95 research outputs found

    Development of a Novel Dataset and Tools for Non-Invasive Fetal Electrocardiography Research

    Get PDF
    This PhD thesis presents the development of a novel open multi-modal dataset for advanced studies on fetal cardiological assessment, along with a set of signal processing tools for its exploitation. The Non-Invasive Fetal Electrocardiography (ECG) Analysis (NInFEA) dataset features multi-channel electrophysiological recordings characterized by high sampling frequency and digital resolution, maternal respiration signal, synchronized fetal trans-abdominal pulsed-wave Doppler (PWD) recordings and clinical annotations provided by expert clinicians at the time of the signal collection. To the best of our knowledge, there are no similar dataset available. The signal processing tools targeted both the PWD and the non-invasive fetal ECG, exploiting the recorded dataset. About the former, the study focuses on the processing aimed at the preparation of the signal for the automatic measurement of relevant morphological features, already adopted in the clinical practice for cardiac assessment. To this aim, a relevant step is the automatic identification of the complete and measurable cardiac cycles in the PWD videos: a rigorous methodology was deployed for the analysis of the different processing steps involved in the automatic delineation of the PWD envelope, then implementing different approaches for the supervised classification of the cardiac cycles, discriminating between complete and measurable vs. malformed or incomplete ones. Finally, preliminary measurement algorithms were also developed in order to extract clinically relevant parameters from the PWD. About the fetal ECG, this thesis concentrated on the systematic analysis of the adaptive filters performance for non-invasive fetal ECG extraction processing, identified as the reference tool throughout the thesis. Then, two studies are reported: one on the wavelet-based denoising of the extracted fetal ECG and another one on the fetal ECG quality assessment from the analysis of the raw abdominal recordings. Overall, the thesis represents an important milestone in the field, by promoting the open-data approach and introducing automated analysis tools that could be easily integrated in future medical devices

    Extraction and Detection of Fetal Electrocardiograms from Abdominal Recordings

    Get PDF
    The non-invasive fetal ECG (NIFECG), derived from abdominal surface electrodes, offers novel diagnostic possibilities for prenatal medicine. Despite its straightforward applicability, NIFECG signals are usually corrupted by many interfering sources. Most significantly, by the maternal ECG (MECG), whose amplitude usually exceeds that of the fetal ECG (FECG) by multiple times. The presence of additional noise sources (e.g. muscular/uterine noise, electrode motion, etc.) further affects the signal-to-noise ratio (SNR) of the FECG. These interfering sources, which typically show a strong non-stationary behavior, render the FECG extraction and fetal QRS (FQRS) detection demanding signal processing tasks. In this thesis, several of the challenges regarding NIFECG signal analysis were addressed. In order to improve NIFECG extraction, the dynamic model of a Kalman filter approach was extended, thus, providing a more adequate representation of the mixture of FECG, MECG, and noise. In addition, aiming at the FECG signal quality assessment, novel metrics were proposed and evaluated. Further, these quality metrics were applied in improving FQRS detection and fetal heart rate estimation based on an innovative evolutionary algorithm and Kalman filtering signal fusion, respectively. The elaborated methods were characterized in depth using both simulated and clinical data, produced throughout this thesis. To stress-test extraction algorithms under ideal circumstances, a comprehensive benchmark protocol was created and contributed to an extensively improved NIFECG simulation toolbox. The developed toolbox and a large simulated dataset were released under an open-source license, allowing researchers to compare results in a reproducible manner. Furthermore, to validate the developed approaches under more realistic and challenging situations, a clinical trial was performed in collaboration with the University Hospital of Leipzig. Aside from serving as a test set for the developed algorithms, the clinical trial enabled an exploratory research. This enables a better understanding about the pathophysiological variables and measurement setup configurations that lead to changes in the abdominal signal's SNR. With such broad scope, this dissertation addresses many of the current aspects of NIFECG analysis and provides future suggestions to establish NIFECG in clinical settings.:Abstract Acknowledgment Contents List of Figures List of Tables List of Abbreviations List of Symbols (1)Introduction 1.1)Background and Motivation 1.2)Aim of this Work 1.3)Dissertation Outline 1.4)Collaborators and Conflicts of Interest (2)Clinical Background 2.1)Physiology 2.1.1)Changes in the maternal circulatory system 2.1.2)Intrauterine structures and feto-maternal connection 2.1.3)Fetal growth and presentation 2.1.4)Fetal circulatory system 2.1.5)Fetal autonomic nervous system 2.1.6)Fetal heart activity and underlying factors 2.2)Pathology 2.2.1)Premature rupture of membrane 2.2.2)Intrauterine growth restriction 2.2.3)Fetal anemia 2.3)Interpretation of Fetal Heart Activity 2.3.1)Summary of clinical studies on FHR/FHRV 2.3.2)Summary of studies on heart conduction 2.4)Chapter Summary (3)Technical State of the Art 3.1)Prenatal Diagnostic and Measuring Technique 3.1.1)Fetal heart monitoring 3.1.2)Related metrics 3.2)Non-Invasive Fetal ECG Acquisition 3.2.1)Overview 3.2.2)Commercial equipment 3.2.3)Electrode configurations 3.2.4)Available NIFECG databases 3.2.5)Validity and usability of the non-invasive fetal ECG 3.3)Non-Invasive Fetal ECG Extraction Methods 3.3.1)Overview on the non-invasive fetal ECG extraction methods 3.3.2)Kalman filtering basics 3.3.3)Nonlinear Kalman filtering 3.3.4)Extended Kalman filter for FECG estimation 3.4)Fetal QRS Detection 3.4.1)Merging multichannel fetal QRS detections 3.4.2)Detection performance 3.5)Fetal Heart Rate Estimation 3.5.1)Preprocessing the fetal heart rate 3.5.2)Fetal heart rate statistics 3.6)Fetal ECG Morphological Analysis 3.7)Problem Description 3.8)Chapter Summary (4)Novel Approaches for Fetal ECG Analysis 4.1)Preliminary Considerations 4.2)Fetal ECG Extraction by means of Kalman Filtering 4.2.1)Optimized Gaussian approximation 4.2.2)Time-varying covariance matrices 4.2.3)Extended Kalman filter with unknown inputs 4.2.4)Filter calibration 4.3)Accurate Fetal QRS and Heart Rate Detection 4.3.1)Multichannel evolutionary QRS correction 4.3.2)Multichannel fetal heart rate estimation using Kalman filters 4.4)Chapter Summary (5)Data Material 5.1)Simulated Data 5.1.1)The FECG Synthetic Generator (FECGSYN) 5.1.2)The FECG Synthetic Database (FECGSYNDB) 5.2)Clinical Data 5.2.1)Clinical NIFECG recording 5.2.2)Scope and limitations of this study 5.2.3)Data annotation: signal quality and fetal amplitude 5.2.4)Data annotation: fetal QRS annotation 5.3)Chapter Summary (6)Results for Data Analysis 6.1)Simulated Data 6.1.1)Fetal QRS detection 6.1.2)Morphological analysis 6.2)Own Clinical Data 6.2.1)FQRS correction using the evolutionary algorithm 6.2.2)FHR correction by means of Kalman filtering (7)Discussion and Prospective 7.1)Data Availability 7.1.1)New measurement protocol 7.2)Signal Quality 7.3)Extraction Methods 7.4)FQRS and FHR Correction Algorithms (8)Conclusion References (A)Appendix A - Signal Quality Annotation (B)Appendix B - Fetal QRS Annotation (C)Appendix C - Data Recording GU

    Algorithms and systems for home telemonitoring in biomedical applications

    Get PDF
    During the past decades, the interest of the healthcare community shifted from the simple treatment of the diseases towards the prevention and maintenance of a healthy lifestyle. This approach is associated to a reduced cost for the Health Systems, having to face the constantly increased expenditures due to the reduced mortality for chronical diseases and to the progressive population ageing. Nevertheless, the high costs related to hospitalization of patients for monitoring procedures that could be better performed at home hamper the full implementation of this approach in a traditional way. Information and Communication Technology can provide a solution to implement a care model closer to the patient, crossing the physical boundaries of the hospitals and thus allowing to reach also those patients that, for a geographical or social condition, could not access the health services as other luckier subjects. This is the case of telemonitoring systems, whose aim is that of providing monitoring services for some health-related parameters at a distance, by means of custom-designed electronic devices. In this thesis, the specific issues associated to two telemonitoring applications are presented, along with the proposed solutions and the achieved results. The first telemonitoring application considered is the fetal electrocardiography. Non-invasive fetal electrocardiography is the recording of the fetal heart electrical activity using electrodes placed on the maternal abdomen. It can provide important diagnostic parameters, such as the beat-to-beat heart rate variability, whose recurring analysis would be useful in assessing and monitoring fetal health during pregnancy. Long term electrocardiographic monitoring is sustained by the absence of any collateral effects for both the mother and the fetus. This application has been tackled from several perspectives, mainly acquisition and processing. From the acquisition viewpoint a study on different skin treatments, disposable commercial electrodes and textile electrodes has been performed with the aim of improving the signal acquisition quality, while simplifying the measurement setup. From the processing viewpoint, different algorithms have been developed to allow extracting the fetal ECG heart rate, starting from an on-line ICA algorithm or exploiting a subtractive approach to work on recordings acquired with a reduced number of electrodes. The latter, took part to the international "Physionet/Computing in Cardiology Challenge" in 2013 entering into the top ten best-performing open-source algorithms. The improved version of this algorithm is also presented, which would mark the 5th and 4th position in the final ranking related to the fetal heart rate and fetal RR interval measurements performance, reserved to the open-source challenge entries, taking into account both official and unofficial entrants. The research in this field has been carried out in collaboration with the Pediatric Cardiology Unit of the Hospital G. Brotzu in Cagliari, for the acquisition of non-invasive fetal ECG signals from pregnant voluntary patients. The second telemonitoring application considered is the telerehabilitation of the hand. The execution of rehabilitation exercises has been proven to be effective in recovering hand functionality in a wide variety of invalidating diseases, but the lack of standardization and continuous medical control cause the patients neglecting this therapeutic procedures. Telemonitoring the rehabilitation sessions would allow the physician to closely follow the patients' progresses and compliance to the prescribed adapted exercises. This application leads to the development of a sensorized telerehabilitation system for the execution and objective monitoring of therapeutic exercises at the patients' home and of the telemedicine infrastructure that give the physician the opportunity to monitor patients' progresses through parameters summarizing the patients' performance. The proposed non-CE marked medical device, patent pending, underwent a clinical trial, reviewed and approved by the Italian Public Health Department, involving 20 patients with Rheumatoid Arthritis and 20 with Systemic Sclerosis randomly assigned to the experimental or the control arm, enrolled for 12 weeks in a home rehabilitation program. The trial, carried out with the collaboration of the Rheumatology Department of the Policlinico Universitario of Cagliari, revealed promising results in terms of hand functionality recovering, highlighting greater improvements for the patients enrolled in the experimental arm, that use the proposed telerehabilitation system, with respect to those of the control arm, which perform similar rehabilitation exercises using common objects

    Intelligent Pattern Analysis of the Foetal Electrocardiogram

    Get PDF
    The aim of the project on which this thesis is based is to develop reliable techniques for foetal electrocardiogram (ECG) based monitoring, to reduce incidents of unnecessary medical intervention and foetal injury during labour. World-wide electronic foetal monitoring is based almost entirely on the cardiotocogram (CTG), which is a continuous display of the foetal heart rate (FHR) pattern together with the contraction of the womb. Despite the widespread use of the CTG, there is no significant improvement in foetal outcome. In the UK alone it is estimated that birth related negligence claims cost the health authorities over ÂŁ400M per-annum. An expert system, known as INFANT, has recently been developed to assist CTG interpretation. However, the CTG alone does not always provide all the information required to improve the outcome of labour. The widespread use of ECG analysis has been hindered by the difficulties with poor signal quality and the difficulties in applying the specialised knowledge required for interpreting ECG patterns, in association with other events in labour, in an objective way. A fundamental investigation and development of optimal signal enhancement techniques that maximise the available information in the ECG signal, along with different techniques for detecting individual waveforms from poor quality signals, has been carried out. To automate the visual interpretation of the ECG waveform, novel techniques have been developed that allow reliable extraction of key features and hence allow a detailed ECG waveform analysis. Fuzzy logic is used to automatically classify the ECG waveform shape using these features by using knowledge that was elicited from expert sources and derived from example data. This allows the subtle changes in the ECG waveform to be automatically detected in relation to other events in labour, and thus improve the clinicians position for making an accurate diagnosis. To ensure the interpretation is based on reliable information and takes place in the proper context, a new and sensitive index for assessing the quality of the ECG has been developed. New techniques to capture, for the first time in machine form, the clinical expertise / guidelines for electronic foetal monitoring have been developed based on fuzzy logic and finite state machines, The software model provides a flexible framework to further develop and optimise rules for ECG pattern analysis. The signal enhancement, QRS detection and pattern recognition of important ECG waveform shapes have had extensive testing and results are presented. Results show that no significant loss of information is incurred as a result of the signal enhancement and feature extraction techniques

    Data-driven methods for analyzing ballistocardiograms in longitudinal cardiovascular monitoring

    Get PDF
    Cardiovascular disease (CVD) is the leading cause of death in the US; about 48% of American adults have one or more types of CVD. The importance of continuous monitoring of the older population, for early detection of changes in health conditions, has been shown in the literature, as the key to a successful clinical intervention. We have been investigating environmentally-embedded in-home networks of non-invasive sensing modalities. This dissertation concentrates on the signal processing techniques required for the robust extraction of morphological features from the ballistocardiographs (BCG), and machine learning approaches to utilize these features in non-invasive monitoring of cardiovascular conditions. At first, enhancements in the time domain detection of the cardiac cycle are addressed due to its importance in the estimation of heart rate variability (HRV) and sleep stages. The proposed enhancements in the energy-based algorithm for BCG beat detection have shown at least 50% improvement in the root mean square error (RMSE) of the beat to beat heart rate estimations compared to the reference estimations from the electrocardiogram (ECG) R to R intervals. These results are still subject to some errors, primarily due to the contamination of noise and motion artifacts caused by floor vibration, unconstrained subject movements, or even the respiratory activities. Aging, diseases, breathing, and sleep disorders can also affect the quality of estimation as they slightly modify the morphology of the BCG waveform.Includes bibliographical reference

    Advanced Source Reconstruction and Volume Conductor Modeling for Fetal Magnetocardiography

    Get PDF
    Abstract Fetuses that are identified with cardiac hypotrophy, hypertension and metabolic anomalies have higher risk of suffering from various health problems in their later life. Therefore, the early detection of congenital heart anomalies is critical for monitoring or prompt interventions, which can reduce the risks of congestive heart failure. Compared to adult cardiac monitoring, fetal electrophysiological heart monitoring using fetal ECG is extremely difficult due to the low signal amplitude and interferences from the maternal cardiac signal and to the complex environment inside the mother's womb. This problem is even worse in conditions such as diabetic pregnancies because of further signal reduction due to maternal obesity. At the same time, the prevalence of congenital heart anomalies is higher for fetuses of diabetic mothers. The purpose of this thesis is to develop and test fetal magnetocardiography (fMCG) techniques as an alternative diagnostic tool for the detection and monitoring of the fetal heart. fMCG is a novel technique that records the magnetic fields generated by the fetal heart's electric activity. From the aspect of signal processing, magnetic signals generated by the fetal heart are less affected by the low electrical conductivity of the surrounding fetal and maternal tissues compared to the electric signals recorded over the maternal abdomen, and can provide reliable recordings as early as 12 weeks of gestation. However, the fetal heart signals recorded with an array of magnetic sensors at a small distance from the maternal abdomen are affected by the source-to-sensor distance as well as by the geometry of the volume conductor, which is variable in different subjects or in the same subject when recordings are made at different gestational ages. The scope of this thesis is to develop a novel methodology for modeling the fetal heart and volume conductor and to use advanced source reconstruction techniques that can reduce the effect of these confounding factors in evaluating heart magnetic signals. Furthermore, we aim to use these new methods for developing a normative database of fMCG metrics at different gestational ages and test their reliability to detect abnormal patterns of cardiac electrophysiology in pregnancies complicated by maternal diabetes. In the first part of the thesis, we review three current fetal heart monitoring modalities, including fetal electrocardiography (ECG), ultrasonography, and fetal magnetocardiography (fMCG). The advantages and drawbacks of each technique are comparatively discussed. Finally, we discuss the developmental changes of fetal heart through gestation as well as the electromagnetic characteristics of the fetal cardiac activation

    Foetal echocardiographic segmentation

    Get PDF
    Congenital heart disease affects just under one percentage of all live births [1]. Those defects that manifest themselves as changes to the cardiac chamber volumes are the motivation for the research presented in this thesis. Blood volume measurements in vivo require delineation of the cardiac chambers and manual tracing of foetal cardiac chambers is very time consuming and operator dependent. This thesis presents a multi region based level set snake deformable model applied in both 2D and 3D which can automatically adapt to some extent towards ultrasound noise such as attenuation, speckle and partial occlusion artefacts. The algorithm presented is named Mumford Shah Sarti Collision Detection (MSSCD). The level set methods presented in this thesis have an optional shape prior term for constraining the segmentation by a template registered to the image in the presence of shadowing and heavy noise. When applied to real data in the absence of the template the MSSCD algorithm is initialised from seed primitives placed at the centre of each cardiac chamber. The voxel statistics inside the chamber is determined before evolution. The MSSCD stops at open boundaries between two chambers as the two approaching level set fronts meet. This has significance when determining volumes for all cardiac compartments since cardiac indices assume that each chamber is treated in isolation. Comparison of the segmentation results from the implemented snakes including a previous level set method in the foetal cardiac literature show that in both 2D and 3D on both real and synthetic data, the MSSCD formulation is better suited to these types of data. All the algorithms tested in this thesis are within 2mm error to manually traced segmentation of the foetal cardiac datasets. This corresponds to less than 10% of the length of a foetal heart. In addition to comparison with manual tracings all the amorphous deformable model segmentations in this thesis are validated using a physical phantom. The volume estimation of the phantom by the MSSCD segmentation is to within 13% of the physically determined volume

    Secure Data Collection and Analysis in Smart Health Monitoring

    Get PDF
    Smart health monitoring uses real-time monitored data to support diagnosis, treatment, and health decision-making in modern smart healthcare systems and benefit our daily life. The accurate health monitoring and prompt transmission of health data are facilitated by the ever-evolving on-body sensors, wireless communication technologies, and wireless sensing techniques. Although the users have witnessed the convenience of smart health monitoring, severe privacy and security concerns on the valuable and sensitive collected data come along with the merit. The data collection, transmission, and analysis are vulnerable to various attacks, e.g., eavesdropping, due to the open nature of wireless media, the resource constraints of sensing devices, and the lack of security protocols. These deficiencies not only make conventional cryptographic methods not applicable in smart health monitoring but also put many obstacles in the path of designing privacy protection mechanisms. In this dissertation, we design dedicated schemes to achieve secure data collection and analysis in smart health monitoring. The first two works propose two robust and secure authentication schemes based on Electrocardiogram (ECG), which outperform traditional user identity authentication schemes in health monitoring, to restrict the access to collected data to legitimate users. To improve the practicality of ECG-based authentication, we address the nonuniformity and sensitivity of ECG signals, as well as the noise contamination issue. The next work investigates an extended authentication goal, denoted as wearable-user pair authentication. It simultaneously authenticates the user identity and device identity to provide further protection. We exploit the uniqueness of the interference between different wireless protocols, which is common in health monitoring due to devices\u27 varying sensing and transmission demands, and design a wearable-user pair authentication scheme based on the interference. However, the harm of this interference is also outstanding. Thus, in the fourth work, we use wireless human activity recognition in health monitoring as an example and analyze how this interference may jeopardize it. We identify a new attack that can produce false recognition result and discuss potential countermeasures against this attack. In the end, we move to a broader scenario and protect the statistics of distributed data reported in mobile crowd sensing, a common practice used in public health monitoring for data collection. We deploy differential privacy to enable the indistinguishability of workers\u27 locations and sensing data without the help of a trusted entity while meeting the accuracy demands of crowd sensing tasks

    Symbolic Dynamics Analysis: a new methodology for foetal heart rate variability analysis

    Get PDF
    Cardiotocography (CTG) is a widespread foetal diagnostic methods. However, it lacks of objectivity and reproducibility since its dependence on observer's expertise. To overcome these limitations, more objective methods for CTG interpretation have been proposed. In particular, many developed techniques aim to assess the foetal heart rate variability (FHRV). Among them, some methodologies from nonlinear systems theory have been applied to the study of FHRV. All the techniques have proved to be helpful in specific cases. Nevertheless, none of them is more reliable than the others. Therefore, an in-depth study is necessary. The aim of this work is to deepen the FHRV analysis through the Symbolic Dynamics Analysis (SDA), a nonlinear technique already successfully employed for HRV analysis. Thanks to its simplicity of interpretation, it could be a useful tool for clinicians. We performed a literature study involving about 200 references on HRV and FHRV analysis; approximately 100 works were focused on non-linear techniques. Then, in order to compare linear and non-linear methods, we carried out a multiparametric study. 580 antepartum recordings of healthy fetuses were examined. Signals were processed using an updated software for CTG analysis and a new developed software for generating simulated CTG traces. Finally, statistical tests and regression analyses were carried out for estimating relationships among extracted indexes and other clinical information. Results confirm that none of the employed techniques is more reliable than the others. Moreover, in agreement with the literature, each analysis should take into account two relevant parameters, the foetal status and the week of gestation. Regarding the SDA, results show its promising capabilities in FHRV analysis. It allows recognizing foetal status, gestation week and global variability of FHR signals, even better than other methods. Nevertheless, further studies, which should involve even pathological cases, are necessary to establish its reliability.La Cardiotocografia (CTG) è una diffusa tecnica di diagnostica fetale. Nonostante ciò, la sua interpretazione soffre di forte variabilità intra- e inter- osservatore. Per superare tali limiti, sono stati proposti più oggettivi metodi di analisi. Particolare attenzione è stata rivolta alla variabilità della frequenza cardiaca fetale (FHRV). Nel presente lavoro abbiamo suddiviso le tecniche di analisi della FHRV in tradizionali, o lineari, e meno convenzionali, o non-lineari. Tutte si sono rivelate efficaci in casi specifici ma nessuna si è dimostrata più utile delle altre. Pertanto, abbiamo ritenuto necessario effettuare un’indagine più dettagliata. In particolare, scopo della tesi è stato approfondire una specifica metodologia non-lineare, la Symbolic Dynamics Analysis (SDA), data la sua notevole semplicità di interpretazione che la renderebbe un potenziale strumento di ausilio all’attività clinica. Sono stati esaminati all’incirca 200 riferimenti bibliografici sull’analisi di HRV e FHRV; di questi, circa 100 articoli specificamente incentrati sulle tecniche non-lineari. E’ stata condotta un’analisi multiparametrica su 580 tracciati CTG di feti sani per confrontare le metodologie adottate. Sono stati realizzati due software, uno per l’analisi dei segnali CTG reali e l’altro per la generazione di tracciati CTG simulati. Infine, sono state effettuate analisi statistiche e di regressione per esaminare le correlazioni tra indici calcolati e parametri di interesse clinico. I risultati dimostrano che nessuno degli indici calcolati risulta più vantaggioso rispetto agli altri. Inoltre, in accordo con la letteratura, lo stato del feto e le settimane di gestazione sono parametri di riferimento da tenere sempre in considerazione per ogni analisi effettuata. Riguardo la SDA, essa risulta utile all’analisi della FHRV, permettendo di distinguere – meglio o al pari di altre tecniche – lo stato del feto, la settimana di gestazione e la variabilità complessiva del segnale. Tuttavia, sono necessari ulteriori studi, che includano anche casi di feti patologici, per confermare queste evidenze

    Smart Sensors for Healthcare and Medical Applications

    Get PDF
    This book focuses on new sensing technologies, measurement techniques, and their applications in medicine and healthcare. Specifically, the book briefly describes the potential of smart sensors in the aforementioned applications, collecting 24 articles selected and published in the Special Issue “Smart Sensors for Healthcare and Medical Applications”. We proposed this topic, being aware of the pivotal role that smart sensors can play in the improvement of healthcare services in both acute and chronic conditions as well as in prevention for a healthy life and active aging. The articles selected in this book cover a variety of topics related to the design, validation, and application of smart sensors to healthcare
    • …
    corecore