239 research outputs found

    Radar Imaging in Challenging Scenarios from Smart and Flexible Platforms

    Get PDF
    undefine

    Opportunistic radar imaging using a multichannel receiver

    Get PDF
    Bistatic Synthetic Aperture Radars have a physically separated transmitter and receiver where one or both are moving. Besides the advantages of reduced procurement and maintenance costs, the receiving system can sense passively while remaining covert which offers obvious tactical advantages. In this work, spaceborne monostatic SARs are used as emitters of opportunity with a stationary ground-based receiver. The imaging mode of SAR systems over land is usually a wide-swath mode such as ScanSAR or TOPSAR in which the antenna scans the area of interest in range to image a larger swath at the expense of degraded cross-range resolution compared to the conventional stripmap mode. In the bistatic geometry considered here, the signals from the sidelobes of the scanning beams illuminating the adjacent sub-swath are exploited to produce images with high cross-range resolution from data obtained from a SAR system operating in wide-swath mode. To achieve this, the SAR inverse problem is rigorously formulated and solved using a Maximum A Posteriori estimation method providing enhanced cross-range resolution compared to that obtained by classical burst-mode SAR processing. This dramatically increases the number of useful images that can be produced using emitters of opportunity. Signals from any radar satellite in the receiving band of the receiver can be used, thus further decreasing the revisit time of the area of interest. As a comparison, a compressive sensing-based method is critically analysed and proves more sensitive to off-grid targets and only suited to sparse scene. The novel SAR imaging method is demonstrated using simulated data and real measurements from C-band satellites such as RADARSAT-2 and ESA’s satellites ERS-2, ENVISAT and Sentinel-1A. In addition, this thesis analyses the main technological issues in bistatic SAR such as the azimuth-variant characteristic of bistatic data and the effect of imperfect synchronisation between the non-cooperative transmitter and the receiver

    Elevation and Deformation Extraction from TomoSAR

    Get PDF
    3D SAR tomography (TomoSAR) and 4D SAR differential tomography (Diff-TomoSAR) exploit multi-baseline SAR data stacks to provide an essential innovation of SAR Interferometry for many applications, sensing complex scenes with multiple scatterers mapped into the same SAR pixel cell. However, these are still influenced by DEM uncertainty, temporal decorrelation, orbital, tropospheric and ionospheric phase distortion and height blurring. In this thesis, these techniques are explored. As part of this exploration, the systematic procedures for DEM generation, DEM quality assessment, DEM quality improvement and DEM applications are first studied. Besides, this thesis focuses on the whole cycle of systematic methods for 3D & 4D TomoSAR imaging for height and deformation retrieval, from the problem formation phase, through the development of methods to testing on real SAR data. After DEM generation introduction from spaceborne bistatic InSAR (TanDEM-X) and airborne photogrammetry (Bluesky), a new DEM co-registration method with line feature validation (river network line, ridgeline, valley line, crater boundary feature and so on) is developed and demonstrated to assist the study of a wide area DEM data quality. This DEM co-registration method aligns two DEMs irrespective of the linear distortion model, which improves the quality of DEM vertical comparison accuracy significantly and is suitable and helpful for DEM quality assessment. A systematic TomoSAR algorithm and method have been established, tested, analysed and demonstrated for various applications (urban buildings, bridges, dams) to achieve better 3D & 4D tomographic SAR imaging results. These include applying Cosmo-Skymed X band single-polarisation data over the Zipingpu dam, Dujiangyan, Sichuan, China, to map topography; and using ALOS L band data in the San Francisco Bay region to map urban building and bridge. A new ionospheric correction method based on the tile method employing IGS TEC data, a split-spectrum and an ionospheric model via least squares are developed to correct ionospheric distortion to improve the accuracy of 3D & 4D tomographic SAR imaging. Meanwhile, a pixel by pixel orbit baseline estimation method is developed to address the research gaps of baseline estimation for 3D & 4D spaceborne SAR tomography imaging. Moreover, a SAR tomography imaging algorithm and a differential tomography four-dimensional SAR imaging algorithm based on compressive sensing, SAR interferometry phase (InSAR) calibration reference to DEM with DEM error correction, a new phase error calibration and compensation algorithm, based on PS, SVD, PGA, weighted least squares and minimum entropy, are developed to obtain accurate 3D & 4D tomographic SAR imaging results. The new baseline estimation method and consequent TomoSAR processing results showed that an accurate baseline estimation is essential to build up the TomoSAR model. After baseline estimation, phase calibration experiments (via FFT and Capon method) indicate that a phase calibration step is indispensable for TomoSAR imaging, which eventually influences the inversion results. A super-resolution reconstruction CS based study demonstrates X band data with the CS method does not fit for forest reconstruction but works for reconstruction of large civil engineering structures such as dams and urban buildings. Meanwhile, the L band data with FFT, Capon and the CS method are shown to work for the reconstruction of large manmade structures (such as bridges) and urban buildings

    Metrics to evaluate compressions algorithms for RAW SAR data

    Get PDF
    Modern synthetic aperture radar (SAR) systems have size, weight, power and cost (SWAP-C) limitations since platforms are becoming smaller, while SAR operating modes are becoming more complex. Due to the computational complexity of the SAR processing required for modern SAR systems, performing the processing on board the platform is not a feasible option. Thus, SAR systems are producing an ever-increasing volume of data that needs to be transmitted to a ground station for processing. Compression algorithms are utilised to reduce the data volume of the raw data. However, these algorithms can cause degradation and losses that may degrade the effectiveness of the SAR mission. This study addresses the lack of standardised quantitative performance metrics to objectively quantify the performance of SAR data-compression algorithms. Therefore, metrics were established in two different domains, namely the data domain and the image domain. The data-domain metrics are used to determine the performance of the quantisation and the associated losses or errors it induces in the raw data samples. The image-domain metrics evaluate the quality of the SAR image after SAR processing has been performed. In this study three well-known SAR compression algorithms were implemented and applied to three real SAR data sets that were obtained from a prototype airborne SAR system. The performance of these algorithms were evaluated using the proposed metrics. Important metrics in the data domain were found to be the compression ratio, the entropy, statistical parameters like the skewness and kurtosis to measure the deviation from the original distributions of the uncompressed data, and the dynamic range. The data histograms are an important visual representation of the effects of the compression algorithm on the data. An important error measure in the data domain is the signal-to-quantisation-noise ratio (SQNR), and the phase error for applications where phase information is required to produce the output. Important metrics in the image domain include the dynamic range, the impulse response function, the image contrast, as well as the error measure, signal-to-distortion-noise ratio (SDNR). The metrics suggested that all three algorithms performed well and are thus well suited for the compression of raw SAR data. The fast Fourier transform block adaptive quantiser (FFT-BAQ) algorithm had the overall best performance, but the analysis of the computational complexity of its compression steps, indicated that it is has the highest level of complexity compared to the other two algorithms. Since different levels of degradation are acceptable for different SAR applications, a trade-off can be made between the data reduction and the degradation caused by the algorithm. Due to SWAP-C limitations, there also remains a trade-off between the performance and the computational complexity of the compression algorithm.Dissertation (MEng)--University of Pretoria, 2019.Electrical, Electronic and Computer EngineeringMEngUnrestricte

    Study of the speckle noise effects over the eigen decomposition of polarimetric SAR data: a review

    No full text
    This paper is focused on considering the effects of speckle noise on the eigen decomposition of the co- herency matrix. Based on a perturbation analysis of the matrix, it is possible to obtain an analytical expression for the mean value of the eigenvalues and the eigenvectors, as well as for the Entropy, the Anisotroopy and the dif- ferent a angles. The analytical expressions are compared against simulated polarimetric SAR data, demonstrating the correctness of the different expressions.Peer ReviewedPostprint (published version

    Investigation of Sea Ice Using Multiple Synthetic Aperture Radar Acquisitions

    Get PDF
    The papers of this thesis are not available in Munin. Paper I: Yitayew, T. G., Ferro-Famil, L., Eltoft, T. & Tebaldini, S. (2017). Tomographic imaging of fjord ice using a very high resolution ground-based SAR system. Available in IEEE Transactions on Geoscience and Remote Sensing, 55 (2):698-714. Paper II: Yitayew, T. G., Ferro-Famil, L., Eltoft, T. & Tebaldini, S. (2017). Lake and fjord ice imaging using a multifrequency ground-based tomographic SAR system. Available in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(10):4457-4468. Paper III: Yitayew, T. G., Divine, D. V., Dierking, W., Eltoft, T., Ferro-Famil, L., Rosel, A. & Negrel, J. Validation of Sea ice Topographic Heights Derived from TanDEMX Interferometric SAR Data with Results from Laser Profiler and Photogrammetry. (Manuscript).The thesis investigates imaging in the vertical direction of different types of ice in the arctic using synthetic aperture radar (SAR) tomography and SAR interferometry. In the first part, the magnitude and the positions of the dominant scattering contributions within snow covered fjord and lake ice layers are effectively identified by using a very high resolution ground-based tomographic SAR system. Datasets collected at multiple frequencies and polarizations over two test sites in Tromsø area, northern Norway, are used for characterizing the three-dimensional response of snow and ice. The presented experimental results helped to improve our understanding of the interaction between radar waves and snow and ice layers. The reconstructed radar responses are also used for estimating the refractive indices and the vertical positions of the different sub-layers of snow and ice. The second part of the thesis deals with the retrieval of the surface topography of multi-year sea ice using SAR interferometry. Satellite acquisitions from TanDEM-X over the Svalbard area are used for analysis. The retrieved surface height is validated by using overlapping helicopter-based stereo camera and laser profiler measurements, and a very good agreement has been found. The work contributes to an improved understanding regarding the potential of SAR tomography for imaging the vertical scattering distribution of snow and ice layers, and for studying the influence of both sensor parameters such as its frequency and polarization and scene properties such as layer stratification, air bubbles and small-scale roughness of the interfaces on snow and ice backscattered signal. Moreover, the presented results reveal the potential of SAR interferometry for retrieving the surface topography of sea ice

    Monostatic Airborne Synthetic Aperture Radar Using Commercial WiMAX Transceivers In the License-exempt Spectrum

    Get PDF
    The past half-century witnessed an evolution of synthetic aperture radar (SAR). Boosted by digital signal processing (DSP), a variety of SAR imaging algorithms have been developed, in which the wavenumber domain algorithm is mature for airborne SAR and independent of signal waveforms. Apart from the algorithm development, there is a growing interest in how to acquire the raw data of targets’ echoes before the DSP for SAR imaging in a cost-effective way. For the data acquisition, various studies over the past 15 years have shed light on utilizing the signal generated from the ubiquitous broadband wireless technology – orthogonal frequency division multiplexing (OFDM). However, the purpose of this thesis is to enable commercial OFDM-based wireless systems to work as an airborne SAR sensor. The unlicensed devices of Worldwide interoperability for Microwave Access (WiMAX) are the first option, owing to their accessibility, similarity and economy. This dissertation first demonstrates the feasibility of applying WiMAX to SAR by discussing their similar features. Despite the similarities they share, the compatibility of the two technologies is undermined by a series of problems resulted from WiMAX transceiver mechanisms and industrial rules for radiated power. In order to directly apply commercial WiMAX base station transceivers in unlicensed band to airborne SAR application, we propose a radio-frequency (RF) front design together with a signal processing means. To be specific, a double-pole, double-throw (DPDT) switch is inserted between an antenna and two WiMAX transceivers for generating pulsed signal. By simulations, the transmitted power of the SAR sensor is lower than 0dBm, while its imaging range can be over 10km for targets with relatively large radar cross section (RCS), such as a ship. Its range resolution is 9.6m whereas its cross-range resolution is finer than 1m. Equipped with the multi-mode, this SAR sensor is further enhanced to satisfy the requirements of diversified SAR applications. For example, the width of the scan-mode SAR’s range swath is 2.1km, over five times the width of other modes. Vital developed Matlab code is given in Appendix D, and its correctness is shown by comparing with the image of chirped SAR. To summarize, the significance of this dissertation is to propose, for the first time, a design of directly leveraging commercial OFDM-based systems for airborne SAR imaging. Compared with existing designs of airborne SAR, it is a promising low-cost solution

    Urban Deformation Monitoring using Persistent Scatterer Interferometry and SAR tomography

    Get PDF
    This book focuses on remote sensing for urban deformation monitoring. In particular, it highlights how deformation monitoring in urban areas can be carried out using Persistent Scatterer Interferometry (PSI) and Synthetic Aperture Radar (SAR) Tomography (TomoSAR). Several contributions show the capabilities of Interferometric SAR (InSAR) and PSI techniques for urban deformation monitoring. Some of them show the advantages of TomoSAR in un-mixing multiple scatterers for urban mapping and monitoring. This book is dedicated to the technical and scientific community interested in urban applications. It is useful for choosing the appropriate technique and gaining an assessment of the expected performance. The book will also be useful to researchers, as it provides information on the state-of-the-art and new trends in this fiel
    corecore