464 research outputs found

    Optimization and improvements in spatial sound reproduction systems through perceptual considerations

    Full text link
    [ES] La reproducción de las propiedades espaciales del sonido es una cuestión cada vez más importante en muchas aplicaciones inmersivas emergentes. Ya sea en la reproducción de contenido audiovisual en entornos domésticos o en cines, en sistemas de videoconferencia inmersiva o en sistemas de realidad virtual o aumentada, el sonido espacial es crucial para una sensación de inmersión realista. La audición, más allá de la física del sonido, es un fenómeno perceptual influenciado por procesos cognitivos. El objetivo de esta tesis es contribuir con nuevos métodos y conocimiento a la optimización y simplificación de los sistemas de sonido espacial, desde un enfoque perceptual de la experiencia auditiva. Este trabajo trata en una primera parte algunos aspectos particulares relacionados con la reproducción espacial binaural del sonido, como son la escucha con auriculares y la personalización de la Función de Transferencia Relacionada con la Cabeza (Head Related Transfer Function - HRTF). Se ha realizado un estudio sobre la influencia de los auriculares en la percepción de la impresión espacial y la calidad, con especial atención a los efectos de la ecualización y la consiguiente distorsión no lineal. Con respecto a la individualización de la HRTF se presenta una implementación completa de un sistema de medida de HRTF y se introduce un nuevo método para la medida de HRTF en salas no anecoicas. Además, se han realizado dos experimentos diferentes y complementarios que han dado como resultado dos herramientas que pueden ser utilizadas en procesos de individualización de la HRTF, un modelo paramétrico del módulo de la HRTF y un ajuste por escalado de la Diferencia de Tiempo Interaural (Interaural Time Difference - ITD). En una segunda parte sobre reproducción con altavoces, se han evaluado distintas técnicas como la Síntesis de Campo de Ondas (Wave-Field Synthesis - WFS) o la panoramización por amplitud. Con experimentos perceptuales se han estudiado la capacidad de estos sistemas para producir sensación de distancia y la agudeza espacial con la que podemos percibir las fuentes sonoras si se dividen espectralmente y se reproducen en diferentes posiciones. Las aportaciones de esta investigación pretenden hacer más accesibles estas tecnologías al público en general, dada la demanda de experiencias y dispositivos audiovisuales que proporcionen mayor inmersión.[CA] La reproducció de les propietats espacials del so és una qüestió cada vegada més important en moltes aplicacions immersives emergents. Ja siga en la reproducció de contingut audiovisual en entorns domèstics o en cines, en sistemes de videoconferència immersius o en sistemes de realitat virtual o augmentada, el so espacial és crucial per a una sensació d'immersió realista. L'audició, més enllà de la física del so, és un fenomen perceptual influenciat per processos cognitius. L'objectiu d'aquesta tesi és contribuir a l'optimització i simplificació dels sistemes de so espacial amb nous mètodes i coneixement, des d'un criteri perceptual de l'experiència auditiva. Aquest treball tracta, en una primera part, alguns aspectes particulars relacionats amb la reproducció espacial binaural del so, com són l'audició amb auriculars i la personalització de la Funció de Transferència Relacionada amb el Cap (Head Related Transfer Function - HRTF). S'ha realitzat un estudi relacionat amb la influència dels auriculars en la percepció de la impressió espacial i la qualitat, dedicant especial atenció als efectes de l'equalització i la consegüent distorsió no lineal. Respecte a la individualització de la HRTF, es presenta una implementació completa d'un sistema de mesura de HRTF i s'inclou un nou mètode per a la mesura de HRTF en sales no anecoiques. A mès, s'han realitzat dos experiments diferents i complementaris que han donat com a resultat dues eines que poden ser utilitzades en processos d'individualització de la HRTF, un model paramètric del mòdul de la HRTF i un ajustament per escala de la Diferencià del Temps Interaural (Interaural Time Difference - ITD). En una segona part relacionada amb la reproducció amb altaveus, s'han avaluat distintes tècniques com la Síntesi de Camp d'Ones (Wave-Field Synthesis - WFS) o la panoramització per amplitud. Amb experiments perceptuals, s'ha estudiat la capacitat d'aquests sistemes per a produir una sensació de distància i l'agudesa espacial amb que podem percebre les fonts sonores, si es divideixen espectralment i es reprodueixen en diferents posicions. Les aportacions d'aquesta investigació volen fer més accessibles aquestes tecnologies al públic en general, degut a la demanda d'experiències i dispositius audiovisuals que proporcionen major immersió.[EN] The reproduction of the spatial properties of sound is an increasingly important concern in many emerging immersive applications. Whether it is the reproduction of audiovisual content in home environments or in cinemas, immersive video conferencing systems or virtual or augmented reality systems, spatial sound is crucial for a realistic sense of immersion. Hearing, beyond the physics of sound, is a perceptual phenomenon influenced by cognitive processes. The objective of this thesis is to contribute with new methods and knowledge to the optimization and simplification of spatial sound systems, from a perceptual approach to the hearing experience. This dissertation deals in a first part with some particular aspects related to the binaural spatial reproduction of sound, such as listening with headphones and the customization of the Head Related Transfer Function (HRTF). A study has been carried out on the influence of headphones on the perception of spatial impression and quality, with particular attention to the effects of equalization and subsequent non-linear distortion. With regard to the individualization of the HRTF a complete implementation of a HRTF measurement system is presented, and a new method for the measurement of HRTF in non-anechoic conditions is introduced. In addition, two different and complementary experiments have been carried out resulting in two tools that can be used in HRTF individualization processes, a parametric model of the HRTF magnitude and an Interaural Time Difference (ITD) scaling adjustment. In a second part concerning loudspeaker reproduction, different techniques such as Wave-Field Synthesis (WFS) or amplitude panning have been evaluated. With perceptual experiments it has been studied the capacity of these systems to produce a sensation of distance, and the spatial acuity with which we can perceive the sound sources if they are spectrally split and reproduced in different positions. The contributions of this research are intended to make these technologies more accessible to the general public, given the demand for audiovisual experiences and devices with increasing immersion.Gutiérrez Parera, P. (2020). Optimization and improvements in spatial sound reproduction systems through perceptual considerations [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/142696TESI

    Improving the process of auditory processing and speech decoding using the Neuroflow method in an 11-year-old CAPD patient

    Get PDF
    Hearing disorders at the level of the central nervous system significantly affect the development of speech and language communication in children with CAPD. One of the methods aimed at improving the auditory functions, and thus the quality of speech understanding, is Active Auditory Training with the Neuroflow method. Its effectiveness will be discussed based on the example of a 10-year-old patient with hearing impairment.Hearing disorders at the level of the central nervous system significantly affect the development of speech and language communication in children with CAPD. One of the methods aimed at improving the auditory functions, and thus the quality of speech understanding, is Active Auditory Training with the Neuroflow method. Its effectiveness will be discussed based on the example of a 10-year-old patient with hearing impairment

    Portable Low-Frequency Noise Reduction Device for Both Small Open and Closed Spaces

    Get PDF

    Pseudo-Stereo Audio Processor

    Get PDF
    Due to both technical and resource limitations, non-professional audio production must often record with a single microphone, creating a mono audio signal. Even some originally multi-channel audio files often combine the separate channels into a single channel to save memory. However, this channel limitation makes any music held within the audio duller during listening. The Pseudo-Stereo Audio Processor remedies this situation, introducing a quadrature phase shift onto a given single-channel audio signal, producing multiple phase shifted output signals. These separate fixed-phase output signals are then recombined to produce a variable phase difference, emulated two-channel version of the input signal, allowing for an easy post-production sound quality enhancement of a single-channel signal that independent or small-scale audio recording studios could utilize. Further, this method of quadrature filtering produces completely decorrelated output signals using a Hilbert Transform, creating unique auditory effects useful in certain aspects of psychoacoustic research much harder to obtain through other means

    A good practice guide on the sources and magnitude of uncertainty arising in the practical measurement of environmental noise

    Get PDF
    A brief introduction to measurement uncertainty, uncertainty budgets, and inter-comparison exercises (repeated measurements), is provided in Chapter 2. The procedure forformulating an uncertainty budget and evaluating magnitudes is outlined in greater detail in Chapter 3. A flow chart summarising this process, and a checklist for the identification of sources of measurement uncertainty are included at the end of the chapter. Two example measurement exercises with corresponding uncertainty budgets are presented in Chapter 4. Some of the more commonly encountered sources of measurement uncertainty are outlined in Chapter5. Where possible, information on magnitudes or pointers to where that information can be found are included. The more important sources of uncertainty are highlighted, and “good practice guidelines” provided to help the practitioner identify means of reducing their effect. Case studies illustrating some of the points made in Chapter 5,and listing of relevant guidelines and further reading are provided in the Appendices

    Ultrasound cleaning of microfilters

    Get PDF

    Prediction of perceptual audio reproduction characteristics

    Get PDF

    Measurement-Based Automatic Parameterization of a Virtual Acoustic Room Model

    Get PDF
    Modernien auralisaatiotekniikoiden ansiosta kuulokkeilla voidaan tuottaa kuuntelukokemus, joka muistuttaa useimpien äänitteiden tuotannossa oletettua kaiutinkuuntelua. Huoneakustinen mallinnus on tärkeä osa toimivaa auralisaatiojärjestelmää. Huonemallinnuksen parametrien määrittäminen vaatii kuitenkin ammattitaitoa ja aikaa. Tässä työssä kehitetään järjestelmä parametrien automaattiseksi määrittämiseksi huoneakustisten mittausten perusteella. Parametrisaatio perustuu mikrofoniryhmällä mitattuihin huoneen impulssivasteisiin ja voidaan jakaa kahteen osaan: suoran äänen ja aikaisten heijastusten analyysiin sekä jälkikaiunnan analyysiin. Suorat äänet erotellaan impulssivasteista erilaisia signaalinkäsittelytekniikoita käyttäen ja niitä hyödynnetään heijastuksia etsivässä algoritmissa. Äänilähteet ja heijastuksia vastaavat kuvalähteet paikannetaan saapumisaikaeroon perustuvalla paikannusmenetelmällä ja taajuusriippuvat etenemistien vaikutukset arvioidaan kuvalähdemallissa käyttöä varten. Auralisaation jälkikaiunta on toteutettu takaisinkytkevällä viiveverkostomallilla. Sen parametrisointi vaatii taajuusriippuvan jälkikaiunta-ajan ja jälkikaiunnan taajuusvasteen määrittämistä. Normalisoitua kaikutiheyttä käytetään jälkikaiunnan alkamisajan löytämiseen mittauksista ja simuloidun jälkikaiunnan alkamisajan asettamiseen. Jälkikaiunta-aikojen määrittämisessä hyödynnetään energy decay relief -metodia. Kuuntelukokeiden perusteella automaattinen parametrisaatiojärjestelmä tuottaa parempia tuloksia kuin parametrien asettaminen manuaalisesti huoneen summittaisten geometriatietojen pohjalta. Järjestelmässä on ongelmia erityisesti jälkikaiunnan ekvalisoinnissa, mutta käytettyihin suhteellisen yksinkertaisiin tekniikoihin nähden järjestelmä toimii hyvin.Modern auralization techniques enable making the headphone listening experience similar to the experience of listening with loudspeakers, which is the reproduction method most content is made to be listened with. Room acoustic modeling is an essential part of a plausible auralization system. Specifying the parameters for room modeling requires expertise and time. In this thesis, a system is developed for automatic analysis of the parameters from room acoustic measurements. The parameterization is based on room impulse responses measured with a microphone array and can be divided into two parts: the analysis of the direct sound and early reflections, and the analysis of the late reverberation. The direct sounds are separated from the impulse responses using various signal processing techniques and used in the matching pursuit algorithm to find the reflections in the impulse responses. The sound sources and their reflection images are localized using time difference of arrival -based localization and frequency-dependent propagation path effects are estimated for use in an image source model. The late reverberation of the auralization is implemented using a feedback delay network. Its parameterization requires the analysis of the frequency-dependent reverberation time and frequency response of the late reverberation. Normalized echo density is used to determine the beginning of the late reverberation in the measurements and to set the starting point of the modeled late field. The reverberation times are analyzed using the energy decay relief. A formal listening test shows that the automatic parameterization system outperforms parameters set manually based on approximate geometrical data. Problems remain especially in the precision of the late reverberation equalization but the system works well considering the relative simplicity of the processing methods used

    Wave tomography

    Get PDF
    corecore