725 research outputs found

    Solid State Circuits Technologies

    Get PDF
    The evolution of solid-state circuit technology has a long history within a relatively short period of time. This technology has lead to the modern information society that connects us and tools, a large market, and many types of products and applications. The solid-state circuit technology continuously evolves via breakthroughs and improvements every year. This book is devoted to review and present novel approaches for some of the main issues involved in this exciting and vigorous technology. The book is composed of 22 chapters, written by authors coming from 30 different institutions located in 12 different countries throughout the Americas, Asia and Europe. Thus, reflecting the wide international contribution to the book. The broad range of subjects presented in the book offers a general overview of the main issues in modern solid-state circuit technology. Furthermore, the book offers an in depth analysis on specific subjects for specialists. We believe the book is of great scientific and educational value for many readers. I am profoundly indebted to the support provided by all of those involved in the work. First and foremost I would like to acknowledge and thank the authors who worked hard and generously agreed to share their results and knowledge. Second I would like to express my gratitude to the Intech team that invited me to edit the book and give me their full support and a fruitful experience while working together to combine this book

    Liquid Metal Printing with Scanning Probe Lithography for Printed Electronics

    Get PDF
    In den letzten Jahren hat das „Internet der Dinge“ (Englisch Internet of Things, abgekürzt IoT), das auch als Internet of Everything (Deutsch frei „Internet von Allem“) bezeichnet wird, mit dem Aufkommen der „Industrie 4.0“ einen Strom innovativer und intelligenter sensorgestützter Elektronik der neuen Generation in den Alltag gebracht. Dies erfordert auch die Herstellung einer riesigen Anzahl von elektronischen Bauteilen, einschließlich Sensoren, Aktoren und anderen Komponenten. Gleichzeitig ist die herkömmliche Elektronikfertigung zu einem hochkomplexen und investitionsintensiven Prozess geworden. In dem Maße, wie die Zahl der elektronischen Bauteile und die Nachfrage nach neuen, fortschrittlicheren elektronischen Bauteilen zunimmt, steigt auch die Notwendigkeit, effizientere und nachhaltigere Wege zur Herstellung dieser Bauteile zu finden. Die gedruckte Elektronik ist ein wachsender Markt, der diese Nachfrage befriedigen und die Zukunft der Herstellung von elektronischen Geräten neu gestalten könnte. Sie erlaubt eine einfache und kostengünstige Produktion und ermöglicht die Herstellung von Geräten auf Papier- oder Kunststoffsubstraten. Für die Herstellung gibt es dabei eine Vielzahl von Methoden. Techniken auf der Grundlage der Rastersondenlithografie waren dabei schon immer Teil der gedruckten Elektronik und haben zu Innovationen in diesem Bereich geführt. Obwohl die Technologie noch jung ist und der derzeitige Stand der gedruckten Elektronik im industriellen Maßstab, wie z. B. die Herstellung kompletter integrierter Schaltkreise, stark limitiert ist, sind die potenziellen Anwendungen enorm. Im Mittelpunkt der Entwicklung gedruckter elektronischer Schaltungen steht der Druck leitfähiger und anderer funktionaler Materialien. Die meisten der derzeit verfügbaren Arbeiten haben sich dabei auf die Verwendung von Tinten auf Nanopartikelbasis konzentriert. Die Herstellungsschritte auf der Grundlage von Tinten auf Nanopartikelbasis sind komplizierte Prozesse, da sie das Ausglühen (Englisch Annealing) und weitere Nachbearbeitungsschritte umfassen, um die gedruckten Muster leitfähig zu machen. Die Verwendung von Gallium-basierten, bei/nahe Raumtemperatur flüssigen Metallen und deren direktes Schreiben für vollständig gedruckte Elektronik ist immer noch ungewöhnlich, da die Kombination aus dem Vorhandensein einer Oxidschicht, hohen Oberflächenspannungen und Viskosität ihre Handhabung erschwert. Zu diesem Zweck zielt diese Arbeit darauf ab, Methoden zum Drucken von Materialien, einschließlich Flüssigmetallen, zu entwickeln, die mit den verfügbaren Druckmethoden nicht oder nur schwer gedruckt werden können und diese Methoden zur Herstellung vollständig gedruckter elektronischer Bauteile zu verwenden. Weiter werden Lösungen für Probleme während des Druckprozesses untersucht, wie z. B. die Haftung der Tinte auf dem Substrat und andere abscheidungsrelevante Aspekte. Es wird auch versucht, wissenschaftliche Fragen zur Stabilität von gedruckten elektronischen Bauelementen auf Flüssigmetallbasis zu beantworten. Im Rahmen der vorliegenden Arbeit wurde eine auf Glaskapillaren basierenden Direktschreibmethode für das Drucken von Flüssigmetallen, hier Galinstan, entwickelt. Die Methode wurde auf zwei unterschiedlichen Wegen implementiert: Einmal in einer „Hochleistungsversion“, basierend auf einem angepassten Nanolithographiegerät, aber ebenfalls in einer hochflexiblen, auf Mikromanipulatoren basierenden Version. Dieser Aufbau erlaubt einen on-the-fly („im Fluge“) kapillarbasierten Druck auf einer breiten Palette von Geometrien, wie am Beispiel von vertikalen, vertieften Oberflächen sowie gestapelten 3D-Gerüsten als schwer zugängliche Oberflächen gezeigt wird. Die Arbeit erkundet den potenziellen Einsatz dieser Methode für die Herstellung von vollständig gedruckten durch Flüssigmetall ermöglichten Bauteilen, einschließlich Widerständen, Mikroheizer, p-n-Dioden und Feldeffekttransistoren. Alle diese elektronischen Bauelemente werden ausführlich charakterisiert. Die hergestellten Mikroheizerstrukturen werden für temperaturgeschaltete Mikroventile eingesetzt, um den Flüssigkeitsstrom in einem Mikrokanal zu kontrollieren. Diese Demonstration und die einfache Herstellung zeigt, dass das Konzept auch auf andere Anwendungen, wie z.B. die bedarfsgerechte Herstellung von Mikroheizern für in-situ Rasterelektronenmikroskop-Experimente, ausgeweitet werden kann. Darüber hinaus zeigt diese Arbeit, wie PMMA-Verkapselung als effektive Barriere gegen Sauerstoff und Feuchtigkeit fungiert und zusätzlich als brauchbarer mechanischer Schutz der auf Flüssigmetall basierenden gedruckten elektronischen Bauteile wirken kann. Insgesamt zeigen der alleinstehende, integrierte Herstellungsablauf und die Funktionalität der Geräte, dass das Potenzial des Flüssigmetall-Drucks in der gedruckten Elektronik viel größer ist als einzig die Verwendung zur Verbindung konventioneller elektronischer Bauteile. Neben der Entwicklung von Druckverfahren und der Herstellung elektronischer Bauteile befasst sich die Arbeit auch mit der Korrosion und der zusätzlichen Legierung von konventionellen Metallelektroden in Kontakt mit Flüssigmetallen, welche die Stabilität der Bauteil beinträchtigen könnten. Zu diesem Zweck wurde eine korrelierte Materialinteraktionsstudie von gedruckten Galinstan- und Goldelektroden durchgeführt. Durch die kombinierte Anwendung von optischer Mikroskopie, vertikaler Rasterinterferometrie, Rasterelektronenmikroskopie, Röntgenphotonenspektroskopie und Rasterkraftmikroskopie konnte der Ausbreitungsprozess von Flüssigmetalllinien auf Goldfilmen eingehend charakterisiert werden. Diese Studie zeigt eine unterschiedliche Ausbreitung der verschiedenen Komponenten des Flüssigmetalls sowie die Bildung von intermetallischen Nanostrukturen auf der umgebenden Goldfilmoberfläche. Auf der Grundlage der erhaltenen zeitabhängigen, korrelierten Charakterisierungsergebnisse wird ein Modell für den Ausbreitungsprozess vorgeschlagen, das auf dem Eindringen des Flüssigmetalls in den Goldfilm basiert. Um eine ergänzende Perspektive auf die interne Nanostruktur zu erhalten, wurde die Röntgen-Nanotomographie eingesetzt, um die Verteilung von Gold, Galinstan und intermetallischen Phasen in einem in das Flüssigmetall getauchten Golddraht zu untersuchen. Schlussendlich werden Langzeitmessungen des Widerstands an Flüssigmetallleitungen, die Goldelektroden verbinden, durchgeführt, was dazu beiträgt, die Auswirkungen von Materialwechselwirkungen auf elektronische Anwendungen zu bewerten

    Mesoporous Silica-Based Materials for Electronics-Oriented Applications

    Get PDF
    International audienceElectronics, and nanoelectronics in particular, represent one of the most promising branches of technology. The search for novel and more efficient materials seems to be natural here. Thus far, silicon-based devices have been monopolizing this domain. Indeed, it is justified since it allows for significant miniaturization of electronic elements by their densification in integrated circuits. Nevertheless, silicon has some restrictions. Since this material is applied in the bulk form, the miniaturization limit seems to be already reached. Moreover, smaller silicon-based elements (mainly processors) need much more energy and generate significantly more heat than their larger counterparts. In our opinion, the future belongs to nanostructured materials where a proper structure is obtained by means of bottom-up nanotechnology. A great example of a material utilizing nanostructuring is mesoporous silica, which, due to its outstanding properties, can find numerous applications in electronic devices. This focused review is devoted to the application of porous silica-based materials in electronics. We guide the reader through the development and most crucial findings of porous silica from its first synthesis in 1992 to the present. The article describes constant struggle of researchers to find better solutions to supercapacitors, lower the k value or redox-active hybrids while maintaining robust mechanical properties. Finally, the last section refers to ultra-modern applications of silica such as molecular artificial neural networks or super-dense magnetic memory storage

    Nanofluid Flow in Porous Media

    Get PDF
    Studies of fluid flow and heat transfer in a porous medium have been the subject of continuous interest for the past several decades because of the wide range of applications, such as geothermal systems, drying technologies, production of thermal isolators, control of pollutant spread in groundwater, insulation of buildings, solar power collectors, design of nuclear reactors, and compact heat exchangers, etc. There are several models for simulating porous media such as the Darcy model, Non-Darcy model, and non-equilibrium model. In porous media applications, such as the environmental impact of buried nuclear heat-generating waste, chemical reactors, thermal energy transport/storage systems, the cooling of electronic devices, etc., a temperature discrepancy between the solid matrix and the saturating fluid has been observed and recognized

    The analysis and modeling of fine pitch laminate interconnect in response to large energy fault transients

    Get PDF
    In embedded applications, the miniaturization of circuitry and functionality provides many benefits to both the producer and consumer. However, the benefits gained from miniaturization is not without penalty, as the environmental influences may be great enough to introduce system failures in new or different modes and effects;Of particular interest within this research is the effect of fault transients in reduced geometries of printed circuit card interconnect, commonly referred to as fine pitch laminate interconnect. Whereas larger geometries of conductor trace width and spacing may have been immune to circuit failure at a given fault input, the reduction of the trace geometry may introduce failures as the insulating effect of the dielectric is compromised to the point where arcing occurs;To address this concern, a circuit card was designed with fine pitch laminate features in microstrip, embedded microstrip, and stripline constructions. Various trace widths and separations were tested for structural integrity (presence of arcing or fusing) at voltage extremes defined in avionics standard. The specific trace widths in the test were 4 mils, 6 mils, 8 mils, and 12 mils, with the trace separation in each case equal to the trace widths. The results of the tests and methods to artificially improve the integrity of the interconnect are documented, providing a clear region of reliable operation to the designers and the engineering community;Finally, the construction of the interconnect and the results from the test were combined to create an empirical model for circuit analysis. Created for the Saber simulator, but readily adaptable to Spice, this model will describe high-speed operation of a propagating signal before breakdown, and uses data from the experiment to calculate threshold values for the arcing breakdown. The values for the breakdown voltages are correlated to the experimental data using statistical methods of weighted linear regression and hypothesis testing

    차세대 반도체 배선을 위한 코발트 합금 자가형성 확산방지막 재료 설계 및 전기적 신뢰성에 대한 연구

    Get PDF
    학위논문(박사) -- 서울대학교대학원 : 공과대학 재료공학부, 2022.2. 주영창.Recently, the resistance-capacitance (RC) delay of the Cu interconnects in metal 1 (M1) level has been increased rapidly due to the reduction of the interconnect linewidth along with the transistor scaling down, and the interconnect reliability becomes a severe issue again. In order to overcome interconnect performance problems and move forward to the next-generation interconnects system, study on low resistivity (ρo) and low electron mean free path (λ) metals was conducted. Generally, metals such as Cobalt (Co), Ruthenium (Ru), and Molybdenum (Mo) are mentioned as candidates for next-generation interconnect materials, and since they have a low ρo × λ value, it is expected that the influence of interface scatterings and surface scattering can be minimized. However, harsh operating environments such as high electric fields, critical Joule heating, and reduction of the pitch size are severely deteriorating the performance of electronic devices as well as device reliability. For example, since time dependent dielectric breakdown (TDDB) problems for next-generation interconnect system have been reported recently, it is necessary to study alternative barrier materials and processes to improve the interconnect reliability. Specifically, extrinsic dielectric breakdown due to penetration of Co metal ions in high electric fields has been reported as a reliability problem to be solved in Co interconnect systems. Therefore, there is a need for new material system design and research on a robust diffusion barrier that prevents metal ions from penetrating into the dielectric, thereby improving the reliability of Co interconnects. Moreover, in order to lower the resistance of the interconnect, it is necessary to develop an ultra-thin barrier. This is because even a barrier with good reliability characteristics will degrade chip performance if it takes up a lot of volume in the interconnect. The recommended thickness for a single diffusion barrier layer is currently reported to be less than 2.5 nm. As a result, it is essential to develop materials that comprehensively consider performance and reliability. In this study, we designed a Co alloy self-forming barrier (SFB) material that can make sure of low resistance and high reliability for Co interconnects, which is attracting attention as a next-generation interconnect system. The self-forming barrier methodology induces diffusion of an alloy dopant at the interface between the metal and the dielectric during the annealing process. And the diffused dopant reacts with the dielectric to form an ultra-thin diffusion barrier. Through this methodology, it is possible to improve reliability by preventing the movement of metal ions. First of all, material design rules were established to screen the appropriate alloy dopants and all CMOS-compatible metals were investigated. Dopant resistivity, intermetallic compound formation, solubility in Co, activity coefficient in Co, and oxidation tendency is considered as the criteria for the dopant to escape from the Co matrix and react at the Co/SiO2 interface. In addition, thermodynamic calculations were performed to predict which phases would be formed after the annealing process. Based on thermodynamic calculations, 5 dopant metals were selected, prioritized for self-forming behavior. And the self-forming material was finally selected through thin film and device analysis. We confirmed that Cr, Zn, and Mn out-diffused to the surface of the thin film structure using X-ray photoelectron spectroscopy (XPS) depth profile and investigated the chemical state of out-diffused dopants through the analysis of a binding energy. Cr shows the most ideal self-forming behavior with the SiO2 dielectric and reacted with oxygen to form a Cr2O3 barrier. In metal-insulator-semiconductor (MIS) structure, out-diffused Cr reacts with SiO2 at the interface and forms a self-formed single layer. It was confirmed that the thickness of the diffusion barrier layer is about 1.2 nm, which is an ultra-thin layer capable of minimizing the total effective resistance. Through voltage-ramping dielectric breakdown (VRDB) tests, Co-Cr alloy showed highest breakdown voltage (VBD) up to 200 % than pure Co. The effect of Cr doping concentration and heat treatment condition applicable to the interconnect process was confirmed. When Cr was doped less than 1 at%, the robust electrical reliability was exhibited. Also, it was found that a Cr2O3 interfacial layer was formed when annealing process was performed at 250 °C or higher for 30 minutes or longer. In other words, Co-Cr alloy is well suited for the interconnect process because current interconnect process temperature is below 400 °C. And when the film thickness was lowered from 150 nm to 20 nm, excellent VBD values were confirmed even at high Cr doping concentration (~7.5 at%). It seems that the amount of Cr present at the Co/SiO2 interface plays a very important role in improving the Cr oxide SFB quality. Physical modeling is necessary to understand the amount of Cr at the interface according to the interconnect volumes and the reliability of the Cr oxide self-forming barrier. TDDB lifetime test also performed and Co-Cr alloy interconnect shows a highly reliable diffusion barrier property of self-formed interfacial layer. The DFT analysis also confirmed that Cr2O3 is a very promising barrier material because it showed a higher energy barrier value than the TiN diffusion barrier currently being studied. A Co-based self-forming barrier was designed through thermodynamic calculations that take performance and reliability into account in interconnect material system. A Co interconnect system with an ultra-thin Cr2O3 diffusion barrier with excellent reliability is proposed. Through this design, it is expected that high-performance interconnects based on robust reliability in the advanced interconnect can be implemented in the near future.최근 반도체 소자 스케일링에 따른 배선 선폭 감소로 M0, M1영역에서의 metal 비저항이 급격히 증가하여 배선에서의 RC delay가 다시 한번 크게 문제가 되고 있다. 이를 해결하기 위해서 차세대 배선 시스템에서는 낮은 비저항과 electron mean free path (EMFP)을 가지는 물질 연구가 진행되었다. 대표적으로 Co, Ru, Mo와 같은 금속들이 차세대 배선 재료 후보로 언급되고 있으며 낮은 ρ0 × λ 값을 갖기 때문에 interface (surface) scattering과 grain boundary scattering 영향을 최소화할 수 있을 것으로 보고 있다. 하지만 가혹한 electrical field와 높은 Joule heating이 발생하는 동작 환경으로 인해 performance뿐만 아니라 소자 신뢰성이 더 열악한 상황에 놓여있다. 예를 들어 차세대 금속에 대한 time dependent dielectric breakdown (TDDB) 신뢰성 문제가 보고되고 있기 때문에 이를 보안할 확산방지막 물질 및 공정연구가 필요하다. 특히 높은 전기장에서 Co ion이 유전체로 침투하여 extrinsic dielectric breakdown 신뢰성 문제가 최근 보고되고 있다. 따라서 금속 이온이 유전체 내부로 침투하는 것을 방지하여, Co 배선의 신뢰성을 향상시킬 수 견고한 확산방지막 개발 및 새로운 배선 시스템 설계가 필요한 시점이다. 또한, 배선 저항을 낮추기 위해서는 매우 얇은 확산방지막 개발이 필요하다. 신뢰성이 좋은 확산방지막이라도 배선에서 많은 영역을 차지할 경우 전체 성능이 저하되기 때문이다. Cu 확산방지막으로 사용되고 있는 TaN 층은 2.5 nm 보다 얇을 경우 신뢰성이 급격히 나빠지므로 2.5 nm보다 얇은 두께의 견고한 확산방지막 개발이 필요하다. 본 연구는 차세대 반도체 배선 물질로 주목받고 있는 Co 금속에 대하여 저저항·고신뢰성을 확보할 수 있는 Co alloy 자가형성 확산방지막 (Co alloy self-forming barrier, SFB) 소재 디자인하였다. 자가형성 확산방지막 방법론은 열처리 과정에서 금속과 유전체 계면에서 도펀트가 확산하게 된다. 그리고 확산되니 도펀트는 얇은 확산방지막을 형성하는 방법론이다. 이 방법론을 통해 금속 이온의 이동을 방지하여 Co 배선 신뢰성을 향상시킬 수 있을 것으로 예상하였다. 우선, Co 합금상에서 적절한 도펀트를 찾기 위해서 CMOS 공정에 적용 가능한 금속들을 선별하였다. 도펀트 저항, 금속간 화합물 형성 여부, Co내 고용도, Co alloy에서의 활성계수, 산화도, Co/SiO2 계면에서의 안정상을 열역학적 계산을 통해서 물질 선정 기준으로 세웠다. 열역학적 계산을 기반으로 9개의 도펀트 금속이 선택되었으며, Co 합금 자가형성 확산방지막 기준에 따라서 우선 순위를 지정하였다. 그리고 최종적으로 박막과 소자 신뢰성 평가를 통해서 가장 적합한 자가형성 확산방지막 물질을 선정하였다. X-ray photoelectron spectroscopy (XPS) 분석을 이용하여 Cr, Zn, Mn이 박막 구조의 표면으로 외부 확산 여부를 확인하고 결합 에너지 분석을 통해 외부로 확산된 도펀트의 화학적 상태를 조사하였다. 분석 결과 Cr, Zn, Mn이 유전체 계면으로 확산되어 산소와 반응하여oxide/silicate 확산 방지막 (e.g. Cr2O3, Zn2SiO4, MnSiO3)을 형성한 것을 확인하였다. 그 중 Cr은 SiO2 유전체와 함께 가장 이상적인 자기 형성 거동을 나타내며 산소와 반응하여 Cr2O3 층을 형성하는 것을 확인하였다. MIS (Metal-Insulator-Semiconductor) 구조에서도 외부로 확산된 Cr은 계면에서 SiO2와 반응하여 Cr2O3 자가형성 확산방지막이 형성되었다. 확산방지층의 두께는 약 1.2nm로 전체 유효저항을 최소화할 수 있는 충분히 얇은 두께를 확보하였다. VRDB (Voltage-Ramping Dielectric Breakdown) 테스트를 통해 Co-Cr 합금은 순수 Co보다 최대 200% 높은 항복 전압 (breakdown voltage)을 보였다. 반도체 배선 공정에 적용할 수 있는 Cr 도핑 농도와 열처리 조건의 영향을 확인하였다. Cr이 1at% 미만으로 도핑되었을 때 우수한 전기적 신뢰성을 나타내었다. 또한, 250℃ 이상에서 30분 이상 열처리를 하였을 때 Cr2O3 계면층이 형성됨을 알 수 있었다. 즉, 현재 배선 공정 온도가 400°C 미만이기 때문에 Co-Cr 합금이 배선 공정에 적용 가능함을 확인하였다. TDDB 수명 테스트도 수행되었으며 Co-Cr 합금 배선은 자체 형성된 계면층의 매우 안정적인 확산 장벽 특성을 보여주었다. DFT 분석은 Cr2O3자가형성 확산방지막이 현재 연구되고 있는 TiN 확산 장벽보다 더 높은 에너지 장벽 값을 보여주기 때문에 매우 유망한 확산방지막임을 보여주었다. 본 연구는 반도채 배선 물질 시스템에서 성능과 신뢰성을 고려한 열역학적 계산을 통해 Co 기반 자가형성 확산방지막을 설계하였다. 실험 결과 신뢰성이 우수하고 아주 얇은 Cr2O3 확산방지막이 있는 Co-Cr 합금이 제안하였다. 물질 설계와 전기적 신뢰성 검증을 Co/Cr2O3/SiO2 물질 시스템을 제안하였고 앞으로의 다가올 차세대 배선에서 구현될 수 있을 것으로 기대된다.Abstract i Table of Contents v List of Tables ix List of Figures xii Chapter 1. Introduction 1 1.1. Scaling down of VLSI systems 1 1.2. Driving force of interconnect system evolution 7 1.3. Driving force of beyond Cu interconnects 11 1.4. Objective of the thesis 18 1.5. Organization of the thesis 21 Chapter 2. Theoretical Background 22 2.1. Evolution of interconnect systems 22 2.1.1. Cu/barrier/low-k interconnect system 22 2.1.2. Process developments for interconnect reliability 27 2.1.3. 3rd generation of interconnect system 31 2.2 Thermodynamic tools for Co self-forming barrier 42 2.2.1 Binary phase diagram 42 2.2.2 Ellingham diagram 42 2.2.3 Activity coefficient 43 2.3. Reliability of Interconnects 45 2.3.1. Current conduction mechanisms in dielectrics 45 2.3.2. Reliability test vehicles 50 2.3.3. Dielectric breakdown assessment 52 2.3.4. Dielectric breakdown mechanisms 55 2.3.5. Reliability test: VRDB and TDDB 56 2.3.6. Lifetime models 57 Chapter 3. Experimental Procedures 60 3.1. Thin film deposition 60 3.1.1. Substrate preparation 60 3.1.2. Oxidation 61 3.1.3. Co alloy deposition using DC magnetron sputtering 61 3.1.4. Annealing process 65 3.2. Thin film characterization 67 3.2.1. Sheet resistance 67 3.2.2. X-ray photoelectron spectroscopy (XPS) 68 3.3. Metal-Insulator-Semiconductor (MIS) device fabrication 70 3.3.1. Patterning using lift-off process 70 3.3.2. TDDB packaging 72 3.4. Reliability analysis 74 3.4.1. Electrical reliability analysis 74 3.4.2. Transmission electron microscopy (TEM) analysis 75 3.5. Computation 76 3.5.1 FactsageTM calculation 76 3.5.2. Density Functional Theory (DFT) calculation 77 Chapter 4. Co Alloy Design for Advanced Interconnects 78 4.1. Material design of Co alloy self-forming barrier 78 4.1.1. Rule of thumb of Co-X alloy 78 4.1.2. Co alloy phase 80 4.1.3. Out-diffusion stage 81 4.1.4. Reaction step with SiO2 dielectric 89 4.1.5. Comparison criteria 94 4.2. Comparison of Co alloy candidates 97 4.2.1. Thin film resistivity evaluation 97 4.2.2. Self-forming behavior using XPS depth profile analysis 102 4.2.3. MIS device reliability test 110 4.3 Summary 115 Chapter 5. Co-Cr Alloy Interconnect with Robust Self-Forming Barrier 117 5.1. Compatibility of Co-Cr alloy SFB process 117 5.1.1. Effect of Cr doping concentration 117 5.1.2. Annealing process condition optimization 119 5.2. Reliability of Co-Cr interconnects 122 5.2.1. VRDB quality test with Co-Cr alloys 122 5.2.2. Lifetime evaluation using TDDB method 141 5.2.3. Barrier mechanism using DFT 142 5.3. Summary 145 Chapter 6. Conclusion 148 6.1. Summary of results 148 6.2. Research perspectives 150 References 151 Abstract (In Korean) 166 Curriculum Vitae 169박

    High-frequency characterization of embedded components in printed circuit boards

    Get PDF
    The embedding of electronic components is a three-dimensional packaging technology, where chips are placed inside of the printed circuit board instead of on top. The advantage of this technology is the reduced electronic interconnection length between components. The shorter this connection, the faster the signal transmission can occur. Different high-frequency aspects of chip embedding are investigated within this dissertation: interconnections to the embedded chip, crosstalk between signals on the chip and on the board, and interconnections running on top of or underneath embedded components. The high-frequency behavior of tracks running near embedded components is described using a broadband model for multilayer microstrip transmission lines. The proposed model can be used to predict the characteristic impedance and the loss of the lines. The model is based on two similar approximations that reduce the multilayer substrate to an equivalent single-layer structure. The per-unit-length shunt impedance parameters are derived from the complex effective dielectric constant, which is obtained using a variational method. A complex image approach results in the calculation of a frequency-dependent effective height that can be used to determine the per-unit-length resistance and inductance. A deliberate choice was made for a simple but accurate model that could easily be implemented in current high-frequency circuit simulators. Next to quasi-static electromagnetic simulations, a dedicated test vehicle that allows for the direct extraction of the propagation constant of these multilayer microstrips is manufactured and used to verify the model. The verification of the model using simulation and measurements shows that the proposed model slightly overestimates the loss of the measured multilayer microstrips, but is more accurate than the simulations in predicting the characteristic impedance

    Estudo da eletromigração em circuitos integrados na fase de projeto

    Get PDF
    Orientadores: Roberto Lacerda de Orio, Leandro Tiago ManeraTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: O dano por eletromigração nas interconexões é um gargalo bem conhecido dos circuitos integrados, pois causam problemas de confiabilidade. A operação em temperaturas e densidades de corrente elevadas acelera os danos, aumentando a resistência da interconexão e, portanto, reduzindo a vida útil do circuito. Este problema tem se acentuado com o escalonamento da tecnologia. Para garantir a confiabilidade da interconexão e, como consequência, a confiabilidade do circuito integrado, métodos tradicionais baseados no chamado Efeito Blech e numa densidade de corrente máxima permitida são implementados durante o projeto da interconexão. Esses métodos, no entanto, não levam em consideração o impacto da eletromigração no desempenho do circuito. Neste trabalho, a abordagem tradicional é estendida e um método para avaliar o efeito da eletromigração no desempenho de circuito integrado é desenvolvido. O método é implementado em uma ferramenta que identifica as interconexões críticas em um circuito integrado e sugere larguras adequadas com base em diferentes critérios para mitigar os danos à eletromigração e aumentar a confiabilidade. Além disso, é determinada a variação dos parâmetros de desempenho do circuito conforme a resistência das interconexões aumenta. A ferramenta é incorporada ao fluxo de projeto do circuito integrado e usa os dados dos kits de projeto e relatórios diretamente disponíveis no ambiente de projeto. Uma análise precisa da distribuição de temperatura na estrutura de interconexão é essencial para uma melhor avaliação da confiabilidade da interconexão. Portanto, é implementado um modelo para calcular a temperatura em cada nível de metalização da estrutura de interconexão. A distribuição de temperatura nas camadas de metalização de diferentes tecnologias é investigada. É mostrado que a temperatura no Metal 1 da tecnologia Intel 10 nm aumenta 75 K, 12 K mais alta que no Metal 2. Como esperado, as camadas mais próximas dos transistores sofrem um aumento de temperatura mais significativo. A ferramenta é aplicada para avaliar eletromigração nas interconexões e na robustez de diferentes circuitos, como um oscilador em anel, um circuito gerador de tensão de referência tipo bandgap e um amplificador operacional. O amplificador operacional, em particular, é cuidadosamente estudado. A metodologia proposta identifica interconexões críticas que quando danificadas por eletromigração causam grandes variações no desempenho do circuito. No pior cenário, a frequência de corte do circuito varia 65% em 5 anos de operação. Uma descoberta interessante é que a metodologia proposta identifica interconexões críticas que não seriam identificadas pelos critérios tradicionais. Essas interconexões operam com densidades de corrente abaixo do limite recomendado pelas regras de projeto. No entanto, uma dessas interconexões leva a uma variação de 30% no ganho do amplificador operacional. Em resumo, a ferramenta proposta verificou que dos 20% de caminhos com uma densidade crítica de corrente, apenas 3% degradam significativamente o desempenho do circuito. Este trabalho traz o estudo da confiabilidade das interconexões e de circuitos integrados para a fase de projeto, o que permite avaliar a degradação do desempenho do circuito antecipadamente durante o seu desenvolvimento. A ferramenta desenvolvida permite ao projetista identificar interconexões críticas que não seriam detectadas usando o critério de densidade máxima de corrente, levando a uma análise mais ampla e precisa da robustez de circuitos integradosAbstract: Electromigration damage in interconnects is a well-known bottleneck of integrated circuits, because it causes reliability problems. Operation at high temperatures and current densities accelerates the damage, increasing the interconnect resistance and, therefore, reducing the circuit lifetime. This issue has been accentuated with the technology downscaling. To guarantee the interconnect reliability and, as a consequence, the integrated circuit reliability, traditional methods based on the so-called Blech Effect and on the maximum allowed current density are implemented during interconnect design. These methods, however, do not take into account the impact of the electromigration on the circuit performance. In this work the traditional approach is extended and a method to evaluate the effect of the electromigration in an integrated circuit performance is developed. The method is implemented in a tool which identifies the critical interconnect lines of an integrated circuit and suggests the proper interconnect width based on different criteria to mitigate the electromigration damage and to increase the reliability. In addition, the variation of performance parameters of the circuit as an interconnect resistance changes is determined. The tool is incorporated into the design flow of the integrated circuit and uses the data from design kits and reports directly available from the design environment. An accurate analysis of the temperature distribution on the interconnect structure is essential to a better assessment of the interconnect reliability. Therefore, a model to compute the temperature on each metallization level of the interconnect structure is implemented. The temperature distribution on the metallization layers of different technologies is investigated. It is shown that the temperature in the Metal 1 of the Intel 10 nm can increase by 75 K, 12 K higher than in the Metal 2. As expected, the layers that are closer to the transistors undergo a more significant temperature increase. The tool is applied to evaluate the interconnects and the robustness of different circuits, namely a ring oscillator, a bandgap voltage reference circuit, and an operational amplifier, against electromigration. The operational amplifier, in particular, is thoroughly studied. The proposed methodology identifies critical interconnects which under electromigration cause large variations in the performance of the circuit. In a worst-case scenario, the cutoff frequency of the circuit varies by 65% in 5 years of operation. An interesting finding is that the proposed methodology identifies critical interconnects which would not be identified by the traditional criteria. These interconnects have current densities below the limit recommended by the design rules. Nevertheless, one of such an interconnect leads to a variation of 30% in the gain of the operational amplifier. In summary, the proposed tool verified that from the 20% paths with a critical current density, only 3% degrades significantly the circuit performance. This work brings the study of the reliability of the interconnects and of integrated circuits to the design phase, which provides the assessment of a circuit performance degradation at an early stage of development. The developed tool allows the designer to identify critical interconnects which would not be detected using the maximum current density criterion, leading to more accurate analysis of the robustness of integrated circuitsDoutoradoEletrônica, Microeletrônica e OptoeletrônicaDoutor em Engenharia Elétrica88882.329437/2019-01CAPE
    corecore