

DEVELOPMENT OF A USER INTERFACE TO COMMUNICATE WITH VIRTUAL DELTA

ROBOT USING MODBUS TCP/IP AND C#

A Thesis

Presented to

the Faculty of the College of Business and Technology

Morehead State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Armin Maraghehmoghaddam

April 22, 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Morehead State University

https://core.ac.uk/display/346491291?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

ProQuest

Published by ProQuest LLC (). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

10189320

10189320

2017

Accepted by the faculty of the College of Business and Technology, Morehead State University,

in partial fulfillment of the requirements for the Master of Science degree.

Dr. Jorge Alberto OrtegaMoody

Director of Thesis

Master’s Committee: ________________________________, Chair

 Dr. Jorge Alberto OrtegaMoody

Dr. Ahmad Zargari

Dr. William R. Grise

Date:

DEVELOPMENT OF A USER INTERFACE TO COMMUNICATE WITH VIRTUAL DELTA

ROBOT USING MODBUS TCP/IP AND C#

Armin Maraghehmoghaddam

Morehead State University, 2016

Director of Thesis: __

 Dr. Jorge Alberto OrtegaMoody

Today, industrial robots are an integral part of the automotive assembly lines due to their

higher speed, quality, reliability and productivity. Considering the wide applications of robots in

almost all various fields in the modern world, there is always need for engineers, operators,

technicians and experts to perform tasks of programming, maintenance, operating and

troubleshooting of robots. Training professionals and experts in the robotic areas is necessary due

to the critical processes in which robots are involved. However, the main constraints regarding

providing continuous training in the field of robotic technology include lack of training resources,

unsatisfactory training processes, high costs of equipping robotic laboratories, high sensitivity of

working with robots for unskilled individuals, as well as high risks of making mistakes and

damaging robots. As a solution, virtual robot laboratories are developed to resolve such issues.

The whole concept of virtual robot training is based on implementing virtual robot laboratory and

virtual robot with the exact behavior of the actual robot. Applying both virtual robots and virtual

robot laboratories, trainees are made able to implement various scenarios and code various

sequences. As a result of applying such scenarios and sequences, trainees can monitor the real

behavior of the robots. Trainees would also find the opportunity to practice all possible conditions

as a result of scripting various scenarios.

For implementation of virtual delta robot with the actual behavior of a real delta robot,

game engines came into the account. The capabilities of game engines such as physic engines

inside them, real time simulation, and availability helped the simulation of the virtual robot. For

the users’ effective interaction with the virtual delta robot, development of a user interface is

required. The topic of this thesis started at this point. Using the virtual robot, mathematical

modeling and mathematical kinematics of delta robot, and communication methods based on

Modbus TCP/IP, a user interface for facilitating user’s interaction with the delta robot has been

developed.

The design of the user interface is based on the basic needs of users which are control of

the robot considering kinematic models, positions of the end effector and saving these positions,

communication setting, robot dimensions setting, and programming and scripting.

As the output of the thesis, a virtual delta robot, which was maintained in a game engine,

can be easily manipulated through the developed user interface in which robot kinematic models

and communication based on Modbus TCP/IP came into the account.

Accepted by: ______________________________, Chair

 Dr. Jorge Alberto OrtegaMoody

 Dr. Ahmad Zargari

 Dr. William R. Grise

Table of Contents

1 Introduction ... 1

1.1 Industrial Robots .. 1

1.2 Robots and Hazardous Tasks ... 2

1.3 Robots and Technology Development ... 3

1.4 Robots and Training ... 4

1.5 Virtual Reality .. 7

1.6 Virtual Environment and Training ... 7

1.7 Scope of the Thesis .. 9

2 Review of Literature .. 10

2.1 Kinematics of Delta Robot ... 10

2.1.1 Delta Robot Configuration .. 10

2.1.2 Mathematical Modeling of the Delta Robot ... 12

2.1.3 Inverse Kinematic ... 12

2.1.4 Forward Kinematic ... 24

2.2 Communication .. 32

2.2.1 Modbus ... 32

2.2.2 Modbus TCP/IP .. 33

2.2.3 OSI Network Model .. 34

2.3 Virtual Reality .. 40

2.3.1 Design ... 43

3 Methodology ... 51

3.1 Problem Statement ... 51

3.2 Purpose of the Study .. 51

4 Procedure and Findings .. 53

4.1 User Interface ... 53

4.1.1 Control Window.. 57

4.1.2 Save Position Window .. 60

4.1.3 Communication ... 61

4.1.4 Dimensions ... 62

5 Conclusion and Future Works ... 65

5.1 Conclusion .. 65

5.2 Future Works .. 66

6 References .. 67

7 Appendix A ... 69

8 Appendix B ... 73

9 Appendix C ... 84

10 Appendix D ... 89

Table of Figures

Figure 2-1: Delta Robot Configuration (Williams, 2016) .. 11

Figure 2-2: Delta Robot Variables (Msavatsky, 2009) ... 13

Figure 2-3: Robot Dimensions (Msavatsky, 2009) ... 14

Figure 2-4: Kinematic Chain Movements (Msavatsky, 2009) .. 16

Figure 2-5: YZ Plane View (Msavatsky, 2009) .. 18

Figure 2-6: Coordinate Rotation (Msavatsky, 2009) .. 22

Figure 2-7: Joints Configuration (Msavatsky, 2009) .. 24

Figure 2-8: Kinematic Chains Movement (Msavatsky, 2009) .. 26

Figure 2-9: Fixed Platform Geometry (Msavatsky, 2009) .. 27

Figure 2-10: OSI Model .. 35

Figure 2-11: Modbus TCP/IP Model .. 38

Figure 2-12: Modbus TCP/IP Frame Structure ... 40

Figure 2-13: The Whole System Concept (Moody, J. O., Sánchez- Alonso, R., Yun, C.,

González- Barbosa, J., & Reyes- Morales, G., 2015) ... 44

Figure 2-14: Virtual Environment .. 46

Figure 2-15: Virtual Robot `s Parts ... 47

Figure 2-16: Status Tab ... 48

Figure 2-17: Mass Tab .. 49

Figure 2-18: Motor Tab .. 49

Figure 2-19: PID Tab .. 50

Figure 2-20: Coils ... 50

Figure 4-1: Concept .. 53

Figure 4-2: User Interface Requirements .. 54

Figure 4-3: Control Window ... 58

Figure 4-4: Joint Mode.. 59

Figure 4-5: World Mode ... 59

Figure 4-6: Save Positions .. 60

Figure 4-7: Communication .. 61

Figure 4-8: Delta Robot Dimensions (Msavatsky, 2009) ... 62

Figure 4-9: Communication .. 63

Figure 4-10: Final View .. 64

1 Introduction

The high level of popularity of the robotic technology is mainly due to its vast applicability

across great number of fields. Robots have been applied in industry, healthcare and medical

surgeries, military, agriculture, oceanographic explorations, education, and for aerospace

purposes. The advances in computers as the brain of robots leads to more improvements in robotic

technology in that robots are not simply mechanical machines, but they are turning into more

intelligent machines with the ability to process information much faster and more efficiently in

comparison to earlier versions.

1.1 Industrial Robots

In recent years, manufacturing processes have become more autonomous which require

less operator intervention and higher flexibility for specific applications to meet specific market

demand. Industrial robots play a crucial role in various fields of automated industry. Industrial

robots are electronically controlled, and are programmable and reprogrammable so as perform

specific and varied duties in industrial and manufacturing lines. Robots have brought about

innovations and efficiency in manufacturing sectors and play a crucial role in industrial

innovations. Despite the fact that the programming of industrial robotic systems for a specific

application in industry is difficult, time-consuming and can be expensive, industrial robots are

considered the best solution for both productivity and flexibility which is crucial in production

diversification in the era of globalization (Pan, Z., Polden, J., Larkin, N., Duin, S. V., & Norrish,

J., 2012). Today, industrial robots are an inescapable part of the automotive assembly lines since

they have the ability to perform and accomplish specific tasks with higher speed, and result in

higher quality, reliability and productivity. In addition to the higher level of flexibility, quality and

2

 reliability, industrial robots play an important role in balancing production costs, time, and quality

constraints (Papakostas, N., Michalos, G., Makris, S., Zouzias, D., & Chryssolouris, G. , 2011).

1.2 Robots and Hazardous Tasks

One of the greatest justifications for robotic applications is performing tasks that are

dangerous for human beings to do. Robots are ideal for working in hazardous environments, so

that people can be relieved from performing dangerous tasks in unfriendly conditions. According

to the Robotic Industrial Association, robots are commonly used in sites where chemicals and

hazardous materials are handled on a daily basis (Brumson, Robotic Industrial Association, 2007).

By reducing workforce exposure to hazardous environments by taking advantage of chemical and

material handling robots, companies aim to decrease potential liability for workers’ compensation

or other related costs. In the process of handling hazardous materials, there are irritating or toxic

fumes- such as fumes created during ultrasonic welding of some kinds of plastic parts- that bother

human workers especially if there is close or prolonged exposure. There are also explosion-proof

robots that are employed in environments where ignitable fumes and vapors exists. Also, robots

are applied in handling non-hazardous materials that can produce potentially explosive dust

including bag palletizing of grain products. There is a growing demand for use of robots in

handling hazardous materials as the number of chemicals used in industry continues to increase,

with the resulting increase in the potential environmental and health risks. It is predicted that the

future robotic technology will have improved vision and sensory equipment in order to handle

such hazardous chemicals safely, and successfully (Brumson, Robotic Industrial Association,

2007). In addition, robots are capable of lifting heavy loads repetitively without tiring or injury.

They increase worker safety and prevent accidents by removing workers from hazards. Robots

significantly save production time, since they are able to produce great numbers of products. They

3

also save companies in the long term by decreasing the volume of wasted materials, reducing

workforce injuries, using less materials, and thus generating a quicker return on investment. In

addition, robots have created and developed new occupations. The production line moving over to

programming tasks, thus reducing of monotonous jobs and adding them to more challenging ones.

In the USA, robots allow companies to remain competitive, keeping local jobs (ScottCompany,

n.d.).

1.3 Robots and Technology Development

Robotics has continued to have a profound influence on technology developments in various

fields, some of which are presented here. One of the impressive technology developments in

robotics is assistive robotics. Assistive robots generally include robots designed to aid people with

special needs (Brian Scassellati, Henny Admoni, Maja Mataric, 2012). The primary application of

assistive robotics is to provide hands-on treatment or support for physical disabilities by helping a

patient perform repetitive therapeutic motions as a physical therapist would. Another technology

is called social robotics, which involves robots that engage in some form of social interaction with

humans, through speech, gestures, or other modality. One of the recent developments in this field

is Social and Assistive Robotics (SAR), which lies at the intersection of social robotics and

assistive robotics. SAR refers to the design of robots to help through social interaction rather than

physical interaction. This technology is now used to conduct research for treatment of disorders

such as autism (Brian Scassellati, Henny Admoni, Maja Mataric, 2012). There are many advances

in the field of human- robot interactions in various industries. Military robots are also another

development. They are autonomous remote-controlled robots that are used with military

applications in transport, search, rescue, attack and so forth. Although there have been lots of

development in the field of robotics so far, many researchers are involved in making robots more

4

efficient, more widely applicable, and more intelligent in various field, with more specifications

to their systems (Brumson, Robotic Industries Association, 2011) (Grabianowski, 2016).

1.4 Robots and Training

As previously mentioned, robots are applicable in various fields from agriculture,

manufacturing, arc welding, healthcare and treatment, to aerospace applications and space

exploration. Thus, there is always need for engineers, operators, technicians, and other experts to

perform the tasks of programming, maintenance, operating and troubleshooting of robots.

In order to have a well-prepared and skillful workforce in the field of robotics, continuous

and updated training is essential. Training professionals and experts in the robotic areas is

necessary due to the critical industrial and other processes in which robots are involved. However,

the main constraint on providing continuous training is the lack of resources. Inadequate training

resources leads to a not very fulfilling training process. The high costs of providing robots for the

purposes of training individuals is a major obstacle. In addition, the higher risk presented by

unskilled individuals working with robots increases the risk of making mistakes and damaging

robots limits the availability of robots for training and also imposes extra costs.

Ideally, all trainees and students who are earning educations in fields of robotics and

robotic technology should have access to adequate training resources such as a robotics lab in

which they can apply different scenarios to the robot and monitor the behavior of the robot. Being

able to do so, trainees will develop skills in applying instructions, programming orders and

scenarios in programming, reprogramming, controlling, and maintaining robots and understanding

robotic procedures and configurations. In addition, trainees should be able to implement

intentionally some various types of errors so that they can see the behavior of the robot and also

learn the troubleshooting process.

5

All these conditions above define the ideal situation for the training. However, not all of

these conditions are not possible. Even if possible, the process of practicing troubleshooting can

cause serious damages to the robots as well as extra expenses. So, the question is how to deal with

this problem considering the fact that training programs in robotic technology need robotics

equipment. To clarify the constraints in providing training programs with robotics equipment, the

drawbacks of using robots in training sessions are discussed in the following.

There are three main drawbacks for using robots in training sessions.

In the first place, robots are expensive. Considering the number of trainees and students

who need such training sessions, significant financial resources are required to buy robots. Also,

proper laboratories need other equipment as well which cannot be avoided. Besides, the laboratory

buildings themselves will require significant resources to build and/or retrofit, and maintain.

In the second place, the vulnerability of robots can lead to technical problems during the

training sessions. Students and trainees are usually working with robots in laboratories during

training sessions; at the same time, they are not fully aware of the capabilities of, and restraints on,

robots. Consequently, using wrong codes and instructions can sometimes cause serious problems

and damages to the laboratory equipment. In addition to the extra costs incurred for repair or

replacement of damaged equipment, while the equipment has problems, it cannot be used by other

trainees and students until it is repaired, which is a waste of time. If this downtime occurs in the

beginning sessions, it might even impair the learning and training process for a while. Such a loss

of valuable training time is hard to compensate for, as the impact of theoretical sessions can be

best realized when done in conjunction with practical sessions in the laboratory.

Most importantly, safety issues are serious problems in robotic technology laboratories.

Such safety issues arise comes from a lack of adequate professional supervision while working

6

with robots in the laboratory. In other words, most robotic training sessions are run and supervised

by only one instructor or trainer. This means that the instructor cannot simultaneously be present

for each and every trainee while he or she is using the robots and performing laboratory tasks. This

inadequacy of supervision can be lead to serious safety issues, since trainees are mainly beginners

who are totally new to running robotic programs while working with robotic systems and

processes.

The process of training students in robotic technology is a complicated process. One set of

complications arises due to trainees’ often inadequate preparatory knowledge in relevant fields. In

other words, students being trained in the robotic laboratory are required to have gained general

knowledge in fields of mechanical design and electrical design. They also need to have

understanding of the concept of mathematical modeling of robots and behavior of robots in

addition to a profound grasp and knowledge of programming skills and procedures. The robots

used in laboratories are almost always offered in compact packages. Thus, teaching the concepts

of mechanical and electrical design as well as programming and mathematical modeling in the

training period is almost impossible for the instructor. Considering the fact that trainees are not

able to see the insides, i.e., the design of the robots they are working with during their robotic

training, trainees will not be easily able to successfully program robots, figure out and analyze

various outputs and behaviors of robots for different scenarios. In addition, programming actual

robots is a very complicated process which needs extra attention and precision because any wrong

program or sequence can lead to serious damages to the robots and also can cause safety issues for

operators and trainees.

7

1.5 Virtual Reality

Although early elements of virtual reality can be traced back to the 1860’s and long before

the development of digital technology, it is usually considered to have started in earnest. During

the 1920’s, Edwin Link developed the world’s first flight simulator as a training device for new

and novice pilots. Later on, the first kind of multimedia device in the form of an interactive theatre

experience was devised by Morton Heilig in 1957 as an early form of virtual reality which was not

patented until 1962. The development of virtual reality continued with the technology of head

mounted display (HMD) that was designed to be used by helicopter pilots so that it made them

able to see their surroundings during night flights. The HMD was attached to a computer in 1968

to enable the wearer to see a virtual world. However, it had to be attached to a suspension device

due to its weight. In 1970’s, an innovative form of multimedia as the first interactive map of Aspen

was developed in Massachusetts Institute of Technology (MIT) enabling people to walk through

the town of Aspen. During 1980’s, virtual reality was used for NASA projects along with other

techniques derived from researches in new forms of human – computer interaction (HCI). In

1990’s, virtual reality became public and grabbed public awareness as Jaron Lanier and Tom

Zimmerman marketed a range of virtual reality gear. Although the hypes surrounding virtual

reality technology in 1990’s had an initially adverse effect on the popularity of such technology,

there are now various advantages that can be obtained from its application (Virtual Reality Society,

2016).

1.6 Virtual Environment and Training

Virtual environment and the concept of virtual reality came to fore when the idea of

eliminating dangers and expenses in hazardous and expensive training procedures was created

(Maurizio Rovaglio, Tobias Scheele, 2011) (Etienne van Wyk, 2014). The three main issues of

8

using actual robots in robotic technology laboratories including the high cost of equipment, lack

of resources, the vulnerability of robots to wrong instructions and codes, the serious damages

caused by unskilled users, and safety issues related to the application of actual robots, are all

reasons for the increasing trend toward using virtual environment.

The whole concept of virtual robot training is based on implementing a virtual robot

laboratory and virtual robot with the exact behavior of the actual robot. Applying both virtual

robots and virtual robot laboratories, trainees become capable of implementing various scenarios

and coding various sequences. Also, they can monitor the real behavior of the robots as a result of

applying such scenarios and sequences. Trainees would find the opportunity to practice all possible

conditions as a result of scripting various scenarios. In addition, trainees can observe how wrong

codes can cause errors and faults on the robot without imposing any extra maintenance costs that

are unavoidable if using actual robots. Thus, trainees can continue to practice at no costs and have

the opportunity to run one set of instructions several times to master the problem which is not

possible via applying actual robots. The ability of repeating and performing various scenarios,

errors and codes also make the instructor more confident about the risks of safety issues. So,

applying virtual robots instead of actual ones for the purpose of training can highly enhance the

problems with the application of actual robots and make robotic technology training much less

stressful for both trainees and trainers. The combination of platforms for virtual developments,

physics engines, computer processors, and graphic processors are used to implement a virtual robot

laboratory (Moody, J. O., Sánchez- Alonso, R., Yun, C., González- Barbosa, J., & Reyes- Morales,

G., 2015).

9

1.7 Scope of the Thesis

There are various significant drawbacks to the application of actual robots in robotic

technology laboratories. These include the high costs of building, and equipping robotic laboratory

as well as the costs of actual robots, vulnerability of robots to wrong coding, programming and

error instructions leading to serious damages to robots, and safety concerns related to lack of

adequate supervision on trainees while performing relevant procedures.

The main issue of this research is to apply the combination of platforms for virtual

developments, physics engines, computer processors, and graphic processors to implement a

virtual robot laboratory. By applying virtual robot laboratory to a training or instructional setting,

not only all the previously mentioned constraints of actual robotic technology are removed, but

also trainees gain the opportunity to spend more time practicing and performing various coding

and programming scenarios to make training sessions fruitful, safe, challenging and robotically

successful. This study explains the process of creating such virtual reality environment by

presenting the mathematical modeling, programming and coding for a virtual parallel delta robot.

10

2 Review of Literature

2.1 Kinematics of Delta Robot

2.1.1 Delta Robot Configuration

The Delta robot is a type of parallel robot. The Delta robot is an ideal candidate for pick

and place operations of light objects in manufacturing and production lines due to its fast pace and

movement flexibility. The key design feature in the Delta robot is the use of parallelograms. A

parallelogram maintains the orientation of an end effector. In other words, a parallelogram allows

an output link to maintain a fixed orientation considering an input link (Brogardh, 2000).

The Delta robot is depicted in Figure 2-1. As shown in Figure 2-1, it consists of various

parts as follows (Williams, 2016):

 A fixed platform

 Three active revolute joints

 Three upper links

 Six passive universal joints

 Three parallelogram links

 A mobile platform

 The end effector

In the case of this study, the fixed platform consists of an equilateral triangle. The fixed

platform is affixed to a base and thus, does not move at all.

As pointed in Figure 2-1, the three revolute joints allow single-axis rotation around the

axis. These revolute joints are called “active” since we placed motors on these joints in order to

provide the source of motions for the robot (Williams, 2016).

11

The three upper links are connected to the fixed platform through the revolute joints from

the top and are connected to the parallelogram links via universal joints from the bottom (Williams,

2016).

Universal joints, as showed on the Figure 2-1, allow the transmission of power by

providing rotation at the joints. Applying the universal joints, the power of motors is transmitted

to the mobile platform that makes the mobile platform move freely in the robot working space

(Williams, 2016).

Parallelogram links consist of two parallel links. These parallel links shape a chain between

the upper links and the mobile platform. A parallelogram allows an output link to maintain a fixed

orientation with regard to an input link (Williams, 2016).

Figure 2-1: Delta Robot Configuration (Williams, 2016)

Active Revolute Joint

Fixed Platform

Upper Link

Passive Universal Joint

Parallelogram Link

Passive Universal Joint

End Effector

12

2.1.2 Mathematical Modeling of the Delta Robot

In this study, the effort is made to design and implement virtual robot by taking advantage

of the combination of platforms for virtual developments, physics engines, computer processors,

and graphic processors to implement a virtual robot laboratory. This can be done by creating the

virtual reality environment through presenting the mathematical modeling, programming and

coding for a virtual parallel delta robot.

The main tool for implementing the virtual Delta robot and programming the compatible

user interface is the mathematical modeling of the Delta robot. When it comes to the user interface,

the key element is modeling of the robot movements and the behavior of the virtual robot during

the time the virtual robot is operated by the students, trainees, instructors or operators. The

implementation of the mathematical modeling behind the user interface scene is highly significant

due to the fact that such implementation provides the ground for the operator instructions to be

transferred to the virtual robot movements.

Movements of the Delta robot are based on two major concepts of inverse kinematics and

forward kinematics. This generally refers to the relations between the joint angles and the end

effectors. Simply put, in the concept of forward kinematics, the input consists of the joint angles

while the output is the coordinates of the end effectors. On the other hand, the input consists of the

coordinates of the end effectors, and the joint angles calculations are the output (Msavatsky, 2009).

2.1.3 Inverse Kinematic

The first concept to discuss here is the inverse kinematics method. Considering the desired

position of the end effector to be known, the purpose is to find the joint angles. In other words,

while we know the coordinates of the end effector, we need to figure out how we should change

the motors angles so that we reach the desired known position. So, figuring out the calculations of

13

the three angles of the motors in the way that we can reach out to desired position of the end

effector is the goal.

In the process of mathematical modeling of a robot, knowing the precise measurements of

the robot is the most important part. As previously mentioned, there are two platforms in the

configuration of the Delta robot called the fixed and the mobile platform. Both of the fixed and

mobile platforms in the scope of this study are considered as two equilateral triangles. There are

also three kinematic chains, each of which consists of two links. Figure 2-2 shows the angles of θ

and the coordinates of X0, Y0, and Z0. As it is clearly depicted in Figure 2-2, the variables are the

angles of the three motors as θ1, θ2, θ3 and the position of the end effector which is pointed as E0.

The coordinate of the end effector is X0, Y0, and Z0 (Msavatsky, 2009).

Figure 2-2: Delta Robot Variables (Msavatsky, 2009)

14

In the next step, the goal is to determine the key elements of the robot geometry. Finding

the robot geometry is the important path to figuring out the motor angles based on the coordinates

of the end effector position.

Figure 2-3 displays other specifications about both of the fixed and the mobile platforms.

It explains “f” as the side of the equilateral triangle of the fixed platform. Also, “e” is pointed as

the side of the equilateral triangle of the mobile platform. Other specifications are depicted as “rf”

which is the length of the upper link, and “re” which is the length of the parallelogram joint.

Figure 2-3: Robot Dimensions (Msavatsky, 2009)

15

So far, we have defined and determined all the variables that are important in doing the

mathematical modeling for the virtual robot as desired. So, we are now able to shape the required

equations and do the proper calculations which define the movements of the robot and its behaviors

with regards to the determined robot geometry.

In order to properly perform and complete the mathematical modeling of the Delta robot,

defining all possible movement of the robots is the first step. Referring to Figure 2-1, it is seen that

all movements of the robot begins from the active revolute joints, where the motors are placed.

Revolute joins allow single- axis movements and going forward, universal joints allow rotational

movements. In other words, revolute joints shape a circle moving around the one axis whereas

universal joints shape a sphere with rotational movements around two axes. Both the circle-shaped

area created by the revolute joints single-axis movements and the sphere-shaped area resulted from

the rotational movements allowed by the universal joints are depicted in Figure 2-4 (Msavatsky,

2009).

16

Figure 2-4: Kinematic Chain Movements (Msavatsky, 2009)

As shown in Figure 2-4, the calculation for one kinematic chain, the circle with the center

at F1 and the radius of F1J1 shows the path of moving link rf around the center of F1. This movement

17

is the first step toward figuring out the inverse kinematic equation. By placing the zero point of

the Cartesian system at the center of the fixed platform, the circle will be defined at YZ plane.

The second step toward forming the inverse kinematic equation is moving forward on the

kinematic chain to point E1. The universal joint at the point E1 provides a free movement of the

link E1J1 around the center (E1). This free movement around the center shapes a sphere with these

specifications: the center at E1 and radius of E1J1 or link re (Msavatsky, 2009).

Finding the equation of the point J1 is the purpose of this model. Since we have the

coordinate of the point J1, the calculation of θ1 -which is the motor angle- would be easy. To do

so, the intersection of the circle with center F1 and the sphere with center E1 is needed. The sphere

is shaped in three dimensions whereas the circle is just on YZ plane. The ultimate solution is to

work on the image of the sphere on the YZ plane which would be a circle in two dimensional

space. With a transformation of the center E1 to E′
1 and drawing a circle with the center at E′

1 and

radius of E′
1J1, the image of sphere on YZ plane appears. At this point, the model of the robot path

is extracted. Figuring out the equations for this path would result in finding the ultimate J1

coordinate which is the main element of motor angle calculation (Msavatsky, 2009).

The third step mainly consists of looking at the whole system considering YZ plane. The

view of looking at the whole system with respect to YZ plane is shown in Figure 2-5. In addition

to this view, Figure 2-5 contains the mobile platform geometry which is necessary here because

we are transferring the end point to find the image of the sphere on the YZ plane. This

transformation is happening on the mobile platform which makes the mobile platform geometry

important.

18

Figure 2-5: YZ Plane View (Msavatsky, 2009)

In order to do the calculation of the E′
1 position, a transformation is needed from our end

point E0 (end effector position) with the coordinates of x0, y0, and z0 to the corner of the equilateral

triangle.

As is defined on the top view of mobile platform in Figure 2-5, while transferring point E0

to E′
1, a right triangle is shaped. The side of equilateral triangle (mobile platform) is e and as point

E1 is at the center of the side, the dimension of E1E
′
1 would be 𝑒 2⁄ . Now, we have three angles

90°, 60°, and 30°on the right triangle E0E1E
′
1. Considering the E′

1 angle (30°), the following

calculations show the measurement of E0E1.

19

cos 30° =

𝑒
2

ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒

(Equation 2-1)

sin 30° =

𝐸0𝐸1

ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒
 (Equation 2-2)

sin 30°

cos 30°
= tan 30° =

𝐸0𝐸1

ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒
𝑒
2

ℎ𝑎𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒

=
𝐸0𝐸1

𝑒
2

 (Equation 2-3)

𝐸0𝐸1 =

𝑒

2
× tan 30° =

𝑒

2√3
 (Equation 2-4)

The coordinate of E0 is x0, y0, and z0 and the coordinate of E1 is x0, 𝑦0 −
𝑒

2√3
 , and z0. As

the coordinate of E′
1 is the same as the coordinate of E1 with the shift in x to zero, we have the

coordinate of E′
1 as 0, 𝑦0 −

𝑒

2√3
 , and z0. So, we have E1E

′
1= x0.

On the other side, on the fixed platform, the same calculations are proven in the same way

as of the mobile platform. With the exact same calculation on the top equilateral triangle (fixed

platform) with the side of f, the coordinate of point F1 is 0, −
𝑓

2√3
 , and 0 (Msavatsky, 2009).

On the right triangle J1E
′
1E1, applying Pythagorean Theorem, the following calculations

are applied (Msavatsky, 2009).

 (𝐸1𝐽1)2 = (E1E1
′)2 + (E1

′ J1)2 (Equation 2-5)

20

 (E1
′ J1)2 = (𝐸1𝐽1)2 − (E1E1

′)2 (Equation 2-6)

E1

′ 𝐽1 = √𝐸1𝐽1 − E1E1
′ = √𝑟𝑒

2 − 𝑥0
2

(Equation 2-7)

The point J1 is the intersection of the two circles with the centers F1 and E′
1 with the radiuses

rf and re respectively. Mathematical model of the two circles` equations considering the points`

coordinate and previous calculations would generate the coordinate of point J1 as the intersection

point of the two circles. The output of the coordinate of the point J1 and the geometry of the right

triangle F1J1Y1 will give us the angle θ1.

The circle equation with the center at F1 and the radius of rf is (Msavatsky, 2009):

(𝑦𝐽1 − 𝑦𝐹1)

2
+ (𝑧𝐽1 − 𝑧𝐹1)

2
= 𝑟𝑓

2
(Equation 2-8)

Replacing the calculated points into the equation, we have (Msavatsky, 2009):

(𝑦𝐽1 +

𝑓

2√3
)

2

+ 𝑧𝐽1
2 = 𝑟𝑓

2
(Equation 2-9)

The circle equation with the center at E′
1 and the radius of re is (Msavatsky, 2009):

(𝑦𝐽1 − 𝑦E′1)

2
+ (𝑧𝐽1 − 𝑧E′1)

2
= 𝑟𝑓

2
(Equation 2-10)

Replacing the calculated points into the equation, we have (Msavatsky, 2009):

21

(𝑦𝐽1 − 𝑦0 +

𝑒

2√3
)

2

+ (𝑧𝐽1 − 𝑧0)
2

= 𝑟𝑒
2 − 𝑥0

2 (Equation 2-11)

Combining the two circles equations, the final coordinate of point J1 will be extracted. The

elements for the J1 position would be 0, yJ1, and zJ1.

Considering the right triangle F1J1Y1, following calculations result in ultimate θ1

(Msavatsky, 2009).

 𝐽1𝑌1 = 𝑧𝐽1 (Equation 2-12)

 𝐹1𝑌1 = 𝑦𝐹1 − 𝑦𝐽1 (Equation 2-13)

𝜃1 = tan−1

𝑧𝐽1

𝑦𝐹1 − 𝑦𝐽1
 (Equation 2-14)

For the θ2 calculation, a 120° rotation of the coordinate system around the Z-axis is needed.

This rotation is needed because the motors on the Delta robot are located at the center of the fixed

platform sides. This means that with putting zero point at the center of the fixed platform, the

motors have 120° differences with each other. Considering θ1 as zero value, θ2 and θ3 would have

120° counterclockwise and clockwise differences respectively.

Using rotation matrix, for the 120° rotation counterclockwise (finding θ2 coordinate), the

following equations show the new coordinate system (Msavatsky, 2009).

 𝑥′ = 𝑥 cos 120 + 𝑦 sin 120 (Equation 2-15)

22

 𝑦′ = −𝑥 sin 120 + 𝑦 cos 120 (Equation 2-16)

The Figure 2-6 shows the coordinate system rotation and the new coordinate system.

Figure 2-6: Coordinate Rotation (Msavatsky, 2009)

By repeating exactly the same calculations used for calculating θ1 with respect to the new

coordinate system, the θ2 is gained as (Msavatsky, 2009):

𝜃2 = tan−1

𝑧′𝐽1

𝑦′𝐹1 − 𝑦′𝐽1
 (Equation 2-17)

23

In order to do the calculation of θ3, the rotation of coordinate system for 120° clockwise is

needed. Using rotation matrix and the initial position of the coordinate system, the following

equations show the new coordinate system.

 𝑥″ = 𝑥 cos 120 − 𝑦 sin 120 (Equation 2-18)

 𝑦″ = 𝑥 sin 120 + 𝑦 cos 120 (Equation 2-19)

Following the previous calculation, θ3 would be:

𝜃3 = tan−1

𝑧″𝐽1

𝑦″𝐹1 − 𝑦″𝐽1
 (Equation 2-20)

At this point, the three formulas for calculation of three angles enable us to find out about

the exact motor angles base on the position of the end effector on the coordinate system. So,

completing the calculations of the universe kinematics having the coordinates of end effectors, the

joint angles are found as:

𝜃1 = tan−1

𝑧𝐽1

𝑦𝐹1 − 𝑦𝐽1
 (Equation 2-21)

𝜃2 = tan−1

𝑧′𝐽1

𝑦′𝐹1 − 𝑦′𝐽1
 (Equation 2-22)

24

𝜃3 = tan−1

𝑧″𝐽1

𝑦″𝐹1 − 𝑦″𝐽1
 (Equation 2-23)

2.1.4 Forward Kinematic

For the inverse kinematics modeling and calculation, the final position of the end effector

is known and the unknown variables are the motor angles θ1, θ2, and θ3. The forward kinematic

works in the opposite way. In the other words, the motor angles θ1, θ2, and θ3 are considered as

known variables while the aim of the calculations is to figure out the unknown variable which is

the position of the end effector. The position consists of three elements x, y, and z. The three angles

and the position of the end effector are shown in the Figure 2-7 (Msavatsky, 2009).

Figure 2-7: Joints Configuration (Msavatsky, 2009)

25

As the three revolute joints at the contact points of kinematic chains and the fixed platform

can only transmit the motor movements, the three universal joints which indicated as J1, J2, and J3

on the Figure 2-7 would play the role of transmitting rotations. In the other words, with the

calculation of J1, J2, and J3 positions on the coordinate system and a transmission from them to the

mobile platform, the final position of the end effector would be extracted.

The movements of the three links (J1E1, J2E2, and J3E3) around the three centers (J1, J2, and

J3) will shape three spheres. Similar to the invers kinematic calculations, figuring out the equations

for the three spheres should determine the final position of the end effector. However, we

encounter one important issue here. The issue is that the three spheres do not have precisely the

same intersection points which leave the position of the end effector unknown.

In order to solve this problem, the transitions of the three sphere centers are needed. As it

is shown on the Figure 2-7, the three joint positions (the three centers) are moved to the points J′1,

J′2, and J′3 using the transitions vectors E1E0, E2E0, and E3E0. These transitions would help to shape

three spheres with the intersection at the position of the end effector. The important point is

considering these transitions in doing the final calculation (Msavatsky, 2009).

26

Figure 2-8: Kinematic Chains Movement (Msavatsky, 2009)

As the Figure 2-8 displays, the three spheres with the centers at J′1, J′2, and J′3 and the

radiuses of J′1E0, J′2E0, and J′3E0 are shaped. The length of the radiuses are equal to the length of

the bottom link which is called re. The circles at the center of these three spheres have intersection

at point E0 which is the end effector position. In other words, the intersection of the three circles

should be found in order to figure out the position of the end effector. For this purpose, the

equation of the circles with the initial coordinate of contributed points are needed. This means that

the initial coordinate of J′1, J′2, and J′3 as the centers of the circles and the bottom link length re are

the main elements to make the set of circles` equations. The output of the set of the equations

would be the desired intersection point (Msavatsky, 2009).

27

The first step in this process is finding the coordinate of the centers J′1, J′2, and J′3. The

Figure 2-9 shows the geometry of the fixed platform and the position of points and links from the

top view. The important point is the coordinate system position which is placed in a way that zero

of the system is at the center of the equilateral triangle. It means the point zero on the z-axis is on

the fixed platform (Msavatsky, 2009).

Figure 2-9: Fixed Platform Geometry (Msavatsky, 2009)

Considering the geometry of the top view of the robot which is shown on the Figure 2-9,

the lines between the center and the motor places would have the following equations (Msavatsky,

2009).

𝑂𝐹1 = 𝑂𝐹2 = 𝑂𝐹3 =

𝑓

2
 × tan 30 =

𝑓

2√3
 (Equation 2-24)

28

The f would be the side of the equilateral triangle (the fixed platform).

The images of the sphere centers transition from points J to points J′ (J1 to J′1, J2 to J′2, and

J3 to J′3) on the mobile platform (equilateral triangle) could be calculated as in the following.

𝐽1𝐽1

′ = 𝐽2𝐽2
′ = 𝐽3𝐽3

′ =
𝑒

2
× tan 30° =

𝑒

2√3
 (Equation 2-25)

The e would be the side on mobile platform.

The length of the motor positions to the top universal joints are as the following.

 𝐹1𝐽1 = 𝑟𝑓 × cos 𝜃1 (Equation 2-26)

 𝐹2𝐽2 = 𝑟𝑓 × cos 𝜃2 (Equation 2-27)

 𝐹3𝐽3 = 𝑟𝑓 × cos 𝜃3 (Equation 2-28)

The second step is the calculation of the J′1, J′2, and J′3 positions on the coordinate system.

Considering the positions of the fixed platform, links, joints, and the mobile platform on the

coordinate system and the above calculations, the x, y, and z components of J′1, J′2, and J′3 are as

follows (Msavatsky, 2009):

𝐽1

′ : 0,
−(𝑓 − 𝑒)

2√3
− (𝑟𝑓 × cos 𝜃1), −𝑟𝑓 sin 𝜃1 (Equation 2-29)

29

𝐽2

′ : (
(𝑓 − 𝑒)

2√3
+ (𝑟𝑓 × cos 𝜃2)) × cos 30 , (

(𝑓 − 𝑒)

2√3
+ (𝑟𝑓 × cos 𝜃2))

× sin 30 , −𝑟𝑓 sin 𝜃2

(Equation 2-30)

𝐽3

′ : (
(𝑓 − 𝑒)

2√3
+ (𝑟𝑓 × cos 𝜃3)) × cos 30 , (

(𝑓 − 𝑒)

2√3
+ (𝑟𝑓 × cos 𝜃3))

× sin 30 , −𝑟𝑓 sin 𝜃3

(Equation 2-31)

Considering all the above calculations, the set of the three circles equations would be as

(Msavatsky, 2009):

 𝑥2 + (𝑦 − 𝑦1)2 + (𝑧 − 𝑧1)2 = 𝑟𝑒
2 (Equation 2-32)

 (𝑥 − 𝑥2)2 + (𝑦 − 𝑦2)2 + (𝑧 − 𝑧2)2 = 𝑟𝑒
2 (Equation 2-33)

 (𝑥 − 𝑥3)2 + (𝑦 − 𝑦3)2 + (𝑧 − 𝑧3)2 = 𝑟𝑒
2 (Equation 2-34)

Expanding the (Equation 2-32), we have (Msavatsky, 2009):

 𝑥2 + 𝑦2 + 𝑧2 − 2𝑦1𝑦 − 2𝑧1𝑧 = 𝑟𝑒
2 − 𝑦1

2 − 𝑧1
2 (Equation 2-35)

Expanding the (Equation 2-33), we have (Msavatsky, 2009):

30

 𝑥2 + 𝑦2 + 𝑧2 − 2𝑥2𝑥 − 2𝑦2𝑦 − 2𝑧2𝑧 = 𝑟𝑒
2 − 𝑥2

2 − 𝑦2
2 − 𝑧2

2 (Equation 2-36)

Expanding the (Equation 2-34), we have (Msavatsky, 2009):

 𝑥2 + 𝑦2 + 𝑧2 − 2𝑥3𝑥 − 2𝑦3𝑦 − 2𝑧3𝑧 = 𝑟𝑒
2 − 𝑥3

2 − 𝑦3
2 − 𝑧3

2 (Equation 2-37)

For making the calculation easier, the following equation is considered (Msavatsky, 2009).

 𝑤𝑖 = 𝑥𝑖
2 + 𝑦𝑖

2 + 𝑧𝑖
2 (Equation 2-38)

Subtracting (Equation 2-36) from the (Equation 2-35) and replacing (Equation 2-38)in the output,

we have (Msavatsky, 2009):

𝑥2𝑥 + (𝑦1 − 𝑦2)𝑦 + (𝑧1 − 𝑧2)𝑧 =

(𝑤1 − 𝑤2)

2

(Equation 2-39)

Subtracting (Equation 2-37) from (Equation 2-35) in the same way, we have (Msavatsky, 2009):

𝑥3𝑥 + (𝑦1 − 𝑦3)𝑦 + (𝑧1 − 𝑧3)𝑧 =

(𝑤1 − 𝑤3)

2

(Equation 2-40)

By subtracting (Equation 2-37) from the (Equation 2-36), we have (Msavatsky, 2009):

(𝑥2 − 𝑥3)𝑥 + (𝑦2 − 𝑦3)𝑦 + (𝑧2 − 𝑧3)𝑧 =

(𝑤2 − 𝑤3)

2

(Equation 2-41)

31

The following equations are extracted from (Equation 2-39) and (Equation 2-40) (Msavatsky,

2009).

 𝑥 = 𝑎1𝑧 + 𝑏1 (Equation 2-42)

 𝑦 = 𝑎2𝑧 + 𝑏2 (Equation 2-43)

Where a1, b1, a2, and b2 would be (Msavatsky, 2009):

𝑎1 =

1

𝑑
[((𝑧2 − 𝑧1) × (𝑦3 − 𝑦1)) − ((𝑧3 − 𝑧1) − (𝑦2 − 𝑦1))]

(Equation 2-44)

𝑎2 =

−1

𝑑
[((𝑧2 − 𝑧1)𝑥3) − ((𝑧3 − 𝑧1)𝑥2)]

(Equation 2-45)

𝑏1 =

−1

2𝑑
[((𝑤2 − 𝑤1) × (𝑦3 − 𝑦1)) − ((𝑤3 − 𝑤1) − (𝑦2 − 𝑦1))]

(Equation 2-46)

𝑏2 =

1

2𝑑
[((𝑤2 − 𝑤1)𝑥3) − ((𝑤3 − 𝑤1)𝑥2)]

(Equation 2-47)

Also, the d in the above equations would be (Msavatsky, 2009):

 𝑑 = [(𝑦2 − 𝑦1)𝑥3 − (𝑦3 − 𝑦1)𝑥2] (Equation 2-48)

32

With substituting equations (Equation 2-42) and (Equation 2-43) in (Equation 2-35) we have

(Msavatsky, 2009):

 (𝑎1
2 + 𝑎2

2 + 1)𝑧2 + 2(𝑎1 + 𝑎2(𝑏2 − 𝑦1) − 𝑧1)𝑧

+ (𝑏1
2 + (𝑏2 − 𝑦1)2 + 𝑧1

2 − 𝑟𝑒
2) = 0

(Equation 2-49)

Solving this quadric equation will give the answers for the z at the output. The smallest

negative number would be the desirable answer. The final answer is the z component of the end

effector position (z0).

Substituting z0 in equations (Equation 2-42) and (Equation 2-43) will give x0 and y0 at the

output. The final coordinate of the end effector position would be x0, y0, and z0.

2.2 Communication

2.2.1 Modbus

The Modbus protocol is a master-slave/ client-server base protocol which was developed

in 1979 by Modicon. The Modbus protocol is mostly used in industry. That is why the Modbus

protocol is categorized as an industrial communication standard. It is an open protocol which is

mostly applied to transfer discrete and analog I/O information and register data between industrial

control and monitoring devices (Acromag, 2005).

To have a simple interpretation of the client-server method for transferring data, we can

consider that one device would be the master and responsible for transaction initiation in a network.

The other devices in the network would just respond and provide data which is requested by the

master. Simply put, the process involves requesting data from a slave device (valve, I/O transducer,

network drive, or other measuring devices) or sending an instruction to the same slave devise.

Sending query (the request from mater to slave/s) can address individual slave or can propagate

33

through the whole network. Slaves return a response to all the queries addressed to them

individually. However, they do not answer to broadcast queries (Acromag, 2005) (Moody, J. O.,

Sánchez- Alonso, R., Yun, C., González- Barbosa, J., & Reyes- Morales, G., 2015).

A slave address, a function code, required data, and an error checking field are the forming

formative components of the query. The response from the slave involves the confirmation of

taken action, returned data, and an error checking field. The master would send a query with the

specific slave address to the specific slave device. The query includes a function code and required

data, for example asking for the end effector condition. If no error occurs, the slave`s data response

contains the requested data. If an error occurs in the query received, or if the slave is unable to

perform the action requested, the slave will return an exception message as its response (Acromag,

2005).

2.2.2 Modbus TCP/IP

Modbus protocol is a worldwide standard industrial protocol. In order to make the Modbus

protocol more user friendly, more compatible to other networks and communications and add more

features to it, the Modbus TCP/IP was developed in 1999 (Acromag, 2005).

The IEEE 802.3 Ethernet is an office network protocol that has gained universal worldwide

acceptance and became popular due to its capability for data transactions. It is also an open

standard that is supported by many manufacturers and its infrastructure is widely available and

largely installed (Acromag, 2005).

The combination of IEEE 802.3 and Modbus has generated a powerful protocol called

Modbus TCP/IP in which the positive capabilities of two protocols gathered together. This

standard uses the client-server method and takes into account the structure bed of IEEE 802.3 to

shape the query frames. Compatibility to the installed Ethernet infrastructure of cables, connectors,

34

network interface cards, hubs, and switches is the major positive point of the new protocol

(Acromag, 2005) (RTA, n.d.).

In order to profoundly explain and create better understanding of the frame structure of

Modbus TCP/IP, the OSI general model of frame structure will be examined first. In the next step,

a thorough study on the Modbus TCP/IP frame structure will be conducted that leads to

fundamental understanding of this networking method.

2.2.3 OSI Network Model

The Open System Interconnect (OSI) model was developed by the International Standards

Organization in 1983. The Open System Interconnect (OSI) adopted as a common reference for

the development of data communication standards. The general model of the OSI model is being

used as the foundation of the structure of many communication protocols such as Modbus TCP/IP,

HTTP, HTTPS, Ethernet, and a lot of other communication protocols (Acromag, 2005).

The OSI communication structure model consists of seven layers. Each layer in this

concept is responsible for a specific role in the whole communication movie. Figure 2-10 illustrates

the position of each layer based on the priority on making the communications.

35

Figure 2-10: OSI Model

At the bottom place of the OSI model is located the Physical layer. The Physical layer

defines the electrical, mechanical, functional, and procedural attributes used to access and send a

binary data stream over a physical medium which can be RJ-45 connector or CAT5 cable

(Acromag, 2005) (RTA, n.d.).

Being located above the Physical layer, the Data Link layer is responsible for ensuring

reliable delivery at the lowest levels, including data frame, error detection and correction, sequence

control and flow control. The protocols like Ethernet (IEEE 802.2) and MAC are defined at this

level (Acromag, 2005) (RTA, n.d.).

Application

Presentation

Session

Transport

Network

Data Link

Physical

36

The Network layer, placed on top of the Data Link layer and the Physical Layer, provides

controls routing, prioritization, network setup, release of connections, and flow control. The main

responsibilities of this layer involve establishing and maintaining connections over a network and

providing addresses, routing, and delivery packets to hosts. The protocols such as IP, PPP, and

IPX are all offered at this level (Acromag, 2005) (RTA, n.d.).

Next comes the Transport layer. The Transport layer is responsible for sequencing of

application data, controlling start/end of transmission, providing error detection, data correction,

end to end recovery, and clearing the communication. In other words, providing flow control of

data between networks is the main responsibility of the Transport layer. The TCP and UDP

protocols are both defined at this level (Acromag, 2005) (RTA, n.d.).

The Session layer is places above the Transport layer. The connections between

applications and networks and establishing and managing sessions are all implemented in the

Session layer in OSI model. Dialing control and synchronization of session connections are

occurring in this layer. Windows WinSock socket API is considered as one of the most popular

Session layer managers (Acromag, 2005) (RTA, n.d.).

The data compression and encryption are defined as the responsibilities of the Presentation

layer. The layer offers the representation format of data, coding type and used characters. This

layer performs data and protocol negotiation and conversion to ensure that data may be exchanged

between hosts and transportable across the network (Acromag, 2005) (RTA, n.d.).

The Application layer is considered as the last layer in OSI model. This layer is being used

by applications to prepare and interpret data for use by other layers. This layer provides the

application interface to the network. The important protocols which are defined at this level include

HTTP, FTP, SMTP, POP3, CIP, and SNMP (Acromag, 2005) (RTA, n.d.).

37

As explained above, the OSI model of communication makes a data frame that consists of

different layers. In each layer, it defines specific role for communication, error detection, and so

forth. The data frame will be transferred to the physical layer which is usually called

communication channel and transfer to the destination. To set an example, consider the Ethernet.

The Ethernet provides the communication bed in layer one and two which are Physical and Data

Link layers. The TCP/IP is covering layers three and four, Network and Session. The applications

using TCP/IP standard follow the same way of communication at layers three and four. At higher

levels such as the Application layer, the connection will be made between software which share

the same Application protocol.

For the Modbus TCP/IP, a reduction on OSI model results in a five- layer communication

standard. As the Figure 2-11 shows, the structure of Modbus TCP/IP model has five layers. The

layers Session, Presentation, and Application are combined into one layer called “application” with

almost all capability of the three layers. As previously mentioned, the applications, software, or

devices which are intended to build a connection considering the Modbus TCP/IP protocol should

share the same Application layer. Using the same Application layer helps devices to code and

decode the data they received from the network. Adding TCP/IP to this protocol made it capable

of taking advantage of the compatibility between the applications which are using this standard.

Thus, using Modbus TCP/IP protocol makes using an industrial protocol standard possible while

the users benefit from the capability of TCP/IP which is the foundation for the World Wide Web

(Acromag, 2005).

38

Figure 2-11: Modbus TCP/IP Model

Considering the TCP/IP protocols, as they are introduced in Network and Transport layers,

the function of TCP (Transport layer) is to ensure that all packets of data are received correctly,

while IP (Network layer) has the responsibility to make sure that messages are correctly addressed

and routed. The important point worth considering here is that the data is made in the Application

layer and TCP and IP do not make any changes in the original data. They are only playing the role

of communication protocols (Acromag, 2005) (RTA, n.d.).

The application protocols which are usually defined in the Application layer are the

protocols carrying the responsibility for organizing and interpreting data. The structure of the data

frame is shaped and coded in this layer at the sender `s side and is then sent to the destination. At

Application

Transport

Network

Data Link

Physical

39

the receiver `s side, the frame would be decoded and the original data is extracted out of it

(Acromag, 2005) (RTA, n.d.).

The following table shows the protocol stack, or simply put, Modbus TCP/IP

communication layers. As it was mentioned above, the protocol stack of Modbus TCP/IP is

following the standard OSI communication model, but with the combination of the layers of

Session, Presentation, and Application in one layer called “Application”. This combination makes

the protocol stack a five-layer structure.

5 Application Specifies how an application uses a network

4 Transport Specifies how to ensure reliable data transport

3 Network/Internet Specifies packet format and routing

2 Host-to-Network Specifies frame organization and transmittal

1 Physical Specifies the basic network hardware

Table 2-1: Modbus TCP/IP (Acromag, 2005)

The same protocol stack exists at the both sides for all the applications, software, network,

and devices communicating together. Both sender and receiver have the same structure for the

communication. The data (request/query) is generated at the Application layer at the sender. Then

it moves through each layer down and a header is added at each and every step. In other words,

each layer adds its own identifier to the data. In this way, when the data gets to the receiver, each

layer identifies and decodes the relevant header. Base on the table, at level 2, the data is

encapsulated in a frame with each layer header and thus, is ready to proceed to level one (Physical

layer) to be sent into the channel. Conversely, this header information is removed by the

corresponding layer at the receiver. In this way, the headers are essentially peeled off as the data

packet moves up the receiving stack to the receiver Application. The following table illustrates the

Modbus TCP/IP communication stack and protocols which are used in every level.

40

Modbus TCP/IP Communication Stack

Model Protocols References

7 Application Modbus

6 Presentation

5 Session

4 Transport TCP

3 Network IP, ARP, RARP

2 Data Link Ethernet, CSMA/CD, Mac IEEE 802.3

Ethernet 1 Physical Ethernet Physical Layer

Table 2-2: Modbus TCP/IP Communication Stack (Acromag, 2005)

For better understanding of the aforementioned explanations, Figure 2-12 displays the great

journey from layer five (Application layer) to layer two (Data Link layer). As it is shown in the

Figure 2-12, at each step, the layer adds its own header to the data by which it can be distinguished

at the receiver side (Acromag, 2005) (RTA, n.d.).

Figure 2-12: Modbus TCP/IP Frame Structure

2.3 Virtual Reality

Virtual reality is a fully immersive computer simulated environment that gives the user the

feeling of being in that environment. A lot of video games have already developed the technology

to put the user in an interactive world such as a driver `s seats in a car, a warrior in a first person

shooter game, or even in a town that the gamers build themselves. When the users are able to freely

41

move within the virtual environment and interact with the objects in it, the user `s brain can truly

perceive that the virtual world as real.

Virtual reality is considered to have begun in the 1950’s but early elements of it can be traced

back to the 1860’s and long before the development of digital technology (Virtual Reality Society,

2016). The main concept of virtual reality is providing a bed for human brain and convince it to

accept the virtual situation as real. With the emergence of power computers, graphic cards, coding

languages, and 3D design software, the invention of virtual reality was upgraded to next level that

has dramatically altered the world games and training in such virtual environments.

The main capability of the virtual environments and game engines is the implementation of

physics engines inside them. It means that the rules and regulations of real world which come from

rules of physics can be simulated in this environment. It has provided the capability of making the

virtual environments based on the and with the real behavior of the objects in the real world. With

respect to such great capability, the implementation of a game or a laboratory in virtual

environment can result in achieving compelling output for human brains that has the power to

convince it to believe the virtual environment as the real one (Moody, J. O., Sánchez- Alonso, R.,

Yun, C., González- Barbosa, J., & Reyes- Morales, G., 2015).

In addition to gaming, the virtual reality has a great deal of other practical purposes with

respect to its capability of simulating real behavior of objects. As a result of such capability, virtual

reality has been applied for practices and purposes other than gaming namely training simulators

for soldiers, pilots, doctors, and engineers. Big companies are looking for interactive, safe, and

inexpensive training programs. And since virtual reality environment offers options including

moving within the virtual plants, making operational decisions, and investigating processes at a

glance, it is highly important and popular for such big companies looking for it (Maurizio

42

Rovaglio, Tobias Scheele, 2011) (Etienne van Wyk, 2014).Using virtual reality and gaming to

implement an environment for educational and training purposes is mainly what the concept of

virtual laboratory explains. The virtual laboratories in general and virtual robot laboratories, in the

case of this thesis, offer an environment in which the implemented robots simulate the exact

behavior of real robots. In this way, the students and trainees can manipulate the virtual robots by

monitoring the robots behavior and observing the responses sent from the robot to the users as a

result of applying different structures, codes, and scenarios (Moody, J. O., Sánchez- Alonso, R.,

Yun, C., González- Barbosa, J., & Reyes- Morales, G., 2015).

The main reason for implementation of virtual laboratories is providing more resources for

students in academic areas and trainees in different industries. Since the main obstacle facing users

in the actual training environments is the lack of sufficient resources considering high costs of

equipment, applying the method of the implementation of virtual robotic laboratories in place of

actual ones can provide more opportunities for students and trainees to work and learn. The other

advantage of using such robotic laboratories is that immense amounts of financial resources can

be saved for companies. There are still more upsides to the application of virtual laboratories

instead of the actual robotic laboratories. To illustrate, consider the pressing issues of robots

vulnerability to damages and potential safety issues, all of which will be solved by using virtual

robot laboratories. Programming wrong codes and sequences is inevitable during training session

since participants are mainly untrained or novice learners. Students and trainees always make some

mistakes at different levels. Sometimes, some of these mistakes can cause damages to robots and

themselves. The high expenses paid on the maintenance of robots due to damages and irreparable

human hurts are crucial challenges facing users in actual robot laboratories. However, taking

advantage of the technology of virtual robot laboratories can eliminate all these expenses by

43

simulated hazardous situations in a safe, highly visual, and interactive way (Etienne van Wyk,

2014) (Maurizio Rovaglio, Tobias Scheele, 2011).

Considering the aforementioned issues with conducting training sessions in actual robotic

laboratories along with the specific capabilities of the virtual reality environments have developed

the idea and trend of creating virtual worlds with the application of running training sessions in

both academic environments and industrial preparation practices. Such a trend has led into

generating the concept of serious gaming which is defined as using game engines, with the

capability of implementation of the rules of physics in them, in the real world environments.

2.3.1 Design

As it mentioned in the previous section, the availability of tools with high performance

such as the platforms for virtual development, physics engines, computer processors and graphics

cards has provided appropriate bed for the development of virtual laboratories. The

implementation of virtual laboratories requires several steps from designing elements to

programming. These steps include designing each element, exporting designed elements to virtual

environment, and programing to achieve the real behavior of objects. Figure 2-13 depicts the

procedure and algorithm of objects behavior in the virtual environment (Moody, J. O., Sánchez-

Alonso, R., Yun, C., González- Barbosa, J., & Reyes- Morales, G., 2015).

44

Figure 2-13: The Whole System Concept (Moody, J. O., Sánchez- Alonso, R., Yun, C.,

González- Barbosa, J., & Reyes- Morales, G., 2015)

The first step is CAD drawing. In order to draw the elements, there are numerous software.

The exact geometry of objects are the critical points at this step as it is shown in the Figure 2-13.

The ability of moving around freely based on the design is the key point in the first step in order

to simulate behavior with higher precision of similarity to the real objects.

There are also a large number of game engines and software which offer physics engines.

The Unity software has been used, in the case of this thesis, to simulate the behavior of rigid bodies

such as gravity, collision, detection, mass and center of mass, angular velocities, acceleration,

forces, and torques in the virtual Delta robot.

The reason why the author has chosen to work with Unity refers to the capabilities of this

software. Some of the capabilities of Unity are explained in the following (Unity, n.d.):

 Scripting with C#, JavaScript or Boo (.NET-based).

 Action-Packed Physics (built-in NVIDIA PhysX 3™ and Box2D physics engines)

45

 Life-Like Animation.

 Supporting numerous platforms such as Windows, Mac, Linux/Steam OS, iOS, Android,

Windows Phone 8, Windows Store, BlackBerry 10, Tizen, Xbox 360, Xbox One, and

PlayStation 3.

 Optimized Graphics.

 64-bit Editor.

 Inverse Kinematics (use IK rigs to move your character to a pre-determined point on an

object in a natural way – position feet on the ground or hands on the edge of a wall).

 Sync Layers and Additional Curves (attach animation curves to animation clips to ensure

proper encapsulation of the game code).

 Static batching (create geometry batches for static meshes at build-time so the CPU does

not spend time recreating the same batches).

The virtual Delta robot studied in the case of this thesis has been developed by Dr. Ortega-

Moody using all of the mentioned software and extensive mechanical and electrical design

knowledge. Figure 2-14 illustrates the virtual robot in Unity virtual environment.

46

Figure 2-14: Virtual Environment

All the pieces are designed based on the real world objects. The effect of gravity on robot

`s parts act in the same way that it affects objects in real world. For instance, if the motors used in

the robot body are not engaged, the effect of gravity will result in moving all links to lower

positions.

The investigation of robot components and abilities seems necessary at this point. The

virtual Delta robot consists of the exact components of the original Delta robot concept which is

explained at the beginning of this chapter. A fixed platform at the top is responsible for holding

the whole system. The zero point of the Cartesian system is designed to be placed at the center of

this platform. Three motors have been fixed at the three fixed platform and kinematic chains joint

47

points. Each kinematic chain includes two links. The upper link and the bottom link which are

called rf and re respectively. Three revolute joints connect the rfs to the fixed platform and three

universal joints connect rfs to res. The motion of motors cause movements on all the system as

discussed before in the section of mathematical modeling. The kinematic chains are followed by a

mobile platform. The end effector is placed at the center of the mobile platform. The position of

the end effector in the Cartesian system (point zero at the center of the fixed platform) is the

ultimate purpose of the robot operation. The angles of the motors determine the final position of

the end effector. In other words, if a user intends to move an object with this robot, they should

manipulate the robot by changing the motor angles to get to the position of the object. Figure 2-15

shows different parts of the robot and the external object.

Figure 2-15: Virtual Robot `s Parts

Moving to the next step, the specifications of the elements in the virtual environment have

been defined. Those specifications include the mass of each piece, the structure of the robot, and

the specifications of the motors, and so forth. As it is shown on the top left side of Figure 2-14, a

48

window with four tabs is designed for changing physical options. The four tabs designed to make

alterations in the physical options are Status, Mass, Motors, and PID.

The tab Status is designed with the purpose of showing the angles of the motors. The three

angles, as Figure 2-16 illustrates, are the three motor angles. For manipulating the robot and

moving the end effector around, changing these angles is required.

Figure 2-16: Status Tab

The next tab is for changing different parts of the robot `s masses. The three upper links,

three bottom links, and the mobile platform are the user `s option in this window.

49

Figure 2-17: Mass Tab

The third tab is motors` specifications. This tab enables users to change the three motors`

specifications of the resistance, torques, voltages, amperes, and gearbox ratios. The Figure 2-18

shows these options in the virtual environment.

Figure 2-18: Motor Tab

50

And the last tab is PID. The tab of PID provides the users with the options of changing the

gain of proportional, integral, and derivative controllers. In addition to manipulating and

programing the virtual robot, the students and trainees can get familiar with the concept of PID

controllers and observe the output of each set of gains. The Figure 2-19 illustrate the PID control

options.

Figure 2-19: PID Tab

Moreover, the three coils have been designed aiming at monitoring the position of the end

effector, the end effector sensor, and the condition of the end effector (ON/OFF conditions). These

coils have the option of “On” or “Off”. Both of such options can be used as inputs of the user

interface design.

Figure 2-20: Coils

51

3 Methodology

3.1 Problem Statement

There are various significant downsides to the application of actual robots in robotic

technology laboratories. Obstacles such as the high expenses of building, and equipping robotic

laboratory as well as the costs of actual robots, vulnerability of robots to wrong coding,

programming and error instructions leading to serious damages to robots, and safety concerns

related to lack of adequate supervision on trainees while performing relevant procedures are among

those downsides which definitely impairs the use of real robots by novice trainees and users.

To address such an existing shortage, the combination of platforms for virtual developments,

physics engines, computer processors, and graphic processors have been worked on in order to

implement a virtual robot laboratory.

Having defines and illustrated all concepts of mathematical modeling, virtual reality, physics

engines and computer processor in making a virtual robot laboratory, there is still one major

requirement for the users to be able to benefit from such technology. This requirement is having

access to an appropriate user interface that makes the communication possible between the virtual

robot laboratory and the virtual robot with the trainee or user.

3.2 Purpose of the Study

The purpose of this study is to develop such a user interface having the capability to meet

all those expected requirements in a user friendly, straightforward manner that is also beneficial

for all the end users, both in academic and industrial training environments, in order to provide

them with a profound robotic training experience and simultaneously, removes the challenges and

potential risks of robot vulnerability to damage by wrong coding and instruction, and safety issues.

52

By applying virtual robot laboratory and making the communication between it and the intended

users, not only all the previously mentioned constraints of actual robotic technology are removed,

but also trainees gain the opportunity to spend more time practicing and performing various coding

and programming scenarios to make training sessions fruitful, safe, challenging and robotically

successful.

53

4 Procedure and Findings

4.1 User Interface

The works done so far regarding the history of robots and robotic knowledge, the training

trend in robotic laboratory, the virtual environment and virtual robot, the inverse and forward

kinematics behind the robot movements, and the Modbus TCP protocol for communication were

discussed and presented in all previous chapters. Also, the mathematical modeling of delta robot

and its implementation in virtual environment (applying Unity) were used to build a virtual robot

laboratory.

Having the virtual robotic laboratory and the virtual robot, a user interface is required to

provide the main connection between the users and the virtual robot in order to take advantage of

the virtual robotic laboratory. As discussed earlier in the introduction part, the effort of this thesis

is to meet the necessity of such a user interface to be installed on students/ trainees` computers to

provide them with the ability to manipulate the virtual robot. What has been done in the scope of

this thesis is the development of the aforementioned user interface so that the user interface can

communicate with the virtual Delta robot via applying the Modbus TCP as the communication

protocol. The whole concept of the work done in this work is depicted in the Figure 4-1. It shows

that the virtual robot laboratory is installed on a computer counted as a server in this case. Also, it

depicts that the designed user interface is installed on the user’s computer, and finally shows the

communication between the installed virtual robotic laboratory on the server and the user interface.

Figure 4-1: Concept

54

There are various steps in the development of the user interface (software) for the virtual

robot laboratory. In the first step, we need to investigate the users’ needs through the process of

using the user interface in order to develop the software. The author has gained such requirements

through the brainstorming and monitoring of the robot laboratory training sessions` procedures at

Morehead State University robotics laboratory. Those requirements/ expectations of the software

would be as the Figure 4-2 shows.

Figure 4-2: User Interface Requirements

As Figure 4-2 shows, the first requirement for the development of the user interface is

Kinematics. By Kinematics, we mean that users should have the ability of sending the positions or

motor angles to the virtual robot. As explained earlier in the mathematical modeling section, there

are two main concepts discussed as inverse kinematics and forward kinematics.

In the concept of inverse kinematics, having a coordinates of a specific position of the end

effector, there would exist three motor angles. In other words, when the user intends to move the

virtual robot to a specific end effector position, how the three motors should move in order to reach

• Positions

• Motor AnglesKinematics

• Saving positions to make a route

• Sending positions to the robotPoints

• Make the communication with delta robot

• Using Modbus TCPCommunications

• Set the robot dimensions

• Make the interface universalDimensions

• Scripting for programming the process sequences

• Manipulate all parts of the robot by codingPrograming

55

that specific point. For this purpose, repeating the formulas (Equation 2-21), (Equation 2-22), and

(Equation 2-23) , we have the three motor angles as the following in which J1 is the universal joint

point between upper and bottom links. Calculating the position on this point would give the motor

angles (Msavatsky, 2009).

𝜃1 = tan−1

𝑧𝐽1

𝑦𝐹1 − 𝑦𝐽1
 (Equation 4-1)

𝜃2 = tan−1

𝑧′𝐽1

𝑦′𝐹1 − 𝑦′𝐽1
 (Equation 4-2)

𝜃3 = tan−1

𝑧″𝐽1

𝑦″𝐹1 − 𝑦″𝐽1
 (Equation 4-3)

Accomplishing the inverse kinematic calculations and coding the procedures of extracting

angles will give the capability of motor angles` calculations for every chosen positions. Thus,

applying the user interface, the trainee can practice working with the virtual robot inverse

kinematics by applying the given end effector position and having the calculated motor angles.

On the other hand, forward kinematics has the opposite direction for calculation. In other

words, when users choose the motor angles as the input variables in the user interface, they can

see the calculated specific end effector position as the desired output variable. Such options

provided in the user interface makes the users able to monitor the movement path of the robot with

respect to the motor angles. By altering the input variable values for the motor angles, the altered

positions of the end effector of the virtual robot can be monitored by the users. For this purpose,

56

repeating the formula (Equation 2-49) and solving the quadric equation will give the z component

of the ultimate position (Msavatsky, 2009).

 (𝑎1
2 + 𝑎2

2 + 1)𝑧2 + 2(𝑎1 + 𝑎2(𝑏2 − 𝑦1) − 𝑧1)𝑧

+ (𝑏1
2 + (𝑏2 − 𝑦1)2 + 𝑧1

2 − 𝑟𝑒
2) = 0

(Equation 4-4)

Substituting z0 in equations (Equation 4-5) and (Equation 4-6) will give x0 and y0 at the

output. The final coordinate of the end effector position would be x0, y0, and z0 (Msavatsky, 2009).

 𝑥 = 𝑎1𝑧 + 𝑏1 (Equation 4-5)

 𝑦 = 𝑎2𝑧 + 𝑏2 (Equation 4-6)

In which, a1, b1, a2, and b2 would be (Msavatsky, 2009):

𝑎1 =

1

𝑑
[((𝑧2 − 𝑧1) × (𝑦3 − 𝑦1)) − ((𝑧3 − 𝑧1) − (𝑦2 − 𝑦1))]

(Equation 4-7)

𝑎2 =

−1

𝑑
[((𝑧2 − 𝑧1)𝑥3) − ((𝑧3 − 𝑧1)𝑥2)]

(Equation 4-8)

𝑏1 =

−1

2𝑑
[((𝑤2 − 𝑤1) × (𝑦3 − 𝑦1)) − ((𝑤3 − 𝑤1) − (𝑦2 − 𝑦1))]

(Equation 4-9)

57

𝑏2 =

1

2𝑑
[((𝑤2 − 𝑤1)𝑥3) − ((𝑤3 − 𝑤1)𝑥2)]

(Equation 4-10)

4.1.1 Control Window

Accomplishing the calculation of the forward kinematics and coding the procedures of

extraction positions for the given angles will give the capability of manipulating the virtual delta

robot by changing motor angles. Thus, the user can practice various values of the motor angles as

the input variables in order to see various relevant output variables and continually observe the

movement paths by manipulating variables to manipulate the virtual robot, and consequently,

master such skills and knowledge.

Figure 4-3 illustrates the design of Kinematics window in the developed user interface.

There are two modes for forward and inverse kinematics designed in the user interface called the

Joint mode and the World mode. The Joint mode offers the forward kinematics options while the

World mode offers the inverse kinematics options.

58

Figure 4-3: Control Window

By selecting the Joint mode, user can change the motor angles and simultaneously, the

interface calculates the correspondence position. The Figure 4-4 shows one example of this

process.

59

Figure 4-4: Joint Mode

By choosing the World mode, user can alter the position and simultaneously, the interface

calculates the correspondence motor angles. The Figure 4-5 shows one example of this process.

Figure 4-5: World Mode

60

4.1.2 Save Position Window

When the users find the desirable end effector position, either by manipulating the robot in

Joint or World mode, they should be able to save that position. As each path includes some points,

saving each position make the user enable of programing a specific route for the robot. To meet

this requirement, a window was designed which has communication with a .csv file outside the

user interface. This .csv file is called in a datagridview through this window and by saving each

position, the correspondence x, y, and z will be sent to this file. The important consideration about

saving points is that since the virtual robot has no understanding about positions and just works

with motor angles, the saving points in the .csv file are based on the motor angles. Figure 4-6

illustrates the designed window in the user interface.

Figure 4-6: Save Positions

61

4.1.3 Communication

In addition to invers and forward kinematics which are the fundamental parts of robot

operation, communication plays the critical role. For implementing virtual robot laboratory, the

virtual robot will be installed on the university or company `s computer server. The user interface

would be installed on student/trainee `s computer. The communication between the virtual

laboratory and the user interface would be based on Modbus TCP. As mentioned before in the

communication part, the Modbus TCP is a five layer industrial protocol in which the

communication uses TCP frame format to build a compatible data exchange over Ethernet. For

making this communication happen, there should be a window that students/trainees can enter the

server IP address and the Modbus point. The communication window was designed as shown in

Figure 4-7 to fulfil such purpose.

Figure 4-7: Communication

62

4.1.4 Dimensions

Forward and inverse kinematics are based on the dimensions of the virtual Delta robot. The

calculation of the end effector position depends on the length of the kinematic links and the

platforms sides. The fixed dimensions on the user interface programing make it special for

manipulating just one robot. To make the user interface universal and to make its application

possible for any Delta robots, users need a window to set the measurements. Figure 4-8 shows the

dimensions which are used for kinematics calculations.

Figure 4-8: Delta Robot Dimensions (Msavatsky, 2009)

63

And the design window for setting these dimensions in the user interface is depicted in the

Figure 4-9.

Figure 4-9: Communication

The final appearance of the user interface including various windows of Control of

Kinematics, Position, Communication, Dimensions, and Programming is shown in the

Figure 4-10.

64

Figure 4-10: Final View

As Figure 4-10 shows, the final look of the developed user interface in the scope of this thesis

includes various windows. The simple and clear look of the windows as well as its being self-

explanatory provide the users and trainees of the designed software with a great opportunity to

learn how to work with different scenarios relevant to the inverse and forward kinematics. Doing

so, the users are able to monitor different movement paths of the virtual robot and analyze the

behavior of the virtual robot resembling the actual robot with high precision in details. In addition,

the software enables the learners to save the practiced points, perform the communication

protocols, observe the dimensions and programming windows and in general, develop a much

deeper grasp of robotic technology in an available, safe and straightforward virtual environment

that resembles the specifications of the real robotic technology laboratories and actual Delta robots

with high accuracy and precision.

65

5 Conclusion and Future Works

5.1 Conclusion

Robots have been applied in industry, healthcare and medical surgeries, military, agriculture,

oceanographic explorations, education, and for aerospace purposes. Robots are turning into more

intelligent machines with the ability of processing information much faster and more efficiently in

comparison to their early versions. Today, industrial robots are an integral part of the automotive

assembly lines due to their higher speed, quality, reliability and productivity. Considering the wide

applications of robots in almost all various fields in the modern world, there is always need for

engineers, operators, technicians and experts to perform tasks of programming, maintenance,

operating and troubleshooting of robots. Training professionals and experts in the robotic areas is

necessary due to the critical processes in which robots are involved. However, the main constraints

regarding providing continuous training in the field of robotic technology include lack of training

resources, unsatisfactory training processes, high costs of equipping robotic laboratories, high

sensitivity of working with robots for unskilled individuals, high risks of making mistakes and

damaging robots. As a solution, virtual robot laboratories are developed to resolve such issues.

The whole concept of virtual robot training is based on implementing virtual robot laboratory and

virtual robot with the exact behavior of the actual robot. Applying both virtual robots and virtual

robot laboratories, trainees are made able to implement various scenarios and coding various

sequences and they can monitor the real behavior of the robots as a result of applying such

scenarios and sequences. Trainees would find the opportunity to practice all possible conditions as

a result of scripting various scenarios.

In order to take advantage of virtual robotic laboratory, a user interface (software) is

developed during this study. The straightforwardness of the designed software provides novice

66

users with a great opportunity to develop a profound understanding and knowledge of robotic

technology in an available, safe and straightforward virtual environment that resembles the

specifications of the real robotic technology laboratories and actual Delta robots with high

accuracy and precision. In addition, applying the user interface makes companies able of reducing

their training expenses significantly and assures them of having well-trained operators due to the

specifications of the developed software.

5.2 Future Works

Referring to the previous chapters, one can see how the developed user interface consists of

five various windows of Control, Position, Communication, Dimension and Programming.

However, in the scope of this thesis, only the first four windows are developed for the use by

trainees. Future research can be conducted on developing the programming window. In other

words, future work can be done in order to make it possible for the users to do the processes of

scripting for programming the process sequences as well as manipulating all parts of the robot by

coding. This added feature will further strengthen the training processes by enabling the users to

gain a mastery level in performing various tasks with the virtual robot and figuring out its behaviors

in different scenarios defined by themselves.

67

6 References

Acromag. (2005). Retrieved from Acromag:

https://www.acromag.com/sites/default/files/Acromag_Intro_ModbusTCP_765A.pdf

Brian Scassellati, Henny Admoni, Maja Mataric. (2012). Annual Reviews. Retrieved from

Annual Reviews: http://www.annualreviews.org/doi/full/10.1146/annurev-bioeng-

071811-150036

Brogardh, T. (2000). Design of high performance parallel arm robots for industrial application. A

Symposium Commemorating the Legacy, Works, and Life of Sir Robert Stawell Ball.

Brumson, B. (2007). Robotic Industrial Association. Retrieved from Robotic Industrial

Association: http://www.robotics.org/content-detail.cfm/Industrial-Robotics-Industry-

Insights/Chemical-and-Hazardous-Material-Handling-Robotics/content_id/614

Brumson, B. (2011). Robotic Industries Association. Retrieved from Robotic Industries

Association: http://www.robotics.org/content-detail.cfm/Industrial-Robotics-Industry-

Insights/Robotics-in-Security-and-Military-Applications/content_id/3112

Etienne van Wyk, R. d. (2014). Applying design-based research for developing virtual reality

training in the South African mining industry.

Grabianowski, E. (2016). How Miliraty Robots Work. Retrieved from How Sruff Works-

Science: http://science.howstuffworks.com/military-robot.htm

Maurizio Rovaglio, Tobias Scheele. (2011). Virtual reality improves training in process

industries. Automation IT, 32-36.

68

Moody, J. O., Sánchez- Alonso, R., Yun, C., González- Barbosa, J., & Reyes- Morales, G.

(2015). Virtual labratory of idustrial scenarios for training in the areas of automation and

control. International Mechanical Engineering Congress & Exposition, (p. 5). Houston.

Msavatsky. (2009). Delta Robot Kinematics. Retrieved from Trossen Robotics Community:

http://forums.trossenrobotics.com/tutorials/introduction-129/delta-robot-kinematics-3276/

Pan, Z., Polden, J., Larkin, N., Duin, S. V., & Norrish, J. (2012). Recent progress on

programming methods for industrial robots. Robotics and Computer-Integrated

Manufacturing, 87-94.

Papakostas, N., Michalos, G., Makris, S., Zouzias, D., & Chryssolouris, G. . (2011). Industrial

applications with cooperating robots for the flexible assembly. International Journal of

Computer Integrated Manufacturing, 24(7).

RTA. (n.d.). Retrieved from RTA: http://www.rtaautomation.com/technologies/modbus-tcpip/

ScottCompany. (n.d.). RobotWorx. Retrieved from RobotWorx:

https://www.robots.com/articles/viewing/benefits-of-robots

Unity. (n.d.). Retrieved from Unity: https://unity3d.com/

Virtual Reality Society. (2016). Retrieved from Virtual Reality Society:

http://www.vrs.org.uk/virtual-reality/beginning.html

Williams, R. (2016). The Delta Parallel Robot: Kinematics Solutions. Ohio. Retrieved from

www.ohio.edu/people/williar4/html/pdf/DeltaKin.pdf

69

7 Appendix A

Interface Form Main Source Code

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;

namespace RobotInterface
{
 public partial class FormMain : Form
 {
 public FormMain()
 {
 InitializeComponent();
 }
 FormMain f1;
 private void Form1_Load(object sender, EventArgs e)
 {

 }

 frmControl fControl;
 public void controlToolStripMenuItem_Click(object sender, EventArgs e)
 {

 if (fControl == null)
 {
 fControl = new frmControl();
 fControl.MdiParent = this;
 fControl.FormClosing += F2_FormClosing;
 fControl.Show();
 }
 else
 {
 fControl.Show();
 fControl.Activate();
 }
 }

 public void F2_FormClosing(object sender, FormClosingEventArgs e)
 {
 e.Cancel = true;
 fControl.Hide();
 }

 void f2_FormClosed(object sender, FormClosedEventHandler e)
 {
 fControl = null;
 }

70

 public frmPosition fPosition;
 private void positionToolStripMenuItem_Click(object sender, EventArgs e)
 {
 if (fPosition == null)
 {
 fPosition = new frmPosition();
 fPosition.MdiParent = this;
 fPosition.FormClosing += F3_FormClosing;
 fPosition.Show();
 }
 else
 {
 fPosition.Show();
 fPosition.Activate();
 }
 }

 private void F3_FormClosing(object sender, FormClosingEventArgs e)
 {
 e.Cancel = true;
 fPosition.Hide();
 }
 void f3_FormClosed(object sender, FormClosedEventHandler e)
 {
 fPosition = null;
 }

 frmCommunication fComm;
 private void communicationToolStripMenuItem_Click(object sender, EventArgs e)
 {
 if (fComm == null)
 {
 fComm = new frmCommunication();
 fComm.MdiParent = this;
 fComm.FormClosing += F4_FormClosing;
 fComm.Show();
 }
 else
 {
 fComm.Show();
 fComm.Activate();
 }
 }

 private void F4_FormClosing(object sender, FormClosingEventArgs e)
 {
 e.Cancel = true;
 fComm.Hide();
 }

 void f4_FormClosed(object sender, FormClosedEventHandler e)
 {
 fComm = null;
 }

 FormProgramming fProg;
 public void programmingToolStripMenuItem_Click(object sender, EventArgs e)

71

 {

 if (fProg == null)
 {
 fProg = new FormProgramming();
 fProg.MdiParent = this;
 fProg.FormClosing += F5_FormClosing;
 fProg.Show();
 }
 else
 {
 fProg.Show();
 fProg.Activate();
 }
 }

 public void F5_FormClosing(object sender, FormClosingEventArgs e)
 {
 e.Cancel = true;
 fProg.Hide();
 }
 void f5_FormClosed(object sender, FormClosedEventHandler e)
 {
 fProg = null;
 }

 frmRobotDimentions fRobotDim;
 private void robotDimentionsToolStripMenuItem_Click(object sender, EventArgs e)
 {
 if (fRobotDim == null)
 {
 fRobotDim = new frmRobotDimentions();
 fRobotDim.MdiParent = this;
 fRobotDim.FormClosing += F6_FormClosing;
 fRobotDim.Show();
 }
 else
 {
 fRobotDim.Show();
 fRobotDim.Activate();
 }
 }

 private void F6_FormClosing(object sender, FormClosingEventArgs e)
 {
 e.Cancel = true;
 fRobotDim.Hide();
 }
 void f6_FormClosed(object sender, FormClosedEventHandler e)
 {
 fRobotDim = null;
 }

 public void FormMain_SizeChanged(object sender, EventArgs e)
 {
 //Console.WriteLine("Main form is resized....");

 fControl.AutoResize();

72

 fPosition.AutoResize();
 fProg.AutoResize();
 fComm.AutoResize();
 fRobotDim.AutoResize();

 }

 public void FormMain_FormClosing(object sender, FormClosingEventArgs e)
 {
 System.Environment.Exit(1);
 }

 }

 }

73

8 Appendix B

Interface Form Control Source Code

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;

using Excel = Microsoft.Office.Interop.Excel;

using System.Reflection;
using System.IO;
using System.Data.OleDb;
using System.Web;
using EasyModbus;
using System.Threading;

namespace RobotInterface
{

 public partial class frmControl : Form
 {
 public bool running = false;
 public static bool newPosition = false;
 Thread mthread;
 public const int WM_NCLBUTTONDBLCLK = 0x00A3;
 public string axe;

 public frmControl()
 {
 InitializeComponent();
 running = true;
 this.mthread = new Thread(new ThreadStart(this.modbusClient));
 this.mthread.Start();

 }

 public void frmControl_Load(object sender, EventArgs e)
 {

 }

 protected override void WndProc(ref Message m)
 {
 if (m.Msg == WM_NCLBUTTONDBLCLK)
 {
 //this.RelocatedForm();
 AutoResize();
 m.Result = IntPtr.Zero;
 return;

74

 }
 base.WndProc(ref m);
 }

 public void AutoResize()
 {
 // Resize the form and relocated
 this.Width = (int)(MdiParent.ClientSize.Width * 0.4);
 this.Height = (int)(MdiParent.ClientSize.Height * 0.6);

 int x = 0;
 int y = 0;
 this.Location = new Point(x, y);

 // Resize the controls in the from
 }
 private bool v;
 private void btnWorld_Click(object sender, EventArgs e)
 {
 this.Enabled = true;
 this.panel2.Enabled = false;
 this.panel3.Enabled = true;
 v = true;

 }

 private void btnJoint_Click(object sender, EventArgs e)
 {
 this.Enabled = true;
 this.panel3.Enabled = false;
 this.panel2.Enabled = true;
 v = false;

 }
 public static double A1 = 0;
 public static double A2 = 0;
 public static double A3 = 0;
 // World
 private void TrackBar5_Scroll(object sender, EventArgs e)
 {

 A1 = positionTBX.Value;
 positionX.Value = (decimal)A1;

 }
 private void numericUpDown1_ValueChanged(object sender, EventArgs e)
 {

 A1 = (double)positionX.Value;
 positionTBX.Value = (int)A1;
 if (v == true)
 {
 axe = "X";
 sendAngles();

75

 newPosition = true;
 }

 }

 private void textBox1_TextChanged(object sender, EventArgs e)
 {

 }
 private void trackBar7_Scroll(object sender, EventArgs e)
 {
 axe = "Y";
 A2 = positionTBY.Value;
 positionY.Value = (decimal)A2;
 }
 private void numericUpDown2_ValueChanged(object sender, EventArgs e)
 {

 A2 = (double)positionY.Value;
 positionTBY.Value = (int)A2;
 if (v == true)
 {
 sendAngles();
 newPosition = true;
 }

 }
 private void TrackBar4_Scroll(object sender, EventArgs e)
 {

 A3 = positionTBZ.Value;
 positionZ.Value = (decimal)A3;
 }

 private void numericUpDown3_ValueChanged(object sender, EventArgs e)
 {

 A3 = (double)positionZ.Value;
 positionTBZ.Value = (int)A3;
 if (v == true)
 {
 axe = "Z";
 sendAngles();
 newPosition = true;
 }

 }

 // Joint
 public static double B1;
 public static double B2;
 public static double B3;

 public void TrackBar1_Scroll(object sender, EventArgs e)
 {

76

 B1 = angleTBT1.Value;
 angleT1.Value = (decimal)B1;

 }
 private void angleT1_ValueChanged_1(object sender, EventArgs e)
 {
 B1 = (double)angleT1.Value;
 angleTBT1.Value = (int)B1;
 if (v == false)
 {
 sendPositions();
 newPosition = true;
 }

 }
 private void TrackBar2_Scroll(object sender, EventArgs e)
 {
 B2 = angleTBT2.Value;
 angleT2.Value = (decimal)B2;
 }
 private void angleT2_ValueChanged(object sender, EventArgs e)
 {
 B2 = (double)angleT2.Value;
 angleTBT2.Value = (int)B2;
 if (v == false)
 {
 sendPositions();
 newPosition = true;
 }

 }
 private void TrackBar3_Scroll(object sender, EventArgs e)
 {
 B3 = angleTBT3.Value;
 angleT3.Value = (decimal)B3;
 }
 private void angleT3_ValueChanged(object sender, EventArgs e)
 {
 B3 = (double)angleT3.Value;
 angleTBT3.Value = (int)B3;
 if (v == false)
 {
 sendPositions();
 newPosition = true;
 }

 }

 public static double frmRobotDimentions.die;
 public static double frmRobotDimentions.dif;
 public static double frmRobotDimentions.dire;
 public static double frmRobotDimentions.dirf;

 private double s = 330;

77

 private double sqrt3 = Math.Sqrt(3.0);

 private double pi = 3.141592653;
 private double sin120 = Math.Sqrt(3.0) / 2.0;
 private double cos120 = -0.5;
 private double tan60 = Math.Sqrt(3.0);
 private double sin30 = 0.5;
 private double tan30 = 1 / Math.Sqrt(3.0);

 private double x0;
 private double y0;
 private double z0;

 private double t;

 private double x1;
 private double x2;
 private double x3;

 private double y1;
 private double y2;
 private double y3;

 private double z1;
 private double z2;
 private double z3;

 private double w1;
 private double w2;
 private double w3;

 private double a;
 private double b;
 private double c;

 private double a1;
 private double a2;

 private double b1;
 private double b2;

 private double d;
 private double dnm;

 private double T1;
 private double T2;
 private double T3;

 private double yj;
 private double zj;

 private double x20;
 private double y20;
 private double a20;
 private double b20;
 private double d1;
 private double yj1;
 private double zj1;

78

 private double y30;

 private double f1;
 private double f2;
 private double f3;
 private double f4;

 private double x40;
 private double y40;
 private double a40;
 private double b40;
 private double d2;
 private double yj2;
 private double zj2;
 private double y50;

 void sendPositions()
 {
 T1 = (double)angleT1.Value;
 T2 = (double)angleT2.Value;
 T3 = (double)angleT3.Value;

 T1 = T1 * pi / 180;
 T2 = T2 * pi / 180;
 T3 = T3 * pi / 180;

 x0 = 0.0;
 y0 = 0.0;
 z0 = 0.0;

 t = (f - e) * tan30 / 2.0;

 y1 = -(t + (rf * Math.Cos(T1)));
 z1 = -rf * Math.Sin(T1);

 y2 = (t + (rf * Math.Cos(T2))) * sin30;
 x2 = y2 * tan60;
 z2 = -rf * (Math.Sin(T2));

 y3 = (t + rf * (Math.Cos(T3))) * sin30;
 x3 = -y3 * tan60;
 z3 = -rf * (Math.Sin(T3));

 dnm = ((y2 - y1) * x3) - ((y3 - y1) * x2);

 w1 = (y1 * y1) + (z1 * z1);
 w2 = (x2 * x2) + (y2 * y2) + (z2 * z2);
 w3 = (x3 * x3) + (y3 * y3) + (z3 * z3);

 a1 = (z2 - z1) * (y3 - y1) - (z3 - z1) * (y2 - y1);
 b1 = -((w2 - w1) * (y3 - y1) - (w3 - w1) * (y2 - y1)) / 2.0;

 a2 = -(z2 - z1) * x3 + ((z3 - z1) * x2);
 b2 = (((w2 - w1) * x3) - ((w3 - w1) * x2)) / 2.0;

79

 a = (a1 * a1) + (a2 * a2) + (dnm * dnm);
 b = 2.0 * ((a1 * b1) + (a2 * (b2 - (y1 * dnm))) - (z1 * dnm * dnm));
 c = (b2 - (y1 * dnm)) * (b2 - (y1 * dnm)) + (b1 * b1) + (dnm * dnm * ((z1 *
z1) - (re * re)));

 d = (b * b) - (4.0 * a * c);

 z0 = (-0.5 * (b + Math.Sqrt(d))) / a;
 x0 = ((a1 * z0) + b1) / dnm;
 y0 = ((a2 * z0) + b2) / dnm;

 x0 = Math.Round(x0, 3);
 y0 = Math.Round(y0, 3);
 z0 = Math.Round(z0, 3);

 positionX.Value = (decimal)x0;
 positionY.Value = (decimal)y0;
 positionZ.Value = (decimal)z0;

 finalCal();

 }

 // Update is called once per frame
 void sendAngles()
 {
 x0 = (double)positionX.Value;
 y0 = (double)positionY.Value;
 z0 = (double)positionZ.Value;

 T1 = 0;
 T2 = 0;
 T3 = 0;

 y1 = -0.5 * 0.57735*f;
 y30 = y0 - (0.5 * 0.57735 * e);

 a = ((x0 * x0) + (y30 * y30) + (z0 * z0) + (rf * rf) - (re * re) - (y1 * y1))
/ (2.0 * z0);
 b = (y1 - y30) / z0;

 d = -(a + b * y1) * (a + b * y1) + rf * (b * b * rf + rf);

 yj = (y1 - a * b - Math.Sqrt(d)) / (b * b + 1);
 zj = a + b * yj;
 T1 = (Math.Atan(-zj / (y1 - yj)) * (180 / pi));
 if (yj>y1) {
 T1 = T1 + 180;
 }
 else
 {

80

 }

 f1 = x0 * cos120;
 f2 = y0 * sin120;
 f3 = y0 * cos120;
 f4 = x0 * sin120;

 x20 = (f1 + f2);
 y20 = (f3 - f4);

 y30 = y20 - (0.5 * 0.57735 * e);

 a20 = ((x20 * x20) + (y30 * y30) + (z0 * z0) + (rf * rf) - (re * re) - (y1 *
y1)) / (2.0 * z0);
 b20 = (y1 - y30) / z0;

 d1 = -(a20 + b20 * y1) * (a20 + b20 * y1) + rf * (b20 * b20 * rf + rf);

 yj1 = (y1 - a20 * b20 - Math.Sqrt(d1)) / (b20 * b20 + 1);
 zj1 = a20 + b20 * yj1;
 T2 = (Math.Atan(-zj1 / (y1 - yj1)) * (180 / pi));
 if (yj1 > y1)
 {
 T2 = T2 + 180;
 }
 else
 {

 }

 x40 = ((x0 * cos120) - (y0 * sin120));
 y40 = ((y0 * cos120) + (x0 * sin120));

 y30 =y40 - (0.5 * 0.57735 * e);

 a40 = ((x40 * x40) + (y30 * y30) + (z0 * z0) + (rf * rf) - (re * re)- (y1 *
y1)) / (2.0 * z0);
 b40 = (y1 - y30) / z0;

 d2 = -(a40 + b40 * y1) * (a40 + b40 * y1) + rf * (b40 * b40 * rf + rf);

 yj2 = (y1 - a40 * b40 - Math.Sqrt(d2)) / (b40 * b40 + 1);
 zj2 = a40 + b40 * yj2;
 T3 = (Math.Atan(-zj2 / (y1 - yj2)) * (180 / pi));
 if (yj2 > y1)
 {
 T3 = T3 + 180;
 }
 else
 {

 }

 T1 = Math.Round(T1, 3);
 T2 = Math.Round(T2, 3);
 T3 = Math.Round(T3, 3);

81

 finalCal();

 try
 {
 if (T1 > 89 || T1 < -20 || T2 > 89 || T2 < -20 || T3 > 89 || T3 < -20)
 {
 switch (axe)
 {
 case "X":
 A1--;
 break;
 case "Y":
 A2--;
 break;
 case "Z":
 A3--;
 break;

 }

 Console.WriteLine("Not in the range");
 }

 else
 {
 angleT1.Value = (decimal)T1;
 angleT2.Value = (decimal)T2;
 angleT3.Value = (decimal)T3;
 }
 }
 catch
 {
 Console.WriteLine("Not in the range");
 }

 }

 void finalCal()
 {
 testT4.Text = x0.ToString();
 testT5.Text = y0.ToString();
 testT6.Text = z0.ToString();

 testT1.Text = T1.ToString();
 testT2.Text = T2.ToString();
 testT3.Text = T3.ToString();
 }

 private float c1;
 private float c2;
 private float c3;
 public static bool reachPos;
 void modbusClient()
 {
 ModbusClient client = new ModbusClient("127.0.0.1", 502);

82

 client.Connect();

 while (running)
 if (newPosition)
 {
 c1 = Convert.ToSingle(B1);
 byte[] aux0 = BitConverter.GetBytes(c1);
 byte[] aux1 = new byte[] { aux0[0], aux0[1] };
 byte[] aux2 = new byte[] { aux0[2], aux0[3] };

 ushort pos1 = BitConverter.ToUInt16(aux2, 0);
 ushort pos2 = BitConverter.ToUInt16(aux1, 0);

 c2 = Convert.ToSingle(B2);

 byte[] aux3 = BitConverter.GetBytes(c2);
 byte[] aux4 = new byte[] { aux3[0], aux3[1] };
 byte[] aux5 = new byte[] { aux3[2], aux3[3] };

 ushort pos3 = BitConverter.ToUInt16(aux5, 0);
 ushort pos4 = BitConverter.ToUInt16(aux4, 0);

 c3 = Convert.ToSingle(B3);

 byte[] aux6 = BitConverter.GetBytes(c3);
 byte[] aux7 = new byte[] { aux6[0], aux6[1] };
 byte[] aux8 = new byte[] { aux6[2], aux6[3] };

 ushort pos5 = BitConverter.ToUInt16(aux8, 0);
 ushort pos6 = BitConverter.ToUInt16(aux7, 0);

 int[] total = new int[] { pos1, pos2, pos3, pos4, pos5, pos6 };
 //try {
 client.WriteMultipleRegisters(0, total);
 newPosition = false;

 Thread.Sleep(50);
 }

 else
 {
 bool[] coils = client.ReadCoils(0, 3);
 reachPos = coils[1];
 Thread.Sleep(50);
 }

 }

 private void btnWorldCal_Click(object sender, EventArgs e)
 {
 //sendAngles();
 }

 private void btnJointCal_Click(object sender, EventArgs e)
 {
 //sendPositions();

83

 }

 int j = 1;
 private void button1_Click_1(object sender, EventArgs e)
 {
 ((FormMain)this.MdiParent).fPosition.dataGridView1.Rows.Add();
 int i =j;

 {
 ((FormMain)this.MdiParent).fPosition.dataGridView1[1, i].Value =
(float)angleT1.Value;
 ((FormMain)this.MdiParent).fPosition.dataGridView1[2, i].Value =
(float)angleT2.Value;
 ((FormMain)this.MdiParent).fPosition.dataGridView1[3, i].Value =
(float)angleT3.Value;

 }

 j++;
 }

 private void btnJointSave_Click(object sender, EventArgs e)
 {
 ((FormMain)this.MdiParent).fPosition.dataGridView1.Rows.Add();
 //int i = ((FormMain)this.MdiParent).fPosition.dataGridView1.RowCount;
 int i = j;

 ((FormMain)this.MdiParent).fPosition.dataGridView1[1, i].Value =
(float)angleT1.Value;
 ((FormMain)this.MdiParent).fPosition.dataGridView1[2, i].Value =
(float)angleT2.Value;
 ((FormMain)this.MdiParent).fPosition.dataGridView1[3, i].Value =
(float)angleT3.Value;

 j++;
 }
 }
}

84

9 Appendix C

Interface Form Position Source Code

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;

using Excel = Microsoft.Office.Interop.Excel;

using System.Reflection;
using System.IO;
using System.Data.OleDb;
using System.Web;
using Modbus.Data;
using Modbus.Device;
using Modbus.Utility;
using System.Net.Sockets;
using System.Net;
using System.Threading;

namespace RobotInterface
{
 public partial class frmPosition : Form
 {
 private const int WM_NCLBUTTONDBLCLK = 0x00A3;

 public frmPosition()
 {

 InitializeComponent();
 }
 public DataGridView DataGrid
 {
 get
 {
 return this.dataGridView1;
 }
 }
 public void frmPosition_Load(object sender, EventArgs e)
 {

 }
 protected override void WndProc(ref Message m)
 {
 if (m.Msg == WM_NCLBUTTONDBLCLK)
 {
 // this.RelocatedForm();
 AutoResize();

85

 m.Result = IntPtr.Zero;
 return;
 }
 base.WndProc(ref m);
 }

 private void RelocatedForm()
 {
 int parentWidth = this.MdiParent.Width;
 //int width = this.Width;
 int x = 636;
 int y = 0;
 this.Location = new Point(x, y);
 }

 public void AutoResize()
 {
 // Resize the form and relocated

 this.Width = (int)(MdiParent.ClientSize.Width * 0.2);
 this.Height = (int)(MdiParent.ClientSize.Height * 0.6);

 int x = (int)(MdiParent.ClientSize.Width * 0.4);
 int y = 0;
 this.Location = new Point(x, y);
 }

 public void btnGet_Click(object sender, EventArgs e)
 {

 int counter = 0;
 string line;
 dataGridView1.Rows.Clear();
 dataGridView1.ColumnCount = 7;

 System.IO.StreamReader file =
 new StreamReader(@"C:\Users\Armin\Documents\Visual Studio
2015\Projects\RobotInterface\RobotInterface\bin\Debug\Positions.csv");
 while ((line = file.ReadLine()) != null)
 {

 dataGridView1.Rows.Add();
 string[] words2 = line.Split(',');
 for (var i = 0; i < words2.Length; i++)
 {

 dataGridView1[i, counter].Value = words2[i];

 }
 counter++;
 }

 dataGridView1.Rows.Add();

 file.Close();

86

 }

 public void btnSend_Click(object sender, EventArgs e)
 {
 int i0 = dataGridView1.Columns.Count;
 int j0 = dataGridView1.Rows.Count;
 textBox1.ResetText();
 for (int row_index = 0; row_index < j0; row_index++)
 {
 for (int column_index = 0; column_index < i0 - 1; column_index++)
 {
 if (dataGridView1[column_index, row_index].Value != null)
 {

 textBox1.Text += dataGridView1[column_index,
row_index].Value.ToString().Trim(':') + ",";
 }
 else
 {
 textBox1.Text += " ,";
 }
 }
 textBox1.Text += "\r\n";
 }
 File.WriteAllText(@"C:\Users\Armin\Documents\Visual Studio
2015\Projects\RobotInterface\RobotInterface\bin\Debug\Positions.csv", textBox1.Text);
 textBox1.ResetText();
 }

 public void dataGridView1_CellContentClick(object sender,
DataGridViewCellEventArgs e)
 {

 }
 private float c1;
 private float c2;
 private float c3;
 private float c4;
 private float c5;
 private float c6;

 private float o1;
 private float o2;
 private float o3;
 private float o4;
 private float o5;
 private float o6;

 private void btnSave_Click(object sender, EventArgs e)
 {

 modbusWriteRegister();

87

 }

 void modbusWriteRegister()
 {
 int j = 0;
 int n = dataGridView1.RowCount;

 while (j < n-1)

 {
 //bool reachPos = false;
 using (TcpClient client = new TcpClient())
 {

 string temp1 = "";
 string temp2 = "";
 string temp3 = "";
 string test1 = "";
 string test2 = "";
 string test3 = "";

 try
 {
 test1 = ((FormMain)this.MdiParent).fPosition.DataGrid[1,
j].Value.ToString();
 test2 = ((FormMain)this.MdiParent).fPosition.DataGrid[2,
j].Value.ToString();
 test3 = ((FormMain)this.MdiParent).fPosition.DataGrid[3,
j].Value.ToString();

 }
 catch
 {
 test1 = "null";
 test2 = "null";
 test3 = "null";
 }

 if(test1 != " " && test2 != " " && test3 != " " &&
test1 != "" && test2 != "" && test3 != "" && test1 != "null" && test2 != "null" && test3
!= "null")
 {
 temp1 = ((FormMain)this.MdiParent).fPosition.DataGrid[1,
j].Value.ToString();
 temp2 = ((FormMain)this.MdiParent).fPosition.DataGrid[2,
j].Value.ToString();
 temp3 = ((FormMain)this.MdiParent).fPosition.DataGrid[3,
j].Value.ToString();

 frmControl.B1 = Convert.ToDouble(temp1);
 frmControl.B2 = Convert.ToDouble(temp2);
 frmControl.B3 = Convert.ToDouble(temp3);

88

 frmControl.newPosition = true;
 frmControl.reachPos = false;

 Thread.Sleep(500);

 while (!frmControl.reachPos)
 {

 }

 }
 j++;

 frmControl.reachPos = false;
 }

 }

 }

 void modbusReadRegister()
 {
 using (TcpClient client = new TcpClient("127.0.0.1", 502))
 {
 ModbusIpMaster master = ModbusIpMaster.CreateIp(client);

 // read five input values
 ushort startAddress = 100;
 ushort numInputs = 5;
 bool[] inputs = master.ReadInputs(startAddress, numInputs);

 for (int i = 0; i < numInputs; i++)
 Console.WriteLine("Input {0}={1}", startAddress + i, inputs[i] ? 1 :
0);
 client.Close();
 }
 }

 private void frmPosition_FormClosing(object sender, FormClosingEventArgs e)
 {
 int i0 = dataGridView1.Columns.Count;
 int j0 = dataGridView1.Rows.Count;
 textBox1.ResetText();
 File.WriteAllText(@"C:\Users\Armin\Documents\Visual Studio
2015\Projects\RobotInterface\RobotInterface\bin\Debug\Positions.csv", textBox1.Text);
 textBox1.ResetText();
 }

 }
 }

89

10 Appendix D

Interface Form Robot Dimension Source Code

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;

namespace RobotInterface
{
 public partial class frmRobotDimentions : Form
 {
 private const int WM_NCLBUTTONDBLCLK = 0x00A3;

 public frmRobotDimentions()
 {
 InitializeComponent();
 }

 private void frmRobotDimentions_Load(object sender, EventArgs e)
 {

 }
 protected override void WndProc(ref Message m)
 {
 if (m.Msg == WM_NCLBUTTONDBLCLK)
 {
 // this.RelocatedForm();
 AutoResize();
 m.Result = IntPtr.Zero;
 return;
 }
 base.WndProc(ref m);
 }

 public static double dif;
 public static double die;
 public static double dire;
 public static double dirf;

 private void dimentionLA_ValueChanged(object sender, EventArgs e)
 {
 dirf = (double)dimentionLA.Value;
 //sendDimentions();
 }
 private void dimentionLB_ValueChanged(object sender, EventArgs e)
 {
 dire = (double)dimentionLB.Value;

90

 //sendDimentions();
 }
 private void dimentionE_ValueChanged(object sender, EventArgs e)
 {
 die = (double)dimentionE.Value;
 //sendDimentions();
 }

 private void dimentionF_ValueChanged(object sender, EventArgs e)
 {
 dif = (double)dimentionF.Value;
 //sendDimentions();
 }

 private void button1_Click(object sender, EventArgs e)
 {
 frmControl.e = (double)dimentionE.Value;
 frmControl.f = (double)dimentionF.Value;
 frmControl.re = (double)dimentionLB.Value;
 frmControl.rf = (double)dimentionLA.Value;
 }

 public void AutoResize()
 {

 this.Width = (int)(MdiParent.ClientSize.Width * 0.2);
 this.Height = (int)(MdiParent.ClientSize.Height * 0.6);

 int x = (int)(MdiParent.ClientSize.Width * 0.8);
 int y = 0;
 this.Location = new Point(x, y);
 }

 }
}

