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Abstract

Background

Measurements in the neurosciences are afflicted with observational noise. Granger-

causality inference typically does not take this effect into account. We demon-

strate that this leads to false positives conclusions and spurious causalities.

New Method

State space modelling provides a convenient framework to obtain reliable esti-

mates for Granger-causality. Despite its previous application in several studies,

the analytical derivation of the statistics for parameter estimation in the state

space model was missing. This prevented a rigorous evaluation of the results.

∗Corresponding author
∗∗Principal corresponding author

Email addresses: l.sommerlade@abdn.ac.uk (Linda Sommerlade), m.thiel@abdn.ac.uk
(Marco Thiel), Malenka.Mader@fdm.uni-freiburg.de (Malenka Mader),
Wolfgang.Mader@fdm.uni-freiburg.de (Wolfgang Mader), JeTi@fdm.uni-freiburg.de (Jens
Timmer), b.platt@abdn.ac.uk (Bettina Platt), b.schelter@abdn.ac.uk (Björn Schelter)

Preprint submitted to Elsevier September 4, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aberdeen University Research Archive

https://core.ac.uk/display/29151214?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Results

In this manuscript we derive the statistics for parameter estimation in the state

space model. We demonstrate in an extensive simulation study that our novel

approach outperforms standard approaches and avoids false positive conclusions

about Granger-causality.

Comparison with Existing Methods

In comparison with the naive application of Granger-causality inference, we

demonstrate the superiority of our novel approach. The wide-spread applica-

bility of our procedure provides a statistical framework for future studies. The

application to mice electroencephalogram data demonstrates the immediate ap-

plicability of our approach.

Conclusions

The analytical derivation of the statistics presented in this manuscript enables

a rigorous evaluation of the results of Granger causal network inference. It is

noteworthy that the statistics can be readily applied to various measures for

Granger causality and other approaches that are based on vector autoregressive

models.

Granger-causality, Observational Noise, Statistics, Expectation-Maximisation

Algorithm, Kalman Filter, Incomplete Data Likelihood, Analytical Covariance

Matrix

1. Introduction

Complex systems are relevant in different branches of physics, economics,

sociology, biology or the neurosciences. They can be investigated either by

explicit first principle modelling of the dynamics, the so-called direct approach,

or by inferring the system based on observed data, i.e. the inverse approach.

The first requires profound a priori knowledge about the investigated system

while the second relies on measurements of the system.

Within the framework of data-based modelling, various techniques have been

developed. For many years, the methodological developments and concepts
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evolved independently in the different disciplines. In the past decade how-

ever, the transfer of knowledge across the borders of the different research fields

has increased substantially, for example when methods dealing with non-linear

stochastic systems have been introduced (Schelter et al., 2006).

Networks of interacting nodes, each with its own dynamics, are a key math-

ematical tool for the description of complex systems (Strogatz, 2001). Depend-

ing on the particular application, the dynamics of the individual nodes, their

coupling structure or their collective behaviour all determine the dynamics of

the system. In the neurosciences, for instance, detecting interactions between

signals, i.e. the coupling structure among nodes, is of particular interest. Un-

derstanding brain networks promises to disclose the biological basis underlying

natural behaviour or certain diseases (e.g. Hesse et al., 2003; Tass et al., 1998;

Pitzalis et al., 1998; Keyl et al., 2000; Nollo et al., 2005; Bowers and Mur-

ray, 2004). Several techniques have been proposed so far to infer the network

structure of complex systems from observed signals. These include but are not

limited to transfer entropy (Schreiber, 2000; Staniek and Lehnertz, 2008), re-

currences in state space (Arnhold et al., 1999; Chicharro and Andrzejak, 2009;

Romano et al., 2007), mutual information (Pompe et al., 1998; Paluš and Ste-

fanovska, 2003; Paluš and Vejmelka, 2007; Vejmelka and Paluš, 2008; Frenzel

and Pompe, 2007), phase dynamics (Rosenblum and Pikovsky, 2001; Rosen-

blum et al., 2002), coherence (Halliday and Rosenberg, 2000; Dahlhaus, 2000;

Nolte et al., 2008), the Fokker Planck formalism (Prusseit and Lehnertz, 2008;

Bahraminasab et al., 2009), or autoregressive modelling (Dahlhaus and Eichler,

2003; Schack et al., 1995; Eichler, 2000; Korzeniewska et al., 1997; Kamiński

et al., 1997; Kamiński and Blinowska, 1991; Arnold et al., 1998).

When investigating interactions among processes, cross-spectral analysis is

often chosen (Brockwell and Davis, 1998). If the number of processes exceeds

two, the question arises, whether interactions are direct or indirect. To address

this challenge, the concept of partialisation is used (Dahlhaus, 2000; Brillinger,

1981). Partialisation aims at revealing direct connections by subtracting influ-

ences of third processes (Schad et al., 2009).
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Since (partial) cross-spectra are Hermitian, it is not possible to infer the di-

rection of an influence from coherences. Additional information of the complex

valued cross-spectra can be reveal by analysing their phases. The phase spectra

can be used to draw conclusions about the direction of an influence. However,

these conclusions are hampered if, for instance, filters are present. Since filters

are present in many applications, a straight forward interpretation of the phase

spectra is usually not possible. Other approaches to investigate the direction

of an influence use the concept of causality. Many methods (e.g. Hesse et al.,

2003; Geweke, 1982, 1984; Chen and Wasterlain, 2006; Dhamala et al., 2008;

Baccalá and Sameshima, 2001; Sameshima and Baccalá, 1999; Eichler, 2006;

Kamiński and Blinowska, 1991) are based on Granger’s definition of causal-

ity (Granger, 1969). Briefly, this definition states that a process x1 is causal for

another process x2, if x1 is useful for the prediction of the future of x2. Linear

Granger-causality is typically modelled by means of vector autoregressive pro-

cesses, which are estimated via multivariate Yule-Walker equations or similar

approaches (Lütkepohl, 1993).

The estimators for the vector autoregressive models do not account for ob-

servational noise, which afflicts almost any observed signal. There are different

reasons for an inaccurate measurement, such as the precision of the measurement

device or influences from the environment. This inevitably leads to a misesti-

mation of the parameters; typically parameters are underestimated (Brockwell

and Davis, 1998). We emphasize that in particular an over-estimation of cer-

tain parameters has a severe impact on Granger-causality analysis. As also

discussed in (Newbold , 1978; Nalatore et al., 2007; Nolte et al., 2008), we argue

that this leads to spurious causalities independently of the specific measure for

Granger-causality used, providing a more detailed view on the relation between

parameter values and the severity of the misestimation for various signal to

noise ratios. This explains in particular how under- as well as over-estimation

of parameters leads to spurious interactions. Based on analytical calculations

we reveal the cause of these spurious causalities. To this aim, we discuss a vector

autoregressive process of order 2, to simplify the notation. We then investigate
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in details the consequences of the misestimation. We will also show that increas-

ing the order of the fitted process yields an improved estimator. However, this is

not sufficient to avoid false positive conclusions in the presence of observational

noise (Timmer, 1998). Therefore, in this manuscript, state space modelling is

used to explicitly include observational noise in the model. The idea of state

space modelling for improving measures quantifying Granger-causality has been

introduced in (Winterhalder et al., 2005). This triggered further research that

discussed the matter in more detail (Nalatore et al., 2007) and also an appli-

cation to neurophysiological data (Nalatore et al., 2009). The corresponding

statistics to assess the statistical significance of these Granger-causality mea-

sures, however, has not been thoroughly investigated. Typically Monte-Carlo

based procedures, numerical approximations or bootstrap based approaches are

employed to approximate the statistics for these measures. In this manuscript

we assume that the system under investigation can be approximated by a lin-

ear system. Based on this assumption, we derive an analytical statistics for

Granger-causality based measures.

Throughout, we demonstrate our results for a specific measure for Granger-

causality, the so-called renormalised partial directed coherence (rPDC) (Schelter

et al., 2009). It is a generalisation of partial directed coherence, which was in-

troduced to quantify Granger causal influences (Baccalá and Sameshima, 2001)

in the neurosciences (Sameshima and Baccalá, 1999; Nicolelis and Fanselow,

2002). The advantage of renormalised partial directed coherence is that it al-

lows us to interpret the results also in terms of the strengths of interactions and

it enables a rigorous comparison of the results. We emphasise though that the

results apply to any Granger-causality measure that is based on vector autore-

gressive processes. The results are presented in a way that they can readily be

generalised.

2. Observational Noise and rPDC

To demonstrate the effects of observational noise on the reconstructed inter-

action structure, the two dimensional vector autoregressive process of order 2
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(VAR[2] process)

~x(t) =

2∑
r=1

ar~x(t− r) + εx(t) (1)

yi(t) = xi(t) + σiηi(t) i = 1, 2 (2)

with εx and ηi standard Gaussian white noise and

a1 =

1.3 c

0 1.7

 , a2 =

−0.8 0

0 −0.8

 (3)

is investigated under the assumption that only ~y can be measured. Thus, only

a noisy version of the true process ~x is available to examine the interaction

structure. The causal influence from process x2 onto x1 is represented by the

parameter c in this model and set to c = 0.3. The σi are chosen such that

different noise-to-signal ratios are achieved. This ratio between the noise vari-

ance and the process variance is varied between 0 and 1 in steps of 0.05 for

each component. For each combination of noise-to-signal ratios 100 realisations

are simulated with N = 5, 000 data points each. Renormalised partial directed

coherence (see Appendix A) is estimated for every realisation. Results for p = 2

are shown in Fig. 1. For each combination of noise-to-signal ratios the per-

centage of realisations with significant renormalised partial directed coherence

at the oscillation frequencies of 0.12 and 0.05 Hz, respectively, is shown. The

influence from process x2 onto x1 which is present in the simulation is always

detected correctly (Fig. 1 right). Additionally the direction from process x1

onto x2 is also significantly different from zero for many realisations if process

x2 is afflicted with observational noise (Fig. 1 left).

In order to understand the results in more detail, the influence of obser-

vational noise on the parameter estimation is investigated. A frequently used

parameter estimator for autoregressive processes is (Lütkepohl, 1993)

âl =

p∑
m=1

(R̂)−1(l,m)r̂(m) (4)
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Figure 1: Percentage of realisations with significant renormalised partial directed coherence
at the oscillation frequencies of the driving process, 0.12 and 0.05 Hz, respectively. For the
estimation, a model order of p = 2 is used.

with

R̂(l,m) =
1

N − p
N∑

t=p+1

x(t− l)x′(t−m) (5)

and r̂(m) = R̂(0,m); x′ denotes transposition of x. For an autoregressive

process of order 2 (AR[2] process), this leads to

â1 = R̂−1(1, 1)r̂(1) + R̂−1(1, 2)r̂(2) (6)

â2 = R̂−1(2, 1)r̂(1) + R̂−1(2, 2)r̂(2) . (7)

In order to avoid complicated notations the one dimensional case is considered

in the following. This yields

R̂−1 =
1

〈x(t), x(t)〉2 − 〈x(t), x(t− 1)〉2

 〈x(t), x(t)〉 − 〈x(t), x(t− 1)〉
− 〈x(t), x(t− 1)〉 〈x(t), x(t)〉


(8)

and thus

â1 =
〈x(t), x(t)〉 〈x(t), x(t− 1)〉 − 〈x(t), x(t− 1)〉 〈x(t), x(t− 2)〉

〈x(t), x(t)〉2 − 〈x(t), x(t− 1)〉2
(9)

â2 =
〈x(t), x(t)〉 〈x(t), x(t− 2)〉 − 〈x(t), x(t− 1)〉2

〈x(t), x(t)〉2 − 〈x(t), x(t− 1)〉2
. (10)

In all calculations, we assume ergodicity, such that the expectation values can

be calculated with respect to time. If instead of the original data x(t) a noisy
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observation xobs(t) = x(t)+η(t) is used for the estimation, only 〈xobs(t), xobs(t)〉
differs from its noise free counterpart as

〈xobs(t), xobs(t)〉 = (1 + NSR) 〈x(t), x(t)〉 (11)

〈xobs(t), xobs(t− 1)〉 = 〈x(t), x(t− 1)〉 (12)

〈xobs(t), xobs(t− 2)〉 = 〈x(t), x(t− 2)〉 , (13)

with NSR = 〈η(t),η(t)〉
〈x(t),x(t)〉 , the noise-to-signal ratio. Inserting this in Eqn. (9)

and (10) leads to

â1 =
(1 + NSR) 〈x(t), x(t)〉 〈x(t), x(t− 1)〉 − 〈x(t), x(t− 1)〉 〈x(t), x(t− 2)〉

(1 + NSR)2 〈x(t), x(t)〉2 − 〈x(t), x(t− 1)〉2

(14)

â2 =
(1 + NSR) 〈x(t), x(t)〉 〈x(t), x(t− 2)〉 − 〈x(t), x(t− 1)〉2

(1 + NSR)2 〈x(t), x(t)〉2 − 〈x(t), x(t− 1)〉2
. (15)

In order to eliminate the auto-covariances in these equations, they can be related

to one another using the true parameters

〈x(t), x(t− 1)〉 =
a1

1− a2
〈x(t), x(t)〉 (16)

〈x(t), x(t− 2)〉 =
a2

1 + a2 − a2
2

1− a2
〈x(t), x(t)〉 , (17)

see Appendix B for details. Inserting this in Eqn. (14) and (15) leads to

â1 = a1
(1 + NSR)(1− a2)− (a2

1 + a2 − a2
2)

(1 + NSR)2(1− a2)2 − a2
1

(18)

â2 =
(1 + NSR)(a2

1 + a2 − a2
2)(1− a2)− a2

1

(1 + NSR)2(1− a2)2 − a2
1

. (19)

For NSR > 0 the absolute values of the parameters are underestimated, i.e. |â1| <
|a1| and |â2| < |a2|, see Appendix B. As an example a1 = 1.7 and a2 = −0.8

are used. In Fig. 2 the parameter estimates are shown as a function of the noise-

to-signal ratio. Note that a2 first increases and then decreases for increasing

noise-to-signal ratio.

In the two dimensional scenario the calculations become more complex. Co-

variances for a two dimensional AR[2] process with influence only from x2 onto

x1 at lag one are given in Appendix C. Based on these covariances, the estimated
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Figure 2: Coefficients of one dimensional AR[2] process estimated in the presence of observa-
tional noise.
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Figure 3: Coefficients a1 of two dimensional AR[2] process with unidirectional influence from
process x2 to process x1 estimated in the presence of observational noise. Noise-to-signal ratio
for process x1 is 1.

parameters in dependence on the noise-to-signal ratio can be calculated. As an

example a1 and a2 of Eqn. (3) with c = 0.3 are used. The NSR of process x1 is

set to one while the dependence on the NSR of x2 is investigated. The estimated

parameters in dependence on the noise-to-signal ratio are shown in Fig. 3 and

4. Similar to the one dimensional scenario, the coefficients a2(2, 1) and a2(2, 2)

are non-monotone. Note that the absolute value of the estimated parameters

can be larger than the absolute value of the true parameters (a1(1, 1), a1(2, 1),

and a2(2, 1)). Since for NSR > 0 also the estimations of the parameters which

are zero in the simulation differ from zero (a1(2, 1) and a2(2, 1)), false influences

9



NSR of process x2

NSR of process x2

NSR of process x2

NSR of process x2

a
2
(1
,1
)

a
2
(1
,2
)

a
2
(2
,1
)

a
2
(2
,2
)

0

0

0

0

0

0.2

0.2

0.2

0.2

0.4

0.4

0.4

0.4

0.4

−0.54

−0.56

−0.58

−0.6

−0.6

−0.62

0.36

0.32

0.08

0.06

0.04

0.02

−0.02

−0.2

−0.4

−0.8

−1
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are estimated for a unidirectional influence.

Renormalised partial directed coherence detects influences if the correspond-

ing parameters for any lag differ from zero. Thus, from the above calculations,

it is expected, that an influence from process x1 to process x2 is falsely detected

if process x2 is afflicted with observational noise. In Fig. 1 this is indeed ob-

served for low and high noise-to-signal ratios of process x1. In-between, there

is a region with non-zero noise-to-signal ratio of process x2 where correctly but

unexpectedly no influence from x1 onto x2 is detected. Investigating the two

corresponding coefficients in more detail reveals that for lag two the coefficient

is negative at first and then increases with increasing noise-to-signal ratio. Since

the coefficients are estimated, there is a certain confidence band for which the

coefficients are compatible with zero when in fact they are non-zero. If the

coefficient of lag one is still within this band while the coefficient of lag two

becomes compatible with zero, both are compatible with zero and thus, no in-

fluence is detected. This is illustrated in Fig. 5(a), where in the shaded region

both coefficients are compatible with zero. An increase of the number of data

points for the estimation of the coefficients leads to smaller confidence bands.
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Figure 5: Schematic of theoretical values of estimated coefficients for the influence from x1
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zero. (a) There is a region, where both coefficients are compatible with zero (shaded region).
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x1 is set to 1 and NSR= 0.25 for process x2. For the estimation, a model order of p = 2 is
used. In the simulated system, there is no influence from x1 onto x2. Thus, the detections of
this influence are false positive.

This in turn leads to a cancellation of the observed effect. Schematically, the

scenario for an increased number of data points is shown in Fig. 5(b). In this

case, the region for which no influence is detected has vanished. The detection

of the influence from x1 onto x2 is a false positive detection but expected since

observational noise is neglected in the estimation procedure.

Estimation of renormalised partial directed coherence for different numbers

of data points supports the considerations above. The noise-to-signal ratio of

process x1 is set to one and NSR = 0.25 for process x2. The number of data

points is varied between N = 5, 000 and N = 30, 000 in steps of 5, 000. Results

are shown in Fig. 6. As predicted, the percentage of false positive detections
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increases with increasing N . For large N , the simulated results, thus, fulfil the

theoretical findings in the presence of observational noise.

An increase of the order for estimation leads to a cancellation of the effect

explained above since the degree of freedom is increased by the increased number

of coefficients that are estimated. Setting the noise-to-signal ratio of process x1

to one, the renormalised partial directed coherence is estimated using model

orders p = 2 to p = 10. Results are shown in Fig. 7.

Increasing the order of the process yields a better approximation of the true

system. On the one hand, using a higher order for the estimation, i.e. p = 10

(Fig. 8), solves the problem of spuriously detecting the influence from x1 onto

x2 for low noise-to-signal ratios. On the other hand, a higher order requires

the estimation of more parameters. Thus, in order to reduce the number of

parameters, observational noise should be accounted for in the autoregressive

model.

3. State Space Model

Linear state space modelling is a powerful framework to estimate processes

with observational noise (Harvey, 1994; Kitagawa and Gersch, 1996). To include

observational noise explicitly, the state space model representation of a VAR[1]
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process (Shumway and Stoffer, 1982; Harvey, 1994)

~u(t) = A~u(t− 1) + ~εu(t) ~εu(t) ∼ N (~0|Qu) (20)

~y(t) = Cu~u(t) + ~η(t) ~η(t) ∼ N (~0|R) (21)

where ~u (t) is the multivariate hidden process and ~y (t) the observed process

contaminated with Gaussian noise ~η (t), is used.

A stationary VAR process of order p and dimension n (Eq. (1))
x1(t)

x2(t)
...

xn(t)

 =

p∑
r=1

a(r)


x1(t− r)
x2(t− r)

...

xn(t− r)

+


ε1(t)

ε2(t)
...

εn(t)

 (22)

can be rewritten as a first order process by augmenting its dimension. Therefore,

all past information needed to predict ~x(t) is collected in one single new nu-

dimensional vector

~u(t− 1) =
(
~xT (t− 1), ~xT (t− 2), . . . , ~xT (t− p)

)T
, (23)
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with dimension nu = np. The model equation
~x(t)

~x(t− 1)
...

~x(t− p+ 1)


︸ ︷︷ ︸

~u(t)

=


a1 a2 · · · ap

In 0n · · · 0n
...

. . .
. . .

...

0n · · · In 0n


︸ ︷︷ ︸

A


~x(t− 1)

~x(t− 2)
...

~x(t− p)


︸ ︷︷ ︸

~u(t− 1)

+


~εx(t)

~0
...

~0


︸ ︷︷ ︸

~εu(t)
(24)

with

~εu(t) ∼ N

~0
∣∣∣∣∣∣∣∣∣∣∣∣


Σ 0n · · · 0n

0n 0n · · · 0n
...

. . .
. . .

...

0n · · · 0n 0n




︸ ︷︷ ︸

N (~0|Qu)

(25)

of the new vector ~u(t) is an equivalent representation of the VAR[p] process

~x(t). The matrices In and 0n denote the n×n identity and the n×n matrix of

zeros. The new representation in Eq. (24) of the VAR[p] process ensures that

the linear state space model of Eqs. (20) and (21) can directly be applied also

to VAR[p] process.

The state space model divides the VAR process afflicted with observational

noise into two equations. The first, the system equation (20) or (24), describes

the VAR[p] process. The second, the observation equation (21) or

~y(t) =
(

In 0n · · · 0n

)
︸ ︷︷ ︸

Cu

~u(t) + ~η(t) = ~x(t) + ~η(t) , (26)

describes the observation of the n-dimensional vector ~x(t) of the VAR[p] process

with additive observational noise ~ηt of dimension n.

3.1. Estimation of Parameters

In linear state space models, the optimal estimators for the hidden pro-

cess ~u (t), given certain observations {~y(1), . . . , ~y(s)} and assuming knowledge

about the true parameters, are given by the Kalman filter (Kalman, 1960;

14



Kalman and Bucy, 1961) and smoother (Rauch et al., 1965; Ansley and Kohn,

1982). The Kalman filter yields the conditional expectation value ~u(t|t) :=

〈~u(t)|~y(1), . . . , ~y(t)〉 considering only observations up to time t and thus can

be applied on-line. The Kalman smoother calculates the conditional expecta-

tion value of the hidden process ~u(t|N) := 〈~u(t)|~y(1), . . . , ~y(N)〉 by taking all

N observations into account. These two estimators rely on the knowledge of

the parameters, i.e. the matrices A,Qu,C,R. The Expectation-Maximisation

(EM) algorithm (Dempster et al., 1977) applied to linear Gaussian state space

models (Shumway and Stoffer, 1982) presents an iterative algorithm for Maxi-

mum Likelihood parameter estimation based on the Kalman filter and smoother.

The EM algorithm consists of two steps. In the expectation (E) step, the expec-

tation of the complete data likelihood is calculated given the parameters that

were estimated in the previous iteration. Here, the Kalman filter or smoother

can be used. The maximisation (M) step then yields parameter updates based

on the likelihood estimated in step E. Details can be found in (Shumway and

Stoffer, 2000).

The EM algorithm for the linear state space model in combination with

the Kalman filter or smoother estimates the n2(p + 2) entries of the matrices

{a1, . . . ,ap,Σ,R} as well as the hidden trajectory {~x(1), . . . , ~x(N)} using only

the observations {~y(1), . . . , ~y(N)} (Shumway and Stoffer, 1982).

3.2. Estimation of rPDC

In order to estimate the renormalised partial directed coherence (Eqn. (A.4))

λij(ω) = Xij(ω)′V−1
ij (ω)Xij(ω) (27)

with

Vij(ω) =

p∑
l,m=1

cov ((âl)ij , (âm)ij)

cos(lω) cos(mω) cos(lω) sin(mω)

sin(lω) cos(mω) sin(lω) sin(mω)

 (28)

in addition to the coefficient matrices {a1, . . . ,ap} their covariances need to be

determined. Thus, the covariances cov
(
(al)ij , (am)ij

)
have to be calculated.
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Here, we present two approaches to address this challenge. First, the co-

variances cov
(
(al)ij , (am)ij

)
are calculated using the incomplete data likeli-

hood (Shumway and Stoffer, 2000)

− ln L~y(Θ) =
1

2

N∑
t=1

log |Σ(t,Θ)|+ 1

2

N∑
t=1

ε(t,Θ)TΣ(t,Θ)−1ε(t,Θ) (29)

with innovations

ε(t,Θ) = ~y(t)−C~u(t|t− 1) (30)

Σ(t,Θ) = CP(t|t− 1)CT + R (31)

and

P(t|t− 1) = AP(t− 1|t− 1)AT + Q (32)

K(t) = P(t|t− 1)CT
(
CP(t|t− 1)CT + R

)−1
(33)

P(t|t) = (1−K(t)C) P(t|t− 1) (34)

~u(t|t− 1) = A~u(t− 1|t− 1) (35)

~u(t|t) = ~u(t|t− 1) + K(t) (~y(t)−C~u(t|t− 1)) (36)

from the Kalman filter. The covariances can be calculated by the inverse of the

Hessian of − ln L~y(Θ) (Shumway and Stoffer, 2000). Thus, the second deriva-

tives of the likelihood have to be derived. This can be done analytically as

shown in Appendix D. The second derivatives of all parameters, i.e. all entries

of A, Q and R, have to be calculated. They are then arranged in a matrix.

Inverting this matrix yields the covariances.

Second, an approach based on parametric bootstrap realisations (Efron and

Tibshirani, 1998) yields the desired covariances. Using the EM-algorithm, an es-

timate of the parameters is achieved for the time series under investigation. The

estimated parameters are then used to create parametric bootstrap realisations

of the process by simulating the model with these parameters. For all bootstrap

realisations, parameters are then estimated. The empirical covariances of the

parameter estimates of the bootstrap are then used as cov
(
(al)ij , (am)ij

)
.
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3.3. Simulations

In this section, the parameters estimated based on the state space model are

used to calculate the renormalised partial directed coherence (Eq. (A.4)). The

covariances cov
(
(al)ij , (am)ij

)
needed, are estimated first, based on a bootstrap

approach and second, by analytical differentiation of the likelihood function.

Thus, observational noise is accounted for in the model and renormalised partial

directed coherence can be estimated for the underlying process.

We estimate rPDC based on the state space model using the same simulated

data as in Sec. 2. Here, the noise-to-signal ratio for both processes is the same.

For each noise-to-signal ratio and each of the 100 realisations, the renormalised

partial directed coherence is estimated using the two different approaches. Fig-

ure 9 shows exemplary time series including simulated time series (yellow), time

series contaminated with observational noise (black), and the denoised time se-

ries (red). It can be seen that using the state space model the original time

series can be approximated very well. Additionally, the respective spectra are

shown. From the noisy spectra it is obvious that without the state space model

the true spectra cannot be approximated at all.

Results for rPDC using p = 2 and covariances obtained from analytical

differentiation of the likelihood are shown in Fig. 10. In this case, around 5%

false positive conclusions occurred in accordance with the 5%-significance level.

Results for for rPDC using p = 2 and covariances obtained from 100 boot-

strap realisations are similar (not shown). Again, around 5% false positive

conclusions occurred at a 5%-significance level. Thus, using the state space

model, it is possible to correctly reveal the interaction structure even in the

presence of observational noise.

3.4. Strengths of the interactions

To investigate the implications for the strengths of the interactions, we var-

ied the parameter c in the model system Eq. (1) between 0 and 0.5 in steps of

0.01. In the first simulation study, we kept the noise-to-signal ratio constant at
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Figure 9: Exemplary time series (left) and spectra (right) of simulated two dimension AR[2]
with NSR = 0.25. Original (yellow) depicts simulated data before observational noise is
added. Noisy (black) refers to results without state space model. Denoised (red) shows
results of estimation using the state space model. A model order of p = 2 is used in both
cases.
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NSR = 0.5. The results for the rPDC estimated based on the naive application

of the Yule-Walker equations and the EM based estimation with the analytically

derived covariance matrix is depicted in Fig. 11. It becomes evident again that

the naive estimation, blue curves, lead to spurious Granger-causalities, while the

EM based estimation, green curves, correctly reveals the true interaction struc-

ture. Note that for the influence from x1 onto x2 (Fig. 11 left) the rPDC values

of the EM based estimation do not increase with increasing coupling strengths.

For the opposite direction, x2 onto x1, which is present in the simulation, rPDC

values increase with increasing coupling strengths. The increase is steeper for

the EM based estimation. Thus, present interactions are detected for a lower

coupling strength in this case. For higher coupling strengths the curve indicat-

ing the correct interaction saturates for the EM based estimation. This, at a

first glance, might be counter-intuitive since it does not represent the increase

in the coupling parameter c. It can be explained as follows.

The noise-to-signal ratio was kept constant (NSR = 0.5), in other words, the

noise contribution depends on the coupling strength. For increasing coupling

strength the parameters are still estimated correctly, see Fig. 12, but the stan-

dard deviations of the parameter estimates increase with increasing coupling

strength (red curves). As the standard deviations quadratically enter the co-

variance matrix, which in turn enters the estimator for the rPDC, the saturation

effect can be understood as being related to the dependence of the observational

noise contribution on the coupling strength.
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Figure 12: Estimated parameters and their standard deviations for all 8 parameters of model
system Eq. 1. The parameter c (third line from top) gradually differs from zero in accordance
with the simulation.

As this dependence is counter-intuitive for applications, we simulated the

same scenario with constant variance of the observational noise. We used a

standard deviation of the observational noise of σ = 5. This corresponds to

NSR = 1 for process x2 and NSR of process x1 decreasing from 4 to 0.5 for

increasing interaction strength. Despite higher fluctuations for larger coupling

strength, the rPDC quantifies the strengths of the interactions as already shown

in (Schelter et al., 2009) for the noise free case (Fig. 13). We emphasise again

that a naive application of rPDC without using the analytic statistics and the

EM algorithm would have resulted in spurious interactions between the pro-

cesses, independent of the chosen model order.

3.5. Application to mice EEG

In an exemplary application, we analyse electroencephalogram (EEG) data

of mice. EEG recordings were obtained under freely-moving conditions with

a wireless device. The signal was sampled at 199 Hz. Three electrodes were

placed into the skull above prefrontal cortex (PFx) and bilaterally above the

hippocampus (left: lHC, right: rHC), respectively. For details of the recording
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Figure 14: Results for the analysis of EEG data from five mice. Interaction structure as
revealed using rPDC estimated based on the EM algorithm. Only significant influences are
shown. (a) results for mice 1, 2 and 3 (b) results for mice 4 and 5.

technique, see (Jyoti et al., 2010). Data were downsampled to 40 Hz and a

model order of p = 2 was used in the state space model. We analysed one

segment of 100 seconds of rHC and PFx in the quiet wake state for each of five

mice. The interaction structure that was revealed is shown in Fig. 14. We found

a statistically significant unidirectional influence from rHC to PFx in three mice

and a statistically significant bidirectional influence in the remaining two mice.

Thus, 60 % of the investigated mice showed a unidirectional influence from rHC

to PFx in the quiet wake state.

EEG signals have several frequency contents that are associated with differ-

ent tasks. When the prefrontal cortex is involved, theta band oscillations have
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been shown to mediate interactions (Anderson et al., 2010). In this study we

examined only the presence of influences. A detailed analysis of the different

frequency bands requires the use of a higher model order and will be subject to

a subsequent, more applied publication.

The recorded EEG electrodes share a common reference. In the past, a

common reference has been shown to potentially cause spurious detections of

Granger causality (Bollimunta et al., 2009). It remains to be investigated how

the use of a state space model as presented here affects this finding. We mention

that it is in principle possible to account for instantaneous interactions such as

those expected to occur when using common referencing in state space modelling

by adjusting the observation matrix. Exploiting this is beyond the scope of this

manuscript.

4. Conclusion

In this manuscript, we investigate the influence of observational noise on the

detection of interactions. We showed that direct application of renormalised

partial directed coherence leads to false positive conclusions. As this is intrinsic

to the estimation of the parameters of the vector autoregressive model, similar

problems would arise for any Granger-causality measure that directly relies on

VAR models.

For that reason, state space modelling as a means to deal with observational

noise was presented. State-space modelling explicitly includes observational

noise in the model and thus allows to estimate parameters without bias. Renor-

malised partial directed coherence was then calculated from the parameters

estimated in the state space model. Importantly, covariances of the coefficients

were calculated both based on a bootstrap based approach and an analytical

differentiation of the likelihood. We emphasise that only based on the reli-

able derivation of the covariances a trustworthy statistical inference is possible,

avoiding false positive conclusions about the interaction structure. Repeating

the simulation with both versions of this advanced method reveals the true in-

teraction structure, including a reasonable approximation for the strengths of
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the interactions. An application to mice EEG showed the potential of the pre-

sented approach. In future studies we will investigate different vigilance states

and their potentially different network structures.

Here, we focused on linear Granger-causality for stationary processes. Ex-

tensions for non-stationary as well as non-linear processes are available (e.g.

Omidvarnia et al., 2013; Li et al., 2012; Sommerlade et al., 2012; Chen et al.,

2004; Schelter et al., 2014). Some of these extensions are able to deal with

observational noise for others the influence of observational noise needs to be

investigated in future studies (Omidvarnia et al., 2013; Li et al., 2012).

For the examples presented here, we assumed that the observational noise is

uncorrelated Gaussian white noise, which is often a good first approximation.

However, the framework does allow other assumptions such as correlations or

coloured noise to be included in the model. To this aim the observation equa-

tion (Eq. (21)) as well as the Kalman filter filter have to be modified by, e.g.,

augmenting the state space model to include a dynamic equation for the noise.

This will have also an impact on the derivation of the critical values for a given

significance level as the derivatives will need to be adjusted. Discussing this in

more detail is beyond the scope if this manuscript.

In summary, a naive application of renormalised partial directed coherence

and any other Granger-causality measure based on vector autoregressive models

should be avoided. Instead, state space model based estimations should be

used in order to avoid false positive conclusions. The analytical derivation of

the statistics presented in this manuscript enables a rigorous evaluation of the

results. Noteworthy, the statistics can be readily applied to other measures for

Granger-causality as well.
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Paluš, M., Vejmelka, M., 2007. Directionality of coupling from bivariate time

series: How to avoid false causalities and missed connections. Phys. Rev. E

75, 056211.

Pitzalis, M. V., Mastropasqua, F., Massari, F., Passantino, A., Colombo, R.,

Mannarini, A., Forleo, C., Rizzon, P., 1998. Effect of respiratory rate on the

relationships between RR interval and systolic blood pressure fluctuations: A

frequency-dependent phenomenon. Cardiovasc. Res. 38, 332–9.

Pompe, B., Blidh, P., Hoyer, D., Eiselt, M., 1998. Using mutual information

to measure coupling in the cardiorespiratory system. IEEE Eng. Med. Biol.

Mag. 17, 32–9.

Prusseit, J., Lehnertz, K., 2008. Measuring interdependences in dissipative dy-

namical systems with estimated Fokker-Planck coefficients. Phys. Rev. E 77,

041914.

Rauch, H. E., Tung, F., Striebel, C. R., 1965. Maximum Likelihood estimates

of linear dynamic systems. AIAA Journal 3, 1445–50.

Romano, M. C., Thiel, M., Kurths, J., Grebogi, C., 2007. Estimation of the

direction of the coupling by conditional probabilities of recurrence. Phys. Rev.

E 76, 036211.

28



Rosenblum, M. G., Cimponeriu, L., Bezerianos, A., Patzak, A., Mrowka, R.,

2002. Identification of coupling direction: Application to cardiorespiratory

interaction. Phys. Rev. E 65, 041909.

Rosenblum, M. G., Pikovsky, A. S., 2001. Detecting direction of coupling in

interacting oscillators. Phys. Rev. E 64, 045202(R).
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Appendix A. Renormalised Partial Directed Coherence

In order to interpret the strengths of influences at different frequencies, renor-

malised partial directed coherence was introduced (Schelter et al., 2009). Con-

sidering the two-dimensional vector

Xij(ω) =

Re(Aij(ω))

Im(Aij(ω))

 , (A.1)
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with Xij(ω)′Xij(ω) = |Aij(ω)|2 and

A(ω) = I −
p∑
r=1

ar e−iωr . (A.2)

The corresponding estimator X̂ij(ω) with Âij(ω) substituted for Aij(ω) is

asymptotically normally distributed with mean Xij(ω) and covariance matrix

Vij(ω) =

p∑
l,m=1

cov ((âl)ij , (âm)ij)

cos(lω) cos(mω) cos(lω) sin(mω)

sin(lω) cos(mω) sin(lω) sin(mω)

 .

(A.3)

Again, the covariance of the parameters cov ((âl)ij , (âm)ij) can be substituted

using the covariance matrix of the VAR process R. Using V, renormalised

partial directed coherence

λij(ω) = Xij(ω)′V−1
ij (ω)Xij(ω) (A.4)

is defined. A Granger-causal linear influence from xj to xi taking into account

all other processes, can be rejected at frequency ω, if λij (ω) = 0. The critical

value for an α-significance level for λij (ω) = 0 is given by χ2
2,1−α (Schelter

et al., 2009). In this case, λij(ω) does not depend on other outgoing links from

j. Thus, a comparison of the strengths of influences at different frequencies is

possible.

Appendix B. Estimated parameters of AR[2]

The auto-covariances of a one dimensional AR[2] process are related to its

coefficients. For lag one

〈x(t), x(t− 1)〉 = 〈(a1x(t− 1) + a2x(t− 2) + ε(t)), x(t− 1)〉

= a1 〈x(t), x(t)〉+ a2 〈x(t), x(t− 1)〉

=
a1

1− a2
〈x(t), x(t)〉 (B.1)
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is obtained. Using Eqn. (B.1) the result for lag two

〈x(t), x(t− 2)〉 = 〈(a1x(t− 1) + a2x(t− 2) + ε(t)), x(t− 2)〉

= a1 〈x(t), x(t− 1)〉+ a2 〈x(t), x(t)〉

=

(
a2

1

1− a2
+ a2

)
〈x(t), x(t)〉

=
a2

1 + a2 − a2
2

1− a2
〈x(t), x(t)〉 (B.2)

can be derived.

For the parameter estimates in the presence of observational noise this leads

to

â1 = a1
(1 + NSR)(1− a2)− (a2

1 + a2 − a2
2)

(1 + NSR)2(1− a2)2 − a2
1

(B.3)

â2 =
(1 + NSR)(a2

1 + a2 − a2
2)(1− a2)− a2

1

(1 + NSR)2(1− a2)2 − a2
1

. (B.4)

In the following we show that for NSR > 0 the absolute values of the parameters

are underestimated, i.e. |â1| < |a1| and |â2| < |a2|. To obtain |â1| < |a1| it has

to hold that

(1 + NSR)(1− a2)− (a2
1 + a2 − a2

2)

(1 + NSR)2(1− a2)2 − a2
1

< 1 . (B.5)

This is true since for a stationary AR[2] a1 < (1− a2) and therefore

(1 + NSR)(1− a2)− (a2
1 + a2 − a2

2) < (1 + NSR)2(1− a2)2 − a2
1

⇔ 1 + NSR− a2 − a2NSR− a2
1 − a2 + a2

2 < (1 + 2NSR + NSR2)(1− 2a2 + a2
2)− a2

1

⇔ NSR(1− a2) < NSR(2 + NSR)(1− 2a2 + a2
2)

⇔ (1− a2) < (2 + NSR)(1− a2)2

⇔ 1 < (2 + NSR)(1− a2) . (B.6)

This holds since NSR > 0 and a2 < 0 for an oscillatory AR[2].
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Since a2 < 0 showing |â2| < |a2| can be achieved by demonstrating that

(1 + NSR)(a2
1 + a2 − a2

2)(1− a2)− a2
1

(1 + NSR)2(1− a2)2 − a2
1

> a2

⇔ (1 + NSR)(a2
1 + a2 − a2

2)(1− a2)− a2
1 > a2

(
(1 + NSR)2(1− a2)2 − a2

1

)
⇔ (1 + NSR)(a2

1 + a2 − a2
2)(1− a2) > a2(1 + NSR)2(1− a2)2 + a2

1(1− a2)

⇔ (1 + NSR)(a2
1 + a2 − a2

2) > (1 + NSR)2(a2 − a2
2) + a2

1

⇔ NSR(a2
1 + a2 − a2

2) > NSR(2 + NSR)(a2 − a2
2)

⇔ (a2
1 + a2 − a2

2) > (2 + NSR)(a2 − a2
2)

⇔ 0 > a2 − a2
2 − a2

1 + NSRa2 −NSRa2
2

⇔ 0 > (1 + NSR)a2 − (1 + NSR)a2
2 − a2

1

⇔ 0 > (1 + NSR)(1− a2)a2 − a2
1 (B.7)

which holds as a2 < 0.

Appendix C. Covariances of AR[2]

In order to analyse the theoretical results when estimating an AR[2] pro-

cess afflicted with observational noise, the covariances of the AR[2] process are

needed. Here, these covariances are derived for two AR[2] processes with a

unidirectional influence from x2 onto x1, i.e.

x1(t) = a1x1(t− 1) + b1x1(t− 2) + cx2(t− 1) + ε1(t) (C.1)

x2(t) = a2x2(t− 1) + b2x2(t− 2) + ε2(t) . (C.2)

Since x2 is independent of x1, first, the auto-covariances of process x2 are

derived. For τ = 0

〈x2(t), x2(t)〉 = 〈(a2x2(t− 1) + b2x2(t− 2) + ε2(t)), (a2x2(t− 1) + b2x2(t− 2) + ε2(t))〉

= a2
2 〈x2(t), x2(t)〉+ 2a2b2 〈x2(t), x2(t− 1)〉+ b22 〈x2(t), x2(t)〉+ σ2

2

(C.3)
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is obtained. This can be solved if additionally the auto-covariance for τ = 1

〈x2(t), x2(t− 1)〉 = 〈x2(t), x2(t+ 1)〉

= 〈x2(t), a2x2(t) + b2x2(t− 1) + ε2(t+ 1)〉

= a2 〈x2(t), x2(t)〉+ b2 〈x2(t), x2(t− 1)〉

⇔ 〈x2(t), x2(t− 1)〉 =
a2

1− b2
〈x2(t), x2(t)〉 (C.4)

is calculated. Inserting Eqn. (C.4) into Eqn. (C.3) leads to

〈x2(t), x2(t)〉 = a2
2 〈x2(t), x2(t)〉+

2a2
2b2

1− b2
〈x2(t), x2(t)〉+ b22 〈x2(t), x2(t)〉+ σ2

2

⇔ 〈x2(t), x2(t)〉 =
σ2

2

1− (a2
2 + b22 +

2a22b2
1−b2 )

. (C.5)

The auto-covariances of x1, for τ = 0 is

〈x1(t), x1(t)〉 = 〈(a1x1(t− 1) + b1x1(t− 2) + cx2(t− 1) + ε1(t)),

(a1x1(t− 1) + b1x1(t− 2) + cx2(t− 1) + ε1(t))〉

= a2
1 〈x1(t), x1(t)〉+ 2a1b1 〈x1(t), x1(t− 1)〉

+ b21 〈x1(t), x1(t)〉+ σ2
1 + 2a1c 〈x1(t), x2(t)〉

+ 2b1c 〈x1(t− 1), x2(t)〉+ c2 〈x2(t), x2(t)〉 (C.6)

and for τ = 1

〈x1(t), x1(t− 1)〉 = 〈x1(t), x1(t+ 1)〉

= 〈x1(t), (a1x1(t) + b1x1(t− 1) + cx2(t) + ε1(t+ 1))〉

= a1 〈x1(t), x1(t)〉+ b1 〈x1(t), x1(t− 1)〉+ c 〈x1(t), x2(t)〉

=
a1 〈x1(t), x1(t)〉+ c 〈x1(t), x2(t)〉

1− b1
(C.7)
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can be calculated. For the covariances, for τ = 0 we obtain

〈x1(t), x2(t)〉 = 〈(a1x1(t− 1) + b1x1(t− 2) + cx2(t− 1) + ε1(t)),

(a2x2(t− 1) + b2x2(t− 2) + ε2(t))〉

= a1a2 〈x1(t), x2(t)〉+ a1b2 〈x1(t), x2(t− 1)〉

+ b1a2 〈x1(t− 1), x2(t)〉+ b1b2 〈x1(t), x2(t)〉

+ ca2 〈x2(t), x2(t)〉+ cb2 〈x2(t), x2(t− 1)〉 . (C.8)

For τ = 1

〈x1(t), x2(t− 1)〉 = 〈(a1x1(t− 1) + b1x1(t− 2) + cx2(t− 1) + ε1(t)), x2(t− 1)〉

= a1 〈x1(t), x2(t)〉+ b1 〈x1(t− 1), x2(t)〉+ c 〈x2(t), x2(t)〉
(C.9)

and

〈x1(t− 1), x2(t)〉 = 〈x1(t− 1), (a2x2(t− 1) + b2x2(t− 2) + ε2(t))〉

= a2 〈x1(t), x2(t)〉+ b2 〈x1(t), x2(t− 1)〉 (C.10)

are obtained. Inserting Eqn.(C.10) into Eqn. (C.9) leads to

〈x1(t), x2(t− 1)〉 = a1 〈x1(t), x2(t)〉+ b1a2 〈x1(t), x2(t)〉

+ b1b2 〈x1(t), x2(t− 1)〉+ c 〈x2(t), x2(t)〉

=
(a1 + b1a2) 〈x1(t), x2(t)〉+ c 〈x2(t), x2(t)〉

1− b1b2
. (C.11)
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Inserting Eqn. (C.10) and then Eqn. (C.11) into Eqn. (C.8) yields

〈x1(t), x2(t)〉 = a1a2 〈x1(t), x2(t)〉+ b1b2 〈x1(t), x2(t)〉+ ca2 〈x2(t), x2(t)〉

+ cb2 〈x2(t), x2(t− 1)〉+ a1b2 〈x1(t), x2(t− 1)〉

+ b1a
2
2 〈x1(t), x2(t)〉+ b1a2b2 〈x1(t), x2(t− 1)〉

= a1a2 〈x1(t), x2(t)〉+ b1b2 〈x1(t), x2(t)〉+ ca2 〈x2(t), x2(t)〉

+ cb2 〈x2(t), x2(t− 1)〉+ b1a2a2 〈x1(t), x2(t)〉

+ (a1b2 + b1a2b2) 〈x1(t), x2(t− 1)〉

= a1a2 〈x1(t), x2(t)〉+ b1b2 〈x1(t), x2(t)〉+ ca2 〈x2(t), x2(t)〉

+ cb2 〈x2(t), x2(t− 1)〉+ b1a2a2 〈x1(t), x2(t)〉

+ (a1b2 + b1a2b2)
(a1 + b1a2) 〈x1(t), x2(t)〉+ c 〈x2(t), x2(t)〉

1− b1b2

=
cb2 〈x2(t), x2(t− 1)〉+

(
ca2 + (b1a2b2+a1b2)c

1−b1b2

)
〈x2(t), x2(t)〉

1−
(
a1a2 + b1b2 + b1a2

2 + (b1a2b2+a1b2)(a1+b1a2)
1−b1b2

) .

(C.12)

Finally, Eqs. (C.7) and (C.8) are inserted into Eqn. (C.6) leading to

〈x1(t), x1(t)〉 = a2
1 〈x1(t), x1(t)〉+ 2a1b1

a1 〈x1(t), x1(t)〉+ c 〈x1(t), x2(t)〉
1− b1

+ b21 〈x1(t), x1(t)〉+ σ2
1 + 2a1c 〈x1(t), x2(t)〉

+ 2b1c 〈x1(t− 1), x2(t)〉+ c2 〈x2(t), x2(t)〉

=

(
a2

1

2a2
1b1

1− b1
+ b21

)
〈x1(t), x1(t)〉+

2a1b1c

1− b1
〈x1(t), x2(t)〉

+ σ2
1 +

2a1c− 2a1b1c

1− b1
〈x1(t), x2(t)〉+ 2b1c 〈x1(t− 1), x2(t)〉

+ c2 〈x2(t), x2(t)〉

=
σ2

1 + 2a1c
1−b1 〈x1(t), x2(t)〉+ 2b1c 〈x1(t− 1), x2(t)〉

1−
(
a2

1 + b21 +
2a21b1
1−b1

)
+

c2 〈x2(t), x2(t)〉
1−

(
a2

1 + b21 +
2a21b1
1−b1

) . (C.13)

A recursive calculation of the covariances can thus be achieved. Starting with
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the auto-covariances for process x2, equations have to be calculated in the fol-

lowing order

1. 〈x2(t), x2(t)〉 (Eqn. (C.5))

2. 〈x2(t), x2(t− 1)〉 (Eqn. (C.4))

3. 〈x1(t), x2(t)〉 (Eqn. (C.12))

4. 〈x1(t), x2(t− 1)〉 (Eqn. (C.11))

5. 〈x1(t− 1), x2(t)〉 (Eqn. (C.10))

6. 〈x1(t), x1(t)〉 (Eqn. (C.13))

7. 〈x1(t), x1(t− 1)〉 (Eqn. (C.7)).

Appendix D. Incomplete Data Likelihood

In order to assess the covariances of the estimated coefficients the second

derivative of the incomplete data likelihood (Shumway and Stoffer, 2000)

− ln L~y(Θ) =
1

2

N∑
t=1

log |Σ(t,Θ)|+ 1

2

N∑
t=1

ε(t,Θ)TΣ(t,Θ)−1ε(t,Θ) (D.1)

with innovations

ε(t,Θ) = ~y(t)−C~u(t|t− 1) (D.2)

Σ(t,Θ) = CP(t|t− 1)CT + R (D.3)

and

P(t|t− 1) = AP(t− 1|t− 1)AT + Q (D.4)

K(t) = P(t|t− 1)CT
(
CP(t|t− 1)CT + R

)−1
(D.5)

P(t|t) = (1−K(t)C) P(t|t− 1) (D.6)

~u(t|t− 1) = A~u(t− 1|t− 1) (D.7)

~u(t|t) = ~u(t|t− 1) + K(t) (~y(t)−C~u(t|t− 1)) (D.8)
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has to be calculated. The first derivative is given by

−∂ ln L~y(Θ)

∂Θi
=

1

2

N∑
t=1

(
trace(Σ(t,Θ)−1 ∂Σ(t,Θ)

∂Θi

)

+
1

2

N∑
t=1

(
∂ε(t,Θ)

∂Θi

T

Σ(t,Θ)−1ε(t,Θ) + ε(t,Θ)TΣ(t,Θ)−1 ∂ε(t,Θ)

∂Θi

− ε(t,Θ)TΣ(t,Θ)−1 ∂Σ(t,Θ)

∂Θi
Σ(t,Θ)−1ε(t,Θ)

)
(D.9)

with

∂ε(t,Θ)

∂Θi
= −C

∂~u(t|t− 1)

∂Θi
(D.10)

∂Σ(t,Θ)

∂Θi
=

C∂P(t|t−1)
∂Θi

CT + eie
T
j for Θi = rij

C∂P(t|t−1)
∂Θi

CT else

(D.11)
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and

∂P(t|t− 1)

∂Θi
= eie

T
j P(t− 1|t− 1)AT + A

∂P(t− 1|t− 1)

∂Θi
AT

+ AP(t− 1|t− 1)eje
T
i for Θi = aij (D.12)

∂P(t|t− 1)

∂Θi
= A

∂P(t− 1|t− 1)

∂Θi
AT + eie

T
j for Θi = qij (D.13)

∂P(t|t− 1)

∂Θi
= A

∂P(t− 1|t− 1)

∂Θi
AT for Θi = rij (D.14)

∂K(t)

∂Θi
=
(
1−P(t|t− 1)CT [CP(t|t− 1)CT + R]−1C

)
· ∂P(t|t− 1)

∂Θi
CT [CP(t|t− 1)CT + R]−1 for Θi = aij and Θi = qij

(D.15)

∂K(t)

∂Θi
=
∂P(t|t− 1)

∂Θi
CT [CP(t|t− 1)CT + R]−1 (D.16)

−P(t|t− 1)CT [CP(t|t− 1)CT + R]−1

·
(

C
∂P(t|t− 1)

∂Θi
CT + eie

T
j

)
[CP(t|t− 1)CT + R]−1 for Θi = rij

(D.17)

∂P(t|t)
∂Θi

= (1−K(t)C)
∂P(t|t− 1)

∂Θi
− ∂K(t)

∂Θi
CP(t|t− 1) (D.18)

∂~u(t|t− 1)

∂Θi
= eie

T
j ~u(t− 1|t− 1) + A

∂~u(t− 1|t− 1)

∂Θi
for Θi = aij (D.19)

∂~u(t|t− 1)

∂Θi
= A

∂~u(t− 1|t− 1)

∂Θi
for Θi = qij and Θi = rij (D.20)

∂~u(t|t)
∂Θi

= (1−K(t)C)
∂~u(t|t− 1)

∂Θi
+
∂K(t)

∂Θi
(~y(t)−C~u(t|t− 1)) . (D.21)
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Thus, the second derivative is

−∂
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∂Θi
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+
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∂Θi
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(D.22)

with

∂2ε(t,Θ)

∂Θi∂Θk
= −C

∂2~u(t|t− 1)

∂Θi∂Θk
(D.23)

∂2Σ(t,Θ)

∂Θi∂Θk
= C

∂2P(t|t− 1)

∂Θi∂Θk
CT (D.24)
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and

∂2P(t|t− 1)
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j
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(D.26)

∂2P(t|t− 1)

∂Θi∂Θk
= A
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∂Θi∂Θk
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(D.27)
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∂2~u(t|t− 1)

∂Θi∂Θk
= A

∂2~u(t− 1|t− 1)

∂Θi∂Θk
for Θi = qij or rij and Θk = qkl or rkl
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