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Abstract

A novel social network based group decision making (SN-GDM) model with experts’ weights not

provided beforehand and with the following four tuple information: trust; distrust; hesitancy; and

inconsistency, is introduced. The concepts of trust score (TS) and knowledge degree (KD) are defined

and combined into a trust order space. Then, a strict trust ranking order relation of trust function

values (TFs) is built in which TS and KD play a similar role to the mean and the variance in Statistics.

After the operational laws of TFs for uninorm operators are built, the uninorm propagation operator is

investigated. It can propagate through a network both trust and distrust information simultaneously

and therefore it prevents the loss of trust information in the propagating process. When an indirect

trust relationship is built, the uninorm trust weighted average (UTWA) operator and the uninorm

trust ordered weighted average (UTOWA) operator are defined and used to aggregate individual trust

relationship and to obtain their associated ranking order relation. Hence, the most trusted expert is

distinguished from the group, and the weights of experts are determined in a reasonable way: the higher

an expert is trusted the more importance value is assigned to the expert. Therefore, the novelty of the

proposed SN-GDM is that it can use indirect trust relationship via trusted third partners (TTPs) as a

reliable resource to determine experts’ weights. Finally, the individual trust decision making matrices

are aggregated into a collective one and the alternative with the highest trust order relation is selected

as the best one.

Keywords: Group decision making, Social network, Trust propagation, Trust aggregation, Four

tuple information

1. Introduction

In classical group decision making (GDM) problems, a group of experts express crisp preference

values on alternatives under multiple criteria, and then aggregate them into a collective one for deriving

a final solution [24]. However, problems with imprecise and vague information cannot be handled

appropriately with crisp preferences. Atanassov’s intuitionistic fuzzy set (IFS) [3], which describes each

element in a set by using a membership degree µA(x) and a non-membership degree νA(x), has been
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proved a useful tool to deal with vagueness as evidenced by the current rise of interest on its use within

the research community [31, 33, 34, 37, 42, 46]. When the membership degree and non-membership

degree sum is less than one, the value τA(x) = 1−µA(x)−νA(x) is interpreted as the hesitancy degree

of experts with respect to their own judgement. Therefore, IFSs can be effectively used to model GDM

problems with the following three tuple information: membership degree, non-membership degree and

hesitancy degree. Apart from the hesitancy information, experts may provide inconsistent information

[6, 28], which in this context happens when the membership degree and non-membership degree sum

exceeds one. The concepts of trust and distrust have been used to model inconsistent information

in [28], and to describe this heterogeneity information this paper unifies them with the concept of

trust function, which is based on the following four tuple information: trust, distrust, hesitancy and

inconsistency. The main reason for using trust and distrust to replace membership degree and non-

membership degree is that they are suitable to model propagating behaviour to build relationship in

social network under GDM. Therefore, it can be concluded that there exist four tuple information and

that dealing with this type of information representation in GDM problems is novel and not reported

up to now in the literatures on the topic.

Nowadays, a new trend of GDM is that individuals rely on the opinions and social appraisal

support from their close friends or people with similar interests [2]. An example is the community

review website Ciao (www.ciao.com) where users can write reviews about consumer products and

assign a rating to the products and the reviews written by others. In essence, Ciao is a social network,

i.e. an association of people drawn together by family, work or hobby, that allows for the relationships

between social entities like members of a group, corporations or nations to be studied [16, 27, 32]. By

reviewing and talking, consumers can build a trust relationship between them by trust or distrust.

Therefore, this group decision making under social network (SN-GDM) is of special relevance in

decision contexts where the information on the problem at hand is not amenable to be modelled in

a quantitative and precise way, but using four tuple information. One key issue of SN-GDM to be

addressed is how to deal with hesitancy or inconsistency of information. To do that, this article first

proposes the trust decision making space based on the definition of trust function (TF) [30]. Thus,

according to this trust space, the definition of trust score (TS) and knowledge degree (KD) associated

to trust function values (TFs) are investigated and some properties are provided. Combining TS and

KD, a ranking order relation of TFs is proposed for deriving a final solution in SN-GDM with four

tuple information.

Another key issue in SN-GDM problems is how to aggregate individual preferences into a collective

one for deriving a final solution. This is achieved by determining weights (or importance degrees) for

each expert. In GDM models, it is often assumed that experts’ weights are known beforehand or

provided by a reliable source, and consequently they do not pose any challenging issue in the decision

model design [5, 17, 43–45]. For example, consensus degrees have been used to assign weights to
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experts [11–14, 36, 39–41, 51]. However, SN-GDM has historical interaction relationship between

members of a group, which is completely different from the classical GDM model. Thus, within

the SN-GDM framework it could be interesting to provide new reliable sources to acquire experts’

weight information. Recently, Herrera-Viedma et al. [18] pointed out that trust relationships between

networked experts are considered as a new reliable source, while Wu and Chiclana [35] developed an

interval-valued fuzzy social network analysis methodology to model trust relationship between experts

and to compute the trust degree of each expert. This method assumed that all networked experts have

direct trust relationship with other experts. Obvioulsy, in some realistic cases, these assumptions may

be implausible because some experts do not have direct interactions with others, and consequently

there is a need to construct indirect trust relationships between experts by using trusted third partners

(TTPs), i.e. an indirect trust propagation methodology.

In order to achieve this objective, the uninorm trust propagation operator is investigated. Its

properties are closely related to the properties of t-norm and t-conorm operators. However, uninorm

operators can propagate trust and distrust information simultaneously and then maintain four tuple

trust information in the propagating process, which is not possible to achieve with t-norm and t-conorm

operators because they do not allow for trade off mechanisms of aggregation operators when fusing

values in opposite side of the scale of measurement used. Thus, indirect trust relationships between any

two experts are possible to be built and the propagation of the associated trust/distrust information

will be carried using the uninorm trust weighted average (UTWA) operator and the uninorm trust

ordered weighted average (UTOWA) operator, which are developed in this paper. Finally, the order

relation of TFs can be used to distinguish the most trusted expert from the group, and is used to

determine experts’ weights using the rule: “the higher the expert’s trust value is the higher the expert’s

importance value should be.”

The rest of paper is set out as follows: Section 2 introduces the concepts of trust function (TF),

trust decision making space (TDMS), trust score (TS) and knowledge degree (KD), which are combined

to propose a ranking order relation of trust function values (TFs). Section 3 extends the uninorm

operator to an n-dimensional space and several operation laws of TFs for uninorm operator are studied.

It also investigates the indirect trust relationship propagation using the uninorm trust propagation

operator. Furthermore, the UTWA and UTOWA operators are developed to aggregate propagated

TFs. An illustrative example is used to verify the effect of the proposed method in Section 4. An

analysis of the proposed SN-GDM with respect to the existing models in literatures is given in Section

5. Finally, conclusions are drawn in Section 6.

2. Ranking order relationship and uninorm based operators for TFs

The basic component of the theory of fuzzy sets (FSs) proposed by Zadeh [49] to model vagueness

is the membership function, which has been argued to have its limitation when applied to decision
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contexts where it is required to deal with “a proposition A, we can state that either A is true, or A

is false, or that we do not know whether A is true or false” [4]. The Intuitionistic Fuzzy Set (IFS) as

introduced by Atanassov [3], which extend Zadeh’s FS, is a useful mathematical concept to deal with

such decision contexts:

Definition 1 (Intuitionistic fuzzy set (IFS)). An intuitionistic fuzzy set (IFS) A over a universe

of discourse X is given by

A =
{
〈x, µA(x), νA(x)〉 |x ∈ X

}
where

µA : X → [0, 1] , νA : X → [0, 1]

and

0 ≤ µA(x) + νA(x) ≤ 1 ∀x ∈ X. (1)

For each element x, the values µA(x) and νA(x) represent the degree of membership and the degree

of non-membership of x to A, respectively.

An IFS becomes a FS when µA(x) = 1 − νA(x) ∀x ∈ X. However, when there exists at least an

element x ∈ X for which µA(x) < 1 − νA(x), an extra parameter is to be taken into account when

working with IFSs, the hesitancy degree, τA(x), of x to A:

τA(x) = 1− µA(x)− νA(x). (2)

The hesitancy degree τA(x) is an indicator of the hesitation margin of the membership of element x to

the IFS A and therefore it represents the amount of lacking information in determining the membership

of x to A. The above three values, which add one, in relation to the concept of membership can

be considered as positive/favourable (µA(x)), negative/unfavourable (νA(x)), and hesitation (τA(x)),

respectively.

2.1. Trust function and trust degree

In some real cases, experts may have inconsistency decision making information due to them

not possessing a sufficient level of knowledge of the problem or to their non-rationality human nature,

which in the above context of IFSs formally happen when µA(x)+νA(x) > 1. In order to accommodate

inconsistency with IFSs, the concept of trust decision making space is proposed, which is based on the

following concept of trust function with trust degree and distrust degree given by Victor et al. [30]:

Definition 2 (Trust Function (TF)). A tuple of the type λ = (t, d) where t, d ∈ [0, 1], in which

the first component t is a trust degree, and the second component d is a distrust degree will be referred

to as a trust function value. The set of trust function values (TFs), or trust function, will be denoted

by Λ = {λ = (t, d)| t, d ∈ [0, 1]} ≡ [0, 1]2.
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Using the above definition of trust function and equation (2) as discussed above, a trust decision

making space can be defined to describe the possible different types of decision making information:

Definition 3 (Trust Decision Making Space (TDMS)). The trust decision making space con-

sists of the following three elements: the set of TFs, Λ, a trust hesitancy space, THS, and a trust

inconsistency space TCS, i.e.

TDMS� = (Λ, THS, TCS)

with

THS = {λ ∈ Λ|t+ d ≤ 1}

and

TCS = {λ ∈ Λ|t+ d > 1}

Alternatives in decision making problems can therefore be evaluated using four types of informa-

tion: trust, distrust, hesitancy and inconsistency. Selection of alternatives will be done by using a

new ranking method for TFs to be proposed later in the paper. First, the trust score and knowledge

degree associated to TFs are presented.

Definition 4 (Trust Score). The trust score is a mapping on the set of TFs, Λ, that associates a

value in [0, 1] to each trust function value λ as follows:

TS : Λ −→ [0, 1]

TS(λ) =
t− d+ 1

2
(3)

Because 0 ≤ TS ≤ 1, it is reasonable to use it in Eq. (23) (Section 3) to determine experts’

weights when using the regular increasing monotone (RIM) quantifier Q(r) = r1/2 [23] driven by the

rule: the higher the value of TS, the higher the experts’ importance degree. Indeed, TS represents the

normalised dominance that the trust value has over the corresponding distrust value of a trust function

value of an expert, i.e. the strict trust value contained in a trust function. When two experts have

the same trust score (TS), the uncertainty degree associated to their respective TFs as represented in

the following definition can be used to further differentiate them.

Definition 5 (Knowledge Degree). The knowledge degree is a mapping on the set of TFs, Λ, that

associates a value in [0, 1] to each trust function value λ as follows:

KD : Λ −→ [0, 1]

KD(λ) = (1− t− d)2 (4)
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Notice that when information is inconsistent as for example with (0.7, 0.4), the concept of hesitation

degree of intuitionistic fuzzy sets cannot be used, HD = 1− t− d, to evaluate the uncertainty degree

of TFs because it is a negative value. In particular, the closer KD is to zero, the closer t + d will be

to 1, and therefore the closer the values will resemble the output of the representation of trust using

fuzzy sets, i.e. hesitation degree in absolute value will be close to zero, and in absolute value lacking

of information in determining the trust function value of an expert is low. As per [30], TFs for which

KD(λ) = 0, i.e. t+d = 1, have perfect knowledge or complete trust state, otherwise there exists trust

knowledge uncertainty. Thus, KD is a supplement to TS in ranking TFs.

Notice that the set Λ is closed under the normalised weighted average operation. Indeed, given a

set of weights {w1, w2, . . . , wn|wi ≥ 0 ∧
∑n

i=1wi = 1} and a set of TFs {λ1, λ2, . . . , λn} then it is

n∑
i=1

wi · λi =
n∑
i=1

wi · (ti, di) =

(
n∑
i=1

wi · ti,
n∑
i=1

wi · di

)
∈ Λ.

The following properties are verified by TS and KD:

Proposition 1. Given a set of weights {w1, w2, . . . , wn|wi ≥ 0 ∧
∑n

1 wi = 1} and a set of TFs

{λ1, λ2, . . . , λn}, the following properties hold:

• TS

(
n∑
i=1

wi · λi

)
=

n∑
i=1

wi · TS(λi)

• KD

(
n∑
i=1

wi · λi

)
≤

n∑
i=1

wi ·KD(λi)

Proof. Recall that wi ≥ 0 (∀i) ∧
∑n

1 wi = 1.

• The proof of the first equality is obvious because TS is a linear function. Nevertheless, it is

provided for completion.

TS

(
n∑
i=1

wi · λi

)
=

n∑
i=1

wi · ti −
n∑
i=1

wi · di + 1

2
=

n∑
i=1

wi · ti −
n∑
i=1

wi · di +
n∑
i=1

wi

2

=

n∑
i=1

wi · (ti − di + 1)

2
=

n∑
i=1

wi ·
ti − di + 1

2
=

n∑
i=1

wi · TS(λi)

• Let a1, a2, . . . , an and b1, b2, . . . , bn be real numbers. Then the Cauchy–Schwarz inequality holds:(
n∑
i=1

ai · bi

)2

≤
n∑
i=1

a2i ·
n∑
i=1

b2i .

Thus:

KD

(
n∑
i=1

wi · λi

)
=

(
1−

n∑
i=1

wi · ti −
n∑
i=1

wi · di

)2

=

(
n∑
i=1

wi −
n∑
i=1

wi · ti −
n∑
i=1

wi · di

)2

=

(
n∑
i=1

wi · (1− ti − di)

)2
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Denoting ai =
√
wi and bi =

√
wi · (1− ti − di), the Cauchy–Schwarz inequality implies that

KD

(
n∑
i=1

wi · λi

)
≤

n∑
i=1

wi ·
n∑
i=1

wi · (1− ti − di)2 =

n∑
i=1

wi ·KD(λi)

Later in the paper, it will be shown that the set Λ is closed under a new general uninorm based

operation introduced to propagate trust in social networks.

2.2. Ranking order relationship for TFs

In a SN-GDM problem, the weights of experts according to their associated trust degrees are

needed so that the highest trusted expert within their social network can be differentiated. This trust

problem is influenced by the presence of hesitancy or inconsistency information. Therefore, a model

should be proposed to represent appropriately, on the one hand, the trust an agent may have on

another agent, and on the other hand, to allow evaluating the contribution that each aspect of trust

has in the overall trust opinion [27]. Following a similar approach to the one provided in [8], TS and

KD are combined in a trust order space as a model that allows to compare and preserve information

about the provenance of TFs as follows:

Definition 6. (Trust Order Space (TOS)). A trust order space

TOS� = (Λ,≤TS ,≤KD,¬)

consists of the set of TFs Λ, a trust ordering ≤TS , a knowledge ordering ≤KD, and a negation operator

¬ that verify the following properties

λ1 ≤TS λ2 iff TS1 ≤ TS2

λ1 ≤KD λ2 iff KD1 ≥ KD2

¬(t, d) = (d, t)

In a TOS, TSs are used to evaluate the degree of strict trust an agent may have on other agents in

the social network when providing his TFs, while KDs are used to determine the uncertainty contained

in the corresponding TFs. Their role for ranking TFs is similar to the mean and the variance in

Statistics. In detail, TOS allows the following order relation on the set of TFs, Λ, to be defined:

Definition 7 (Order Relation of TFs). Given two TFs, λ1 and λ2, λ1 precedes λ2

λ1 ≺ λ2

if and only if one of the following conditions is true:

1. TS(λ1) < TS(λ2)
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2. TS(λ1) = TS(λ2) ∧ KD(λ1) > KD(λ2)

The next result proves that the order relation ≺ is a strict order.

Theorem 1 (Strict Order of TFs). The relation ≺ on the set of TFs Λ is:

1. Irreflexive: ∀ λ : λ ≺ λ does not hold.

2. Asymmetric: ∀ λ1, λ2 : if λ1 ≺ λ2, then λ2 ≺ λ1 does not hold.

3. Transitive: ∀ λ1, λ2, λ3 : if λ1 ≺ λ2 and λ2 ≺ λ3, then λ1 ≺ λ3.

Proof. Items 1. and 2. are obvious from Definition 7. To prove the transitivity property, assuming

λ1 ≺ λ2, from Definition 7 there are two possible cases:

1. TS(λ1) < TS(λ2). Because TS(λ2) ≤ TS(λ3) it is TS(λ1) < TS(λ3) and therefore λ1 ≺ λ3.

2. TS(λ1) = TS(λ2) ∧ KD(λ1) > KD(λ2). Because λ2 ≺ λ3 then one of the following is true:

(a) TS(λ2) < TS(λ3), which implies that TS(λ1) < TS(λ3) and consequently it is λ1 ≺ λ3.

(b) TS(λ2) = TS(λ3) ∧ KD(λ2) > KD(λ3). Thus, TS(λ1) = TS(λ3) ∧ KD(λ1) > KD(λ3),

i.e. λ1 ≺ λ3.

The order relation of TFs can distinguish the most trusted expert from the group, and then can

be used to assign weights to experts in a reasonable way, i.e. the higher the trust ranking order of

an expert is, the more importance the expert will be associated. Therefore, it can deal with GDM

problems without the importance information of experts known beforehand as this can be indirectly

derived using their corresponding TFs.

2.3. Uninorm based operations on TFs

The following section will introduce the addition of TFs and the scalar multiplication of TFs

based on uninorm operators and its properties. To do so, we first provide the necessary background

information on the uninorm [48]:

Definition 8. A uninorm U is a mapping U : [0, 1]2 −→ [0, 1] having the following properties:

1. Commutativity: U(x, y) = U(y, x)

2. Monotonicity: U(x1, y1) ≥ U(x2, y2) if x1 ≥ x2 and y1 ≥ y2

3. Associativity: U(x, U(y, z)) = U(U(x, y), z)

4. Identity element: ∃ e ∈ [0, 1] : ∀ x ∈ [0, 1], U(x, e) = x
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The uninorm with t-norm and t-conorm the commutativity, associativity and monotonicity prop-

erties, and its behaviour is closely related as it is explained later. The identity element property allows

to claim that the unimorm generalises both the t-norm and t-conorm, as they can be seen a particular

uninorm: a t-norm is obtained when e = 1 in Def. 8, while a t-conorm is obtained when e = 0. In

general, a uninorm can have an identity element lying anywhere in the unit interval [0, 1] (see also

[21]).

As pointed out by Fodor et al. [15], an interesting particular case of uninorm is symmetric ag-

gregative operators, i.e. uninorms that have a representation in terms of a single variable function

U(x, y) = h−1(h(x) + h(y)), x, y ∈ [0, 1]

where h : [0, 1] −→ R is a strictly increasing continuous function with h(e) = 0, h(0) = −∞ and

h(1) = +∞. Representable uninorms are strictly increasing on the open unit interval square and self-

dual with respect to a strong negation: a continuous and strictly decreasing mapping N : [0, 1] −→

[0, 1] such that N(N(x)) = x (∀x ∈ [0, 1]) and N(U(x, y)) = U(N(x), N(y)) (∀x, y ∈ [0, 1]). The

representation theorem also provides a relationship between the generator function h and the strong

negation N : h−1(−h(x)) = N(x). For the particular case when N(x) = 1− x, the identity element is

e = 0.5, h(x) + h(1 − x) = 0 and h(0.5) = 0. Additionally, in this case when the generator function

h(x) = ln x
1−x , it results in the well known andlike representable cross ratio uninorm [21]

U(x, y) =


0, (x, y) ∈ {(0, 1), (1, 0)}

xy

xy + (1− x)(1− y)
, Otherwise.

(5)

This particular uninorm is used in the PROSPECTOR expert system [9] and it has been characterised

as the most appropriate for modelling cardinal consistency of reciprocal preference relations in [1,

6]. Therefore, its use in the proposed model guarantees an appropriate handling of inconsistent

information in SN-GDM. From now on, the reference to a uninorm within the context of the SN-GDM

model here investigated means a representable uninorm U verifying U(1, 0) = U(0, 1) = 0.

The behaviour of uninorms on the squares [0, 0.5]× [0, 0.5] and [0.5, 1]× [0.5, 1] is closely related to

t-norms and t-conorms [15], respectively. Indeed, the cross ratio uninorm can be rewritten as follows:

• ∀x, y ∈ [0, 0.5] : U(x, y) =
TU (2x, 2y)

2

• ∀x, y ∈ [0.5, 1] : U(x, y) =
SU (2x− 1, 2y − 1)

2

with TU (x, y) =
xy

1 + (1− x)(1− y)
(∀x, y ∈ [0, 1]) the Einstein product t-norm and SU (x, y) =

x+ y

1 + xy
(∀x, y ∈ [0, 1]) its dual Einstein sum t-conorm [7]. Definition 8 presents the uninorm as

an aggregation operator of two arguments. However, the associativity property allows its use as an

aggregation operator with n arguments. The cross ratio uninorm with n arguments has the following
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expression:

U(x1, x2, . . . , xn) =


0, if ∃i, j : (xi, xj) ∈ {(0, 1), (1, 0)}

n∏
i=1

xi

n∏
i=1

xi +
n∏
i=1

(1− xi)
, Otherwise.

(6)

Next we introduce the uninorm sum operation on the set of TFs:

Definition 9. Given a uninorm U , the uninorm sum operation on the set of TFs Λ, ⊕U : Λ×Λ −→ Λ,

is given as

λ1⊕Uλ2 = (U(t1, t2), U(d1, d2)) (7)

where λ1 = (t1, d1) and λ2 = (t2, d2).

The cross ratio uninorm sum of two TFs yields:

λ1⊕Uλ2 =


(0, 0), if (λ1, λ2) ∈ {((0, 1), (1, 0)), ((1, 0), (0, 1))}(

t1t2
t1t2 + (1− t1)(1− t2)

,
d1d2

d1d2 + (1− d1)(1− d2)

)
, Otherwise.

(8)

Uninorms are commutative and associative, and therefore the uninorm sum is also commutative and

associative. The repetitive uninorm sum of a trust function value with itself results in the uninorm

scalar multiplication of TFs by a natural number:

Definition 10. Given a uninorm U , the uninorm scalar multiplication of a trust function value λ ∈ Λ

by a natural number n is given as

n�Uλ =

n︷ ︸︸ ︷
λ⊕Uλ⊕U . . .⊕Uλ (9)

For the cross ratio uninorm, the uninorm scalar multiplication of a trust function value λ = (t, d)

by a natural number n yields:

n�Uλ =

(
tn

tn + (1− t)n
,

dn

dn + (1− d)n

)
(10)

When the uninorm is continuous, the uninorm scalar multiplication of TFs can be extended to any

real number. The following proposition lists additional distributivity properties for the case of using

the cross ratio uninorm in both the uninorm sum and the uninorm scalar multiplication.

Proposition 2. Let λ = (t, d), λ1 = (t1, d1), λ2 = (t2, d2) ∈ Λ and δ, δ1, δ2 be any three real numbers.

The following properties are verified:

1. δ �U (λ1⊕Uλ2) = (δ�Uλ1)⊕U (δ�Uλ2)

2. (δ1 + δ2)�Uλ = (δ1�Uλ)⊕U (δ2�Uλ)

10



A =



0 1 1 1 1 0

0 0 0 0 1 0

0 1 0 0 0 0

0 0 1 0 1 1

0 0 1 0 0 1

0 0 1 0 0 0



e
1

e
2

e
3

e
4

e
5

e
6

e1Re2 e4Re3

e1Re3 e4Re5

e1Re4 e4Re6

e1Re5 e5Re3

e2Re5 e5Re6

e3Re2 e6Re3

Sociometric Graph Algebraic

Table 1: Different notations in Social Network Analysis

3. (δ1 · δ2)�Uλ = δ1�U (δ2�Uλ)

Proof. It is omitted.

The uninorm sum, ⊕U , and uninorm scalar multiplication, �U , will be used in the following

sections to develop several uninorm trust propagation and aggregation operators in the context of

social network.

3. Uninorm trust propagation and aggregation operators

Trust relationship has been regarded as a reliable source to evaluate the importance degree of

experts [35, 38], which is usually studied by Social Network Analysis (SNA) [16, 27, 32]. There are

three notational schemes in SNA analysis: set of actors, the relations themselves, and the actor criteria

(see Table 1).

• Sociometric – relational data presented in a two-ways matrix called sociomatrix.

• Graph theoretic – the network is viewed as a graph consisting of nodes joined by lines.

• Algebraic – allows to distinguish several distinct relations and represent combinations of rela-

tions.

The sociomatrix given in Table 1 represents a crisp complete relation, i.e. all its elements are

known and represents just the presence or absence of relationship but not its intensity, which might

not be a suitable representation in social network in the presence of uncertainty of the relationship to

model. Notice that in real life too, trust is indeed often interpreted as a gradual phenomenon: humans

do not merely reason in terms of ‘trusting’ and ‘not trusting’, but rather trusting someone ‘very much’

or ‘more or less’ [10]. This work focuses on one type of social networks, namely trust network in which

the users explicitly express their opinion as trust and distrust statements [30].

In a trust network, some experts might not have a direct trust relationship with others because

they are typically unknown to them as Fig. 1 illustrates. Therefore, there is a need to devise a

11



Figure 1: Graph representation of the trust network

mechanism to find out whether or not an unknown expert can be trusted. This can be achieved via an

indirect chain of trusted third partners (TTPs) to propagate trust to an unknown expert. Therefore,

one key issue is to develop appropriate trust propagation operators. Victor et al. [29] used t-norms to

propagate trust and t-conorms to propagate distrust, respectively. However, the use of two distinct

and separate operators to independently propagate information might not be best practice as trust and

distrust are not independent. This issue can be overcome by using both operators together in the trust

propagation, which is possible by employing a uninorm instead as the unifying propagation operator.

Indeed, as we have seen before, a uninorm behaves like a t-norm when all values are below the identity

element, like a t-conorm when all values are above the identity element and like a symmetric mean

otherwise [26]. Therefore, a uninorm propagation operator will allow both trust and distrust to be

propagated simultaneously. This is elaborated next.

3.1. Uninorm trust propagation operator

Figure 2(a) illustrates a typical case with three experts in which there is no direct trust function

value between two of them. However, an indirect chain of TFs using another expert can be exploited to

build the missing direct trust function value between these experts by propagating the corresponding

known indirect TFs as Fig. 2(b) shows.

Notice that in the scenario represented in Fig. 2, on the one hand, expert E1 trust value on expert

E3 should be based on his/her own trust value on expert E2 and the corresponding trust value expert

E2 has on expert E3. On the other hand, E1 distrust value on expert E3 should be based on the

known direct distrust value on E3, i.e the distrust value E2 has on expert E3, in conjunction with

his/her own trust value on expert E2. In a complete trust/distrust scenario, it is expected that when

expert E1 fully trusts E2 and expert E2 fully trusts E3 then E1 will fully trust E3, while expert E1

will fully distrust E3 when expert E2 fully distrusts E3 and expert E1 fully trusts E2. This can be

achieved using the following uninorm propagation operator:

12



E1

E2

E3

λ1 λ2

(a) No direct trust function value between E1 and

E3

E1

E2

E3

λ1 λ2

PU (λ1, λ2)

(b) Trust propagation between E1 and E3 via E2

Figure 2: Uninorm trust propagation via indirect chain of TFs

Definition 11. Let U be a uninorm. The uninorm trust propagation operator PU is the mapping,

PU : Λ×Λ −→ Λ, that associates two TFs λ1 = (t1, d1), λ2 = (t2, d2) with the following trust function

value output

PU (λ1, λ2) = (U(t1, t2), U(t1, d2)) (11)

Notice that when λ1 = (t1, d1) = (1, 0) and λ2 = (t2, d2) = (1, 0), expert E1 fully trusts expert E2

and expert E2 fully trusts expert E3, and the application of the uninorm trust propagation operator

PU results in PU ((1, 0), (1, 0)) = (U(1, 1), U(1, 0)) = (1, 0), which means that expert E1 fully trusts

expert E3 as expected. When λ1 = (t1, d1) = (1, 0) and λ2 = (t2, d2) = (0, 1), expert E1 fully trusts

expert E2 and expert E2 fully distrusts E3, and the application of the the uninorm trust propagation

operator PU results in PU ((1, 0), (0, 1)) = (U(1, 1), U(1, 1)) = (0, 1), which means that expert E1 will

fully distrusts expert E3 as it is also expected. Therefore, the uninorm trust propagation operator

generalises the propagation method proposed by Victor et al. in [30].

In general, if expert E1 fully trusts expert E2, then the trust function value of expert E1 on expert

E3 is expected to be the same as the trust function value of expert E2 on expert E3, and consequently

it would be

PU (λ1, λ2) = λ2 when λ1 = (1, 0).

On the other hand, when expert E2 fully trusts expert E3 then the trust function value of expert E1

on expert E3 is expected to be the same as the trust function value of expert E1 on expert E2 and

consequently it would be

PU (λ1, λ2) = λ1 when λ2 = (1, 0).

What should be expected when in the above chain expert E1 fully distrusts expert E2? In this case,

any trust function value coming from expert E2 would be completely dismissed by expert E1 and the

full distrust on expert E2 by expert E1 would be propagated to the rest of the chain, and consequently

it would be

PU (λ1, λ2) = (0, 1) when λ1 = (0, 1).

13



When E2 fully distrusts expert E3, no matter what trust function value there is from expert E1 towards

expert E2, expert E1 is expected to fully distrust expert E3. Thus, the following representation of the

uninorm trust propagation operator is proposed:

PU (λ1, λ2) =



λ2, if λ1 = (1, 0)

λ1, if λ2 = (1, 0)

(0, 1), if λ1 ∨ λ2 = (0, 1)

(U(t1, t2), U(t1, d2)), Otherwise.

(12)

Given two TFs λ1 = (t1, d1), λ2 = (t2, d2), the cross ratio uninorm trust propagation operator would

be:

PU (λ1, λ2) =



λ2, if λ1 = (1, 0)

λ1, if λ2 = (1, 0)

(0, 1), if λ1 ∨ λ2 = (0, 1)(
t1t2

t1t2 + (1− t1)(1− t2)
,

t1d2
t1d2 + (1− t1)(1− d2)

)
, Otherwise.

(13)

Example 1. Given the TFs λ1 = (0.55, 0.5), λ2 = (0.52, 0.51), the cross ratio uninorm trust

propagation operator gives

PU = (0.57, 0.56)

The propagating operator proposed by Victor et al. [29] gives

PV = (0.55× 0.52, 0.55× 0.51) = (0.286, 0.281)

Since λ1 and λ2 contain inconsistent information (t + d > 1), then their propagating result should

be of the same type, which is properly reflected by PU but not by PV . Therefore, the uninorm trust

propagation operator does not lose important information such as inconsistency; the same cannot be

affirmed for the case of the trust propagation operator proposed by Victor et al. [29].

Notice that associativity property of the uninorm U implies associativity of the propagation oper-

ator PU , so trust can be propagated on an incomplete trust path involving more than three experts

as illustrated in Fig. 3.

E1

E2 E3

E4

λ1

λ2

λ3

PU (λ1, λ2, λ3)

Figure 3: Trust propagation of orthopairs of trust/distrust values between E1 and E4 via trust path E1 → E2 → E3 → E4
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Indeed, if λ1, λ2, λ3 /∈ {(0, 1), (1, 0)} then

PU (PU (λ1, λ2), λ3) = PU (PU ((t1, d1), (t2, d2)) , (t3, d3))

= PU ((U(t1, t2), U(t1, d2)) , (t3, d3))

= (U (U(t1, t2), t3) , U (U(t1, t2), d3))

= (U (t1, U(t2, t3)) , U (t1, U(t2, d3)))

PU (λ1, PU (λ2, λ3)) = PU ((t1, d1), PU ((t2, d2), (t3, d3)))

= PU ((t1, d1), (U(t2, t3), U(t2, d3)))

= (U (t1, U(t2, t3)) , U (t1, U(t2, d3)))

For the case when λ1, λ2, λ3 ∈ {(0, 1), (1, 0)} then:

• If λ1 = (1, 0), on the one hand PU (PU (λ1, λ2), λ3) = PU (λ2, λ3), and on the other hand it is

PU (λ1, PU (λ2, λ3)) = PU (λ2, λ3). In this case, it is PU (λ1, λ2, λ3) = PU (λ2, λ3). The cases

λ2 = (1, 0) or λ3 = (1, 0) are proved similarly. Notice that having a trust function value in a

chain equal to (1,0) means that it can be dropped from the uninorm trust propagation operation.

• When one trust function value is equal to (0,1) the final trust function value resulting from the

applicatioin of the uninorm trust propagation operator would be (0,1).

From now on, and to simplify expressions, it will be assumed that λ1, λ2, λ3 /∈ {(0, 1), (1, 0)} being

the rest of limit cases easy to verify. It can be concluded then that

PU (λ1, λ2, λ3) = (U (t1, t2, t3) , U (t1, t2, d3)) (14)

Expression (14) can be extended to an arbitrary number of experts n(≥ 3) as follows:

PU ((t1, d1), (t2, d2), . . . , (tn, dn)) = (U(t1, t2, . . . , tn), U(t1, t2, . . . , tn−1, dn)) (15)

To prove (15), induction on n is applied:

1. Basis: n = 3. This is the associativity property (14) already proved to be true.

2. Induction hypothesis: Let’s assume that (15) is true for n = k and prove that it is also true

when n = k + 1. Applying associativity of P we have:

PU ((t1, d1), (t2, d2), . . . , (tk+1, dk+1)) = PU (PU ((t1, d1), (t2, d2), . . . , (tk, dk)) , (tk+1, dk+1))

Applying that (15) is true for n = k we have:

PU ((t1, d1), (t2, d2), . . . , (tk+1, dk+1)) = PU ((U(t1, t2, . . . , tk), U(t1, t2, . . . , tk−1, dk)) , (tk+1, dk+1))

Definition of PU is applied to obtain:

PU ((t1, d1), (t2, d2), . . . , (tk+1, dk+1)) = (U (U(t1, t2, . . . , tk), tk+1) , U (U(t1, t2, . . . , tk), dk+1))
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Applying associativity of uninorm U yields:

PU ((t1, d1), (t2, d2), . . . , (tk+1, dk+1)) = (U(t1, t2, . . . , tk+1), U(t1, t2, . . . , tk, dk+1))

Using the uninorm sum of TFs, the following result is proved:

Proposition 3. Let {λj = (tj , dj) ∈ Λ|j ∈ {1, 2, . . . , n}} be a collection of n(> 2) TFs. Then, the

propagated trust function value can be obtained as follows:

PU (λ1, λ2, . . . , λn) = PU ((λ1⊕Uλ1⊕U . . .⊕Uλn−1), λn) (16)

Proof. Applying the definition of uninorm sum, it is:

λ1⊕Uλ1⊕U . . .⊕Uλn−1 = (U(t1, . . . , tn−1), U(d1, . . . , dn−1))

Consequently

PU ((λ1⊕Uλ1⊕U . . .⊕Uλn−1), λn) = PU ((U(t1, . . . , tn−1), U(d1, . . . , dn−1)), (tn, dn))

Applying Definition 11, it is:

PU ((λ1⊕Uλ1⊕U . . .⊕Uλn−1), λn) = (U(U(t1, . . . , tn−1), tn), U(U(t1, . . . , tn−1), dn))

This proves that:

PU (λ1, λ2, . . . , λn) = PU ((λ1⊕Uλ1⊕U . . .⊕Uλn−1), λn)

In this paper, the cross ratio uninorm will be used following the next two steps in succession:

1. Discard all TFs equal to (1, 0).

2. Otherwise, apply the following expression to the rest of TFs

PU (λ1, λ2, . . . , λn) =


(0, 1), ∃j : λj = (0, 1)

n∏
j=1

tj

n∏
j=1

tj+
n∏
j=1

(1−tj)
,

(
n−1∏
j=1

tj

)
dn(

n−1∏
j=1

tj

)
dn+

(
n−1∏
j=1

(1−tj)
)
(1−dn)

 , Otherwise.

(17)

Note 1. When propagating trust from one (start) node of a social network to another (end) node

with no direct trust relationship, it could happen that there exist more than one indirect propagation

paths between them. In these cases, it might be reasonable to use the shortest indirect path, i.e. the

path with minimum number of different intermediate nodes between the start and end nodes. Also,

in the proposed trust network, given the trust function value of expert Ei on another expert Ej being

λij = (tij , dij), only when TSij = tij − dij > 0 it can be confirmed that expert Ei trusts expert Ej ,

and then this trust relationship can be propagated.
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3.2. Uninorm trust weighted average (UTWA) operator

The uninorm sum and uninorm scalar multiplication allow to formally define the uninorm trust

weighted average (UTWA) operator of a set of TFs as follows:

Definition 12. Let {λj = (tj , dj) ∈ Λ|j ∈ {1, 2, . . . , n}} be a collection of n(> 2) TFs and W =

(w1, w2, . . . , wn) be a weighting vector such that wj ∈ [0, 1] and
n∑
j=1

wj = 1. The uninorm trust

weighted average (UTWA) is computed as:

UTWAW (λ1, λ2, . . . , λn) = (w1�Uλ1)⊕U (w2�Uλ2)⊕U · · · ⊕U (wn�Uλn) (18)

The uninorm trust arithmetic average (UTAA) operator is obtained when all weights are equal to 1/n.

For the cross ratio uninorm, using expressions (8) and (10), the UTWA operator reduces to:

UTWAW (λ1, λ2, . . . , λn) =




n∏
j=1

tj
wj

n∏
j=1

tjwj +
n∏
j=1

(1− tj)wj
,

n∏
j=1

dj
wj

n∏
j=1

dj
wj +

n∏
j=1

(1− dj)wj

 , λj /∈ {(0, 1), (1, 0)}

(0, 0), Otherwise.

(19)

The order relation of TFs given in Definition 7 allows to formally define the uninorm trust OWA

(UTOWA) operator as follows:

Definition 13. Let {λj = (tj , dj) ∈ Λ|j ∈ {1, 2, . . . , n}} be a collection of n(> 2) TFs and W =

(w1, w2, . . . , wn) be a weighting vector such that wj ∈ [0, 1] and
n∑
j=1

wj = 1. The uninorm trust

ordered weighted average (UTOWA) is computed as:

UTOWAW (λ1, λ2, . . . , λn) = (w1�Uλσ(1))⊕U (w2�Uλσ(2))⊕U · · · ⊕U (wn�Uλσ(n)) (20)

σ : {1, ..., n} → {1, ..., n} being the permutation that orders the TFs from highest to lowest: λσ(i) �

λσ(i+1) (∀i ∈ {1, . . . , n− 1}).

Similarly to the UTWA, the UTOWA expression for the cross ratio uninorm is:

UTOWAW (λ1, λ2, . . . , λn) =


 n∏

j=1
tσ(j)

wj

n∏
j=1

tσ(j)
wj+

n∏
j=1

(1−tσ(j))
wj
,

n∏
j=1

dσ(j)
wj

n∏
j=1

dσ(j)
wj+

n∏
j=1

(1−dσ(j))
wj

 , λj /∈ {(0, 1), (1, 0)}

(0, 0), Otherwise.

(21)

The implementation of the UTOWA operator requires to compute beforehand its associated weight-

ing vector. On the one hand, the sets of TFs are reordered using Definition 7, and therefore the trust

scores associated to the TFs actually induce the ordering of the arguments to aggregate. On the
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other hand, the higher the trust score associated to a trust function value, the higher should be the

importance associated to such trust function value. Thus, trust scores can also be implemented in

deriving the weighting vector of the UTOWA operator, which can be achieved by using Yager’s pro-

cedure to evaluate the overall satisfaction of a ‘soft majority’ (Q) of important criteria (experts) by

an alternative (x) as follows [47]:

wh = Q

(
S(h)

S(n)

)
−Q

(
S(h− 1)

S(n)

)
(22)

beingQ a Basic Unit-interval Monotone (BUM) membership function (non-decreasingQ : [0, 1]→ [0, 1]

such that Q(0) = 0, Q(1) = 1) of the linguistic quantifier [50] representing the concept of ‘soft majority’

to implement in the decision making resolution [20, 25]; S(h) =
∑h

l=1 sσ(l), sl the importance degree

of criterion l; and σ the permutation used to produce the ordering of the values to aggregate. In the

present context, as mentioned above, trust scores are used to induce the ordering of the TFs but also

as measure of their importance. Consequently, the weights associated to the UTOWA operator are

computed as follows

wσ(h) = Q

(
T (σ(h))

T (σ(n))

)
−Q

(
T (σ(h− 1))

T (σ(n))

)
(23)

with T (σ(h)) =
∑h

l=1 TS(λσ(l)), and λσ(i) � λσ(i+1) (∀i ∈ {1, . . . , n− 1}).

Yager [47] considered the parameterised family of regular increasing monotone (RIM) quantifiers

Q(r) = ra (a ≥ 0) for the implementation of the concept of ‘soft majority’. This family of functions

guarantees that: (i) all the experts contribute to the final aggregated value (strict monotonicity

property), and (ii) associates, when a ∈ [0, 1], higher weight values to the aggregated values with

associated higher importance values[19]. In particular, the value a = 1/2 is used to represent the

fuzzy linguistic quantifier ‘most of ’.

4. Illustrative Example

A person wants to buy a dust coat, with four types of dust coat to select from, {x1, x2, x3, x4},

and the following five criteria to consider: colour; comfort; style; environmental protection property;

brand. The five criteria weighting vector is WC = (0.25, 0.20, 0.15, 0.10, 0.30). However, this person

has little knowledge about dust coats and consults some of his/her socially networked friends regarded

as experts [22], becoming a SN-GDM problem.

Step 1. We assume that five experts {E1, E2, E3, E4, E5} have the following trust relationship given

in Figure 1 with corresponding trust sociomatrix TL:

TL =



− (0.6, 0.2) (0.7, 0.3)

− (0.6, 0.1)

(0.6, 0.1) (0.8, 0.2) − (0.7, 0.2)

(0.6, 0.3) − (0.6, 0.3)

(0.9, 0.3) −


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This is an incomplete trust sociomatrix as there is no direct trust link between all the nodes of

the network, although indirect chain of trusted third partners (TTPs) can be used to propagate trust

in those cases. For example, to propagate TFs from expert E1 to expert E3, we have three possible

indirect TTPs paths: L1 : E1 → E5 → E3 and L2 : E1 → E2 → E4 → E3, and L3 : E1 → E2 →

E4 → E5 → E3, and therefore L1 is used as it is the shortest path. According to expression (17), the

propagated trust function value from expert E1 to expert E3 is:

PL1
U ((0.7, 0.3), (0.9, 0.3)) = (0.95, 0.50)

Applying the above same process, the completed trust sociomatrix would be:

TL =



− (0.60, 0.20) (0.95, 0.50) (0.78, 0.39) (0.70, 0.30)

(0.77, 0.20) − (0.69, 0.39) (0.60, 0.10) (0.69, 0.39)

(0.60, 0.10) (0.80, 0.20) − (0.70, 0.20) (0.78, 0.50)

(0.69, 0.14) (0.86, 0.27) (0.60, 0.30) − (0.60, 0.30)

(0.93, 0.50) (0.97, 0.69) (0.90, 0.30) (0.95, 0.69) −


After the complete trust sociomatrix is achieved, the uninorm trust arithmetic average of each expert

is computed as a measure of their importance in the network:

λ̄i=UTAA(λi1, . . . , λij , . . . λin) (24)

Using the cross ratio uninorm yields:

λ̄1 = (0.78, 0.21); λ̄2 = (0.85, 0.32); λ̄3 = (0.83, 0.37); λ̄4 = (0.80, 0.31); λ̄5 = (0.70, 0.37);

According to Definition 4, it is

TD1 = 0.785;TD2 = 0.765;TD3 = 0.730;TD4 = 0.745;TD5 = 0.665

and Def. 7 gives:

λ̄σ(1) = λ̄1; λ̄σ(2) = λ̄2; λ̄σ(3) = λ̄4; λ̄σ(4) = λ̄3; λ̄σ(5) = λ̄5

The application of Eq. (23) results in the following experts’ weights:

WE = (0.461, 0.187, 0.117, 0.141, 0.095)

Step 2. It is assumed here that the group of experts provide the following trust evaluation for the four

types of dust coat (rows) with respect each one of the criteria (columns):

R1 =


[0.7, 0.8] [0.3, 0.7] [0.3, 0.7] [0.5, 0.3] [0.5, 0.7]

[0.5, 0.6] [0.4, 0.2] [0.4, 0.7] [0.6, 0.8] [0.5, 0.2]

[0.4, 0.3] [0.5, 0.9] [0.4, 0.2] [0.5, 0.3] [0.4, 0.7]

[0.6, 0.4] [0.3, 0.4] [0.3, 0.6] [0.6, 0.9] [0.3, 0.6]


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R2 =


[0.3, 0.4] [0.5, 0.2] [0.4, 0.6] [0.7, 0.5] [0.8, 0.3]

[0.7, 0.6] [0.6, 0.4] [0.3, 0.5] [0.4, 0.7] [0.5, 0.6]

[0.5, 0.7] [0.3, 0.6] [0.8, 0.2] [0.6, 0.3] [0.2, 0.8]

[0.4, 0.8] [0.7, 0.5] [0.6, 0.6] [0.3, 0.4] [0.9, 0.1]



R3 =


[0.5, 0.3] [0.6, 0.4] [0.3, 0.5] [0.4, 0.8] [0.7, 0.6]

[0.8, 0.4] [0.3, 0.7] [0.6, 0.8] [0.5, 0.3] [0.5, 0.2]

[0.6, 0.5] [0.2, 0.9] [0.5, 0.4] [0.3, 0.6] [0.6, 0.7]

[0.7, 0.4] [0.5, 0.5] [0.4, 0.7] [0.8, 0.2] [0.3, 0.4]



R4 =


[0.7, 0.4] [0.4, 0.3] [0.3, 0.6] [0.6, 0.4] [0.8, 0.4]

[0.3, 0.5] [0.5, 0.2] [0.2, 0.9] [0.7, 0.7] [0.6, 0.5]

[0.6, 0.2] [0.7, 0.6] [0.4, 0.5] [0.3, 0.8] [0.9, 0.2]

[0.4, 0.8] [0.6, 0.5] [0.5, 0.3] [0.7, 0.2] [0.5, 0.7]



R5 =


[0.4, 0.8] [0.6, 0.7] [0.3, 0.5] [0.7, 0.4] [0.5, 0.6]

[0.6, 0.3] [0.5, 0.2] [0.4, 0.6] [0.8, 0.2] [0.7, 0.1]

[0.7, 0.5] [0.8, 0.3] [0.5, 0.5] [0.6, 0.5] [0.4, 0.5]

[0.3, 0.4] [0.7, 0.1] [0.6, 0.3] [0.4, 0.9] [0.5, 0.8]


The individual trust decision making matrices are aggregated into a collective one using the

UTOWAWE
operator and the experts’ trust scores to induce the ordering, which results in:

R̄ =


[0.57, 0.63] [0.41, 0.51] [0.32, 0.63] [0.56, 0.42] [0.64, 0.56]

[0.56, 0.53] [0.45, 0.28] [0.37, 0.71] [0.59, 0.66] [0.54, 0.28]

[0.50, 0.40] [0.49, 0.78] [0.50, 0.28] [0.47, 0.43] [0.47, 0.63]

[0.51, 0.55] [0.48, 0.40] [0.42, 0.54] [0.57, 0.69] [0.48, 0.50]


Step 3. The application of the UTWA operator guided by the criteria weighting vector WC results in

the following alternatives’ TFs:

λx1 = (0.52, 0.56);λx2 = (0.51, 0.44);λx3 = (0.49, 0.54);λx4 = (0.49, 0.52)

The trust scores of alternatives are:

TS(x1) = 0.480;TS(x2) = 0.535;TS(x3) = 0.475;TS(x4) = 0.485

Thus, the order relation of the set of alternatives is

x3 ≺ x1 ≺ x4 ≺ x2

and the dust coat to select would be x2.
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In GDM problems, IFSs have been proved a useful tool to deal with hesitancy information of

experts. However, IFSs cannot describe the inconsistency of information among a group of users

(agents) in a social network. Obviously, the proposed SN-GDM model is able to unify both hesitancy

and inconsistency information in a trust function. For example in R1, r111 = [0.7, 0.8] represents

inconsistency information while r113 = [0.5, 0.3] represents hesitancy information. Furthermore, the

uninorm trust propagation operator allows to exploit the trust relationship among the group of users

full, which is not the case with previously proposed propagation operators. Therefore, the proposed

trust relationship provide a new reliable source to derive and assign experts’ weights and it is not

a requirement to known these beforehand, and as a consequence the proposed SN-GDM model is a

novel and suitable method to deal with more complex decision making problems than previous GDM

methods.

5. Analysis of the proposed method

In this article, the uninorm trust propagation based SN-GDM with four tuple information has

been presented. This SN-GDM model has the following main advantages with respect to other group

decision making models proposed in the literatures:

1. It uses four tuple information (trust, distrust, hesitancy and inconsistency) to model individual

preferences in group decision making process under social network. Therefore, it can be regarded

as an extension of intuitionistic fuzzy sets [3], which just contains three tuple information (trust,

distrust, hesitancy). Furthermore, it is important to remark that this model is one of the first

efforts to use four tuple information to model group decision making problems.

2. It introduces some new definitions associated with trust function (TF), such as: trust score (TS)

and knowledge degree (KD), and then proposes the trust decision making space. Combining TS

and KD, the ranking order relation of trust function values (TFs) is developed.

3. It investigates the uninorm trust propagation operator, which extends previous proposal based

on t − norms and t − conorms. Also, it allows to propagate trust and distrust information

simultaneously, and then it carries both hesitancy and inconsistency when present. Furthermore,

the uninorm trust weighted average (UTWA) operator and the uninorm trust ordered weighted

average (UTOWA) operator are developed to aggregate TFs between a group of experts or a set

of criteria. It is worth remarking that this model is one of the first efforts to use indirect trust

relationship by trusted third partners (TTPs) to determine the weights of experts, being indeed

more complex and realistic than the direct one presented in [35].

4. Our previous work [38] focuses on an interactive method for consensus in group decision making

problem with incomplete linguistic information. The calculation method of TFs are modified
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from [29], and then it is used to estimate the missing linguistic information in the decision

making matrix and determine the weights of experts as a reliable source. Different from [38],

this work aims to deal with MCGDM probelms with four tuple information. Obviously, the key

problems to be solved between [38] and this work are completely different. Also, in order to solve

MCGDM problem with four tuple information, it builds novel uninorm trust operational laws

as well as some new trust aggregating operators (UTWA and UTOWA) and trust propagating

operators.

6. Conclusion

This article proposes a novel model for group decision making under social network (SN-GDM).

To do that, it uses four tuple information to model individual preferences in decision making pro-

cess, and so it can deal with hesitancy and inconsistency information of experts themselves. Then,

it defines the concept of trust decision making space, including trust degree (TS) and knowledge de-

gree (KD), and proposes a ranking order relation for trust function values (TFs), which is used for

deriving a final solution in SN-GDM with four tuple information. The operational laws of TFs for

uninorm operator are built, and the uninorm trust propagation operator is investigated to propagate

the indirect trust relationship between group of experts. It has the advantage of propagating trust

and distrust information simultaneously, and then it can maintain the four tuple trust information

in the propagating process. After the indirect trust relationship is built, the uninorm trust weighted

average (UTWA) operator and the uninorm trust ordered weighted average (UTOWA) operator are

developed to aggregate individual trust relationship and produce an order relation of TFs associated

to individual expert, and ultimately to obtain a final solution to the SN-GDM. Moreover, the weights

associated to experts are derived in a reasonable way as: the higher trusted an expert is the more

importance is assigned to the expert.

Nowadays, due to the increase use of social network by citizens, there is an increase interest in

dealing with group decision making problems within a social network framework. For example, a

group of friends would like to watch a film for which some kind of agreement or consensus is to be

reached before deciding on the fill of interest to the group. How to reach consensus within a SN-GDM

is a research question we will aim to investigate in future, and in particular we are interested in the

developing of trust induced group consensus model and group recommendation method to support a

networked group in achieving the common goal for the group.
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