2,615 research outputs found

    (-1)-enumeration of plane partitions with complementation symmetry

    Get PDF
    We compute the weighted enumeration of plane partitions contained in a given box with complementation symmetry where adding one half of an orbit of cubes and removing the other half of the orbit changes the weight by -1 as proposed by Kuperberg. We use nonintersecting lattice path families to accomplish this for transpose-complementary, cyclically symmetric transpose-complementary and totally symmetric self-complementary plane partitions. For symmetric transpose-complementary and self-complementary plane partitions we get partial results. We also describe Kuperberg's proof for the case of cyclically symmetric self-complementary plane partitions.Comment: 41 pages, AmS-LaTeX, uses TeXDraw; reference adde

    A Schur function identity related to the (-1)-enumeration of self-complementary plane partitions

    Get PDF
    We give another proof for the (-1)-enumeration of self-complementary plane partitions with at least one odd side-length by specializing a certain Schur function identity. The proof is analogous to Stanley's proof for the ordinary enumeration. In addition, we obtain enumerations of 180-degree symmetric rhombus tilings of hexagons with a barrier of arbitrary length along the central line.Comment: AMSLatex, 14 pages, Parity conditions in Theorem 3 corrected and an additional case adde

    On the weighted enumeration of alternating sign matrices and descending plane partitions

    Get PDF
    We prove a conjecture of Mills, Robbins and Rumsey [Alternating sign matrices and descending plane partitions, J. Combin. Theory Ser. A 34 (1983), 340-359] that, for any n, k, m and p, the number of nxn alternating sign matrices (ASMs) for which the 1 of the first row is in column k+1 and there are exactly m -1's and m+p inversions is equal to the number of descending plane partitions (DPPs) for which each part is at most n and there are exactly k parts equal to n, m special parts and p nonspecial parts. The proof involves expressing the associated generating functions for ASMs and DPPs with fixed n as determinants of nxn matrices, and using elementary transformations to show that these determinants are equal. The determinants themselves are obtained by standard methods: for ASMs this involves using the Izergin-Korepin formula for the partition function of the six-vertex model with domain-wall boundary conditions, together with a bijection between ASMs and configurations of this model, and for DPPs it involves using the Lindstrom-Gessel-Viennot theorem, together with a bijection between DPPs and certain sets of nonintersecting lattice paths.Comment: v2: published versio

    Four symmetry classes of plane partitions under one roof

    Get PDF
    In previous paper, the author applied the permanent-determinant method of Kasteleyn and its non-bipartite generalization, the Hafnian-Pfaffian method, to obtain a determinant or a Pfaffian that enumerates each of the ten symmetry classes of plane partitions. After a cosmetic generalization of the Kasteleyn method, we identify the matrices in the four determinantal cases (plain plane partitions, cyclically symmetric plane partitions, transpose-complement plane partitions, and the intersection of the last two types) in the representation theory of sl(2,C). The result is a unified proof of the four enumerations

    Multiply-refined enumeration of alternating sign matrices

    Get PDF
    Four natural boundary statistics and two natural bulk statistics are considered for alternating sign matrices (ASMs). Specifically, these statistics are the positions of the 1's in the first and last rows and columns of an ASM, and the numbers of generalized inversions and -1's in an ASM. Previously-known and related results for the exact enumeration of ASMs with prescribed values of some of these statistics are discussed in detail. A quadratic relation which recursively determines the generating function associated with all six statistics is then obtained. This relation also leads to various new identities satisfied by generating functions associated with fewer than six of the statistics. The derivation of the relation involves combining the Desnanot-Jacobi determinant identity with the Izergin-Korepin formula for the partition function of the six-vertex model with domain-wall boundary conditions.Comment: 62 pages; v3 slightly updated relative to published versio

    Symmetry classes of alternating-sign matrices under one roof

    Full text link
    In a previous article [math.CO/9712207], we derived the alternating-sign matrix (ASM) theorem from the Izergin-Korepin determinant for a partition function for square ice with domain wall boundary. Here we show that the same argument enumerates three other symmetry classes of alternating-sign matrices: VSASMs (vertically symmetric ASMs), even HTSASMs (half-turn-symmetric ASMs), and even QTSASMs (quarter-turn-symmetric ASMs). The VSASM enumeration was conjectured by Mills; the others by Robbins [math.CO/0008045]. We introduce several new types of ASMs: UASMs (ASMs with a U-turn side), UUASMs (two U-turn sides), OSASMs (off-diagonally symmetric ASMs), OOSASMs (off-diagonally, off-antidiagonally symmetric), and UOSASMs (off-diagonally symmetric with U-turn sides). UASMs generalize VSASMs, while UUASMs generalize VHSASMs (vertically and horizontally symmetric ASMs) and another new class, VHPASMs (vertically and horizontally perverse). OSASMs, OOSASMs, and UOSASMs are related to the remaining symmetry classes of ASMs, namely DSASMs (diagonally symmetric), DASASMs (diagonally, anti-diagonally symmetric), and TSASMs (totally symmetric ASMs). We enumerate several of these new classes, and we provide several 2-enumerations and 3-enumerations. Our main technical tool is a set of multi-parameter determinant and Pfaffian formulas generalizing the Izergin-Korepin determinant for ASMs and the Tsuchiya determinant for UASMs [solv-int/9804010]. We evaluate specializations of the determinants and Pfaffians using the factor exhaustion method.Comment: 16 pages, 16 inline figures. Introduction rewritten with more motivation and context. To appear in the Annals of Mathematic

    A doubly-refined enumeration of alternating sign matrices and descending plane partitions

    Get PDF
    It was shown recently by the authors that, for any n, there is equality between the distributions of certain triplets of statistics on nxn alternating sign matrices (ASMs) and descending plane partitions (DPPs) with each part at most n. The statistics for an ASM A are the number of generalized inversions in A, the number of -1's in A and the number of 0's to the left of the 1 in the first row of A, and the respective statistics for a DPP D are the number of nonspecial parts in D, the number of special parts in D and the number of n's in D. Here, the result is generalized to include a fourth statistic for each type of object, where this is the number of 0's to the right of the 1 in the last row of an ASM, and the number of (n-1)'s plus the number of rows of length n-1 in a DPP. This generalization is proved using the known equality of the three-statistic generating functions, together with relations which express each four-statistic generating function in terms of its three-statistic counterpart. These relations are obtained by applying the Desnanot-Jacobi identity to determinantal expressions for the generating functions, where the determinants arise from standard methods involving the six-vertex model with domain-wall boundary conditions for ASMs, and nonintersecting lattice paths for DPPs.Comment: 28 pages; v2: published versio

    Truncated determinants and the refined enumeration of Alternating Sign Matrices and Descending Plane Partitions

    Full text link
    Lecture notes for the proceedings of the workshop "Algebraic Combinatorics related to Young diagram and statistical physics", Aug. 6-10 2012, I.I.A.S., Nara, Japan.Comment: 25 pages, 8 figure
    corecore