
Trust Based Consensus Model for Social Network in an Incomplete Linguistic
Information ContextI

Jian Wua,b, Francisco Chiclanab, Enrique Herrera-Viedmac

aSchool of Economics and Management, Zhejiang Normal University, Jinhua, Zhejiang, China
bCentre for Computational Intelligence, Faculty of Technology, De Montfort University, Leicester, UK
cDepartment of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain

Abstract

A theoretical framework to consensus building within a networked social group is put forward. This

article investigates a trust based estimation and aggregation methods as part of a visual consensus

model for multiple criteria group decision making with incomplete linguistic information. A novel

trust propagation method is proposed to derive trust relationship from an incomplete connected trust

network and the trust score induced order weighted averaging operator is presented to aggregate the

orthopairs of trust/distrust values obtained from different trust paths. Then, the concept of relative

trust score is defined, whose use is twofold: (1) to estimate the unknown preference values; and (2) as

a reliable source to determine experts’ weights. A visual feedback process is developed to provide

experts with graphical representations of their consensus status within the group as well as to identify

the alternatives and preference values that should be reconsidered for changing in the subsequent

consensus round. The feedback process also includes a recommendation mechanism to provide advice

to those experts that are identified as contributing less to consensus on how to change their identified

preference values. It is proved that the implementation of the visual feedback mechanism guarantees

the convergence of the consensus reaching process.

Keywords: Social network, Multiple criteria group decision making, Trust propagation, Trust

aggregation, Visual feedback, Incomplete linguistic information

1. Introduction

Social network analysis [25, 47, 50] studies the relationships between social entities like members

of a group, corporations or nations. Of particular interest, and the focus of this paper, is to investigate

consensus building between a group of experts connected via a network in which they explicitly express

opinions in the form of trust and distrust statements, which are referred herein as trust network [48]

and orthopairs of trust/distrust values [16], respectively. By analysing trust relationships between the
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networked experts, the concept of trust score and knowledge deficit are defined and used to propose

an order relation on the set of orthopairs of trust/distrust values, which will be used to distinguish

the most trusted expert from the group and, ultimately, to drive the aggregation of the individual

opinions in order to arrive at a group consensual decision making solution.

In a general multiple criteria group decision making (MCGDM), a group of experts express pre-

ference values on alternatives under multiple criteria and interact to derive a common solution [35].

Experts usually come from multiple organisations and/or may have different backgrounds and knowl-

edge on the decision making problem faced. Over the past decades, a large number of researchers

have been attracted into this field [8–10, 17, 29–31, 34, 65]. These proposed models have been de-

veloped under the assumption that the preference values on alternatives under multiple criteria are

completely expressed by experts. However, this assumption may not be completely realistic due to

lack of in-depth knowledge of the problem domain by all or some of experts [32, 45]. Thus, a key

issue that needs to be addressed in this type of decision making environment is that of “estimating

unknown preference values”. There exist algorithms available to estimate unknown preference values

in decision making based on the notion of consistency but not in trust [1–4, 7, 12, 13, 27, 41], which

is a new key knowledge that is possible to find in social network [33, 46]. An objective of this paper is

to develop a social trust based estimation method for MCGDM with incomplete preferences. On the

other hand, another key issue in this type of decision making problem is how to reach consensus to

derive the decision solution [6, 28]. The interactive consensus model is regarded as an effective method

to reach satisfactory consensus level because it implements a feedback mechanism to advice experts

on how to change their preferences [5, 19, 23, 24, 54, 57, 64]. The known interactive consensus models

force experts to change their preference values when consensus is below a threshold value. However,

this may conflict with decision making in real practice because it is up to the experts to implement

or not the given recommendations [22, 53]. Additionally, these consensus models have the limitation

that there is no visual representation to help them analyse their consensus position within the group.

The aim of this paper is to present a new trust based consensus model for social network in a 2–tuple

linguistic context [20, 21, 26, 38] under incomplete information. In this model, a policy allowing experts

to revisit their evaluations using appropriate and meaningful consensus information representation

within the social network framework is implemented. Firstly, a novel social trust propagation method

to derive unknown information associated to an expert using trusted third partners (TTPs) is proposed.

The trust score induced order weighted averaging (TS-IOWA) operator is developed to aggregate

the orthopairs of trust/distrust values obtained from different trust paths. Secondly, a novel visual

feedback process for MCGDM is designed to provide experts with: (1) visual representations of their

consensus status within the group; and (2) individual advice on how to change preference values.

Additionally, visual simulation of future consensus status is generated to support experts in revisiting

their evaluations and make changes to achieve a higher level of consensus. When this visual feedback
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mechanism is used to guide the consensus reaching process then its convergence is guaranteed within

the social network.

The rest of paper is set out as follows: Section 2 introduces the trust network and an order relation

of orthopairs of trust/distrust values, as well as the novel trust propagation and trust aggregation

operators. In Section 3, the concept of relative trust score (RTS) and average trust degree (ATD) are

defined. The first degree is used to estimate the unknown 2–tuple linguistic preference values, while

the second one is used to aggregate the individual 2–tuple linguistic preference relations. Section

4 presents a new visual consensus model for social network that integrates visual representations of

experts’ consensus status within the group, the identification of experts and preference values that

contribute less to consensus, individual advice on how to change preference values and visual simulation

of future consensus status. The convergence of the consensus reaching process is also proved when this

visual feedback mechanism is used to guide it. An analysis of the proposed visual consensus model

with respect to existing consensus models in literature is given in Section 5. Finally, conclusions are

drawn in Section 6.

2. Trust Propagation and Aggregation in Social Network

Social Network Analysis (SNA) [25, 47, 50] studies the relationships between social entities like

members of a group, corporations or nations. Therefore, it enables us to examine their structural and

locational properties including centrality, prestige, structural balance, trust relationship etc. There

are three notational schemes in SNA analysis: set of actors, the relations themselves, and the actor

criteria (see Table 1). As a consequence, we can refer to important network concepts in a unified

manner.

• Graph theoretic: in which the network is viewed as a graph consisting of nodes joined by lines.

• Algebraic: this notation presents the advantage that allow us to distinguish several distinct

relations and represent combinations of relations.

• Sociometric: in which relational data are often presented in two-ways matrices called sociomatrix.

The above sociomatrix is a binary or crisp relation. However, in many situations, it may not be

suitable to represent the relation in a crisp way because it is not clear cut defined. Notice that in

real life too, trust is often interpreted as a gradual concept as humans do not just reason in terms of

‘trusting’ and ‘not trusting’, but rather trusting someone ‘very much’ or ‘more or less’ [18]. Victor

et al. in [48] introduce the following adapted bilattice structure based on the use of orthopairs of

trust/distrust values as follows:
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Table 1: Different notations in Social Network Analysis

e
1

e
2

e
3

e
4

e
5

e
6

E1RE2 E4RE3

E1RE3 E4RE5

E1RE4 E4RE6

E1RE5 E5RE3

E2RE5 E5RE6

E3RE2 E6RE3

A =



0 1 1 1 1 0

0 0 0 0 1 0

0 1 0 0 0 0

0 0 1 0 1 1

0 0 1 0 0 1

0 0 1 0 0 0


Graph Algebraic Sociometric

Definition 1. The set of orthopairs of trust/distrust values (BL�) can be endowed with a bilattice

structure with the following trust ordering (≤t), knowledge ordering (≤k), and negation operator (¬):

BL� = ([0, 1]2,≤t,≤k,¬)

(t1, d1) ≤t (t2, d2) iff t1 ≤ t2 and d1 ≥ d2

(t1, d1) ≤k (t2, d2) iff t1 ≤ t2 and d1 ≤ d2

¬(t1, d1) = (d1, t1)

As stated by Victor et al. in [48], it is clear that “the lattice ([0, 1]2,≤t) orders the [orthopairs of

trust/distrust values] going from complete distrust (0, 1) to complete trust (1, 0), [while] the ([0, 1]2,≤k)

evaluates the amount of available trust evidence, ranging from [. . . ] incomplete information [t1+d1 < 1]

to [. . . ] inconsistent or contradictory information [t1+d1 > 1]”. Thus, two orthopairs of trust/distrust

values with same trust values and different distrust values will be placed in reverse order by the trust

ordering ≤t and the knowledge ordering ≤k, and thus to avoid this outcome Victor et al.’s ordering

approach will not be used. Having said this, it is noticed here that the methodology used in the case

of intuitionistic fuzzy sets [52, 55] for the concepts of score and accuracy of an intuititionistic value

can be applied in this context to define the following concepts of trust score and knowledge deficit

so that a two steps complete ordering on the set of orthopairs of trust/distrust values can be derived

[48]:

Definition 2 (Trust Score and Knowledge deficit). The trust score and knowledge deficit as-

sociated to an orthopair of trust/distrust values (t1, d1) are:

TS(t1, d1) = t1 − d1

KD(t1, d1) = |1− t1 − d1|.

Following Victor et al. in [48], we say that orthopairs of trust/distrust values (t1, d1) for which

KD(t1, d1) = 0, i.e., t1 + d1 = 1, have perfect knowledge (i.e., complete trust state), while all others

will have a deficit in knowledge. The combination of both trust score and knowledge deficit can be

used to propose the following order relation for the set of orthopairs of trust/distrust values:

4



Definition 3. Let (t1, d1) and (t2, d2) be orthopairs of trust/distrust values, TS1 = t1 − d1 and

TS2 = t2−d2 their associated trust scores, and KD(t1, d1) = |1−t1−d1| and KD(t2, d2) = |1−t2−d2|

their associated knowledge deficits, respectively. We have that

1. If TS1 < TS2, then (t1, d1) is smaller than (t2, d2), denoted by (t1, d1) < (t2, d2);

2. If TS1 > TS2, then (t1, d1) is greater than (t2, d2), denoted by (t1, d1) > (t2, d2);

3. If TS1 = TS2, then:

(a) if KD(t1, d1) < KD(t2, d2), then (t1, d1) is greater than (t2, d2), denoted by (t1, d1) >

(t2, d2);

(b) if KD(t1, d1) > KD(t2, d2), then (t1, d1) is smaller than (t2, d2), denoted by (t1, d1) <

(t2, d2);

(c) if KD(t1, d1) = KD(t2, d2), then (t1, d1) is equal to (t2, d2), denoted by (t1, d1) = (t2, d2).

Thus, when comparing two orthopairs of trust/distrust values, the one with higher trust score is

ordered first, and in case of equal trust scores, the lower knowledge deficit prevails. We can utilise

the order relation of orthopairs of trust/distrust values to distinguish the most trusted expert from

a group or path in a trust network, which is useful in fusing individual opinions because it can be

used to induce the ordering of an OWA based aggregation of the decision matrix values. This will be

elaborated later in the paper.

2.1. Trust propagation

In a trust network, some experts may be typically unknown to a specific expert, which means they

are not able to give the orthopairs of trust/distrust values on him/her directly. However, we still can

derive some information on whether or not an unknown expert can be trusted by using indirect paths

of trusted third parties (TTPs). This is illustrated in Fig. 1 where three experts are illustrated in

which there is no direct orthopair of trust/distrust values between expert E1 and E3, although an

indirect orthopair of trust/distrust values between expert E1 and E3 can be obtained by propagating

the corresponding values of the path via expert E2.

The above scenario was investigated by Victor et al. in [48], where the following propagation

operator was proposed:

P ((t1, d1), (t2, d2)) = (T (t1, t2), T (t1, d2)) (1)

with T being a t-norm as illustrated in Fig. 2. This operator reflects the expected behaviour:

• expert E1 trusts E3 when E1 trusts E2 and E2 trusts E3: P ((1, d1), (1, d2)) = (T (1, 1), T (1, d2)) =

(1, d2).
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E1

E2

E3

(t1, d1) (t2, d2)

Figure 1: No direct orthopair of trust/distrust values between E1 and E3

E1

E2

E3

(t1, d1) (t2, d2)

(T (t1, t2), T (t1, d2))

Figure 2: Trust propagation of orthopairs of trust/distrust values between E1 and E3 via E2

• expert E1 distrusts E3 when E2 distrusts E3 and E1 trusts E2: P ((1, d1), (t2, 1)) = ((T (1, t2), T (1, 1)) =

(t2, 1).

Recall that Victor et al. in [49] interpret the orthopair of trust/distrust values (0,0) as representing

complete ignorance. Obviously, when a trust path happens to contain an ignorance orthopair of

trust/distrust values then the propagation operator output will also be an ignorance orthopair of

trust/distrust values. Thus, an ignorance case will be treated here as an incomplete entry [2] rather

than be modelled with the (0,0) orthopair of trust/distrust values.

Notice that associativity of t-norm T implies associativity of propagation operator P :

P (P ((t1, d1), (t2, d2)) , (t3, d3)) = P ((T (t1, t2), T (t1, d2)) , (t3, d3))

= (T (T (t1, t2), t3) , T (T (t1, t2), d3))

= (T (t1, T (t2, t3)) , T (t1, T (t2, d3)))

= P ((t1, d1), (T (t2, t3), T (t2, d3))) = P ((t1, d1), P ((t2, d2), (t3, d3)))

Thus, an incomplete trust path as the one illustrated in Fig. 3 can be completed using the associativity

property of P , i.e.

P ((t1, d1), (t2, d2), (t3, d3)) = (T (t1, t2, t3), T (t1, t2, d3)) (2)

as illustrated in Fig. 4.

Expression (2) can be extended to an arbitrary number of experts n(≥ 3) as follows:

P ((t1, d1), (t2, d2), . . . , (tn, dn)) = (T (t1, t2, . . . , tn), T (t1, t2, . . . , tn−1, dn)) (3)
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E1

E2 E3

E4

(t1, d1)

(t2, d2)

(t3, d3)

Figure 3: No direct orthopair of trust/distrust values between E1 and E4

E1

E2 E3

E4

(t1, d1)

(t2, d2)

(t3, d3)

(T (t1, t2, t3), T (t1, t2, d3))

Figure 4: Trust propagation of orthopairs of trust/distrust values between E1 and E4 via trust path E1 → E2 → E3 → E4

To prove (3), induction on n is applied:

1. Basis: n = 3. This is the associativity property (2) already proved to be true.

2. Induction hypothesis: Let’s assume that (3) is true for n = k and prove that it is also true when

n = k + 1. Applying associativity of P we have:

P ((t1, d1), (t2, d2), . . . , (tk+1, dk+1)) = P (P ((t1, d1), (t2, d2), . . . , (tk, dk)) , (tk+1, dk+1))

Applying that (3) is true for n = k we have:

P ((t1, d1), (t2, d2), . . . , (tk+1, dk+1)) = P ((T (t1, t2, . . . , tk), T (t1, t2, . . . , tk−1, dk)) , (tk+1, dk+1))

Definition of P is applied to obtain:

P ((t1, d1), (t2, d2), . . . , (tk+1, dk+1)) = (T (T (t1, t2, . . . , tk), tk+1) , T (T (t1, t2, . . . , tk), dk+1))

Applying associativity of t-norm T yields:

P ((t1, d1), (t2, d2), . . . , (tk+1, dk+1)) = (T (t1, t2, . . . , tk+1), T (t1, t2, . . . , tk, dk+1))
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In this paper, and for illustration purposes, we will be making use of the product t-norm T (x, y) = x ·y

and therefore

P ((t1, d1), (t2, d2), . . . , (tn, dn)) =

(
n∏
i=1

ti,

(
n−1∏
i=1

ti

)
· dn

)
(4)

2.2. Trust aggregation

A crucial step in any group decision making (GDM) process is the aggregation of individual opinions

with the aim of achieving a “fair” representation of each individual within the group. In 1988, Yager

introduced an aggregation technique based on the order weighted averaging (OWA) scheme [58]. Since

then, OWA based aggregation strategies have been widely investigated [15, 37, 43, 51, 61, 66].

Definition 4 (OWA Operator). An OWA operator of dimension n is a mapping OWAW : Rn → R,

which has associated set of weights W = (w1, · · · , wn)T to it, so that wi ∈ [0, 1] (positive) and
n∑
i=1

wi = 1 (normalised),

OWAW (a1, · · · , an) =
n∑
i=1

wiaσ(i)

where σ : {1, · · · , n} → {1, · · · , n} is a permutation function such that aσ(i) is the i-th highest value

in the set
{
a1, · · · , an : aσ(i) ≥ aσ(i−1)

}
.

The aggregation of orthopairs of trust/distrust values was proposed to be carried out by Victor et

al. [49] using the following OWA based aggregation operator:

Definition 5 (K-OWA Operator). The K-OWA operator is the mapping K-OWAWT ,WD
: BL�n →

BL�,

K–OWAWT ,WD
((t1, d1), . . . , (tn, dn))) = (OWAWT

(t1, . . . , tn), OWAWD
(d1, . . . , dn)), (5)

with following associated sets of normalised and positive trust weights WT = (wT1 , . . . wTn)

wTi =
2 ·max

(
0,
[
n
2 − i+ 1

])[
n
2

] [
n
2 + 1

] (6)

and normalised and positive distrust weights WD = (wD1 , . . . wDn):

wDi =
2 ·max

(
0,
[
n
4 − i+ 1

])[
n
4

] [
n
4 + 1

] (7)

The K-OWA aggregation operator has fixed orness(WT ) = orness(WD) = 2/3, and then it always

exhibits a maximum-like behaviour. However, in a real decision making case, this assumption may

not be met because the group of experts may have different risk attitude such as: minimum-like,

neutral-like behaviour, etc. Therefore, the K-OWA aggregation operator has a limitation of not al-

lowing the implementation of different attitude of experts. To resolve this problem, the trust score

induced ordered weighted operator (TS-IOWA) operator is proposed, which extends the induced or-

dered weighted averaging (IOWA) operator proposed by Yager [60] to the aggregation of orthopairs

of trust/distrust values :
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Definition 6 (IOWA Operator). An IOWA operator is a mapping IOWAW : (R × R)n −→ R, to

which a set of positive and normalised vector is associated, W = (w1, . . . , wn), that aggregates

the set of second arguments of a list of n 2–tuples {〈u1, p1〉, . . . , 〈un, pn〉} according to the following

expression,

IOWAW (〈u1, p1〉, . . . , 〈un, pn〉) =
n∑
i=1

wi · pσ(i),

being σ : {1, . . . , n} −→ {1, . . . , n} a permutation such that uσ(i) ≥ uσ(i+1), ∀i = 1, . . . , n − 1, i.e.,

〈uσ(i), pσ(i)〉 is the 2–tuple with uσ(i) the i-th highest value in the set {u1, . . . , un}.

Given a set of n orthopairs of trust/distrust values {(t1, d1), . . . , (tn, dn)}, their associated trust

score and knowledge deficit vector U = (u1, . . . , un) can be computed as per Definition 2

ui = (TSi,KDi) = (ti − di, |1− ti − di|) (8)

and its components being ordered according to Definition 3, to be used as the order induce variable

of the TS-IOWA operator. This is expressed formally in the following:

Definition 7 (TS-IOWA Operator). Given the set {(ti, di)|i = 1, . . . , n} , the trust induced or-

dered weighted operator (TS-IOWA) with order induce variable U = (u1, . . . , un), ui = (TSi,KDi) =

(ti − di, |1− ti − di|), is expressed as

TS-IOWAU ((t1, d1), . . . , (tn, dn))) = (IOWAU,T , IOWAU,D) (9)

where

IOWAU,T = IOWA(〈u1, t1〉, . . . , 〈un, tn〉) (10)

and

IOWAU,D = IOWA(〈u1, d1〉, . . . , 〈un, dn〉) (11)

An issue to deal with for the implementing the TS-IOWA operator is how to obtain its associated

weighting vector. In our decision-making context, trust scores can also be used to assign importance

degrees so that the higher the trust score the higher the importance degree [11, 43].

In [59], Yager provided a procedure to evaluate the overall satisfaction of Q important criteria

(experts) by an alternative x by computing the weighting vector associated to an OWA operator as

follows:

wh = Q

(
S(h)

S(n)

)
−Q

(
S(h− 1)

S(n)

)
(12)

being Q the Basic Unit-interval Monotone (BUM) membership function (non-decreasing Q : [0, 1] →

[0, 1] such that Q(0) = 0, Q(1) = 1) of the linguistic quantifier, S(h) =
∑h

l=1 sσ(l), sl the importance

degree of criterion l, and σ the permutation used to produce the ordering of the values to be aggregated.
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Trust Network
E1 E2 

E3 E4 

E5 

Figure 5: Graph representation of the trust sociomatrix

This approach for the inclusion of importance degrees associates a zero weight to those experts with

zero importance degree. This procedure was extended to the case of IOWA operator in [60]. In this

case, each component in the aggregation consists of a triple (rh, sh, uh) where rh is the argument value

to aggregate, sh is the importance weight value associated to rh, and uh is the order inducing value.

In this paper, each orthopair of trust/distrust values (th, dh) is associated its trust score TSh as

its importance weight and its uh = (TSh,KDh) value as the order inducing value. Thus, the weights

associated to the TS-IOWA operator in Definition 7 are computed as follows

wσ(h) = Q

(
T (σ(h))

T (σ(k))

)
−Q

(
T (σ(h− 1))

T (σ(k))

)
(13)

with T (σ(h)) =
∑h

l=1 TSσ(l), and uσ(l) is the l−th largest value of set {u1, . . . , un}.

It is worth noting that the TS-IOWA operator allows for different (BUM) functions Q to be used,

which allows for the implementation of different risk attitude of experts [59], Thus, the TS-IOWA

operator is more flexible than the K-OWA operator as it is possible to be used in a wider range of

decision contexts. In the following, we illustrate how the propagation operator and the TS-IOWA

operator are used to complete a trust network sociomatrix.

Example 1. Suppose that five experts {E1, E2, E3, E4, E5} are socially trust related as illustrated

in Figure 5, with following trust sociomatrix SL:

ST =



− − (0.8, 0.2) − (0.7, 0.1)

(0.8, 0.1) − − (0.9, 0.3) −

(0.9, 0.2) − − (0.8, 0.2) −

− − − − (0.9, 0.3)

− (1.0, 0.1) − − −
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Figure 5 is a connected network because there is a path between every pair of nodes but it is not

complete because some pairs of nodes are not directly linked [47, 50]. For example, there is no direct

trust link from E1 to E4. However, we observe that there are two paths that goes from E1 to E4:

E1 → E3 → E4 and E1 → E5 → E2 → E4. Then, according to expression (4), we can propagate trust

and obtain the following orthopairs of trust/distrust between E1 and E4:

P134((0.8, 0.2), (0.8, 0.2)) = (0.64, 0.16)

and

P1524((0.7, 0.1), (1.0, 0.1), (0.9, 0.3))) = (0.63, 0.21)

The trust score and knowledge deficit of both paths are: u134 = (0.48, 0.2) and u1524 = (0.42, 0.16).

To arrive to a single orthopair of trust/distrust value for the direct link from E1 to E4, we aggregate

both P134 and P1524 using the TS-IOWA operator. The application of the quantifier Q(r) = r0.5 , used

in literature to model the fuzzy linguistic quantifier ‘most of’ [11], yields the following weights

wσ(1) = 0.73, wσ(2) = 0.27,

and the final TS-IOWA orthopair of trust/distrust value from E1 to E4 of

(t14, d14) = (0.73× 0.64 + 0.27× 0.63, 0.73× 0.16 + 0.27× 0.21) = (0.64, 0.17).

Applying the above same process, we arrive to the following complete trust sociomatrix

ST =



− (0.64, 0.06) (0.80, 0.20) (0.64, 0.17) (0.70, 0.10)

(0.80, 0.10) − (0.64, 0.16) (0.90, 0.30) (0.74, 0.22)

(0.90, 0.20) (0.70, 0.07) − (0.80, 0.10) (0.65, 0.13)

(0.72, 0.09) (0.90, 0.09) (0.58, 0.14) − (0.90, 0.30)

(0.80, 0.10) (1.00, 0.10) (0.64, 0.16) (0.80, 0.24) −


3. Trust Based Estimation and Aggregation of 2–tuple Linguistic Values

To deal with the unknown elements in decision making process, some estimation methods were

introduced in the decision making with preference relations [1, 12, 13, 44]. These methods are usually

driven by the notion of consistency, which is related to the personal knowledge and reasonability of

individual expert. This article, though, proposes a novel estimation method for incomplete MCGDM

problems in which one expert can use other experts’ knowledge to estimate the unknown preference

values in his/her personal decision matrix [2]. To do that, we first compute the relative trust degree

(RTD) from one expert to the other experts, and then propose an approach to estimate the unknown

elements by aggregating other experts’ judgement. Furthermore, the average trust degree (ATD) is

defined as a reliable source to compute experts’ weights for aggregating the individual 2–tuple decision

matrices.
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3.1. Incomplete 2–tuple linguistic decision matrix

Subjectivity, imprecision and vagueness in the articulation of opinions pervade real world decision

applications, and individuals might feel more comfortable using words by means of linguistic labels or

terms to articulate their preferences [36, 39, 62]. In these cases is still valid the following quotation by

Zadeh [63]: ‘Since words, in general, are less precise than numbers, the concept of a linguistic variable

serves the purpose of providing a means of approximate characterisation of phenomena which are too

complex or too ill-defined to be amenable to description in conventional quantitative terms.’

Let S = {s0, . . . , st} be a set of linguistic labels (t ≥ 2), with semantic underlying a ranking

relation that can be precisely captured with a linear order, i.e., s0 < s1 < · · · < st. Table 2 provides

an example with seven linguistic labels and their corresponding semantic meanings.

Linguistic label Semantic meaning

s0 extremely poor (EP)

s1 very poor (VP)

s2 poor (P)

s3 medium/average (M)

s4 good (G)

s5 very good (VG)

s6 extremely good (EG)

Table 2: Seven linguistic labels and their semantic meanings

Assuming that the number of labels is odd and the central label st/2 stands for the medium/average

state, the remaining labels are usually located symmetrically around that central assessment. Thus, the

operator defined as N(sh) = sg with (g+h) = t is a negator operator because N (N(sh)) = N(sg) = sh

[40].

The 2–tuple linguistic model was introduced by Herrera and Mart́ınez in [26]. This linguistic

model takes as a basis the symbolic representation model based on indexes and in addition defines the

concept of symbolic translation to represent the linguistic information by means of a pair of values

called linguistic 2–tuple, (sb, αb), where sb ∈ S is one of the original linguistic terms and αb is a

numeric value representing the symbolic translation. This representation structure allows, on the one

hand, to obtain the same information than with the symbolic representation model based on indexes

without losing information in the aggregation phase. On the other hand, the result of the aggregation

is expressed on the same domain as the one of the initial linguistic labels and therefore, the well-known

re-translation problem of the above methods is avoided.

Definition 8 (Linguistic 2–tuple representation). Let a ∈ [0, t] be the result of a symbolic

aggregation of the indexes of a set of labels assessed in a linguistic term set S = {s0, . . . , st}. Let

12



b = round(a) ∈ {0, . . . , t}. The value αb = a− b ∈ [−0.5, 0.5) is called a symbolic translation, and the

pair of values (sb, αb) is called the 2–tuple linguistic representation of the symbolic aggregation a.

The 2–tuple linguistic representation of symbolic aggregation can be mathematically formalised

with the following mapping:

∆: [0, t] −→ S × [−0.5, 0.5)

∆(a) = (sb, αb).
(14)

Based on the linear order of the linguistic term set and the complete ordering of the set [−0.5, 0.5), it

is easy to prove that ∆ is strictly increasing and continuous and, therefore its inverse function exists:

∆−1 : S × [−0.5, 0.5) −→ [0, t]

∆−1(sb, αb) = b+ αb = a.
(15)

The following negation operator is defined: N(∆(a)) = ∆(t − a). Figure 6 illustrates the application

of the 2–tuple function ∆ and its inverse ∆−1 for a linguistic term set of cardinality seven. The value

of the symbolic translation is assumed to be 2.8, which means that round(2.8) = 3 and therefore it

can be represented with the 2–tuple (s3,−0.2).

a = 2.8 (sb, αb) = (s3,−0.2)

∆

∆−1

0 1 2 3 4 5 6

Figure 6: Linguistic 2–tuple symbolic translation

Give a set of 2–tuple linguistic labels {(s1, α1), (s2, α2), . . . , (sn, αn)} and a set of positive and

normalised weights (w1, w2, . . . , wn)T , i.e. wj ∈ [0, 1],
∑n

j=1wj = 1, the 2–tuples weighted arithmetic

average (WAA) is computed as follows [3]:

(s̃, α̃) = ϕ((s1, α1), . . . , (sn, αn)) = ∆

 n∑
j=1

wj ·∆−1(si, αi)

 (16)

where s̃ ∈ S, α̃ ∈ [−0.5, 0.5).

Definition 9 (2–tuple decision matrix). A 2–tuple decision matrix decision matrix R = (rij)m×n

is a matrix with elements rij being 2–tuple linguistic labels:

rij = (sij , αij), i = 1, 2, ...,m; j = 1, 2, ..., n

If an expert is not able to efficiently provide the preference values to some of the alternatives

under a particular criterion, then an incomplete 2–tuple decision matrix will result [1]. The 2–tuple
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decision matrix can be considered as a particular case of the incomplete 2–tuple decision matrix. For

an incomplete 2–tuple decision matrices, when the preference value of alternatives xi under criteria

cj , rij , is not known the symbol × will be used in the corresponding matrix entry.

Example 2. A company is to evaluate four green suppliers: {x1, x2, x3, x4}. The following five crite-

ria {c1, c2, c3, c4, c5} are considered: c1 = Remanufacturing/reuse activity; c2 = Energy consumption;

c3 = Reverse logistics program; c4 = Hazardous waste management; c5 = Environmental certifica-

tion. The weights associated to the five criteria is ω = (0.25, 0.20, 0.15, 0.10, 0.30)T . This company

has a group of experts {E1, E2, E3, E4, E5} form five different departments. The five experts give the

following linguistics evaluations of four green suppliers:

Expert E1 assessments

Supplier/Criterion C1 C2 C3 C4 C5

A1 G VG G P M

A2 × M VG M ×

A3 VG P × VP G

A4 G G VG M VG

Expert E2 assessments

C1 C2 C3 C4 C5

P G × M M

EG VG M G P

× M G M M

VG G VG P G

Expert E3 assessments

C1 C2 C3 C4 C5

M G G P G

G M × M M

VG M M P VG

VG P M VP M

Expert E4 assessments

Supplier/Criterion C1 C2 C3 C4 C5

A1 G × VG M P

A2 VG G G P G

A3 G VP M M P

A4 EG M × M VG

Expert E5 assessments

C1 C2 C3 C4 C5

M VG VG × ×

VG G M G G

EG P P M M

G M G P VG

The incomplete 2–tuple decision matrices representation are:

R1 =


(s4, 0) (s5, 0) (s4, 0) (s2, 0) (s3, 0)

× (s3, 0) (s5, 0) (s3, 0) ×

(s5, 0) (s2, 0) × (s1, 0) (s4, 0)

(s4, 0) (s4, 0) (s5, 0) (s3, 0) (s5, 0)

 R2 =


(s2, 0) (s4, 0) × (s3, 0) (s3, 0)

(s6, 0) (s5, 0) (s3, 0) (s4, 0) (s2, 0)

× (s3, 0) (s4, 0) (s3, 0) (s3, 0)

(s5, 0) (s4, 0) (s5, 0) (s2, 0) (s4, 0)



R3 =


(s3, 0) (s4, 0) (s4, 0) (s2, 0) (s4, 0)

(s4, 0) (s3, 0) × (s3, 0) (s3, 0)

(s5, 0) (s3, 0) (s3, 0) (s2, 0) (s5, 0)

(s5, 0) (s2, 0) (s3, 0) (s1, 0) (s3, 0)

 R4 =


(s4, 0) × (s5, 0) (s3, 0) (s2, 0)

(s5, 0) (s4, 0) (s4, 0) (s2, 0) (s4, 0)

(s4, 0) (s1, 0) (s3, 0) (s3, 0) (s2, 0)

(s6, 0) (s3, 0) × (s3, 0) (s5, 0)



R5 =


(s3, 0) (s5, 0) (s5, 0) × ×

(s5, 0) (s4, 0) (s3, 0) (s4, 0) (s4, 0)

(s6, 0) (s2, 0) (s2, 0) (s3, 0) (s3, 0)

(s4, 0) (s3, 0) (s4, 0) (s2, 0) (s5, 0)


3.2. Trust based estimation of unknown 2–tuple linguistic values

Recall that we are assuming a group of experts, E = {E1, . . . , Ek}, are related via a connected trust

network as illustrated in Fig. 5. The trust propagation operator in conjunction with the TS-IOWA
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operator are used to make this trust network a complete one and consequently all network ordered

pairs of nodes, (El, Eh), will have a directed link with an associated orthopairs of trust/distrust from

El to Eh: Slh = (tlh, dlh). Note that each expert, El, can be associated its trust scores to each one of

the other experts in the network: {TSlf = tlf − dlf | f ∈ {1, . . . , k} ∧ f 6= l}.

The problem here is how to arrive at consensus between this group of experts regarding the selection

of the best alternative from a set of feasible ones, A = {x1, . . . , xm}, that are assessed linguistically

using a set of labels, S = {s0, . . . , st}, against a set of criteria, {C1, . . . , Cn}. Thus, each expert, El,

will be providing a linguistic decision matrix that will be conveniently represented in the form of a

2–tuple linguistic decision matrix, Rl = (rlij)m×n.

We note that trust score values of a particular expert can be used to compute a trust based

estimated decision matrix using the decision matrices of the other experts in the group, which can be

useful if a particular expert provides an incomplete decision matrix. Indeed, we first remark that the

following set of relative trust score values{
RTSlh =

TSlh∑k
f=1
f 6=l

TSlf

∣∣∣∣∣ h ∈ {1, . . . , k} ∧ h 6= l

}

constitutes a normalised weighting vector, and therefore can be used as weighting vector of the 2–tuples

weighted arithmetic average (WAA) to aggregate the rest of experts decision matrices

r̃lij = ∆

 k∑
h=1
h6=l

RTSlh ·∆−1
(
rhij

) (17)

This aggregated value is derived using the knowledge of the rest of experts, and will be referred here

simply as the trust based estimated assessment, and can be used to estimate a particular linguistic

assessment when not provided by just one expert, as the following example illustrates:

Example 3. (Example 2 continuation) Using the complete trust sociomatrix ST obtained in

Example 1, we compute the relative trust score (RTD) matrix:

RTS =



− 0.25 0.27 0.21 0.27

0.30 − 0.21 0.26 0.23

0.27 0.25 − 0.27 0.21

0.25 0.33 0.18 0 0.24

0.27 0.34 0.18 0.21 0


.

Applying expression (17), the unknown preference values in R1, R2, R3, R4, R5 are estimated with the

following trust based 2–tuple values:

r̃121 = (s5, 0), r̃125 = (s3, 0.2), r̃133 = (s3, 0), r̃213 = (s4, 0.5), r̃231 = (s5, 0), r̃323 = (s4,−0.2), r̃412 = (s4, 0.5),

r̃443 = (s5,−0.4), r̃514 = (s3,−0.4), r̃515 = (s3, 0)
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The above estimation procedure can be extended to the case of having more than one expert not

providing the same linguistic evaluation and there is at least one expert providing it. Indeed, denoting

MVij = {f ∈ {1, . . . , k}| rfij is unknown} then we adapt expression (17) as follows:

∀l ∈MVij : r̃lij = ∆

 ∑
h/∈MVij

RTSlh ·∆−1
(
rhij

) (18)

with RTSlh =
TSlh∑

f /∈MVij

TSlf
.

3.3. Trust aggregation of 2–tuple linguistic decision matrices

From previous section, we can assume that experts decision matrices are complete, and thus they

are in a position to aggregate them in order to choose a collective decision. As it happens that the

experts are trust networked, the aggregation step can be used to implement the different degrees of

trust an expert receives from the rest of the group as a measure of its prominent position within the

network. In SNA, for a weighted directed network like the trust network here dealt with, the in-degree

centrality is used to quantify the importance of the nodes in the network [47, 50]. Using averages, the

trust score in-degree centrality associated to expert El is

TSh =
1

k − 1

k∑
l=1

TSlh. (19)

Thus, each expert in the trust network can be associated the following normalised average trust degree

(ATD)

ATDh =
TSh
k∑
l=1

TSl

. (20)

This value will be used as the contribution of an expert in the collective 2–tuple linguistic decision

matrix, R = (rij):

rij = ∆

(
k∑

h=1

ATDh ·∆−1
(
rhij

))
. (21)

Example 4. (Example 2 continuation) According to expression (19), the trust score in-degree

centrality values of experts E1, E2, E3, E4, E5 are:

TS1 = 0.69 TS2 = 0.73; TS3 = 0.5;TS4 = 0.59; TS5 = 0.56.

Thus, the average trust degrees of each expert are:

ATD1 = 0.23; ATD2 = 0.24; ATD3 = 0.16; ATD4 = 0.19; ATD5 = 0.18.
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The collective 2–tuple linguistic decision matrix is

R =


(s3, 0.2) (s4, 0.5) (s4, 0.5) (s2, 0.5) (s3, 0)

(s5, 0.1) (s4,−0.1) (s4,−0.2) (s3, 0.2) (s3, 0.2)

(s5, 0) (s2, 0.2) (s3, 0.1) (s2, 0.4) (s3, 0.4)

(s5,−0.2) (s3, 0.3) (s4, 0.4) (s2, 0.3) (s4, 0.4)



4. Visual consensus model for incomplete MCGDM

Once the collective 2–tuple decision matrix is obtained, we define the consensus index (CI) at three

levels: (i) decision matrix; (ii) alternatives; and (iii) preference values. When the consensus index

reaches a threshold value, agreed by the group of experts, the resolution process of the MCGDM is

carried out; otherwise the experts are normally invited to revisit their opinions further in an effort

to make them closer. To do that, a visual consensus model is here developed to help experts ‘see’

their relative consensus position within the group as well as to identify the alternatives and preference

values that contribute less to consensus. Additionally, the visual consensus model also includes a

recommendation mechanism to produce individualised advise to experts on how to increase consensus.

Finally, a visual graphical simulation of future consensus status if the recommended values were to

be implemented is provided. In the light of this visual extra information, experts can revisit their

evaluations and make changes if considered appropriate to increase consensus.

The trust propagating aggregation and visual consensus decision model for incomplete MCGDM

with 2–tuple linguistic information is depicted in Figure 7. Specifically, it consists of the following five

steps: (1) Computing trust degrees; (2) Estimating unknown preference values; (3) Determining the

consensus index at the three levels; (4) Visual consensus identification, recommendation and feedback

simulation; and (5) Selection Process. The first and second steps have already been covered in Section

2 and Section 3, respectively. The remaining steps will be presented in more detail in the following

subsections. A step-by-step example to illustrate the computation processes involved in each step is

also provided. For the sake of simplicity, a low number of experts and alternatives are assumed.

4.1. Consensus Index

Key in the visual consensus model is the computation of the consensus index for each expert

measuring the similarity between an expert’s provided preferences and the group of experts’ collective

preferences [14, 42]:

Level 1. Consensus index on preference values. The consensus index of an expert Eh to the group

of expert on the assessment of alternative xi under criterion Cj is

CEhij = 1− d(rhij , rij) = 1−

∣∣∣∆−1(rhij)−∆−1(rij)
∣∣∣

t
. (22)
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Figure 7: Trust propagating aggregation and visual consensus model for MCGDM under incomplete information

Level 2. Consensus index on alternatives. The consensus index of an expert Eh to the group of

expert on the alternative xi is

CAhi =
1

n

n∑
j=1

CEhij . (23)

Level 3. Consensus index on the decision matrix. The consensus index of an expert Eh to the group

of expert on the decision matrix is

CIh =
1

m

m∑
i=1

CAhi . (24)

The greater the value of CIh(0 ≤ CIh ≤ 1), the greater the agreement between an individual expert

(Eh) and the group as a collective. When minhCI
h is greater than a threshold value γ ∈ [0.5, 1), fixed

a priori by the group of expert, then the consensus reaching process ends and the selection process

is applied to achieve the solution of consensus. Otherwise, a recommendation mechanism could be

activated to give advice to the experts.

Example 5. (Example 2 continuation) The consensus indexes on preference values of alternatives

are:

CE1 =


0.87 0.92 0.92 0.92 1.00

0.98 0.85 0.80 0.97 1.00

1.00 0.97 0.98 0.77 0.90

0.87 0.88 0.90 0.88 0.90

 CE2 =


0.80 0.92 1.00 0.92 1.00

0.85 0.82 0.87 0.87 0.80

1.00 0.87 0.85 0.90 0.93

0.97 0.88 0.90 0.95 0.93
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CE3 =


0.97 0.92 0.92 0.92 0.83

0.82 0.85 1.00 0.97 0.97

1.00 0.87 0.98 0.93 0.73

0.97 0.78 0.77 0.78 0.77

 CE4 =


0.87 1.00 0.92 0.92 0.83

0.98 0.98 0.97 0.80 0.87

0.83 0.80 0.98 0.90 0.77

0.80 0.95 0.97 0.88 0.90



CE5 =


0.97 0.92 0.92 0.98 1.00

0.98 0.98 0.86 0.87 0.87

0.83 0.97 0.82 0.90 0.93

0.87 0.95 0.93 0.95 0.90


The consensus indexes on alternatives are:

CA1 = (0.92, 0.92, 0.92, 0.89); CA2 = (0.93, 0.84, 0.91, 0.93); CA3 = (0.91, 0.92, 0.90, 0.81);

CA4 = (0.91, 0.92, 0.86, 0.90); CA5 = (0.96, 0.91, 0.89, 0.92).

The individual consensus indexes are:

CI1 = 0.91, CI2 = 0.90, CI3 = 0.88, CI4 = 0.89, CI5 = 0.92.

With a threshold value of γ = 0.9 the recommendation mechanism is activated to assist experts E3

and E4.

4.1.1. Visual Identification of Preference Relation

Visual graphs as illustrated in Figure 8 can help experts ‘see’ their consensus position within the

group. Following with Example 5, Figure 8(a) presents a visual representation of all experts consensus

levels with respect to the threshold value, which clearly identifies E3 and E4 as the two experts

contributing less to group consensus. Additionally, individual visual representations of consensus levels

of alternatives and preference values are also provided to each expert to help them identify those

alternatives and their associated preference values that contribute less to consensus. For example,

visual representation at these two levels for expert E4 are illustrated in Figure 8(b) and Figure 8(c),

respectively. Mathematically, these steps are modelled as follows:

Step 1. The experts with a consensus index lower than the threshold value γ are identified:

EXPCH = {h | CIh < γ}

Step 2. For the identified experts, their alternatives with a CAhi lower than the satisfaction threshold

γ are identified:

ALT = {(h, i) | Eh ∈ EXPCH ∧ CAhi < γ}

Step 3. Finally, the preference values to be changed are:

APS = {(h, i, j) | (h, i) ∈ ALT ∧ CEhij < γ}.
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Example 6. (Example 3 continuation) The following APS set is obtained:

APS = {(3, 4, 2), (3, 4, 3), (3, 4, 4), (3, 4, 5), (4, 3, 1), (4, 3, 2), (4, 3, 5)}.

Then the generation of advice is activated.

4.1.2. Recommendation Mechanism for Generating Advice

The recommendation mechanism produces personalised advice to experts on which preference

values they should consider to change as well as the new preference values to use in order to increase

their consensus level. For all (h, i, j) ∈ APS, the following personalised recommendation rule is

presented to the corresponding expert:

“Your assessment of alternative xi under criterion Cj, r
h
ij, should change to a value closer to rrhij.”

∆−1(rrhij) = δ ·∆−1(rhij) + (1− δ) ·∆−1(rij)

where δ ∈ [0, 1] is a parameter to control the percentage of change in value from the original assessment

to the collective assessment. For δ = 1 no change is recommended, while for δ = 0 the original value

is recommended to be completely replaced by the collective one.

Example 7. (Example 2 continuation) Taking a value of δ = 0.5, the recommendations for

expert E3 are:

• Your assessment of alternative x4 under criteria C2 should change to a value closer to (s3,−0.3).

• Your assessment of alternative x4 under criteria C3 should change to a value closer to (s4,−0.3).

• Your assessment of alternative x4 under criteria C4 should change to a value closer to (s2,−0.3).

• Your assessment of alternative x4 under criteria C5 should change to a value closer to (s4,−0.3).
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The recommendations for expert E4 are:

• Your assessment of alternative x3 under criteria C1 should change to a value closer to (s4, 0.5).

• Your assessment of alternative x3 under criteria C2 should change to a value closer to (s2,−0.4).

• Your assessment of alternative x3 under criteria C5 should change to a value closer to (s3,−0.3).

4.1.3. Visual Feedback Process Simulation

The above recommendation mechanism has the advantage that the new preference values will be

closer to the collective ones. As a consequence, when all experts’ preferences are replaced by the

corresponding recommended preference values, as per the feedback rule above, will guarantee that all

expert consensus index values increase. This is proved in the following:

Lemma 1. Let {Rh = (rhij)|h = 1, · · · , k} be a set of 2–tuple linguistic decision matrices and R = (rij)

be the collective 2-tuple linguistic decision matrix

rij = ∆

(
k∑

h=1

ATDh ·∆−1
(
rhij

))
.

Let {rRh = (rrhij)|h = 1, · · · , k} be the set of 2–tuple linguistic decision matrices with

∆−1(rrhij) = δ ·∆−1(rhij) + (1− δ) ·∆−1(rij)

and R = (rij) be the collective 2-tuple linguistic decision matrix

rij = ∆

(
k∑

h=1

ATDh ·∆−1
(
rrhij

))
.

We have:

R = R.

Proof. Indeed, we have:

rij = ∆

(
k∑

h=1

ATDh ·∆−1
(
rrhij

))
= ∆

(
k∑

h=1

ATDh ·
(
δ ·∆−1(rhij) + (1− δ) ·∆−1(rij)

))

= ∆

(
δ ·

k∑
h=1

ATDh ·∆−1(rhij) + (1− δ) ·∆−1(rij) ·
k∑

h=1

ATDh

)
= ∆

(
δ ·∆−1(rij) + (1− δ) ·∆−1(rij)

)
= rij

Proposition 1. Under the condition of Lemma 1 we have: d(rrhij , rij) ≤ d(rhij , rij).
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Proof. Expression (22) yields:

d(rrhij , rij) =

∣∣∣∆−1(rrhij)−∆−1(rij)
∣∣∣

t

Applying Lemma 1, we have:

d(rrhij , rij) =

∣∣∣δ ·∆−1(rhij) + (1− δ) ·∆−1(rij)−∆−1(rij)
∣∣∣

t
= δ ·

∣∣∣∆−1(rhij)−∆−1(rij)
∣∣∣

t
.

Thus, it is

d(rrhij , rij) = δ · d(rhij , rij).

Because δ ∈ [0, 1] we have that d(rrhij , rij) ≤ d(rhij , rij).

Corollary 1. Under the condition of Lemma 1 and for all δ < 1, we have:

CIh ≤ CIh, (25)

where CIh is the consensus level computed using the set of set of 2–tuple linguistic decision matrices

{Rh = (rhij)|h = 1, · · · , k}, while CI
h

is the consensus level computed using the set of set of 2–tuple

linguistic decision matrices {rRh = (rhij)|h = 1, · · · , k}.

Proof. From Proposition 1, we have that d(rrhij − rij) ≤ d(rhij − rij), and therefore it is

CIh =
1

m · n

m∑
i=1

n∑
j=1

CEhij =
1

m · n

m∑
i=1

n∑
j=1

(
1− d(rhij , rij)

)
≤ 1

m · n

m∑
i=1

n∑
j=1

(
1− d(rrhij , rij)

)
= CI

h

Consequently, for all δ < 1 the feedback mechanism would make the consensus process to converge

to a unanimous consensus. The above results are valid when all experts change all their preference

values to the feedback recommendation values. Therefore, the production of recommendations to all

experts, and their implementation, will guarantee that all expert consensus index values increase.

However, in real applications all experts will not receive feedback recommendations, otherwise the

computational complexity of the decision making process would increase. Therefore, in the consensus

process proposed here only those experts with a consensus level lower than the threshold value will

receive recommendations, and if implemented the new collective 2-tuple linguistic decision matrix will

differ from the previous one. In real decision making processes, experts may not accept a recommen-

dation advice if their original preference values require a considerable change in value. The lower the

value of δ the larger the change of preference value in the recommendation. Therefore, an appropriate

value of δ is to be chosen to balance the independence of choice by experts and the consensus level

among them. A visual feedback process simulation that generates a graphical simulation of future

consensus status if the recommended values were to be implemented is also integrated as part of the

visual consensus model here developed, as shown in Figure 9(a) and Figure 9(b).
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Example 8. (Example 2 continuation) Second Consensus Round. Assuming experts E3 and

E4 change their preference values and implement the recommended values, the new collective 2–tuple

decision matrix would be

R =


(s3, 0.2) (s4, 0.5) (s4, 0.5) (s2, 0.5) (s3, 0)

(s5, 0.1) (s4,−0.1) (s4,−0.2) (s3, 0.2) (s3, 0.2)

(s5, 0.1) (s2, 0.3) (s3, 0.1) (s2, 0.4) (s3, 0.5)

(s5,−0.2) (s3, 0.4) (s4, 0.5) (s2, 0.4) (s5,−0.4)

 .

The consensus indexes in this second round would become:

CI1 = 0.92, CI2 = 0.90, CI3 = 0.91, CI4 = 0.91, CI4 = 0.92.

Because all of them are above the consensus threshold value the selection process would be activated.
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(a) Experts’ consensus index on the decision matrix
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(b) Expert E4 consensus index on preferences for alternative

A3

Figure 9: Visual feedback simulation: consensus levels before and after recommendations implemented by experts

4.2. Selection Process

Once the consensus among the group of experts is satisfactory and the collective 2–tuple decision

matrix is obtained, we apply the 2–tuple WAA operator to compute the final score for each alternative.

Example 9. (Finishing Example 2) Using the criteria weights ω = (0.25, 0.20, 0.15, 0.10, 0.30)T ,

we compute the collective overall evaluation values ri(i = 1, 2, 3, 4) of the four alternatives:

r1 = (s4,−0.4), r2 = (s4,−0.1), r3 = (s4,−0.5), r4 = (s4, 0.2)
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The final consensus ranking of alternatives being:

x4 � x2 � x1 � x3.

5. Analysis of the incomplete MCGDM model

In this article, trust propagating aggregation and visual consensus based decision model for

MCGDM with incomplete linguistic information have been investigated. This model has the following

main advantages with respect to other decision making models proposed in the literature:

1. It uses the trust relationship in the social network of a group of experts (i.e. the knowledge

from other experts) to estimate the unknown preference values in individual decision matrices.

Therefore, the developed trust estimation method is completely different from the consistency

based estimation methods presented in [1, 12, 13, 56], which rely just in the individual preference

values provided in advance by a particular expert (i.e. personal knowledge).

2. It builds a complete network of orthopairs of trust/distrust values from a connected, but not nec-

essarily fully connected, trust network. A trust propagation method to derive some information

on an unknown expert by the trusted third parties in an incompletely connected network is in-

vestigated and the TS-IOWA operator is developed to aggregate the orthopairs of trust/distrust

values obtained from different trust paths by taking into account the risk attitude of experts.

Consequently, it is more flexible in its applicability than the K-IOWA operator developed in [48].

Finally, a relative trust score based estimation of unknown linguistic labels as well as an average

trust degree based aggregation method for linguistic 2–tuple decision matrices are proposed.

3. It includes a visual consensus model following a top to bottom methodology to provide visually

identified discordant opinions, produce recommendations to those experts that are furthest from

the group, and visual feedback simulation of future consensus status if experts are to follow

recommendations. Furthermore, it guarantees that the production of recommendations to all

experts will increase consensus index values, and consequently convergence to consensus. The

novelty of the proposed model is that it does not force decision makers to change their opinions,

but provide more information to support them to revisit their opinions.

6. Conclusion

This article proposes a trust based estimation method and a visual consensus aggregation model

for multiple criteria group decision making (MCGDM) with incomplete linguistic information. To do

that, a novel trust propagation method is proposed to complete a connected, but not necessarily fully
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connected, trust network. The trust score induced order weighted averaging (TS-IOWA) operator

is presented to aggregate the orthopairs of trust/distrust values obtained from different trust paths.

The novelty of this operator is that it takes into account the risk attitude of experts. The concepts

of relative trust score (RTS) and average trust degree (ATD) are defined. An RTS based estimation

and an ATD based aggregation method for the missing preference values are proposed. To help

experts achieve the satisfied consensus level, a visual consensus model mechanism is developed and

studied, which includes a visual identification to support experts to easily see their consensus position

within the group. A recommendation mechanism provides individualised advice to those experts

that are identified as contributing less to consensus on how to change their identified element values,

which is supplemented with a visual feedback simulation of what would happen if the recommended

values were to be implemented by them. Furthermore, it is proved that the feedback mechanism

converges to consensus when applied to all experts and all their preferences. In the light of this visual

extra information, experts can revisit their evaluations and make changes if considered appropriate in

order to achieve a higher consensus level. Consequently, experts are not forced to make changes by

the system, rather the system supports them to make free will informed decision regarding possible

changes or not of their original preferences.
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