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Today, industrial robots are an integral part of the automotive assembly lines due to their 

higher speed, quality, reliability and productivity. Considering the wide applications of robots in 

almost all various fields in the modern world, there is always need for engineers, operators, 

technicians and experts to perform tasks of programming, maintenance, operating and 

troubleshooting of robots.  Training professionals and experts in the robotic areas is necessary due 

to the critical processes in which robots are involved. However, the main constraints regarding 

providing continuous training in the field of robotic technology include lack of training resources, 

unsatisfactory training processes, high costs of equipping robotic laboratories, high sensitivity of 

working with robots for unskilled individuals, as well as high risks of making mistakes and 

damaging robots. As a solution, virtual robot laboratories are developed to resolve such issues. 

The whole concept of virtual robot training is based on implementing virtual robot laboratory and 

virtual robot with the exact behavior of the actual robot. Applying both virtual robots and virtual 



robot laboratories, trainees are made able to implement various scenarios and code various 

sequences. As a result of applying such scenarios and sequences, trainees can monitor the real 

behavior of the robots. Trainees would also find the opportunity to practice all possible conditions 

as a result of scripting various scenarios. 

For implementation of virtual delta robot with the actual behavior of a real delta robot, 

game engines came into the account. The capabilities of game engines such as physic engines 

inside them, real time simulation, and availability helped the simulation of the virtual robot. For 

the users’ effective interaction with the virtual delta robot, development of a user interface is 

required. The topic of this thesis started at this point. Using the virtual robot, mathematical 

modeling and mathematical kinematics of delta robot, and communication methods based on 

Modbus TCP/IP, a user interface for facilitating user’s interaction with the delta robot has been 

developed. 

The design of the user interface is based on the basic needs of users which are control of 

the robot considering kinematic models, positions of the end effector and saving these positions, 

communication setting, robot dimensions setting, and programming and scripting. 

As the output of the thesis, a virtual delta robot, which was maintained in a game engine, 

can be easily manipulated through the developed user interface in which robot kinematic models 

and communication based on Modbus TCP/IP came into the account. 
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1 Introduction 

The high level of popularity of the robotic technology is mainly due to its vast applicability 

across great number of fields. Robots have been applied in industry, healthcare and medical 

surgeries, military, agriculture, oceanographic explorations, education, and for aerospace 

purposes. The advances in computers as the brain of robots leads to more improvements in robotic 

technology in that robots are not simply mechanical machines, but they are turning into more 

intelligent machines with the ability to process information much faster and more efficiently in 

comparison to earlier versions. 

1.1 Industrial Robots 

In recent years, manufacturing processes have become more autonomous which require 

less operator intervention and higher flexibility for specific applications to meet specific market 

demand. Industrial robots play a crucial role in various fields of automated industry. Industrial 

robots are electronically controlled, and are programmable and reprogrammable so as perform 

specific and varied duties in industrial and manufacturing lines.  Robots have brought about 

innovations and efficiency in manufacturing sectors and play a crucial role in industrial 

innovations. Despite the fact that the programming of industrial robotic systems for a specific 

application in industry is difficult, time-consuming and can be expensive, industrial robots are 

considered the best solution for both productivity and flexibility which is crucial in production 

diversification in the era of globalization (Pan, Z., Polden, J., Larkin, N., Duin, S. V., & Norrish, 

J., 2012). Today, industrial robots are an inescapable part of the automotive assembly lines since 

they have the ability to perform and accomplish specific tasks with higher speed, and result in 

higher quality, reliability and productivity. In addition to the higher level of flexibility, quality and
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 reliability, industrial robots play an important role in balancing production costs, time, and quality 

constraints (Papakostas, N., Michalos, G., Makris, S., Zouzias, D., & Chryssolouris, G. , 2011). 

1.2 Robots and Hazardous Tasks 

One of the greatest justifications for robotic applications is performing tasks that are 

dangerous for human beings to do. Robots are ideal for working in hazardous environments, so 

that people can be relieved from performing dangerous tasks in unfriendly conditions. According 

to the Robotic Industrial Association, robots are commonly used in sites where chemicals and 

hazardous materials are handled on a daily basis (Brumson, Robotic Industrial Association, 2007). 

By reducing workforce exposure to hazardous environments by taking advantage of chemical and 

material handling robots, companies aim to decrease potential liability for workers’ compensation 

or other related costs. In the process of handling hazardous materials, there are irritating or toxic 

fumes- such as fumes created during ultrasonic welding of some kinds of plastic parts- that bother 

human workers especially if there is close or prolonged exposure. There are also explosion-proof 

robots that are employed in environments where ignitable fumes and vapors exists. Also, robots 

are applied in handling non-hazardous materials that can produce potentially explosive dust 

including bag palletizing of grain products. There is a growing demand for use of robots in 

handling hazardous materials as the number of chemicals used in industry continues to increase, 

with the resulting increase in the potential environmental and health risks. It is predicted that the 

future robotic technology will have improved vision and sensory equipment in order to handle 

such hazardous chemicals safely, and successfully (Brumson, Robotic Industrial Association, 

2007). In addition, robots are capable of lifting heavy loads repetitively without tiring or injury. 

They increase worker safety and prevent accidents by removing workers from hazards. Robots 

significantly save production time, since they are able to produce great numbers of products. They 
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also save companies in the long term by decreasing the volume of wasted materials, reducing 

workforce injuries, using less materials, and thus generating a quicker return on investment. In 

addition, robots have created and developed new occupations. The production line moving over to 

programming tasks, thus reducing of monotonous jobs and adding them to more challenging ones. 

In the USA, robots allow companies to remain competitive, keeping local jobs (ScottCompany, 

n.d.). 

1.3 Robots and Technology Development 

Robotics has continued to have a profound influence on technology developments in various 

fields, some of which are presented here.  One of the impressive technology developments in 

robotics is assistive robotics. Assistive robots generally include robots designed to aid people with 

special needs (Brian Scassellati, Henny Admoni, Maja Mataric, 2012). The primary application of 

assistive robotics is to provide hands-on treatment or support for physical disabilities by helping a 

patient perform repetitive therapeutic motions as a physical therapist would. Another technology 

is called social robotics, which involves robots that engage in some form of social interaction with 

humans, through speech, gestures, or other modality. One of the recent developments in this field 

is Social and Assistive Robotics (SAR), which lies at the intersection of social robotics and 

assistive robotics. SAR refers to the design of robots to help through social interaction rather than 

physical interaction. This technology is now used to conduct research for treatment of disorders 

such as autism (Brian Scassellati, Henny Admoni, Maja Mataric, 2012). There are many advances 

in the field of human- robot interactions in various industries. Military robots are also another 

development. They are autonomous remote-controlled robots that are used with military 

applications in transport, search, rescue, attack and so forth. Although there have been lots of 

development in the field of robotics so far, many researchers are involved in making robots more 
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efficient, more widely applicable, and more intelligent in various field, with more specifications 

to their systems (Brumson, Robotic Industries Association, 2011) (Grabianowski, 2016). 

1.4 Robots and Training 

As previously mentioned, robots are applicable in various fields from agriculture, 

manufacturing, arc welding, healthcare and treatment, to aerospace applications and space 

exploration. Thus, there is always need for engineers, operators, technicians, and other experts to 

perform the tasks of programming, maintenance, operating and troubleshooting of robots.   

In order to have a well-prepared and skillful workforce in the field of robotics, continuous 

and updated training is essential. Training professionals and experts in the robotic areas is 

necessary due to the critical industrial and other processes in which robots are involved. However, 

the main constraint on providing continuous training is the lack of resources. Inadequate training 

resources leads to a not very fulfilling training process. The high costs of providing robots for the 

purposes of training individuals is a major obstacle. In addition, the higher risk presented by 

unskilled individuals working with robots increases the risk of making mistakes and damaging 

robots limits the availability of robots for training and also imposes extra costs.  

Ideally, all trainees and students who are earning educations in fields of robotics and 

robotic technology should have access to adequate training resources such as a robotics lab in 

which they can apply different scenarios to the robot and monitor the behavior of the robot. Being 

able to do so, trainees will develop skills in applying instructions, programming orders and 

scenarios in programming, reprogramming, controlling, and maintaining robots and understanding 

robotic procedures and configurations. In addition, trainees should be able to implement 

intentionally some various types of errors so that they can see the behavior of the robot and also 

learn the troubleshooting process.  
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All these conditions above define the ideal situation for the training. However, not all of 

these conditions are not possible. Even if possible, the process of practicing troubleshooting can 

cause serious damages to the robots as well as extra expenses. So, the question is how to deal with 

this problem considering the fact that training programs in robotic technology need robotics 

equipment. To clarify the constraints in providing training programs with robotics equipment, the 

drawbacks of using robots in training sessions are discussed in the following.  

There are three main drawbacks for using robots in training sessions.  

In the first place, robots are expensive. Considering the number of trainees and students 

who need such training sessions, significant financial resources are required to buy robots. Also, 

proper laboratories need other equipment as well which cannot be avoided. Besides, the laboratory 

buildings themselves will require significant resources to build and/or retrofit, and maintain. 

In the second place, the vulnerability of robots can lead to technical problems during the 

training sessions. Students and trainees are usually working with robots in laboratories during 

training sessions; at the same time, they are not fully aware of the capabilities of, and restraints on, 

robots. Consequently, using wrong codes and instructions can sometimes cause serious problems 

and damages to the laboratory equipment. In addition to the extra costs incurred for repair or 

replacement of damaged equipment, while the equipment has problems, it cannot be used by other 

trainees and students until it is repaired, which is a waste of time. If this downtime occurs in the 

beginning sessions, it might even impair the learning and training process for a while. Such a loss 

of valuable training time is hard to compensate for, as the impact of theoretical sessions can be 

best realized when done in conjunction with practical sessions in the laboratory.   

Most importantly, safety issues are serious problems in robotic technology laboratories. 

Such safety issues arise comes from a lack of adequate professional supervision while working 
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with robots in the laboratory. In other words, most robotic training sessions are run and supervised 

by only one instructor or trainer. This means that the instructor cannot simultaneously be present 

for each and every trainee while he or she is using the robots and performing laboratory tasks. This 

inadequacy of supervision can be lead to serious safety issues, since trainees are mainly beginners 

who are totally new to running robotic programs while working with robotic systems and 

processes.  

The process of training students in robotic technology is a complicated process. One set of 

complications arises due to trainees’ often inadequate preparatory knowledge in relevant fields. In 

other words, students being trained in the robotic laboratory are required to have gained general 

knowledge in fields of mechanical design and electrical design. They also need to have 

understanding of the concept of mathematical modeling of robots and behavior of robots in 

addition to a profound grasp and knowledge of programming skills and procedures. The robots 

used in laboratories are almost always offered in compact packages. Thus, teaching the concepts 

of mechanical and electrical design as well as programming and mathematical modeling in the 

training period is almost impossible for the instructor. Considering the fact that trainees are not 

able to see the insides, i.e., the design of the robots they are working with during their robotic 

training, trainees will not be easily able to successfully program robots, figure out  and analyze 

various outputs and behaviors of robots for different scenarios. In addition, programming actual 

robots is a very complicated process which needs extra attention and precision because any wrong 

program or sequence can lead to serious damages to the robots and also can cause safety issues for 

operators and trainees. 



7 
 

1.5 Virtual Reality 

Although early elements of virtual reality can be traced back to the 1860’s and long before 

the development of digital technology, it is usually considered to have started in earnest. During 

the 1920’s, Edwin Link developed the world’s first flight simulator as a training device for new 

and novice pilots. Later on, the first kind of multimedia device in the form of an interactive theatre 

experience was devised by Morton Heilig in 1957 as an early form of virtual reality which was not 

patented until 1962. The development of virtual reality continued with the technology of head 

mounted display (HMD) that was designed to be used by helicopter pilots so that it made them 

able to see their surroundings during night flights. The HMD was attached to a computer in 1968 

to enable the wearer to see a virtual world. However, it had to be attached to a suspension device 

due to its weight. In 1970’s, an innovative form of multimedia as the first interactive map of Aspen 

was developed in Massachusetts Institute of Technology (MIT) enabling people to walk through 

the town of Aspen. During 1980’s, virtual reality was used for NASA projects along with other 

techniques derived from researches in new forms of human – computer interaction (HCI). In 

1990’s, virtual reality became public and grabbed public awareness as Jaron Lanier and Tom 

Zimmerman marketed a range of virtual reality gear. Although the hypes surrounding virtual 

reality technology in 1990’s had an initially adverse effect on the popularity of such technology, 

there are now various advantages that can be obtained from its application (Virtual Reality Society, 

2016). 

1.6 Virtual Environment and Training 

Virtual environment and the concept of virtual reality came to fore when the idea of 

eliminating dangers and expenses in hazardous and expensive training procedures was created 

(Maurizio Rovaglio, Tobias Scheele, 2011) (Etienne van Wyk, 2014).  The three main issues of 



8 
 

using actual robots in robotic technology laboratories including the high cost of equipment, lack 

of resources, the vulnerability of robots to wrong instructions and codes, the serious damages 

caused by unskilled users, and safety issues related to the application of actual robots, are all 

reasons for the increasing trend toward using virtual environment.  

The whole concept of virtual robot training is based on implementing a virtual robot 

laboratory and virtual robot with the exact behavior of the actual robot. Applying both virtual 

robots and virtual robot laboratories, trainees become capable of implementing various scenarios 

and coding various sequences. Also, they can monitor the real behavior of the robots as a result of 

applying such scenarios and sequences. Trainees would find the opportunity to practice all possible 

conditions as a result of scripting various scenarios. In addition, trainees can observe how wrong 

codes can cause errors and faults on the robot without imposing any extra maintenance costs that 

are unavoidable if using actual robots. Thus, trainees can continue to practice at no costs and have 

the opportunity to run one set of instructions several times to master the problem which is not 

possible via applying actual robots. The ability of repeating and performing various scenarios, 

errors and codes also make the instructor more confident about the risks of safety issues. So, 

applying virtual robots instead of actual ones for the purpose of training can highly enhance the 

problems with the application of actual robots and make robotic technology training much less 

stressful for both trainees and trainers. The combination of platforms for virtual developments, 

physics engines, computer processors, and graphic processors are used to implement a virtual robot 

laboratory (Moody, J. O., Sánchez- Alonso, R., Yun, C., González- Barbosa, J., & Reyes- Morales, 

G., 2015). 
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1.7 Scope of the Thesis 

There are various significant drawbacks to the application of actual robots in robotic 

technology laboratories. These include the high costs of building, and equipping robotic laboratory 

as well as the costs of actual robots, vulnerability of robots to wrong coding, programming and 

error instructions leading to serious damages to robots, and safety concerns related to lack of 

adequate supervision on trainees while performing relevant procedures.   

The main issue of this research is to apply the combination of platforms for virtual 

developments, physics engines, computer processors, and graphic processors to implement a 

virtual robot laboratory. By applying virtual robot laboratory to a training or instructional setting, 

not only all the previously mentioned constraints of actual robotic technology are removed, but 

also trainees gain the opportunity to spend more time practicing and performing various coding 

and programming scenarios to make training sessions fruitful, safe, challenging and robotically 

successful. This study explains the process of creating such virtual reality environment by 

presenting the mathematical modeling, programming and coding for a virtual parallel delta robot. 
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2 Review of Literature 

2.1 Kinematics of Delta Robot 

2.1.1 Delta Robot Configuration 

The Delta robot is a type of parallel robot. The Delta robot is an ideal candidate for pick 

and place operations of light objects in manufacturing and production lines due to its fast pace and 

movement flexibility. The key design feature in the Delta robot is the use of parallelograms. A 

parallelogram maintains the orientation of an end effector. In other words, a parallelogram allows 

an output link to maintain a fixed orientation considering an input link (Brogardh, 2000).   

The Delta robot is depicted in Figure 2-1. As shown in Figure 2-1, it consists of various 

parts as follows (Williams, 2016): 

 A fixed platform 

 Three active revolute joints 

 Three upper links 

 Six passive universal joints 

 Three parallelogram links 

 A mobile platform 

 The end effector 

In the case of this study, the fixed platform consists of an equilateral triangle. The fixed 

platform is affixed to a base and thus, does not move at all.  

As pointed in Figure 2-1, the three revolute joints allow single-axis rotation around the 

axis. These revolute joints are called “active” since we placed motors on these joints in order to 

provide the source of motions for the robot (Williams, 2016).  
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The three upper links are connected to the fixed platform through the revolute joints from 

the top and are connected to the parallelogram links via universal joints from the bottom (Williams, 

2016). 

Universal joints, as showed on the Figure 2-1, allow the transmission of power by 

providing rotation at the joints. Applying the universal joints, the power of motors is transmitted 

to the mobile platform that makes the mobile platform move freely in the robot working space 

(Williams, 2016).  

Parallelogram links consist of two parallel links. These parallel links shape a chain between 

the upper links and the mobile platform. A parallelogram allows an output link to maintain a fixed 

orientation with regard to an input link (Williams, 2016). 

 

Figure 2-1: Delta Robot Configuration (Williams, 2016) 

Active Revolute Joint 

Fixed Platform 

Upper Link 

Passive Universal Joint 

Parallelogram Link 

Passive Universal Joint 

End Effector 
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2.1.2 Mathematical Modeling of the Delta Robot 

In this study, the effort is made to design and implement virtual robot by taking advantage 

of the combination of platforms for virtual developments, physics engines, computer processors, 

and graphic processors to implement a virtual robot laboratory. This can be done by creating the 

virtual reality environment through presenting the mathematical modeling, programming and 

coding for a virtual parallel delta robot. 

The main tool for implementing the virtual Delta robot and programming the compatible 

user interface is the mathematical modeling of the Delta robot. When it comes to the user interface, 

the key element is modeling of the robot movements and the behavior of the virtual robot during 

the time the virtual robot is operated by the students, trainees, instructors or operators. The 

implementation of the mathematical modeling behind the user interface scene is highly significant 

due to the fact that such implementation provides the ground for the operator instructions to be 

transferred to the virtual robot movements.  

Movements of the Delta robot are based on two major concepts of inverse kinematics and 

forward kinematics. This generally refers to the relations between the joint angles and the end 

effectors. Simply put, in the concept of forward kinematics, the input consists of the joint angles 

while the output is the coordinates of the end effectors. On the other hand, the input consists of the 

coordinates of the end effectors, and the joint angles calculations are the output (Msavatsky, 2009). 

2.1.3 Inverse Kinematic 

The first concept to discuss here is the inverse kinematics method. Considering the desired 

position of the end effector to be known, the purpose is to find the joint angles. In other words, 

while we know the coordinates of the end effector, we need to figure out how we should change 

the motors angles so that we reach the desired known position. So, figuring out the calculations of 
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the three angles of the motors in the way that we can reach out to desired position of the end 

effector is the goal.  

In the process of mathematical modeling of a robot, knowing the precise measurements of 

the robot is the most important part. As previously mentioned, there are two platforms in the 

configuration of the Delta robot called the fixed and the mobile platform. Both of the fixed and 

mobile platforms in the scope of this study are considered as two equilateral triangles. There are 

also three kinematic chains, each of which consists of two links. Figure 2-2 shows the angles of θ 

and the coordinates of X0, Y0, and Z0. As it is clearly depicted in Figure 2-2, the variables are the 

angles of the three motors as θ1, θ2, θ3 and the position of the end effector which is pointed as E0. 

The coordinate of the end effector is X0, Y0, and Z0 (Msavatsky, 2009). 

 

Figure 2-2: Delta Robot Variables (Msavatsky, 2009) 
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In the next step, the goal is to determine the key elements of the robot geometry. Finding 

the robot geometry is the important path to figuring out the motor angles based on the coordinates 

of the end effector position.   

Figure 2-3 displays other specifications about both of the fixed and the mobile platforms. 

It explains “f” as the side of the equilateral triangle of the fixed platform. Also, “e” is pointed as 

the side of the equilateral triangle of the mobile platform. Other specifications are depicted as “rf” 

which is the length of the upper link, and “re” which is the length of the parallelogram joint. 

 

Figure 2-3: Robot Dimensions (Msavatsky, 2009) 
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So far, we have defined and determined all the variables that are important in doing the 

mathematical modeling for the virtual robot as desired. So, we are now able to shape the required 

equations and do the proper calculations which define the movements of the robot and its behaviors 

with regards to the determined robot geometry.  

In order to properly perform and complete the mathematical modeling of the Delta robot, 

defining all possible movement of the robots is the first step. Referring to Figure 2-1, it is seen that 

all movements of the robot begins from the active revolute joints, where the motors are placed. 

Revolute joins allow single- axis movements and going forward, universal joints allow rotational 

movements. In other words, revolute joints shape a circle moving around the one axis whereas 

universal joints shape a sphere with rotational movements around two axes. Both the circle-shaped 

area created by the revolute joints single-axis movements and the sphere-shaped area resulted from 

the rotational movements allowed by the universal joints are depicted in Figure 2-4 (Msavatsky, 

2009). 
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Figure 2-4: Kinematic Chain Movements (Msavatsky, 2009) 

As shown in Figure 2-4, the calculation for one kinematic chain, the circle with the center 

at F1 and the radius of F1J1 shows the path of moving link rf around the center of F1. This movement 
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is the first step toward figuring out the inverse kinematic equation. By placing the zero point of 

the Cartesian system at the center of the fixed platform, the circle will be defined at YZ plane. 

The second step toward forming the inverse kinematic equation is moving forward on the 

kinematic chain to point E1. The universal joint at the point E1 provides a free movement of the 

link E1J1 around the center (E1). This free movement around the center shapes a sphere with these 

specifications: the center at E1 and radius of E1J1 or link re (Msavatsky, 2009). 

Finding the equation of the point J1 is the purpose of this model. Since we have the 

coordinate of the point J1, the calculation of θ1 -which is the motor angle- would be easy. To do 

so, the intersection of the circle with center F1 and the sphere with center E1 is needed. The sphere 

is shaped in three dimensions whereas the circle is just on YZ plane. The ultimate solution is to 

work on the image of the sphere on the YZ plane which would be a circle in two dimensional 

space. With a transformation of the center E1 to E′
1 and drawing a circle with the center at E′

1 and 

radius of E′
1J1, the image of sphere on YZ plane appears. At this point, the model of the robot path 

is extracted. Figuring out the equations for this path would result in finding the ultimate J1 

coordinate which is the main element of motor angle calculation (Msavatsky, 2009). 

The third step mainly consists of looking at the whole system considering YZ plane. The 

view of looking at the whole system with respect to YZ plane is shown in Figure 2-5. In addition 

to this view, Figure 2-5 contains the mobile platform geometry which is necessary here because 

we are transferring the end point to find the image of the sphere on the YZ plane. This 

transformation is happening on the mobile platform which makes the mobile platform geometry 

important. 
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Figure 2-5: YZ Plane View (Msavatsky, 2009) 

In order to do the calculation of the E′
1 position, a transformation is needed from our end 

point E0 (end effector position) with the coordinates of x0, y0, and z0 to the corner of the equilateral 

triangle.  

As is defined on the top view of mobile platform in Figure 2-5, while transferring point E0 

to E′
1, a right triangle is shaped. The side of equilateral triangle (mobile platform) is e and as point 

E1 is at the center of the side, the dimension of E1E
′
1 would be 𝑒 2⁄ . Now, we have three angles 

90°, 60°, and 30°on the right triangle E0E1E
′
1. Considering the E′

1 angle (30°), the following 

calculations show the measurement of E0E1. 
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cos 30° =  

𝑒
2

ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒
 

(Equation 2-1) 

 

 
sin 30° =

𝐸0𝐸1

ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒
 (Equation 2-2) 

 

 
sin 30°

cos 30°
= tan 30° =

𝐸0𝐸1

ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒
𝑒
2

ℎ𝑎𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒

=
𝐸0𝐸1

𝑒
2

 (Equation 2-3) 

 

 
𝐸0𝐸1 =

𝑒

2
× tan 30° =

𝑒

2√3
 (Equation 2-4) 

 

The coordinate of E0 is x0, y0, and z0 and the coordinate of E1 is x0, 𝑦0 −  
𝑒

2√3
 , and z0. As 

the coordinate of E′
1 is the same as the coordinate of E1 with the shift in x to zero, we have the 

coordinate of E′
1 as 0, 𝑦0 −  

𝑒

2√3
 , and z0. So, we have E1E

′
1= x0. 

On the other side, on the fixed platform, the same calculations are proven in the same way 

as of the mobile platform. With the exact same calculation on the top equilateral triangle (fixed 

platform) with the side of f, the coordinate of point F1 is 0, −
𝑓

2√3
 , and 0 (Msavatsky, 2009). 

On the right triangle J1E
′
1E1, applying Pythagorean Theorem, the following calculations 

are applied (Msavatsky, 2009). 

 (𝐸1𝐽1)2 = (E1E1
′ )2 + (E1

′ J1)2  (Equation 2-5) 
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 (E1
′ J1)2 = (𝐸1𝐽1)2 − (E1E1

′ )2 (Equation 2-6) 

 

 
E1

′ 𝐽1 = √𝐸1𝐽1 − E1E1
′ = √𝑟𝑒

2 − 𝑥0
2 

(Equation 2-7) 

 

The point J1 is the intersection of the two circles with the centers F1 and E′
1 with the radiuses 

rf and re respectively. Mathematical model of the two circles` equations considering the points` 

coordinate and previous calculations would generate the coordinate of point J1 as the intersection 

point of the two circles. The output of the coordinate of the point J1 and the geometry of the right 

triangle F1J1Y1 will give us the angle θ1. 

The circle equation with the center at F1 and the radius of rf is (Msavatsky, 2009): 

 
(𝑦𝐽1 − 𝑦𝐹1)

2
+ (𝑧𝐽1 − 𝑧𝐹1)

2
= 𝑟𝑓

2 
(Equation 2-8) 

 

Replacing the calculated points into the equation, we have (Msavatsky, 2009): 

 
(𝑦𝐽1 +

𝑓

2√3
)

2

+ 𝑧𝐽1
2 = 𝑟𝑓

2 
(Equation 2-9) 

 

The circle equation with the center at E′
1 and the radius of re is (Msavatsky, 2009): 

 
(𝑦𝐽1 − 𝑦E′1)

2
+ (𝑧𝐽1 − 𝑧E′1)

2
= 𝑟𝑓

2 
(Equation 2-10) 

 

Replacing the calculated points into the equation, we have (Msavatsky, 2009): 
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(𝑦𝐽1 − 𝑦0 +

𝑒

2√3
)

2

+ (𝑧𝐽1 − 𝑧0)
2

= 𝑟𝑒
2 − 𝑥0

2 (Equation 2-11) 

 

Combining the two circles equations, the final coordinate of point J1 will be extracted. The 

elements for the J1 position would be 0, yJ1, and zJ1. 

Considering the right triangle F1J1Y1, following calculations result in ultimate θ1 

(Msavatsky, 2009). 

 𝐽1𝑌1 = 𝑧𝐽1 (Equation 2-12) 

 

 𝐹1𝑌1 = 𝑦𝐹1 − 𝑦𝐽1 (Equation 2-13) 

 

 
𝜃1 = tan−1

𝑧𝐽1

𝑦𝐹1 − 𝑦𝐽1
 (Equation 2-14) 

 

For the θ2 calculation, a 120° rotation of the coordinate system around the Z-axis is needed. 

This rotation is needed because the motors on the Delta robot are located at the center of the fixed 

platform sides. This means that with putting zero point at the center of the fixed platform, the 

motors have 120° differences with each other. Considering θ1 as zero value, θ2 and θ3 would have 

120° counterclockwise and clockwise differences respectively. 

Using rotation matrix, for the 120° rotation counterclockwise (finding θ2 coordinate), the 

following equations show the new coordinate system (Msavatsky, 2009). 

 𝑥′ = 𝑥 cos 120 + 𝑦 sin 120 (Equation 2-15) 
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 𝑦′ = −𝑥 sin 120 + 𝑦 cos 120 (Equation 2-16) 

The Figure 2-6 shows the coordinate system rotation and the new coordinate system. 

 

Figure 2-6: Coordinate Rotation (Msavatsky, 2009) 

By repeating exactly the same calculations used for calculating θ1 with respect to the new 

coordinate system, the θ2 is gained as (Msavatsky, 2009): 

 
𝜃2 = tan−1

𝑧′𝐽1

𝑦′𝐹1 − 𝑦′𝐽1
 (Equation 2-17) 
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In order to do the calculation of θ3, the rotation of coordinate system for 120° clockwise is 

needed. Using rotation matrix and the initial position of the coordinate system, the following 

equations show the new coordinate system. 

 𝑥″ = 𝑥 cos 120 − 𝑦 sin 120 (Equation 2-18) 

 

 𝑦″ = 𝑥 sin 120 + 𝑦 cos 120 (Equation 2-19) 

 

Following the previous calculation, θ3 would be: 

 
𝜃3 = tan−1

𝑧″𝐽1

𝑦″𝐹1 − 𝑦″𝐽1
 (Equation 2-20) 

 

At this point, the three formulas for calculation of three angles enable us to find out about 

the exact motor angles base on the position of the end effector on the coordinate system. So, 

completing the calculations of the universe kinematics having the coordinates of end effectors, the 

joint angles are found as: 

 
𝜃1 = tan−1

𝑧𝐽1

𝑦𝐹1 − 𝑦𝐽1
 (Equation 2-21) 

 

 
𝜃2 = tan−1

𝑧′𝐽1

𝑦′𝐹1 − 𝑦′𝐽1
 (Equation 2-22) 
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𝜃3 = tan−1

𝑧″𝐽1

𝑦″𝐹1 − 𝑦″𝐽1
 (Equation 2-23) 

 

2.1.4 Forward Kinematic 

For the inverse kinematics modeling and calculation, the final position of the end effector 

is known and the unknown variables are the motor angles θ1, θ2, and θ3. The forward kinematic 

works in the opposite way. In the other words, the motor angles θ1, θ2, and θ3 are considered as 

known variables while the aim of the calculations is to figure out the unknown variable which is 

the position of the end effector. The position consists of three elements x, y, and z. The three angles 

and the position of the end effector are shown in the Figure 2-7 (Msavatsky, 2009). 

 

Figure 2-7: Joints Configuration (Msavatsky, 2009) 
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As the three revolute joints at the contact points of kinematic chains and the fixed platform 

can only transmit the motor movements, the three universal joints which indicated as J1, J2, and J3 

on the Figure 2-7 would play the role of transmitting rotations. In the other words, with the 

calculation of J1, J2, and J3 positions on the coordinate system and a transmission from them to the 

mobile platform, the final position of the end effector would be extracted. 

The movements of the three links (J1E1, J2E2, and J3E3) around the three centers (J1, J2, and 

J3) will shape three spheres. Similar to the invers kinematic calculations, figuring out the equations 

for the three spheres should determine the final position of the end effector. However, we 

encounter one important issue here.  The issue is that the three spheres do not have precisely the 

same intersection points which leave the position of the end effector unknown. 

In order to solve this problem, the transitions of the three sphere centers are needed. As it 

is shown on the Figure 2-7, the three joint positions (the three centers) are moved to the points J′1, 

J′2, and J′3 using the transitions vectors E1E0, E2E0, and E3E0. These transitions would help to shape 

three spheres with the intersection at the position of the end effector. The important point is 

considering these transitions in doing the final calculation (Msavatsky, 2009). 
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Figure 2-8: Kinematic Chains Movement (Msavatsky, 2009) 

As the Figure 2-8 displays, the three spheres with the centers at J′1, J′2, and J′3 and the 

radiuses of J′1E0, J′2E0, and J′3E0 are shaped. The length of the radiuses are equal to the length of 

the bottom link which is called re. The circles at the center of these three spheres have intersection 

at point E0 which is the end effector position. In other words, the intersection of the three circles 

should be found in order to figure out the position of the end effector.  For this purpose, the 

equation of the circles with the initial coordinate of contributed points are needed. This means that 

the initial coordinate of J′1, J′2, and J′3 as the centers of the circles and the bottom link length re are 

the main elements to make the set of circles` equations. The output of the set of the equations 

would be the desired intersection point (Msavatsky, 2009). 
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The first step in this process is finding the coordinate of the centers J′1, J′2, and J′3. The 

Figure 2-9 shows the geometry of the fixed platform and the position of points and links from the 

top view. The important point is the coordinate system position which is placed in a way that zero 

of the system is at the center of the equilateral triangle. It means the point zero on the z-axis is on 

the fixed platform (Msavatsky, 2009). 

 

Figure 2-9: Fixed Platform Geometry (Msavatsky, 2009) 

Considering the geometry of the top view of the robot which is shown on the Figure 2-9, 

the lines between the center and the motor places would have the following equations (Msavatsky, 

2009). 

 
𝑂𝐹1 = 𝑂𝐹2 = 𝑂𝐹3 =

𝑓

2
 × tan 30 =

𝑓

2√3
 (Equation 2-24) 
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The f would be the side of the equilateral triangle (the fixed platform). 

The images of the sphere centers transition from points J to points J′ (J1 to J′1, J2 to J′2, and 

J3 to J′3) on the mobile platform (equilateral triangle) could be calculated as in the following. 

 
𝐽1𝐽1

′ = 𝐽2𝐽2
′ = 𝐽3𝐽3

′ =
𝑒

2
× tan 30° =

𝑒

2√3
  (Equation 2-25) 

 

The e would be the side on mobile platform. 

The length of the motor positions to the top universal joints are as the following. 

 𝐹1𝐽1 = 𝑟𝑓 × cos 𝜃1 (Equation 2-26) 

 

 𝐹2𝐽2 = 𝑟𝑓 × cos 𝜃2 (Equation 2-27) 

 

 𝐹3𝐽3 = 𝑟𝑓 × cos 𝜃3 (Equation 2-28) 

 

The second step is the calculation of the J′1, J′2, and J′3 positions on the coordinate system. 

Considering the positions of the fixed platform, links, joints, and the mobile platform on the 

coordinate system and the above calculations, the x, y, and z components of J′1, J′2, and J′3 are as 

follows (Msavatsky, 2009): 

 
𝐽1

′ : 0,
−(𝑓 − 𝑒)

2√3
− (𝑟𝑓 × cos 𝜃1), −𝑟𝑓 sin 𝜃1 (Equation 2-29) 
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𝐽2

′ : (
(𝑓 − 𝑒)

2√3
+ (𝑟𝑓 × cos 𝜃2)) × cos 30 , (

(𝑓 − 𝑒)

2√3
+ (𝑟𝑓 × cos 𝜃2))

× sin 30 , −𝑟𝑓 sin 𝜃2 

(Equation 2-30) 

 

 
𝐽3

′ : (
(𝑓 − 𝑒)

2√3
+ (𝑟𝑓 × cos 𝜃3)) × cos 30 , (

(𝑓 − 𝑒)

2√3
+ (𝑟𝑓 × cos 𝜃3))

× sin 30 , −𝑟𝑓 sin 𝜃3 

(Equation 2-31) 

 

Considering all the above calculations, the set of the three circles equations would be as 

(Msavatsky, 2009): 

 𝑥2 + (𝑦 − 𝑦1)2 + (𝑧 − 𝑧1)2 = 𝑟𝑒
2 (Equation 2-32) 

 

 (𝑥 − 𝑥2)2 + (𝑦 − 𝑦2)2 + (𝑧 − 𝑧2)2 = 𝑟𝑒
2 (Equation 2-33) 

 

 (𝑥 − 𝑥3)2 + (𝑦 − 𝑦3)2 + (𝑧 − 𝑧3)2 = 𝑟𝑒
2 (Equation 2-34) 

 

Expanding the (Equation 2-32), we have (Msavatsky, 2009): 

 𝑥2 + 𝑦2 + 𝑧2 − 2𝑦1𝑦 − 2𝑧1𝑧 = 𝑟𝑒
2 − 𝑦1

2 − 𝑧1
2 (Equation 2-35) 

 

Expanding the (Equation 2-33), we have (Msavatsky, 2009): 
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 𝑥2 + 𝑦2 + 𝑧2 − 2𝑥2𝑥 − 2𝑦2𝑦 − 2𝑧2𝑧 = 𝑟𝑒
2 − 𝑥2

2 − 𝑦2
2 − 𝑧2

2 (Equation 2-36) 

 

Expanding the (Equation 2-34), we have (Msavatsky, 2009): 

 𝑥2 + 𝑦2 + 𝑧2 − 2𝑥3𝑥 − 2𝑦3𝑦 − 2𝑧3𝑧 = 𝑟𝑒
2 − 𝑥3

2 − 𝑦3
2 − 𝑧3

2 (Equation 2-37) 

 

For making the calculation easier, the following equation is considered (Msavatsky, 2009). 

 𝑤𝑖 = 𝑥𝑖
2 + 𝑦𝑖

2 + 𝑧𝑖
2 (Equation 2-38) 

 

Subtracting (Equation 2-36) from the (Equation 2-35) and replacing (Equation 2-38)in the output, 

we have (Msavatsky, 2009): 

 
𝑥2𝑥 + (𝑦1 − 𝑦2)𝑦 + (𝑧1 − 𝑧2)𝑧 =

(𝑤1 − 𝑤2)

2
 

(Equation 2-39) 

 

Subtracting (Equation 2-37) from (Equation 2-35) in the same way, we have (Msavatsky, 2009): 

 
𝑥3𝑥 + (𝑦1 − 𝑦3)𝑦 + (𝑧1 − 𝑧3)𝑧 =

(𝑤1 − 𝑤3)

2
 

(Equation 2-40) 

 

By subtracting (Equation 2-37) from the (Equation 2-36), we have (Msavatsky, 2009): 

 
(𝑥2 − 𝑥3)𝑥 + (𝑦2 − 𝑦3)𝑦 + (𝑧2 − 𝑧3)𝑧 =

(𝑤2 − 𝑤3)

2
 

(Equation 2-41) 
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The following equations are extracted from (Equation 2-39) and (Equation 2-40) (Msavatsky, 

2009). 

 𝑥 = 𝑎1𝑧 + 𝑏1 (Equation 2-42) 

 

 𝑦 = 𝑎2𝑧 + 𝑏2 (Equation 2-43) 

 

Where a1, b1, a2, and b2 would be (Msavatsky, 2009): 

 
𝑎1 =

1

𝑑
[((𝑧2 − 𝑧1) × (𝑦3 − 𝑦1)) − ((𝑧3 − 𝑧1) − (𝑦2 − 𝑦1))] 

(Equation 2-44) 

 

 
𝑎2 =

−1

𝑑
[((𝑧2 − 𝑧1)𝑥3) − ((𝑧3 − 𝑧1)𝑥2)] 

(Equation 2-45) 

 

 
𝑏1 =

−1

2𝑑
[((𝑤2 − 𝑤1) × (𝑦3 − 𝑦1)) − ((𝑤3 − 𝑤1) − (𝑦2 − 𝑦1))] 

(Equation 2-46) 

 

 
𝑏2 =

1

2𝑑
[((𝑤2 − 𝑤1)𝑥3) − ((𝑤3 − 𝑤1)𝑥2)] 

(Equation 2-47) 

 

Also, the d in the above equations would be (Msavatsky, 2009): 

 𝑑 = [(𝑦2 − 𝑦1)𝑥3 − (𝑦3 − 𝑦1)𝑥2] (Equation 2-48) 
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With substituting equations (Equation 2-42) and (Equation 2-43) in (Equation 2-35) we have 

(Msavatsky, 2009): 

 (𝑎1
2 + 𝑎2

2 + 1)𝑧2 + 2(𝑎1 + 𝑎2(𝑏2 − 𝑦1) − 𝑧1)𝑧

+ (𝑏1
2 + (𝑏2 − 𝑦1)2 + 𝑧1

2 − 𝑟𝑒
2) = 0 

(Equation 2-49) 

 

Solving this quadric equation will give the answers for the z at the output. The smallest 

negative number would be the desirable answer. The final answer is the z component of the end 

effector position (z0). 

Substituting z0 in equations (Equation 2-42) and (Equation 2-43) will give x0 and y0 at the 

output. The final coordinate of the end effector position would be x0, y0, and z0. 

2.2 Communication 

2.2.1 Modbus 

The Modbus protocol is a master-slave/ client-server base protocol which was developed 

in 1979 by Modicon. The Modbus protocol is mostly used in industry. That is why the Modbus 

protocol is categorized as an industrial communication standard. It is an open protocol which is 

mostly applied to transfer discrete and analog I/O information and register data between industrial 

control and monitoring devices (Acromag, 2005). 

To have a simple interpretation of the client-server method for transferring data, we can 

consider that one device would be the master and responsible for transaction initiation in a network. 

The other devices in the network would just respond and provide data which is requested by the 

master. Simply put, the process involves requesting data from a slave device (valve, I/O transducer, 

network drive, or other measuring devices) or sending an instruction to the same slave devise. 

Sending query (the request from mater to slave/s) can address individual slave or can propagate 
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through the whole network. Slaves return a response to all the queries addressed to them 

individually. However, they do not answer to broadcast queries (Acromag, 2005) (Moody, J. O., 

Sánchez- Alonso, R., Yun, C., González- Barbosa, J., & Reyes- Morales, G., 2015). 

A slave address, a function code, required data, and an error checking field are the forming 

formative components of the query. The response from the slave involves the confirmation of 

taken action, returned data, and an error checking field. The master would send a query with the 

specific slave address to the specific slave device. The query includes a function code and required 

data, for example asking for the end effector condition. If no error occurs, the slave`s data response 

contains the requested data. If an error occurs in the query received, or if the slave is unable to 

perform the action requested, the slave will return an exception message as its response (Acromag, 

2005). 

2.2.2 Modbus TCP/IP 

Modbus protocol is a worldwide standard industrial protocol. In order to make the Modbus 

protocol more user friendly, more compatible to other networks and communications and add more 

features to it, the Modbus TCP/IP was developed in 1999 (Acromag, 2005). 

The IEEE 802.3 Ethernet is an office network protocol that has gained universal worldwide 

acceptance and became popular due to its capability for data transactions. It is also an open 

standard that is supported by many manufacturers and its infrastructure is widely available and 

largely installed (Acromag, 2005).  

The combination of IEEE 802.3 and Modbus has generated a powerful protocol called 

Modbus TCP/IP in which the positive capabilities of two protocols gathered together. This 

standard uses the client-server method and takes into account the structure bed of IEEE 802.3 to 

shape the query frames. Compatibility to the installed Ethernet infrastructure of cables, connectors, 
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network interface cards, hubs, and switches is the major positive point of the new protocol 

(Acromag, 2005) (RTA, n.d.).  

In order to profoundly explain and create better understanding of the frame structure of 

Modbus TCP/IP, the OSI general model of frame structure will be examined first. In the next step, 

a thorough study on the Modbus TCP/IP frame structure will be conducted that leads to 

fundamental understanding of this networking method. 

2.2.3 OSI Network Model 

The Open System Interconnect (OSI) model was developed by the International Standards 

Organization in 1983. The Open System Interconnect (OSI) adopted as a common reference for 

the development of data communication standards. The general model of the OSI model is being 

used as the foundation of the structure of many communication protocols such as Modbus TCP/IP, 

HTTP, HTTPS, Ethernet, and a lot of other communication protocols (Acromag, 2005).   

The OSI communication structure model consists of seven layers. Each layer in this 

concept is responsible for a specific role in the whole communication movie. Figure 2-10 illustrates 

the position of each layer based on the priority on making the communications. 
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Figure 2-10: OSI Model 

At the bottom place of the OSI model is located the Physical layer. The Physical layer 

defines the electrical, mechanical, functional, and procedural attributes used to access and send a 

binary data stream over a physical medium which can be RJ-45 connector or CAT5 cable 

(Acromag, 2005) (RTA, n.d.). 

Being located above the Physical layer, the Data Link layer is responsible for ensuring 

reliable delivery at the lowest levels, including data frame, error detection and correction, sequence 

control and flow control. The protocols like Ethernet (IEEE 802.2) and MAC are defined at this 

level (Acromag, 2005) (RTA, n.d.). 
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The Network layer, placed on top of the Data Link layer and the Physical Layer, provides 

controls routing, prioritization, network setup, release of connections, and flow control. The main 

responsibilities of this layer involve establishing and maintaining connections over a network and 

providing addresses, routing, and delivery packets to hosts. The protocols such as IP, PPP, and 

IPX are all offered at this level (Acromag, 2005) (RTA, n.d.). 

Next comes the Transport layer. The Transport layer is responsible for sequencing of 

application data, controlling start/end of transmission, providing error detection, data correction, 

end to end recovery, and clearing the communication. In other words, providing flow control of 

data between networks is the main responsibility of the Transport layer. The TCP and UDP 

protocols are both defined at this level (Acromag, 2005) (RTA, n.d.). 

The Session layer is places above the Transport layer. The connections between 

applications and networks and establishing and managing sessions are all implemented in the 

Session layer in OSI model. Dialing control and synchronization of session connections are 

occurring in this layer. Windows WinSock socket API is considered as one of the most popular 

Session layer managers (Acromag, 2005) (RTA, n.d.). 

The data compression and encryption are defined as the responsibilities of the Presentation 

layer. The layer offers the representation format of data, coding type and used characters. This 

layer performs data and protocol negotiation and conversion to ensure that data may be exchanged 

between hosts and transportable across the network (Acromag, 2005) (RTA, n.d.). 

The Application layer is considered as the last layer in OSI model. This layer is being used 

by applications to prepare and interpret data for use by other layers. This layer provides the 

application interface to the network. The important protocols which are defined at this level include 

HTTP, FTP, SMTP, POP3, CIP, and SNMP (Acromag, 2005) (RTA, n.d.). 
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As explained above, the OSI model of communication makes a data frame that consists of 

different layers. In each layer, it defines specific role for communication, error detection, and so 

forth. The data frame will be transferred to the physical layer which is usually called 

communication channel and transfer to the destination. To set an example, consider the Ethernet. 

The Ethernet provides the communication bed in layer one and two which are Physical and Data 

Link layers. The TCP/IP is covering layers three and four, Network and Session. The applications 

using TCP/IP standard follow the same way of communication at layers three and four. At higher 

levels such as the Application layer, the connection will be made between software which share 

the same Application protocol.  

For the Modbus TCP/IP, a reduction on OSI model results in a five- layer communication 

standard. As the Figure 2-11 shows, the structure of Modbus TCP/IP model has five layers. The 

layers Session, Presentation, and Application are combined into one layer called “application” with 

almost all capability of the three layers. As previously mentioned, the applications, software, or 

devices which are intended to build a connection considering the Modbus TCP/IP protocol should 

share the same Application layer. Using the same Application layer helps devices to code and 

decode the data they received from the network. Adding TCP/IP to this protocol made it capable 

of taking advantage of the compatibility between the applications which are using this standard. 

Thus, using Modbus TCP/IP protocol makes using an industrial protocol standard possible while 

the users benefit from the capability of TCP/IP which is the foundation for the World Wide Web 

(Acromag, 2005). 
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Figure 2-11: Modbus TCP/IP Model 

Considering the TCP/IP protocols, as they are introduced in Network and Transport layers, 

the function of TCP (Transport layer) is to ensure that all packets of data are received correctly, 

while IP (Network layer) has the responsibility to make sure that messages are correctly addressed 

and routed. The important point worth considering here is that the data is made in the Application 

layer and TCP and IP do not make any changes in the original data. They are only playing the role 

of communication protocols (Acromag, 2005) (RTA, n.d.). 

The application protocols which are usually defined in the Application layer are the 

protocols carrying the responsibility for organizing and interpreting data. The structure of the data 

frame is shaped and coded in this layer at the sender `s side and is then sent to the destination. At 
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the receiver `s side, the frame would be decoded and the original data is extracted out of it 

(Acromag, 2005) (RTA, n.d.). 

The following table shows the protocol stack, or simply put, Modbus TCP/IP 

communication layers. As it was mentioned above, the protocol stack of Modbus TCP/IP is 

following the standard OSI communication model, but with the combination of the layers of 

Session, Presentation, and Application in one layer called “Application”. This combination makes 

the protocol stack a five-layer structure. 

5 Application Specifies how an application uses a network 

4 Transport Specifies how to ensure reliable data transport 

3 Network/Internet Specifies packet format and routing 

2 Host-to-Network Specifies frame organization and transmittal 

1 Physical Specifies the basic network hardware 

Table 2-1: Modbus TCP/IP (Acromag, 2005) 

 

The same protocol stack exists at the both sides for all the applications, software, network, 

and devices communicating together. Both sender and receiver have the same structure for the 

communication. The data (request/query) is generated at the Application layer at the sender. Then 

it moves through each layer down and a header is added at each and every step. In other words, 

each layer adds its own identifier to the data. In this way, when the data gets to the receiver, each 

layer identifies and decodes the relevant header. Base on the table, at level 2, the data is 

encapsulated in a frame with each layer header and thus, is ready to proceed to level one (Physical 

layer) to be sent into the channel. Conversely, this header information is removed by the 

corresponding layer at the receiver. In this way, the headers are essentially peeled off as the data 

packet moves up the receiving stack to the receiver Application. The following table illustrates the 

Modbus TCP/IP communication stack and protocols which are used in every level. 
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Modbus TCP/IP Communication Stack 

# Model Protocols References 

7 Application Modbus  

6 Presentation 

5 Session 

4 Transport TCP  

3 Network IP, ARP, RARP 

2 Data Link Ethernet, CSMA/CD, Mac IEEE 802.3 

Ethernet 1 Physical Ethernet Physical Layer 

Table 2-2: Modbus TCP/IP Communication Stack (Acromag, 2005) 

For better understanding of the aforementioned explanations, Figure 2-12 displays the great 

journey from layer five (Application layer) to layer two (Data Link layer). As it is shown in the 

Figure 2-12, at each step, the layer adds its own header to the data by which it can be distinguished 

at the receiver side (Acromag, 2005) (RTA, n.d.). 

 

Figure 2-12: Modbus TCP/IP Frame Structure 

 

2.3 Virtual Reality 

Virtual reality is a fully immersive computer simulated environment that gives the user the 

feeling of being in that environment. A lot of video games have already developed the technology 

to put the user in an interactive world such as a driver `s seats in a car, a warrior in a first person 

shooter game, or even in a town that the gamers build themselves. When the users are able to freely 
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move within the virtual environment and interact with the objects in it, the user `s brain can truly 

perceive that the virtual world as real. 

Virtual reality is considered to have begun in the 1950’s but early elements of it can be traced 

back to the 1860’s and long before the development of digital technology (Virtual Reality Society, 

2016). The main concept of virtual reality is providing a bed for human brain and convince it to 

accept the virtual situation as real. With the emergence of power computers, graphic cards, coding 

languages, and 3D design software, the invention of virtual reality was upgraded to next level that 

has dramatically altered the world games and training in such virtual environments. 

The main capability of the virtual environments and game engines is the implementation of 

physics engines inside them. It means that the rules and regulations of real world which come from 

rules of physics can be simulated in this environment. It has provided the capability of making the 

virtual environments based on the and with the real behavior of the objects in the real world. With 

respect to such great capability, the implementation of a game or a laboratory in virtual 

environment can result in achieving compelling output for human brains that has the power to 

convince it to believe the virtual environment as the real one (Moody, J. O., Sánchez- Alonso, R., 

Yun, C., González- Barbosa, J., & Reyes- Morales, G., 2015). 

In addition to gaming, the virtual reality has a great deal of other practical purposes with 

respect to its capability of simulating real behavior of objects. As a result of such capability, virtual 

reality has been applied for practices and purposes other than gaming namely training simulators 

for soldiers, pilots, doctors, and engineers. Big companies are looking for interactive, safe, and 

inexpensive training programs. And since virtual reality environment offers options including 

moving within the virtual plants, making operational decisions, and investigating processes at a 

glance, it is highly important and popular for such big companies looking for it (Maurizio 
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Rovaglio, Tobias Scheele, 2011) (Etienne van Wyk, 2014).Using virtual reality and gaming to 

implement an environment for educational and training purposes is mainly what the concept of 

virtual laboratory explains. The virtual laboratories in general and virtual robot laboratories, in the 

case of this thesis, offer an environment in which the implemented robots simulate the exact 

behavior of real robots. In this way, the students and trainees can manipulate the virtual robots by 

monitoring the robots behavior and observing the responses sent from the robot to the users as a 

result of applying different structures, codes, and scenarios (Moody, J. O., Sánchez- Alonso, R., 

Yun, C., González- Barbosa, J., & Reyes- Morales, G., 2015).  

The main reason for implementation of virtual laboratories is providing more resources for 

students in academic areas and trainees in different industries. Since the main obstacle facing users 

in the actual training environments is the lack of sufficient resources considering high costs of 

equipment, applying the method of the implementation of virtual robotic laboratories in place of 

actual ones can provide more opportunities for students and trainees to work and learn. The other 

advantage of using such robotic laboratories is that immense amounts of financial resources can 

be saved for companies. There are still more upsides to the application of virtual laboratories 

instead of the actual robotic laboratories. To illustrate, consider the pressing issues of robots 

vulnerability to damages and potential safety issues, all of which will be solved by using virtual 

robot laboratories. Programming wrong codes and sequences is inevitable during training session 

since participants are mainly untrained or novice learners. Students and trainees always make some 

mistakes at different levels. Sometimes, some of these mistakes can cause damages to robots and 

themselves. The high expenses paid on the maintenance of robots due to damages and irreparable 

human hurts are crucial challenges facing users in actual robot laboratories. However, taking 

advantage of the technology of virtual robot laboratories can eliminate all these expenses by 
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simulated hazardous situations in a safe, highly visual, and interactive way (Etienne van Wyk, 

2014) (Maurizio Rovaglio, Tobias Scheele, 2011).  

Considering the aforementioned issues with conducting training sessions in actual robotic 

laboratories along with the specific capabilities of the virtual reality environments have developed 

the idea and trend of  creating virtual worlds with the application of running training sessions in 

both academic environments and industrial preparation practices. Such a trend has led into 

generating the concept of serious gaming which is defined as using game engines, with the 

capability of implementation of the rules of physics in them, in the real world environments.  

2.3.1 Design 

As it mentioned in the previous section, the availability of tools with high performance 

such as the platforms for virtual development, physics engines, computer processors and graphics 

cards has provided appropriate bed for the development of virtual laboratories. The 

implementation of virtual laboratories requires several steps from designing elements to 

programming. These steps include designing each element, exporting designed elements to virtual 

environment, and programing to achieve the real behavior of objects. Figure 2-13 depicts the 

procedure and algorithm of objects behavior in the virtual environment (Moody, J. O., Sánchez- 

Alonso, R., Yun, C., González- Barbosa, J., & Reyes- Morales, G., 2015).  
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Figure 2-13: The Whole System Concept (Moody, J. O., Sánchez- Alonso, R., Yun, C., 

González- Barbosa, J., & Reyes- Morales, G., 2015) 

The first step is CAD drawing. In order to draw the elements, there are numerous software. 

The exact geometry of objects are the critical points at this step as it is shown in the Figure 2-13. 

The ability of moving around freely based on the design is the key point in the first step in order 

to simulate behavior with higher precision of similarity to the real objects. 

There are also a large number of game engines and software which offer physics engines. 

The Unity software has been used, in the case of this thesis, to simulate the behavior of rigid bodies 

such as gravity, collision, detection, mass and center of mass, angular velocities, acceleration, 

forces, and torques in the virtual Delta robot.  

The reason why the author has chosen to work with Unity refers to the capabilities of this 

software. Some of the capabilities of Unity are explained in the following (Unity, n.d.): 

 Scripting with C#, JavaScript or Boo (.NET-based). 

 Action-Packed Physics (built-in NVIDIA PhysX 3™ and Box2D physics engines) 
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 Life-Like Animation. 

 Supporting numerous platforms such as Windows, Mac, Linux/Steam OS, iOS, Android, 

Windows Phone 8, Windows Store, BlackBerry 10, Tizen, Xbox 360, Xbox One, and 

PlayStation 3. 

 Optimized Graphics. 

 64-bit Editor. 

 Inverse Kinematics (use IK rigs to move your character to a pre-determined point on an 

object in a natural way – position feet on the ground or hands on the edge of a wall). 

 Sync Layers and Additional Curves (attach animation curves to animation clips to ensure 

proper encapsulation of the game code). 

 Static batching (create geometry batches for static meshes at build-time so the CPU does 

not spend time recreating the same batches). 

The virtual Delta robot studied in the case of this thesis has been developed by Dr. Ortega-

Moody using all of the mentioned software and extensive mechanical and electrical design 

knowledge. Figure 2-14 illustrates the virtual robot in Unity virtual environment. 
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Figure 2-14: Virtual Environment 

All the pieces are designed based on the real world objects. The effect of gravity on robot 

`s parts act in the same way that it affects objects in real world. For instance, if the motors used in 

the robot body are not engaged, the effect of gravity will result in moving all links to lower 

positions. 

The investigation of robot components and abilities seems necessary at this point. The 

virtual Delta robot consists of the exact components of the original Delta robot concept which is 

explained at the beginning of this chapter. A fixed platform at the top is responsible for holding 

the whole system. The zero point of the Cartesian system is designed to be placed at the center of 

this platform. Three motors have been fixed at the three fixed platform and kinematic chains joint 
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points. Each kinematic chain includes two links. The upper link and the bottom link which are 

called rf and re respectively. Three revolute joints connect the rfs to the fixed platform and three 

universal joints connect rfs to res. The motion of motors cause movements on all the system as 

discussed before in the section of mathematical modeling. The kinematic chains are followed by a 

mobile platform. The end effector is placed at the center of the mobile platform. The position of 

the end effector in the Cartesian system (point zero at the center of the fixed platform) is the 

ultimate purpose of the robot operation. The angles of the motors determine the final position of 

the end effector. In other words, if a user intends to move an object with this robot, they should 

manipulate the robot by changing the motor angles to get to the position of the object. Figure 2-15 

shows different parts of the robot and the external object. 

 

Figure 2-15: Virtual Robot `s Parts 

Moving to the next step, the specifications of the elements in the virtual environment have 

been defined. Those specifications include the mass of each piece, the structure of the robot, and 

the specifications of the motors, and so forth.  As it is shown on the top left side of Figure 2-14, a 
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window with four tabs is designed for changing physical options. The four tabs designed to make 

alterations in the physical options are Status, Mass, Motors, and PID. 

The tab Status is designed with the purpose of showing the angles of the motors. The three 

angles, as Figure 2-16 illustrates, are the three motor angles. For manipulating the robot and 

moving the end effector around, changing these angles is required. 

 

Figure 2-16: Status Tab 

The next tab is for changing different parts of the robot `s masses. The three upper links, 

three bottom links, and the mobile platform are the user `s option in this window. 
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Figure 2-17: Mass Tab 

The third tab is motors` specifications. This tab enables users to change the three motors` 

specifications of the resistance, torques, voltages, amperes, and gearbox ratios. The Figure 2-18 

shows these options in the virtual environment. 

 

Figure 2-18: Motor Tab 
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And the last tab is PID. The tab of PID provides the users with the options of changing the 

gain of proportional, integral, and derivative controllers. In addition to manipulating and 

programing the virtual robot, the students and trainees can get familiar with the concept of PID 

controllers and observe the output of each set of gains. The Figure 2-19 illustrate the PID control 

options. 

 

Figure 2-19: PID Tab 

Moreover, the three coils have been designed aiming at monitoring the position of the end 

effector, the end effector sensor, and the condition of the end effector (ON/OFF conditions). These 

coils have the option of “On” or “Off”.  Both of such options can be used as inputs of the user 

interface design. 

 

Figure 2-20: Coils 
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3 Methodology 

3.1 Problem Statement 

There are various significant downsides to the application of actual robots in robotic 

technology laboratories. Obstacles such as the high expenses of building, and equipping robotic 

laboratory as well as the costs of actual robots, vulnerability of robots to wrong coding, 

programming and error instructions leading to serious damages to robots, and safety concerns 

related to lack of adequate supervision on trainees while performing relevant procedures are among 

those downsides which definitely impairs the use of real robots by novice trainees and users.    

To address such an existing shortage, the combination of platforms for virtual developments, 

physics engines, computer processors, and graphic processors have been worked on in order to 

implement a virtual robot laboratory.  

Having defines and illustrated all concepts of mathematical modeling, virtual reality, physics 

engines and computer processor in making a virtual robot laboratory, there is still one major 

requirement for the users to be able to benefit from such technology. This requirement is having 

access to an appropriate user interface that makes the communication possible between the virtual 

robot laboratory and the virtual robot with the trainee or user. 

3.2 Purpose of the Study 

The purpose of this study is to develop such a user interface having the capability to meet 

all those expected requirements in a user friendly, straightforward manner that is also beneficial 

for all the end users, both in academic and industrial training environments, in order to provide 

them with a profound robotic training experience and simultaneously, removes the challenges and 

potential risks of robot vulnerability to damage by wrong coding and instruction, and safety issues. 
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By applying virtual robot laboratory and making the communication between it and the intended 

users, not only all the previously mentioned constraints of actual robotic technology are removed, 

but also trainees gain the opportunity to spend more time practicing and performing various coding 

and programming scenarios to make training sessions fruitful, safe, challenging and robotically 

successful. 
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4 Procedure and Findings 

4.1 User Interface 

The works done so far regarding the history of robots and robotic knowledge, the training 

trend in robotic laboratory, the virtual environment and virtual robot, the inverse and forward 

kinematics behind the robot movements, and the Modbus TCP protocol for communication were 

discussed and presented in all previous chapters. Also, the mathematical modeling of delta robot 

and its implementation in virtual environment (applying Unity) were used to build a virtual robot 

laboratory.  

Having the virtual robotic laboratory and the virtual robot, a user interface is required to 

provide the main connection between the users and the virtual robot in order to take advantage of 

the virtual robotic laboratory.  As discussed earlier in the introduction part, the effort of this thesis 

is to meet the necessity of such a user interface to be installed on students/ trainees` computers to 

provide them with the ability to manipulate the virtual robot. What has been done in the scope of 

this thesis is the development of the aforementioned user interface so that the user interface can 

communicate with the virtual Delta robot via applying the Modbus TCP as the communication 

protocol. The whole concept of the work done in this work is depicted in the Figure 4-1. It shows 

that the virtual robot laboratory is installed on a computer counted as a server in this case. Also, it 

depicts that the designed user interface is installed on the user’s computer, and finally shows the 

communication between the installed virtual robotic laboratory on the server and the user interface. 

 

Figure 4-1: Concept 
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There are various steps in the development of the user interface (software) for the virtual 

robot laboratory. In the first step, we need to investigate the users’ needs through the process of 

using the user interface in order to develop the software. The author has gained such requirements 

through the brainstorming and monitoring of the robot laboratory training sessions` procedures at 

Morehead State University robotics laboratory. Those requirements/ expectations of the software 

would be as the Figure 4-2 shows. 

 

Figure 4-2: User Interface Requirements 

As Figure 4-2 shows, the first requirement for the development of the user interface is 

Kinematics. By Kinematics, we mean that users should have the ability of sending the positions or 

motor angles to the virtual robot. As explained earlier in the mathematical modeling section, there 

are two main concepts discussed as inverse kinematics and forward kinematics.  

In the concept of inverse kinematics, having a coordinates of a specific position of the end 

effector, there would exist three motor angles. In other words, when the user intends to move the 

virtual robot to a specific end effector position, how the three motors should move in order to reach 

• Positions

• Motor AnglesKinematics

• Saving positions to make a route

• Sending positions to the robotPoints

• Make the communication with delta robot

• Using Modbus TCPCommunications

• Set the robot dimensions

• Make the interface universalDimensions

• Scripting for programming the process sequences

• Manipulate all parts of the robot by codingPrograming
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that specific point. For this purpose, repeating the formulas (Equation 2-21), (Equation 2-22), and 

(Equation 2-23) , we have the three motor angles as the following in which J1 is the universal joint 

point between upper and bottom links. Calculating the position on this point would give the motor 

angles (Msavatsky, 2009). 

 
𝜃1 = tan−1

𝑧𝐽1

𝑦𝐹1 − 𝑦𝐽1
 (Equation 4-1) 

 

 
𝜃2 = tan−1

𝑧′𝐽1

𝑦′𝐹1 − 𝑦′𝐽1
 (Equation 4-2) 

 

 
𝜃3 = tan−1

𝑧″𝐽1

𝑦″𝐹1 − 𝑦″𝐽1
 (Equation 4-3) 

 

Accomplishing the inverse kinematic calculations and coding the procedures of extracting 

angles will give the capability of motor angles` calculations for every chosen positions. Thus, 

applying the user interface, the trainee can practice working with the virtual robot inverse 

kinematics by applying the given end effector position and having the calculated motor angles.  

On the other hand, forward kinematics has the opposite direction for calculation. In other 

words, when users choose the motor angles as the input variables in the user interface, they can 

see the calculated specific end effector position as the desired output variable. Such options 

provided in the user interface makes the users able to monitor the movement path of the robot with 

respect to the motor angles. By altering the input variable values for the motor angles, the altered 

positions of the end effector of the virtual robot can be monitored by the users. For this purpose, 
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repeating the formula (Equation 2-49) and solving the quadric equation will give the z component 

of the ultimate position (Msavatsky, 2009). 

 (𝑎1
2 + 𝑎2

2 + 1)𝑧2 + 2(𝑎1 + 𝑎2(𝑏2 − 𝑦1) − 𝑧1)𝑧

+ (𝑏1
2 + (𝑏2 − 𝑦1)2 + 𝑧1

2 − 𝑟𝑒
2) = 0 

(Equation 4-4) 

 

Substituting z0 in equations (Equation 4-5) and (Equation 4-6) will give x0 and y0 at the 

output. The final coordinate of the end effector position would be x0, y0, and z0 (Msavatsky, 2009). 

 𝑥 = 𝑎1𝑧 + 𝑏1 (Equation 4-5) 

 

 𝑦 = 𝑎2𝑧 + 𝑏2 (Equation 4-6) 

 

In which, a1, b1, a2, and b2 would be (Msavatsky, 2009): 

 
𝑎1 =

1

𝑑
[((𝑧2 − 𝑧1) × (𝑦3 − 𝑦1)) − ((𝑧3 − 𝑧1) − (𝑦2 − 𝑦1))] 

(Equation 4-7) 

 

 
𝑎2 =

−1

𝑑
[((𝑧2 − 𝑧1)𝑥3) − ((𝑧3 − 𝑧1)𝑥2)] 

(Equation 4-8) 

 

 
𝑏1 =

−1

2𝑑
[((𝑤2 − 𝑤1) × (𝑦3 − 𝑦1)) − ((𝑤3 − 𝑤1) − (𝑦2 − 𝑦1))] 

(Equation 4-9) 
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𝑏2 =

1

2𝑑
[((𝑤2 − 𝑤1)𝑥3) − ((𝑤3 − 𝑤1)𝑥2)] 

(Equation 4-10) 

 

4.1.1 Control Window 

Accomplishing the calculation of the forward kinematics and coding the procedures of 

extraction positions for the given angles will give the capability of manipulating the virtual delta 

robot by changing motor angles. Thus, the user can practice various values of the motor angles as 

the input variables in order to see various relevant output variables and continually observe the 

movement paths by manipulating variables to manipulate the virtual robot, and consequently, 

master such skills and knowledge.  

Figure 4-3 illustrates the design of Kinematics window in the developed user interface. 

There are two modes for forward and inverse kinematics designed in the user interface called the 

Joint mode and the World mode. The Joint mode offers the forward kinematics options while the 

World mode offers the inverse kinematics options. 
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Figure 4-3: Control Window 

By selecting the Joint mode, user can change the motor angles and simultaneously, the 

interface calculates the correspondence position. The Figure 4-4 shows one example of this 

process. 
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Figure 4-4: Joint Mode 

By choosing the World mode, user can alter the position and simultaneously, the interface 

calculates the correspondence motor angles. The Figure 4-5 shows one example of this process. 

 

Figure 4-5: World Mode 
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4.1.2 Save Position Window 

When the users find the desirable end effector position, either by manipulating the robot in 

Joint or World mode, they should be able to save that position. As each path includes some points, 

saving each position make the user enable of programing a specific route for the robot. To meet 

this requirement, a window was designed which has communication with a .csv file outside the 

user interface. This .csv file is called in a datagridview through this window and by saving each 

position, the correspondence x, y, and z will be sent to this file. The important consideration about 

saving points is that since the virtual robot has no understanding about positions and just works 

with motor angles, the saving points in the .csv file are based on the motor angles. Figure 4-6 

illustrates the designed window in the user interface. 

 

Figure 4-6: Save Positions 
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4.1.3 Communication 

In addition to invers and forward kinematics which are the fundamental parts of robot 

operation, communication plays the critical role. For implementing virtual robot laboratory, the 

virtual robot will be installed on the university or company `s computer server. The user interface 

would be installed on student/trainee `s computer. The communication between the virtual 

laboratory and the user interface would be based on Modbus TCP. As mentioned before in the 

communication part, the Modbus TCP is a five layer industrial protocol in which the 

communication uses TCP frame format to build a compatible data exchange over Ethernet. For 

making this communication happen, there should be a window that students/trainees can enter the 

server IP address and the Modbus point. The communication window was designed as shown in 

Figure 4-7 to fulfil such purpose. 

 

Figure 4-7: Communication 
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4.1.4 Dimensions 

Forward and inverse kinematics are based on the dimensions of the virtual Delta robot. The 

calculation of the end effector position depends on the length of the kinematic links and the 

platforms sides. The fixed dimensions on the user interface programing make it special for 

manipulating just one robot. To make the user interface universal and to make its application 

possible for any Delta robots, users need a window to set the measurements. Figure 4-8 shows the 

dimensions which are used for kinematics calculations. 

 

Figure 4-8: Delta Robot Dimensions (Msavatsky, 2009) 
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And the design window for setting these dimensions in the user interface is depicted in the 

Figure 4-9. 

 

Figure 4-9: Communication 

The final appearance of the user interface including various windows of Control of 

Kinematics, Position, Communication, Dimensions, and Programming is shown in the 

Figure 4-10. 
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Figure 4-10: Final View 

As Figure 4-10  shows, the final look of the developed user interface in the scope of this thesis 

includes various windows. The simple and clear look of the windows as well as its being self-

explanatory provide the users and trainees of the designed software with a great opportunity to 

learn how to work with different scenarios relevant to the inverse and forward kinematics. Doing 

so, the users are able to monitor different movement paths of the virtual robot and analyze the 

behavior of the virtual robot resembling the actual robot with high precision in details. In addition, 

the software enables the learners to save the practiced points, perform the communication 

protocols, observe the dimensions and programming windows and in general, develop a much 

deeper grasp of robotic technology in an available, safe and straightforward virtual environment 

that resembles the specifications of the real robotic technology laboratories and actual Delta robots 

with high accuracy and precision. 
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5 Conclusion and Future Works 

5.1 Conclusion 

Robots have been applied in industry, healthcare and medical surgeries, military, agriculture, 

oceanographic explorations, education, and for aerospace purposes. Robots are turning into more 

intelligent machines with the ability of processing information much faster and more efficiently in 

comparison to their early versions.  Today, industrial robots are an integral part of the automotive 

assembly lines due to their higher speed, quality, reliability and productivity. Considering the wide 

applications of robots in almost all various fields in the modern world, there is always need for 

engineers, operators, technicians and experts to perform tasks of programming, maintenance, 

operating and troubleshooting of robots.  Training professionals and experts in the robotic areas is 

necessary due to the critical processes in which robots are involved. However, the main constraints 

regarding providing continuous training in the field of robotic technology include lack of training 

resources, unsatisfactory training processes, high costs of equipping robotic laboratories, high 

sensitivity of working with robots for unskilled individuals, high risks of making mistakes and 

damaging robots. As a solution, virtual robot laboratories are developed to resolve such issues. 

The whole concept of virtual robot training is based on implementing virtual robot laboratory and 

virtual robot with the exact behavior of the actual robot. Applying both virtual robots and virtual 

robot laboratories, trainees are made able to implement various scenarios and coding various 

sequences and they can monitor the real behavior of the robots as a result of applying such 

scenarios and sequences. Trainees would find the opportunity to practice all possible conditions as 

a result of scripting various scenarios. 

In order to take advantage of virtual robotic laboratory, a user interface (software) is 

developed during this study. The straightforwardness of the designed software provides novice 
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users with a great opportunity to develop a profound understanding and knowledge of robotic 

technology in an available, safe and straightforward virtual environment that resembles the 

specifications of the real robotic technology laboratories and actual Delta robots with high 

accuracy and precision. In addition, applying the user interface makes companies able of reducing 

their training expenses significantly and assures them of having well-trained operators due to the 

specifications of the developed software. 

5.2 Future Works 

Referring to the previous chapters, one can see how the developed user interface consists of 

five various windows of Control, Position, Communication, Dimension and Programming. 

However, in the scope of this thesis, only the first four windows are developed for the use by 

trainees. Future research can be conducted on developing the programming window. In other 

words, future work can be done in order to make it possible for the users to do the processes of 

scripting for programming the process sequences as well as manipulating all parts of the robot by 

coding. This added feature will further strengthen the training processes by enabling the users to 

gain a mastery level in performing various tasks with the virtual robot and figuring out its behaviors 

in different scenarios defined by themselves.   
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7 Appendix A 
 

Interface Form Main Source Code 

using System; 
using System.Collections.Generic; 
using System.ComponentModel; 
using System.Data; 
using System.Drawing; 
using System.Linq; 
using System.Text; 
using System.Threading.Tasks; 
using System.Windows.Forms; 
 
namespace RobotInterface 
{ 
    public partial class FormMain : Form 
    { 
        public FormMain() 
        { 
            InitializeComponent(); 
        } 
        FormMain f1; 
        private void Form1_Load(object sender, EventArgs e) 
        { 
            
        } 
       
 
        frmControl fControl; 
        public void controlToolStripMenuItem_Click(object sender, EventArgs e) 
        { 
             
            if (fControl == null) 
            { 
                fControl = new frmControl(); 
                fControl.MdiParent = this; 
                fControl.FormClosing += F2_FormClosing; 
                fControl.Show(); 
            } 
            else 
            { 
                fControl.Show(); 
                fControl.Activate(); 
            } 
          } 
 
        public void F2_FormClosing(object sender, FormClosingEventArgs e) 
        { 
            e.Cancel = true; 
            fControl.Hide(); 
        } 
 
        void f2_FormClosed(object sender, FormClosedEventHandler e) 
        { 
            fControl = null; 
        } 



70 
 

 
        public frmPosition fPosition; 
        private void positionToolStripMenuItem_Click(object sender, EventArgs e) 
        { 
            if (fPosition == null) 
            { 
                fPosition = new frmPosition(); 
                fPosition.MdiParent = this; 
                fPosition.FormClosing += F3_FormClosing; 
                fPosition.Show(); 
            } 
            else 
            { 
                fPosition.Show(); 
                fPosition.Activate(); 
            } 
        } 
 
        private void F3_FormClosing(object sender, FormClosingEventArgs e) 
        { 
            e.Cancel = true; 
            fPosition.Hide(); 
        } 
        void f3_FormClosed(object sender, FormClosedEventHandler e) 
        { 
            fPosition = null; 
        } 
 
        frmCommunication fComm; 
        private void communicationToolStripMenuItem_Click(object sender, EventArgs e) 
        { 
            if (fComm == null) 
            { 
                fComm = new frmCommunication(); 
                fComm.MdiParent = this; 
                fComm.FormClosing += F4_FormClosing; 
                fComm.Show(); 
            } 
            else 
            { 
                fComm.Show(); 
                fComm.Activate(); 
            } 
        } 
 
        private void F4_FormClosing(object sender, FormClosingEventArgs e) 
        { 
            e.Cancel = true; 
            fComm.Hide(); 
        } 
 
        void f4_FormClosed(object sender, FormClosedEventHandler e) 
        { 
            fComm = null; 
        } 
 
        FormProgramming fProg; 
        public void programmingToolStripMenuItem_Click(object sender, EventArgs e) 
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        { 
             
            if (fProg == null) 
            { 
                fProg = new FormProgramming(); 
                fProg.MdiParent = this; 
                fProg.FormClosing += F5_FormClosing; 
                fProg.Show(); 
            } 
            else 
            { 
                fProg.Show(); 
                fProg.Activate(); 
            } 
        } 
 
        public void F5_FormClosing(object sender, FormClosingEventArgs e) 
        { 
            e.Cancel = true; 
            fProg.Hide(); 
        } 
        void f5_FormClosed(object sender, FormClosedEventHandler e) 
        { 
            fProg = null; 
        } 
 
        frmRobotDimentions fRobotDim; 
        private void robotDimentionsToolStripMenuItem_Click(object sender, EventArgs e) 
        { 
            if (fRobotDim == null) 
            { 
                fRobotDim = new frmRobotDimentions(); 
                fRobotDim.MdiParent = this; 
                fRobotDim.FormClosing += F6_FormClosing; 
                fRobotDim.Show(); 
            } 
            else 
            { 
                fRobotDim.Show(); 
                fRobotDim.Activate(); 
            } 
        } 
 
        private void F6_FormClosing(object sender, FormClosingEventArgs e) 
        { 
            e.Cancel = true; 
            fRobotDim.Hide(); 
        } 
        void f6_FormClosed(object sender, FormClosedEventHandler e) 
        { 
            fRobotDim = null; 
        } 
 
        public void FormMain_SizeChanged(object sender, EventArgs e) 
        { 
            //Console.WriteLine("Main form is resized...."); 
             
            fControl.AutoResize(); 
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            fPosition.AutoResize(); 
            fProg.AutoResize(); 
            fComm.AutoResize(); 
            fRobotDim.AutoResize(); 
             
        } 
 
        public void FormMain_FormClosing(object sender, FormClosingEventArgs e) 
        { 
            System.Environment.Exit(1); 
        } 
         
    } 
 
 } 
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8 Appendix B 
 

Interface Form Control Source Code 

using System; 
using System.Collections.Generic; 
using System.ComponentModel; 
using System.Data; 
using System.Drawing; 
using System.Linq; 
using System.Text; 
using System.Threading.Tasks; 
using System.Windows.Forms; 
 
using Excel = Microsoft.Office.Interop.Excel; 
 
using System.Reflection; 
using System.IO; 
using System.Data.OleDb; 
using System.Web; 
using EasyModbus; 
using System.Threading; 
 
namespace RobotInterface 
{ 
     
    public partial class frmControl : Form 
    { 
        public bool running = false; 
        public static bool newPosition = false; 
        Thread mthread; 
        public const int WM_NCLBUTTONDBLCLK = 0x00A3; 
        public  string axe; 
         
 
        public frmControl() 
        { 
            InitializeComponent(); 
            running = true; 
            this.mthread = new Thread(new ThreadStart(this.modbusClient)); 
            this.mthread.Start(); 
 
        } 
 
        public void frmControl_Load(object sender, EventArgs e) 
        { 
 
        } 
 
        protected override void WndProc(ref Message m) 
        { 
            if (m.Msg == WM_NCLBUTTONDBLCLK) 
            { 
                //this.RelocatedForm(); 
                AutoResize(); 
                m.Result = IntPtr.Zero; 
                return; 
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            } 
            base.WndProc(ref m); 
        } 
 
         
        public void AutoResize() 
        { 
            // Resize the form and relocated 
            this.Width = (int)(MdiParent.ClientSize.Width * 0.4); 
            this.Height = (int)(MdiParent.ClientSize.Height * 0.6); 
 
            int x = 0; 
            int y = 0; 
            this.Location = new Point(x, y); 
 
            // Resize the controls in the from 
        } 
        private bool v; 
        private void btnWorld_Click(object sender, EventArgs e) 
        { 
            this.Enabled = true; 
            this.panel2.Enabled = false; 
            this.panel3.Enabled = true; 
            v = true; 
 
        } 
 
        private void btnJoint_Click(object sender, EventArgs e) 
        { 
            this.Enabled = true; 
            this.panel3.Enabled = false; 
            this.panel2.Enabled = true; 
            v = false; 
             
 
 
        } 
        public static double A1 = 0; 
        public static double A2 = 0; 
        public static double A3 = 0; 
        // World 
        private void TrackBar5_Scroll(object sender, EventArgs e) 
        { 
 
             
            A1 = positionTBX.Value; 
            positionX.Value = (decimal)A1; 
             
        } 
        private void numericUpDown1_ValueChanged(object sender, EventArgs e) 
        { 
             
            A1 = (double)positionX.Value; 
            positionTBX.Value = (int)A1; 
            if (v == true) 
            { 
                axe = "X"; 
                sendAngles(); 
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                newPosition = true; 
            } 
 
        } 
             
         
        private void textBox1_TextChanged(object sender, EventArgs e) 
        { 
           
        } 
        private void trackBar7_Scroll(object sender, EventArgs e) 
        { 
            axe = "Y"; 
            A2 = positionTBY.Value; 
            positionY.Value = (decimal)A2; 
        } 
        private void numericUpDown2_ValueChanged(object sender, EventArgs e) 
        { 
             
            A2 = (double)positionY.Value; 
            positionTBY.Value = (int)A2; 
            if (v == true) 
            { 
                sendAngles(); 
                newPosition = true; 
            } 
             
        } 
        private void TrackBar4_Scroll(object sender, EventArgs e) 
        { 
             
            A3 = positionTBZ.Value; 
            positionZ.Value = (decimal)A3; 
        } 
 
        private void numericUpDown3_ValueChanged(object sender, EventArgs e) 
        { 
             
            A3 = (double)positionZ.Value; 
            positionTBZ.Value = (int)A3; 
            if (v == true) 
            { 
                axe = "Z"; 
                sendAngles(); 
                newPosition = true; 
            } 
             
        } 
 
 
 
        // Joint 
        public static double B1; 
        public static double B2; 
        public static double B3; 
 
        public void TrackBar1_Scroll(object sender, EventArgs e) 
        { 
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            B1 = angleTBT1.Value; 
            angleT1.Value = (decimal)B1; 
             
        } 
        private void angleT1_ValueChanged_1(object sender, EventArgs e) 
        { 
            B1 = (double)angleT1.Value; 
            angleTBT1.Value = (int)B1; 
            if (v == false) 
            { 
                sendPositions(); 
                newPosition = true; 
            } 
             
 
        } 
        private void TrackBar2_Scroll(object sender, EventArgs e) 
        { 
            B2 = angleTBT2.Value; 
            angleT2.Value = (decimal)B2; 
        } 
        private void angleT2_ValueChanged(object sender, EventArgs e) 
        { 
            B2 = (double)angleT2.Value; 
            angleTBT2.Value = (int)B2; 
            if (v == false) 
            { 
                sendPositions(); 
                newPosition = true; 
            } 
             
 
        } 
        private void TrackBar3_Scroll(object sender, EventArgs e) 
        { 
            B3 = angleTBT3.Value; 
            angleT3.Value = (decimal)B3; 
        } 
        private void angleT3_ValueChanged(object sender, EventArgs e) 
        { 
            B3 = (double)angleT3.Value; 
            angleTBT3.Value = (int)B3; 
            if (v == false) 
            { 
                sendPositions(); 
                newPosition = true; 
            } 
             
 
        } 
 
 
        public static double frmRobotDimentions.die;  
        public static double frmRobotDimentions.dif; 
        public static double frmRobotDimentions.dire; 
        public static double frmRobotDimentions.dirf; 
 
        private double s = 330; 
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        private double sqrt3 = Math.Sqrt(3.0); 
 
        private double pi = 3.141592653; 
        private double sin120 = Math.Sqrt(3.0) / 2.0; 
        private double cos120 = -0.5; 
        private double tan60 = Math.Sqrt(3.0); 
        private double sin30 = 0.5; 
        private double tan30 = 1 / Math.Sqrt(3.0); 
 
        private double x0; 
        private double y0; 
        private double z0; 
 
        private double t; 
 
        private double x1; 
        private double x2; 
        private double x3; 
 
        private double y1; 
        private double y2; 
        private double y3; 
 
        private double z1; 
        private double z2; 
        private double z3; 
 
        private double w1; 
        private double w2; 
        private double w3; 
 
        private double a; 
        private double b; 
        private double c; 
 
        private double a1; 
        private double a2; 
 
        private double b1; 
        private double b2; 
 
        private double d; 
        private double dnm; 
 
        private double T1; 
        private double T2; 
        private double T3; 
 
        private double yj; 
        private double zj; 
 
        private double x20; 
        private double y20; 
        private double a20; 
        private double b20; 
        private double d1; 
        private double yj1; 
        private double zj1; 
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        private double y30; 
 
        private double f1; 
        private double f2; 
        private double f3; 
        private double f4; 
 
        private double x40; 
        private double y40; 
        private double a40; 
        private double b40; 
        private double d2; 
        private double yj2; 
        private double zj2; 
        private double y50; 
         
         
 
        void sendPositions() 
        { 
            T1 =  (double)angleT1.Value; 
            T2 =  (double)angleT2.Value; 
            T3 =  (double)angleT3.Value; 
 
            T1 = T1 * pi / 180; 
            T2 = T2 * pi / 180; 
            T3 = T3 * pi / 180; 
 
            x0 = 0.0; 
            y0 = 0.0; 
            z0 = 0.0; 
 
            t = (f - e) * tan30 / 2.0; 
             
 
            y1 = -(t + (rf * Math.Cos(T1))); 
            z1 = -rf * Math.Sin(T1); 
 
            y2 = (t + (rf * Math.Cos(T2))) * sin30; 
            x2 = y2 * tan60; 
            z2 = -rf * (Math.Sin(T2)); 
 
            y3 = (t + rf * (Math.Cos(T3))) * sin30; 
            x3 = -y3 * tan60; 
            z3 = -rf * (Math.Sin(T3)); 
 
            dnm = ((y2 - y1) * x3) - ((y3 - y1) * x2); 
 
            w1 = (y1 * y1) + (z1 * z1); 
            w2 = (x2 * x2) + (y2 * y2) + (z2 * z2); 
            w3 = (x3 * x3) + (y3 * y3) + (z3 * z3); 
 
            a1 = (z2 - z1) * (y3 - y1) - (z3 - z1) * (y2 - y1); 
            b1 = -((w2 - w1) * (y3 - y1) - (w3 - w1) * (y2 - y1)) / 2.0; 
 
 
            a2 = -(z2 - z1) * x3 + ((z3 - z1) * x2); 
            b2 = (((w2 - w1) * x3) - ((w3 - w1) * x2)) / 2.0; 
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            a = (a1 * a1) + (a2 * a2) + (dnm * dnm); 
            b = 2.0 * ((a1 * b1) + (a2 * (b2 - (y1 * dnm))) - (z1 * dnm * dnm)); 
            c = (b2 - (y1 * dnm)) * (b2 - (y1 * dnm)) + (b1 * b1) + (dnm * dnm * ((z1 * 
z1) - (re * re))); 
 
            d = (b * b) - (4.0 * a * c); 
 
            z0 = (-0.5 * (b + Math.Sqrt(d))) / a; 
            x0 = ((a1 * z0) + b1) / dnm; 
            y0 = ((a2 * z0) + b2) / dnm; 
 
 
 
            x0 = Math.Round(x0, 3); 
            y0 = Math.Round(y0, 3); 
            z0 = Math.Round(z0, 3); 
 
            positionX.Value = (decimal)x0; 
            positionY.Value = (decimal)y0; 
            positionZ.Value = (decimal)z0; 
 
             
            finalCal(); 
 
        } 
 
 
 
        // Update is called once per frame 
        void sendAngles() 
        { 
            x0 = (double)positionX.Value; 
            y0 = (double)positionY.Value; 
            z0 = (double)positionZ.Value; 
             
            T1 = 0; 
            T2 = 0; 
            T3 = 0; 
 
            y1 = -0.5 * 0.57735*f; 
            y30 = y0 - (0.5 * 0.57735 * e); 
 
            a = ((x0 * x0) + (y30 * y30) + (z0 * z0) + (rf * rf) - (re * re) - (y1 * y1)) 
/ (2.0 * z0); 
            b = (y1 - y30) / z0; 
 
            d = -(a + b * y1) * (a + b * y1) + rf * (b * b * rf + rf); 
 
            yj = (y1 - a * b - Math.Sqrt(d)) / (b * b + 1); 
            zj = a + b * yj; 
            T1 = (Math.Atan(-zj / (y1 - yj)) * (180 / pi)); 
            if (yj>y1) { 
                T1 = T1 + 180; 
                } 
            else 
            { 
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            } 
 
            f1 = x0 * cos120; 
            f2 = y0 * sin120; 
            f3 = y0 * cos120; 
            f4 = x0 * sin120; 
 
            x20 = (f1 + f2); 
            y20 = (f3 - f4); 
 
            y30 = y20 - (0.5 * 0.57735 * e); 
 
            a20 = ((x20 * x20) + (y30 * y30) + (z0 * z0) + (rf * rf) - (re * re) - (y1 * 
y1)) / (2.0 * z0); 
            b20 = (y1 - y30) / z0; 
 
            d1 = -(a20 + b20 * y1) * (a20 + b20 * y1) + rf * (b20 * b20 * rf + rf); 
 
            yj1 = (y1 - a20 * b20 - Math.Sqrt(d1)) / (b20 * b20 + 1); 
            zj1 = a20 + b20 * yj1; 
            T2 = (Math.Atan(-zj1 / (y1 - yj1)) * (180 / pi)); 
            if (yj1 > y1) 
            { 
                T2 = T2 + 180; 
            } 
            else 
            { 
 
            } 
 
            x40 = ((x0 * cos120) - (y0 * sin120)); 
            y40 = ((y0 * cos120) + (x0 * sin120)); 
 
            y30 =y40 - (0.5 * 0.57735 * e); 
 
            a40 = ((x40 * x40) + (y30 * y30) + (z0 * z0) + (rf * rf) - (re * re)- (y1 * 
y1)) / (2.0 * z0); 
            b40 = (y1 - y30) / z0; 
 
            d2 = -(a40 + b40 * y1) * (a40 + b40 * y1) + rf * (b40 * b40 * rf + rf); 
 
            yj2 = (y1 - a40 * b40 - Math.Sqrt(d2)) / (b40 * b40 + 1); 
            zj2 = a40 + b40 * yj2; 
            T3 = (Math.Atan(-zj2 / (y1 - yj2)) * (180 / pi)); 
            if (yj2 > y1) 
            { 
                T3 = T3 + 180; 
            } 
            else 
            { 
 
            } 
 
            T1 = Math.Round(T1, 3); 
            T2 = Math.Round(T2, 3); 
            T3 = Math.Round(T3, 3); 
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            finalCal(); 
 
            try 
            { 
                if (T1 > 89 || T1 < -20 || T2 > 89 || T2 < -20 || T3 > 89 || T3 < -20) 
                { 
                    switch (axe) 
                    { 
                        case "X": 
                            A1--; 
                            break; 
                        case "Y": 
                            A2--; 
                            break; 
                        case "Z": 
                            A3--; 
                            break; 
 
                    } 
                     
                    Console.WriteLine("Not in the range"); 
                } 
 
                else 
                { 
                    angleT1.Value = (decimal)T1; 
                    angleT2.Value = (decimal)T2; 
                    angleT3.Value = (decimal)T3; 
                } 
            } 
            catch 
            { 
                Console.WriteLine("Not in the range"); 
            } 
 
 
 
 
        } 
 
        void finalCal() 
        { 
            testT4.Text = x0.ToString(); 
            testT5.Text = y0.ToString(); 
            testT6.Text = z0.ToString(); 
 
            testT1.Text = T1.ToString(); 
            testT2.Text = T2.ToString(); 
            testT3.Text = T3.ToString(); 
        } 
 
        private float c1; 
        private float c2; 
        private float c3; 
        public static bool reachPos; 
        void modbusClient() 
        { 
            ModbusClient client = new ModbusClient("127.0.0.1", 502); 
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                client.Connect(); 
             
            while (running) 
                if (newPosition) 
                { 
                    c1 = Convert.ToSingle(B1); 
                    byte[] aux0 = BitConverter.GetBytes(c1); 
                    byte[] aux1 = new byte[] { aux0[0], aux0[1] }; 
                    byte[] aux2 = new byte[] { aux0[2], aux0[3] }; 
 
                    ushort pos1 = BitConverter.ToUInt16(aux2, 0); 
                    ushort pos2 = BitConverter.ToUInt16(aux1, 0); 
 
                    c2 = Convert.ToSingle(B2); 
 
                    byte[] aux3 = BitConverter.GetBytes(c2); 
                    byte[] aux4 = new byte[] { aux3[0], aux3[1] }; 
                    byte[] aux5 = new byte[] { aux3[2], aux3[3] }; 
 
                    ushort pos3 = BitConverter.ToUInt16(aux5, 0); 
                    ushort pos4 = BitConverter.ToUInt16(aux4, 0); 
 
                    c3 = Convert.ToSingle(B3); 
 
                    byte[] aux6 = BitConverter.GetBytes(c3); 
                    byte[] aux7 = new byte[] { aux6[0], aux6[1] }; 
                    byte[] aux8 = new byte[] { aux6[2], aux6[3] }; 
 
                    ushort pos5 = BitConverter.ToUInt16(aux8, 0); 
                    ushort pos6 = BitConverter.ToUInt16(aux7, 0); 
 
                    int[] total = new int[] { pos1, pos2, pos3, pos4, pos5, pos6 }; 
                    //try { 
                    client.WriteMultipleRegisters(0, total); 
                    newPosition = false; 
 
                    Thread.Sleep(50); 
                } 
 
                else 
                { 
                    bool[] coils = client.ReadCoils(0, 3); 
                    reachPos = coils[1]; 
                    Thread.Sleep(50); 
                } 
 
        } 
 
         
 
        private void btnWorldCal_Click(object sender, EventArgs e) 
        { 
            //sendAngles(); 
        } 
 
        private void btnJointCal_Click(object sender, EventArgs e) 
        { 
            //sendPositions(); 
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        } 
 
 
        int j = 1; 
        private void button1_Click_1(object sender, EventArgs e) 
        { 
            ((FormMain)this.MdiParent).fPosition.dataGridView1.Rows.Add(); 
            int i =j; 
              
                 
                { 
                ((FormMain)this.MdiParent).fPosition.dataGridView1[1, i].Value = 
(float)angleT1.Value; 
                ((FormMain)this.MdiParent).fPosition.dataGridView1[2, i].Value = 
(float)angleT2.Value; 
                ((FormMain)this.MdiParent).fPosition.dataGridView1[3, i].Value = 
(float)angleT3.Value; 
       
                } 
             
             
            j++; 
        } 
 
        private void btnJointSave_Click(object sender, EventArgs e) 
        { 
            ((FormMain)this.MdiParent).fPosition.dataGridView1.Rows.Add(); 
            //int i = ((FormMain)this.MdiParent).fPosition.dataGridView1.RowCount; 
            int i = j; 
         
 
                
                ((FormMain)this.MdiParent).fPosition.dataGridView1[1, i].Value = 
(float)angleT1.Value; 
                ((FormMain)this.MdiParent).fPosition.dataGridView1[2, i].Value = 
(float)angleT2.Value; 
                ((FormMain)this.MdiParent).fPosition.dataGridView1[3, i].Value = 
(float)angleT3.Value; 
                
       
        j++; 
        } 
    } 
} 
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9 Appendix C 
 

Interface Form Position Source Code 

using System; 
using System.Collections.Generic; 
using System.ComponentModel; 
using System.Data; 
using System.Drawing; 
using System.Linq; 
using System.Text; 
using System.Threading.Tasks; 
using System.Windows.Forms; 
 
using Excel = Microsoft.Office.Interop.Excel; 
 
using System.Reflection; 
using System.IO; 
using System.Data.OleDb; 
using System.Web; 
using Modbus.Data; 
using Modbus.Device; 
using Modbus.Utility; 
using System.Net.Sockets; 
using System.Net; 
using System.Threading; 
 
 
 
namespace RobotInterface 
{ 
    public partial class frmPosition : Form 
    { 
        private const int WM_NCLBUTTONDBLCLK = 0x00A3; 
 
        public frmPosition() 
        { 
 
            InitializeComponent(); 
        } 
        public DataGridView DataGrid 
        { 
            get 
            { 
                return this.dataGridView1; 
            } 
        } 
        public void frmPosition_Load(object sender, EventArgs e) 
        { 
 
        } 
        protected override void WndProc(ref Message m) 
        { 
            if (m.Msg == WM_NCLBUTTONDBLCLK) 
            { 
                // this.RelocatedForm(); 
                AutoResize(); 



85 
 

                m.Result = IntPtr.Zero; 
                return; 
            } 
            base.WndProc(ref m); 
        } 
 
        private void RelocatedForm() 
        { 
            int parentWidth = this.MdiParent.Width; 
            //int width = this.Width; 
            int x = 636; 
            int y = 0; 
            this.Location = new Point(x, y); 
        } 
 
 
        public void AutoResize() 
        { 
            // Resize the form and relocated 
 
            this.Width = (int)(MdiParent.ClientSize.Width * 0.2); 
            this.Height = (int)(MdiParent.ClientSize.Height * 0.6); 
 
            int x = (int)(MdiParent.ClientSize.Width * 0.4); 
            int y = 0; 
            this.Location = new Point(x, y); 
        } 
 
        public void btnGet_Click(object sender, EventArgs e) 
        { 
 
            int counter = 0; 
            string line; 
            dataGridView1.Rows.Clear(); 
            dataGridView1.ColumnCount = 7; 
             
 
            System.IO.StreamReader file = 
                new StreamReader(@"C:\Users\Armin\Documents\Visual Studio 
2015\Projects\RobotInterface\RobotInterface\bin\Debug\Positions.csv"); 
            while ((line = file.ReadLine()) != null) 
            { 
 
                dataGridView1.Rows.Add(); 
                string[] words2 = line.Split(','); 
                for (var i = 0; i < words2.Length; i++) 
                { 
 
                    dataGridView1[i, counter].Value = words2[i]; 
 
 
                } 
                counter++; 
            } 
 
            dataGridView1.Rows.Add(); 
 
            file.Close(); 
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        } 
         
 
        public void btnSend_Click(object sender, EventArgs e) 
        { 
            int i0 = dataGridView1.Columns.Count; 
            int j0 = dataGridView1.Rows.Count; 
            textBox1.ResetText(); 
            for (int row_index = 0; row_index < j0; row_index++) 
            { 
                for (int column_index = 0; column_index < i0 - 1; column_index++) 
                { 
                    if (dataGridView1[column_index, row_index].Value != null) 
                    { 
 
                        textBox1.Text += dataGridView1[column_index, 
row_index].Value.ToString().Trim(':') + ","; 
                    } 
                    else 
                    { 
                        textBox1.Text += " ,"; 
                    } 
                } 
                textBox1.Text += "\r\n"; 
            } 
            File.WriteAllText(@"C:\Users\Armin\Documents\Visual Studio 
2015\Projects\RobotInterface\RobotInterface\bin\Debug\Positions.csv", textBox1.Text); 
            textBox1.ResetText(); 
        } 
 
        public void dataGridView1_CellContentClick(object sender, 
DataGridViewCellEventArgs e) 
        { 
 
        } 
        private float c1; 
        private float c2; 
        private float c3; 
        private float c4; 
        private float c5; 
        private float c6; 
 
        private float o1; 
        private float o2; 
        private float o3; 
        private float o4; 
        private float o5; 
        private float o6; 
 
         
        private void btnSave_Click(object sender, EventArgs e) 
        { 
 
             
 
            modbusWriteRegister(); 
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            } 
     
 
 
        void modbusWriteRegister() 
        { 
            int j = 0; 
            int n = dataGridView1.RowCount; 
             
            while (j < n-1) 
 
            { 
                //bool reachPos = false; 
                using (TcpClient client = new TcpClient()) 
            { 
 
                    string temp1 = ""; 
                    string temp2 = ""; 
                    string temp3 = ""; 
                    string test1 = ""; 
                    string test2 = ""; 
                    string test3 = ""; 
 
                     
                    try 
                    { 
                        test1 = ((FormMain)this.MdiParent).fPosition.DataGrid[1, 
j].Value.ToString(); 
                        test2 = ((FormMain)this.MdiParent).fPosition.DataGrid[2, 
j].Value.ToString(); 
                        test3 = ((FormMain)this.MdiParent).fPosition.DataGrid[3, 
j].Value.ToString(); 
 
                    } 
                    catch 
                    { 
                        test1 = "null"; 
                        test2 = "null"; 
                        test3 = "null"; 
                    } 
 
 
                                  if(test1 != " " && test2 != " " && test3 != " " && 
test1 != "" && test2 != "" && test3 != "" && test1 != "null" && test2 != "null" && test3 
!= "null") 
                    { 
                        temp1 = ((FormMain)this.MdiParent).fPosition.DataGrid[1, 
j].Value.ToString(); 
                        temp2 = ((FormMain)this.MdiParent).fPosition.DataGrid[2, 
j].Value.ToString(); 
                        temp3 = ((FormMain)this.MdiParent).fPosition.DataGrid[3, 
j].Value.ToString(); 
 
                        frmControl.B1 = Convert.ToDouble(temp1); 
                        frmControl.B2 = Convert.ToDouble(temp2); 
                        frmControl.B3 = Convert.ToDouble(temp3); 
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                        frmControl.newPosition = true; 
                        frmControl.reachPos = false; 
 
                        Thread.Sleep(500); 
 
                        while (!frmControl.reachPos) 
                        { 
                            
                        } 
                         
                         
                    } 
                    j++; 
                     
                    frmControl.reachPos = false; 
                } 
 
                 
            }                       
               
        } 
 
        void modbusReadRegister() 
        { 
            using (TcpClient client = new TcpClient("127.0.0.1", 502)) 
            { 
                ModbusIpMaster master = ModbusIpMaster.CreateIp(client); 
 
                // read five input values 
                ushort startAddress = 100; 
                ushort numInputs = 5; 
                bool[] inputs = master.ReadInputs(startAddress, numInputs); 
 
                for (int i = 0; i < numInputs; i++) 
                    Console.WriteLine("Input {0}={1}", startAddress + i, inputs[i] ? 1 : 
0); 
                client.Close(); 
            } 
        } 
 
        private void frmPosition_FormClosing(object sender, FormClosingEventArgs e) 
        { 
            int i0 = dataGridView1.Columns.Count; 
            int j0 = dataGridView1.Rows.Count; 
            textBox1.ResetText(); 
            File.WriteAllText(@"C:\Users\Armin\Documents\Visual Studio 
2015\Projects\RobotInterface\RobotInterface\bin\Debug\Positions.csv", textBox1.Text); 
            textBox1.ResetText(); 
        } 
 
 
        } 
    } 
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10 Appendix D 
 

Interface Form Robot Dimension Source Code 

using System; 
using System.Collections.Generic; 
using System.ComponentModel; 
using System.Data; 
using System.Drawing; 
using System.Linq; 
using System.Text; 
using System.Threading.Tasks; 
using System.Windows.Forms; 
 
namespace RobotInterface 
{ 
    public partial class frmRobotDimentions : Form 
    { 
        private const int WM_NCLBUTTONDBLCLK = 0x00A3; 
 
        public frmRobotDimentions() 
        { 
            InitializeComponent(); 
        } 
 
         
        private void frmRobotDimentions_Load(object sender, EventArgs e) 
        { 
             
        } 
        protected override void WndProc(ref Message m) 
        { 
            if (m.Msg == WM_NCLBUTTONDBLCLK) 
            { 
                // this.RelocatedForm(); 
                AutoResize(); 
                m.Result = IntPtr.Zero; 
                return; 
            } 
            base.WndProc(ref m); 
        } 
 
         
        public static double dif; 
        public static double die; 
        public static double dire; 
        public static double dirf; 
 
         
        private void dimentionLA_ValueChanged(object sender, EventArgs e) 
        { 
            dirf = (double)dimentionLA.Value; 
            //sendDimentions(); 
        } 
        private void dimentionLB_ValueChanged(object sender, EventArgs e) 
        { 
            dire = (double)dimentionLB.Value; 
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            //sendDimentions(); 
        } 
        private void dimentionE_ValueChanged(object sender, EventArgs e) 
        { 
            die = (double)dimentionE.Value; 
            //sendDimentions(); 
        } 
 
        private void dimentionF_ValueChanged(object sender, EventArgs e) 
        { 
            dif = (double)dimentionF.Value; 
            //sendDimentions(); 
        } 
         
        private void button1_Click(object sender, EventArgs e) 
        { 
            frmControl.e = (double)dimentionE.Value; 
            frmControl.f = (double)dimentionF.Value; 
            frmControl.re = (double)dimentionLB.Value; 
            frmControl.rf = (double)dimentionLA.Value; 
        } 
 
         
        public void AutoResize() 
        { 
 
            this.Width = (int)(MdiParent.ClientSize.Width * 0.2); 
            this.Height = (int)(MdiParent.ClientSize.Height * 0.6); 
 
            int x = (int)(MdiParent.ClientSize.Width * 0.8); 
            int y = 0; 
            this.Location = new Point(x, y); 
        } 
 
 
    } 
} 

 


