66,471 research outputs found

    Supervised estimation of Granger-based causality between time series

    Get PDF
    Brain effective connectivity aims to detect causal interactions between distinct brain units and it is typically studied through the analysis of direct measurements of the neural activity, e.g., magneto/electroencephalography (M/EEG) signals. The literature on methods for causal inference is vast. It includes model-based methods in which a generative model of the data is assumed and model-free methods that directly infer causality from the probability distribution of the underlying stochastic process. Here, we firstly focus on the model-based methods developed from the Granger criterion of causality, which assumes the autoregressive model of the data. Secondly, we introduce a new perspective, that looks at the problem in a way that is typical of the machine learning literature. Then, we formulate the problem of causality detection as a supervised learning task, by proposing a classification-based approach. A classifier is trained to identify causal interactions between time series for the chosen model and by means of a proposed feature space. In this paper, we are interested in comparing this classification-based approach with the standard Geweke measure of causality in the time domain, through simulation study. Thus, we customized our approach to the case of a MAR model and designed a feature space which contains causality measures based on the idea of precedence and predictability in time. Two variations of the supervised method are proposed and compared to a standard Granger causal analysis method. The results of the simulations show that the supervised method outperforms the standard approach, in particular it is more robust to noise. As evidence of the efficacy of the proposed method, we report the details of our submission to the causality detection competition of Biomag2014, where the proposed method reached the 2nd place. Moreover, as empirical application, we applied the supervised approach on a dataset of neural recordings of rats obtaining an important reduction in the false positive rate

    Assessing the strength of directed influences among neural signals : An approach to noisy data

    Get PDF
    Acknowledgements This work was supported by the German Science Foundation (Ti315/4-2), the German Federal Ministry of Education and Research (BMBF grant 01GQ0420), and the Excellence Initiative of the German Federal and State Governments. B.S. is indebted to the Kosterlitz Centre for the financial support of this research project.Peer reviewedPreprin

    Detecting and quantifying causal associations in large nonlinear time series datasets

    Get PDF
    Identifying causal relationships and quantifying their strength from observational time series data are key problems in disciplines dealing with complex dynamical systems such as the Earth system or the human body. Data-driven causal inference in such systems is challenging since datasets are often high dimensional and nonlinear with limited sample sizes. Here, we introduce a novel method that flexibly combines linear or nonlinear conditional independence tests with a causal discovery algorithm to estimate causal networks from large-scale time series datasets. We validate the method on time series of well-understood physical mechanisms in the climate system and the human heart and using large-scale synthetic datasets mimicking the typical properties of real-world data. The experiments demonstrate that our method outperforms state-of-the-art techniques in detection power, which opens up entirely new possibilities to discover and quantify causal networks from time series across a range of research fields

    Estimating causal networks in biosphere–atmosphere interaction with the PCMCI approach

    Get PDF
    Local meteorological conditions and biospheric activity are tightly coupled. Understanding these links is an essential prerequisite for predicting the Earth system under climate change conditions. However, many empirical studies on the interaction between the biosphere and the atmosphere are based on correlative approaches that are not able to deduce causal paths, and only very few studies apply causal discovery methods. Here, we use a recently proposed causal graph discovery algorithm, which aims to reconstruct the causal dependency structure underlying a set of time series. We explore the potential of this method to infer temporal dependencies in biosphere-atmosphere interactions. Specifically we address the following questions: How do periodicity and heteroscedasticity influence causal detection rates, i.e. the detection of existing and non-existing links? How consistent are results for noise-contaminated data? Do results exhibit an increased information content that justifies the use of this causal-inference method? We explore the first question using artificial time series with well known dependencies that mimic real-world biosphere-atmosphere interactions. The two remaining questions are addressed jointly in two case studies utilizing observational data. Firstly, we analyse three replicated eddy covariance datasets from a Mediterranean ecosystem at half hourly time resolution allowing us to understand the impact of measurement uncertainties. Secondly, we analyse global NDVI time series (GIMMS 3g) along with gridded climate data to study large-scale climatic drivers of vegetation greenness. Overall, the results confirm the capacity of the causal discovery method to extract time-lagged linear dependencies under realistic settings. The violation of the method's assumptions increases the likelihood to detect false links. Nevertheless, we consistently identify interaction patterns in observational data. Our findings suggest that estimating a directed biosphere-atmosphere network at the ecosystem level can offer novel possibilities to unravel complex multi-directional interactions. Other than classical correlative approaches, our findings are constrained to a few meaningful set of relations which can be powerful insights for the evaluation of terrestrial ecosystem models

    Multiscale Bayesian State Space Model for Granger Causality Analysis of Brain Signal

    Full text link
    Modelling time-varying and frequency-specific relationships between two brain signals is becoming an essential methodological tool to answer heoretical questions in experimental neuroscience. In this article, we propose to estimate a frequency Granger causality statistic that may vary in time in order to evaluate the functional connections between two brain regions during a task. We use for that purpose an adaptive Kalman filter type of estimator of a linear Gaussian vector autoregressive model with coefficients evolving over time. The estimation procedure is achieved through variational Bayesian approximation and is extended for multiple trials. This Bayesian State Space (BSS) model provides a dynamical Granger-causality statistic that is quite natural. We propose to extend the BSS model to include the \`{a} trous Haar decomposition. This wavelet-based forecasting method is based on a multiscale resolution decomposition of the signal using the redundant \`{a} trous wavelet transform and allows us to capture short- and long-range dependencies between signals. Equally importantly it allows us to derive the desired dynamical and frequency-specific Granger-causality statistic. The application of these models to intracranial local field potential data recorded during a psychological experimental task shows the complex frequency based cross-talk between amygdala and medial orbito-frontal cortex. Keywords: \`{a} trous Haar wavelets; Multiple trials; Neuroscience data; Nonstationarity; Time-frequency; Variational methods The published version of this article is Cekic, S., Grandjean, D., Renaud, O. (2018). Multiscale Bayesian state-space model for Granger causality analysis of brain signal. Journal of Applied Statistics. https://doi.org/10.1080/02664763.2018.145581
    • 

    corecore