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Modern synthetic aperture radar (SAR) systems have size, weight, power and cost 

(SWAP-C) limitations since platforms are becoming smaller, while SAR operating modes 

are becoming more complex. Due to the computational complexity of the SAR processing 

required for modern SAR systems, performing the processing on board the platform is not a 

feasible option. Thus, SAR systems are producing an ever-increasing volume of data that 

needs to be transmitted to a ground station for processing. 

 

Compression algorithms are utilised to reduce the data volume of the raw data. However, 

these algorithms can cause degradation and losses that may degrade the effectiveness of the 

SAR mission. This study addresses the lack of standardised quantitative performance metrics 

to objectively quantify the performance of SAR data-compression algorithms. Therefore, 

metrics were established in two different domains, namely the data domain and the image 

domain. The data-domain metrics are used to determine the performance of the quantisation 

and the associated losses or errors it induces in the raw data samples. The image-domain 

metrics evaluate the quality of the SAR image after SAR processing has been performed. 

 

In this study three well-known SAR compression algorithms were implemented and applied 

to three real SAR data sets that were obtained from a prototype airborne SAR system. The 

performance of these algorithms were evaluated using the proposed metrics. Important 

metrics in the data domain were found to be the compression ratio, the entropy, statistical 

parameters like the skewness and kurtosis to measure the deviation from the original 

distributions of the uncompressed data, and the dynamic range. The data histograms are an 



important visual representation of the effects of the compression algorithm on the data. An 

important error measure in the data domain is the signal-to-quantisation-noise ratio (SQNR), 

and the phase error for applications where phase information is required to produce the 

output. Important metrics in the image domain include the dynamic range, the impulse 

response function, the image contrast, as well as the error measure, signal-to-distortion-noise 

ratio (SDNR). 

 

The metrics suggested that all three algorithms performed well and are thus well suited for 

the compression of raw SAR data. The fast Fourier transform block adaptive quantiser 

(FFT-BAQ) algorithm had the overall best performance, but the analysis of the 

computational complexity of its compression steps, indicated that it is has the highest level 

of complexity compared to the other two algorithms. 

 

Since different levels of degradation are acceptable for different SAR applications, a 

trade-off can be made between the data reduction and the degradation caused by the 

algorithm. Due to SWAP-C limitations, there also remains a trade-off between the 

performance and the computational complexity of the compression algorithm. 
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CHAPTER 1 INTRODUCTION 

1.1 PROBLEM STATEMENT 

Modern synthetic aperture radar (SAR) systems have size, weight, power and cost 

(SWAP-C) limitations since platforms are becoming smaller while SAR operating modes 

are becoming more complex. Thus, these systems are producing an ever-increasing volume 

of data that needs to be transmitted to a ground station for near real-time processing and 

stored on board for post-processing. A compression algorithm seeks to reduce the data 

volume of the raw data without causing degradation and losses, which may degrade the 

effectiveness of the SAR mission. This work addresses the lack of standardised quantitative 

performance metrics, which can be utilised to objectively quantify the performance of SAR 

data-compression algorithms. 

1.1.1 Context of the problem 

SAR is the only long range remote sensing sensor that can provide high-resolution images 

of wide areas in all weather conditions, during the day or night [1], [2]. Another advantage 

of SAR is that it provides information that is complementary to optical images. Furthermore, 

certain frequencies have penetration capabilities, which allow for much more information to 

be extracted from a scene. Subsequently, SAR has been used for various military, 

commercial and earth observation applications for the past three decades [1], [2].  

 

Military applications include intelligence gathering, remote sensing, reconnaissance, and 

gathering of target information for military operations [1], [3]. An example of an airborne 

SAR technology with a long endurance, wide-area surveillance capability, is Lockheed 

Martin’s lightweight TRACER system [4]. This system can be used on manned or unmanned 
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platforms. The TRACER has a higher stationary and mobile target detection rate than its 

predecessors. It can also detect objects that are buried, camouflaged or concealed under 

dense foliage and is used to support disaster relief, counter-terrorism and humanitarian aid 

missions. TRACER is a good example of how the advantages of SAR can be exploited in 

real-world applications. 

 

SAR is also well-known for its earth observation applications which include agriculture and 

earth resource monitoring, climate science, flood mapping, oceanography, oil spill detection, 

geomorphology, subsidence monitoring, landscape mapping, derivation of elevation models 

after natural disasters, and human geography [2], [3]. For these applications SAR sensors 

are usually implemented on satellites. Examples of spaceborne SAR sensors that are 

currently operational include Sentinel-1, Radarsat-2 and TerraSAR-X. 

 

The first civilian SAR satellite, SEASAT, was launched in 1978, had a resolution of 25 m × 

25 m and only had a single polarisation [2]. Sentinel-1, a C-band imaging radar launched in 

2014, has a resolution of up to 5 m × 5 m, can operate in four modes and is dual polarised 

[5]. The improvement in the spatial resolution of airborne SAR sensors from the 1950s to 

the 21st Century is depicted in [6]. Over the years there have been SAR sensors that operated 

over multiple frequency bands and were fully polarised, for example the SIR-C system [7]. 

Sandia National Laboratories, a subsidiary of Lockheed Martin, developed the Mini-RF SAR 

on board the LRO spacecraft, which was launched in 2009 to orbit the moon [8]. It operates 

at two frequencies (S-band and X-band), two resolutions (150 m and 30 m), has 

interferometric and communications functionality, while only weighing 16 kg. Compared to 

systems developed in the same time period, modest data rates were achieved. While existing 

spacecraft are capable of much higher data rates, the platforms are heavier and not capable 

of multi-frequency, multimode operation for the same budget as that of the Mini-RF SAR 

[8]. This technology demonstrated that a trade-off exists between the data rate and the 

platform’s size and cost.  
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A very popular research topic and industry tendency is unmanned aerial vehicles (UAVs). 

The advantages of a UAV system include lower risk in terms of human fatigue, lower cost, 

and long endurance missions. A local project showing these and other advantages of a UAV 

system is the Aircraft for Rhino and ENvironmental Defence (AREND) project [9]. The 

AREND project entails the design of a UAV by a group of South African as well as 

international students, to address the problem of poaching in the Kruger National Park. The 

system covers a 30 km search range, can remain airborne for more than 90 minutes, has a 

very low noise output to ensure that it remains undetected by poachers, and sends sensor 

data or images to a ground station. These objectives could be met by using a small, 

lightweight, unmanned aircraft as the platform. 

 

Other major international companies that also research, design, and develop UAVs include 

Lockheed Martin, IMSAR and the National Aeronautics and Space Administration (NASA). 

Not only do they focus on UAVs, but they have also integrated UAVs and SAR systems. A 

recent UAVSAR technology is the NanoSAR systems. In 2014 IMSAR was contracted to 

develop small, lightweight SAR systems for small UAVs that have to be launched near the 

front lines [10]. The contract was signed to support the Natick Soldier System Center 

(NSSC) whose goal is to develop technologies that protect soldiers and increase their combat 

effectiveness. The NanoSAR B system produces high-quality radar images at a rate of 

6.5 Mbps while the system only weighs 3.5 lbs (1.6 kg) and transmits 1 W of power [10]. 

The real-time SAR data are compressed by onboard firmware before transmission to the 

ground station. Sandia National Laboratories implemented a SAR sensor on two Class III 

UAVs, namely the Sky Spirit Mini UAV, used for long duration surveillance missions, and 

the TigerShark UAV, used to detect improvised explosive devices (IED) and for intelligence, 

surveillance and reconnaissance (ISR) operations [11]. Sandia’s goal for the past twenty 

years has been to improve radar performance while decreasing the size of sensors in order 

to deliver smaller, lighter and less expensive systems to be implemented on lightweight 

UAVs for tactical missions [11]. Yet, Sandia and NASA’s Jet Propulsion Laboratory (JPL) 

are still implementing SAR systems on large platforms since these platforms provide more 

processing power and bandwidth, which optimise the radar’s performance [11]. Examples 
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include Sandia’s RQ-4 Global Hawk UAV system used for long endurance ISR missions 

[12] and JPL’s UAVSAR, implemented on a Gulfstream-III (G3) jet, for earth observation 

missions around the world [13]. 

 

In the case of military applications, SAR technology is increasingly being used on small 

UAV platforms [4], [10]-[18], whereas for earth observation applications, satellites are being 

equipped with higher resolution SARs while the platforms are becoming smaller and lighter 

[8], [19]. In both cases, SWAP-C plays an important role in the system design. Not only are 

platforms becoming smaller, but SAR technology is also moving towards being multi-band, 

multi-polarized, having very high resolution, and also having multiple operating modes [5], 

[8], [17]. All of these factors contribute to the ever-increasing volume of data that modern 

SAR systems are producing, while the sensor size is limited by the SWAP-C constraints of 

modern platforms. 

 

Another important characteristic of most modern SAR systems is that the SAR system has 

to be split up into an onboard section and a ground-based section, where the SAR processing 

is performed at the ground-based section. Thus, the acquired data are only processed on 

board when on-line mode of operation is required for the application, for example when 

situational awareness during the flight is necessary for tactical response [18], [20]. For most 

other SAR applications the raw data are transmitted to a ground station for near real-time 

digital processing (also referred to as quick-look processing) while the data are also being 

stored on board for high quality off-line processing after the SAR mission [14]-[18], [21]. 

The reason for this configuration is that performing the SAR processing on board is resource 

and power expensive, and it also increases the physical size and thus weight of the platform, 

which are critical requirements for long endurance missions [14], [22]. 

 

Since it is necessary to transmit the raw SAR data to a ground station at a remote location, 

the effect of spectrum congestion needs to be considered. For successful SAR processing 

and mission data analysis, the global positioning system (GPS) data, motion sensor 

information, and sensor status information, all need to be transmitted to the ground station 
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[14], [15]. Depending on the application, bi-directional communication may also be required 

since commands from the ground station to the platform also need to be transmitted [18]. 

Not only is the system bandwidth for raw SAR data transmission limited by the transmission 

of other system information from the platform, but spectrum congestion poses another 

challenge for modern SAR systems. The spectrum congestion that SAR systems face is due 

to military and commercial communications that are using more bandwidth in the higher 

frequency bands, previously only used by radar systems [23], [24]. So despite technological 

advances, the downlink bandwidth of the platform remains a limiting factor [5], [8], [25]. 

 

Thus, the main constraints for the throughput design of these SAR systems are the 

unavailability of a downlink with a high data rate and the immense storage capacity required 

[5], [26], [27]. These constraints can be addressed by implementing a compression algorithm 

on board the platform that reduces the data rate before storing and/or transmitting the data 

to the ground station [14], [21]. 

1.1.2 Research gap 

A compression algorithm seeks to reduce the data volume to solve the problem of 

transmitting and/or storing the raw data. However, any degradation and loss that the 

algorithm causes should also be determined, as a low quality SAR image may degrade the 

effectiveness of the SAR mission. Therefore, the compression algorithm must be evaluated 

to determine whether it is effective in reducing the data volume, as well as how significant 

the associated image-quality losses that occurred are. 

 

Despite the importance of being able to quantify the performance of SAR data-compression 

algorithms, there does not appear to be a widely-accepted set of metrics for this purpose. The 

problem is compounded by the fact that different publications on SAR-data compression 

often propose new metrics to emphasise the unique benefits of the proposed algorithms (e.g. 

[29] and [30]). In [28] the topic of measuring the quality of compressed SAR data was 

identified as future work. This lack of standardised quantitative performance metrics means 

that the performance of SAR-data compression algorithms cannot be objectively quantified.  
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1.2 RESEARCH OBJECTIVE AND QUESTIONS 

The main objective of this study is to determine which metrics can be used to evaluate the 

performance of a compression algorithm for raw SAR data. These metrics consider how 

significantly the data rate is reduced, the loss of information, and the computational 

complexity required for the compression. In order to achieve the research objective, the 

following research questions must be addressed: 

 

1. Which algorithms are efficient, low complexity solutions for compressing raw SAR 

data? 

2. How can the effectiveness of a compression algorithm for a specific application be 

evaluated objectively? 

2.1. How effective is the algorithm in compressing the raw SAR data? 

2.2. What is the effect of the compression algorithm on the quality of the SAR image? 

2.3. What is the computational complexity associated with the compression algorithm? 

 

Different compression algorithms are investigated to determine which algorithms are 

suitable to compress raw SAR data. Raw SAR data are the data received from the analogue-

to-digital converters (ADCs), before any SAR processing is performed. To establish what 

algorithms are suitable for raw SAR data, the characteristics of raw SAR data must be 

known. In this way an algorithm can be chosen so that it exploits the unique characteristics 

of raw SAR data. This will ensure that the compression algorithm is a generic solution to 

compressing raw SAR data. 

 

Another objective is to implement a compression algorithm of which the advantages greatly 

outweigh the disadvantages associated with it. This implies that the algorithm must 

efficiently compress the data before any SAR processing is performed, without causing 

detrimental effects that may affect the output of the SAR system. In order to determine 

whether the algorithm is efficient, quantitative metrics to evaluate the efficiency of a 

compression algorithm must be established. 
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Another objective is to determine the effect that the compression algorithm has on the quality 

and reliability of the final SAR image. This implies that the metrics to quantitatively evaluate 

the quality of a SAR image must be established. These metrics should not only consider 

metrics on the visual quality of the intensity image formed, but also those that relate to the 

complex SAR image formed after processing. 

 

The last objective is to compute the computational complexity of the compression algorithm. 

This metric will ensure that the algorithm is a feasible solution to implement on a practical, 

generic SAR system with its associated constraints. 

 

The established metrics can be used to prove that the implemented compression algorithm 

is indeed significantly advantageous. This is clear from the effectiveness in reducing the data 

volume, while the algorithm yields cost and resource savings due to the low complexity of 

the implementation, all without having detrimental effects on the quality of the SAR image. 

1.3 APPROACH  

A typical characteristic of most modern SAR systems is that the system is divided into an 

onboard section, with the onboard hardware consisting of the transmitting and receiving unit, 

ADCs and a data downlink, while the ground-based section consists of the SAR image 

processing unit [21], [27]. In [31] a SAR system is described as comprising of three 

subsystems: the SAR sensor, the platform and data downlink, and the ground signal 

processor. The downlink as shown in Figure 1.1, can be set up in two different 

configurations: either the platform’s onboard storage unit will be accessed for high-quality 

post-processing at the ground station (known as off-line operation), or as a second option the 

raw SAR data are transmitted to the ground station for near real-time processing (known as 

on-line operation). Therefore, the compression algorithm is implemented on the platform as 

part of the payload in order to reduce the data volume before the data is sent to the onboard 

storage unit and before the data is transmitted to the ground station. The stage at which a 
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compression algorithm will be implemented can be seen in Figure 1.1. It is implemented at 

the output of the ADCs, before any SAR processing, subsequently raw received SAR data 

are the input to the compression algorithm unit. The implementation of a compression 

algorithm at the mentioned stage of the receive chain, means that the storage and downlink 

bandwidth limitations of a modern SAR system are addressed. 

 

In order to addresses the lack of standardised quantitative performance metrics to objectively 

quantify the performance of SAR data-compression algorithms, three compression 

algorithms will be implemented. After the decompression, SAR processing can be performed 

to yield the desired output of the SAR system. For each algorithm the established metrics 

will be evaluated in order to compare the efficiency and suitability for the application. Using 

the results of the evaluation metrics, the best suited compression algorithm can be chosen to 

be implemented on board the SAR platform. 

 

In order to find a solution to the research problem, the following method will be followed: 

1. Determine the unique characteristics of raw SAR data. 

2. Determine the metrics to quantitatively evaluate the effectiveness of a compression 

algorithm. 

3. Establish what metrics can be used to quantitatively evaluate the quality of a SAR 

image. 

4. Compute the computational complexity of each algorithm. 

5. Perform an extended theoretical study on previously published research. 

6. Implement three compression algorithms from the literature. 

7. Perform a verification experiment, using real SAR data, to determine whether the 

established metrics can be used to objectively quantify the performance of SAR-data 

compression algorithms. 
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1.4 RESEARCH GOALS 

The goal of this work is to determine whether the established metrics can be used to 

objectively quantify the performance of SAR-data compression algorithms. Therefore, 

metrics have to be established in two different domains, i.e. before and after SAR processing 

is performed. The effects of the algorithm on the raw data, as well as on the output of the 

SAR system, must be quantitatively evaluated to establish whether the algorithm is a viable 

solution. Thereafter, the computational complexity of each algorithm should also be 

computed. The chosen compression algorithms should be low cost, low complexity solutions 

for SAR platforms with SWAP-C constraints. The algorithms should also be suitable 

solutions for general SAR technologies and applications. 

 

Figure 1.1 Block diagram of a modern SAR system receive chain – showing at what stage the 

compression algorithm is implemented. 
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1.5 RESEARCH CONTRIBUTION 

A critical evaluation of a number of SAR-data compression performance metrics from 

literature is performed. A few new metrics were also established to address certain 

limitations in the current performance evaluation metrics of SAR-data compression 

algorithms. The definitions and importance of each metric were discussed. 

 

The metrics are also divided into two domains to test the algorithms at two stages within the 

SAR system. Evaluating the algorithm at two stages means one can distinguish between the 

data volume reduction capability of the algorithm and the image degradation caused by the 

algorithm. The computational complexity of the algorithm is also investigated to determine 

the relation to the volume of data that the algorithm operates on. 

 

The metrics in the different domains are a valuable aid when a trade-off is required between 

the data reduction capability of the algorithm and the degradation caused by the algorithm. 

The performance vs. the complexity of the algorithm is another trade-off consideration, 

depending on the SAR application. 

1.6 RESEARCH OUTPUTS 

A paper was accepted for publication in the Institution of Engineering and Technology (IET) 

Radar, Sonar and Navigation (RSN) journal on 5 October 2018. The paper is titled: “Metrics 

to Evaluate Compression Algorithms for Raw SAR Data” [32]. 

1.7 DISSERTATION OVERVIEW 

The structure of the dissertation and the content of each chapter are summarised in this 

section. 

 



CHAPTER 1 INTRODUCTION 

 

Department of Electrical, Electronic and Computer Engineering 11 

University of Pretoria 

Chapter 2 provides an introduction to SAR systems. The history of SAR is explored as well 

as the operation of SAR systems. Thereafter, a brief introduction to the well-known SAR 

technologies and applications is given, while the chapter concludes by investigating the 

characteristics of raw SAR data. 

 

In Chapter 3, a literature study on compression algorithms that would be suitable for raw 

SAR data, was performed. The main topics under investigation are general compression 

algorithms, compressive sensing, as well as lossy and lossless SAR compression algorithms. 

It was found that when exploiting the characteristics of raw SAR data, a suitable algorithm 

can be implemented. 

 

In Chapter 4, the research design, research instruments, data used, and analysis techniques 

are discussed. This includes the scope of the study and the method of evaluating the 

performance of the chosen compression algorithms. The evaluation method is implemented 

in two stages, at different places in the SAR process. 

 

In Chapter 5, the quantitative performance metrics, to be used when comparing different 

compression algorithms for raw SAR data, are established. The proposed metrics are divided 

into two sets, namely data-domain metrics and image-domain metrics, and correspond with 

the first two domains when producing SAR outputs. The metrics of importance for different 

SAR technologies and applications are also summarised. 

 

Chapter 6 provides the steps followed to implement each of the three compression 

algorithms. The real SAR data sets are statistically analysed in order to confirm the 

characteristics of raw SAR data as found in literature. Thereafter, the encoding and decoding 

steps, as well as the computational complexity of each algorithm are discussed. The three 

algorithms include the block adaptive quantiser (BAQ), the fast Fourier transform (FFT) 

BAQ (FFT-BAQ), and the flexible dynamic BAQ (FDBAQ). 

 



CHAPTER 1 INTRODUCTION 

 

Department of Electrical, Electronic and Computer Engineering 12 

University of Pretoria 

In Chapter 7, the results of evaluating the metrics after applying the compression algorithms 

to the real SAR data sets, are provided and discussed. The chapter starts with providing 

Google Earth and SAR images of the scenes. Thereafter, the three compression algorithms 

are evaluated by computing the metrics at two stages in the SAR process. 

 

Chapter 8 presents concluding remarks on the study and its achievements. Future work and 

improvements are also briefly discussed. 

 



 

 

CHAPTER 2 SAR SYSTEMS 

2.1 CHAPTER OVERVIEW 

In this chapter a brief introduction to synthetic aperture radar (SAR) theory and operations 

is given. In Section 2.2, the history of SAR and the inception of civilian SAR systems are 

discussed. The operation of a SAR system is explained in Section 2.3, as well as the artefacts 

found in SAR images. A brief discussion on well-known SAR technologies and their 

applications is given in Section 2.4. In Section 2.5, the unique characteristics of raw SAR 

data are investigated, as they differ from the characteristics of other types of radars. 

2.2 SAR HISTORY 

SAR was invented in 1951 by Carl A. Wiley, a mathematician at Goodyear Aircraft 

Company in Litchfield Park, Arizona [6], [33]. He discovered that the radar returns from 

individual objects, in a passing radar beam, had minuscule Doppler shifts relative to the 

antenna. Wiley analysed the exact frequency of the return signal and realised that one could 

create a very detailed radar image of the scene. He achieved this with an antenna that was a 

hundred times smaller than the required conventional antenna to analyse the same scene size. 

Wiley applied to patent his discovery in 1954 and named it Doppler Beam Sharpening. This 

is however called SAR in the time domain and can be seen as the first SAR patent [33]. The 

same concept of synthetic aperture was developed independently by the University of Illinois 

and the University of Michigan shortly after Wiley had discovered it, but was explored in a 

more practical sense [6]. The first SAR images were created in 1953 by a Goodyear system 

called DOUSER, which was deployed on a C-47 aircraft [6], [33]. The system could only 

correctly identify objects or features that were at least 152 m across [6], while the latest SAR 

https://en.wikipedia.org/wiki/Goodyear_Aircraft_Company
https://en.wikipedia.org/wiki/Goodyear_Aircraft_Company
https://en.wikipedia.org/wiki/Litchfield_Park,_Arizona
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system from Lockheed Martin, the TRACER, can detect vehicles, buildings, and metallic 

objects in broad swaths of dense foliage with a resolution measured in inches [4]. 

 

Initial SAR research and developments were for military applications like reconnaissance 

and man-made target detection. During the 1970s, the advantages of using SAR for civilian 

applications became apparent, and consequently led to a rapid increase in the use of SAR for 

earth observation missions [7], [19], [34]. New capabilities were demonstrated by the 

abundance of spaceborne missions that started with the launch of the Seasat in 1978 by the 

USA. In the 1990s, Europe, Japan and Canada followed with the ERS, J-ERS-1, and the 

Radarsat-1 satellites, respectively [3], [7], [34]. Further milestones in the 1980s and 1990s 

include SAR techniques like polarimetry, interferometry and differential interferometry. In 

2007 the first bi-static SAR satellite, TerraSAR-X, was launched and introduced a new class 

of SAR satellites, which now had resolutions of up to a metre and was classified as very high 

resolution [7], [19], [34]. These new class satellites include TanDEM-X, the COSMO-

SkyMed satellite constellation as well as Radarsat-2 [7], [34]. The number of near-polar 

orbiting, land imaging civilian satellites operational as of August 1972 to 2013 is depicted 

in [19]. 

 

It is clear that the development of SAR systems is driven by the need for higher information 

content in the SAR output. This can be achieved by multi-channel operation, multi-

frequency and multi-polarisation capabilities, increased resolution, time series operation as 

well as by using multiple observation angles [7]. All of these advanced capabilities 

contribute to the high data volumes generated by modern SAR systems. 

2.3 THEORY OF OPERATION 

Since SAR is a system using radar, it is an active sensor, which means it provides its own 

illumination to form an image of the scene [1], [35]. Illumination of the scene is in the form 

of radio waves. This means SAR can be operated in all weather conditions, during the day 

or night; whereas optical systems are dependent on ambient light and are affected by 
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inclement weather. SAR has additional advantages over optical systems, which include that 

more information can be gathered from a scene as both phase and amplitude components are 

measured for coherent imaging systems. Optical systems are incoherent and only measure 

light-intensity values [1], [35]. At certain frequencies, SAR systems can penetrate dense 

foliage to detect objects of interest as well as penetrate the ground surface to reveal objects 

buried underground [1], [7]. 

 

A SAR system consists of an antenna mounted on a moving platform, which transmits a 

signal in a side-looking direction relative to the direction of motion, and measures the radar 

backscatter, σ0 [7]. The radar backscatter is caused by scatterers in the scene. Scatterers are 

objects in the scene that reflect the transmitted radio waves back in the direction of the SAR 

receiver [1]. Thus, an illuminated scene consists of many scatterers with varying levels of 

reflectivity or backscatter, depending on various factors including their dielectric and 

physical properties [7], [36]. Different terrain types have different levels of backscatter, for 

example, man-made objects produce very high backscatter, while smooth surfaces or calm 

water has a low level of backscatter [7]. As the platform moves, pulses are transmitted at 

distinct positions and returns are collected from the same swath. SAR uses the Doppler shift 

of consecutive radar returns, generated by the motion of the platform, to synthesise a large 

antenna which allows high azimuth resolution despite a physically small antenna [1], [35]. 

The synthesised large antenna has an aperture the length of the flight path. The operation of 

a typical SAR system is depicted in Figure 2.11. 

 

Spatial resolution is measured in units of distance (metres) and is defined as the minimum 

distance at which two adjacent point scatterers can be accurately distinguished. 

Consequently, for a fine or high resolution SAR system, closely spaced scatterers separated 

by this minimum distance will be visible as individual targets in the SAR image. Since SAR 

images are two-dimensional, the resolution is specified for both the azimuth and range 

dimensions. The azimuth resolution for SAR systems is independent of the platform altitude 

 

1 The author would like to thank Dr Jaco de Witt from the CSIR for the drawing of the figure. 
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and wavelength, since the Doppler effect is utilised by the moving platform, which creates 

a Doppler frequency shift [7]. The azimuth resolution, δa, is equal to half the antenna length 

and is defined as 

 

δa = 
da

2
, (2.1) 

 

where da is the antenna length [1], [7]. Fine range resolution is achieved by using wideband 

waveforms and pulse compression for the transmit pulse of the SAR system. Two-way 

propagation is a characteristic of a monostatic radar system, consequently a factor-of-two 

gain in range resolution is obtained. The range resolution, δr, is given as 

 

δr = 
c0

2B
, (2.2) 

 

 

Figure 2.1 Operation of SAR system (Top view). 
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where c0 is the speed of light and B is the system bandwidth [1], [7]. 

 

A few examples of established SAR operating modes include [1], [7], [35]: 

 Stripmap  

The full transmit distance is used to image a large, continuous strip of terrain. This 

is the most widely used mode of operation. 

 ScanSAR 

An area of terrain is illuminated with a mechanically or electronically steered antenna 

beam. This mode can be used to image a larger swath width, but at the price of 

achieving lower resolution than achievable with the stripmap mode. 

 Spotlight 

The scene is imaged with finer azimuth resolution and at multiple viewing angles in 

one flight. This mode is well suited for imaging multiple smaller scenes of interest 

along the flight path. 

 Circular SAR (CSAR) 

In CSAR a circular trajectory is followed to image the scene. This means a very high 

resolution, as well as a 360° integration angle (the angle over which the SAR system 

gathers returns from the scene), is obtained. CSAR also have three-dimensional imaging 

capabilities. 

 

Every pixel of a complex SAR image consists of a real and an imaginary part, consequently 

it is a phasor and contains amplitude and phase information [7]. The output of any basic SAR 

system is a high-resolution, two-dimensional, intensity image of the illuminated scene. SAR 

images represent an estimate of the radar backscatter for that scene. Bright features imply 

that a large amount of the radar energy was reflected back, which represent high backscatter, 

while dark features imply that very little energy was reflected back and represent low 

backscatter [1], [2]. The two dimensions of a SAR image correspond to the along-track 

dimension, known as cross-range (or slow time) in radar imaging, and the cross-track 

dimension, known as down-range (or fast time) [1], [7]. 
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The complex values measured for each radar return are combined through SAR signal 

processing to form the SAR image [2]. The goal of SAR processing is to establish the range 

and cross-range coordinates of all the targets within the scene by compressing the distributed 

energy of the targets. The two main steps in SAR processing are range and azimuth 

compression and can be seen as two separate matched filter operations along the two 

respective dimensions [7]. In both steps a reference function for that dimension is generated 

to be used in the matched filtering operation, which is performed as convoluting the signal 

in the applicable dimension with the corresponding reference function [2], [37]. Many image 

formation algorithms exist, each with associated advantages and disadvantages. Doppler 

beam sharpening (DBS) is the oldest and most fundamental SAR image formation technique 

[1]. Currently, the most general methods for SAR processing are the Two-dimension 

algorithm and the Range Doppler Processing algorithm [38]. The Two-dimension algorithm 

processes the range and azimuth data simultaneously, while the Range Doppler Processing 

algorithm implements range compression and azimuth compression separately as two one-

dimensional matched filter operations [1], [38]. Other well-known algorithms include the 

chirp scaling algorithm, the backprojection algorithm, and the frequency-wavenumber 

algorithm [1], [37], [39]. 

 

Certain artefacts exist in SAR images after basic SAR processing has been performed. The 

most serious phenomenon occurring in SAR images, as SAR is a coherent sensor, is speckle 

noise [35], [36]. This means that the magnitude of each pixel is the sum of the complex 

returns by scatters in the coherent system. Another phenomenon related to SAR images is 

geometric distortion since SAR measures the distance to a target [36]. The effect of 

geometric distortion is greater on taller objects and causes foreshortening, shadowing, and 

layover. Another artefact is the presence of phase errors due to the non-linear motion of the 

aircraft or errors made in the velocity measurement [35]. When an aircraft is moving along 

a flight path to illuminate the swath, it is assumed that the platform travels along a straight 

line with a constant velocity and altitude. These assumptions are however incorrect, as the 

platform slightly deviates from the ideal flight path during operation. Another discrepancy 
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is the phase shifts caused by moving targets in the scene [35]. Since SAR operation relies on 

the assumption that the targets in the scene are stationary, while the platform is moving, 

these phase shifts defocus the SAR image and lead to the displacement of the moving targets 

and thus cause quality degradation. 

 

In order to form a well-focused, high-quality SAR image, additional processing steps may 

also need to be performed, depending on the artefacts present in the SAR image. These 

processing steps may include: motion compensation and autofocus, Doppler centroid 

estimation, range migration correction, phase correction or phase calibration, multi-look 

processing and/or speckle filtering or segmentation, and geocoding [35], [37], [40]. It is 

therefore evident that performing high-quality SAR processing on board the platform is 

resource expensive. This is why it is advantageous to implement the SAR processing at the 

ground-based section of the modern SAR system. 

2.4 SAR TECHNOLOGIES AND APPLICATIONS 

The output or products of a SAR system can be used for various applications and each SAR 

technology renders different information. Although more than one SAR technology can be 

used for some of the applications, only a few of the well-known SAR technologies, with 

their primary applications, are discussed below. 

2.4.1 Single frequency, single polarisation basic SAR systems 

Conventional SAR systems are used to create high resolution, two-dimensional images of 

the Earth’s surface. Operation includes only a single pass over the scene using a single 

polarisation transmit/receive unit. The basic output is a single-look complex (SLC) image, 

for which the phase information is discarded [35]. Further processing can be performed to 

add radiometric and geometric corrections and/or speckle noise reduction to the image [31]. 

After more advanced processing, geophysical information, like the surface roughness or 

moisture content of soil, can also be derived [31]. The most important applications of 

conventional, simple SAR systems are discussed. 
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 Image classification 

Image classification is identifying the different features within an image by distinguishing 

different levels of radar backscatter, e.g. high radar backscatter areas from medium, low or 

no return areas (NRAs). NRAs include shadows, paved areas like roads or parking lots, dry 

lake beds and sandy terrain, as well as water surfaces [1], [2]. The different levels of return 

are used to identify groups of pixels with similar statistical properties and thus the image is 

divided in homogeneity categories [41]. The output is a detailed map of an entire region with 

its distinct features. For wide-area surveillance, automatic target recognition (ATR), also 

known as unsupervised algorithms, is increasingly being used as it is a time-consuming 

process for a human operator to search through all the data [42]. Important applications of 

SAR image classification, where wide areas are being surveyed, are the mapping of land use 

(important for forestry and agriculture), assessment of the affected areas in disaster relief 

operations, and illegal or accidental oil spill detection [3]. 

 

 Detection of man-made targets 

When investigating the different levels of backscatter in a SAR image, man-made returns 

are highlighted since these objects provide a very high radar backscatter [1], [2]. The high 

levels of backscatter can be attributed to the characteristics of man-made objects which make 

them highly radar reflective [1]. For example, the electrically conductive materials that the 

objects are made of, the large, flat surfaces of these objects, and the retro-reflective properties 

that exist due to the surfaces forming right-angle junctions or corners. Although the detection 

of man-made targets is a very important military application, it is also required for earth 

observation applications. In military applications, SAR is used to identify adversary facilities 

and points of interest on the land and ocean, where counter-piracy and maritime law 

enforcement are important examples [43]. For civilian applications, SAR images are not only 

used to detect ships in coastal regions, which aids in the monitoring of illegal fishing 

activities and vessel traffic, but they are also used to track urban and rural development over 

time [1], [3]. 
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 Global monitoring (Change detection) 

Many changes occur on land due to human activity and climate change over time. SAR is 

used for earth observation applications like ice monitoring and the study of climate change, 

where the global carbon cycle, the global energy/water cycle, and other human activities are 

monitored [3], [44]. The SAR system needs to be sensitive to small changes when 

monitoring a global cycle, consequently the radiometric resolution of the SAR system is an 

important factor [44]. The radiometric resolution of an imaging system is the system’s ability 

to detect miniscule differences in the reflected energy. In order to preserve the radiometric 

resolution of a system, frequent calibrations are required [44]. A high signal-to-noise ratio 

(SNR) indicates that the signal level is greater than the noise level and therefore the noise 

does not mask any of the small changes that may appear in a scene. 

2.4.2 Ultra-wideband (UWB) SAR systems 

UWB SAR has a very large bandwidth compared to conventional SAR systems [45]. The 

system uses short pulses with a rapid change in modulation, to produce a large bandwidth in 

the frequency domain. A very short pulse enables high resolution since the distances are 

measured more accurately [45]. The main advantages of UWB operation are improved 

resolution and more information about the reflectivity of the targets in the scene [45], [46]. 

UWB SAR has applications in remote sensing and medical imaging since the technology is 

well-suited for the detection of concealed objects [47]. UWB SAR operates in lower 

frequency bands than conventional radar systems, usually the very high frequency (VHF) 

and ultra-high frequency (UHF) bands. The corresponding antennas can transmit the 

required short waveforms for UWB operation and the penetration capabilities are greater at 

these frequencies. 

 

 Imaging through unconventional mediums 

The applications of UWB SAR include uses in the military and civilian domains. In the 

military domain UWB radar is used for foliage penetration, ground penetration, and through-

wall detection [47], [48]. The ground penetration capabilities of UWB SAR make it highly 

affective for the detection of landmines [46]. Popular civilian applications include the 
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monitoring of oil reservoirs [49], by imaging the perforations or fractures in the well, and 

medical imaging, like the detection of tumours [50]. 

2.4.3 Interferometric SAR (InSAR) 

InSAR uses the phase difference between two complex SAR images by exploiting the 

speckle inherent to coherent imaging systems [7], [35], [42]. The SAR images for InSAR 

operation are acquired in one of two configurations [7], [51]. Either from mutually displaced 

flight tracks, known as across-track interferometry, most often used to measure the surface 

topography, or from along-track or differential interferometry. The measurements of the 

latter are taken at two distinct times during a second pass on the scene. With InSAR data it 

is possible to detect and measure miniscule path length differences or velocities in the order 

of several metres per second down to a few millimetres per year [7]. Measurements of this 

accuracy are possible since the phase of each pixel can be used to obtain range information 

that is accurate to a fraction of the radar wavelength [7]. 

 

 Surface topography 

Topographic maps or three-dimensional models, known as digital elevation models (DEMs), 

can be constructed using InSAR since the height variations can accurately be measured [35]. 

These maps are used to analyse the surface parameters, for modelling and simulation in 

various fields, and to create accurate maps, to mention only a few uses. 

 

 Measurement of displacements 

InSAR is typically used for various remote sensing applications like the measurement of 

displacements. These include the detection of moving objects (for example cars or ships), 

and geophysical applications like monitoring earthquakes, landslides, glaciers, and 

volcanoes [2], [3], [51]. The changes in the surface are detected by comparing two InSAR 

topographic maps produced before and after a natural event occurred [35]. 
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2.4.4 Polarimetric SAR (PolSAR) 

PolSAR is an advanced imaging technique where the radar transmits and receives multiple 

polarisations (VV, HV, HH, and VH), and produces four SAR images of the same scene 

[35]. Thus, each scatterer is characterised by a complex 2 by 2 scattering matrix [2], [52]. 

Since the full scattering matrix is measured, the system is sensitive to the shape, orientation, 

and dielectric properties of the scatterers, which means much more information is obtained 

than with conventional, single polarisation SAR systems [7], [35]. 

 

 Change detection and feature tracking 

PolSAR has many applications including agriculture (soil moisture estimation and crop 

assessment), oceanography, forestry (forest monitoring, classification, and tree height 

estimation), and disaster monitoring (oil spill detection, disaster assessment) [7], [35], [52]. 

2.4.5 Image fusion 

Image fusion is defined as “the combination of two or more different images to form a new 

image by using a certain algorithm” [53]. A lot of times the information provided by one 

sensor is not sufficient [53]. Different sensors operate in different bands of the 

electromagnetic spectrum and therefore the images of different sensors vary in spectral, 

spatial and temporal resolution. By combining the data from different sensors, 

complementary information is produced. In this way, the advantages of each sensor type can 

be exploited to produce unique information and improve interpretation of the scene. Image 

fusion has applications in topographic mapping, land use mapping, flood monitoring, ice- 

and snow monitoring as well as other geological applications [53]. 

 

 Fusion of Visible-Infrared (VIR) sensor data and SAR images 

Optical systems are affected by cloud cover given that it is a passive sensor, which is a 

disadvantage when mapping regions with frequent cloud cover [53]. Since SAR is an active 

sensor, it is unaffected by cloud cover and thus complements optical systems. VIR provides 

the reflective and emissive characteristics of the surface, while SAR provides the structural 
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and dielectric characteristics of the surface [53]. The accuracy of land-use mapping can be 

improved by combining the characteristics of the two sensors [54], [55]. 

 

 Fusion of multi-frequency or multi-temporal SAR images 

A great number of SAR systems are currently operational for remote sensing applications 

and will be in the future as SAR became the sensor of choice [56]. These systems have 

different operating frequencies, polarisations, wave modes, and incident angles [57]. 

Therefore, the information produced by each sensor is also different. This means that the 

information from different SAR systems, with variable spatial resolutions or acquisition at 

different times, can be combined to produce complementary information and improve the 

quality of the SAR information [57]. This approach is highly favoured for land-use mapping, 

urban area classification, and building recognition [56], [57]. 

2.5 CHARACTERISTICS OF RAW SAR DATA 

As mentioned in Chapter 1, the characteristics of the data to be compressed have to be known 

to aid in choosing a suitable compression algorithm. The characteristics of raw SAR data, 

before any processing, are investigated in this subsection. 

 

For SAR, the value of each resolution cell is the superposition of a large number of scatterers 

(each with random phase) [7] and leads to a signal with Gaussian statistics [58]. Since raw 

SAR data are obtained through a coherent recording process of a very large number of 

independent random variables, it follows from the Central Limit Theorem that the raw data 

can be accurately modelled as zero-mean Gaussian noise [59], [60]. The Central Limit 

Theorem states that the behaviour of a complex system may be characterised by a Gaussian 

distribution if the sample is obtained through the sum of a large number of independent 

observations, randomly generated, and not too heavily correlated [36], [61]. In a typical SAR 

system, the analogue to digital converters (ADCs) sample the in-phase (I) and quadrature 

(Q) components of the baseband signal. Thus, the distributions of the I (real) and Q 

(imaginary) components are characterised as standard Gaussian distributions with equal 
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standard deviation and slowly changing variance in the range and azimuth directions [22], 

[25], [60], [62], [63]. Since the I and Q components are Gaussian distributions, the 

magnitude component is assumed to follow a Rayleigh distribution [64], while the phase is 

uniformly distributed between –π and π [60], [65]. Another characteristic is that the I and Q 

components, as well as the magnitude and phase components are statistically independent of 

each other [60], [65]. Since the measured signal is noise, raw SAR data typically have a low 

SNR [62]. Raw SAR data are also nonstationary, which means the data correlation cannot 

be accurately modelled. Typically, adjacent samples of SAR data are uncorrelated and have 

the same expected power [26], [60], [63], [65]. This is true for both dimensions. It is also 

known that the SAR return data have a high dynamic range [25]. 

 

The I and Q components can be accurately modelled as zero-mean Gaussian distributions. 

However, there are some data sets for which the components slightly deviate from a standard 

Gaussian distribution [25]. The deviation could be caused by features of the scene, e.g. very 

few scatterers in the scene, or even by the hardware in the system, e.g. the ADC [25]. The 

ADC causes a truncation error when performing the analogue to digital (A/D) quantization 

due to the high dynamic range of the SAR return signal [25]. The statistical properties of 

SAR data also depend on the clutter environment that was illuminated, since different 

terrains present different backscatter. Clutter for land, sea, and rain all have different 

reflectivity values and return characteristics [66]-[69]. Man-made objects can produce large, 

discrete returns, which can cause heavier tails for the distribution [70], while natural terrain 

typically consists of small scatterers whose returns are characterised by an average 

backscatter coefficient [34]. 

The amplitude characteristics of clutter depend on several basic factors [34], [58]: 

 The dielectric properties of the surface material. 

 The roughness of the surface relative to the radar wavelength. 

 The orientation of certain types of scatterers relative to the polarization of the 

transmit signal. 

 The incidence angle at the surface. 
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The return of clutter does not only depend on the radar parameters, but it also depends on 

the scattering mechanisms. For example, the backscatter of ground clutter can depend on the 

vegetation type, current moisture content, and even the season [34], [68], while the 

backscatter from ocean surfaces can vary with the wind speed or wave height [34], [58], 

[69]. 

2.6 CHAPTER SUMMARY 

In Section 2.2, the history of SAR and SAR sensors on satellites are explained. In 

Section 2.3, the operation of SAR systems is explained briefly as well as some SAR 

processing techniques. It was seen that SAR is a highly advantageous radar imaging system 

with both military and civilian applications. The most important advantages include the high 

resolution of a wide swath that can be obtained with a moving platform and a physically 

small antenna. The basic measurement by a SAR sensor, which is a coherent imaging system, 

is complex pixel values. Thus, magnitude and phase information are obtained. 

 

Due to artefacts in SAR images, the most common being speckle noise, ancillary processing 

steps may also need to be performed to produce a well-focused, high-quality SAR image – 

all of which require complex computations and thus more resources. It is thus evident that it 

is highly advantageous for modern SAR systems to have the SAR processing unit at the 

ground-based section of the SAR system.  

 

In Section 2.4, well-known SAR technologies and applications developed during the past 

few decades are discussed. Basic SAR systems, using a single frequency and a single 

polarisation, produce an intensity image, with or without further corrections, as the output. 

UWB SAR has applications in medical imaging and the detection of concealed objects due 

to its high resolution and low operating frequencies. Since the phase of a single SAR image 

is not exploitable, InSAR and PolSAR use the phase difference between multiple images for 

various advanced SAR applications. Image fusion is a means of gaining complementary 

information by either combining data from different imaging systems or by combining data 
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from SAR systems with different operating characteristics. In this way, the advantages of 

each imaging system are exploited to produce unique information and improve 

interpretation. 

 

The characteristics of raw SAR data are investigated in Section 2.5. From the literature it is 

evident that the I and Q components of raw SAR data can be accurately modelled as zero-

mean Gaussian distributions in most cases. However, there are some data sets for which the 

components slightly deviate from a standard Gaussian distribution due to specific features 

of the scene, or due to the hardware in the system. Depending on the terrain type, different 

levels of radar backscatter will be returned, which can also have an effect on the shape of 

the distribution of the raw SAR data. 

 



 

 

CHAPTER 3 COMPRESSION OF RAW SAR 

DATA 

3.1 CHAPTER OVERVIEW 

In the previous chapter the characteristics of raw SAR data were investigated. In this chapter, 

the compression algorithms known in the literature as well as the state of the art in the 

compression of raw SAR data are summarised. In Section 3.2 the origin and applications of 

general compression algorithms are discussed. This discussion includes lossless and lossy 

compression, an overview of quantisation, and a brief introduction to compressive sensing. 

Thereafter, in Section 3.3, well-known algorithms in the field of compressing raw SAR data 

are summarised so that an informed choice could be made about the algorithms to be 

compared in this study. 

3.2 GENERAL COMPRESSION ALGORITHMS 

In Section 1.1 it was mentioned that data compression is a requirement due to the high data 

volumes being generated by modern technology, and the limited storage and transmission 

capacity. Nowadays, data are also mostly in digital form, which means the data are 

represented by bytes [71]. Some data types require a large number of bytes to represent the 

data. An example of the immense data volume generated by modern systems is given in [71]. 

Various space agencies including the European Space Agency (ESA), the National 

Aeronautics and Space Administration (NASA), the Canadian Space Agency (CSA), and the 

Japanese Aerospace Exploration Agency (JAXA) are collaborating on a programme to 

monitor global change. The system generates half a terabyte of data per day that needs to be 



CHAPTER 3 COMPRESSION OF RAW SAR DATA 

 

Department of Electrical, Electronic and Computer Engineering 29 

University of Pretoria 

transmitted and stored for analysis. It has become evident that the volume of produced data 

increase more rapidly than the development of storage and transmission capabilities [72]. 

 

The goal of data compression is to reduce the number of bits required to represent a data set 

by removing redundancy in the data and representing the data in a more compact form [71], 

[73]. One of the first examples of data compression is Morse code, invented in 1838 for use 

in telegraphy [71], [72]. Morse code is based on using shorter code words for letters that 

occur more frequently in a language. Information theory was introduced in the 1940s through 

work done by Shannon and Fano [72]. In 1951 an optimal method for using shorter codes 

for frequently occurring characters was found by David Huffman [71], [72]. Early data 

compression was typically implemented in hardware, but in the late 1970s the development 

of software compression programmes began [72]. These initial software programmes were 

all predominantly based on adaptive Huffman coding. In the mid-1980s the Lempel-Ziv-

Welch (LZW) algorithm became the method of choice for most general-purpose 

compression algorithms [72]. 

 

When compressing, the structure in the data or the level of randomness can be exploited. An 

example could be the statistical structure in data, however many other types of structure exist 

in the data depending on the data type [71]. The vocoder (voice coder) is an example of 

where the structure of speech is being exploited to compress the data [71]. Not only can the 

structure in the data be exploited when compressing, but also the perceptual characteristics 

of the users of the data. Therefore, a lot of compression algorithms make use of the visual or 

auditory perceptual limitations of humans to discard information that cannot be perceived 

[71], [72], for example audio, video and image compression algorithms. 

 

Data compression can be lossless or lossy [71], [73]. Lossless compression algorithms 

reduce the number of bits by identifying and eliminating statistical redundancy. Since no 

information is lost after decompression, the data are fully recoverable. Lossy compression 

algorithms permanently eliminate bits of data that are redundant, unimportant or 

undetectable, thus some loss of information does occur. 
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3.2.1 Lossless compression 

Lossless compression is based on Shannon’s entropy theorem, where the data are encoded 

with the number of bits equal to the entropy of the data. Entropy is the information content 

of the data and is also a measure of the maximum compression that is possible without any 

loss of information [74]. Thus, only redundant information is removed to achieve the best 

possible lossless compression ratio. Lossless compression is important for applications 

where large differences between the original and reconstructed data cannot be tolerated since 

the reliability of the data is of critical importance [71]. Text compression, for example, is an 

application that requires lossless compression since small errors can change the meaning of 

the message being communicated. Other applications include certain computer files, bank 

statements and medical results [71]. Lossless algorithms found in early information theory 

literature include Huffman coding, arithmetic coding, LZW algorithms and run-length 

encoding [72], [74]. 

 

The process of lossless compression can be summarised in two steps: the decorrelation step 

and the entropy coding step. Linear prediction is used to achieve decorrelation by removing 

some of the structure in the data. The difference between the original and predicted sample 

is called the residual. Lossless entropy coding methods like LZW, Huffman or arithmetic 

coding are used to encode the residuals [71]. Adjacent speech samples of a speech segment 

are highly correlated [73]. This implies that the previous samples can be used to predict the 

value of the current sample with only a small random error. It is also known that adjacent 

pixels in an image are highly correlated and can thus be used to predict pixel values [71]. 

Therefore, lossless compression can be obtained by exploiting these properties and encoding 

and transmitting the residuals [71], [73]. Modern compression standards include free lossless 

audio codec (FLAC) and Moving Picture Experts Group (MPEG)-4 audio lossless coding 

(ALS) for digital audio, and portable network graphics (PNG), graphics interchange format 

(GIF) or Lossless Joint Photographic Experts Group (JPEG-LS) for images. 
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It was seen in Chapter 2 that the complex I and Q components are noise like, following a 

Gaussian distribution. This implies that conventional, lossless data compression standards 

are ill-suited to compress raw SAR data since these algorithms generally exploit correlations 

and redundancies in the data [34], which are not present in raw SAR data [65]. It is also 

confirmed in [75], where lossless audio encoders, FLAC and MPEG-4 ALS, were used in 

an attempt to compress raw radar data. These methods use predictive coding which is not 

suited for data with a large random component. It was found that these methods could not 

compress the radar data at all. 

 

In [75], Huffman coding, which does not assume correlation between the samples, was also 

used to compress raw radar data of different types of radar systems. However, the Huffman 

decoder needs a dictionary (that differs for each vector) to map prefix codes to previous 

values and thus produce the original vector. Attaching the corresponding dictionary to each 

compressed vector significantly reduced the compression ratio that was achieved, from 2.6 

to 1.9 on average. Other general lossless compression algorithms from the 7-zip file archiver 

were also used to compress the raw radar data, also achieving a poor compression ratio of 

1.7 on average. 

3.2.2 Lossy compression 

For lossy compression methods the data cannot be exactly reconstructed due to loss of 

information. However, this loss of information means that much higher compression ratios 

can be obtained than for lossless compression [71]. Lossy compression is based on 

Shannon’s rate-distortion theorem which states that the bit-rate can be reduced by allowing 

an acceptable amount of distortion of the signal [71], [74]. Lossy compression is 

implemented in applications where the lack of fully recovered data does not present a 

problem. Since the data can still be interpreted without error or ambiguities, the loss of 

information can be tolerated. In the late 1800s the concept of lossy compression for sound 

was already being applied in early telephony and sound recording by discarding high- and 

low frequency components [72]. Examples of where lossy compression are applied include 

speech, audio, images and video. Lossy compression can be applied in these applications 
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since the data display little randomness, but are mostly represented by limited values, and 

many fine details cannot be perceived by the human visual or auditory systems [72]. 

 

Lossy compression consists of a transform to separate important data from unimportant data, 

followed by lossless compression of the important data and discarding the unimportant data 

[72], [73]. JPEG is currently the most popular compression standard for colour and grayscale 

still images due to its small file sizes, colour detail and compatibility in all operating systems 

[76], [77]. Video approximates continuously moving images by playing still images in a 

sequence, called frames. Therefore, JPEG is also used for fast coding and decoding of still 

images in the MPEG standard for video compression [76], [77]. H.264 has been the state-

of-the-art in video compression since 2003, but High Efficiency Video Coding (HEVC) is a 

new video compression standard developed to surpass the coding efficiency of H.264 [76]. 

3.2.3 Quantisation 

Quantisation is widely used in lossy compression methods since it is a simple process [71]. 

Quantisation is the process of representing a large set of values with a discrete, smaller set 

of values [71], [73]. A historical example of quantisation is rounding off [78]. The 

quantisation process consists of an encoder and a decoder [71]. The encoder divides the 

entire range of values occupied by the original data set into intervals, each with an associated 

codeword. The decoder then generates a reconstruction value for every codeword. This 

reconstruction value differs from the original input value which can lie anywhere within the 

interval. Therefore, the operation is irreversible as it removes irrelevant data by reducing the 

size of the alphabet required to represent the data set [71], [73]. Quantisation is well-known 

for the process of converting analogue signals to digital signals, known as analogue-to-

digital conversion (ADC) as well as for the inverse process of digital-to-analogue conversion 

(DAC) [71]. 

 

The goal of quantisation is to find the best possible representation of the data set for a specific 

data rate [74], [78]. However, since loss of information occurs; errors are introduced by the 

process. The error is the difference between the original and the reconstructed data. The 
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errors introduced by the quantisation process are non-linear and signal dependent, and is 

known as quantization noise or quantisation distortion [73]. The quality of a quantiser can 

be determined by measuring the distortion resulting from reproducing the original values 

from the encoded values. The most common distortion measure is the squared error, also 

represented as the signal-to-quantisation-noise ratio (SQNR) [74], [78]. It is important to 

note that a trade-off exists between the two primary performance measures: the achievable 

rate and the distortion produced [78]. 

 

The most general quantisation schemes are uniform quantisation, non-uniform quantisation, 

and vector quantisation [71], [73]. A uniform quantiser is the simplest scheme, since the 

decision intervals are of equal length and can be represented by a constant called the 

quantisation step size [71], [73]. The reconstruction values are also the midpoints of each 

interval. A non-uniform quantiser takes the probability density function (pdf) of the input 

into account when choosing the intervals [71], [73]. Thus, to decrease the distortion, the 

intervals are smaller in regions of high probability versus regions of lower probability of 

occurrence. A uniform or non-uniform quantiser is called a scalar quantiser (SQ) if the input 

is quantised one sample at a time [71]. A vector quantiser (VQ) groups consecutive samples 

or blocks of samples to form the code vectors [71], [73]. The list of code vectors forms the 

codebook of the VQ. Therefore, a VQ requires a complex encoder to search through all the 

vectors in the codebook and to choose the best representation of the input. The decoder, 

however, only uses a table lookup process and therefore the VQ is an attractive solution to 

problems where the decoding resources are limited compared to the resources available for 

encoding [71]. A VQ usually outperforms an SQ, however, it has higher computational 

complexity [73]. It is important to note that VQ can be used as a lossy compression method, 

even if adjacent samples are uncorrelated, although correlation would improve the 

performance [73]. 

3.2.4 Compressive sensing 

The well-known Nyquist-Shannon sampling theorem states that a digitised signal needs to 

be sampled at a rate of twice the signal bandwidth in order to fully recover the original signal. 
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However, the relatively new field of compressive sensing (CS) states that far fewer samples 

can be acquired based on the rate of information of a signal, and not the signal bandwidth, 

since redundancy exists in the samples [79].  

 

CS exploits the fact that a lot of signals are intrinsically sparse in some domain [79]. Sparsity 

means the information content is thinly distributed and many coefficients are zero, while the 

non-zero coefficients are sufficient to fully reconstruct the original signal [80]. If a signal is 

sparse in one domain, it implies the signal has redundancy in another [79]. It is generally 

known that each media type is sparse in a specific domain and this information is exploited 

in the compression of multi media [79]. For compressive sensing it is important that the 

domain in which sampling takes place is not sparse, but that sparsity exits in some domain 

incoherent to the sampling domain. To ensure that the sampling domain is non-sparse, the 

signal can be transformed to an intermediate domain that is incoherent with the sparsifying 

domain [79]. It was found that any random domain is highly likely to be incoherent with any 

other domain [80]. Therefore, in some cases, random sensing matrices are chosen as 

transform matrices to ensure that the incoherence requirement between the sampling domain 

and the sparsifying domain is met. 

 

CS is in essence using an underdetermined system to fully recover the original signal, while 

making the assumption that the signal is sparse in some, incoherent domain [79]. CS reduces 

the sampling rate of a system without prior knowledge of the signal and is therefore a 

beneficial method in the field of digital signal processing. CS has applications in data 

compression, channel coding, inverse problems and data acquisition [80]. The advantages of 

CS, as well as the sparse nature of some radar applications, also make this technique useful 

for applications in the electromagnetic field, which include: pulse compression, antenna 

arrays, direction of arrival estimation, inverse scattering and radar imaging [81], [82]. Some 

of these applications of CS have been demonstrated using real data [82]. 

 

If one deviates from the Nyquist sampling theorem and apply underdetermined sampling to 

a signal, loss of information is inevitable. However, it is the philosophy of CS that this 
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information loss will be tolerable if sparsity of the signal in some domain can be assumed 

[82]. This method eliminates the need for a high sampling rate, which is generally a 

requirement for digital signal processing, although most general compression algorithms end 

up eliminating the redundancy in the data after Nyquist sampling. CS increases the algorithm 

efficiency due to the lower sampling rate requirement and the reduced computational 

complexity [81]. 

3.3 COMPRESSION ALGORITHMS FOR RAW SAR DATA 

An overview of well-known algorithms for raw SAR-data compression is presented in this 

section. Since lossless compression of raw SAR data is not customary, the discussed 

algorithms are all lossy compression methods. The algorithms have been categorised as 

scalar quantisation methods, vector quantisation methods, transform coding methods, 

compressive sensing applied to raw SAR data, and compression after range focusing the raw 

data. Some well-known fusion methods in the literature are also briefly discussed.  

3.3.1 Lossless algorithms 

In literature it has been concluded that due to the high entropy of raw SAR data, lossless 

compression algorithms are not suited for the compression thereof [31], [83]. In [31], it was 

found that the raw SAR data from the NASA DC-8 airborne SAR had an entropy value of 

6-7 bits/sample. Therefore, for the general 8-bit quantization from the ADC on board a 

platform, a compression ratio of less than 20 % would be achievable. Not only is lossless 

compression ill-suited due to the high entropy of SAR data, but it has also been found that 

lossless compression algorithms cause the data to be more susceptible to errors caused by 

transmission [31]. 

 

It was mentioned in Subsection 3.2.1 that lossless compression algorithms, which utilise 

predictive coding, are ill-suited for the compression raw SAR data since these methods take 

advantage of sample to sample correlation. Since conventional lossy compression techniques 

utilise transform coding, which also exploits the correlation between samples, they are also 
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rendered ill-suited for the compression of raw SAR data [65], [84]. The characteristics of 

raw SAR data and the abovementioned factors imply that quantisation is a suited method for 

the compression for raw SAR data [84]. 

3.3.2 Scalar quantisation 

One data compression method that has successfully been used on board spaceborne 

platforms when the system is data rate limited, is block adaptive quantisation (BAQ) [34], 

[60], [85]. An adaptive quantiser estimates the statistics of the data and then changes the 

quantiser characteristics to try and match the observed statistics [60]. Therefore, to design 

an optimal quantiser, the statistics of the data must be known. Although raw SAR data are 

known to have a high entropy, and are thus not highly compressible, a reduction in the 

number of bits is possible for the BAQ method, since the dynamic range for a block of data 

is much less than that of the entire data set [83]. BAQ has been designed to compress raw 

SAR data, since a Gaussian statistic signal, with slowly varying power, forms the basis of 

the BAQ design [31], [34], [60]. Since the I and Q components of the data are assumed to 

be Gaussian with zero mean, the distribution can be described by a single parameter, the 

standard deviation. 

 

It receives the uniformly quantised data from the ADCs and then splits the data into smaller 

blocks. The block size is chosen such that each block has Gaussian statistics, while also 

ensuring that the variance of the samples within each block is small relative to the variance 

across all blocks in the data set [34], [60], [83]. The optimum quantiser used in BAQ is 

known as a Lloyd-Max quantiser [31], [86], [87], and outputs a fixed bit rate. The objective 

of the quantiser is to minimise the distortion by quantising the values within each block non-

uniformly. For two-bit encoding, one bit is the sign bit, while the other bit indicates the signal 

level, thus whether the sample is above or below the threshold [60]. The threshold is the 

transition point that is optimally placed in an ensemble of data with a Gaussian distribution, 

such that the distortion in the reconstructed data is minimised. The reconstructed values are 

the centroid of the area between zero and the threshold and the centroid of the area between 

the threshold and infinity, on the positive and negative sides of zero. It is important to note 
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that the standard deviation is transmitted with the encoded data for use in the reconstruction 

process performed at the ground station. The results in [60] show that the BAQ achieved the 

required data volume reduction, while also satisfying the hardware constraints of modern, 

spaceborne SAR systems, since it is of low complexity [85]. Although this method was 

originally designed for only two bits of encoding, it can be extended to provide greater 

compression accuracy by increasing the number of thresholds and consequently the number 

of encoding bits [62]. 

 

Encoding the I and Q components is known as the Cartesian format of the BAQ method. 

However, different variations of the BAQ have also been investigated in literature [26], [62], 

[88], [89]. For the block adaptive magnitude phase quantisation (BMPQ) variation, the raw 

complex data are represented by the magnitude and phase components. This is known as the 

polar format of the BAQ method. Again, the quantiser and reconstruction process are 

designed to minimise the mean square error for the respective distributions. As mentioned 

in Section 2.5, the magnitude component follows a Rayleigh distribution while the phase is 

uniformly distributed. The number of bits allocated to each component is varied to find the 

best compression solution for the application. For example, if the application requires 

reliable phase data, the phase component can be encoded with more bits than the magnitude 

component to better preserve the phase information. BAQ outperforms BMPQ in terms of 

the SNR in the image domain, although BMPQ has significantly better performance in the 

data domain. This is due to the accuracy of the phase component since it is encoded with 

more bits than for conventional BAQ. However, encoding the magnitude component with 

fewer bits causes the I and Q components to contain less information compared to the 

information content of these components in the BAQ case. It was also concluded that the 

distribution of the magnitude component is not well suited for compression, while the phase 

component cannot be compressed at low bit rates due to its zero order entropy [85]. 

 

Another variation of the BAQ is the entropy-constrained BAQ (ECBAQ) [90]-[92]. ECBAQ 

features non-integer rate programmability, which is an important feature for the onboard 

compression of SAR data in modern applications. ECBAQ can be described as an optimum 
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quantiser, a uniform block adaptive quantiser in this case, followed by an entropy coder like 

Huffman coding or the adaptive arithmetic coder. This method aims to outperform the BAQ, 

while retaining the low complexity of the BAQ. 

 

It has been found that using a fixed encoding bit rate for the entire scene, that is independent 

of the signal power, is not optimal [5], [92]. Since the SNR varies with the power levels of 

the received signal, a fixed encoding bit rate degrades the SNR, and therefore, varying the 

encoding bit rate can outperform the BAQ. The Flexible Dynamic Block Adaptive 

Quantization (FDBAQ) is the latest extension of the conventional BAQ method by 

adaptively selecting the encoding bitrate according to the local SNR [21], [92], [93]. In 

essence this means that blocks that contain bright scatterers, are encoded with a higher 

number of bits to preserve the information. It has been observed that for purely homogeneous 

scenes, the FDBAQ does not provide any improvements over the BAQ. However, for 

heterogeneous scenes FDBAQ provides significant improvements. The main difference 

between the FDBAQ and the ECBAQ is that the FDBAQ adapts the bit rate for every block 

of data, while the bit rate is fixed for the operation of the ECBAQ [92]. The optimum 

quantiser for the FDBAQ can be a uniform or non-uniform block adaptive quantiser followed 

by an entropy encoder, which produces a variable bit rate that is generally a non-integer 

value [5], [92]. FDBAQ is well suited for SAR missions that produce a high data rate and 

large dynamic range. It retains the highly advantageous, low complexity of the BAQ method 

while also producing results comparable to the BAQ method. The ability to vary the 

encoding bit rate enables SAR systems to have multiple operating modes. 

 

BAQ was designed for the compression of raw SAR data by the Jet Propulsion Laboratory 

(JPL) and was first implemented on the Magellan spacecraft used to image Venus [60]. 

Thereafter, it was also implemented on board the SIR-C spacecraft which was used to obtain 

multi-frequency and multi-polarisation radar images from a low earth orbit [94]. Thereafter, 

the BAQ algorithm was extended to have a varying compression ratio (options being 4, 3, 

or 2 bits/sample) chosen by the mission controller based on the operating mode [27]. This 

algorithm, known as flexible block adaptive quantiser (FBAQ) was implemented on board 
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the ENVISAT satellite to enable wave mode operation, used to measure directional wave 

spectra of the ocean. Most recently an extension of the FBAQ method, known as the flexible 

dynamic block adaptive quantiser (FDBAQ) algorithm has been implemented on board the 

Sentinel-1 satellite. After evaluating the algorithm using real Sentinel-1 data, it was 

concluded that FDBAQ achieves an average bit rate comparable to that of a BAQ with an 

output bit rate of 3 bits, but with the added benefit of improved SNR in the high-reflectivity 

areas in the scene, while also not degrading the quality of the low-reflectivity areas [5]. It 

must be noted that the added flexibility of the bit rate per block is important for modern SAR 

systems, since different operating modes and applications have different image quality and 

data volume requirements [5], [63]. 

3.3.3 Vector quantisation 

Vector quantisation (VQ) is an extension of SQ, the difference being that it quantises groups 

of samples called vectors [85]. This conceptual difference causes VQ to outperform SQ due 

to the following reasons [88], [95]: 

 the space-filling advantage, ascribed to adding another dimension when using 

vectors, 

 the shape advantage which depends on the distribution of the input data, and 

 the ability to exploit statistical dependencies among the data, called the memory 

advantage. 

The operation of VQ [29], [85], [88], [95], [96] includes grouping the data into vectors and 

generating a codebook. For each input vector, the encoder searches for the code word which 

aims to minimise the mean square error between the data and their assigned code words. 

Each vector is assigned a code word and only the index of the best suited code word is 

transmitted along with the encoded data. The decoder consists of a look-up table that outputs 

the code word that matches the address it received. As the vector size increases, the 

performance also increases [88], [96]. However, an increased vector size requires more 

computations and memory. 
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VQ-based methods group samples together to form vectors and assign code words to each 

vector. The types of VQ methods generally applied to compress raw SAR data include full 

search VQ using a codebook, tree-structured VQ, and lattice VQ [29], [85], [95]. 

 Full search VQ using a codebook (LBG-VQ) [29], [85] 

The full search VQ uses a codebook generated by the Linde, Buzo, Gray (LBG) algorithm, 

and code words are chosen in such a way to minimise the distortion. This method achieves 

improved performance when compared to the SQ methods discussed in the previous 

subsection. When applying this type of coder, the performance is improved even more when 

the components of the vector are correlated (see Subsection 3.3.6). 

 Tree-structured VQ (TSVQ) [95] 

TSVQ does not perform as well as the LBG-VQ method when compressing data, but it is a 

very computational efficient method. It is a variable rate method and has progressive 

transmission properties, which makes it highly suited for practical implementations. 

 Lattice VQ (LVQ) [85], [95] 

LVQ is usually applied when the data follow a well-known pdf, with zero mean. Often times, 

when the data do not adhere to this condition, a transform is applied to the data. Since the I 

and Q components of raw SAR data can be assumed to follow a Gaussian distribution, as 

seen in Section 2.5, the LVQ method is well suited for the compression of raw SAR data. 

LVQ is a fast algorithm and aims to preserve the performance capabilities of the LBG-VQ 

method. The lattice is chosen depending on the distortion measure between the data and the 

assigned code words. The codebook is then adapted to the distribution type of the data by 

using a truncated version of the lattice. Spherical, pyramidal or elliptical codebook versions 

are used for Gaussian, Laplacian or Elliptical sources, respectively. By choosing an optimal 

lattice suited for the distribution of the data to be compressed, the computational complexity 

is reduced compared to that of the LBG-VQ method. 

 

In [85] full search VQ (LBG-VQ) and LVQ are proposed to compress the raw SAR data. 

The results using simulated data, show that VQ-based algorithms outperform BAQ, 

especially at low bit rates. LVQ is well-suited for SAR-data compression since it has low 

computational complexity compared to LBG-VQ and achieves good results for the simulated 
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data. In [29] LBG-VQ, Kohonen feature maps, and lattice techniques are applied to 

SARAPE data. LBG-VQ achieves better performance than the other two methods, while the 

Kohonen feature maps method has lower computational complexity. It can be concluded that 

VQ-based techniques perform better when the components of the vector are correlated. 

 

It can be concluded that VQ-based methods outperform BAQ at low bit rates [29], [85], [95], 

since it is known that VQ naturally outperforms SQ [73]. It was shown that by exploiting 

the correlation achieved by grouping the data into vectors, better performance could be 

achieved [96]. VQ-based techniques reduce the data rate at the price of higher complexity 

[29], [85], [95]. Consequently, SQ remains the method of choice for practical 

implementation since the complexity of VQ is a major disadvantage [96]. 

 

Trellis-coded quantisation (TCQ) is a special case of VQ where the code words are restricted 

to be paths on a trellis [97]. The rate-distortion performance of TCQ is superior to that of 

SQ, while it is also an improvement on VQ since it is much more computationally efficient 

[98]. In contrast with full search VQ, the computational complexity for TCQ is independent 

of vector length, therefore, very long vectors can be processed [97], [98]. In [98], the TCQ 

and trellis-coded vector quantization (TCVQ) methods performed well and showed low bit-

error sensitivity. These techniques are also compared with BAQ and VQ and the results show 

that they outperform these two methods in terms of the SNR. The cost of improved 

performance is the computational complexity of the TCQ method that greatly exceeds that 

of the BAQ, but is comparable to that of VQ at the same rate. 

3.3.4 Transform coding 

The compression algorithms discussed in the previous subsections describe the 

implementation of algorithms in the time domain. It is important to note that these algorithms 

can also be applied to data in the transform domain. The condition that must be met, is that 

the values in the transformed domain must have the same data statistics as in the time 

domain, namely zero-mean Gaussian distributed [83]. Due to the phase coherence that raw 
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SAR data exhibit, this condition is true for large block sizes. Consequently, the BAQ is used 

extensively in the transform domain as well. 

 

Transform coding has been successfully implemented for the compression of images and 

forms the basis of the JPEG2000 standard [97]. Transform coding causes energy compaction 

in the new domain which can be exploited when compression is required; a characteristic 

that is not present in the time domain [22]. The aim of compression in the transform domain 

is to use a transform that represents the important information content of the data with the 

fewest number of coefficients [83]. The coefficients that contain less information, can be 

discarded, or coded with fewer bits, without detrimentally affecting the image quality.  

 

When the coefficients are Gaussian, the Karhunen-Loève transform (KLT) is the optimal 

basis [83]. Unfortunately, the implementation thereof is impractical since it requires the 

computation and inversion of a very large autocorrelation matrix. It was found that the 

discrete cosine transform (DCT) achieves results that are comparable with the performance 

of the KLT [83]. Raw SAR data are frequency modulated in both range and cross-range 

directions [83]. In the range direction, the modulation is due to the transmitted pulse, while 

in the azimuth direction it is modulated by the movement of the SAR platform (Doppler 

effect). Therefore, by combining frequency-domain methods with BAQ, the compression 

performance can be improved at the cost of increased encoding complexity [22]. 

 

A popular frequency domain algorithm is the fast Fourier transform BAQ (FFT-BAQ) [83], 

[99]. The data are transformed by performing a two-dimensional FFT of the raw SAR data, 

after which the average envelope of the transformed data is known. The main objective of 

the FFT-BAQ operation is to match the compression scheme to the energy variation of the 

frequency envelope. Therefore, the region with higher energy is quantised with more bits, 

while the coefficients which carry less energy are quantized using fewer bits. The 

coefficients which will be neglected by low pass filtering are not encoded, but discarded. 

Therefore, FFT-BAQ has the added advantage of onboard, digital filtering [22]. FFT-BAQ 

outperforms the BAQ as well as all other frequency domain approaches. However, the 
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increase in computational complexity is significant [83], [99]. Instead of the FFT, the DCT 

or the Walsh-Hadamard transform (WHT) can be used with the BAQ for compression in 

frequency domain. DCT-BAQ achieves similar performance to that of the FFT-BAQ, while 

the WHT-BAQ requires a less complex hardware implementation, at the price of decreased 

performance [83]. In [22] the DCT is implemented followed by arithmetic coding. The DCT 

exposes the structure in the data, while arithmetic coding exploits that structure when 

compressing the data. 

 

A newer transform coding method for raw SAR data is the use of wavelets and wavelet 

packets [100], [101]. Transform coding consists of decomposing the signal in an 

orthonormal basis. The wavelet coefficients are computed and thereafter the coefficients 

have to be quantised. The quantiser is designed to ensure that the the entropy of the quantised 

coefficients is minimized for a given distortion rate. In general image compression 

applications, the probability density function of the wavelet coefficients is peaked, implying 

that the number of significant coefficients is very low. In [102] an experiment was performed 

to determine the four top performing one-dimensional wavelets when applied to raw SAR 

data. These wavelets were compared to the BAQ method and it was concluded that none of 

the standard wavelet bases could outperform the BAQ in terms of the SNR.  

 

Due to the characteristics of raw SAR data, a slightly different approach is followed in [100] 

and [101]. A two-dimensional wavelet transform with two decomposition levels is applied 

to the raw data frame. The real and imaginary components of the raw data samples are 

transformed separately. It is also recommended that the wavelet should be derived directly 

from the raw SAR data to ensure that it is an optimal 2-D wavelet. Redundancy minimization 

in the transform domain serves as the optimality criterion in the derivation process. The 

results show that the optimal wavelet outperforms the standard wavelets [101]. 

 

Overall, some wavelet methods have produced results that are comparable to the 

performance of the BAQ, while also being implemented on low complexity hardware [22], 

[102]. However, none of the methods have surpassed the performance of the BAQ. This is 
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because longer transforms increase the performance, but consequently require more storage 

and more complex computations [22]. 

3.3.5 Compressive sensing 

In the field of CS applied to raw SAR data, problems with the conventional sampling 

technique are identified [103]-[105]. Firstly, since modern SAR systems produce 

increasingly higher resolution outputs, which demand wider bandwidth and larger synthetic 

aperture, a higher sampling rate, according to the Nyquist-Shannon sampling theorem, is 

required. A higher sampling rate results in longer transmission and sampling times, a larger 

volume of data, and increased hardware complexity. All of these factors are challenges that 

modern SAR systems face. Another identified problem is that all the current methods of 

compressing raw SAR data, compress the data after sampling and therefore it is evident that 

redundancy exists after sampling at Nyquist rate. It is thus clear why the need for CS of raw 

SAR data arose.  

 

CS acquisition of signal requires three elements: a basis where the data are assumed sparse, 

a reconstruction algorithm and a measurement (sampling) method [105]. It is important to 

note that successful reconstruction of the under-sampled signal is only possible if the data 

are in fact a sparse representation of the original, uncompressed signal after applying the 

transform [104]. CS compresses the raw SAR data by sampling the signal below Nyquist 

rate. CS also generally has the advantage of simple compression steps, while the 

decompression requires more complex steps [103]-[105]. This setup is beneficial since 

modern SAR systems require low complexity compression because it is executed on board 

the platform, where computational resources are limited. The decompression can be more 

complex since it is executed at a ground station, where SWAP-C are no longer limitations. 

 

The compression of raw SAR data in the CS framework, by using the dual tree complex 

wavelet transform (DT-CWT) and the real wavelet transform (WT) as sparsifying 

transforms, is presented in [103] and [104], respectively. The studies are performed using a 

simulated scene with point targets, as well as measured satellite data. The proposed methods 
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achieve fast compression by applying a two-dimensional FFT and random sampling, and 

thus reduce the computational complexity required for onboard compression of raw SAR 

data. However, neither sparsifying wavelet transforms provided enough sparsity of the SAR 

signal to yield a compression ratio of higher than 2:1. 

 

In [105] it was observed that when using a Haar wavelet basis, only the high-return objects 

in the image, which are compressible because they are highly localised, are preserved. Very 

bright scatterers, generally from man-made objects, are typically sparse in the space domain 

and slightly sparser in the wavelet domain. Therefore, the SAR image was divided into two 

components, namely the sparse areas with bright scatterers, and the remaining, non-sparse 

areas. Additional techniques were also implemented to improve the reconstruction quality 

of the non-sparse areas of an image. These techniques include standard CS with additional 

post-processing, and secondly, a hybrid CS technique. It was concluded that modified CS 

techniques can outperform traditional Nyquist rate sampling techniques for low bitrates, with 

the added condition that the image contains very bright scatterers, and thus adheres to the 

sparsity requirement. If the sparsity condition is not met, Nyquist sampling compression 

techniques achieve a higher compression ratio and better quality SAR images than the 

standard or modified CS techniques. 

 

It is stated that for radar imaging, the sparsity condition required for CS only holds true if 

the scene only has a few bright returns [82], [105]. This requirement is usually met for man-

made objects, like vehicles or aircraft, in a low reflecting background. Thus, it is evident that 

CS is an ideal compression method for applications where man-made objects are the targets 

of interest [82]. The output of the CS method in these cases is also very useful for automatic 

target recognition (ATR). The clutter returns can also cause the violation of the sparsity 

condition for CS, which then sets a requirement for pre-processing before CS can be 

implemented [82]. Suppressing the clutter before performing the CS processing implies that 

more resources will be required when implementing the compression on board the SAR 

system. It can thus be seen that CS is highly suited for ISAR applications, rather than for 

SAR applications where the clutter returns are important for forming an image of the scene. 
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In the available literature on CS applied to raw SAR data, a lot of the methods are merely 

theoretical, or applied to simulated data with a known number of ideal point scatterers only, 

and therefore not necessarily valid for practical SAR applications [82]. 

3.3.6 Compression after range focusing 

Raw SAR data exhibit very little correlation, consequently compressing the raw data is very 

challenging [28], [96], [106]. It is known that processing the raw SAR data exposes the 

distinctive features of the scene and increases the correlation. However, performing the 

entire focusing process on board the platform is resource expensive. The SAR focusing 

process consists of two steps, as mentioned in Section 2.3. The first step is range focusing 

(range compression), followed by azimuth focusing (azimuth compression). Azimuth 

compression is much more resource expensive than the range focusing step. 

 

A possible compression solution has been identified by implementing the range focusing on 

board the platform, followed by a suitable compression algorithm [28], [96], [106]. Range 

focusing is obtained by computing the inverse discrete Fourier transform of the data across 

the range dimension. Range focusing requires only low-complexity computations and has 

no memory requirements, which makes it ideal for on board implementation. In [28] raw 

ERS-1 data, before and after range focusing, are shown. Before range focusing the raw data 

shows no structure, however, after range focusing bright strips appear along the azimuth 

dimension. The compression algorithms can exploit the increased correlation exhibited after 

range focusing [28], [96]. This correlation is due to the presence of highly reflective objects 

in the scene. The returns from these objects are generally stronger than the returns from the 

surrounding homogeneous areas, and consequently produce SAR scattering that can easily 

be predicted. 

 

In [28], range focusing is implemented, followed by block-adaptive, variable rate VQ 

(VarVQ) to compress the raw ERS-1 SAR data. The raw data are compressed with and 

without the range focusing step. It is shown that implementing the conventional SAR-data 
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compression algorithms after range focusing, has a clear improvement over compressing the 

raw data directly. It is also concluded that VarVQ outperforms the other techniques in terms 

of the SNR, but shows increased computational complexity. However, VQ is not a feasible 

solution for onboard implementation and therefore, variable rate trellis-coded quantisation 

(VarTCQ) and variable rate trellis-coded VQ (VarTCVQ) are investigated to compress 

range-focused SAR data [96]. VQ shows clear improvements over SQ when compressing 

range-focused data, since it exploits the correlation present in the data. By adding trellis-

coding as part of the encoder, VarTCVQ outperforms VarVQ and BAQ at low bit rates and 

also reduces the computational complexity to suit onboard implementation requirements. 

 

Predictive quantisation techniques for the compression of range-focused data are 

investigated in [106]. Transform-domain block predictive quantisation (TD-BPQ) and 

transform-domain block predictive trellis-coded quantisation (TD-BPTCQ) are investigated. 

The results show that predictive quantisation is a suitable technique for the compression of 

range-focused data when the scene contains dominant point scatterers. The strong returns 

from a scatterer, typically a man-made object, forms a characteristic sinusoidal pattern in the 

range-focused domain, and consequently, the behaviour can be predicted [106]. The 

algorithms outperform the VarTCVQ technique [96] in terms of SQNR and computational 

complexity. 

 

It can be concluded that implementing well-known SAR-data compression techniques after 

range focusing the raw data, improves the performance in terms of the SNR. This is possible 

since range focusing increases the correlation of the data in the azimuth dimension. The 

compression algorithms can now exploit the correlation and focused energy in the range-

focused SAR image. It was seen that scalar quantisation does not perform well when applied 

to range-focused data since the limited number of quantisation levels cannot accurately 

represent the increased dynamic range obtained after range focusing [28], [96]. It is shown 

that VQ techniques perform well [96], but the computational complexity makes VQ-based 

techniques impractical [106]. Results show that predictive coding techniques outperform 

VQ-based techniques due to the predictability that dominant scatterers exhibit after range 
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focusing. The computational complexity of these techniques is also feasible for onboard 

implementation. 

3.3.7 The fusion of algorithms 

In this subsection only a few methods, that are very popular in the literature, are discussed. 

These techniques combine the advantages of two types of quantisation or the data 

representation in two different domains to compress the raw SAR data. 

 

The first example is the combination of scalar quantisation and vector quantisation [88], 

[95]. The raw SAR data are first compressed using the BAQ algorithm. The output of the 

BAQ, which is a smaller number of bits than the initial bit rate, is now the input to the VQ. 

The smaller number of bits as input means that the search process can be simplified or even 

avoided in certain cases. The output of the VQ corresponds to the addresses of the code 

words. VQ-based techniques like block adaptive vector quantisation (BAVQ), block 

adaptive tree-structured vector quantisation (BATSVQ), and block adaptive lattice vector 

quantisation (BALVQ), are compared with the BAQ technique [95]. The BAVQ method 

outperforms the BAQ method at low bit rates, since the digitisation noise inherent for BAQ 

is reduced, as well as the computational complexity normally associated with VQ. The 

proposed BATSVQ and BALVQ algorithms also outperform the BAQ algorithm at low bit 

rates. Their performance also compares well with that of the BAVQ algorithm, while the 

reduction in computational complexity makes these methods more advantageous. 

 

Another important example of the combination of algorithms is the combination of time 

domain methods and transform domain methods. In specific, a lot of literature focus on the 

fusion of the time and frequency domain, since it had been observed that the best results 

have been achieved when the BAQ is applied in the frequency domain [99]. WHT-BAQ, 

DCT-BAQ, and FFT-BAQ have been tested for the compression of raw SAR data [83]. The 

best results were obtained using the FFT-BAQ. The FFT-BAQ is discussed in 

Subsection 3.3.4 
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3.4 CHAPTER SUMMARY 

Detailed reviews of the general compression literature and the algorithms specific to the 

compression of raw SAR data were required to implement the research. In Section 3.2, the 

algorithms to compress various general data types were discussed. Brief overviews of the 

principles of quantisation and compressive sensing were also given to understand the 

algorithms in the following section. 

 

The state of the art in the compression of raw SAR data was briefly summarised in 

Section 3.3. It was observed that the performance of the compression algorithms highly 

depends on the statistical properties and the dynamic range of the data to be compressed 

[29]. Lossless compression algorithms are ill-suited for the compression of raw SAR data 

due to the high entropy of raw SAR data and the lack of correlation between adjacent samples 

[31]. From the literature it is clear that the BAQ is the most mature algorithm for the 

compression of raw SAR data. It has, however, been observed that combining algorithms 

can lead to improved results at some cost. For example, the BAVQ algorithm produces 

slightly better image quality compared to the quality obtained using the BAQ, but the 

additional computations required cannot be justified [99]. Another algorithm receiving a lot 

of attention, is the FFT-BAQ. It is known to outperform the BAQ, but again leads to 

increased computational complexity [83]. 

 

Each algorithm has advantages and performs well under specific conditions. Although there 

are many algorithms that have outperformed the BAQ in theoretical studies, BAQ remains 

the preferred basis algorithm, primarily because it achieves a good trade-off between 

performance and simplicity [62], [83]. Considering the results from previous studies, as well 

as the summarised literature in this chapter, the main candidates for raw SAR data 

compression on board resource constrained platforms, are the standard BAQ, the FFT-BAQ, 

and the flexible dynamic block adaptive quantiser (FDBAQ) [93], [99].  
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Until recently, FFT-BAQ was not considered a viable solution due to the high computational 

requirements, but technological advances in hardware design could see the implementation 

of FFT-BAQ on board a future SAR platform. Most recently an extension of the FBAQ 

method, known as the FDBAQ algorithm, has been implemented on board the Sentinel-1 

satellite. After evaluating the algorithm using real Sentinel-1 data, it was concluded that 

FDBAQ achieves an average bit rate that can be compared to a BAQ with an output bit rate 

of 3 bits, but with the added benefit of improved SNR in the high-reflectivity areas in the 

scene, while also not degrading the quality of the low-reflectivity areas [5]. 

 



 

 

CHAPTER 4 APPROACH 

4.1 CHAPTER OVERVIEW 

This chapter describes the research design of the study. The research design can be described 

as a comparative analysis with inputs, tasks performed, and outputs. In Section 4.2, the 

overall approach that was followed to address the research questions, is described. The 

objective of the research was to establish a set of standardised metrics that can be used in 

future, to evaluate the performance of a compression algorithm for raw synthetic aperture 

radar (SAR) data. In Section 4.3, the methods and methodology to prove that the metrics can 

be used to evaluate the performance of a compression algorithm are explained. This section 

includes information about the research instruments, data used, the analysis techniques, and 

the limitations of the method. 

4.2 RESEARCH DESIGN 

The comparison in this study involves the description of the differences and similarities 

between the results of the metrics for the three compression algorithms. Comparative 

research [107] attempts to reach conclusions that are not only valid for a single case, but can 

explain differences and similarities between objects of analysis in spite of their contextual 

conditions. When results are compared, theories and hypotheses can be tested, and the scope 

and significance of phenomena can be evaluated. A weakness of comparative research is that 

variations in measurement, instruments, sampling, and processing can have detrimental 

effects on the outcome of the research, and in essence invalidate the conclusion. Therefore, 

carefully selecting the constants in the study and ensuring that they can indeed be controlled, 
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are of great importance. Establishing the inputs, tasks and outputs of the research design are 

also important when designing the research to be performed. 

 

One input to the research process was the SAR system, which consists of the raw SAR data 

it acquired and the SAR processing algorithm applied to focus the image. The second input 

to the process was the compression algorithms used to perform the study. 

 

In order to address the research questions in Section 1.2, certain tasks needed to be 

performed. These high-level tasks included establishing a set of metrics by recognising the 

metrics currently being used in this field, and also introducing new metrics to address the 

identified limitations. The definitions and importance of the proposed metrics were also 

discussed to highlight how they could be used when comparing two SAR-data compression 

algorithms. Another task performed during the study was to evaluate the proposed metrics 

for three compression algorithms. In this way, the performance of the algorithms was 

compared in order to select a better suited solution for the SAR system, and thus proves the 

validity of the proposed metrics. 

 

The compression algorithms that were chosen to perform the study, were implemented in 

software and included compression and decompression of the raw SAR data. Decompression 

is required since it needs to be executed at the ground station before SAR processing can be 

performed. Compressed data are only required for transmission to the ground station as 

explained in Section 1.3. Also, to determine how the quantisation errors, caused by the 

compression algorithm, are propagated into the image domain and thus degrade the quality 

of the SAR image, decompression is a required step in the process. 

 

The output of the process was the set of proposed metrics to evaluate a compression 

algorithm for raw SAR data. The metrics were also divided into two domains to test the 

algorithms at two stages within the SAR system. Evaluating an algorithm at two stages 

means one can distinguish between the data volume reduction capability of the algorithm 

and the image degradation caused by the algorithm. In order to choose a better suited 
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algorithm for the SAR system, the output was used to compare the results of the metrics and 

make an informed decision. Thus, it can be seen that decision making is required after the 

process has yielded the output. 

 

For this research it was ensured that certain factors were constrained, with the three 

algorithms being the only varying factor. The constant factors included that data from the 

same SAR system were used, implying the same characteristics of the system and the same 

SAR processing algorithm, as well as a fixed output bit rate for the compression algorithms. 

The research was conducted using real SAR data of three different scenes. Therefore, the 

outcome of the study is reliable and repeatable, using other real SAR data sets and 

compression algorithms. A similar study was conducted where the evaluation metrics results 

of two compression algorithms were also compared to determine the distortion caused by 

the encoding of SAR data [108]. The outcome of the research after analysing the output of 

the research process, is an indication of whether the proposed metrics are useful as 

performance indicators for raw SAR-data compression algorithms, and in turn addresses the 

lack of standardised, quantitative performance metrics in this field. 

4.3 METHOD 

4.3.1 Research instruments 

The data used in this study were acquired using the Council for Scientific and Industrial 

Research (CSIR), South Africa, and the Department of Science and Technology (DST) SAR 

system. The data sets were provided by the Radar Imaging and Fusion Research Group of 

the CSIR. The specifications of the SAR system are summarised in Table 4.1. 

 

For the first flight tests, which took place in June 2017, the system operated as a fully 

polarised, pulsed radar at a single frequency, namely C-band, and a bandwidth of 200 MHz. 

The specific data sets used in this study were measured on day two of the first flight tests 

during which only the linear, horizontally transmitting, horizontally receiving (HH) 
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polarisation mode was used to image the scenes. In the interim the system has been upgraded 

to operate as a frequency-modulated continuous-wave (FMCW) radar, with a second 

bandwidth option of 600 MHz. 

 

The SAR processing algorithm used in this study is a modified, one-dimensional time 

domain correlation (TDC) algorithm. The modified algorithm was developed in-house by 

the Radar Imaging and Fusion Research Group of the CSIR. The TDC algorithm 

traditionally operates by performing matched filtering via a two-dimensional correlation 

[109]-[111]. For the in-house implementation, the algorithm performs range compression of 

the data first, followed by an optimised azimuth compression implementation. This 

modification of the traditional TDC algorithm was implemented to yield faster results since 

the TDC algorithm is known to be computationally expensive [111]. TDC is a motion 

compensation SAR processing algorithm, widely used for high range resolution SAR 

systems due to its accuracy in focusing the images and wide unambiguous extent [110], 

[111]. 

 

Table 4.1 CSIR DST SAR system characteristics. 

Parameter Specification 

Platform  Airborne 

Operating mode Stripmap 

Operating Frequency C-band 

RF Bandwidth 200 MHz 

Polarisation HH 

Transmission Pulsed  

Quantisation 14-bit I,  

14-bit Q 

Scenes Rural,  

Mine Setting,  

Peri-urban 
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All algorithms, processing, evaluation, and analysis discussed in Subsection 4.3.3 were 

implemented in MATLAB version 8.6 (R2015b), on a Microsoft Windows 10 operating 

system. The Signal Processing Toolbox (version 7.1) and the Statistics and Machine 

Learning Toolbox (version 10.1) were also used in this study. It is important to note that all 

numerical values in this study were represented as double-precision floating-point format, 

which is MATLAB’s default format. 

4.3.2 Data 

In industry, data of Level 0, Level 1, Level 2, Level 3 and Level 4 are generally produced 

by SAR systems, depending on the processing and corrections applied to the data [31], [112]. 

A definition of the product types relevant to this study is given below. 

 Level 0 SAR products consist of the raw SAR data before any processing. Level 0 

products are divided into four product types which include standard products, 

calibration products, noise products and annotation products [112]. 

 Level 1 SAR data are focused data, after performing SAR processing as well as other 

advanced processing steps, and the output is known as single-look complex (SLC) 

data [31], [112]. All Level 1 products are geo-referenced and time stamped with zero 

Doppler time at the centre of the scene. The SAR data are transformed from Level 0 

data to Level 1A data by applying a SAR processing algorithm (two-dimensional 

matched filtering of the data). The data are then transformed to Level 1B data by a 

processor that corrects the radiometric and geometric errors in the Level 1A output 

using the Level 0 calibration data products [31]. Level 1 data are the most requested 

type of data by users and also widely available. Level 1 products are the baseline 

engineering product from which higher level products are derived [112]. 

 

The data sets that were required for this study are of the type: Level 0 standard products, 

which are the received echoes. Level 0 data were required since the compression of raw SAR 

data was part of the topic being investigated in this study. Level 1 data were however 

produced in this study by applying SAR processing to the Level 0 data, as part of the research 

design. 
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The Level 0 data sets used include three measured sets of different scene types. The 

flightpath for the SAR mission covered areas in and around Pretoria, South Africa. Thus, the 

data represent different terrains which include residential, natural and agricultural areas and 

can also be classified as low-urban to mid-urban data. The manner in which the level of 

urbanisation was assigned to each data set, is explained in Chapter 6. Different terrains 

represent different reflectivity, and in essence, different distributions [67]. This had to be 

taken into account when the compression algorithms that would be suitable for this SAR 

system, were chosen. 

4.3.3 Analysis techniques 

In this research the data were analysed at various stages. From Section 2.5 it is evident that 

deviations of the raw I and Q components occur in practical data. Thus, the specific data set 

under investigation needed to be statistically analysed to establish the severity of the 

deviation from a standard Gaussian distribution. Knowing the distribution of the raw data 

aided in choosing the compression algorithms that would be suitable for the application of 

the SAR system, since some of the algorithms are known to exploit the characteristics of the 

distribution. These algorithms were implemented and then used for the comparative analysis. 

 

The proposed metrics were evaluated in two domains, where different levels of SAR data 

products are present, called the data domain and the image domain respectively [62], [89], 

[108]. By evaluating an algorithm at two stages, one can gain insights into the data volume 

reduction capability of the algorithm, the cause and severity of the digitisation errors 

introduced, and how these errors are propagated into the image domain; where image 

degradation might affect the outcome of the SAR mission [62]. The computational 

complexity of each algorithm was also determined to aid in choosing a low complexity 

algorithm, suitable for onboard compression. 

 

Certain factors had to be kept constant in order to execute the research in a reliable manner, 

without varying factors that could cause inconsistencies between the results being compared. 
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A fixed compression ratio was chosen for both compression algorithms, and the same data 

sets were used for both algorithms. This was to ensure that the metric results could be 

compared, and that the only varying factor, being the compression algorithms, may influence 

the outcome. 

 

After implementing the algorithms, the compression and decompression steps, the first set 

of proposed metrics was evaluated to determine the effect that each compression algorithm 

had on the raw data. This evaluation took place in the data domain, before any SAR 

processing had been performed, and thus, it was Level 0 SAR data being analysed. This 

stage of evaluation required both the raw, uncompressed data and the decompressed data as 

input. Thereafter, the uncompressed data and the decompressed data were processed to yield 

the SAR images to be compared. After SAR processing, the evaluation now took place in 

the image domain. The SLC products (Level 1 data) of both compression algorithms and the 

uncompressed data were analysed to evaluate the second set of proposed metrics. These 

metrics determine the quality degradation of the SAR image of the uncompressed data 

caused by each compression algorithm. The method that was followed to investigate the 

validity of the proposed metrics is illustrated in Figure 4.1. The image fusion domain was 

added to the flow diagram for completeness; however, the fusion domain metrics were not 

evaluated in this study. This limitation is further discussed in the next subsection. 

4.3.4 Limitations and scope 

The designed method has limitations, since the study had to be limited to adhere to time and 

resource constraints. For this study, only measured data from one SAR system were used. 
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This SAR system is an airborne system, while most of the literature on the compression of 

raw SAR data considers spaceborne SAR systems. Since the spatial resolution of a SAR 

system is independent of platform altitude, the resolution capabilities for airborne and 

spaceborne platforms do not differ [35], [113]. However, variations in the look/incidence 

angle, and the look direction, play a major role in the amount of received energy [113]. 

Generally, these differences can be quite significant between airborne and spaceborne 

 

Figure 4.1 Method flow diagram. Adapted from [108]. 
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platforms [113]. However, using appropriate SAR processing algorithms, with features 

beneficial to the platform type, can render the differences irrelevant to the outcome. These 

differences do also not invalidate the use of the chosen compression algorithms, since the 

algorithms can be applied to raw data that follow an assumed distribution, irrespective of the 

platform type. A simple measure of computational complexity for each algorithm was 

sufficient in comparing the complexity of the three algorithms. 

 

For the SAR system used in this study, a single image formation process was implemented. 

Therefore, the effect of different SAR processing algorithms, as well as whether a 

compression algorithm has an effect on the SAR processing required after compression has 

been implemented, was not investigated in this study. 

 

The study was limited to the implementation of three compression algorithms, which was 

sufficient, since a comparison study could be performed as was required to evaluate the 

validity of the proposed evaluation metrics. All of the algorithms utilise the block adaptive 

quantiser (BAQ) as the basis, with two algorithms operating in the time domain and the other 

in the frequency domain. Although this seems like a limiting factor, using the BAQ is 

beneficial since it remains the basis algorithm for compressing raw SAR data [5], [34]. These 

algorithms are thus solutions to the generic problem of compressing raw SAR data on board 

a modern SAR platform. The chosen compression algorithms were not implemented on a 

real-time embedded platform, since the software implementation was adequate for the 

purpose of the study. A software implementation produced all the required outputs for this 

study: the metrics could be evaluated and the results for both algorithms compared to make 

an informed decision on a better suited solution - without requiring hardware 

implementation. This also means that the hardware and memory requirements of the 

algorithms were not investigated in this study, but would definitely be a requirement before 

implementing an algorithm on board a platform. 

 

Since a lot of compression algorithms for raw SAR data exploit the statistical characteristics 

of the raw data, the quality of the results may not be repeatable and is associated with the 
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data sets used in this study. Thus, applying the method to a different data set, of which the 

statistical characteristics differ immensely from the assumed characteristics in this study, 

may not render results of the same quality. The characteristics of another data set can differ 

due to a lot of factors which include: the scene type and the type of clutter returns, the 

operating frequency of the SAR sensor, platform type, etc. [7], [36], [39]. All of these factors 

may have an influence on the quality of the results, but in general, the variations can be 

rectified by carefully selecting a suitable SAR processing algorithm or by adding high-level 

processing steps [39]. 

 

It is also important to note that this study was limited to metrics in the data and image 

domains only, and does not include metrics for the data fusion domain. Since the output of 

the used SAR system was only SAR images, it was reasonable to only evaluate metrics for 

the applicable domains. 1Since data fusion is an important application receiving a lot of 

attention in the literature, it is added to the future work. 

 

The scope of this study only considers the compression of raw SAR data, and not the 

compression of data at any other stage of the SAR system. Since the onboard compression 

of raw data is required in modern SAR systems, this was a feasible approach. Thus, the 

compression of SAR images was not investigated in this study, although this approach has 

also received a lot of attention in the literature. 

 

Although the method has limitations, these limitations do not render the outcome of the study 

insignificant or irrelevant. The results obtained are reliable and contribute to the scientific 

community; and further, less delineated research problems can be investigated in future 

work. 

 

 

 

 

1 See Chapter 8 for future work. 
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4.4 CHAPTER SUMMARY 

In Section 4.2, the overall design of the research, which was used to evaluate the validity of 

the proposed metrics for the performance evaluation of compression algorithms for raw SAR 

data, was discussed. The chosen research design was to perform a comparative analysis to 

test the proposed metrics. In Section 4.3, the process setup, which includes the analysis 

techniques and the reliability of the data used, was fully explained. The limitations of the 

proposed method were also discussed in this section. It can be concluded that although 

limitations for the study exist, it does not render the outcome of the research insignificant or 

trivial to the scientific community. 

 



 

 

CHAPTER 5 METRICS FOR THE 

COMPRESSION OF RAW SAR 

DATA 

5.1 CHAPTER OVERVIEW 

In this chapter the quantitative performance metrics, to be used when comparing different 

compression algorithms for raw SAR data, are established. Thereafter, the use of these 

metrics to determine the performance of a compression algorithm needs to be validated. As 

explained in Subsection 4.3.3, the proposed metrics are divided into two sets. These sets 

were evaluated in the first two domains when producing SAR outputs, namely the data and 

image domains. Therefore, the evaluation metrics for the data and image domains are defined 

in Section 5.2 and Section 5.3, respectively. It is important to note that the proposed metrics 

are to be used during the design phase of a SAR system, when a compression algorithm for 

implementation on board the platform needs to be chosen. Since different SAR applications 

have different quality and performance requirements, the metrics of importance for some 

well-known SAR technologies and applications are summarised in Section 5.4. The content 

covered in this chapter has been accepted for publication in the Institution of Engineering 

and Technology (IET) Radar, Sonar and Navigation (RSN) journal [32]. 

5.2 DATA-DOMAIN METRICS 

The metrics that can be used to evaluate the efficiency of a compression algorithm in the 

data domain, are established below. As can be seen in Figure 4.1, these metrics are evaluated 

after decompressing the compressed data, except for the compression ratio (CR) which is 
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computed directly after compressing the raw data. These metrics are used to determine the 

performance of the compression algorithm and the associated losses or errors it induces in 

the raw data samples. In some of the literature on raw SAR compression algorithms, the only 

metric used in this domain is the CR (e.g. [22], [83], [88]). Although compression ratio is an 

important metric, as it determines the data reduction, other metrics that evaluate the losses 

or errors associated with an algorithm are useful when investigating different compression 

algorithms. Some studies in the field of raw SAR data compression evaluate the signal-to-

quantisation noise ratio (SQNR) in the data domain since it is the most widely used metric 

to measure the performance of a quantiser [26], [30], [89]. The effects that quantisation has 

on the image domain results are not considered in the data domain since SAR processing 

first needs to be performed. The following metrics were suggested to thoroughly evaluate 

the compression algorithm in the data domain. 

5.2.1 Data reduction measure 

 Compression Ratio (CR) 

The compression ratio, CR, is defined as [65] 

 

CR = 
Nor

Ncom

, (5.1) 

 

where Nor is the number of bits of the original data, and Ncom is the number of bits of the 

compressed data. The CR indicates how efficiently the compression algorithm has reduced 

the data volume of the original data. 

5.2.2 Statistical parameters 

Analysing the statistical parameters of each data set, with and without compression applied, 

can highlight changes that occurred in the statistical characteristics of the data due to the 

compression [62], [108]. A significant change in the statistical parameters in this domain 

means the compression algorithm was not as effective as it ideally could have been, since it 

corrupted the statistics of the original data. 
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Note that each metric was evaluated for the uncompressed and decompressed data sets to 

compare the results. Also note that all statistical parameters, except the dynamic range, were 

computed for both the magnitude and phase components of the complex data. The magnitude 

and phase components were used for the evaluation, since these components are important 

to form the outputs of SAR systems. The measured complex values are combined through 

SAR signal processing to form the Level 1 SAR product, while the phase is also important 

to produce higher level products, as discussed in Sections 2.3 and 2.4. For example, single-

look complex (SLC) images use only the magnitude component, while for interferometric 

SAR (InSAR) the phase component is important. (See Section 2.4) 

 

 Dynamic Range (DR) 

The dynamic range, DR, is the ratio between the largest and smallest values that the data can 

represent and is defined as  

 

𝐷𝑅 = 20 log
10

(
𝑉𝑚𝑎𝑥 

𝑉𝑚𝑖𝑛
) , (5.2) 

 

where Vmax is the maximum value of the data, and Vmin is the minimum value of the data. 

The dynamic range is computed using the magnitude component, and not the phase 

component. A reduction in the dynamic range leads to an improved compression ratio as 

fewer bits are required to represent the data. 

 

 Mean (First order statistic) 

The mean, μ, is defined as [61]  

 

 μ = 
∑ Xi

N
i=1

N
, (5.3) 

 

where Xi is the signal sample and N is the number of samples. 
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 Standard Deviation (Second order statistic) 

 The standard deviation, σ, is a measure of the variation of the data from the mean and 

is defined as [61]  

 

𝜎 = √
∑ (Xi-μ)2N

i=1

N
. (5.4) 

 

 Skewness (Third order statistic) 

The skewness, s, is a measure of how symmetrical the data are around the mean and is 

defined as [61]  

 

𝑠 =  

1
N

∑ (Xi-μ)3N
i=1

(
1
N

∑ (Xi-μ)2N
i=1 )

3/2
. (5.5) 

 

Certain compression algorithms, like the BAQ, exploit the fact that the I and Q components 

of raw SAR data follow a Gaussian distribution [60], [65]. In turn, this means that the 

amplitude component follows a Rayleigh distribution, while the phase component is 

uniformly distributed between –π and π [64]. The skewness of a Rayleigh distribution and a 

uniform distribution are 0.63 and 0, respectively. Therefore, these values for the skewness 

can be used as a measure of how well the data components follow the applicable 

distributions. Skewness can thus be used to determine how much the compression algorithm 

caused the data to deviate from the distributions of the uncompressed data components. 

 

 Kurtosis (Fourth order statistic) 

The kurtosis, k, is a measure of how outlier-prone a distribution is or how heavy the tails of 

the distribution are and is defined as [61]  
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𝑘 = 

1
N

∑ (Xi-μ)4N
i=1

(
1
N

∑ (Xi-μ)2N
i=1 )

2
. (5.6) 

 

Again, the kurtosis is an indication of how well the data follows a specific distribution by 

investigating the heaviness of the tails. The kurtosis of a Rayleigh distribution and a uniform 

distribution are 3.245 and 1.8, respectively. The kurtosis can therefore be used to determine 

whether the compression algorithm caused the data to deviate more from the applicable 

distribution compared to the uncompressed data. 

 

 Entropy 

The entropy, H, is a measure of the compressibility of the data or the randomness of the data 

and is defined as [61], [114]  

 

𝐻 = - ∑ p(
N

i=1

Xi)∙ log
2
(p(Xi)) , (5.7) 

 

where p(X
i
) is the probability of occurrence of Xi, a discrete random variable. A high entropy 

value means the data are difficult to compress, while a lower value indicates that the data 

can easily be compressed to a smaller size. The entropy after compressing and 

decompressing the data should be similar to the entropy of the uncompressed data. 

5.2.3 Data histograms 

The data histograms include the distributions of the in-phase (I), quadrature (Q), magnitude 

and phase components. The bin limits, binning method, and the normalisation scheme were 

specified for the standard histogram MATLAB function to ensure that the bins are equally 

spaced and all the values are well represented. 

 The bin limits are specified as 3σ on the positive and negative side of the zero mean, 

as this represents 99.7 % of the data.  
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 The number of bins is computed using Scott’s rule. Scott’s rule is optimal if the data 

can be approximated as being normally distributed; therefore, it is a well suited 

algorithm for the raw SAR data. 

 The histograms in this study were normalised to the probability of occurrence of each 

value. 

By comparing the histograms before and after compression, the changes in the 

probability distribution caused by the compression algorithm can be visualised [62], 

[108]. 

5.2.4 Error measures 

In this subsection, the amplitude and phase distortions of the complex SAR data after 

decompression are investigated. In essence, the errors and distortions caused by the quantiser 

are being investigated here. Take note of the definition of the variables being used in this 

subsection: g(x,y) is the pixels of the uncompressed data, f(x,y) is the pixels of the 

decompressed data, and M and N are the number of rows and columns of the data, 

respectively. 

 

 Mean Square Error (MSE) 

The MSE is a measure of the performance of the quantiser and gives the total absolute 

encoding error between the uncompressed and decompressed data set [26], [83], [108] and 

can be computed as 

 

𝑀𝑆𝐸 = 
1

M.N
∑ ∑(g(x,y)-f(x,y))2

N

y=1

M

x=1

. (5.8) 

 

The MSE is computed using the magnitude components of the respective complex SAR data 

sets. The problem with using only the MSE to represent the distortion is that it depends 

strongly on the intensity scaling. Consequently, the MSE of different data sets can only be 
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compared after the MSE values have been normalised. Therefore, the signal-to-quantisation-

noise ratio should also be evaluated. 

 

 Mean Phase Error (MPE) 

In SAR processing, the phase information is used to focus the SAR image, and therefore, 

knowing the phase error after decompression gives an indication of the focusing error that 

will be present in the final image [108]. The MPE [25], [26], [89] is computed for the phase 

component of the data using the following equation 

 

𝑀𝑃𝐸 = 
1

M.N
∑ ∑|θ(g(x,y))-θ(f(x,y))|

N

y=1

M

x=1

, (5.9) 

 

where θ is the phase component of the complex SAR data of both sets being evaluated. 

 

 Signal-to-Quantisation-Noise Ratio (SQNR) 

The SQNR is an important parameter for image quality analysis since it is a measure of the 

signal-to-noise ratio after the compression and decompression of the data [26], [83], [89], 

[108]. SQNR is used to measure the average amplitude distortion of the complex SAR data 

after compression and decompression have been implemented [25] and can be computed as 

 

𝑆𝑄𝑁𝑅 = 10 log
10

[
∑ ∑ (g(x,y))

2N
y=1

M
x=1

∑ ∑ (g(x,y)-f(x,y))2N
y=1

M
x=1

] . (5.10) 

 

The SQNR avoids the problem mentioned for the MSE by normalising the MSE. Therefore, 

both metrics are of use when investigating the quantisation effects caused by SAR 

compression algorithms. 
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5.3 IMAGE-DOMAIN METRICS 

For conventional compression algorithms, the distortion is measured between the original 

and reconstructed data. However, for the compression of raw SAR data, the distortion is also 

measured in the image domain, after SAR processing [22]. Thus, the distortion is measured 

between the SLC image of the uncompressed data and the SLC image of the decompressed 

data [22]. However, only measuring distortion for the evaluation of compression algorithms 

for raw SAR data are not sufficient; since SAR has numerous outputs and applications that 

have different quality requirements. In most of the literature where compression algorithms 

for raw SAR data are evaluated, the only metrics used in the image domain are the signal-

to-distortion noise ratio (SDNR) and/or the impulse response function (IRF) [25], [29], [82], 

[87], [114]. Although these are important metrics as they are strongly affected by 

compression algorithms, other metrics that evaluate factors other than visual quality should 

also be used to obtain a more complete quantification of the performance for a specific SAR 

application. The metrics to evaluate the effects of a compression algorithm in the image 

domain, are described below. These metrics also provide better validation than the data-

domain metrics since they evaluate the quality of the SAR Level 1 output. As can be seen 

from Figure 4.1, this set of metrics is evaluated after processing the uncompressed data and 

the decompressed data to form the SLC SAR images that will be compared. The following 

metrics are proposed for image domain evaluation. 

5.3.1 Statistical parameters 

Higher order statistics can be used to characterise the distributions that the components of a 

data set follow. The statistical parameters of each data set are computed in the image domain 

to highlight the changes that occurred in the statistical characteristics of the SLC image [29], 

[62], [108]. Note that each metric is applied to the SAR image generated from the 

uncompressed data and the SAR image generated from the data after decompressing the 

compressed data to compare the results. For the equations of the metrics see Equations (5.2) 

to (5.6) in Section 5.2. Also note that all statistical parameters, except the dynamic range, 

are computed using the magnitude and phase components of the complex image data. Note 
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that the SLC image of the uncompressed data will act as the reference image for all 

comparisons. 

 Dynamic Range 

The dynamic range is computed using the magnitude component of the complex image data. 

There is a close correlation between the dynamic range and the contrast of the image; 

therefore, the change in this parameter can be compared to the change in the contrast ratio 

of the SAR images with and without compression. It should be noted that when the quality 

of an image is being evaluated, the dynamic range is generally seen as one of the image 

quality metrics. However, in this study it is evaluated as one of the statistical parameters to 

correspond with the statistical parameters of the data domain. 

 

 Mean (First order statistic) 

The compression algorithm should not drastically change the mean since the values are 

assumed to be quantized with only minor losses. The change in the mean should therefore 

be significantly smaller than the mean value of the uncompressed data. A change in the mean 

would introduce a bias in the final image, which would make the images more difficult to 

compare visually. However, if no clipping occurs (dynamic range is retained), the bias can 

be estimated and removed from the image. A large change in the mean would also indicate 

that the image exposure has been distorted by the compression algorithm, resulting in a loss 

of detail in the bright and/or dark regions of the image. 

 

 Standard Deviation (Second order statistic) 

Again, the compression algorithm is assumed to only quantize the data with minor losses. 

Therefore, the standard deviation of the image with the compression applied should be 

comparable with that of the image with no compression applied. A large change in the 

standard deviation would mean that the compression algorithm has increased the speckle 

content of the reference SAR image. Certain pixels are represented with a brighter or darker 

colour compared to the colour of the pixels in the reference image when the standard 

deviation changes. In this case the contrast of the SAR image will be affected. 
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 Skewness and Kurtosis (Third- and fourth-order statistics) 

These parameters can be used to determine how well the algorithm retains the statistical 

distribution of the uncompressed SAR data and thus, how much the statistical analysis of the 

SAR images generated from the decompressed data can be trusted. 

 

 Differential Entropy 

Since the data in the image domain, after SAR processing, resemble a continuous random 

variable, differential entropy (or continuous entropy) needs to be calculated instead of 

entropy [114]. The entropy of a continuous random variable is infinite, since an infinite 

number of binary digits is required to fully represent the data. It is important to note that this 

parameter does not have the same physical meaning as entropy, calculated in the data 

domain. The differential entropy is calculated by replacing the summation in Equation (5.7) 

with an integral [114]. The differential entropy of the SAR image formed from the 

decompressed data should be similar to that of the SAR image formed from the 

uncompressed data, and can thus be used to verify this condition. 

5.3.2 Image quality measures 

Note that all the metrics in this subsection are computed for the SAR image formed from the 

uncompressed data, and for the SAR image formed from the decompressed data so that the 

results can be compared.  

 

 Impulse Response Function (IRF) 

A point target can be considered an impulse input to a SAR system. The point spread 

function (PSF) is equivalent to the IRF, since a SAR system can be modelled as a two-

dimensional linear system [116], [117]. Generally, the PSF of an image is used to evaluate 

the performance or response of an imaging system like a SAR system [118], but in this case, 

the PSF or impulse response is used to determine the quality of a compression algorithm, as 

no other system changes are made. A good compression algorithm should not distort the IRF 

as this results in a loss of fidelity in the SAR images.  
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Illumination of a specifically designed scene is required to obtain the point target 

characteristics of a SAR system [119], [120]. The following elements are required within the 

scene: 

1. point-like reflectors, and 

2. reflectors positioned at the boundary between high and low backscatter areas. 

Since only the data sets from the SAR system are available, the scene could not be set up 

with large point-like reflectors to measure the IRF. Although mission data generally have a 

scarcity of individual high signal-to-noise point targets in homogeneous areas of low 

reflectivity [120], [121], suitable geographical regions had to be identified from a real data 

set. See Section 7.4 for more information about the data set used in this study to evaluate the 

IRF. 

 

The two metrics that are evaluated from the IRF are listed below [30], [83], [88]: 

1. 3 dB impulse response width (IRW) in range and azimuth directions, which are 

related to the spatial resolutions. Spatial resolution, SR, is the ability of a system to 

distinguish between two adjacent point scatterers and can be computed as 

 

𝑆𝑅 = 

 

𝑁−3𝑑𝐵

ρ
pixel

, (5.11) 

 

where N-3dB is the number of pixels between the -3 dB points, and ρ
pixel

 is the pixel 

size in the relevant direction [121]. 

 

2. Peak-to-side lobe ratio (PSLR) in the range and azimuth directions. PSLR provides 

an indication of whether the side lobe of a scatterer can mask an adjacent scatterer. 

It can be calculated as 

 

𝑃𝑆𝐿𝑅 = 20 log
10

(
IRFside

IRFmain

) , (5.12) 
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where IRFside is the peak value of the first side lobe and IRFmain is the peak value of 

the main lobe of the IRF [121].  

 

 Image Contrast (IC) 

The image contrast is a metric to describe the quality of a SAR image [122], with a high 

image contrast ratio implying a crisp image and a low image contrast ratio suggesting a 

washed-out image [117]. IC is the ratio of the average intensity of a distributed clutter 

background to the average intensity of a no-return background [117] and can be computed 

as [65], 

 

IC = 
σimage

μ
image

. 
(5.13) 

 

The dynamic range and the IC are related. However, both metrics are useful since the 

dynamic range only considers the single highest and single lowest values of the image data, 

while the IC uses the mean and standard deviation, which are more representative of the 

variation of the dynamic range over the entire image. 

 

 Global Contrast Factor (GCF) 

GCF is a new approach in the field of image processing with applications in areas like 

rendering, tone mapping, volume visualization, and lighting design [122]. This metric has 

been added to the conventional metrics found in SAR literature, since it addresses the 

limitation of only using the darkest and brightest regions of an image to compute the IC. The 

GCF is indicative of the overall contrast of an image and is computed from the local contrasts 

of an image at various resolutions [122]. Local contrast ratio is the contrast ratio of any small 

part of an image, and the GCF is defined as the weighted sum of the local contrasts of a 

range of smaller image sizes. 

 

Human visual experiments can be used to construct a GCF computation procedure which is 

indicative of human image perception. SAR images are not always interpreted by human 
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operators, so the weighting factors for human perception are not always relevant. Therefore, 

the method in [122] was adjusted to determine the GCF of the grayscale SAR images without 

applying the human perception adjustments. The steps below were followed. 

1. Compute the linear luminance. 

The linear luminance value for each pixel is computed by applying gamma correction to the 

image and scaling the result to be within the [0; 1] range. The linear luminance for the image 

is defined as 

 

𝑙 = (
k

2
n
-1

) γ, (5.14) 

 

where γ = 2.2 is the correction factor, k ϵ {0, 1, …, 2
n
-1} is the original pixel value, and n is 

the number of bits of the SAR image data [122]. 

 

2. Compute the local contrast. 

The local contrast for pixel i, lci, is computed as the average magnitude of the difference 

between the pixel and its four neighbouring pixels, 

 

lci = 
|li-li-1|+|li-li+1|+|li-li-w|+|li-li+w|

4
, (5.15) 

 

where the image has dimensions of w × h. Note that for the corner pixels or pixels on the 

edges of the image, only the available neighbouring pixels are used in the computation.  

 

3. Compute the average local contrast, LCr, for the current resolution, r, 

 

𝐿𝐶𝑟 = 
1

w×h
∑ lci

w×h

i=1

. (5.16) 

 

Repeat step 1 to 3 for a number of resolutions of, for example [1, 2, 4, 8, …, 2N] times the 

original resolution. A coarser image is obtained in each execution by taking the average of 
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4 pixels as the new pixel to halve the dimensions of the original image in both directions. 

This process continues until the coarsest resolution is reached. The number of chosen 

resolutions is defined as N. 

 

4. Compute the global contrast factor as the average of the local contrasts for all 

resolutions. It is assumed that the system interpreting the SAR images is equally 

sensitive to changes at various frequencies and therefore a weighting function is not 

required to compute the global contrast, in contrast to the requirements in [122]. 

 

𝐺𝐶𝐹 = 
1

N
∑ LCr

N

i=1

. (5.17) 

 

An image with a high GCF is variation-rich, while an image with a low GCF appears uniform 

with less information [122]. 

5.3.3 Image fidelity measures 

Image fidelity measures evaluate the level of exactness with which the original SAR image 

is reproduced. Therefore, these measures are an important measure of the quality of a 

compression algorithm. The different metrics are discussed below. Take note of the 

definition of the variables used in this subsection: g(x,y) is the magnitude component of the 

uncompressed SLC image data, f(x,y) is the magnitude component of the decompressed SLC 

image data, and M and N are the number of rows and columns of the image, respectively. 

 

 Mean Square Error (MSE) and Mean Phase Error (MPE) 

The MSE and MPE in this domain [22], [26] are both pixel by pixel measures of the change 

between the pixel values in the SAR image formed from the uncompressed data, and the 

SAR image formed from the decompressed data. The MSE is computed for the magnitude 

component of the SAR images, while the MPE is computed for the phase component of the 

SAR images to measure the amplitude and phase distortions, respectively [25]. An important 

fact is that the MSE does not indicate whether the error is due to a large number of small 
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errors, or whether it is due to a few large errors [108], [117]. It also depends strongly on the 

image intensity scaling. Therefore, the signal-to-distortion-noise ratio is also evaluated as 

part of this study. According to [117], the MSE is the most widely used image fidelity 

measure in SAR compression studies since it is mathematically and computationally simple 

to evaluate. To compute the MSE see Equation (5.8) [65], [117]. The MPE can be computed 

using Equation (5.9), where θ is the phase components of the two SLC images being 

compared. 

 

 Signal-to-Distortion Noise Ratio (SDNR) 

SDNR [25], [29], [30], [62], [65] is a more global measure of the change and thus addresses 

the limitation mentioned for the MSE by normalising the MSE. It is also mathematically and 

computationally simple and therefore widely used in the literature [117]. To compute the 

SDNR see Equation (5.10) [65], [117]. 

 

 Error Images 

The error image [65], [108] can be computed as  

 

e(x,y) = |g(x,y)-f(x,y)|. (5.18) 

 

The error image can be computed for the magnitude and phase of the complex images in 

order to investigate both components. This metric can be used to visualise some of the 

corruptions that have occurred in the SAR images formed. It is important to note that many 

of the corruptions cannot be easily visualised by the human perceptual system and therefore, 

this metric is not able to fully represent the degradation that may have occurred. 

5.4 SAR TECHNOLOGIES AND THEIR METRICS OF IMPORTANCE  

In Section 2.4, well-known SAR technologies and their applications were discussed. Single 

frequency, single polarisation SAR systems produce a SLC image, with or without further 

corrections. UWB SAR has applications in medical imaging and the detection of concealed 
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objects due to its high resolution and low operating frequencies. Since the phase of a single 

SAR image is not exploitable, InSAR and PolSAR use the phase difference between multiple 

images for various advanced SAR applications. Image fusion is a means of gaining 

complementary information by either combining data from different imaging systems, or by 

combining data from SAR systems with different operating characteristics. In this way, the 

advantages of each imaging system are exploited to produce unique information and improve 

interpretation. Since these technologies use different components of the SAR data, different 

Table 5.1 Summary of important metrics for well-known SAR technologies and applications. 

Adapted from [83], © 1995 IEEE. 

SAR Technology Primary Application Main requirement(s) Important 

Metric(s) 

Single frequency, 

single polarisation 

SAR 

Image classification - High image contrast  - Statistical 

parameters 

- IC and GCF 

Detection of man-made 

targets 

- High sensitivity to point 

targets 

- Magnitude component 

- Impulse 

response 

function: 

o 3 dB IRW 

o PSLR 

- IC and GCF 

- MSE 

Global monitoring 

(Change detection) 

- Noise should not mask 

changes 

- SDNR 

UWB SAR Imaging through 

unconventional mediums 

- High radiometric 

resolution 

- SDNR 

 

InSAR Surface topography - Very high phase 

accuracy 

- Phase error: 

o MPE 

o Error 

Image of 

phase 

Measurement of 

displacements 

PolSAR Change detection and 

feature tracking 

- High phase accuracy - Phase error: 

o MPE 

o Error 

Image of 

phase 

Image Fusion Fusion of Visible-Infrared 

(VIR) sensor data and 

SAR images 

- Geometric and 

radiometric accuracy 

- SDNR 

Fusion of multi-frequency 

or multi-temporal SAR 

images 
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metrics will be of importance for each technology when compression has to be implemented 

on board the platform. The important metrics for each technology are discussed below and 

also summarised in Table 5.1. It is important to note that all data-domain metrics are of 

importance for every SAR technology, thus emphasis will be placed on the image-domain 

metrics that need to be preserved in each case. 

 

5.4.1 Single frequency, single polarisation basic SAR systems 

For image classification automatic target recognition (ATR) is increasingly being used as it 

is a time-consuming process for a human operator to search through all the data [42]. The 

important metrics for these algorithms are the mean, variance and entropy of the SAR 

images, since these metrics are used to divide the image into homogeneity categories [41]. 

Furthermore, high image contrast is required for initial detection of areas of change within 

an image, so the IC and GCF are also important metrics for this application. 

 

The detection of man-made targets is mainly utilised in military systems and requires good 

resolution and geometric accuracy [42]. When detecting and classifying man-made targets 

in military applications, it is important that the estimated location of the target corresponds 

to the real location with only a minimal margin of error. To ensure that the location is 

accurate, the IRF must be preserved. As part of the detection of targets, the magnitude or 

modulus of the SAR image is calculated [2] and the phase information is of less importance 

for the output. This means that the magnitude component should be preserved as well as 

possible when investigating the compression of the raw SAR data for man-made target 

detection. This condition can be monitored by comparing all the error measures of the 

magnitude component which include the MSE and SDNR. 

 

Global monitoring is used for earth observation and the study of climate change where the 

global carbon cycle, the global energy/water cycle and other human activities are monitored 

[44]. The SAR system needs to be sensitive to small changes when monitoring a global cycle 

and thus, the radiometric resolution of the SAR system is an important factor. The 
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radiometric resolution of an imaging system is its ability to detect miniscule differences in 

the reflected energy. In order to preserve the radiometric resolution of a system, frequent 

calibrations are required [44]. A high SNR indicates that the signal level is greater than the 

noise level and therefore the noise does not mask any of the small changes that may appear 

in a scene. The metrics of importance for this application are the MSE and SDNR. 

5.4.2 Ultra-wideband (UWB) SAR systems 

UWB imaging utilises time or frequency domain techniques [45]. The frequency domain 

technique is widely applied for UWB imaging applications. This technique operates by 

performing a frequency sweep and only measuring one very narrow frequency which will 

achieve the highest possible dynamic range. The image quality depends strongly on the 

measurement accuracy and the dynamic range of the system [45]. For landmine detection, 

regions of interest are identified by measuring the amplitude difference between targets and 

the background noise [46]. To avoid a high number of false alarms, the noise in the system 

should be minimised. Therefore, dynamic range and SDNR are the metrics of importance 

and should be preserved when implementing a compression algorithm on board the platform. 

5.4.3 Interferometric SAR (InSAR) 

As previously mentioned, InSAR uses the phase difference between two SAR images 

acquired at two distinct times or from slightly different positions to measure changes to a 

specific surface [7], [42], [51]. With InSAR data it is possible to detect and measure 

miniscule path length differences, very small velocities and height differences with very high 

accuracy. This is due to the high accuracy of the range information derived from the phase 

of each pixel [5], [7], [42]. It is therefore evident that preserving the phase content is 

important for this application. The metrics of importance include the MPE and the error 

image of the phase component as it can provide a visual representation of the error between 

two SAR images. 
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5.4.4 Polarimetric SAR (PolSAR) 

PolSAR is an advanced imaging system where the radar transmits and receives multiple 

polarisations. PolSAR is highly suited for change detection and feature tracking applications 

[7], [123]. For these applications, the phase information of the SAR image is required [2], 

so it is important that the phase information be preserved when compressing the raw data. 

The metrics of importance include the phase MSE and the error image of the phase 

component as a visual representation of the error between two SAR images. 

5.4.5 Image fusion 

Image fusion has numerous applications which include topographic mapping, land-use 

mapping, disaster monitoring, ice and snow monitoring and other geological applications 

[53]. Image fusion improves the reliability of the results, extends the classification 

capabilities and provides robust operational performance [53].Three image fusion methods 

exist and they are performed at three different processing levels. Thus, fusion can take place 

at pixel level, feature level, or decision level [53], [57]. A prerequisite for image fusion is 

pre-processing the data [53], [57]. Pre-processing includes calibration, geocoding, 

registration, resampling to conform different images to be compatible, to only mention a few 

[53], [57]. All the sensor-specific corrections need to be performed before image fusion, 

since the contributions from the different sensors are indistinguishable after image fusion. 

For VIR data, it is important that radiometric distortions present in the imagery are corrected 

to ensure that the data sets are compatible. Speckle reduction is a critical pre-processing step 

when SAR imagery is used. 

 

Pixel-level methods are widely used since they are highly advantageous and easy to 

implement [57]. To avoid artefacts, consequently causing misinterpretation, in the results of 

pixel-based image fusion, geometric accuracy is critical [53]. Generally, the geometry and 

radiometry of the individual sensor outputs are optimised as much as possible, before fusion 

is applied [53]. An input image of low SNR is also known to cause a blurring effect in the 
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fused output [53]. Therefore, it is evident that the radiometry and SNR of the input images 

are of importance. Thus, in this study the SDNR would be the important metric to preserve. 

5.5 CHAPTER SUMMARY 

Despite the importance of being able to quantify the performance of SAR data-compression 

algorithms, there does not appear to be a widely-accepted set of metrics in the literature [28]. 

The problem is compounded by the fact that different publications on SAR-data compression 

often propose new metrics to emphasise the unique benefits of the proposed algorithms (e.g. 

[29] and [30]). Therefore, the metrics available in the literature have been reviewed to 

establish a standardised set of metrics that evaluate the algorithms in both the data and image 

domains. 

 

The evaluation metrics that will serve as a standardised set of metrics for the performance 

evaluation of raw SAR-data compression algorithms were established in this chapter. The 

majority of the metrics were taken from known SAR-data compression literature, except 

where it was mentioned that the metric was added from another field to address a limitation. 

The metrics were proposed as two sets to be evaluated in the first two important domains for 

SAR data production. Firstly, the data-domain metrics, established in Section 5.2, can be 

evaluated to determine the effects of the compression algorithm in the data domain. After 

SAR processing, another set of metrics, established in Section 5.3, can be evaluated to 

determine the degradation in the image domain. Here, the emphasis is on the quality of the 

SAR image that was produced from the data that had undergone compression on board the 

SAR platform. Finally, in Section 5.4 the SAR technologies discussed in Chapter 2, were 

revisited and the metrics of importance for each application were discussed. 

 



 

 

CHAPTER 6 IMPLEMENTATION OF SAR 

COMPRESSION ALGORITHMS 

6.1 CHAPTER OVERVIEW 

In Chapter 3 it was found that a careful assessment of the statistical properties of the data to 

be compressed, must be performed before an efficient compression algorithm can be chosen. 

In this way the chosen algorithm can exploit the data characteristics and thus achieve better 

performance. Therefore, the statistical characteristics of the data sets used in this study, are 

analysed in Section 6.2. Thereafter, the three SAR compression algorithms that were chosen 

to conduct the research explained in Chapter 4, are discussed. The compression algorithms 

include the block adaptive quantiser (BAQ), the fast Fourier transform BAQ (FFT-BAQ), 

and the flexible dynamic BAQ (FDBAQ), and are discussed in Subsections 6.3.1 to 6.3.3, 

respectively. The discussions of the algorithms are divided into the compression and 

decompression steps, while the computational complexity is also investigated. 

6.2 STATISTICAL ANALYSIS OF SAR DATA SETS 

The acquired data were stored as a raw binary format. This file type contains the data exactly 

as it was captured by the ADCs, without loss of quality and without compression. The raw 

file content was then converted to complex, double-precision, floating-point format to be 

processed in MATLAB. Thereafter, the data were downsampled in the slow time dimension, 

since a very high PRF was achieved during the flight tests. The downsampling increased the 

signal-to-noise ratio (SNR) by lowering the noise floor and also made the size of the data 

more manageable in a MATLAB environment. Although the SAR system is described as 
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having 14-bit quantisation in Subsection 4.3.1, the received echoes from the scene only fill 

about 9 of the lower bits. The remaining bits are the recorded leakage signal of the SAR 

system. 

 

The signal also had to be adjusted to ensure that discrete data are used for the research, since 

discrete ADC data are usually the input to raw SAR data compression algorithms. Thus, after 

the pre-processing required to remove the system artefacts present in this prototype SAR 

system, the data of each scene were discretised to 12 bit in-phase (I) and quadrature (Q) 

samples, respectively. 

 

As mentioned in Chapter 4, raw SAR data are the received echoes, without any SAR 

processing performed. The received echoes are sampled into I and Q components, and then 

digitised to the required bit rate by a uniform quantiser. Although the data used in this 

research are not directly from the uniform quantiser of the ADC, since pre-processing is 

performed, the data are still categorised as Level 0 data since no focusing of the data have 

occurred [31], [112]. 

 

Although it was concluded in SAR-data literature that the I and Q components can be 

assumed to follow a Gaussian distribution with zero mean [22], [25], [60], [62], [63], another 

consideration is the scene type and the level of urbanisation. This is important since a high 

level of urbanisation leads to higher levels of return and ultimately leads to a distribution 

with heavy tails [70]. In some cases, the data then follow other types of distributions and the 

Gaussian distribution assumptions, mentioned in Section 2.5, may cause severe image 

degradation after SAR processing. 

 

Terrain clutter is normally categorised as homogeneous speckle in SAR imagery, while 

cultural or man-made clutter can be a mixture of homogeneous and inhomogeneous speckle 

[70]. Natural terrain produces low average returns, while cultural clutter is responsible for 

strong, point-scatterer-like returns. In [70] data sets are categorised according to the cultural 

clutter coverage in the scene.  
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 Low urban data: scenes that typically consist of natural clutter with limited cultural 

clutter, covering only one-third or less of the scene. 

 Mid urban data: scenes that typically consist of some natural clutter as well as 

moderately urbanised areas, like a residential area, covering one-third to two-thirds 

of the scene. 

 High urban data: scenes that typically consist of dense residential areas or city 

capitals, with the cultural clutter covering two-thirds or more of the scene. 

 

Therefore, since different scene types were used in this study, the data sets were statistically 

analysed to determine their characteristics and whether a Gaussian probability distribution 

function (PDF) can be assumed. The data sets were also categorised as high, mid or low 

urban data, following the approach in [70]. As mentioned in Section 4.3, three data sets of 

different scenes were used in this study. The data sets are introduced in Table 6.1 and 

discussed in more detail in Subsections 6.2.1 to 6.2.3, respectively. 

 

Table 6.1 Information about data sets used. 

Data Set Number Scene Type Features 

1 Farm Vegetation, river, gravel roads 

2 Mine Different surface levels, piles, gravel roads 

3 Peri-urban Golf course, housing, dam 

 

For the current application, the compression problem can be simplified if the raw data can 

be assumed to follow a standard normal (Gaussian) distribution. Therefore, the distributions 

of the raw data of all three data sets were investigated. Various goodness-of-fit tests were 

executed in MATLAB. The tests that were implemented in MATLAB include the Chi-square 

goodness-of-fit test, the Jarque-Bera test, the one-sample Kolmogorov-Smirnov test, and the 

Lilliefors test. These tests were found to be too strict for the raw SAR data, since all of these 

tests rejected the null hypothesis that the data follow a standard normal distribution. 
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Therefore, the function allfitdist, written by Mike Sheppard1, was used to fit all valid 

parametric probability distributions to the data. In this way, the distributions that best fit the 

data could be identified. The function evaluates the Bayesian information criterion (BIC) 

and sorts the valid distributions according to this criterion. BIC [124] is a widely known 

statistical model selection criterion due to its computational simplicity and effective 

performance in many modelling selection or evaluation problems. BIC was derived to serve 

as an asymptotic approximation to a transformation of the Bayesian posterior probability of 

a candidate model. For large samples, the BIC favours the model that the data is most 

probable to follow. The computation of BIC is based on the empirical log-likelihood and 

therefore, does not require the specification of prior probability distributions. Thus, BIC is 

ideal for Bayesian applications where prior distributions are difficult to find. In a model 

selection application, the most plausible model is identified by the minimum value of BIC. 

Model selection based on BIC is advantageous since the BIC is known for its consistency. 

The results for the three data sets are illustrated in the form of PDFs as can be seen in Figure 

6.1. 

 

The results of the allfitdist function show that the normal distribution is not the best fit to the 

data. However, when comparing the values for the different parametric probability 

distributions fitted to the data, summarised in Table 6.2, it can be seen that the BIC value for 

the normal distribution is close to that of the distribution that fits the data best. The best fit 

seems to either be the t location-scale distribution or the logistic distribution. The 

t location-scale distribution has heavier tails, which means it is more prone to outliers than 

the normal distribution. The logistic distribution has longer tails and a higher kurtosis than 

the normal distribution. 

 

Despite the result that the normal distribution is not the best fit for the raw data, the 

assumption that the I and Q components of raw SAR data follow a Gaussian distribution is 

 

1 Copyright ©2012, Mike Sheppard 

All rights reserved. 
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made in SAR compression literature [22], [25], [60], [62], [63]. However, this assumption 

is valid since the number of elementary phasor contributions can be considered to be 

extremely large, therefore the I and Q components of the received signal are sums of a very 

large number of independent random variables [60], [125]. It then follows from the central 

limit theorem that these components are Gaussian with unknown variances [125]. To verify 

this assumption, the PDFs and cumulative distribution functions (CDFs) of the data sets were 

plotted. Statistical parameters, like the skewness and kurtosis were also used to assess the 

deviation of the distribution of the SAR data from a standard normal distribution. The 

validity of the assumption that the I and Q components of each data set are Gaussian 

distributed, is investigated in the subsections to follow. 

 

 

 (a) (b) 

 

 (c) 

 

Figure 6.1 PDFs of the three data sets with the three best distributions fitted to the data. (a) 

Data set 1. (b) Data set 2. (c) Data set 3. 
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Table 6.2 Summary of the BIC values of the distributions fitted to each data set. 

Data set 1 Data set 2 Data set 3 

Top five 

distributions 

BIC 

(×108) 

Top five 

distributions 

BIC 

(×108) 

Top five 

distributions 

BIC 

(×108) 

t Location-scale 1.3842 t Location-scale 1.4177 Logistic 1.4658 

Normal 1.3846 Logistic 1.4178 t Location-scale 1.4660 

Logistic 1.3861 Normal 1.4207 Normal 1.4710 

Generalised 

extreme value 

1.3950 Generalised 

extreme value 

1.4349 Generalised 

extreme value 

1.4886 

Extreme value 1.4210 Extreme value 1.4649 Extreme value 1.5183 

6.2.1 Data set 1: Rural scene 

The first data set is a farm with a river flowing through the area. Therefore, the data set was 

classified as low urban data since it consists of mostly natural clutter. The other statistical 

characteristics of the set are summarised in Table 6.3. 

 

Table 6.3 Characteristics of data set 1. 

Parameter Value 

Quantisation 12 bits 

Level of urbanisation Low urban 

Mean I: -0.0368 Q: -0.6599 

Variance I: 951.4096 Q: 942.1072 

Skewness I: -0.0043 Q: -0.0091 

Kurtosis I: 3.27 Q: 3.26 

Entropy I: 10.31 bits Q: 10.31 bits 

In raw SAR data compression literature, it is stated that raw SAR data are difficult to 

compress and pose unique compression challenges due to the high entropy and dynamic 

range of the raw data [31], [83]. 
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The statistical parameters in Table 6.3 confirm these characteristics for the raw SAR data of 

data set 1. It can be seen that the entropy is between 10 and 11 bits for the 12 bit quantisation, 

implying that the compressibility of the data is low. 

 

The CDFs in Figure 6.2, as well as the PDFs in Figure 6.3, show that the I and Q components 

of data set 1 closely follow a Gaussian distribution. It can also be seen that the magnitude 

component follows a Rayleigh distribution, while the phase is uniformly distributed between 

–π and π. The statistical parameters, like the skewness and kurtosis can also be investigated 

to determine how well the data follow a Gaussian distribution. For example, the skewness 

and kurtosis of a Gaussian distribution are 0 and 3, respectively. Therefore, the summarised 

characteristics in Table 6.3 also confirm that the I and Q components of data set 1 closely 

follow a Gaussian distribution, since the skewness and kurtosis are close to 0 and 3, 

respectively. 

 

 

Figure 6.2 Empirical CDFs of data set 1. (a) I component. (b) Q component. 
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Figure 6.3 PDFs of the components of data set 1. (a) Real component. (b) Imaginary component. 

(c) Phase. (d) Magnitude. 

6.2.2 Data set 2: Mine scene 

Data set 2 is an image of a mine. Therefore, the data set was classified as low urban data 

since it consists of natural clutter with less than one-third of the scene consisting of cultural 

clutter. The other statistical characteristics of the set are summarised in Table 6.4. 

 

The statistical parameters in Table 6.4 confirm that the entropy and dynamic range of the 

raw SAR data of data set 2, are indeed high. It can be seen that the entropy is between 10 

and 11 bits for the 12 bit quantisation, implying that the compressibility of the data is low. 

 

The CDFs in Figure 6.4, as well as the PDFs in Figure 6.5, show that the I and Q components 

of data set 2 closely follow a Gaussian distribution. It can also be seen that the magnitude 

component follows a Rayleigh distribution, while the phase is uniformly distributed between 
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–π and π. The statistical parameters, like the skewness and kurtosis were investigated to 

determine how well the data follow a Gaussian distribution. The summarised characteristics 

in Table 6.4 also confirm that the I and Q components of data set 2 closely follow a Gaussian 

distribution, since the skewness and kurtosis are close to 0 and 3, respectively. 

 

Table 6.4 Characteristics of data set 2. 

Parameter Value 

Quantisation 12 bits 

Level of urbanisation Low urban 

Mean I: -0.2059 Q: -0.0915 

Variance I: 1139.1 Q: 1167.7 

Skewness I: 0.0087 Q: -0.0285 

Kurtosis I: 3.73 Q: 3.82 

Entropy I: 10.11 bits Q: 10.13 bits 

 

 

Figure 6.4 Empirical CDFs of data set 2. (a) I component. (b) Q component. 
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Figure 6.5 PDFs of the components of data set 2. (a) Real component. (b) Imaginary component. 

(c) Phase. (d) Magnitude. 

6.2.3 Data set 3: Peri-urban scene 

The last data set covers a residential area on a golf course in Hartbeespoort, called 

Pecanwood Estate, and also a part of the Hartbeespoort Dam. Therefore, the data set was 

classified as mid urban data since it consists of some natural clutter with cultural clutter 

covering one to two thirds of the scene. The other statistical characteristics of the set are 

summarised in Table 6.5. 

 

The statistical parameters in Table 6.5 confirm that the entropy and dynamic range of the 

raw SAR data of data set 3, are indeed high. It can be seen that the entropy is between 10 

and 11 bits for the 12 bit quantisation, implying that the compressibility of the data is low. 

It was also noted that data set 3 has the highest variance, which corresponds to the power of 

the data, and therefore, indicates that this scene produces higher returns than the other two 
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scenes. This observation corresponds to the fact that cultural clutter produces a higher level 

of backscatter, since data set 3 is a residential area and was categorised as mid urban data, 

while data sets 1 and 2 are low urban data. 

 

The CDFs in Figure 6.6, as well as the PDFs in Figure 6.7, show that the I and Q components 

of data set 3 closely follow a Gaussian distribution. It can also be seen that the magnitude 

component follows a Rayleigh distribution, while the phase is uniformly distributed between 

–π and π. The statistical parameters, like the skewness and kurtosis were investigated to 

determine how well the data follow a Gaussian distribution. The summarised characteristics 

in Table 6.5 also confirm that the I and Q components of data set 3 closely follow a Gaussian 

distribution, since the skewness and kurtosis are relatively close to 0 and 3, respectively. 

 

Table 6.5 Characteristics of data set 3. 

Parameter Value 

Quantisation 12 bits 

Level of urbanisation Mid urban 

Mean I: -0.2729 Q: 1.1528 

Variance I: 1465.3 Q: 1498.1 

Skewness I: -0.0045 Q: 0.1339 

Kurtosis I: 3.99 Q: 4.06 

Entropy I: 10.29 bits Q: 10.3 bits 
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Figure 6.6 Empirical CDFs of data set 3. (a) I component. (b) Q component. 

 

 

Figure 6.7 PDFs of the components of data set 3. (a) Real component. (b) Imaginary component. 

(c) Phase. (d) Magnitude. 
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6.3 IMPLEMENTATION OF COMPRESSION ALGORITHMS 

In Chapter 3 it was seen that raw SAR data are difficult to compress due to their high entropy 

and lack of statistical dependency. Therefore, it has been noted that compressing the focused 

SAR image, instead of the raw SAR data, would be much easier as the data then contain 

dependency and redundancy that can be exploited by compression algorithms [28], [96]. 

However, the SAR focusing process is too complex for real-time, on board implementation, 

and therefore, raw SAR data compression is a critical requirement for modern SAR systems. 

 

It was also concluded that lossless compression algorithms, which utilises predictive coding, 

are ill-suited for the compression raw SAR data since these methods take advantage of 

sample to sample correlation. Since conventional lossy compression techniques utilise 

transform coding, which also exploit the correlation between samples, these techniques are 

also rendered ill-suited for the compression of raw SAR data [65], [84]. The characteristics 

of raw SAR data and the above mentioned factors imply that quantisation is a suited method 

for the compression for raw SAR data [84]. 

 

The results in the previous section show that it can be assumed that the I and Q components 

of all three data sets used for this research, follow a Gaussian distribution with zero mean. 

Therefore, a compression algorithm that exploits these characteristics of the raw data would 

be highly suited to compress the raw SAR data on board a SAR platform. As seen in 

Subsection 3.3.3, lattice vector quantisation is usually applied when the data have a known 

PDF with a mean of zero [85]. However, although vector quantisation (VQ) performs well, 

the computational complexity renders it ill-suited for on board implementation [96]. A very 

well-known algorithm that was designed for the compression of raw SAR data, with 

Gaussian distributed I and Q components, is the BAQ [31], [34], [60]. It has been observed 

that combining algorithms can lead to improved results at some cost. The BAVQ algorithm, 

for example, produces an image of better quality compared to an image produced after the 

BAQ, but the increased amount of computations required for this algorithm cannot be 

justified [99]. A lot of literature focuses on the fusion of the time and frequency domain, 
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since it had been observed that the best results have been achieved when the BAQ is applied 

in the frequency domain [83], [99]. 

 

Where the application is the onboard compression of raw SAR data, BAQ is preferred, 

primarily because it is a good trade-off between performance and simplicity [62], [83]. A 

thorough literature study showed that the main candidates for SAR raw data compression 

are the standard BAQ, some of the BAQ variations (which have been implemented on recent 

SAR satellites), like the FDBAQ, and the FFT-BAQ [5], [83], [99].  

 

The FFT-BAQ algorithm achieved promising results. It is known to outperform the BAQ, 

but again leads to increased computational complexity [83]. The BAQ can be applied in the 

frequency domain since one of the properties of the Gaussian random process is that the 

response of a linear system to a Gaussian random process is also a Gaussian random process 

[114]. Until recently, FFT-BAQ was not considered a viable solution due to the high 

computational requirements, but technological advances in hardware design could see the 

implementation of FFT-BAQ on board a future SAR platform. 

 

The FDBAQ is the latest extension of the standard BAQ method by adaptively selecting the 

encoding bitrate according to the local SNR [21], [92], [93]. The FDBAQ algorithm has been 

implemented on board the Sentinel-1 satellite, launched in 2014. FDBAQ achieves an 

average bit rate comparable to that of a BAQ with an output bit rate of 3 bits, but with the 

added benefit of improved SNR in the high-reflectivity areas in the scene, while also not 

degrading the quality of the low-reflectivity areas. The added flexibility of the bit rate per 

block is important for modern SAR systems, since different operating modes and 

applications have different image quality and data volume requirements [5], [63]. 

6.3.1 BAQ algorithm 

As seen in Chapter 3, BAQ is categorised as scalar quantisation, and is therefore a lossy 

compression algorithm [71], [73]. It is also categorised as an adaptive quantiser, meaning it 

estimates the statistics of the data and then adjusts the quantiser to match the observed 
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statistics [60]. In order to design an optimal quantiser, the statistics of the data must be 

known. The input to the BAQ is the uniformly quantised samples from the analogue to digital 

converters (ADCs) in the SAR system. Although it is known that raw SAR data are not 

highly compressible, a reduction in the number of bits is possible for the BAQ method, since 

the entropy for a block of data is much less than that of the entire data set [31], [83]. BAQ 

has been designed to compress raw SAR data, since a Gaussian statistic signal, with slowly 

varying power, forms the basis of the BAQ design [31], [34], [60]. The BAQ then adaptively 

varies the step sizes of a non-uniform quantiser, based on the estimated variance of the block, 

to minimise the distortion error of that block. This non-uniform quantiser, called the Lloyd-

Max quantiser, achieves a wider overall dynamic range at the output, for the same number 

of quantization levels than simple uniform quantization of the data [62]. The quantiser rate 

is measured in bits/sample, and is fixed for the BAQ algorithm. 

 

The choice of the block size is a trade-off between the upper and lower limits. Therefore, the 

selection of the block size is critical for good performance. The guidelines for selecting a 

block size are given below [31], [34]. 

1. The lower bound of the block size is that the block should contain enough samples 

to ensure Gaussian statistics for the block. Thus, 50 to 100 samples are the required 

minimum number of samples. 

2. The upper bound of the block size is determined by the range extent and must ensure 

that the signal power is constant within a block. A maximum variation of 1 to 2 dB 

in signal power is acceptable. 

3. The blocks should also be small in range relative to the number of samples in one 

pulse. Thus, the block size should be smaller than a ¼ to a ½ of the uncompressed 

pulse width in fast time. 

4. The blocks should also be small in azimuth relative to the synthetic aperture length. 

Thus, the block size should be smaller than a ¼ to a ½ of the synthetic array time in 

slow time. 
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In some literature, for example the BAQ implementation on board the ENVISAT system, 

one-dimensional blocks were used to save memory [99]. However, two-dimensional blocks 

have been recommended [99]. Experiments by Kuduvalli, Dutkiewicz, and Cumming, 

showed that the BAQ algorithm is not sensitive to the changes in the block size in the range 

of 64 to 512 samples [62]. For the data sets used in this research, a block size of 200×200 

samples was selected. 

 

The figures below show that the guidelines for the block size were followed. These figures 

were plotted for the real (I) component of data set 1 for illustration purposes, although the 

outcome is the same for all the data sets, and both components. Figure 6.8 shows that the 

lower limit is adhered to, since the blocks of size 200×200 have Gaussian statistics. This is 

confirmed by the skewness and kurtosis, 0 and 3 respectively for a Gaussian distribution, 

that are maintained well after dividing the data into blocks of size 200×200, while the mean 

and standard deviation deviate slightly more from the value of the entire data set. Table 6.6 

shows that the upper limit has not been surpassed, since the power does not vary more than 

2 dB within the 200×200 blocks. The values in Table 6.6 were calculated using 

Equation (6.1), with the assumption that each block contains a homogenous scene. It is 

assumed that these power variation values for a specific block size are true for all the blocks 

of the data set. 

 

𝑃𝑜𝑤𝑒𝑟 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛  =  10log
10

(
(Rstart+∆R)4

Rstart
4

) . (6.1) 

 

Table 6.6 Power variation for each block size. 

Block Size 20×20 50×50 100×100 200×200 250×250 500×500 

Power 

Variation (dB) 
0.1729 0.4290 0.8476 1.6557 2.0461 3.8764 
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Figure 6.8 Statistical parameters measured for different block sizes. (a) Mean. (b) Standard 

deviation. (c) Skewness. (d) Kurtosis. 

 

Compression bit rates of 2 bits/sample and 3 bits/sample were selected for this research, 

since most of the literature use these bit rates for comparison. 2 bits/sample is also the best 

achievable compression bit rate for the standard BAQ method. This means the quantiser 

outputs the chosen number of bits per I and Q sample. The BAQ algorithm will serve as the 
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baseline for comparison of the performance of the variants of the BAQ algorithm used in 

this study, namely the FFT-BAQ and the FDBAQ. Table 6.7 is an extract of the threshold 

and reconstruction values provided by Max [86], and shows the required values for this 

study. Note that the reconstruction values differ slightly from the output values given in [86], 

since these values are for an ideal uniform quantiser. According to the additive quantisation 

noise model (AQNM), a quantiser can be approximated by a linear gain with additive white 

noise [126]. Therefore, due to saturation effects, the uniform quantiser has an effective gain 

equal to 1 minus the coding error (found in [86]), resulting in the reconstruction values 

below. 

 

Table 6.7 Parameters for an optimum 2-bit and 3-bit quantiser with σ ≠ 1 [86]. 

Levels = 4 Bits = 2 

Threshold Value Encoded Value Reconstruction Value 

0 00 0.5131σ 

± 0.9816σ 01 1.7110σ 

 10 -0.5131σ 

 11 -1.7110σ 

Levels = 8 Bits = 3 

Threshold Value Encoded Value Reconstruction Value 

0 000 0.2539σ 

± 0.5006σ 001 0.7830σ 

± 1.050σ 010 1.3921σ 

± 1.748σ 011 2.2290σ 

 100 -0.2539σ 

 101 -0.7830σ 

 110 -1.3921σ 

 111 -2.2290σ 
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Figure 6.9 Illustration of BAQ thresholds and reconstruction values for the 2-bit quantisation case. 

Adapted from [65], with permission. 

 

Figure 6.9 illustrates the operation of the BAQ algorithm and shows how the threshold values 

and reconstruction values for N = 4 levels are determined [65], [86]. The BAQ algorithm 

will now be further discussed by explaining the compression and decompression steps 

separately. 

6.3.1.1 Compression 

The compression steps of the BAQ algorithm [31], as implemented in this study, are 

summarised below. The process is also illustrated in Figure 6.10. 

1. Split the raw, complex data into I and Q components. 

2. Divide the I and Q components into 200 × 200 blocks. 

3. Compute the standard deviation (σ) of the block (perform for each block). 

4. Encode each sample in the block (perform for each block). 
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It should be noted that the standard Cartesian format of the BAQ algorithm is used in this 

study, since the I and Q channels are encoded independently. In some implementations of  

the BAQ, the statistics of the previous block are used for the encoding of the block, instead 

of the statistics of the current block [62], [90]. However, in this study the statistics of the 

current block are used. 

 

For each sample within a block, a sign bit and a magnitude bit(s) are assigned, according to 

Table 6.7 and Figure 6.9 [60]. The sign bit indicates whether the sample value is positive or 

negative, while the magnitude bit(s) indicates whether the sample value is above or below 

the threshold. It is important to note that the BAQ algorithm has an overhead that is 

transmitted with the encoded data, required for the decompression process [31], [34], [60]. 

The overhead of the BAQ algorithm consists only of the σ of each block. The added bits per 

sample (bps), due to the overhead, were computed using Equation (6.2), where σ is of type 

double and thus 64 bits in size (for a conservative case). 

 

added bps = 
σbit size

block size
 (6.2) 

     = 
64

200×200
 

= 1.6×10
-3          

 

 

Figure 6.10 Flow diagram of the compression steps of the standard BAQ. Adapted from [83], 

© 1995 IEEE. 



CHAPTER 6 IMPLEMENTATION OF SAR COMPRESSION ALGORITHMS 

 

Department of Electrical, Electronic and Computer Engineering 102 

University of Pretoria 

This result shows that the added bps is insignificant for the specific data set size and block 

size used in this study. 

6.3.1.2 Decompression 

To reconstruct the encoded data [60], [65], the reconstruction values in Table 6.7 are used 

as well as the transmitted standard deviation of each block, included in the overhead data. 

The reconstruction values represent the centroids of each region (see Figure 6.9) [86]. Output 

values are assigned according to the threshold interval they are contained in. By using these 

optimal thresholds and reconstruction values, the mean square error in the reconstructed 

signal is minimised, leading to optimal quantization of the recovered SAR data. 

6.3.1.3 Computational complexity 

Although certain conclusions can be made about what algorithm would be best for a certain 

application based on the metrics, another factor is the computational complexity. An 

algorithm may perform very well in terms of reduction rate and also cause the least 

degradation of the final SAR product, but being an order of magnitude more complex than 

another method may be the one reason the algorithm is not feasible to implement in a SAR. 

Therefore, the computational complexity of each algorithm was investigated and compared. 

Big O notation was used to describe the complexity of the compression steps of each 

algorithm in a simplified manner. Only the complexity of the compression operations was 

considered since the encoding will take place on board the SAR platform where SWAP 

limitations apply, while the decoding operations will be performed at the ground station. 

Table 6.8 Complexity of each step in the compression process of the BAQ algorithm. 

Compression Steps Complexity 

1. Split data into I & Q components O(1) 

2. Break data into [200×200] blocks O(1) 

3. Calculate the σ of each bock O(4N + 3) 

4. Encode the data O(N) 

 

The complexity of the compression part of the BAQ method was computed as below, 

 O(BAQ) = O(1+1+4N+3+N) (6.3) 

           = O(5N+5)         (6.4) 
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              ≈ O(5N)                 (6.5) 

             ≈ O(N)                  (6.6) 

 

where N is the number of elements in the data set.  

 

Therefore, the computational complexity of the BAQ method is a linear function of the 

number of elements in the data set, which relates to the volume of data. 

6.3.2 FFT-BAQ algorithm 

The FFT-BAQ algorithm consists of transforming the data from the time domain to the 

frequency domain, and then applying the standard BAQ to reduce the data rate [83]. By 

transforming the data, the correlation present in the transform domain can now be exploited 

[127]. Raw SAR data are frequency modulated in the range direction due to the modulation 

present in the transmitted pulse, while in the azimuth direction, the data are frequency 

modulated due to the natural movement of the platform, known as the Doppler effect [83]. 

Since raw SAR data are frequency modulated in both directions, the transformed coefficients 

show energy compaction. Therefore, performing the data reduction in the frequency domain 

allows the encoding to be adapted to the energy levels in the transform domain, since the 

average envelope of the transformed data is known after the transformation. This means that 

regions with higher energy levels are quantised with more bits, while for example, the region 

that falls outside the processed bandwidth is omitted. This means that the FFT-BAQ 

automatically performs digital filtering of oversampled data [99], [127]. Note that it was 

assumed that the processed bandwidth corresponds with 85 % of the full signal bandwidth 

[83]. Therefore, a code scheme is established after investigating the envelope in the 

transform domain. 

 

Although the standard BAQ is applied in the time domain, it can also be applied in the 

transform domain given that the transformed data are also Gaussian distributed [83]. As 

discussed in Section 2.5 and Section 6.2, raw SAR data can be assumed to follow a Gaussian 

distribution. One of the known properties of a Gaussian random process is that the response 
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of a linear system to a Gaussian random process, is also a Gaussian random process [114]. 

Therefore, after applying the 2D-FFT, the BAQ can be applied to the transformed data, since 

the Fourier transform is a linear operation. The FFT-BAQ algorithm will now be further 

discussed by explaining the compression and decompression steps separately. 

6.3.2.1 Compression 

The compression steps of the FFT-BAQ algorithm [83], [99], as implemented in this study, 

are summarised below. The process is also illustrated in Figure 6.11. 

1. Split the raw, complex data into I and Q components. 

BAQ Stage 1 

2. Divide the I and Q components into 200 × 200 blocks. 

3. Compute the standard deviation (σ1) of the block. (perform for each block) 

4. Normalise each sample in the block by the σ1 of the block. (perform for each block) 

Transform 

5. Divide the normalised, complex data into 1024 × 1024 blocks. 

6. Perform a 2D-FFT on every block of complex data. 

BAQ Stage 2 

7. Split the complex, transformed data into I and Q components. 

8. Divide the I and Q components into 200 × 200 blocks. 

9. Compute the standard deviation (σ2) of the block. (perform for each block) 

10. Encode each sample in the block according to the established code scheme. (perform 

for each block) 

 

It is important to note that the FFT-BAQ implementation for this research consists of two 

BAQ stages [83]. The first BAQ stage serves as a normaliser, without reducing the bit rate 

of the data, and is executed in the time domain. The data are normalised to decrease the 

dynamic range of the power of the signal. Also note that maximum precision should be used 

to prevent digitisation loss during the computation of the FFT. The same block size as that 

of the standard BAQ algorithm, 200 × 200, was also used for the two BAQ stages in this 

algorithm. 
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For the transformation stage, as seen in Figure 6.11, large blocks need to be used. A block 

size of 1024 × 1024 is the norm for practical cases [83], and was therefore also used in this 

implementation of the FFT-BAQ algorithm. In this stage of the algorithm, the data are 

transformed from the time domain to the transform domain. This can be achieved using the 

FFT, discrete cosine transform (DCT), or the Walsh-Hadamard transform (WHT) [83]. In 

this implementation a 2D-FFT was used to transform the data to the frequency domain.  

 

The final stage in the compression process is the stage 2 BAQ. At this stage, quantisation of 

the transformed data is performed adaptively, according to the code scheme. This means that 

a variable rate BAQ is used. In contrast with the standard BAQ, the stage 2 BAQ is applied 

in the transform domain. 

 

The code scheme used in this implementation of the FFT-BAQ algorithm is shown in Figure 

6.13 and was adapted from the code scheme in [83]. The code scheme is applied to the I and 

Q components in the transform domain. The assumption that the processed bandwidth in 

both the azimuth and range directions is 85 % is assumed to be valid in this study, since it is 

true for most practical SAR systems [83]. A processed bandwidth of 85 % means that the  

 

Figure 6.11 Flow diagram of the compression steps of the FFT-BAQ. Adapted from [83], 

© 1995 IEEE. 
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data rate is reduced by 15 % without any degradation of the image quality. The spectrums 

of the data sets used in this study were investigated to determine the energy variation present 

in the transform domain. 

 

The spectrums of the data sets are shown in Figure 6.12, Figure 6.13, and Figure 6.14, 

respectively, as an example of the energy levels in the frequency domain after the 2D FFT 

was performed. In the range direction, the energy levels vary, and therefore, different regions 

are encoded with different number of bits [83]. 

 The values in the frequency regions with little energy are set to zero and corresponds 

to the allowable 15 % in both range and azimuth directions. 

 The values in the frequency regions that contain the highest energy levels, are 

quantised with (b+1) bits. 

 The values in the frequency regions that contain lower energy levels, are quantised 

with b bits. 

 

Figure 6.12 Average spectrum (over all blocks) of the farm scene. 



CHAPTER 6 IMPLEMENTATION OF SAR COMPRESSION ALGORITHMS 

 

Department of Electrical, Electronic and Computer Engineering 107 

University of Pretoria 

 

 

Figure 6.13 Average spectrum (over all blocks) of the mine scene. 

 

 

Figure 6.14 Average spectrum (over all blocks) of the peri-urban scene. 
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The transition value [83] between the regions encoded with (b+1) bits and b bits, transitionR, 

is calculated as 

 

transitionR = 
bmean-b×percent

AZ
×percent

R

percent
R

, (6.7) 

 

where bmean is the average encoding bit rate and percent
AZ

 = percent
R

 = 0.85, as previously 

explained. Also note the following conditions that must be met [83]: 

 b+1 > bmean, 

 0 ≤ transitionR ≤ percent
R
. 

Thus, for the 2-bit compression case, bmean was set equal to 2 and different values of b were 

used in Equation (6.7) to find a transition value and 𝑏 value that meet both of the conditions. 

It was found that b = 2 bits and transitionR = 65 % met both conditions. 

 

It is important to note that the FFT-BAQ algorithm has an overhead that is transmitted with 

the encoded data, required for the decompression process [83]. The overhead of the 

FFT-BAQ algorithm consists of σ1 and σ2 of each block. The added bits per sample (bps), 

due to the overhead, were computed using Equation (6.8) where σ1 and σ2 are of type double 

and thus 64 bits in size. 

 

added bps = 
σ1_bit size +σ2_bit size

block size
 (6.8) 

     = 
64+64

200×200
 

    = 3.2×10
-3

 

 

This result shows that the added bps is insignificant for the specific size of the data set and 

block size used in this study, but compared to the BAQ result, the bps is greater. 
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Figure 6.15 Code scheme used for the FFT-BAQ algorithm. Adapted from [83], © 1995 IEEE. 

6.3.2.2 Decompression 

The encoded data set is reconstructed by executing the inverse of the encoding steps. Firstly, 

BAQ decompression is executed using the standard deviation of the stage 2 BAQ in the 

compression process, σ2. The second step is to perform a two-dimensional inverse FFT with 

the same block size, 1024 × 1024, used during the compression. Lastly, BAQ 

denormalisation is executed using the standard deviation computed in the first BAQ stage of 

the compression process, σ1. Since the compression ratio of the first BAQ stage was 1, this 

decompression step only entails multiplying or descaling by σ1. 
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6.3.2.3 Computational complexity 

Table 6.9 Complexity of each step in the compression process of the FFT-BAQ algorithm. 

Compression Steps Complexity 

1. Split data into I & Q components O(1) 

2. Break data into [200×200] blocks O(1) 

3. Calculate the σ1 of each bock O(4N + 3) 

4. Normalise the data by σ1 O(N) 

5. Break data into [1024×1024] blocks O(1) 

6. Perform 2D FFT on each block O(K (LM log(LM) ) 

7. Break data into [200×200] blocks O(1) 

8. Calculate the σ2 of each bock O(4N + 3) 

9. Encode the data O(N) 

 

The complexity of the compression part of the FFT-BAQ method was computed as below, 

 

 O(FFT-BAQ) = O(10N+10+K(LM log LM)) (6.9) 

               ≈ O(N+K(LM log LM)) (6.10) 

                     ≈ O (N+
N

LM
(LM log LM)) (6.11) 

       ≈ O(N+N log LM) (6.12) 

   ≈ O(N+N log
N

K
) (6.13) 

   ≈ O(N+N log N) (6.14) 

 

where N is the number of elements in the data set, M is the number of rows in each FFT 

block, L is the number of columns in each FFT block and K is the number of blocks to 

perform the 2D FFT on, thus K=
N

LM
. 

 

Therefore, it can be seen that the computational complexity of the FFT-BAQ method is a 

logarithmic function of the number of elements in the data set, which relates to the volume 

of data. 

6.3.3 FDBAQ algorithm 

FDBAQ is the latest variation of the standard BAQ algorithm, currently implemented on the 

Sentinel-1 platform [21], [93]. The FDBAQ adaptively changes the encoding bit rate 

according to the local SNR, and therefore exploits the dynamic range of the received signal. 
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This algorithm addresses the limitation of the poor response that weaker targets have in the 

presence of stronger targets, that other compression algorithms face. This limitation is 

addressed by encoding the bright scatterers with an increased number of bits. FDBAQ also 

allows encoding with non-integer rates, which in turn allows the information throughput to 

be optimised for different types of scenes and downlink scenarios by considering the 

trade-off between thermal and quantization noise. This compression algorithm allows for a 

multi-mode measurement system, each mode with different output data rates and quality 

requirements [5]. 

 

The FDBAQ algorithm will now be further discussed by explaining the compression and 

decompression steps separately. 

6.3.3.1 Compression 

The compression steps of the FDBAQ algorithm [21], as implemented in this study, are 

summarised below. The process is also illustrated in Figure 6.16. 

1. Split the raw, complex data into I and Q components. 

2. Divide the I and Q components into 200 × 200 blocks. 

3. Compute the standard deviation (σ) of the block, as well as the noise power σ̂T

2
, and 

the signal power σ̂cr

2
 (perform for each block). 

4. Select the encoding bit rate, R (or number of output levels, L) based on the SNR 

threshold value (perform for each block). 

5. Encode each sample in the block using the selected bit rate (perform for each block). 

 

The initial steps of the FDBAQ algorithm are similar to that of the standard BAQ, where the 

I and Q components are divided into blocks of size 200 × 200. Thereafter, the statistics of 

each block, required for this algorithm, are estimated. These statistics include the standard 

deviation, signal power, σ̂cr

2
, and noise power, σ̂T

2
, of the block. Note that the noise power 

is a characteristic of the system’s receiver and is generally known. In this study, however, 

the noise power had to be estimated due to a lack of information about the prototype SAR 
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system. The noise power was assumed to only be due to thermal noise and was thus 

computed from/using the minimum variance of the block. The signal power was computed 

as the difference between the variance of the block and the minimum variance of the block. 

The SNR was estimated using the equation [21], 

 

𝑆𝑁𝑅 = 
1

σ̂T
2

σ̂cr
2 (1+

1
SQNR

) +
1

SQNR

, (6.15) 

 

where the signal-to-quantisation noise ratio (SQNR) is provided by the quantiser. To get the 

SQNR, the error value corresponding with the number of output levels, L, is extracted from 

Table I in [86]. In this study L was restricted to (nlevels-1) ≤ L ≤ (nlevels+1), where nlevels is the 

number of output levels for the average encoding bit rate (Rmean), for example nlevels = 4 for 

Rmean = 2 bits. The outcome of Equation (6.15) is that when the signal power, σ̂cr

2
, is small 

compared to the thermal noise, σ̂T

2
, good quantisation is not required and therefore less bits 

can be used, while when the signal power reaches higher levels, more bits can be used to 

quantise the data with a smaller error and better retain the values [21]. 

 

The FDBAQ selects the number of output levels, L, for the block based on an estimation of 

the local signal-to-thermal-noise ratio of the block of data being compressed [5]. The block 

SNR was estimated using the lowest output level, as well as for one level higher, and then 

the two estimates were subtracted. The result was then compared to an SNR threshold. If the 

estimated SNR improvement that would be achieved by adding another output level 

exceeded the SNR threshold, the higher L value was used as the number of output levels of 

the BAQ applied to that block. If the threshold was not exceeded, the lower L value was used 

as the number of output levels. The SNR threshold was chosen to ensure that the required 

average encoding bit rate was achieved. 
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It is important to note that the FDBAQ algorithm has an overhead that is transmitted with 

the encoded data required for the decompression process. The overhead of the FDBAQ 

algorithm consists of the σ and L of each block. The added bits per sample (bps), due to the 

overhead of this method, were computed using Equation (6.16). σ is of type double and thus 

64 bits in size, for the conservative case, while L only requires 2 bits of storage since L can 

only be one of three values in this study. 

 

added bps = 
σbit size+Lbit size

block size
 (6.16) 

= 
64+2

200×200
      

= 1.65×10
-3    

 

This result shows that the added bps is insignificant for the data set size and block size used 

in this study, but compared to the bps for the BAQ method, the bps is slightly greater. 

 

 

Figure 6.16 Flow diagram of the compression steps of the FDBAQ. Adapted from [21], 

© 2010 IEEE. 

6.3.3.2 Decompression 

To reconstruct the encoded data, the decompression steps of the BAQ algorithm are applied. 

The only difference is that the corresponding number of output levels, L, for the block, first 

needs to be extracted from the overhead data, since a varying encoding bit rate is a 
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characteristic of the FDBAQ operation. Thereafter, the relevant reconstruction values [86], 

adjusted by the effective gain, are used to decompress the data. 

6.3.3.3 Computational complexity 

Table 6.10 Complexity of each step in the compression process of the FDBAQ algorithm. 

Compression Steps Complexity 

1. Split data into I & Q components O(1) 

2. Break data into [200×200] blocks O(1) 

3. Calculate the signal power and noise power of 

each bock 

O(4N + 3) 

4. Select bit rate for encoding O(P) 

5. Encode the data O(N) 

 

The complexity of the compression part of the FDBAQ method was computed as below, 

 

 O(FDBAQ) = O(1+1+4N+3+P+N) (6.17) 

                 = O(5N+P+5)         (6.18) 

               ≈ O(5N)                 (6.19) 

             ≈ O(N),                (6.20) 

 

where N is the number of elements in the data set and P is the number of blocks that the data 

set is split into. 

 

Therefore, the computational complexity of the FDBAQ method is also a linear function of 

the number of elements in the data set, which relates to the volume of data. 

6.4 CHAPTER SUMMARY 

Firstly, the statistical characteristics of the three data sets used in this study were 

investigated. This was done to ensure that the assumptions made in literature are also valid 

in this study. It was found that the normal distribution is not the best fit for the data, but the 

data do closely follow the normal distribution. Therefore, the raw I and Q components can 

be assumed to be zero-mean Gaussian distributions. In turn this means the BAQ is a suitable 
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choice for a compression algorithm since this algorithm exploits the Gaussian statistics of 

the data. 

 

The three SAR compression algorithms, identified as suitable solutions for implementation 

on board resource constrained SAR platforms, the BAQ, the FFT-BAQ, and the FDBAQ, 

were discussed in terms of the compression and decompression steps. The computational 

complexity of each algorithm was also investigated. It is clear that the 2D FFT required for 

the FFT-BAQ algorithm greatly increases the computational complexity, confirming why 

this algorithm has not been implemented on board any practical SAR system to date. 

 



 

 

CHAPTER 7 SAR OUTPUT AND 

EVALUATION OF METRICS 

7.1 CHAPTER OVERVIEW 

In a modern SAR system, the decompression and SAR processing are performed at a ground 

station after the compressed data have been transmitted from the platform or read from 

platform data storage. 

 

In this chapter, the metrics that were presented in Chapter 5 are evaluated to compare the 

performance of the three chosen SAR compression algorithms. The three algorithms that 

were implemented to illustrate how the metrics can be applied, are the block adaptive 

quantiser (BAQ), fast Fourier transform BAQ (FFT-BAQ) and the flexible dynamic BAQ 

(FDBAQ), and were discussed in detail in Section 6.3. In the literature, these algorithms 

were found to be best suited for the compression of raw SAR data in a processing and cost 

constrained environment due to their simplicity, reliability and current uses in SAR sensor 

systems [5], [60], [83], [99]. Implementing these algorithms represents compression of raw 

SAR data in the time and frequency domains, respectively. The performance of these 

algorithms was evaluated by implementing the process described in Figure 4.1. 

 

Note that the compression ratio and processing parameters were kept constant when 

comparing the different algorithms for the same data set. This was done to ensure that the 

compression algorithm was the only changing variable while all other parameters were 

constant. For example, the same SAR signal processor was used for all data sets, and the 

metrics were computed using the same equations and at the same stage of the process, with 
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the compression algorithms being the only varying factor. This experimental setup ensured 

that the results of each compression algorithm could be compared. Also note that the main 

evaluation was performed for 2-bit compression of the scenes. 3-Bit compression was 

however, also implemented for one data set (peri-urban scene), in order to also consider the 

effect of a higher bit rate. 

 

As discussed in Chapter 6, three data sets were used in this study. 

1. Data set 1: Rural Scene (farm). 

2. Data set 2: Mine Scene. 

3. Data set 3: Peri-urban Scene (Pecanwood Estate). 

7.2 SAR IMAGES 

In this section the scenes are introduced by Google Maps representations of the areas covered 

during the flight tests. The SAR images of the scenes, before and after compression, are 

given to compare the results of the study visually. 
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7.2.1 Original, uncompressed Images 

7.2.1.1 Data set 1: Rural scene 

 

 

 

Figure 7.1 Rural scene on Google Earth © 2017. 

 

Figure 7.2 SAR image of uncompressed data (rural scene). 
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7.2.1.2 Data set 2: Mine scene 

 

 

 

Figure 7.3 Mine scene on Google Earth © 2017. 

 

Figure 7.4 SAR image of uncompressed data (mine scene). 
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7.2.1.3 Data set 3: Peri-urban scene 

 

 

 

Figure 7.5 Peri-urban scene on Google Earth © 2017. 

 

Figure 7.6 SAR image of uncompressed data (peri-urban scene). 
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7.2.2 2-Bit compression 

7.2.2.1 Data set 1: Rural scene 

 

Figure 7.7 SAR Images of the rural scene. (a) Uncompressed data. (b) BAQ applied. (c) FFT-BAQ 

applied. (d) FDBAQ applied. 

 
(a) (b) (c) (d) 
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7.2.2.2 Data set 2: Mine scene 

 

Figure 7.8 SAR Images of the mining scene. (a) Uncompressed data. (b) BAQ applied. 

(c) FFT-BAQ applied. (d) FDBAQ applied. 

7.2.2.3 Data set 3: Peri-urban scene 

 

Figure 7.9 SAR Images of the peri-urban scene. (a) Uncompressed data. (b) BAQ applied. 

(c) FFT-BAQ applied. (d) FDBAQ applied. 

 

 
(a) (b) (c) (d) 

(a) (b) (c) (d) 
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7.2.3 3-Bit compression 

7.2.3.1 Data set 3: Peri-urban scene 

 

Figure 7.10 SAR Images of the peri-urban scene. (a) Uncompressed data. (b) BAQ applied. 

(c) FFT-BAQ applied. (d) FDBAQ applied. 

7.3 EVALUATION OF DATA-DOMAIN METRICS 

The metrics proposed in Section 5.2 were evaluated and the results are summarised below. 

All three of the compression algorithms were evaluated for all three data sets with similar 

tendencies being observed. Note that the data-domain metrics are evaluated after 

decompressing the compressed data, and before any SAR processing occurs. As mentioned 

in Section 6.2, the original data were discretised to 12 bit in-phase (I) and quadrature (Q) 

samples, respectively, before performing the compression. Therefore, the magnitude and 

phase components of the decompressed data were also discretised to 12 bits before 

computing the metrics. The rounding was performed to ensure that, before and after 

implementing the compression process, the same number of bits is compared to evaluate the 

 
(a) (b) (c) (d) 
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associated information loss or introduced distortions. It is also important to note that in 

practical SAR systems the computations would be executed on hardware that inherently 

performs fixed-point calculations. The data used in the rest of the SAR system were stored 

as the default MATLAB variable type, and not rounded, causing the data to have more 

fractional bits than the original data. 

 

Firstly, all the results in the data domain are summarised by means of tables and figures. 

Thereafter, the results are discussed in detail. 

7.3.1 Data set 1: Rural scene 

7.3.1.1 2-Bit results 

Table 7.1 Statistical parameters of the rural scene in the data domain. 

Metric 

Uncompressed 

Value 

Value after 

BAQ 

method 

Value after 

FFT-BAQ 

method 

Value after 

FDBAQ 

method 

Compression Ratio - 6 6 6 

Dynamic Range 64.82 dB 15.71 dB 67.73 dB 12.43 dB 

Mean (mag) 38.19 41.59 31.02 36.04 

Mean (phase) -21.68×10-3 -21.68×10-3 -5.05×10-3 53×10-3 

Standard deviation 

(mag) 

20.87 19.24 16.8 17.34 

Standard deviation 

(phase) 

1.81 1.79 1.81 1.76 

Skewness (mag) 0.82 0.23 0.72 0.02 

Skewness (phase) 25.64×10-3 23.38×10-3 5.37×10-3 32.61×10-3 

Kurtosis (mag) 3.88 1.66 3.45 2.10 

Kurtosis (phase) 1.8 1.73 1.8 1.83 

Entropy (mag) 10.33 bits 9.07 bits 10.02 bits 8.73 bits 

Entropy (phase) 12.64 bits 3.42 bits 12.65 bits 3.74 bits 
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Figure 7.11 Distribution of data set 1 before and after implementing the BAQ algorithm. 

(a) I component. (b) Q component. (c) Phase component. (d) Amplitude component. 

 

 

Figure 7.12 Distribution of data set 1 before and after implementing the FFT-BAQ algorithm. 
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(a) I component. (b) Q component. (c) Phase component. (d) Amplitude component. 

 

 

Figure 7.13 Distribution of data set 1 before and after implementing the FDBAQ algorithm. 

(a) I component. (b) Q component. (c) Phase component. (d) Amplitude component. 

 

Table 7.2 Error measures for the rural scene in the data domain. 

Metric 

Value after 

BAQ  

method 

Value after 

FFT-BAQ 

method 

Value after 

FDBAQ 

method 

MSE  163.21 329.94 168.32 

SQNR 10.65 dB 7.59 dB 10.51 dB 

MPE (rad) 0.2507 0.3633 0.2954 

MPE (degrees) 14.36 20.82 16.93 
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7.3.2 Data set 2: Mine scene 

7.3.2.1 2-Bit results 

Table 7.3 Statistical parameters of the mine scene in the data domain. 

Metric 

Uncompressed 

Value 

Value after 

BAQ 

method 

Value after 

FFT-BAQ 

method 

Value after 

FDBAQ 

method 

Compression Ratio - 6 6 6 

Dynamic Range 67.13 dB 17 dB 70.78 dB 15.55 dB 

Mean (mag) 41.18 44.88 35.14 38.41 

Mean (phase) 2.2×10-3 2.2×10-3 877×10-6 227×10-3 

Standard deviation 

(mag) 

24.71 23.38 21.77 22.4 

Standard deviation 

(phase) 

1.82 1.79 1.81 1.71 

Skewness (mag) 1.06 0.6 1.11 0.34 

Skewness (phase) 1.2×10-3 -565×10-6 -619×10-6 49.6×10-3 

Kurtosis (mag) 4.48 2.34 4.47 2.99 

Kurtosis (phase) 1.79 1.72 1.8 2 

Entropy (mag) 9.51 bits 9.61 bits 10.31 bits 8.93 bits 

Entropy (phase) 12.64 bits 3.41 bits 12.65 bits 3.81 bits 
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Figure 7.14 Distribution of data set 2 before and after implementing the BAQ algorithm. 

(a) I component. (b) Q component. (c) Phase component. (d) Amplitude component. 

 

 

Figure 7.15 Distribution of data set 2 before and after implementing the FFT-BAQ algorithm. 

(a) I component. (b) Q component. (c) Phase component. (d) Amplitude component. 
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Figure 7.16 Distribution of data set 2 before and after implementing the FDBAQ algorithm. 

(a) I component. (b) Q component. (c) Phase component. (d) Amplitude component. 

 

Table 7.4 Error measures for the mine scene in the data domain. 

Metric 

Value after 

BAQ  

method 

Value after 

FFT-BAQ 

method 

Value after 

FDBAQ 

method 

MSE  201.82 328.22 203.5 

SQNR 10.58 dB 8.47 dB 10.54 dB 

MPE (rad) 0.2523 0.3442 0.3653 

MPE (degrees) 14.46 19.72 20.93 
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7.3.3 Data set 3: Peri-urban scene 

7.3.3.1 2-Bit results 

Table 7.5 Statistical parameters of the peri-urban scene in the data domain. 

Metric 

Uncompressed 

Value 

Value after 

BAQ 

method 

Value after 

FFT-BAQ 

method 

Value after 

FDBAQ 

method 

Compression Ratio - 6 6 6 

Dynamic Range 67.83 dB 19.59 dB 67.2 dB 18.04 dB 

Mean (mag) 46.11 50.06 37.49 42.81 

Mean (phase) 25.2×10-3 24.8×10-3 3.9×10-3 269.8×10-3 

Standard deviation 

(mag) 

28.96 27.63 24.66 26.37 

Standard deviation 

(phase) 

1.82 1.79 1.82 1.72 

Skewness (mag) 1.12 0.74 1.26 0.62 

Skewness (phase) -19.6×10-3 -20.8×10-3 -3.9×10-3 27.4×10-3 

Kurtosis (mag) 4.58 2.7 4.99 3.36 

Kurtosis (phase) 1.79 1.72 1.8 1.98 

Entropy (mag) 9.71 bits 9.51 bits 9.44 bits 8.96 bits 

Entropy (phase) 12.64 bits 3.42 bits 12.65 bits 3.88 bits 
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Figure 7.17 Distribution of data set 3 before and after implementing the BAQ algorithm. 

(a) I component. (b) Q component. (c) Phase component. (d) Amplitude component. 

 

 

Figure 7.18 Distribution of data set 3 before and after implementing the FFT-BAQ algorithm. 

(a) I component. (b) Q component. (c) Phase component. (d) Amplitude component. 
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Figure 7.19 Distribution of data set 3 before and after implementing the FDBAQ algorithm. 

(a) I component. (b) Q component. (c) Phase component. (d) Amplitude component. 

 

Table 7.6 Error measures for the peri-urban scene in the data domain. 

Metric 

Value after 

BAQ  

method 

Value after 

FFT-BAQ 

method 

Value after 

FDBAQ 

method 

MSE  254.24 476.45 233.79 

SQNR 10.67 dB 7.94 dB 11.03 dB 

MPE (rad) 0.2502 0.3598 0.3402 

MPE (degrees) 14.34 20.62 19.49 
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7.3.3.2 3-Bit results 

Table 7.7 Statistical parameters of the peri-urban scene in the data domain. 

Metric 

Uncompressed 

Value 

Value after 

BAQ 

method 

Value after 

FFT-BAQ 

method 

Value after 

FDBAQ 

method 

Compression Ratio - 4 4 4 

Dynamic Range 67.83 dB 28.02 dB 66.66 dB 24.79 dB 

Mean (mag) 46.11 47.04 37.47 45.05 

Mean (phase) 25.2×10-3 25×10-3 5.1×10-3 238.7×10-3 

Standard deviation 

(mag) 

28.96 28.44 24.82 27.62 

Standard deviation 

(phase) 

1.82 1.81 1.82 1.79 

Skewness (mag) 1.12 0.95 1.27 0.92 

Skewness (phase) -19.6×10-3 -20.8×10-3 -4.9×10-3 -10.5×10-3 

Kurtosis (mag) 4.58 3.68 5.03 3.85 

Kurtosis (phase) 1.79 1.76 1.79 1.85 

Entropy (mag) 9.71 bits 10.25 bits 9.44 bits 10.07 bits 

Entropy (phase) 12.64 bits 5.17 bits 12.65 bits 5.58 bits 
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Figure 7.20 Distribution of data set 3 before and after implementing the BAQ algorithm. 

(a) I component. (b) Q component. (c) Phase component. (d) Amplitude component. 

 

 

Figure 7.21 Distribution of data set 3 before and after implementing the FFT-BAQ algorithm. 

(a) I component. (b) Q component. (c) Phase component. (d) Amplitude component. 
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Figure 7.22 Distribution of data set 3 before and after implementing the FDBAQ algorithm. 

(a) I component. (b) Q component. (c) Phase component. (d) Amplitude component. 

 

Table 7.8 Error measures for the peri-urban scene in the data domain. 

Metric 

Value after 

BAQ  

method 

Value after 

FFT-BAQ 

method 

Value after 

FDBAQ 

method 

MSE  73.02 415.64 73.4 

SQNR 16.09 dB 8.53 dB 16.06 dB 

MPE (rad) 0.1453 0.3363 0.1677 

MPE (degrees) 8.33 19.27 9.61 

7.3.4 Discussion of the data-domain metrics results 

7.3.4.1 Statistical parameters 

In Table 7.1, Table 7.3, and Table 7.5, the results of the statistical parameters for each scene 

are summarised, respectively. There is a difference of about 50 dB between the dynamic 
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range of the results obtained using a time-domain method (FDBAQ or BAQ methods), and 

the FFT-BAQ method. The dynamic range after applying the FFT-BAQ method compares 

very well with the dynamic range of the uncompressed data set, while after applying the 

other two methods, the dynamic range is less than that of the uncompressed data. The reason 

for the high dynamic range result of the FFT-BAQ method is because the compression takes 

place in the frequency domain while the metrics are computed in the time domain, where 

various levels are represented after implementing the FFT-BAQ decompression steps. The 

wide range of values represented in the time domain is confirmed by a high dynamic range. 

For the two time-domain methods only certain output levels are possible, consequently 

reducing the dynamic range. 

 

When considering the other statistical parameters, all the methods perform well as the values 

differ only slightly from the original, uncompressed values. The skewness and kurtosis are 

two metrics that are of importance since they are representative of the deviation of the 

distributions of the magnitude and phase components from the original distributions. The 

results show that the FFT-BAQ method causes minimal deviation from the original 

distributions and thus does not cause the statistical characteristics of the data to change 

significantly. For a Rayleigh distribution the skewness should be close to 0.63, while the 

kurtosis should have a value of 3.245. The results show that even after applying the 

compression algorithms, each component can still be assumed to have similar characteristics 

to the original distribution of the uncompressed data sets. 

 

Entropy is another important measure in the data domain since it is an indication of the 

information content of the data set. The results show that the entropy of the magnitude 

component remains well preserved for all methods, with the FFT-BAQ result being the 

closest to the entropy of the uncompressed data. This shows that the encoding and decoding 

steps did not cause severe loss of magnitude information, meaning most of the information 

could be recovered. However, the entropy of the phase component is not well preserved for 

the two time-domain methods. The FFT-BAQ method preserves both the magnitude and 

phase information very well. Overall, the time-domain methods show an average of about 
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7 bits of information loss for the two components, compared to the information loss of less 

than a bit for the FFT-BAQ method. 

7.3.4.2 Data histograms 

 In Figure 7.11 to Figure 7.13, the variation of the statistical parameters of data set 1 due to 

the compression methods is represented visually by the histograms of each component 

before compression and after the decompression. Similarly, Figure 7.14 to Figure 7.16, are 

the histograms of data set 2, and Figure 7.17 to Figure 7.19 are the histograms of data set 3. 

The effect of compression in the time domain, as is a characteristic of the BAQ and FDBAQ 

methods, can be seen since only certain values are represented after decompression. For the 

FFT-BAQ method, it can be seen that the decompressed data closely follow the original 

distribution since compression was performed in the frequency domain and, thus, the 

quantisation effect is spread across the time domain values. Consequently, applying the 

FFT-BAQ method results in all possible values still being represented in the time domain. 

The operation of the FDBAQ method can be visualised as it can be seen that the values 

represented after decoding are highly variable, since the BAQ used in this algorithm was 

applied for more than one output bit rate. Figure 7.20 to Figure 7.22 are the histograms of 

data set 3 after 3-bit compression, and the higher output bit rate can be confirmed by the 

increased number of values represented after decoding of the BAQ method. The results show 

that the data histograms are an important visual aid in determining the effects of a 

compression algorithm on the raw SAR data in the data domain. 

7.3.4.3 Error measures 

The error measures for each data set are summarised in Table 7.2, Table 7.4, and Table 7.6, 

respectively. The FFT-BAQ method achieves the worst results for the error measures, 

although it achieved the best statistical parameter results. This can be attributed to the 

variable compression ratio of the code scheme used in the FFT-BAQ method. The code 

scheme encodes a portion of the data that has the lowest amount of energy in the frequency 

domain with 0 bits, whereas the high energy frequency components are encoded with more 

bits. Encoding data with 0 bits represents a loss of information and has an effect on the mean 



CHAPTER 7 SAR OUTPUT AND EVALUATION OF METRICS 

 

Department of Electrical, Electronic and Computer Engineering 138 

University of Pretoria 

squared error (MSE), mean phase error (MPE), and the signal-to-quantisation-noise ratio 

(SQNR), which are all measures of the distortion caused by the quantiser computed as the 

absolute encoding error between every sample of the uncompressed and decompressed data 

sets. Due to the nature of operation of the FFT, an error is introduced to each element in the 

set, which is then used in the computation of these metrics. It is thus evident that these 

metrics are used to determine the effects of the quantisation for each method in the data 

domain, which will differ from the effects they have in the image domain as will be seen in 

the next subsection. 

 

The MSE was further investigated to determine the size of the error relative to the 12 bits of 

data. The results of the Pecanwood scene are summarised in Table 7.9 and are representative 

of the other two data sets. It can be seen that the two time-domain methods achieve an error 

of less than 10 %, while the error introduced by the FFT-BAQ method is slightly higher than 

10 %.  

Table 7.9 MSE and the corresponding percentage error for the peri-urban scene. 

 BAQ FFT-BAQ FDBAQ 

MSE 254.24 476.45 233.79 

% Error  6.21 % 11.63 % 5.71 % 

 

From the phase error metrics, it seems that the BAQ method has the smallest effect on the 

phase in the data domain. However, when considering the entropy of the phase component 

of the decompressed data, it can be seen that the information content of the phase component 

is not well preserved compared to the entropy of the phase of the uncompressed data. This 

shows that although the computed errors are smaller for the time-domain methods, these 

methods have a detrimental effect on the phase information content of the data in the data 

domain. 

 

The MPE was further investigated to determine whether the error is due to distortion or a 

bias. This was determined by computing the variance of the phase error (VPE). The results 
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of the Pecanwood scene are summarised in Table 7.10 and are representative of the other 

two data sets. It can be seen that the FFT-BAQ and FDBAQ methods introduce a distortion 

to the phase component, since the VPE is relatively high. The BAQ method on the other 

hand, does not distort the phase component of the data since the VPE is only 2.3 degrees. 

Table 7.10 MPE and VPE results for the peri-urban scene. 

 BAQ FFT-BAQ FDBAQ 

MPE (rad) 0.2502 0.3598 0.3402 

MPE (degrees) 14.34 20.62 19.49 

VPE (rad) 0.0401 0.6614 0.2936 

VPE (degrees) 2.3 37.9 16.82 

 

To better visualise the distortion that the different compression methods introduce, the error 

between the phases of the uncompressed data and the decompressed data, is plotted for each 

method. The results can be seen in Figure 7.23 to Figure 7.25. 

 

Figure 7.23 Visual representation of the phase error between the original data and the data after 

the BAQ decompression. 
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Figure 7.24 Visual representation of the phase error between the original data and the data after 

the FFT-BAQ decompression. 

 

 

Figure 7.25 Visual representation of the phase error between the original data and the data after 

the FDBAQ decompression. 



CHAPTER 7 SAR OUTPUT AND EVALUATION OF METRICS 

 

Department of Electrical, Electronic and Computer Engineering 141 

University of Pretoria 

It can be seen that the BAQ method introduces small phase errors across the entire scene, 

while it seems like the FFT-BAQ method revealed a cyclic feature in the data and then 

distorts it further. The FDBAQ method shows areas in the scene with greater errors than 

other areas. 

 

After investigating the results in the data domain, it was seen that some metrics favoured the 

time-domain methods, while some metrics favoured the frequency-domain method. 

Therefore, a decision on the performance of a raw SAR data compression algorithm cannot 

be made by only considering the metrics in the data domain alone. The metrics in the image 

domain also need to be considered when choosing a suitable algorithm for an application. 

7.4 EVALUATION OF IMAGE-DOMAIN METRICS 

The metrics discussed in Section 5.3 were evaluated and the results are summarised below. 

All three of the compression algorithms were evaluated for all three data sets with similar 

tendencies being observed. These metrics are evaluated in the image domain, which means 

they are evaluated after the SAR processing has been implemented, as can be seen in Figure 

4.1. Firstly, all the results in the image domain are summarised by means of tables and 

figures, thereafter, the results are discussed. 
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7.4.1 Data set 1: Rural scene 

7.4.1.1 2-Bit results 

Table 7.11 Statistical parameters of the rural scene in the image domain. 

Metric 

Image of 

uncompressed 

data 

Image after 

BAQ 

 method 

Image after 

FFT-BAQ 

method 

Image after 

FDBAQ 

method 

Dynamic Range 95.34 dB 94.37 dB 93.32 dB 94.56 dB 

Mean (mag) 21 259.02 22 570.96 20 591.05 19 876.46 

Mean (phase) 1.13×10-4 -2.51×10-4 -1.07×10-4 -2.05×10-4 

Standard deviation 

(mag) 

12 934.97 13 465.02 12 750.12 11 868.82 

Standard deviation 

(phase) 

1.81 1.81 1.81 1.81 

Skewness (mag) 1.89 1.71 2.03 1.71 

Skewness (phase) -1.87×10-5 2.49×10-5 1.45×10-5 8.14×10-6 

Kurtosis (mag) 14.9 12.84 16.46 12.88 

Kurtosis (phase) 1.8 1.8 1.8 1.8 

Differential Entropy 16.12 16.21 16.08 16.03 

 

Table 7.12 Image quality measures for the rural scene. 

Metric 

Image of 

uncompressed 

data 

Image after 

BAQ 

 method 

Image after 

FFT-BAQ 

method 

Image after 

FDBAQ 

method 

Image Contrast 0.6084 0.5966 0.6192 0.5971 

Global Contrast 

Factor 

0.1535 0.1547 0.1465 0.1546 
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Table 7.13 Image fidelity measures for the rural scene. 

Metric 

Image after 

BAQ 

 method 

Image after 

FFT-BAQ 

method 

Image after 

FDBAQ 

method 

SDNR 11.54 dB 13.03 dB 11.91 dB 

MSE 4.34×107 3.08×107 3.99×107 

MPE (rad) 0.5839 0.5889 0.5836 

MPE (degrees) 33.46 33.74 33.44 

 

 

Figure 7.26 Error images of the rural scene. (a) BAQ applied. (b) FFT-BAQ applied. (c) FDBAQ 

applied. 

 

 

(a) (b) (c) 
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7.4.2 Data set 2: Mine scene 

7.4.2.1 2-Bit results 

Table 7.14 Statistical parameters of the mine scene in the image domain. 

Metric 

Image of 

uncompressed 

data 

Image after 

BAQ 

 method 

Image after 

FFT-BAQ 

method 

Image after 

FDBAQ 

method 

Dynamic Range 94.66 dB 92.09 dB 95.36 dB 99.03 dB 

Mean (mag) 27 911.63 29 711.97 26 752.46 26 287.95 

Mean (phase) -1.95×10-4 1.99×10-4 -1.90×10-4 -1.75×10-5 

Standard deviation 

(mag) 

22 352.76 22 682.12 22 329.6 20 363.61 

Standard deviation 

(phase) 

1.81 1.81 1.81 1.81 

Skewness (mag) 3.21 3.01 3.31 3.08 

Skewness (phase) 4.35×10-5 9.62×10-6 -4.84×10-6 8.53×10-5 

Kurtosis (mag) 24.77 22.73 25.56 23.5 

Kurtosis (phase) 1.8 1.8 1.8 1.8 

Differential Entropy  16.54 16.63 16.48 16.45 

 

Table 7.15 Image quality measures for the mine scene. 

Metric 

Image of 

uncompressed 

data 

Image after 

BAQ 

 method 

Image after 

FFT-BAQ 

method 

Image after 

FDBAQ 

method 

Image Contrast 0.8008 0.7634 0.8347 0.7746 

Global Contrast 

Factor 

0.1538 0.1547 0.1480 0.1523 
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Table 7.16 Image fidelity measures for the mine scene. 

Metric 

Image after 

BAQ 

 method 

Image after 

FFT-BAQ 

method 

Image after 

FDBAQ 

method 

SDNR 12.46 dB 13.25 dB 12.98 dB 

MSE 7.25×107 6.04×107 6.44×107 

MPE (rad) 0.5585 0.5582 0.5595 

MPE (degrees) 32 31.98 32.06 

 

 

Figure 7.27 Error images of the mine scene. (a) BAQ applied. (b) FFT-BAQ applied. (c) FDBAQ 

applied. 

 

(a) (b) (c) 
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7.4.3 Data set 3: Peri-urban scene 

7.4.3.1 2-Bit results 

Table 7.17 Statistical parameters of the peri-urban scene in the image domain. 

Metric 

Image of 

uncompressed 

data 

Image after 

BAQ 

 method 

Image after 

FFT-BAQ 

method 

Image after 

FDBAQ 

method 

Dynamic Range 114.55 dB 114.77 dB 115.01 dB 112.09 dB 

Mean (mag) 22 762.81 25 095.08 22 532.18 22 063.778 

Mean (phase) -3.08×10-4 -3.3×10-4 -1.62×10-5 -4.04×10-5 

Standard deviation 

(mag) 

22 280.39 22 785.34 22 070.9 20 478.46 

Standard deviation 

(phase) 

1.81 1.81 1.81 1.81 

Skewness (mag) 19.27 19.04 18.04 18.9 

Skewness (phase) 1.33×10-5 5×10-6 -9.76×10-5 -2.58×10-6 

Kurtosis (mag) 1 346.54 1 320.88 1 167.46 1 295.15 

Kurtosis (phase) 1.8 1.8 1.8 1.8 

Differential Entropy 16.23 16.37 16.22 16.19 

 

Table 7.18 Image quality measures for the peri-urban scene. 

Metric 

Image of 

uncompressed 

data 

Image after 

BAQ 

 method 

Image after 

FFT-BAQ 

method 

Image after 

FDBAQ 

method 

IRW (range) 1.06 m 0.9994 m 1.12 m 0.9994 m 

IRW (azimuth) 9.68 m 9.62 m 9.74 m 9.68 m 

PSLR (range) -18.94 dB -16.9 dB -16.55 dB -16.39 dB 

PSLR (azimuth) -25.12 dB -23.26 dB -24.65 dB -24.59 dB 

Image Contrast 0.9788 0.9080 0.9795 0.9281 

Global Contrast 

Factor 

0.0947 0.0917 0.0931 0.0911 
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Figure 7.28 IRF of the peri-urban scene before and after 2-bit compression. (a) Extracted target. 

(b) Range direction. (c) Cross-range direction. 

 

Table 7.19 Image fidelity measures for the peri-urban scene. 

Metric 

Image after 

BAQ 

 method 

Image after 

FFT-BAQ 

method 

Image after 

FDBAQ 

method 

SDNR 11.41 dB 14.27 dB 12.5 dB 

MSE 7.34×107 3.79×107 5.71×107 

MPE (rad) 0.5779 0.5924 0.5810 

MPE (degrees) 33.11 33.94 33.29 

 

 

 (a) 

 



CHAPTER 7 SAR OUTPUT AND EVALUATION OF METRICS 

 

Department of Electrical, Electronic and Computer Engineering 148 

University of Pretoria 

 

Figure 7.29 Error images of the peri-urban scene for 2-bit compression. (a) BAQ applied. 

(b) FFT-BAQ applied. (c) FDBAQ applied. 

 

(a) (b) (c) 
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7.4.3.2 3-Bit results 

Table 7.20 Statistical parameters of the peri-urban scene in the image domain. 

Metric 

Image of 

uncompressed 

data 

Image after 

BAQ 

 method 

Image after 

FFT-BAQ 

method 

Image after 

FDBAQ 

method 

Dynamic Range 114.55 dB 114.08 dB 121.71 dB 122.90 dB 

Mean (mag) 22 762.81 23 358.8 22 063.5 22 499.6 

Mean (phase) -3.08×10-4 5.71×10-5 -2.55×10-4 -2.36×10-4 

Standard deviation 

(mag) 

22 280.39 22 490.74 22 209.73 21 745.14 

Standard deviation 

(phase) 

1.81 1.81 1.81 1.81 

Skewness (mag) 19.27 19.59 19.11 19.6 

Skewness (phase) 1.33×10-5 -7.27×10-5 -2.1×10-5 -1.06×10-5 

Kurtosis (mag) 1 346.54 1 360.82 1 287.63 1 359.97 

Kurtosis (phase) 1.8 1.8 1.8 1.8 

Differential Entropy 16.23 16.27 16.19 16.22 

 

Table 7.21 Image quality measures for the peri-urban scene. 

Metric 

Image of 

uncompressed 

data 

Image after 

BAQ 

 method 

Image after 

FFT-BAQ 

method 

Image after 

FDBAQ 

method 

IRW (range) 1.06 m 0.9994 m 1.06 m 1.06 m 

IRW (azimuth) 9.68 m 9.68 m 9.68 m 9.68 m 

PSLR (range) -18.94 dB -17.1 dB -16.77 dB -16.87 dB 

PSLR (azimuth) -25.12 dB -24.28 dB -24.26 dB -24.36 dB 

Image Contrast 0.9788 0.9628 1.0066 0.9665 

Global Contrast 

Factor 

0.0947 0.0925 0.0927 0.0924 
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Figure 7.30 IRF of the peri-urban scene before and after 3-bit compression. (a) Extracted target. 

(b) Range direction. (c) Cross-range direction. 

 

Table 7.22 Image fidelity measures for the peri-urban scene. 

Metric 

Image after 

BAQ 

 method 

Image after 

FFT-BAQ 

method 

Image after 

FDBAQ 

method 

SDNR 15.84 dB 16.92 dB 16.22 dB 

MSE 2.64×107 2.06×107 2.42×107 

MPE (rad) 0.6044 0.6097 0.6051 

MPE (degrees) 34.63 34.93 34.67 

 

 

 (a) 
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Figure 7.31 Error images of the peri-urban scene for 3-bit compression. (a) BAQ applied. 

(b) FFT-BAQ applied. (c) FDBAQ applied. 

7.4.4 Discussion of the image-domain metrics results 

7.4.4.1 Statistical parameters 

In Table 7.11, Table 7.14, and Table 7.17, the results of the statistical parameters for each 

scene are summarised, respectively. The results suggest that all methods perform equally 

well in this domain, since the statistical characteristics of the original SAR image did not 

change significantly after applying any of the compression algorithms. Therefore, since the 

mean and standard deviation did not change significantly, it implies that no bias was 

introduced in the images after decompression, nor did the speckle content of these images 

change significantly. The results of the skewness and kurtosis parameters also show that the 

distributions of the magnitude and phase components of the reference SAR image did not 

deviate significantly when applying the compression algorithms. The differential entropy 

 

(a) (b) (c) 
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after applying the compression methods did not change significantly compared to the 

differential entropy computed for the reference SAR image. 

 

The one statistical parameter that needs more attention, is the dynamic range. In the data 

domain, there was about a 50 dB difference between the dynamic ranges of the time-domain 

methods and the frequency-domain method. However, in the image domain, the dynamic 

range of the FDBAQ method is slightly greater than that of the FFT-BAQ method in most 

cases. This shows that in the image domain, a greater range of values are represented in the 

SAR image after implementing the FDBAQ method than that of the SAR image after the 

FFT-BAQ method. This therefore implies that the coherent SAR processing exploits 

averaging to reduce the effects caused by the quantisation in the data domain, so that great 

differences in the data domain have little effect in the image domain. 

7.4.4.2 Image quality measures 

After SAR processing, the SAR image is produced and the visual quality of the image can 

be determined by the image quality measurements. These metrics include the impulse 

response function (IRF), the image contrast (IC), and the global contrast factor (GCF) and 

are summarised in Table 7.12, Table 7.15, and Table 7.18, for the respective scenes. When 

considering the IC ratio, which directly relates to the dynamic range, it can be seen that the 

SAR image after applying the FFT-BAQ method has the highest contrast ratio. This result 

can also be confirmed visually, since a higher contrast ratio means a crisper image. When 

comparing the images of the farm scene after the different compression methods in 

Figure 7.7, Figure 7.8 for the mine scene, and Figure 7.9 for the  

 scene, a slightly higher level of crispness of the SAR image after the FFT-BAQ method can 

be observed. The boundaries in the images between, for example, the water of the dam and 

the residential area in the peri-urban scene, can be distinguished more easily for the image 

with FFT-BAQ applied. Quantising the data in the frequency domain causes less image 

degradation than quantising the data in the time domain. It has a visible effect on the dynamic 

range and the image contrast of the SAR images, which are slightly higher when the 

FFT-BAQ method is applied. 
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Another important image quality metric is the IRF of the SAR system. It is the response of 

the SAR system to a point scatterer. For this investigation, the peri-urban scene data set was 

used since this scene contained more bright scatterers than the rural or mine scenes. Usually, 

the IRF of a SAR system is determined by placing targets with a known RCS, like a 

transponder or reflector, in the scene to measure the response. However, to compare the IRF 

after applying different compression algorithms, using the available data sets, a target of 

opportunity had to be used. Thus, the method explained in [128] was executed and the 

extracted target can be seen in Figure 7.28 (a). The IRF was determined for the case where 

no compression algorithm was applied to the data to serve as the reference, as well as for the 

case where compression was applied. The effect that each compression algorithm has on the 

impulse response can then be determined.  

 

The IRF results for the 2-bit compression case are summarised in Table 7.18. The IRF in the 

range and cross-range directions is plotted in Figure 7.28 (b) and (c). The 3 dB widths after 

applying the respective compression methods correspond well to the reference values. 

Although the side lobes are higher in the range direction, observed for all three compression 

methods, the overall shape of the reference IRF is maintained. Therefore, none of the 

compression methods has a detrimental effect on the impulse response of the original SAR 

image without any compression applied. If the goal of the SAR mission was to identify 

man-made targets, the compression algorithm with the smallest effect on the IRF would be 

preferred. Since man-made targets have similar scattering characteristics to point scatterers, 

the impulse response of the system needs to be preserved. 

7.4.4.3 Image fidelity measures 

The image fidelity measures are an indication of the exactness with which the SAR image, 

with compression applied, was reproduced compared to the reference SAR image. In this 

domain, these metrics are a measure of the distortions that propagated into the image domain 

caused by quantising in the data domain. The results are summarised in Table 7.13, Table 

7.16, and Table 7.19, for the respective scenes. It can be seen that the FFT-BAQ method has 
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the smallest errors in this domain, since it achieves the highest signal-to-distortion-noise 

ratio (SDNR), while the MSE and MPE are slightly smaller than for the two time-domain 

methods. 

 

The MSE was further investigated to determine whether the errors caused by the 

compression algorithms are present throughout the scene or confined to only the bright 

scatterers. The squared error of the magnitude component is plotted for the Pecanwood scene 

and are representative of the other two data sets. The magnitude component of the original 

Pecanwood SAR image is plotted in Figure 7.32 to serve as the reference image. The 

magnitude error for the three different algorithms are plotted in Figure 7.33 to Figure 7.35. 

in the reference figure it can be seen that cyclic components are present in the final SAR 

image. It can be seen that the cyclic components are no longer present after implementing 

the time domain compression. However, these components are still present after 

implementing the frequency domain method, FFT-BAQ. FFT-BAQ causes large errors on 

the cyclic components as can be seen in Figure 7.34. The BAQ method causes errors across 

the scene, while the FDBAQ method causes greater errors for the large bright scatterers. 

 

Figure 7.32 Magnitude component of the peri-urban scene SAR image. 
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Figure 7.33 Visual representation of the magnitude error between the original image and the 

image after the BAQ decompression. 

 

Figure 7. 34 Visual representation of the magnitude error between the original image and the 

image after the FFT-BAQ decompression. 
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The MPE was also further investigated to determine whether the error is due to distortion or 

a bias in the data. This was determined by computing the variance of the phase error (VPE). 

The results of the Pecanwood scene are summarised in Table 7.23 and are representative of 

the other two data sets. The VPE shows that the phase errors are due to corruptions caused 

by the compression algorithms implemented in the data domain, with the FFT-BAQ method 

causing slightly less corruptions. 

Table 7.23 MPE and VPE results for the peri-urban scene. 

 BAQ FFT-BAQ FDBAQ 

MPE (rad) 0.5779 0.5924 0.5810 

VPE (rad) 0.9604 0.7849 0.9332 

VPE (degrees) 55.03 44.97 53.47 

 

Figure 7.35 Visual representation of the magnitude error between the original image and the 

image after the FDBAQ decompression. 
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Figure 7.36 Visual representation of the phase error between the original image and the image 

after the BAQ decompression. 

 

Figure 7. 37 Visual representation of the phase error between the original image and the image 

after the FFT-BAQ decompression. 
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To better visualise the distortion that the different compression methods introduce, the error 

between the phases of the original SAR image and the SAR image from the decompressed 

data is plotted for each method. The results can be seen in Figure 7.36 to Figure 7.38. The 

figures show that all three methods perform similar in terms of the corruption of the phase 

component of the SAR image. 

7.4.4.4 Error images 

When visually investigating the magnitude error images, Figure 7.26, Figure 7.27, and 

Figure 7.29, it can be concluded that the BAQ method obtains the best results in all cases. 

The error images represent the characteristic operation of each algorithm visually. For the 

BAQ case, errors are present all over the scene, while for the FDBAQ method the errors are 

confined to the bright scatterers where more bits were used to encode the data, and the 

spreading of the cyclic errors across the scene due to the FFT computation can be seen for 

 

Figure 7.38 Visual representation of the phase error between the original image and the image 

after the FDBAQ decompression. 
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the FFT-BAQ method. Overall, it seems like the BAQ method has less erroneous samples, 

or smaller errors, present in the scenes. 

 

After investigating the results in the image domain it is clear that the quality of the SAR 

images after applying the FFT-BAQ method is better than the quality of the SAR images 

after applying the BAQ or FDBAQ methods. For all three methods, the characteristic 

features of the scene can easily be identified, but the images of the different scenes are crisper 

after applying the FFT-BAQ method. This shows that the error images can only visually 

represent some of the corruptions that are present in an image. 

7.5 DATA-DOMAIN METRICS VS IMAGE-DOMAIN METRICS 

The metrics were divided into two domains to evaluate the algorithms at two stages of the 

SAR system, i.e. before and after SAR processing is performed. Evaluating an algorithm at 

two stages means one can distinguish between the data volume reduction capability of the 

algorithm and the image degradation caused by the algorithm. 

 

When considering the results of the data-domain metrics, it was seen that the BAQ and 

FDBAQ methods had detrimental effects on the phase information since the entropy of the 

phase component was not preserved. When considering the data histograms of these two 

algorithms, the change in their probability distributions compared to the original distribution 

was quite severe. These changes are due to the operation of the algorithms in the time domain 

where only certain reconstruction values are present. Therefore, it seems like the 

time-domain methods of compression distorted the original data when considering only the 

data-domain metrics. 

 

In the data-domain the FFT-BAQ method outperformed the two time-domain methods when 

considering the statistical parameters like the dynamic range, entropy, skewness, and 

kurtosis. The entropy of both components of the decompressed FFT-BAQ data compare very 

well with the entropy of the uncompressed data, indicating that the decompressed data have 
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a high information content. The data histograms also confirm the that the distributions of the 

original data components are well preserved. However, the error measures in the 

data-domain indicated that the FFT-BAQ method introduced the most severe distortions 

compared to the other two methods. 

 

However, the results of the image-domain metrics show that all three methods performed 

well. This statement is supported by the IRF, IC and GCF results that compare well with that 

of the SAR images of the uncompressed data. Where the FFT-BAQ method achieved the 

lowest SQNR in the data domain, it achieved the highest SDNR in the image domain. It can 

thus be confirmed that the FFT-BAQ method outperforms the other two methods, but it can 

be concluded that all three methods are well suited for the compression of raw SAR data. 

 

The outcome of the results confirms that the averaging involved in coherent SAR processing, 

greatly reduces the effects caused by quantisation in the data domain, so that great 

differences in the data domain have little effect in the image domain. It therefore remains 

important to evaluate metrics in both domains, since the data-domain metrics can aid in 

understanding the operation of an algorithm and the distortion it introduced, while the 

image-domain metrics aid in evaluating the quality of the SAR image and whether it still 

contains the necessary information for the specific application. 

7.6 3-BIT VS 2-BIT RESULTS 

The focus was on the performance of the 2-bit compression case. However, 3-bit 

compression of the peri-urban scene was also performed to investigate the validity of the 

proposed evaluation metrics for different scenarios, an output bit rate change in this case. 

 

When decreasing the compression ratio (CR) from 6 (corresponding with an 83 % reduction 

in the data volume) to 4 (corresponding with a 75 % reduction in the data volume), it is 

expected that the dynamic range and entropy of the decompressed data will increase for all 

compression methods, while the distortion errors will decrease, since information is better 
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preserved. The data-domain results are as expected for the BAQ and FDBAQ methods. For 

the FFT-BAQ method, however, the dynamic range and entropy remains constant for both 

the 2-bit and the 3-bit compression results, since all possible values are represented after the 

FFT-BAQ method has been applied, irrespective of the number of bits used. The error 

measures also confirm the expected outcome since the MSE and MPE have decreased, while 

the SQNR has increased in the 3-bit compression case for the time-domain methods. Again, 

the FFT-BAQ method behaves differently since the SQNR increased by less than a dB, while 

the SQNR for the two time-domain methods increased by about 5 dB in the 3-bit output bit 

rate case. 

 

The 3-bit results in the image domain are as expected when decreasing the compression ratio 

from 6 to 4 since there is an increase in the dynamic range and IC of the SAR images for all 

compression methods. The error measures also confirm the expected outcome since the MSE 

and MPE decreased, while the SDNR increased in the 3-bit compression case. 

 

Comparing the 2-bit and 3-bit results confirmed the expected outcome when decreasing the 

compression ratio since the dynamic range and SNR in both domains increased. An overall 

observation from this study is that the 3-bit BAQ method outperforms the 2-bit FFT-BAQ 

method. Therefore, for better performance in terms of data reduction and image quality, but 

at a lower computational complexity and less overhead data, the 3-bit BAQ method is the 

suggested solution for the SAR application in this study. 

7.7 INVESTIGATION OF THE METRICS OF IMPORTANCE FOR A SINGLE 

FREQUENCY, SINGLE POLARISATION SAR 

In Section 5.4, the SAR technologies and the corresponding metrics that are important to 

preserve were discussed. Since the data used in this study are from a single frequency, single 

polarisation SAR, the metrics of importance for this technology were investigated to 

determine whether the compression algorithms applied in this study are in fact suitable for 

this SAR technology and do not degrade the performance. If the important metrics were not 
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well preserved after compressing and decompressing the raw SAR data, it could be 

concluded that the algorithms are not well suited for this particular SAR technology and its 

applications. The primary applications of a single frequency, single polarisation SAR system 

are image classification, detection of man-made targets and change detection. 

 

For image classification, the metrics that need to be preserved are the statistical parameters 

and the image quality measures like the IC and the GCF. The results showed that the 

statistical parameters of the SAR images after decompression compare well with the 

statistical parameters of the original SAR image. The image quality results also showed that 

the IC and the GCF of the SAR images after decompression compare well with that of the 

original SAR image, ensuring that a high image contrast is maintained. The BAQ, 

FFT-BAQ, and the FDBAQ, all achieved high image contrast and would therefore be 

well-suited for the application of image classification. 

 

The metrics that need to be preserved for the detection of man-made targets are the image 

quality metrics and the amplitude MSE of the SAR image. The image quality metrics include 

the impulse response function, i.e. the 3 dB impulse response width (IRW) and the 

peak-to-side lobe ratio (PSLR), the IC and the GCF. The results showed that the image 

quality measures of the SAR images after the decompression for all three methods compare 

well with that of the original SAR image. Since the IRW and PSLR are well maintained after 

implementing compression as part of the SAR process, this means that high sensitivity to 

point scatters are maintained. This implies that all three algorithms would be well suited for 

the application of the detection of man-made targets. However, the FFT-BAQ achieved the 

highest IC and GCF, and the lowest amplitude MSE, implying that the magnitude component 

of the data is better preserved, and therefore highly suited for the detection of man-made 

targets. 

 

For change detection it is important to achieve a high SDNR to ensure that small changes 

are not masked by noise. The results showed that all three algorithms achieved a SDNR of 

greater than 11 dB after 2-bit compression. Of the three compression algorithms, the 
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FFT-BAQ achieved the highest SDNR, and would therefore be well-suited for the 

application of change detection. Alternatively, the 3-bit BAQ algorithm could be used to 

achieve a higher SDNR at the price of a slightly higher output data volume. 

7.8 CHAPTER SUMMARY 

Firstly, the general regions where the flight tests took place were showed to introduce the 

typical features of each scene type. The SAR image of the specific swath that was imaged in 

each case was given as a first introduction to how an image of the ground looks, when using 

a radar as the imaging system. The SAR images, after implementing the three chosen 

compression algorithms, the BAQ, FFT-BAQ, and FDBAQ, were given and compared to 

the image when no compression was applied to the raw data. 

 

In Section 7.3 the results of the data-domain metrics were summarised. The results showed 

that the statistical parameters are representative of the deviation of the distributions after 

compression from the original distributions without compression. It was seen that the data 

histograms are an important visual representation of the effects that the different 

compression algorithms have on the data in the data domain, while the error measures are 

an indication of the error introduced by quantisation. 

 

In Section 7.4 the results of the image-domain metrics were summarised. The statistical 

parameters show that the characteristics of the SAR image without compression are largely 

preserved since the values after compression compare well. Using the image quality metrics, 

which include the IRF, IC, and GCF, the visual quality of the images with and without 

compression applied, could be determined. Based on these results, it can be determined 

whether the compression algorithm caused degradation of the SAR image quality. Another 

group of metrics evaluated in the image domain, is the image fidelity measures, which are 

an indication of the exactness with which the SAR image, with compression applied, was 

reproduced compared to the reference SAR image. These metrics include the MSE, MPE, 
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and the SDNR, and gives an indication of the errors that propagated into the image domain 

after quantisation. 

 

In Section 7.5, the results of the data-domain metrics were compared with the results of the 

image-domain metrics. It was seen that although the data-domain metrics suggested that the 

BAQ and FDBAQ methods caused information loss due to the low entropy of their phase 

components and the deviation in the probability distributions, the image-domain metrics 

suggested that both these methods maintained the quality of the original SAR image. 

According to the error measures in the data domain, the FFT-BAQ method introduced the 

most distortion. However, the image fidelity measures in the image domain showed that the 

FFT-BAQ method outperformed the two time-domain methods. This confirms the 

importance of evaluating metrics in both domains. The data-domain metrics can aid in 

understanding the operation of an algorithm and the distortion it introduced, while the 

image-domain metrics aid in evaluating the quality of the SAR image and determining 

whether the distortions propagated into the image domain. 

 

In Section 7.6, the 2-bit results and 3-bit results were compared. After taking the 

data-domain metrics and image-domain metrics into account, it was observed that the 3-bit 

BAQ method outperforms the 2-bit FFT-BAQ method. The 3-bit BAQ method reduces the 

data volume by 67 % and achieves better SDNR than the 2-bit FFT-BAQ method. Another 

advantage is that the BAQ method has lower computational complexity and less overhead 

data. 

 

The metrics that are important for a single frequency, single polarisation SAR system are 

investigated in Section 7.7. It was concluded that the compression algorithms that were 

implemented in this study are all well-suited for the SAR technology. It was seen that all 

three compression algorithms achieved good results for the image contrast, the impulse 

response function, and the SDNR. Therefore, these algorithms are suitable for SAR 

applications like image classification, the detection of man-made targets, and global 

monitoring or change detection. 



 

 

CHAPTER 8 CONCLUSION AND FUTURE 

WORK 

8.1 CONCLUSION 

An important characteristic of modern spaceborne SAR systems and small unmanned aerial 

vehicle (UAV) SAR systems is that the acquired data is not processed on the platform, but 

are transmitted to a ground station for processing or stored on board for post-processing. The 

main constraints in the design of these SAR systems are the unavailability of a downlink 

with a high data rate and the immense storage capacity required. In order to address the 

problem of large data volumes acquired by a SAR system, an efficient compression 

algorithm had to be investigated and implemented without degrading the SAR image quality 

and compromising the outcome of the SAR mission. Therefore, the performance and losses 

caused by these compression algorithms needed to be quantified in order to select the best 

suited algorithm for the application.  

 

Despite the importance of being able to quantify the performance of SAR data-compression 

algorithms, it was found that there are no widely-accepted set of metrics available in the 

literature. Therefore, quantitative performance metrics were established to objectively 

quantify the performance of SAR data-compression algorithms. These metrics were 

evaluated for three different SAR-data compression algorithms applied to real airborne SAR 

data sets.  

 

The main findings of the study are summarised below. 
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8.1.1 Implemented SAR compression algorithms 

An investigation of the results of the data and image domain metrics, shows that all three 

compression methods chosen for this study, perform well when the objective is to decrease 

the volume of data while preserving the SAR image quality at the final output. Therefore, 

these compression algorithms can be said to be well suited for raw SAR data in general since 

the algorithms performed well for all scenes in this study. From rural to peri-urban scene 

types, the distinct features could easily be recognised and little degradation of the SAR 

images occurred. Thus, the BAQ, FFT-BAQ, and FDBAQ algorithms meet the performance 

and quality requirements for this SAR application, namely a single frequency, single 

polarisation, basic SAR system.  

 

When comparing the different metrics for the three algorithms, it can be concluded that when 

only considering the data domain metrics, the time domain methods seem to outperform the 

FFT-BAQ method. However, when investigating the image domain metrics, it can be 

concluded with certainty that the FFT-BAQ method actually outperforms the time domain 

methods, since this method produces a higher SDNR, image contrast and global contrast 

factor. Therefore, it is concluded that a better quality SAR image is produced after applying 

the FFT-BAQ algorithm compared to the quality of the SAR images produced after applying 

the two time-domain methods.   

8.1.2 Validity of the proposed metrics 

The goal of this work was to determine whether the established metrics can be used to 

objectively quantify the performance of SAR-data compression algorithms. Metrics were 

established in two different domains, i.e. before and after SAR processing is performed. The 

effects of the algorithm on the raw data, as well as on the output of the SAR system, must 

be quantitatively evaluated to establish whether the algorithm is a viable solution. 

 

It was found that the metrics applied in the two different domains are of tremendous value 

when determining the effects of compressing the raw SAR data. First, the compression 
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algorithm metrics can be evaluated to determine the effects of the compression algorithm in 

the data domain. Important metrics include the CR, the entropy, statistical parameters like 

the skewness and kurtosis to measure the deviation from the original distributions of the 

uncompressed data, and the dynamic range. The data histograms are an important visual 

representation of the effects of the compression algorithm on the data. An important error 

measure in the data domain is the SQNR and the phase error measures for applications where 

phase information is an integral part of forming the output of the SAR system. 

 

After the SAR processing, another set of metrics can be evaluated to determine the 

degradation in the image domain. Here, the emphasis is on the quality of the SAR image that 

was produced from the data that had undergone the compression on board the SAR platform. 

Important metrics in the image domain include the dynamic range, the IRF, the image 

contrast, as well as the error measure, SDNR. In the image domain, the phase error measure, 

MPE, are important for applications where phase information is required to form the output 

of the SAR system. The SAR technologies where the phase information is the most important 

component of the complex SAR image, are InSAR and PolSAR. 

 

It was seen that the metrics could be used to determine the best suited algorithm for each 

single frequency, single polarisation SAR application, since data from this technology was 

used to conduct the study. The outcome of the research is thus that the proposed metrics are 

useful as performance indicators for raw SAR-data compression algorithms, and in turn 

addresses the lack of standardised, quantitative performance metrics in this field. 

 

8.1.3 Identified trade-offs 

For some SAR applications, a certain level of degradation is acceptable and the outcome of 

the SAR mission will be unaltered. For other applications, much less degradation can be 

tolerated as it will heavily affect the outcome of the mission. It is also true that for a certain 

application, one component of the data is more important to preserve than another. 

Therefore, by evaluating the metrics for different compression algorithms, the data reduction 
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vs. image degradation can be considered and the best suited algorithm based on the SAR 

system requirements, can be chosen for onboard implementation. 

 

Although a compression algorithm may have performed better than another in one or both 

domains, the computational complexity is of importance when practical implementation 

needs to be considered. Therefore, the computational complexity of each algorithm was 

determined using big O notation. Due to the SWAP-C limitations of modern SAR platforms, 

the trade-off between the computational complexity and the performance of the compression 

algorithm is a very important consideration. Depending on the application of the SAR 

system, one or the other will be of higher priority.  

 

The metrics proposed in this dissertation can be used during the design phase of a SAR 

system, when a compression algorithm for implementation on board a platform needs to be 

chosen. The results of the metrics can be used to conduct a thorough investigation on the 

performance and complexity of different compression algorithms for raw SAR data. 

8.2 SUGGESTED FUTURE WORK 

8.2.1 Metrics in the fusion domain 

The proposed metrics were shown to be useful when a compression algorithm needs to be 

selected for onboard implementation, but the metrics are only evaluated in the data and 

image domains. Since data fusion is an emerging topic and the future of remote sensing 

systems, establishing metrics to evaluate in the fusion domain could also be beneficial. 

8.2.2 Evaluating the metrics for data from multiple SAR systems 

In this study, the data from a prototype SAR system were used. The study should be repeated 

with more data sets from other SAR technologies with different applications. Other types of 

SAR systems should include FMCW systems, unmanned aerial vehicle (UAV) SAR 
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systems, spaceborne systems, InSAR, and PolSAR systems to ensure that the metrics still 

produce valuable information when choosing between various compression algorithms. 

8.2.3 Novel SAR compression algorithm and the verification thereof using the 

proposed metrics 

Since three well-known SAR compression algorithms have been implemented in this study, 

another topic of research could be to build on the successes of each method and design a 

novel raw SAR-data compression algorithm. The novel algorithm could be optimised for a 

certain SAR technology and therefore outperform current SAR compression algorithms in 

that application. Again, the proposed metrics could be used to evaluate the performance of 

the novel algorithm. 

8.2.4 Hardware implementation of the proposed compression algorithms 

This study was limited to the implementation of the chosen compression algorithms in 

software only. Valuable information could be obtained by implementing these algorithms in 

hardware. The metrics could be evaluated for this implementation and then compared to the 

outcome of the software implementation. A hardware implementation of the algorithms 

could also give insights about the real-time performance capabilities, as well as the 

computational resource requirements of each algorithm. This information could aid in 

choosing a suitable algorithm for implementation on board a SAR platform 
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