235 research outputs found

    Trust Based Consensus Model for Social Network in an Incomplete Linguistic Information Context

    Get PDF
    A theoretical framework to consensus building within a networked social group is put forward. This article investigates a trust based estimation and aggregation methods as part of a visual consensus model for multiple criteria group decision making with incomplete linguistic information. A novel trust propagation method is proposed to derive trust relationship from an incomplete connected trust network and the trust score induced order weighted averaging operator is presented to aggregate the orthopairs of trust/distrust values obtained from different trust paths. Then, the concept of relative trust score is defined, whose use is twofold: (1) to estimate the unknown preference values and (2) as a reliable source to determine experts' weights. A visual feedback process is developed to provide experts with graphical representations of their consensus status within the group as well as to identify the alternatives and preference values that should be reconsidered for changing in the subsequent consensus round. The feedback process also includes a recommendation mechanism to provide advice to those experts that are identified as contributing less to consensus on how to change their identified preference values. It is proved that the implementation of the visual feedback mechanism guarantees the convergence of the consensus reaching process

    Trust networks for recommender systems

    Get PDF
    Recommender systems use information about their user’s profiles and relationships to suggest items that might be of interest to them. Recommenders that incorporate a social trust network among their users have the potential to make more personalized recommendations compared to traditional systems, provided they succeed in utilizing the additional (dis)trust information to their advantage. Such trust-enhanced recommenders consist of two main components: recommendation technologies and trust metrics (techniques which aim to estimate the trust between two unknown users.) We introduce a new bilattice-based model that considers trust and distrust as two different but dependent components, and study the accompanying trust metrics. Two of their key building blocks are trust propagation and aggregation. If user a wants to form an opinion about an unknown user x, a can contact one of his acquaintances, who can contact another one, etc., until a user is reached who is connected with x (propagation). Since a will often contact several persons, one also needs a mechanism to combine the trust scores that result from several propagation paths (aggregation). We introduce new fuzzy logic propagation operators and focus on the potential of OWA strategies and the effect of knowledge defects. Our experiments demonstrate that propagators that actively incorporate distrust are more accurate than standard approaches, and that new aggregators result in better predictions than purely bilattice-based operators. In the second part of the dissertation, we focus on the application of trust networks in recommender systems. After the introduction of a new detection measure for controversial items, we show that trust-based approaches are more effective than baselines. We also propose a new algorithm that achieves an immediate high coverage while the accuracy remains adequate. Furthermore, we also provide the first experimental study on the potential of distrust in a memory-based collaborative filtering recommendation process. Finally, we also study the user cold start problem; we propose to identify key figures in the network, and to suggest them as possible connection points for newcomers. Our experiments show that it is much more beneficial for a new user to connect to an identified key figure instead of making random connections

    Uninorm trust propagation and aggregation methods for group decision making in social network with four tuples information

    Get PDF
    The file attached to this record is the authors accepted version. The publisher's final version of record can be found by following the DOI link below.A novel social network based group decision making (SN-GDM) model with experts' weights not provided beforehand and with the following four tuple information: trust; distrust; hesitancy; and inconsistency, is introduced. The concepts of trust score (TS) and knowledge degree (KD) are de ned and combined into a trust order space. Then, a strict trust ranking order relation of trust function values (TFs) is built in which TS and KD play a similar role to the mean and the variance in Statistics. After the operational laws of TFs for uninorm operators are built, the uninorm propagation operator is investigated. It can propagate through a network both trust and distrust information simultaneously and therefore it prevents the loss of trust information in the propagating process. When an indirect trust relationship is built, the uninorm trust weighted average (UTWA) operator and the uninorm trust ordered weighted average (UTOWA) operator are de ned and used to aggregate individual trust relationship and to obtain their associated ranking order relation. Hence, the most trusted expert is distinguished from the group, and the weights of experts are determined in a reasonable way: the higher an expert is trusted the more importance value is assigned to the expert. Therefore, the novelty of the proposed SN-GDM is that it can use indirect trust relationship via trusted third partners (TTPs) as a reliable resource to determine experts' weights. Finally, the individual trust decision making matrices are aggregated into a collective one and the alternative with the highest trust order relation is selected as the best one

    Access network selection schemes for multiple calls in next generation wireless networks

    Get PDF
    There is an increasing demand for internet services by mobile subscribers over the wireless access networks, with limited radio resources and capacity constraints. A viable solution to this capacity crunch is the deployment of heterogeneous networks. However, in this wireless environment, the choice of the most appropriate Radio Access Technology (RAT) that can Tsustain or meet the quality of service (QoS) requirements of users' applications require careful planning and cost efficient radio resource management methods. Previous research works on access network selection have focused on selecting a suitable RAT for a user's single call request. With the present request for multiple calls over wireless access networks, where each call has different QoS requirements and the available networks exhibit dynamic channel conditions, the choice of a suitable RAT capable of providing the "Always Best Connected" (ABC) experience for the user becomes a challenge. In this thesis, the problem of selecting the suitable RAT that is capable of meeting the QoS requirements for multiple call requests by mobile users in access networks is investigated. In addressing this problem, we proposed the use of Complex PRoprtional ASsesment (COPRAS) and Consensus-based Multi-Attribute Group Decision Making (MAGDM) techniques as novel and viable RAT selection methods for a grouped-multiple call. The performance of the proposed COPRAS multi-attribute decision making approach to RAT selection for a grouped-call has been evaluated through simulations in different network scenarios. The results show that the COPRAS method, which is simple and flexible, is more efficient in the selection of appropriate RAT for group multiple calls. The COPRAS method reduces handoff frequency and is computationally inexpensive when compared with other methods such as the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), Simple Additive Weighting (SAW) and Multiplicative Exponent Weighting (MEW). The application of the proposed consensus-based algorithm in the selection of a suitable RAT for group-multiple calls, comprising of voice, video-streaming, and file-downloading has been intensively investigated. This algorithm aggregates the QoS requirement of the individual application into a collective QoS for the group calls. This new and novel approach to RAT selection for a grouped-call measures and compares the consensus degree of the collective solution and individual solution against a predefined threshold value. Using the methods of coincidence among preferences and coincidence among solutions with a predefined consensus threshold of 0.9, we evaluated the performance of the consensus-based RAT selection scheme through simulations under different network scenarios. The obtained results show that both methods of coincidences have the capability to select the most suitable RAT for a group of multiple calls. However, the method of coincidence among solutions achieves better results in terms of accuracy, it is less complex and the number of iteration before achieving the predefined consensus threshold is reduced. A utility-based RAT selection method for parallel traffic-streaming in an overlapped heterogeneous wireless network has also been developed. The RAT selection method was modeled with constraints on terminal battery power, service cost and network congestion to select a specified number of RATs that optimizes the terminal interface utility. The results obtained show an optimum RAT selection strategy that maximizes the terminal utility and selects the best RAT combinations for user's parallel-streaming for voice, video and file-download

    Geosimulation and Multicriteria Modelling of Residential Land Development in the City of Tehran: A Comparative Analysis of Global and Local Models

    Get PDF
    Conventional models for simulating land-use patterns are insufficient in addressing complex dynamics of urban systems. A new generation of urban models, inspired by research on cellular automata and multi-agent systems, has been proposed to address the drawbacks of conventional modelling. This new generation of urban models is called geosimulation. Geosimulation attempts to model macro-scale patterns using micro-scale urban entities such as vehicles, homeowners, and households. The urban entities are represented by agents in the geosimulation modelling. Each type of agents has different preferences and priorities and shows different behaviours. In the land-use modelling context, the behaviour of agents is their ability to evaluate the suitability of parcels of land using a number of factors (criteria and constraints), and choose the best land(s) for a specific purpose. Multicriteria analysis provides a set of methods and procedures that can be used in the geosimulation modelling to describe the behaviours of agents. There are three main objectives of this research. First, a framework for integrating multicriteria models into geosimulation procedures is developed to simulate residential development in the City of Tehran. Specifically, the local form of multicriteria models is used as a method for modelling agents’ behaviours. Second, the framework is tested in the context of residential land development in Tehran between 1996 and 2006. The empirical research is focused on identifying the spatial patterns of land suitability for residential development taking into account the preferences of three groups of actors (agents): households, developers, and local authorities. Third, a comparative analysis of the results of the geosimulation-multicriteria models is performed. A number of global and local geosimulation-multicriteria models (scenarios) of residential development in Tehran are defined and then the results obtained by the scenarios are evaluated and examined. The output of each geosimulation-multicriteria model is compared to the results of other models and to the actual pattern of land-use in Tehran. The analysis is focused on comparing the results of the local and global geosimulation-multicriteria models. Accuracy measures and spatial metrics are used in the comparative analysis. The results suggest that, in general, the local geosimulation-multicriteria models perform better than the global methods

    Fuzzy Systems in Business Valuation

    Get PDF
    This research aims to develop a model that is able to integrate and objectify information provided by the different business valuation methods, incorporating quality management in its formal approach, which to date has not been considered in the literature about business valuation or quality management. Firstly, the company is valued using the methods which best adapt to its specific characteristics. Because of the subjectivity inherent in any valuation process, the results will be expressed through Triangular Fuzzy Numbers (TFN). These Fuzzy Numbers will be aggregated and summarized by applying Basic Defuzzification Distribution Uncertain Probabilistic Ordered Weighted Averaging operator (BADD-UPOWA). The weighting factors will be: the degree of confidence in each of the business valuation methods applied, and the innovative use of the company’s position on Crosby’s Quality Administration Grid. The results from application of the model in a case study show a significant reduction in uncertainty in contrast to the initial valuations. Moreover, the proposed methodology is seen to increase the final value of the company as its advances in quality management

    A systematic review on multi-criteria group decision-making methods based on weights: analysis and classification scheme

    Get PDF
    Interest in group decision-making (GDM) has been increasing prominently over the last decade. Access to global databases, sophisticated sensors which can obtain multiple inputs or complex problems requiring opinions from several experts have driven interest in data aggregation. Consequently, the field has been widely studied from several viewpoints and multiple approaches have been proposed. Nevertheless, there is a lack of general framework. Moreover, this problem is exacerbated in the case of experts’ weighting methods, one of the most widely-used techniques to deal with multiple source aggregation. This lack of general classification scheme, or a guide to assist expert knowledge, leads to ambiguity or misreading for readers, who may be overwhelmed by the large amount of unclassified information currently available. To invert this situation, a general GDM framework is presented which divides and classifies all data aggregation techniques, focusing on and expanding the classification of experts’ weighting methods in terms of analysis type by carrying out an in-depth literature review. Results are not only classified but analysed and discussed regarding multiple characteristics, such as MCDMs in which they are applied, type of data used, ideal solutions considered or when they are applied. Furthermore, general requirements supplement this analysis such as initial influence, or component division considerations. As a result, this paper provides not only a general classification scheme and a detailed analysis of experts’ weighting methods but also a road map for researchers working on GDM topics or a guide for experts who use these methods. Furthermore, six significant contributions for future research pathways are provided in the conclusions.The first author acknowledges support from the Spanish Ministry of Universities [grant number FPU18/01471]. The second and third author wish to recognize their support from the Serra Hunter program. Finally, this work was supported by the Catalan agency AGAUR through its research group support program (2017SGR00227). This research is part of the R&D project IAQ4EDU, reference no. PID2020-117366RB-I00, funded by MCIN/AEI/10.13039/ 501100011033.Peer ReviewedPostprint (published version

    Generalized Hamacher aggregation operators for intuitionistic uncertain linguistic sets: Multiple attribute group decision making methods

    Full text link
    © 2019 by the authors. In this paper, we consider multiple attribute group decision making (MAGDM) problems in which the attribute values take the form of intuitionistic uncertain linguistic variables. Based on Hamacher operations, we developed several Hamacher aggregation operators, which generalize the arithmetic aggregation operators and geometric aggregation operators, and extend the algebraic aggregation operators and Einstein aggregation operators. A number of special cases for the two operators with respect to the parameters are discussed in detail. Also, we developed an intuitionistic uncertain linguistic generalized Hamacher hybrid weighted average operator to reflect the importance degrees of both the given intuitionistic uncertain linguistic variables and their ordered positions. Based on the generalized Hamacher aggregation operator, we propose a method for MAGDM for intuitionistic uncertain linguistic sets. Finally, a numerical example and comparative analysis with related decision making methods are provided to illustrate the practicality and feasibility of the proposed method
    corecore