retrieved from IFIP Working Group on Dependable Computing and Fault
Tolerance: http://www.dependability.org/wg10.4/

Islam, M. M., Sangchoolie, B., Ayatolahi, F., Skarin, D., Vinter, J., Törner, F., . . . Karlsson, J. (2013).
Towards Benchmarking of Functional Safety in the Automotive Industry. In M. Vieira, & J.
C. Cunha (Ed.), 14th European Workshop, EWDC 2013,. 7869, pp. 111-125. Coimbra,
Portugal: Lecture Notes in Computer Science.

Islam, M., Karunakaran, N., Haraldsson, J., Bernin, F., & Karlsson, J. (2014). Binary-Level Fault
Injection for AUTOSAR Systems. Dependable Computing Conference (EDCC), 2014 Tenth

European, (pp. 138-141). Retrieved from
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6821098

ISO 26262. (2011). Road Vehicles - Functional Safety. International Organization for Standardization
/ Technical Committee 22 (ISO/TC 22). Retrieved from
http://www.iso.org/iso/home/news_index/news_archive/news.htm?refid=Ref1499

Jenn, E., Arlat, J., Rimbn, M., Ohlsson, J., & Karlsson, J. (1994). Fault Injection into VHDL Models:
The MEFISTO Tool. Fault-Tolerant Computing, 1994. FTCS-24. Digest of Papers., Twenty-

REFERENCES

124

Fourth International Symposium on (pp. 66-75). IEEE. Retrieved from
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=315656

Jenn, E., Arlat, J., Rimen, M., Ohlsson, J., & Karlsson, J. (1994). Fault Injection Into VHDL Models:
A Fault Injection Tool And Some Preliminary Experimental Results. Integrating Error

Models with Fault Injection, 1994., Third Int. Workshop on, (pp. 13-14). From
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=654393

Kaâniche, M., Romano, L., Kalbarczyk, Z., Iyer, R., & Karcich, R. (1998). A Hierarchical and
Approach for Dependability and Analysis and of a Commercial and Cache-Based RAID and
Storage Architecture. Fault-Tolerant Computing, 1998. Digest of Papers. Twenty-Eighth

Annual International Symposium on (pp. 6-15). IEEE. Retrieved from
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=689450

Kanawati, G., Kanawati, N., & Abraham, J. (1995). FERRARI: a flexible software-based fault and
error injection system. IEEE, 44(2), 248-260. Retrieved from
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=364536

Karlsson, J., Folkesson, P., Arlat, J., Crouzet, Y., Leber, G., & Reisinger, J. (1998). Application of
three physical fault injection techniques to the experimental assessment of the MARS
architecture. DEPENDABLE COMPUTING AND FAULT TOLERANT SYSTEMS, 10, 267-
288.

Karlsson, J., Liden, P., Dahlgren, P., Johansson, R., & Gunneflo, U. (1994). Using heavy-ion radiation
to validate fault-handling mechanisms. Micro, IEEE, 14(1), 8-23.

Karunakaran, N. M. (2013). Binary-Level Fault Injection (BLFI) for AUTOSAR-based Systems.
Department of Computer Science and Engineering.

Koopman, P. (2014). A Case Study of Toyota Unintended Acceleration and Software Safety. Retrieved
from Better Embedded System SW: http://betterembsw.blogspot.fr/2014/09/a-case-study-of-
toyota-unintended.html

Koopman, P. (2014). A Case Study of Toyota Unintended Acceleration and Software Safety. From
Better Embedded System SW: http://betterembsw.blogspot.fr/2014/09/a-case-study-of-toyota-
unintended.html

Koopman, P., DeVale, K., & DeVale, J. (2008). Interface RobustnessTesting: Experiences and
Lessons Learned From The BALLISTA Project. In K. Kanoun, & L. Spainhower (Eds.),
Dependability Benchmarking for Computer Systems. (pp. 201-226). Copyright © 2008 IEEE
Computer Society.

Lanigan, P., Narasimhan, P., & Fuhrman, T. (2010). Experiences with a CANoe-based fault injection
framework for AUTOSAR. Dependable Systems and Networks (DSN), 2010 IEEE/IFIP

International Conference on, (pp. 569-574). Retrieved from
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5544419

Laprie, J.-C., Arlat, J., Blanquart, J.-P., Costes, A., Crouzet, Y., Deswarte, Y., . . . Thévenod, P.
(1995). Dependability Handbook - Le Guide de la Sûreté de Fonctionnement. Cépaduès-
Editions, Toulouse.

Lauterbach. (2015). Retrieved 01 01, 2015, from Lauterbach development tools:
http://www.lauterbach.com

REFERENCES

125

Leeke, M., & Jhumka, A. (2009). Beyond the golden run: evaluating the use of reference run models
in fault injection analysis. Proceedings of the 25th UK Performance Engineering Workshop,
(pp. 61-74). Retrieved from http://wrap.warwick.ac.uk/47538

Leeman, M. (2013). The deployment of ISO26262 in Valeo. Paris: SIA.

L'Hostis, S. (2013). Architectural metrics calculation – an efficient approach. Sécurité fonctionnelle

électronique automobile : ISO 26262 : où en sommes-nous? Paris: SIA.

Lu, C. (2009a). Robustesse du logiciel embarqué multicouche par une approche réflexive: application

à l'automobile. Ph.D. dissertation, Institut National Polytechnique de Toulouse (INPT).

Lu, C., Fabre, J.-C., & Kilijian, M.-O. (2009b). An approach for improving Fault-Tolerance in
Automotive and Modular Embedded Software. 17th International Conference on Real-Time

and Network Systems RTNS'2009, Paris, ECE, 26-27 October. IEEE.

M2OS. (2014). Method Sheets. (M. S. M2OS: Management, Editor, & IMdR) Retrieved 01 01, 2015,
from http://www.imdr.eu/upload/client/document_site/Fiches_pedago_8_20140610_EN.pdf

Madeira, H., Rela, M., Moreira, F., & Silva, J. G. (1994). RIFLE: A General Purpose Pin-level Fault
Injector. In Dependable Computing—EDCC-1. 852, pp. 197-216. Springer Berlin Heidelberg.

Mariani, R., & Boschi, G. (2007). A systematic approach for Failure Modes and Effects Analysis of
System-On-Chips. 0, pp. 187-188. Los Alamitos, CA, USA: IEEE Computer Society.

Mariani, R., Boschi, G., & Colucci, F. (2007). Using an innovative SoC-level FMEA methodology to
design in compliance with IEC 61508. in Proceedings of the conference on Design,

automation and test in Europe, DATE ’07, (pp. 492–497). (San Jose, CA, USA). Retrieved
from http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4211846

Mariani, R., Fuhrmann, P., & Vittorelli, B. (2006). Fault-robust microcontrollers for automotive
applications. On-Line Testing Symposium, 2006. IOLTS 2006. 12th IEEE

International, (pp. 6 pp.-).

NASA. (2005). Glossary - NASA Crew Exploration Vehicle, SOL NNT05AA01J, Attachment J-6.
Retrieved 09 18, 2014, from http://www.spaceref.com/news/viewsr.html?pid=15201

Natella, R. (2011). Achieving Representative Faultloads in Software Fault Injection. Ph.D.
dissertation, Università Degli Studi di Napoli Federico II.

Natella, R., Cotroneo, D., Duraes, J., & Madeira, H. (2013). On Fault Representativeness of Software
Fault Injection. IEEE, 39(1), 80-96. Retrieved from
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6122035

Nexus5001. (2015). Retrieved 01 01, 2015, from http://nexus5001.org/

Park, J.-D., Yi, C.-H., Kwon, K.-H., & Jeon, J. W. (2014). Method of fault injection for medical
device based on ISO 26262. Consumer Electronics (ISCE 2014), The 18th IEEE International

Symposium on (pp. 1-2). IEEE.

Piper, T., Winter, S., Manns, P., & Suri, N. (2012). Instrumenting AUTOSAR for dependability
assessment: A guidance framework. Dependable Systems and Networks (DSN), 2012 42nd

Annual IEEE/IFIP International Conference on, (pp. 1-12). Retrieved from
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6263913

REFERENCES

126

Rana, R., Staron, M., Berger, C., Hansson, J., Nilsson, M., & Törner, F. (2013). Improving Fault
Injection in Automotive Model Based Development using Fault Bypass Modeling. in 2nd

Workshop on Software-Based Methods for Robust Embedded Systems (SOBRES’13), (pp.
2577-2591). Koblenz, Germany.

RTCA & EUROCAE. (2011). DO-178C/ED-12C. Software Considerations in Airborne Systems and

Equipment Certification. Retrieved from http://www.rtca.org/store_product.asp?prodid=803

SAE International. (2010). ARP 4754. Certification Considerations for Highly-Integrated Or Complex

Aircraft.

Salkham, A., Pecchia, A., & Silva, N. (2013). Design of a CDD-Based Fault Injection Framework for
AUTOSAR Systems. Proceedings of Workshop SASSUR (Next Generation of System

Assurance Approaches for Safety-Critical Systems) of the 32nd International Conference on

Computer Safety, Reliability and Security. Retrieved from http://hal.archives-ouvertes.fr/hal-
00848500/

SaRS: Safety and Reliability Society. (2011). Chapter 38 Markov Modeling. Applied R&M Manual
for Defence Systems Part C - R&M Related Techniques.

SaRS: Safety and Reliability Society. (2011). Chapter 30 Reliability Block Diagrams. Applied R&M
Manual for Defence Systems Part C - R&M Related Techniques .

Shepardson, D. (2015, 02 13). U.S. auto recalls hit 63.95 million in 2014. Retrieved from Detroit
News: http://www.detroitnews.com/story/business/autos/2015/02/12/auto-recalls/23307005/

Silva, N., Barbosa, R., Cunha, J. C., & Vieira, M. (2013). A view on the past and future of fault
injection. Dependable Systems and Networks (DSN), 2013 43rd Annual IEEE/IFIP

International Conference on, (pp. 1-2).

Simulink. (2015). Retrieved 01 01, 2015, from http://www.mathworks.com/products/simulink/

Skarin, D., Barbosa, R., & Karlsson, J. (2010, June). GOOFI-2: A tool for experimental dependability
assessment. Dependable Systems and Networks (DSN), 2010 IEEE/IFIP International

Conference on, (pp. 557-562).

Stateflow. (2015). Retrieved 01 01, 2015, from http://www.mathworks.com/products/stateflow/

Statemate. (2015). Retrieved 01 01, 2015, from http://www-03.ibm.com/software/products/en/ratistat

STMicroelectronic. (2013). SPC56EL70 32 bit PowerArchitecture® microcontroller for automotive
SIL3/ASIL D chassis and safety applications.

Strong, M. (2015, February 2). Honda Confirms New Takata Fatality. Retrieved from The Detroit
Bureau: http://www.thedetroitbureau.com/2015/02/honda-confirms-new-takata-fatality/

Svenningsson, R. (2011, december). Model-Implemented Fault Injection for Robustness Assessment.
Model-Implemented Fault Injection for Robustness Assessment(2011:16), xi, 39. KTH Royal
Institute of Technology.

Svenningsson, R., Eriksson, H., Vinter, J., & Törngren, M. (2010). Model-Implemented Fault
Injection for Hardware Fault Simulation. Model-Driven Engineering, Verification, and

Validation (MoDeVVa), 2010 Workshop on, (pp. 31-36). Retrieved from
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5772248

REFERENCES

127

Svenningsson, R., Vinter, J., Eriksson, H., & Törngren, M. (2010). MODIFI: A MODel-Implemented
Fault Injection Tool. In E. Schoitsch (Ed.), Computer Safety, Reliability, and Security

(SAFECOMP 2010). 6351, pp. 210–222. © Springer-Verlag Berlin Heidelberg 2010.
Retrieved from http://dx.doi.org/10.1007/978-3-642-15651-9_16

Trawczynski, D., Sosnowski, J., & Gawkowski, P. (2008). Analyzing fault susceptibility of ABS
microcontroller. Computer Safety, Reliability, and Security (pp. 360-372). Springer Berlin
Heidelberg.

Vinter, J., Bromander, L., Raistrick, P., & Edler, H. (2007). FISCADE - A Fault Injection Tool for
SCADE Models. Automotive Electronics, 2007 3rd Institution of Engineering and Technology

Conference on, (pp. 1-9). Retrieved from
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4383624

Xi, C. (2008). Requirements and concepts for future automotive electronic architectures from the view

of integrated safety. Ph.D. dissertation, Universität Karlsruhe (TH).

Yogitech. (2015). Retrieved from http://www.yogitech.com/en

Yuste, P., de Andrès, D., Lemus, L., Serrano, J. J., & Gil, P. J. (2003). INERTE: Integrated NExus-
Based Real-Time Fault Injection Tool for Embedded Systems. in Dependable Systems and

Networks, DSN 2003. Proceedings. 2003 International Conference on, (p. 669). Retrieved
from
http://www.computer.org/csdl/proceedings/dsn/2003/1952/00/19520669.pdf?origin=publicatio
n_detail

Ziade, H., Ayoubi, R., & Velazco, R. (2004, July). A Survey on Fault Injection Techniques. The

International Arab Journal of Information Technology, 1(2), 171-186.

	Remerciements
	Abstract
	Résumé
	Contents
	List of Figures
	List of Tables
	Glossary
	Introduction
	Chapter 1 State of the Art & Context
	1.1 Electric/Electronic Embedded Systems (E/E Systems)
	1.1.1 Automotive E/E Systems
	1.1.2 Standardization Needs: ISO 26262

	1.2 Basic Concepts of Dependability & ISO 26262
	1.2.1 From Dependability Attributes to Automotive Safety Integrity Levels
	1.2.1.1 Dependability Attributes
	1.2.1.2 Safety & Automotive Safety-Integrity Level

	1.2.2 From Dependability Threats to Fault Model
	1.2.2.1 Dependability Threats
	1.2.2.2 Fault Model in Automotive Embedded Systems

	1.2.3 From Dependability Means to Verification
	1.2.3.1 Fault Tolerance
	1.2.3.2 Fault Forecasting
	1.2.3.3 Fault Removal

	1.3 Fault Injection for the Verification and Validation of Automotive E/E Systems
	1.3.1 Known Approaches
	1.3.2 FARM
	1.3.2.1 Fault Model
	1.3.2.2 Activation Model
	1.3.2.3 Readouts Model
	1.3.2.4 Measures Model

	1.3.3 Techniques
	1.3.3.1 Environment
	1.3.3.2 Techniques and Tools

	1.3.4 Related Work in Automotive Systems
	1.3.4.1 Fault Injection in AUTOSAR architecture
	1.3.4.2 Fault Injection in Simulink Models
	1.3.4.3 Fault Injection Experiment definition using Safety Analysis
	1.3.4.4 Other Studies

	1.4 Conclusion

	Chapter 2 Development Process & Safety
	2.1 Development Process of Automotive E/E Embedded Systems
	2.1.1 Automotive Embedded Systems
	2.1.2 System Engineering

	2.2 V-Cycle Development Model
	2.2.1 Requirements Analysis
	2.2.2 Implementation, Integration and Testing Activities
	2.2.3 Relationship between V Branches

	2.3 Safety Development Process
	2.3.1 Safety Analyses at System Level
	2.3.1.1 Failure Mode Effect (and Criticality) Analysis – FME(C)A
	2.3.1.2 Fault Tree Analysis

	2.3.2 Safety Analyses at Product Architecture Level and HW Architectural Level
	2.3.3 Quantitative Safety Analyses
	2.3.4 Safety Analyses at Software Architecture Level
	2.3.5 Safety Tests

	2.4 Fault Injection Requirement of ISO 26262
	2.4.1 Requirements during Pre-Implementation Phase
	2.4.2 Requirements during Post-Implementation Phase
	2.4.2.1 SW Unit Testing & SW Integration Testing

	2.5 Thesis Orientation & Proposed Methodology Overview

	Chapter 3 Integrating Fault Injection in the Pre-implementation Phase
	3.1 Is Fault Injection Applicable During the Pre-Implementation Phase?
	3.1.1 Preliminaries
	3.1.2 Differences between Pre- and Post-Implementation Phases

	3.2 Application of the FIA Flow at a Given Architectural Level
	3.2.1 Applying FIA at the Product Level L1
	3.2.2 Relationship between FIA and other Safety Analyses

	3.3 Links between FIA Levels
	3.3.1 S- and Z-shaped Causal Chain
	3.3.2 Initialization and Termination of the FIA Flow

	3.4 Steering Column Locking System
	3.4.1 System Description
	3.4.2 Steering Column Locking System FIA (L0)
	3.4.3 ESCL Product FIA Flow (L1)

	3.5 Synthesis on Fault Injection Analyses

	Chapter 4 Fault Injection During Post-implementation Phase
	4.1 FIE Overview
	4.2 From FIA to FIE: Definition of the Experiments
	4.2.1 Application of FARM
	4.2.1.1 Definition of the Experimentation Targets
	4.2.1.2 Measures to be Assessed
	4.2.1.3 Faults to be injected
	4.2.1.4 Activation Model
	4.2.1.5 Readouts
	4.2.1.6 Assessment of the Measures

	4.2.2 Experiment Traceability
	4.2.3 Determination of the FIE using FMECA
	4.2.3.1 Definition of Experiments using One Line of FMECA
	4.2.3.2 Example using the Steering Column Locking System
	4.2.3.3 Definition of Experiments using Multiple Lines of FMECA
	4.2.3.4 Example using the Steering Column Locking System

	4.2.4 Conclusion on the Identification of the Experiments

	4.3 Execution of the Experiments and Evaluation of the Measures
	4.3.1 Optimization of the Experiments
	4.3.1.1 Fault Model
	4.3.1.2 Activation Model
	4.3.1.3 Other Testing Activities
	4.3.1.4 Results of FIE of Lower Level

	4.3.2 Assessment of the FIA with regards to the FIE
	4.3.3 Assessment of one Fault Injection Experiment
	4.3.4 Synthesis of the FIE

	4.4 Conclusion

	Chapter 5 Case Study: Front-Light Manager
	5.1 Application of FIA on the Front-Light Manager System
	5.2 FIA at System Level: Front-Light System
	5.3 FIA at Product Level: Front-Light-ECU
	5.3.1 Safety Analysis of the Micro-Controller
	5.3.2 Freedom From Interferences Analysis

	5.4 FIA at SW Block Architectural Level
	5.4.1 AUTomotive Open System Architecture – AUTOSAR
	5.4.2 Partitioning Concept in AUTOSAR
	5.4.3 Software Architecture of the Front-Light Manager
	5.4.4 Behavioral Description of the Application
	5.4.5 FIA of the Software Architecture

	5.5 S-Shaped Causal Chain
	5.6 SW Module Level: AUTOSAR Watchdog Manager
	5.6.1 Alive Supervision
	5.6.2 Deadline Monitoring
	5.6.3 Control Flow Monitoring

	5.7 FIA at SW Module Level
	5.8 Lessons Learnt

	Chapter 6 Fault Injection Experiments
	6.1 Fault Injection Platform
	6.1.1 Fault Injection Environment
	6.1.2 Fault Injection Characterization of the Tool

	6.2 WdgM Implementations Assessment
	6.2.1 Error Detection and Error Recovery Coverage
	6.2.2 Timing Evaluation of the WdgM
	6.2.3 Robustness of the implementation of the WdgM

	6.3 Front-Light Software Verification
	6.3.1 Verification of one Line of FMECA: S-Shaped Verification
	6.3.2 Global Verification of the FMECA Spreadsheet

	6.4 Conclusion

	Conclusion/Perspectives
	APPENDIX 1
	APPENDIX 2
	APPENDIX 3
	Publications
	References

