8 research outputs found

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    Droner som FKT - bruk av droner som forebyggende tiltak i beitenæringen

    Get PDF
    Utmarksbeitende dyr er utsatt for angrep fra fredet rovvilt. I oppdrag fra rovviltnemnda i region 6 Midt-Norge undersøker vi den mulige nytteverdien av droner i åpen kategori som forebyggende- og konfliktdempende tiltak (FKT). Utredningen er basert på informasjon fra intervjuer, faglitteratur og dronetestflygninger.Droner som FKT kan brukes under (1) tilsyn, (2) flytting av dyr fra rovdyrutsatte områder, (3) automatisk gjenkjenning og telling av dyr, (4) overvåkning av rovdyrutsatte områder, (5) kadaversøk, (6) søk av skadete eller skremte beitedyr og (7) sporing av rovdyr. Dronebruk i åpen kategori er delvis mulig for (1) – (3) så lenge dronen er innen synsrekkevidden. Slike operasjoner kan ikke skilles fra vanlig drift. Operasjoner under (4) – (7) må dekke større områder og må utføres i spesifikk kategori. Effektiviteten av slike droneoperasjoner er ukjent. Droner kan brukes i alle typer habitat ved å tilpasse sensorene for fjernmåling. Regelverket, signaldekning, vær- og lysforhold setter begrensninger. Dronesystemer i åpen kategori er lett, enkle å bruke, transportere og lade. Mer avanserte droner (<25 kg) er dyre og vanskelig å transportere og lade og brukes best i spesifikk kategori for mer varierte FKT-formål. I nær framtid kan droner f.eks. brukes til sporing av beite- og rovdyr, kadaversøk og skremming, samt innhenting av data fra elektroniske sporingsenheter på dyr. Til og med selvgående droner som rykker ut når en nødsituasjon oppstår er mulig. Effektiviteten bør testes under norske lys- og værforhold. I samsvar med en rask teknologiutvikling krever økt dronebruk i utmark økt oppmerksomhet omkring konsekvensene med hensyn til offentlig sikkerhet, personvern og ikke minst dyreliv.Droner som FKT - bruk av droner som forebyggende tiltak i beitenæringenpublishedVersio

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    SAR Image Edge Detection: Review and Benchmark Experiments

    Get PDF
    Edges are distinct geometric features crucial to higher level object detection and recognition in remote-sensing processing, which is a key for surveillance and gathering up-to-date geospatial intelligence. Synthetic aperture radar (SAR) is a powerful form of remote-sensing. However, edge detectors designed for optical images tend to have low performance on SAR images due to the presence of the strong speckle noise-causing false-positives (type I errors). Therefore, many researchers have proposed edge detectors that are tailored to deal with the SAR image characteristics specifically. Although these edge detectors might achieve effective results on their own evaluations, the comparisons tend to include a very limited number of (simulated) SAR images. As a result, the generalized performance of the proposed methods is not truly reflected, as real-world patterns are much more complex and diverse. From this emerges another problem, namely, a quantitative benchmark is missing in the field. Hence, it is not currently possible to fairly evaluate any edge detection method for SAR images. Thus, in this paper, we aim to close the aforementioned gaps by providing an extensive experimental evaluation for SAR images on edge detection. To that end, we propose the first benchmark on SAR image edge detection methods established by evaluating various freely available methods, including methods that are considered to be the state of the art

    Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources

    Get PDF
    Central to the looming paradigm shift toward data-intensive science, machine-learning techniques are becoming increasingly important. In particular, deep learning has proven to be both a major breakthrough and an extremely powerful tool in many fields. Shall we embrace deep learning as the key to everything? Or should we resist a black-box solution? These are controversial issues within the remote-sensing community. In this article, we analyze the challenges of using deep learning for remote-sensing data analysis, review recent advances, and provide resources we hope will make deep learning in remote sensing seem ridiculously simple. More importantly, we encourage remote-sensing scientists to bring their expertise into deep learning and use it as an implicit general model to tackle unprecedented, large-scale, influential challenges, such as climate change and urbanization
    corecore