964 research outputs found

    Multibody dynamics in robotics with focus on contact events

    Get PDF
    Multibody dynamics methodologies have been fundamental tools utilized to model and simulate robotic systems that experience contact conditions with the surrounding environment, such as in the case of feet and ground interactions. In addressing such problems, it is of paramount importance to accurately and efficiently handle the large body displacement associated with locomotion of robots, as well as the dynamic response related to contact-impact events. Thus, a generic computational approach, based on the Newton-Euler formulation, to represent the gross motion of robotic systems, is revisited in this work. The main kinematic and dynamic features, necessary to obtain the equations of motion, are discussed. A numerical procedure suitable to solve the equations of motion is also presented. The problem of modeling contacts in dynamical systems involves two main tasks, namely the contact detection and the contact resolution, which take into account for the kinematics and dynamics of the contacting bodies, constituting the general framework for the process of modeling and simulating complex contact scenarios. In order to properly model the contact interactions, the contact kinematic properties are established based on the geometry of contacting bodies, which allow to perform the contact detection task. The contact dynamics is represented by continuous contact force models, both in terms of normal and tangential contact directions. Finally, the presented formulations are demonstrated by the application to several robotics systems that involve contact and impact events with surrounding environment. Special emphasis is put on the systems’ dynamic behavior, in terms of performance and stability

    A Vision-based Scheme for Kinematic Model Construction of Re-configurable Modular Robots

    Full text link
    Re-configurable modular robotic (RMR) systems are advantageous for their reconfigurability and versatility. A new modular robot can be built for a specific task by using modules as building blocks. However, constructing a kinematic model for a newly conceived robot requires significant work. Due to the finite size of module-types, models of all module-types can be built individually and stored in a database beforehand. With this priori knowledge, the model construction process can be automated by detecting the modules and their corresponding interconnections. Previous literature proposed theoretical frameworks for constructing kinematic models of modular robots, assuming that such information was known a priori. While well-devised mechanisms and built-in sensors can be employed to detect these parameters automatically, they significantly complicate the module design and thus are expensive. In this paper, we propose a vision-based method to identify kinematic chains and automatically construct robot models for modular robots. Each module is affixed with augmented reality (AR) tags that are encoded with unique IDs. An image of a modular robot is taken and the detected modules are recognized by querying a database that maintains all module information. The poses of detected modules are used to compute: (i) the connection between modules and (ii) joint angles of joint-modules. Finally, the robot serial-link chain is identified and the kinematic model constructed and visualized. Our experimental results validate the effectiveness of our approach. While implementation with only our RMR is shown, our method can be applied to other RMRs where self-identification is not possible

    An application example of Webots in solving control tasks of robotic system

    Get PDF
    U ovom radu prezentovan je softverski paket Webots za simulaciju datog robotskog sistema. Prvo su razmatrane osnovne osobine i komponente Webots-a. Zatim je opisan način kako se konstruiše 3D model robotskog sistema u Webots-ovom okruženju. U cilju rešavanja problema pozicioniranja robotske hvataljke, određuju se PD parametri upravljačkog sistema, a na osnovu prethodno dobijenog matematičkog modela robotskog sistema. Rezultati pozicioniranja dobijeni u Webots okruženju su upoređeni sa rezultatima simulacije istog dobijeni u Simulink/Matlab okruženju, kako bi se pokazala fizička verodostojnost simulacije. Primer složenijeg zadatka koji robotski sistem treba da reši dat je u nastavku. To je tzv. Tower of Hanoi problem gde je posebno detaljno razmatran i rešen inverzni kinematski zadatak. Deo programskog koda koji je korišćen za upravljanje simulacijom objašnjen je i dat na kraju rada.This paper presents some of the capabilities of Webots-a robotics simulation software. Using Webots as the development environment one can obtain model, program as well as simulate robots. First, key features and components of Webots are described and then it is presented how to construct a model of robotic system in it. Then, a control system is designed based on mathematical model of robot system in order to solve the problem of positioning of the end-effector. Results obtained in Webots environments are compared with those from Matlab/Simulink, so one can confirm the control system design procedure and accuracy of physics simulation. An example of more complex task that the robot manipulator needs to execute is given in the remainder of this paper. It is a so called Tower of Hanoi problem, where is particularly solved the inverse kinematics problem in detail. A part of C programming code which has been used for controlling the robot in Webots is explained at the end

    Development of a User Interface to Communicate with Virtual Delta Robot using Modbus TCP/IP and C#

    Get PDF
    A thesis presented to the faculty of the College of Business and Technology at Morehead State University in partial fulfillment of the requirements for the Degree of Master of Science by Armin Maraghehmoghaddam on May 1, 2016

    Implementation of a collaborative robot application for closures' quality control

    Get PDF
    Among the processes that SACMI IMOLA s.c.r.l has internally, quality control certainly plays a fundamental role. In particular, Between all the automatic machines that the company produces, the CCM48, a continuous compression moulding machine able, though 48 pistons, to create over 2000 plastic closures / min with max closure diameter 38 mm, is under the lens. The intent to make the machine competitive on the market leads to the necessity to create an excellent product. This makes quality control of the latter, an aspect of fundamental importance. In this regard, today the closure's control quality procedure is made by two operators that manually, cooperate together. The task is characterized by: LOW frequency, the quality control analysis is realized only once a day on a batch; HIGH repetability, the complete procedure need to be iterate for each cap. Moreover, the operations that are performed by the operators, might be automated through: selection of proper vision sensors for images acquisition, computer vision's algorithms for defects detection and robotic product handling. This is precisely the work that has been carried out in this industrial thesis. The goal is to increase the level of automation in the inspection of the product to highlight possible defects in the process and therefore in the machine. For this purpose, as will be highlighted later, it has been evaluated the possibility to install a collaborative robot to perform this task. The main reason is due to the necessity to do not enormously modify the environment, considering to let the operator works with the robot in a shared workspace. All the source code used to simulate the environment is available on the personal gitHub account \url{https://github.com/EdoardoG94/ThesisFolder}

    Synthesis of Prosthesis Architectures and Design of Prosthetic Devices for Upper Limb Amputees

    Get PDF
    This chapter presents a procedure for the Determination of the Optimal Prosthesis Architecture for upper limb amputees (DOPA). The presented approach can consistently manage both the clinical aspects and the technical issues involved in the design of electromechanically actuated prostheses. The procedure is composed on one hand of algorithms useful for analyzing the patients\u2019 requirements and on the other hand of algorithms that perform kinematic and kinetostatic simulations of several architectures of artificial arms attempting to fulfil important activities of daily living. The systematic evaluation of the prosthesis models\u2019 performance can methodically guide designers in the synthesis of the optimal prosthesis that best suits the patients\u2019 requirements

    Parallel robots with unconventional joints to achieve under-actuation and reconfigurability

    Get PDF
    The aim of the thesis is to define, analyze, and verify through simulations and practical implementations, parallel robots with unconventional joints that allow them to be under-actuated and/or reconfigurable. The new designs will be derived from the: * 6SPS robot (alternatively 6UPS or 6SPU, depending on the implementation) when considering the spatial case (i.e., robots with 3 degrees of freedom of rotation and 3 degrees of freedom of translation). * S-3SPS robot (alternatively S-3UPS or S-3SPU, depending on the implementation) when considering spherical robots (i.e., robots with 3 degrees of freedom of rotation). In both cases, we will see how, through certain geometric transformations, some of the standard joints can be replaced by lockable or non-holonomic joints. These substitutions permit reducing the number of legs (and hence the number of actuators needed to control the robot), without losing the robot's ability to bring its mobile platform to any position and orientation (in case of a spatial robot), or to any orientation (in case of a spherical robot), within its workspace. The expected benefit of these new designs is to obtain parallel robots with: * larger working spaces because the possibility of collisions between legs is reduced, and the number of joints (with their intrinsic range limitations) is also reduced; * lower weight because the number of actuators and joints is reduced; and * lower cost because the number of actuators and controllers is also reduced. The elimination of an actuator and the introduction of a motion constraint reduces in one the dimension of the space of allowed velocities attainable from a given configuration. As a result, it will be necessary, in general, to plan maneuvers to reach the desired configuration for the moving platform. Therefore, the obtained robots will only be suitable for applications where accuracy is required in the final position and a certain margin of error is acceptable in the generated trajectories.El objetivo de esta tesis es definir, analizar y verificar, mediante simulaciones e implementaciones prácticas, robots paralelos con articulaciones no-convencionales con el fin de incorporarles propiedades de sub-actuación y reconfigurabilidad. Los nuevos diseños se basaran en robots paralelos tipo: * 6SPS (alternativamente 6UPS o 6SPU, dependiendo de la implementación) para el caso de robot espacial (es decir, robots con 3 grados de libertad de rotación y de 3 grados de libertad de la traducción). * S-3SPS (alternativamente S-3UPS o S-3SPU, dependiendo de la implementación) para el caso de robot esférico (es decir, robots con 3 grados de libertad de rotación). En ambos casos, veremos cómo, a través de ciertas transformaciones geométricas, algunas de la articulaciones convencionales pueden ser sustituidas por articulaciones bloqueables o no holonómicos. Estas sustituciones permiten la reducción de la número de patas (y por tanto el número de actuadores necesarios para controlar el robot), sin perder la capacidad del robot para llevar su plataforma móvil a cualquier posición y orientación (en el caso de un robot espacial), o para cualquier orientación (en el caso de un robot esférico), dentro de su espacio de trabajo. El beneficio esperado de estos nuevos diseños es la obtención de robots paralelos con: * Espacios de trabajo mayores debido a que la posibilidad de colisiones entre las patas se reduce, y el número de articulaciones (con sus limitaciones intrínsecas de rango) también se reduce; * Menor peso debido a que el número de actuadores y de articulaciones se reduce; y * Un menor coste debido a que el número de actuadores y controladores también se reduce. La eliminación de un actuador y la introducción de una restricción de movimiento reduce, en uno, la dimensión del espacio de velocidades alcanzables para una configuración dada. Como resultado, será necesario, en general, planificar maniobras para llegar a la configuración deseada de la plataforma móvil. Por lo tanto, los robots obtenidos sólo serán adecuados para aplicaciones donde la precisión se requiera en la posición final y exista un cierto margen de error aceptable en las trayectorias generadasPostprint (published version

    Parallel robots with unconventional joints to achieve under-actuation and reconfigurability

    Get PDF
    The aim of the thesis is to define, analyze, and verify through simulations and practical implementations, parallel robots with unconventional joints that allow them to be under-actuated and/or reconfigurable. The new designs will be derived from the: * 6SPS robot (alternatively 6UPS or 6SPU, depending on the implementation) when considering the spatial case (i.e., robots with 3 degrees of freedom of rotation and 3 degrees of freedom of translation). * S-3SPS robot (alternatively S-3UPS or S-3SPU, depending on the implementation) when considering spherical robots (i.e., robots with 3 degrees of freedom of rotation). In both cases, we will see how, through certain geometric transformations, some of the standard joints can be replaced by lockable or non-holonomic joints. These substitutions permit reducing the number of legs (and hence the number of actuators needed to control the robot), without losing the robot's ability to bring its mobile platform to any position and orientation (in case of a spatial robot), or to any orientation (in case of a spherical robot), within its workspace. The expected benefit of these new designs is to obtain parallel robots with: * larger working spaces because the possibility of collisions between legs is reduced, and the number of joints (with their intrinsic range limitations) is also reduced; * lower weight because the number of actuators and joints is reduced; and * lower cost because the number of actuators and controllers is also reduced. The elimination of an actuator and the introduction of a motion constraint reduces in one the dimension of the space of allowed velocities attainable from a given configuration. As a result, it will be necessary, in general, to plan maneuvers to reach the desired configuration for the moving platform. Therefore, the obtained robots will only be suitable for applications where accuracy is required in the final position and a certain margin of error is acceptable in the generated trajectories.El objetivo de esta tesis es definir, analizar y verificar, mediante simulaciones e implementaciones prácticas, robots paralelos con articulaciones no-convencionales con el fin de incorporarles propiedades de sub-actuación y reconfigurabilidad. Los nuevos diseños se basaran en robots paralelos tipo: * 6SPS (alternativamente 6UPS o 6SPU, dependiendo de la implementación) para el caso de robot espacial (es decir, robots con 3 grados de libertad de rotación y de 3 grados de libertad de la traducción). * S-3SPS (alternativamente S-3UPS o S-3SPU, dependiendo de la implementación) para el caso de robot esférico (es decir, robots con 3 grados de libertad de rotación). En ambos casos, veremos cómo, a través de ciertas transformaciones geométricas, algunas de la articulaciones convencionales pueden ser sustituidas por articulaciones bloqueables o no holonómicos. Estas sustituciones permiten la reducción de la número de patas (y por tanto el número de actuadores necesarios para controlar el robot), sin perder la capacidad del robot para llevar su plataforma móvil a cualquier posición y orientación (en el caso de un robot espacial), o para cualquier orientación (en el caso de un robot esférico), dentro de su espacio de trabajo. El beneficio esperado de estos nuevos diseños es la obtención de robots paralelos con: * Espacios de trabajo mayores debido a que la posibilidad de colisiones entre las patas se reduce, y el número de articulaciones (con sus limitaciones intrínsecas de rango) también se reduce; * Menor peso debido a que el número de actuadores y de articulaciones se reduce; y * Un menor coste debido a que el número de actuadores y controladores también se reduce. La eliminación de un actuador y la introducción de una restricción de movimiento reduce, en uno, la dimensión del espacio de velocidades alcanzables para una configuración dada. Como resultado, será necesario, en general, planificar maniobras para llegar a la configuración deseada de la plataforma móvil. Por lo tanto, los robots obtenidos sólo serán adecuados para aplicaciones donde la precisión se requiera en la posición final y exista un cierto margen de error aceptable en las trayectorias generada

    Design, implementation, control, and user evaluations of assiston-arm self-aligning upper-extremity exoskeleton

    Get PDF
    Physical rehabilitation therapy is indispensable for treating neurological disabilities. The use of robotic devices for rehabilitation holds high promise, since these devices can bear the physical burden of rehabilitation exercises during intense therapy sessions, while therapists are employed as decision makers. Robot-assisted rehabilitation devices are advantageous as they can be applied to patients with all levels of impairment, allow for easy tuning of the duration and intensity of therapies and enable customized, interactive treatment protocols. Moreover, since robotic devices are particularly good at repetitive tasks, rehabilitation robots can decrease the physical burden on therapists and enable a single therapist to supervise multiple patients simultaneously; hence, help to lower cost of therapies. While the intensity and quality of manually delivered therapies depend on the skill and fatigue level of therapists, high-intensity robotic therapies can always be delivered with high accuracy. Thanks to their integrated sensors, robotic devices can gather measurements throughout therapies, enable quantitative tracking of patient progress and development of evidence-based personalized rehabilitation programs. In this dissertation, we present the design, control, characterization and user evaluations of AssistOn-Arm, a powered, self-aligning exoskeleton for robotassisted upper-extremity rehabilitation. AssistOn-Arm is designed as a passive back-driveable impedance-type robot such that patients/therapists can move the device transparently, without much interference of the device dynamics on natural movements. Thanks to its novel kinematics and mechanically transparent design, AssistOn-Arm can passively self-align its joint axes to provide an ideal match between human joint axes and the exoskeleton axes, guaranteeing ergonomic movements and comfort throughout physical therapies. The self-aligning property of AssistOn-Arm not only increases the usable range of motion for robot-assisted upper-extremity exercises to cover almost the whole human arm workspace, but also enables the delivery of glenohumeral mobilization (scapular elevation/depression and protraction/retraction) and scapular stabilization exercises, extending the type of therapies that can be administered using upper-extremity exoskeletons. Furthermore, the self-alignment property of AssistOn-Arm signi cantly shortens the setup time required to attach a patient to the exoskeleton. As an impedance-type device with high passive back-driveability, AssistOn- Arm can be force controlled without the need of force sensors; hence, high delity interaction control performance can be achieved with open-loop impedance control. This control architecture not only simpli es implementation, but also enhances safety (coupled stability robustness), since open-loop force control does not su er from the fundamental bandwidth and stability limitations of force-feedback. Experimental characterizations and user studies with healthy volunteers con- rm the transparency, range of motion, and control performance of AssistOn- Ar
    corecore