1,147 research outputs found

    In-depth comparative evaluation of supervised machine learning approaches for detection of cybersecurity threats

    Get PDF
    This paper describes the process and results of analyzing CICIDS2017, a modern, labeled data set for testing intrusion detection systems. The data set is divided into several days, each pertaining to different attack classes (Dos, DDoS, infiltration, botnet, etc.). A pipeline has been created that includes nine supervised learning algorithms. The goal was binary classification of benign versus attack traffic. Cross-validated parameter optimization, using a voting mechanism that includes five classification metrics, was employed to select optimal parameters. These results were interpreted to discover whether certain parameter choices were dominant for most (or all) of the attack classes. Ultimately, every algorithm was retested with optimal parameters to obtain the final classification scores. During the review of these results, execution time, both on consumerand corporate-grade equipment, was taken into account as an additional requirement. The work detailed in this paper establishes a novel supervised machine learning performance baseline for CICIDS2017

    DDoS: DeepDefence and Machine Learning for identifying attacks

    Get PDF
    Distributed Denial of Service (DDoS) attacks are very common type of computer attack in the world of internet today. Automatically detecting such type of DDoS attack packets & dropping them before passing through the network is the best prevention method. Conventional solution only monitors and provide the feedforward solution instead of the feedback machine-based learning. A Design of Deep neural network has been suggested in this work and developments have been made on proactive detection of attacks. In this approach, high level features are extracted for representation and inference of the dataset. Experiment has been conducted based on the ISCX dataset published in year 2017,2018 and CICDDoS2019 and program has been developed in Matlab R17b, utilizing Wireshark for features extraction from the datasets. Network Intrusion attacks on critical oil and gas industrial installation become common nowadays, which in turn bring down the giant industrial sites to standstill and suffer financial impacts. This has made the production companies to started investing millions of dollars revenue to protect their critical infrastructure with such attacks with the active and passive solutions available. Our thesis constitutes a contribution to such domain, focusing mainly on security of industrial network, impersonation and attacking with DDoS

    DoS and DDoS mitigation using Variational Autoencoders

    Get PDF
    DoS and DDoS attacks have been growing in size and number over the last decade and existing solutions to mitigate these attacks are largely inefficient. Compared to other types of malicious cyber attacks, DoS and DDoS attacks are particularly challenging to combat. Because of their ability to mask themselves as legitimate traffic, it has proven difficult to develop methods to detect these types of attacks on a packet or flow level. In this paper, we explore the potential of Variational Autoencoders to serve as a component within an intelligent security solution that differentiates between normal and malicious traffic. The motivation behind resorting to Variational Autoencoders is that unlike normal encoders that would code an input flow as a single point, they encode a flow as a distribution over the latent space which avoids overfitting. Intuitively, this allows a Variational Autoencoder to not only learn latent representations of seen input features, but to generalize in a way that allows for an interpretation of unseen flows and flow features with slight variations. Two methods based on the ability of Variational Autoencoders to learn latent representations from network traffic flows of both benign and malicious traffic, are proposed. The first method resorts to a classifier based on the latent encodings obtained from Variational Autoencoders learned from traffic traces. The second method is an anomaly detection method, where the Variational Autoencoder is used to learn the abstract feature representations of exclusively legitimate traffic. Anomalies are then filtered out by relying on the reconstruction loss of the Variational Autoencoder. In this sense, the construction loss of the autoencoder is fed as input to a classifier that outputs the class of the traffic including benign and malign, and eventually the attack type. Thus, the second approach operates with two separate training processes on two separate data sources: the first training involving only legitimate traffic, and the second training involving all traffic classes. This is different from the first approach which operates only a single training process on the whole traffic dataset. Thus, the autoencoder of the first approach aspires to learn a general feature representation of the flows while the autoencoder of the second approach aims to exclusively learn a representation of the benign traffic. The second approach is thus more susceptible to finding zero day attacks and discovering new attacks as anomalies. Both of the proposed methods have been thoroughly tested on two separate datasets with a similar feature space. The results show that both methods are promising, with the classifier-based method being slightly superior to the anomaly-based one

    ENNigma: A Framework for Private Neural Networks

    Get PDF
    The increasing concerns about data privacy and the stringent enforcement of data protection laws are placing growing pressure on organizations to secure large datasets. The challenge of ensuring data privacy becomes even more complex in the domains of Artificial Intelligence and Machine Learning due to their requirement for large amounts of data. While approaches like differential privacy and secure multi-party computation allow data to be used with some privacy guarantees, they often compromise data integrity or accessibility as a tradeoff. In contrast, when using encryption-based strategies, this is not the case. While basic encryption only protects data during transmission and storage, Homomorphic Encryption (HE) is able to preserve data privacy during its processing on a centralized server. Despite its advantages, the computational overhead HE introduces is notably challenging when integrated into Neural Networks (NNs), which are already computationally expensive. In this work, we present a framework called ENNigma, which is a Private Neural Network (PNN) that uses HE for data privacy preservation. Unlike some state-of-the-art approaches, ENNigma guarantees data security throughout every operation, maintaining this guarantee even if the server is compromised. The impact of this privacy preservation layer on the NN performance is minimal, with the only major drawback being its computational cost. Several optimizations were implemented to maximize the efficiency of ENNigma, leading to occasional computational time reduction above 50%. In the context of the Network Intrusion Detection System application domain, particularly within the sub-domain of Distributed Denial of Service attack detection, several models were developed and employed to assess ENNigma’s performance in a real-world scenario. These models demonstrated comparable performance to non-private NNs while also achiev ing the two-and-a-half-minute inference latency mark. This suggests that our framework is approaching a state where it can be effectively utilized in real-time applications. The key takeaway is that ENNigma represents a significant advancement in the field of PNN as it ensures data privacy with minimal impact on NN performance. While it is not yet ready for real-world deployment due to its computational complexity, this framework serves as a milestone toward realizing fully private and efficient NNs.As preocupações crescentes com a privacidade de dados e a implementação de leis que visam endereçar este problema, estão a pressionar as organizações para assegurar a segurança das suas bases de dados. Este desafio torna-se ainda mais complexo nos domínios da Inteligência Artificial e Machine Learning, que dependem do acesso a grandes volumes de dados para obterem bons resultados. As abordagens existentes, tal como Differential Privacy e Secure Multi-party Computation, já permitem o uso de dados com algumas garantias de privacidade. No entanto, na maioria das vezes, comprometem a integridade ou a acessibilidade aos mesmos. Por outro lado, ao usar estratégias baseadas em cifras, isso não ocorre. Ao contrário das cifras mais tradicionais, que apenas protegem os dados durante a transmissão e armazenamento, as cifras homomórficas são capazes de preservar a privacidade dos dados durante o seu processamento. Nomeadamente se o mesmo for centralizado num único servidor. Apesar das suas vantagens, o custo computacional introduzido por este tipo de cifras é bastante desafiador quando integrado em Redes Neurais que, por natureza, já são computacionalmente pesadas. Neste trabalho, apresentamos uma biblioteca chamada ENNigma, que é uma Rede Neural Privada construída usando cifras homomórficas para preservar a privacidade dos dados. Ao contrário de algumas abordagens estado-da-arte, a ENNigma garante a segurança dos dados em todas as operações, mantendo essa garantia mesmo que o servidor seja comprometido. O impacto da introdução desta camada de segurança, no desempenho da rede neural, é mínimo, sendo a sua única grande desvantagem o seu custo computacional. Foram ainda implementadas diversas otimizações para maximizar a eficiência da biblioteca apresentada, levando a reduções ocasionais no tempo computacional acima de 50%. No contexto do domínio de aplicação de Sistemas de Detecção de Intrusão em Redes de Computadores, em particular dentro do subdomínio de detecção de ataques do tipo Distributed Denial of Service, vários modelos foram desenvolvidos para avaliar o desempenho da ENNigma num cenário real. Estes modelos demonstraram desempenho comparável às redes neurais não privadas, ao mesmo tempo que alcançaram uma latência de inferência de dois minutos e meio. Isso sugere que a biblioteca apresentada está a aproximar-se de um estado em que pode ser utilizada em aplicações em tempo real. A principal conclusão é que a biblioteca ENNigma representa um avanço significativo na área das Redes Neurais Privadas, pois assegura a privacidade dos dados com um impacto mínimo no desempenho da rede neural. Embora esta ferramenta ainda não esteja pronta para utilização no mundo real, devido à sua complexidade computacional, serve como um marco importante para o desenvolvimento de redes neurais totalmente privadas e eficientes

    DDoS Attacks Detection Method Using Feature Importance and Support Vector Machine

    Get PDF
    In this study, the author wants to prove the combination of feature importance and support vector machine relevant to detecting distributed denial-of-service attacks. A distributed denial-of-service attack is a very dangerous type of attack because it causes enormous losses to the victim server. The study begins with determining network traffic features, followed by collecting datasets. The author uses 1000 randomly selected network traffic datasets for the purposes of feature selection and modeling. In the next stage, feature importance is used to select relevant features as modeling inputs based on support vector machine algorithms. The modeling results were evaluated using a confusion matrix table. Based on the evaluation using the confusion matrix, the score for the recall is 93 percent, precision is 95 percent, and accuracy is 92 percent. The author also compares the proposed method to several other methods. The comparison results show the performance of the proposed method is at a fairly good level in detecting distributed denial-of-service attacks. We realized this result was influenced by many factors, so further studies are needed in the future
    • …
    corecore