
In-depth Comparative Evaluation of Supervised Machine Learning
Approaches for Detection of Cybersecurity Threats

Laurens D’hooge, Tim Wauters, Bruno Volckaert and Filip De Turck
Ghent University - imec, IDLab, Department of Information Technology, Technologiepark-Zwijnaarde 126, Gent, Belgium

{laurens.dhooge, tim.wauters, bruno.volckaert, filip.deturck}@ugent.be

Keywords: Intrusion Detection, CICIDS2017, Supervised Machine Learning, Binary Classification.

Abstract: This paper describes the process and results of analyzing CICIDS2017, a modern, labeled data set for test-
ing intrusion detection systems. The data set is divided into several days, each pertaining to different attack
classes (Dos, DDoS, infiltration, botnet, etc.). A pipeline has been created that includes nine supervised learn-
ing algorithms. The goal was binary classification of benign versus attack traffic. Cross-validated parameter
optimization, using a voting mechanism that includes five classification metrics, was employed to select opti-
mal parameters. These results were interpreted to discover whether certain parameter choices were dominant
for most (or all) of the attack classes. Ultimately, every algorithm was retested with optimal parameters to
obtain the final classification scores. During the review of these results, execution time, both on consumer-
and corporate-grade equipment, was taken into account as an additional requirement. The work detailed in this
paper establishes a novel supervised machine learning performance baseline for CICIDS2017. Graphics of the
results as well as the raw tables are publicly available at https://gitlab.ilabt.imec.be/lpdhooge/cicids2017-ml-
graphics.

1 INTRODUCTION

Intrusion detection is a cornerstone of cybersecurity
and an active field of research since the 1980s. Al-
though the early research focused more on host intru-
sion detection systems (HIDS), the principal aims of
an intrusion detection system (IDS) have not changed.
A well-functioning IDS should be able to detect a
wide range of intrusions, possibly in real-time, with
high discriminating power, improving itself through
self-learning, while being modifiable in its design and
execution (Denning and Neumann, 1985). The advent
of computer networking and its ever greater adoption,
shifted part of the research away from HIDS to net-
work intrusion detection systems (NIDS). This paper
details the experiment and results of analyzing a mod-
ern intrusion detection dataset (CICIDS2017) and it
is structured as follows. First an overview of the re-
lated work in intrusion detection and network secu-
rity dataset generation is given, then the implementa-
tion of the analysis is described (section 3). Third and
most important is the discussion of the results (sec-
tion 4), summarized in the conclusion . Key findings
in this work are the outstanding performance both in
terms of classification and time metrics of tree-based
classifiers, especially ensemble learners, the surpris-

ing effectiveness of simple distance-based methods
and the classification difficulty for all methods on one
attack class.

2 RELATED WORK

2.1 Intrusion Detection

The field of network intrusion detection developed
two main visions on solving the problem of deter-
mining whether observed traffic is legitimate. The
chronologically first approach, is the use of signature-
based systems (also called misuse detection systems).
Within this category different strategies have been re-
searched (Axelsson, 2000), including state modelling,
string matching, simple rule based systems and ex-
pert systems (emulating human expert knowledge, by
making use of a knowledge base and an inference
system). All systems in this category, while being
great at detecting known signatures, do not general-
ize. That’s a violation of the principles for intrusion
detection systems, namely the system’s ability to im-
prove itself through learning.

The second approach, anomaly detection, has



been around almost as long, but the methods have
changed drastically in the past years. Early systems
based their decisions on rules, profiles and heuristics,
often derived from relatively simple statistic methods.
These systems could be self-learning in the sense that
their heuristics could be recomputed and thus become
a dynamic part of the system. Advances in the last ten
years in terms of distributed computation and storage
have enabled more advanced statistical methods to be-
come feasible. Work by Buczak et al. (Buczak and
Guven, 2016) concluded that making global recom-
mendations is impossible and the nature of the data
and types of attacks to be classified should be taken
into account when designing an IDS. Furthermore
they stress the requirement for training data in the
field of network intrusion detection and an evaluation
approach that considers more than just accuracy. On a
final note, the authors included recommendations for
machine learning (ML) algorithms for anomaly detec-
tion (density based clustering methods and one-class
SVMs) and for misuse detection (decision trees, asso-
ciation rule mining and Bayesian networks).

Very recent work by Hodo et al. (Hodo et al.,
2017) examines the application of shallow and deep
neural networks for intrusion detection. Their graph-
ical overview of IDS techniques clearly shows the
dominant position of anomaly based methods, driven
by the adoption of machine learning techniques.
Their main contribution is a chapter explaining the
algorithm classes of neural networks. The work dif-
ferentiates between artificial neural networks (ANN)
(shallow) and deep networks (DN), with subdivisions
between supervised and unsupervised methods for
ANNs and generative versus discriminative methods
for DNs. Their conclusion is that deep networks show
a significant advantage for DNs in detection. They
note that the adoption of either class is still in its early
stages, when applied to network intrusion detection.

2.2 Datasets

Self-learning systems require data to train and test
their efficacy. All techniques used in this work are
supervised, machine learning algorithms. This means
that they do not just require data, but that data has to
be labeled. The dataset landscape in intrusion detec-
tion has a.o. been described by Wu et al. (Wu and
Banzhaf, 2010) as part of a review paper on the state
of computational intelligence in intrusion detection
systems and more succinctly by Shiravi et al. (Shiravi
et al., 2012), as prelude to their efforts in generating a
new approach for dataset creation.

This work will only offer a very brief overview of
the most studied datasets. KDDCUP99 (KDD99), the

subject of ACM’s yearly competition on Data mining
and Knowledge Discovery in 1999 is by far the most
studied data set for intrusion detection. Its origin is to
be found in a DARPA funded project, run by the Lin-
coln Lab at MIT, which was tasked with evaluating
the state of the art IDSs at the time. Apart from be-
ing based on twenty year old data by now, it has also
been criticized by McHugh in 2000 (McHugh, 2000),
by Brown et al. in 2009 (Brown et al., 2009) and by
Tavallaee et al. also in 2009 (Tavallaee et al., 2009).

The persistence of a single dataset for almost two
decades and its improved version, which now also
is nearly a decade old, called for new research into
dataset generation. The Canadian Institute for Cyber-
security (CIC), a coalition of academia, government
and the public sector, based at the University of New
Brunswick is the front runner in this field of research.
The analysis by Tavallaee et al. of the dataset resulted
in a new dataset, named NSL-KDD, in which struc-
tural deficiencies of KDD99 were addressed. NSL-
KDD does not have redundant records in the training
data, removed duplicates from testing data, reduced
the total number of records so that the entire dataset
could be used, instead of needing to sample it. Finally,
to improve the variability in ability of the learners
they tested, items which were hard to classify (a mi-
nority of the learners classified them properly), were
added to NSL-KDD with a much higher frequency
than items which most of the classifiers identified cor-
rectly. Because NSL-KDD is a derivation of KDD99,
it is not completely free from its origin’s issues.

2.2.1 ISCXIDS2012 & CICIDS2017

After publishing NSL-KKD, the CIC started a new
project to create modern, realistic datasets in a scal-
able way. The first results from this project are docu-
mented in (Shiravi et al., 2012). Their system uses
alfa and beta profiles. Alfa profiles are abstracted
versions of multi-stage attacks, which would ideally
be executed fully automatically, but human execu-
tion remains an option. Beta profiles are per proto-
col abstractions ranging from statistical distributions
to custom user-simulating algorithms. Building on
this foundation, published in 2012, a new dataset was
published in 2017. The main difference is that CI-
CIDS2017 (Sharafaldin et al., 2018) is geared more
towards machine learning, with its 80 flow-based fea-
tures, whereas, ISCXIDS2012 had 20 packet features.
Both datasets give access to the raw pcap files, for fur-
ther analysis. The flow features were gathered with
CICFlowMeter, an open source flow generator and
analyzer. CICIDS2017 added an HTTPS beta pro-
file, which was necessary to keep up with the surge
in HTTPS adoption on the web (Google transparency



report). This rest of this work will cover an analysis
of the newest dataset, CICIDS2017.

3 ARCHITECTURE AND
IMPLEMENTATION

The evaluation of this dataset is a project in Python,
supported by the Pandas (McKinney, ), Numpy and
Sklearn (Pedregosa et al., 2011) modules. The fol-
lowing subsections detail the engineering effort and
choices to produce a robust, portable solution to eval-
uate any dataset. Google’s guide (Zinkevich, ), Rules
of Machine Learning: Best Practices for ML Engi-
neering, by Martin Zinkevich, has been influential on
the implementation (mainly rules 2, 4, 24, 25, 32
and 40), as well as the detailed guides offered by
Scikit-Learn. The current implementation makes use
of nine supervised machine learning classifiers. Four
tree-based algorithms: a single decision tree (CART)
(dtree), a random forest ensemble learner (rforest), a
bagging ensemble learner (bag) and an adaboost en-
semble learner (ada). Two neighbor-based ones: the
K-nearest neighbor classifier (knn) and the N-centroid
classifier (ncentroid), two SVM-based methods: lin-
earSVC (liblinear subsystem) (linsvc) and RBFSVC
(libsvm subsystem) (rbfsvc) and one logistic regres-
sion (L-BFGS solver) (binlr).

3.1 Data Loading & Preprocessing

The dataset consists of labeled flows for eight days. A
merged version has also been created. Details about
the content are listed in table 1. Each day has the same
features, 84 in total (label not included), though it
should be noted that the ”Fwd Header Length” feature
is duplicated, an issue of CICFlowMeter that has been
fixed in the source code, but persisted in the dataset.
Another caveat when importing this data for analysis,
is the presence of the literal value Infinity. String-type
data like this results in run time crashes, when mixed
with numeric data. This was rectified by replacing the
strings with NaN values.

The Label column was binarized. While this does
incur information loss, it is justified for an outer de-
fense layer to classify first between benign and ma-
lign traffic. For each file the distribution over attack -
normal traffic is summarized in table 2.

3.2 Cross-validation and Parameter
Optimization

The implementation has two main branches, cross-
validated parameter optimization and single execution

Table 1: CICIDS2017 day, attack type, size mapping.

Dataset files
Day Attack type(s) Size (MB)
Mon No attacks 231
Tue FTP / SSH bruteforce 173
Wed Layer 7 DoS and

Heartbleed
283

Thu AM Web attacks 67
Thu PM Infiltration 108
Fri AM Ares botnet 75
Fri PM 1 Nmap port scanning 101
Fri PM 2 Layer 4 DDoS 95
Merged All 1100

Table 2: CICIDS2017 day, benign samples, malign sam-
ples.

Dataset attack distribution
Day Benign Malign
Mon 529918 0
Tue 432074 13835
Wed 440031 252672
Thu AM 168186 2180
Thu PM 288566 36
Fri AM 189067 1966
Fri PM 1 97718 128027
Fri PM 2 127537 158930
Merged 2273097 557646

Table 3: CICIDS2017 algorithm, parameters, ranges.

Parameter tuning search space
Algorithm Parameters Search space

dtree max features 2..columns 1
max depth 1 .. 35 1

rforest max features 2..columns 5
max depth 1 .. 35 5

bag max features 0.1 .. 1.0 .1
max samples 0.1 .. 1.0 .1

ada n estimators 5 .. 50 5
learning rate 0.1 .. 1.0 .1

knn n neighbors 1 .. 5 1
distance metric manhattan euclid

linsvc max iterations 10e3.∗10e6 10
tolerance 10e−3.∗10e−5 .1

binlr max iterations 10e3.∗10e6 10
tolerance 10e−3.∗10e−5 .1

testing. The branches share all code up to the point
where the choice of algorithm is done. For parame-
ter tuning, K-fold cross-validation is employed, with
k = 5. The splits are stratified, taking samples propor-
tional to their representation in the class distribution.

Parameter tuning is done with grid search, eval-
uating all combinations of a parameter grid. This is
multiplicative: e.g. for two parameters, respectively
with three and five values, fifteen combinations are
tested. An overview of the algorithms and their pa-



rameter search spaces can be seen in table 3.
Special care went into avoiding model contami-

nation. The data given for cross-validated parameter
tuning is two thirds of that day’s data. Optimal param-
eters are derived from only that data. The results from
cross-validation are stored. These results include: the
total search time, the optimal parameters, the param-
eter search space and the means of five metrics (bal-
anced accuracy, precision, recall, f1-score and ROC-
AUC).

3.3 Metric Evaluation and Model
Selection

The only point of interaction between the cross-
validation (cv) code and the single execution is in
gathering the optimal model parameters from the re-
sult files, written to disk by the cv code. The op-
timal parameters are chosen, based on a voting sys-
tem. That voting system looks at the ranks each set of
tested parameters gets on the following five metrics:
Balanced Accuracy: combined per class accuracy,
useful for skewed class distributions. Obtained
through evaluating equation 1 for each class, aver-
aged, compared to accuracy itself which also uses
equation 1 over all classes simultaneously. TP, TN,
FP, FN respectively stand for true / false positive /
negative.

ACC =
T P+T N

T P+T N +FP+FN
(1)

Precision: Of the items that were tagged as positive,
how many are actually positive (equation 2).

PR =
T P

T P+FP
(2)

Recall: Of the items that were tagged as positive, how
many did we tag compared to all positive items (equa-
tion 3).

RC =
T P

T P+FN
(3)

F1-score: defined as the harmonic mean of preci-
sion and recall (equation 4), the F1-score combines
these metrics in such a way that the impact of poor
scores on either of the metrics, heavily impacts the fi-
nal score. In order to achieve a high F1-score, it is not
only sufficient to be precise in prediction (discrimina-
tive power), but equally high in finding a generalized
representation of positive samples.

F1 =
2∗ precision∗ recall

precision+ recall
(4)

ROC-AUC: the receiver operator characteristic
(ROC) is a visual metric of the relationship between

the true positive rate (recall) on the y-axis and the
false positive rate (equation 5) on the x-axis at differ-
ent classifying thresholds. The thresholds are implicit
in the curve. In essence it shows how well a classi-
fier is able to separate the classes. To avoid having to
interpret the plot, the area under the curve (AUC) is
calculated. An AUC of 1 would mean that the clas-
sifier is able to completely separate the classes from
each other. An AUC of 0.5 indicates that the class dis-
tributions overlay each other fully, meaning that the
classifier isn’t better than random guessing. The AUC
reduces the ROC curve to a single number. If special
care has to be given to the avoidance of false posi-
tives or to maximal true positive rate, then the AUC
metric is no longer helpful. For unbalanced data sets,
the ROC curve is a great tool, because the imbalance
is irrelevant to the outcome.

FPR =
FP

FP+T N
(5)

The optimal parameters are decided by a voting
mechanism that works as follows: 1: Find the highest
ranked set of parameters for each of the five metrics.
2: Aggregate across the found sets. 3: Pick the most
prevalent set. Some algorithms showed a high pref-
erence for certain parameter values. The results are
summarized in table 4.

Table 4: CICIDS2017 algorithm, parameters, results.

Parameter tuning search results
Algorithm Parameters Search results

dtree max features no clear winners
max depth no clear winners

rforest max features no clear winners
max depth no clear winners

bag max features 0.7 / 0.8 (18/21)
max samples 0.9 / 1.0 (19/21)

ada n estimators no clear winners
learning rate 0.6 (7/21)

knn n neighbors 1 (20/21)
distance metric manhattan (17/21)

linsvc max iterations 1000 (16/21)
tolerance 10e−5 (21/21)

binlr max iterations 1000 (13/21)
tolerance 10e−3 (21/21)

3.4 Algorithm Retesting with Optimal
Parameters

For each day (each attack scenario), the algorithms
were retested with optimal parameters. Execution of
the fixed parameter functions, yields a dictionary with
the used parameters, the run time, the predicted la-
bels on the test set and the actual labels for the test
set. Seven metrics are gathered, namely the five met-



rics used to evaluate in the cross-validation phase (de-
scribed in paragraph 3.3). In addition the accuracy
score is kept as well as the confusion matrix.

4 EVALUATION RESULTS

This section describes the results from the retesting
with optimized parameters. In total 9 algorithms were
tested. It should be noted that for two of these no
cross-validation was done. The N-centroid classifier
does not use optimized parameters, due to a limita-
tion of Scikit-learn. For the RBF-SVC classifier, pa-
rameter optimization was skipped due to the excessive
run times of forced single-core execution. The results
are described in their respective algorithmic classes
in subsection 4.1. All testing was done on two types
of infrastructure, roughly reflecting corporate and pri-
vate environments. The corporate grade server was
equipped with 2X Intel Xeon E5-2650v2 @ 2.6GHz
(16 cores) and 48GB of RAM, while the consumer-
grade host had 1X Intel Core i5-4690 @ 3.5GHz (4
cores) and 16 GB of RAM.

4.1 Algorithm Comparison

This section details the results of testing the vari-
ous classification algorithms. The algorithms are
grouped, based on their underlying classifier. Due
to page constraints only results of single execution
on the consumer-grade hardware are contained in
the paper in tabular format in appendix 5.1. It is
advised to use this paper with the full collection of
tables and derived graphs that are publicly available
at https://gitlab.ilabt.imec.be/lpdhooge/cicids2017-
ml-graphics. A sample result graphic is shown in
figure 1.

4.1.1 Tree-based Classifiers

On the whole, the tree-based classifiers obtained the
best results for all attack types, on all metrics. Even
a single decision tree is able to achieve 99+% on
all metrics for the DoS / DDoS and Botnet attack
types. Another interesting finding is that building the
tree without scaling the features, improves the perfor-
mance on all metrics for detection of the brute force
and port scanning traffic, to be near-perfect. Results
on the merged dataset reveal that identification across
different attack classes works with equally great re-
sults to the best-identified classes. It should however
be noted that good performance on the merged data
set includes the attack classes with the most samples

Figure 1: Sample result, full results available at
https://gitlab.ilabt.imec.be/lpdhooge/cicids2017-ml-
graphics.

(DoS, port scan & DDoS) and might obfuscate worse
performance on the less prevalent attack classes.

When introducing meta-estimators, techniques at
a higher level of abstraction that introduce concepts
to improve the underlying classifier(s), several bene-
fits were discovered. Random forests improved the
results on port scanning traffic when applying either
of the scaling methods, compared to a decision tree.
For the other attack types results are very similar,
with a noted reduction on botnet traffic classification,
but only when using MinMax scaling. A reduction
on multiple classification metrics is observed for the
infiltration attacks as well. This attack type consis-
tently is the hardest to classify, not least because the
dataset only contains 36 of these flows, compared to
the 288566 benign samples in the same set (2).A mod-
est improvement on all metrics is observed for the
merged data set compared to a single decision tree.

The bagging classifier proved itself to be a more
potent meta-estimator, reaching near-perfect scores
on all metrics for the brute force, Dos, DDoS, botnet
and port scanning traffic. The improved performance
and stability in the brute force and botnet classes com-
pared to plain decision trees and random forests is its
main advantage. Scoring on the infiltration attacks did
take a big hit. This is believed to be a result of the ad-
ditional sampling employed by the bagging classifier,
when the number of samples to learn from is already
very low. The almost perfect classification on five of
the seven attack classes generalized to the evaluation
of the entire data set.

The overall best meta-estimator was discovered as
adaboost. Adaboost retains the near perfect scores,
achieved by the bagging classifier on the previously



mentioned classes. Thanks to its focus on improv-
ing classification for difficult samples, it was the best
classifier for infiltration attacks, reaching balanced
accuracies between 75% and 79.2%. Unfortunately
the recall was never higher than 58.3%, meaning that
about half of the infiltration flows were misclassified.
Similarly to the bagging classifier, performance was
stable and equally high on the merged data set. In
total, 5 of the seven attack classes could be discov-
ered with very high reliability, irrespective of the em-
ployed feature scaling method. On the web attacks
(brute force, XSS and SQLi), the random forest and
bagging classifiers had a slight, but stable edge com-
pared to single decision trees and adaboost. The only
class on which classification underperformed on all
metrics was infiltration. Results pertaining to execu-
tion times are described in subsection 4.2.

4.1.2 SVM-based Classifiers and Logistic
Regression

This subsection covers three more algorithms, two
support vector machines: one with a linear kernel and
one with a radial basis function kernel and a logistic
regression classifier. Full results are listed in table 7.

The linear support vector machine consistently
has very high scores on all metrics for the DoS, DDoS
and port scan attack classes. Recall on the ftp/ssh
brute force, web attacks and botnet attack classes is
equally high, but gets offset by lower precision scores
especially in the absence of feature scaling. The al-
gorithm thus succeeds in recognizing most of the at-
tacks, but has higher false-positive rates compared to
the tree-based methods. Precision on the infiltration
attack classes is extremely poor. The logistic regres-
sion with binomial output results, tells a similar story.
Like the linear support vector classifier (linSVC), it
performs best and most stably on the DoS, DDoS
and port scanning traffic. Furthermore, recall scores
on the brute force, web and botnet traffic classes are
high to very high, but paired with worse precision
scores compared to the linSVC, the applicability of
this model gets reduced. One consistent result is that
feature scaling is a necessity for the logistic regres-
sion classifier, preferring standardization over min-
max scaling. The generalization or lack thereof is
clearly visible in the results on the merged data set.
Performance is reasonable with standardized features
(98.4% recall & 80.4% precision), but not even close
to the performance of the tree-based classifiers. This
performance reduction does indicate that misclassifi-
cation on the less prevalent classes is impactful on
the final scores. The last algorithm in this category,
a support vector classifier with radial basis function
in the kernel demonstrates the importance of proper

method selection for feature scaling. This classifier
has dismal performance when features are used as in-
put without scaling, not reaching acceptable perfor-
mance on any of the seven attack classes. Minmax
scaling gives great results on the DoS, port scan and
DDoS attacks (the classes with the most samples to
learn from 2). Standardizing (Z) scaling improves
performance on these classes even further and suc-
ceeds much better at recognizing brute force, web and
botnet traffic, making the classifier a valid contender
for use on five of the seven attack classes.

4.1.3 Neighbor-based Classifiers

Despite its simplicity, the k-nearest neighbors algo-
rithm, generally looking at only one neighbor and us-
ing the Manhattan (block) distance metric, is a high-
performer in 6/7 attack scenarios. In four scenarios,
99.9% on all metrics is almost invariably obtained,
with metrics for the other attack classes never be-
low 95.7%. The elusive class to recognize remains
infiltration attack traffic. Interestingly enough, even
though this too is a distance-based algorithm, all fea-
ture scaling methods, yielded very similar results.
Another conclusion is the loss of perfect classifica-
tion, compared to the tree-based classifiers. While
the reduction in classification performance is minute,
it is observable and stable. Performance on the
merged data set shows generalization capability, but
this comes at a cost further described in subsection
4.2. The last algorithm, nearest centroid classifier is
equally simple and has some interesting properties.
Its results resemble the SVM results, with high, sta-
ble recognition of DDoS and port scanning traffic,
mediocre but stable results in the DoS category and
medium to high recall on the ftp/ssh brute force, web
attack and botnet traffic, but again paired with low
precision scores. Combined with its run time pro-
file, it has application potential for the recognition of
DDoS and port scanning traffic. The perfect scores
on recall, regardless of scaling method for the FTP
/ SSH brute force and web attacks are also in inter-
esting property. On the merged data set results show
degraded performance, reflective of the poor classi-
fication scores on the other attack classes. Detailed
results are available in the appendix in table 6.

4.2 Time Performance Comparison

Real-world intrusion detection systems have con-
straints, when evaluating traffic. Some example con-
straints are a.o.: required throughput, minimization of
false positives, maximization of true positives, evalu-
ation in under x units of time, real-time detection. To



gain insight in the run time requirements of the dif-
ferent algorithms, summarizing charts can be seen in
figures 2 and 3. Five main takeaways should be noted
from these charts. First, as long as the dataset stays
under 200 megabytes, evaluation can be done in un-
der 20 seconds by most algorithms. To give an idea
of the amount of flows in 200 MB, the Tuesday data
set, 173 MB in size contains 445909 flows. Second,
the algorithms split in two categories when looking at
execution times: all tree and neighbor methods keep
their execution time under one minute on both types
of infrastructure when evaluating data sets under 300
MB. The SVM and regression models take more time
to run, with outliers that are caused by not scaling the
features. Applying a standardizing scaler to the data,
drastically reduces the execution time. Third, the
consumer-grade infrastructure holds its own against
the corporate server. The reason for this is twofold.
Purely on a hardware level, the lower core count, but
substantially higher clock speeds (and thermal head-
room for aggressive frequency scaling) keep the sys-
tems in competition. Another factor is how well an
algorithm is suited for parallel execution. For exam-
ple knn makes full use of all available cores, because
the problem is easily separable, while the implemen-
tation of the rbfsvc in LIBSVM locks execution to a
single core. Fourth, the nearest centroid classifier is
as good as insensitive to data set size. In combination
with the classifier’s ability in recognizing DDoS and
port scanning traffic, it is conceivable to employ it in
real-time on IoT networks to identify compromised
devices, taken over to execute DDoS attacks (blog, ).
Fifth and finally, execution times on the merged data
set influence algorithm choice. Execution time on the
consumer-grade hardware stays under ten minutes for
the full, 1.1 GB data set for the ada, bag, dtree, ncen-
troid and rforest classifiers (around and under five
minutes when ignoring the bagging classifier). Knn
is very resource intensive and doesn’t scale well into
larger data sets. Evaluation on the merged data set
took almost 1 hour and 30 minutes. The logistic re-
gression completed evaluation of the full dataset in
just over 30 minutes. In general using the corporate
infrastructure with higher core counts reduces the ex-
ecution time, but as mentioned earlier, this potential
speedup depends on the implementation.

4.3 Result Comparison to State of the
Art

Because of the recency of CICIDS2017, published re-
search is still limited. Nonetheless a comparison to a
selection of relevant research is already possible.

Attak et al. (Attak et al., ) focus on the DARE

(data analytics and remediation engine) component
of the SHIELD platform, a cybersecurity solution for
use in software defined networks (SDN) with network
function virtualization (NFV). The machine learn-
ing methods that were tested are segmented into two
classes: those for anomaly detection and those for
threat classification. Comparison to this work is apt
for the threat classification portion. The researchers
kept only a 10-feature subset of the flow data. This
subset was chosen, not produced by a feature selec-
tion technique. The threat classification made use of
the random forest and multi-layer perceptron classi-
fiers. Optimal models from a 10-fold cross-validation
were used on 20% of the data that was held out for
validation. The random forest classifier obtained the
best results on accuracy, precision and recall, often
reaching perfect classification. The multi-layer per-
ceptron had similar accuracy scores, but much greater
variability on precision and recall. Overall their re-
search shows favourable results for the random forest,
both in terms of performance on the tested classifica-
tion metrics, but also on execution time.

Marir et al. (Marir et al., 2018) propose a sys-
tem for intrusion detection with deep learning for fea-
ture extraction followed by an ensemble of SVMs for
classification, built on top of Spark, the distributed in-
memory computation engine. The feature extraction
is done by a deep belief network (DBN), a stack of
restricted Boltzmann machines. Next, the dimension-
reduced sample set is fed to a layer of linear SVMs for
classification. Layers further in the stack of SVMs are
given samples for which previous layers weren’t con-
fident enough. Because both the DBN and the SVMs
operate in distributed fashion, the master node decides
whether enough data is present to build a new layer. If
not, then the ensemble of SVMs are the models pro-
duced in the final layer. This approach was tested on
four datasets, namely KDD99, NSL-KDD, UNSW-
NB15 and CICIDS2017. The results of testing their
approach reveal that the combination of deep learn-
ing for feature extraction and supervised learning with
an emphasis on retraining for difficult samples, yields
better performance on the classification metrics, but
requires more training time than the application of the
individual parts on the classification task.

5 CONCLUSIONS AND FUTURE
WORK

This paper contains a detailed analysis of CI-
CIDS2017, a modern data set geared towards the ap-
plication of machine learning to network intrusion de-
tection systems. The design and implementation have



Figure 2: Algorithm run times i5 scatter part 1.

Figure 3: Algorithm run times i5 scatter part 2.

been laid out in section 3, focusing on the principles
and application of solid machine learning engineer-
ing. The main section of this paper conveys the results
of applying nine supervised learning algorithms with
optimized parameters to the data. Results were gath-
ered for every individual day, containing traffic from
a specific attack class, as well as for a merged ver-
sion, containing all attack types. The analysis was run
on both consumer- and professional-grade hardware,
to confirm stability of the results further and to in-
vestigate differences in execution time. In general, it

can be stated that the tree-based classifiers performed
best. Single decision trees are capable of recogniz-
ing DoS, DDoS and botnet traffic. Meta-estimators
based on decision trees improved performance to the
point where they are practically applicable for six of
the seven attack classes. This was most true for the
bagging- and adaboost classifiers. Another improve-
ment of meta-estimators over single decision trees
is their ability to abstract over the choice of feature
scaling. In addition performance generalized to the
merged data set, without incurring heavy increases in



execution time. The elusive attack class to classify
was infiltration. One reason for this might be the se-
vere lack of positive training samples for this cate-
gory, a natural consequence of the low network foot-
print of infiltration attacks. Only k-nearest neighbors
(knn) came close to a decent precision score for this
class, but it lacked in recall. Despite its simplicity
knn is a potent classifier for five of the seven attack
classes. It is held back by its steep increase in exe-
cution time for larger data sets, even though it gener-
alizes as well as the tree-base meta-estimators. Op-
posite to this is the nearest centroid classifier, being
nigh insensitive to dataset size, while applicable for
the classification of port scan and DDoS traffic and for
perfect detection of brute force and DoS traffic. The
final algorithms, two support vector machines with
different kernels and logistic regression are useful for
recognition of port scan, DoS and DDoS traffic, pro-
vided the features are scaled (preferably normalized).
However, these classifiers are not favoured when pit-
ted against the tree-based classifiers, because the at-
tack classes on which they perform well are only a
subset of the classes for which the tree-based perform
equally well.

REFERENCES
Attak, H., Combalia, M., Gardikis, G., Gastón, B., Jacquin,

L., Litke, A., Papadakis, N., Papadopoulos, D., and
Pastor, A. Application of distributed computing
and machine learning technologies to cybersecurity.
Space, 2:I2CAT.

Axelsson, S. (2000). Intrusion detection systems: A survey
and taxonomy.

blog, C. Inside the infamous mirai iot botnet: A retrospec-
tive analysis.

Brown, C., Cowperthwaite, A., Hijazi, A., and Somayaji,
A. (2009). Analysis of the 1999 darpa/lincoln labora-
tory ids evaluation data with netadhict. In Computa-
tional Intelligence for Security and Defense Applica-
tions, 2009. CISDA 2009. IEEE Symposium on, pages
1–7. IEEE.

Buczak, A. L. and Guven, E. (2016). A survey of data min-
ing and machine learning methods for cyber security
intrusion detection. IEEE Communications Surveys &
Tutorials, 18(2):1153–1176.

Denning, D. and Neumann, P. G. (1985). Requirements and
model for IDES-a real-time intrusion-detection expert
system. SRI International.

Hodo, E., Bellekens, X., Hamilton, A., Tachtatzis, C., and
Atkinson, R. (2017). Shallow and deep networks in-
trusion detection system: A taxonomy and survey.
arXiv preprint arXiv:1701.02145.

Marir, N., Wang, H., Feng, G., Li, B., and Jia, M.
(2018). Distributed abnormal behavior detection ap-
proach based on deep belief network and ensemble
svm using spark. IEEE Access, 6:59657–59671.

McHugh, J. (2000). The 1998 lincoln laboratory ids eval-
uation. In Debar, H., Mé, L., and Wu, S. F., editors,
Recent Advances in Intrusion Detection, pages 145–
161, Berlin, Heidelberg. Springer Berlin Heidelberg.

McKinney, W. pandas: a foundational python library for
data analysis and statistics.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Sharafaldin, I., Lashkari, A. H., and Ghorbani, A. A.
(2018). Toward generating a new intrusion detec-
tion dataset and intrusion traffic characterization. In
ICISSP, pages 108–116.

Shiravi, A., Shiravi, H., Tavallaee, M., and Ghorbani, A. A.
(2012). Toward developing a systematic approach to
generate benchmark datasets for intrusion detection.
computers & security, 31(3):357–374.

Tavallaee, M., Bagheri, E., Lu, W., and Ghorbani, A. A.
(2009). A detailed analysis of the kdd cup 99 data
set. In Computational Intelligence for Security and
Defense Applications, 2009. CISDA 2009. IEEE Sym-
posium on, pages 1–6. IEEE.

Wu, S. X. and Banzhaf, W. (2010). The use of computa-
tional intelligence in intrusion detection systems: A
review. Applied soft computing, 10(1):1–35.

Zinkevich, M. Rules of machine learning: Best practices
for ml engineering.

APPENDIX

5.1 Intel Core i5-4960 Full Results

Tables 5, 6 and 7 contain all results. Sim-
ilar tables with detailed results for the
execution times are available online at
https://gitlab.ilabt.imec.be/lpdhooge/cicids2017-
ml-graphics. Mirror tables and accompanying
graphics of testing on the Intel Xeon E5-2650v2 are
also available via the aforementioned link.



Table 5: Intel Core i5-4690 dtree, rforest and bag full results.

algorithm day scaling accuracy balanced accuracy F1 precision recall ROC-AUC

dtree

1: FTP / SSH bruteforce
MinMax 0.9922 0.9959 0.8893 0.8007 0.9998 0.9959

No 0.9999 0.9996 0.9991 0.9989 0.9993 0.9996
Z 0.9920 0.9959 0.8862 0.7957 1.0000 0.9959

2: DoS / Heartbleed
MinMax 0.9998 0.9998 0.9998 0.9997 0.9998 0.9998

No 0.9998 0.9998 0.9997 0.9997 0.9998 0.9998
Z 0.9998 0.9998 0.9997 0.9997 0.9997 0.9998

3: Web attacks
MinMax 0.9998 0.9922 0.9907 0.9971 0.9844 0.9922

No 0.9995 0.9936 0.9815 0.9755 0.9876 0.9936
Z 0.9995 0.9937 0.9817 0.9758 0.9878 0.9937

4: Infiltration
MinMax 0.9999 0.8182 0.7000 0.7778 0.6364 0.8182

No 0.9999 0.7500 0.5455 0.6000 0.5000 0.7500
Z 0.9999 0.7500 0.6316 0.8571 0.5000 0.7500

5: Botnet
MinMax 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

No 0.9999 0.9984 0.9940 0.9910 0.9970 0.9984
Z 0.9999 0.9985 0.9957 0.9943 0.9971 0.9985

6: Portscan
MinMax 0.8717 0.8521 0.8983 0.8154 1.0000 0.8521

No 0.9998 0.9998 0.9998 0.9999 0.9998 0.9998
Z 0.8716 0.8516 0.8983 0.8154 1.0000 0.8516

7: DDoS
MinMax 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

No 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998
Z 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

8: Merged (all types)
MinMax 0.9998 0.9997 0.9995 0.9995 0.9996 0.9997

No 0.9973 0.9946 0.9931 0.9961 0.9901 0.9946
Z 0.9998 0.9998 0.9996 0.9996 0.9996 0.9998

rforest

1: FTP / SSH bruteforce
MinMax 0.9919 0.9958 0.8855 0.7946 1.0000 0.9958

No 1.0000 0.9997 0.9997 1.0000 0.9993 0.9997
Z 0.9922 0.9960 0.8866 0.7963 1.0000 0.9960

2: DoS / Heartbleed
MinMax 0.9999 0.9999 0.9999 0.9999 0.9998 0.9999

No 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
Z 0.9999 0.9999 0.9998 0.9999 0.9998 0.9999

3: Web attacks
MinMax 0.9997 0.9898 0.9870 0.9945 0.9796 0.9898

No 0.9997 0.9927 0.9901 0.9947 0.9855 0.9927
Z 0.9998 0.9944 0.9923 0.9958 0.9889 0.9944

4: Infiltration
MinMax 0.9999 0.8437 0.7586 0.8462 0.6875 0.8437

No 0.9999 0.7000 0.5714 1.0000 0.4000 0.7000
Z 0.9999 0.6875 0.4800 0.6667 0.3750 0.6875

5: Botnet
MinMax 0.9961 0.8102 0.7657 1.0000 0.6204 0.8102

No 1.0000 0.9992 0.9976 0.9968 0.9984 0.9992
Z 0.9999 0.9976 0.9961 0.9969 0.9953 0.9976

6: Portscan
MinMax 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

No 0.9999 0.9999 0.9999 1.0000 0.9998 0.9999
Z 0.9999 0.9999 0.9999 1.0000 0.9998 0.9999

7: DDoS
MinMax 0.9999 0.9999 0.9999 1.0000 0.9998 0.9999

No 0.9999 1.0000 1.0000 1.0000 0.9999 1.0000
Z 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

8: Merged (all types)
MinMax 0.9999 0.9998 0.9998 0.9999 0.9997 0.9998

No 0.9996 0.9992 0.9991 0.9997 0.9984 0.9992
Z 0.9999 0.9998 0.9998 0.9999 0.9997 0.9998

bag

1: FTP / SSH bruteforce
MinMax 1.0000 0.9999 0.9997 0.9996 0.9998 0.9999

No 1.0000 0.9998 0.9996 0.9996 0.9996 0.9998
Z 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

2: DoS / Heartbleed
MinMax 0.9999 0.9999 0.9999 0.9999 0.9998 0.9999

No 0.9998 0.9998 0.9997 0.9999 0.9996 0.9998
Z 0.9997 0.9997 0.9997 0.9998 0.9995 0.9997

3: Web attacks
MinMax 0.9997 0.9939 0.9899 0.9919 0.9879 0.9939

No 0.9998 0.9948 0.9905 0.9912 0.9897 0.9948
Z 0.9997 0.9890 0.9889 1.0000 0.9780 0.9890

4: Infiltration
MinMax 0.9999 0.7333 0.6364 1.0000 0.4667 0.7333

No 0.9999 0.7500 0.6667 1.0000 0.5000 0.7500
Z 0.9999 0.5833 0.2667 0.6667 0.1667 0.5833

5: Botnet
MinMax 0.9999 1.0000 0.9969 0.9938 1.0000 1.0000

No 1.0000 0.9977 0.9977 1.0000 0.9954 0.9977
Z 0.9999 0.9970 0.9955 0.9970 0.9940 0.9970

6: Portscan
MinMax 0.9999 0.9999 0.9999 1.0000 0.9999 0.9999

No 0.9999 0.9999 0.9999 0.9999 0.9998 0.9999
Z 0.9999 0.9999 0.9999 1.0000 0.9998 0.9999

7: DDoS
MinMax 0.9999 0.9999 0.9999 1.0000 0.9999 0.9999

No 0.9999 0.9999 1.0000 1.0000 0.9999 0.9999
Z 0.9999 0.9999 0.9999 1.0000 0.9999 0.9999

8: Merged (all types)
MinMax 0.9999 0.9998 0.9998 0.9998 0.9997 0.9998

No 0.9999 0.9998 0.9997 0.9998 0.9997 0.9998
Z 0.9999 0.9999 0.9998 0.9999 0.9998 0.9999



Table 6: Intel Core i5-4690 ada, knn, ncentroid, full results.

algorithm day scaling accuracy balanced accuracy F1 precision recall ROC-AUC

ada

1: FTP / SSH bruteforce
MinMax 1.0000 0.9997 0.9993 0.9993 0.9993 0.9997

No 1.0000 0.9999 0.9995 0.9991 0.9998 0.9999
Z 0.9999 0.9997 0.9988 0.9980 0.9996 0.9997

2: DoS / Heartbleed
MinMax 0.9998 0.9999 0.9998 0.9997 0.9999 0.9999

No 0.9998 0.9998 0.9998 0.9997 0.9998 0.9998
Z 0.9998 0.9998 0.9997 0.9997 0.9998 0.9998

3: Web attacks
MinMax 0.9995 0.9901 0.9798 0.9792 0.9805 0.9901

No 0.9996 0.9936 0.9841 0.9807 0.9875 0.9936
Z 0.9997 0.9957 0.9896 0.9875 0.9917 0.9957

4: Infiltration
MinMax 0.9999 0.7917 0.6364 0.7000 0.5833 0.7917

No 0.9999 0.7500 0.6316 0.8571 0.5000 0.7500
Z 0.9999 0.7916 0.6087 0.6364 0.5833 0.7916

5: Botnet
MinMax 1.0000 0.9992 0.9977 0.9969 0.9985 0.9992

No 1.0000 1.0000 0.9992 0.9985 1.0000 1.0000
Z 0.9999 0.9976 0.9931 0.9908 0.9954 0.9976

6: Portscan
MinMax 0.9998 0.9998 0.9998 0.9998 0.9999 0.9998

No 0.9998 0.9998 0.9998 0.9998 0.9999 0.9998
Z 0.9999 0.9999 0.9999 0.9999 0.9998 0.9999

7: DDoS
MinMax 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

No 0.9999 0.9999 0.9999 0.9998 0.9999 0.9999
Z 0.9999 0.9999 0.9999 0.9999 1.0000 0.9999

8: Merged (all types)
MinMax 0.9998 0.9997 0.9996 0.9995 0.9996 0.9997

No 0.9999 0.9998 0.9996 0.9996 0.9997 0.9998
Z 0.9998 0.9998 0.9996 0.9995 0.9997 0.9998

knn

1: FTP / SSH bruteforce
MinMax 0.9996 0.9976 0.9944 0.9933 0.9954 0.9976

No 0.9997 0.9981 0.9948 0.9932 0.9965 0.9981
Z 0.9996 0.9984 0.9939 0.9907 0.9972 0.9984

2: DoS / Heartbleed
MinMax 0.9969 0.9970 0.9957 0.9939 0.9975 0.9970

No 0.9966 0.9968 0.9953 0.9934 0.9973 0.9968
Z 0.9967 0.9969 0.9955 0.9935 0.9976 0.9969

3: Web attacks
MinMax 0.9994 0.9882 0.9773 0.9780 0.9766 0.9882

No 0.9995 0.9903 0.9802 0.9795 0.9809 0.9903
Z 0.9996 0.9936 0.9834 0.9794 0.9875 0.9936

4: Infiltration
MinMax 0.9999 0.7692 0.6667 0.8750 0.5385 0.7692

No 0.9999 0.6666 0.4000 0.5000 0.3333 0.6666
Z 0.9999 0.7000 0.5455 0.8571 0.4000 0.7000

5: Botnet
MinMax 0.9994 0.9794 0.9723 0.9859 0.9590 0.9794

No 0.9994 0.9839 0.9744 0.9808 0.9680 0.9839
Z 0.9994 0.9786 0.9738 0.9909 0.9574 0.9786

6: Portscan
MinMax 0.9990 0.9989 0.9991 0.9990 0.9992 0.9989

No 0.9987 0.9987 0.9989 0.9986 0.9992 0.9987
Z 0.9986 0.9986 0.9988 0.9984 0.9991 0.9986

7: DDoS
MinMax 0.9994 0.9994 0.9994 0.9993 0.9996 0.9994

No 0.9994 0.9993 0.9994 0.9992 0.9997 0.9993
Z 0.9993 0.9992 0.9993 0.9992 0.9995 0.9992

8: Merged (all types)
MinMax 0.9994 0.9993 0.9986 0.9979 0.9992 0.9993

No 0.9970 0.9964 0.9925 0.9896 0.9954 0.9964
Z 0.9990 0.9986 0.9975 0.9970 0.9980 0.9986

ncentroid

1: FTP / SSH bruteforce
MinMax 0.8489 0.9220 0.2946 0.1727 1.0000 0.9220

No 0.8494 0.9223 0.2937 0.1721 1.0000 0.9223
Z 0.8495 0.9224 0.2886 0.1686 1.0000 0.9224

2: DoS / Heartbleed
MinMax 0.8380 0.7869 0.7291 0.9325 0.5986 0.7869

No 0.8370 0.7858 0.7275 0.9324 0.5964 0.7858
Z 0.8376 0.7868 0.7292 0.9330 0.5984 0.7868

3: Web attacks
MinMax 0.8733 0.9358 0.1683 0.0919 1.0000 0.9358

No 0.8739 0.9362 0.1657 0.0904 1.0000 0.9362
Z 0.8761 0.9373 0.1680 0.0917 1.0000 0.9373

4: Infiltration
MinMax 0.9695 0.8776 0.0075 0.0038 0.7857 0.8776

No 0.9702 0.8697 0.0070 0.0035 0.7692 0.8697
Z 0.9376 0.9233 0.0034 0.0017 0.9091 0.9233

5: Botnet
MinMax 0.9644 0.8139 0.2713 0.1707 0.6603 0.8139

No 0.9638 0.7924 0.2584 0.1634 0.6174 0.7924
Z 0.9635 0.7894 0.2564 0.1622 0.6117 0.7894

6: Portscan
MinMax 0.9659 0.9608 0.9708 0.9433 1.0000 0.9608

No 0.9654 0.9600 0.9704 0.9426 1.0000 0.9600
Z 0.9667 0.9615 0.9714 0.9445 1.0000 0.9615

7: DDoS
MinMax 0.9429 0.9356 0.9512 0.9069 1.0000 0.9356

No 0.9433 0.9364 0.9513 0.9070 1.0000 0.9364
Z 0.9425 0.9354 0.9507 0.9060 1.0000 0.9354

8: Merged (all types)
MinMax 0.7975 0.8247 0.6285 0.4921 0.8696 0.8247

No 0.8856 0.9273 0.7743 0.6333 0.9962 0.9273
Z 0.6990 0.7024 0.4810 0.3642 0.7080 0.7024



Table 7: Intel Core i5-4690 binlr, linsvc and rbfsvc full results.

algorithm day scaling accuracy balanced accuracy F1 precision recall ROC-AUC

binlr

1: FTP / SSH bruteforce
MinMax 0.9841 0.9906 0.7959 0.6621 0.9976 0.9906

No 0.8222 0.9081 0.2586 0.1485 0.9998 0.9081
Z 0.9937 0.9960 0.9078 0.8322 0.9985 0.9960

2: DoS / Heartbleed
MinMax 0.9958 0.9965 0.9943 0.9899 0.9988 0.9965

No 0.8814 0.8732 0.8383 0.8336 0.8430 0.8732
Z 0.9995 0.9996 0.9993 0.9985 1.0000 0.9996

3: Web attacks
MinMax 0.9848 0.9923 0.6271 0.4568 1.0000 0.9923

No 0.9480 0.9277 0.3086 0.1859 0.9068 0.9277
Z 0.9970 0.9978 0.8958 0.8122 0.9986 0.9978

4: Infiltration
MinMax 0.9905 0.9952 0.0257 0.0130 1.0000 0.9952

No 0.0001 0.5000 0.0003 0.0001 1.0000 0.5000
Z 0.9969 0.9151 0.0641 0.0333 0.8333 0.9151

5: Botnet
MinMax 0.9723 0.9791 0.4227 0.2690 0.9861 0.9791

No 0.7737 0.8818 0.0828 0.0432 0.9923 0.8818
Z 0.9820 0.9856 0.5315 0.3633 0.9892 0.9856

6: Portscan
MinMax 0.9949 0.9941 0.9955 0.9912 0.9998 0.9941

No 0.9557 0.9489 0.9624 0.9276 1.0000 0.9489
Z 0.9985 0.9984 0.9987 0.9980 0.9995 0.9984

7: DDoS
MinMax 0.9974 0.9972 0.9977 0.9965 0.9989 0.9972

No 0.9279 0.9193 0.9389 0.8861 0.9984 0.9193
Z 0.9987 0.9986 0.9988 0.9981 0.9995 0.9986

8: Merged (all types)
MinMax 0.9433 0.9566 0.8719 0.7863 0.9784 0.9566

No 0.8232 0.7416 0.5750 0.5460 0.6071 0.7416
Z 0.9498 0.9627 0.8853 0.8045 0.9841 0.9627

linsvc

1: FTP / SSH bruteforce
MinMax 0.9927 0.9957 0.8948 0.8103 0.9989 0.9957

No 0.9753 0.9867 0.7154 0.5572 0.9989 0.9867
Z 0.9973 0.9979 0.9582 0.9210 0.9985 0.9979

2: DoS / Heartbleed
MinMax 0.9991 0.9993 0.9988 0.9977 0.9999 0.9993

No 0.9964 0.9971 0.9951 0.9905 0.9998 0.9971
Z 1.0000 1.0000 0.9999 0.9999 1.0000 1.0000

3: Web attacks
MinMax 0.9951 0.9975 0.8395 0.7233 1.0000 0.9975

No 0.9952 0.9969 0.8407 0.7260 0.9986 0.9969
Z 0.9991 0.9995 0.9645 0.9313 1.0000 0.9995

4: Infiltration
MinMax 0.9877 0.9522 0.0184 0.0093 0.9167 0.9522

No 0.9918 0.8709 0.0225 0.0114 0.7500 0.8709
Z 0.9993 0.9580 0.2418 0.1392 0.9167 0.9580

5: Botnet
MinMax 0.9810 0.9820 0.5164 0.3502 0.9831 0.9820

No 0.9229 0.9611 0.2108 0.1178 1.0000 0.9611
Z 0.9837 0.9872 0.5562 0.3867 0.9908 0.9872

6: Portscan
MinMax 0.9969 0.9964 0.9973 0.9947 0.9998 0.9964

No 0.9858 0.9866 0.9874 0.9946 0.9802 0.9866
Z 0.9992 0.9993 0.9993 0.9996 0.9991 0.9993

7: DDoS
MinMax 0.9974 0.9972 0.9977 0.9963 0.9990 0.9972

No 0.9441 0.9389 0.9514 0.9185 0.9868 0.9389
Z 0.9995 0.9995 0.9995 0.9996 0.9994 0.9995

rbfsvc

1: FTP / SSH bruteforce
MinMax 0.9803 0.9892 0.7586 0.6116 0.9987 0.9892

No 0.9698 0.5137 0.0533 1.0000 0.0274 0.5137
Z 0.9996 0.9997 0.9936 0.9875 0.9998 0.9997

2: DoS / Heartbleed
MinMax 0.9933 0.9932 0.9908 0.9887 0.9929 0.9932

No 0.6417 0.5088 0.0346 1.0000 0.0176 0.5088
Z 0.9999 0.9999 0.9998 0.9997 0.9999 0.9999

3: Web attacks
MinMax 0.9779 0.9874 0.5361 0.3666 0.9972 0.9874

No 0.9872 0.5000 0.0000 0.0000 0.0000 0.5000
Z 0.9996 0.9998 0.9843 0.9690 1.0000 0.9998

4: Infiltration
MinMax 0.9885 0.9526 0.0197 0.0100 0.9167 0.9526

No 0.9999 0.5000 0.0000 0.0000 0.0000 0.5000
Z 0.9998 0.7499 0.3429 0.2609 0.5000 0.7499

5: Botnet
MinMax 0.9677 0.9822 0.3885 0.2412 0.9969 0.9822

No 0.9902 0.5239 0.0912 1.0000 0.0478 0.5239
Z 0.9951 0.9914 0.8053 0.6797 0.9877 0.9914

6: Portscan
MinMax 0.9919 0.9907 0.9929 0.9862 0.9997 0.9907

No 0.5687 0.5018 0.7245 0.5680 1.0000 0.5018
Z 0.9997 0.9997 0.9997 0.9998 0.9996 0.9997

7: DDoS
MinMax 0.9963 0.9961 0.9967 0.9952 0.9981 0.9961

No 0.5582 0.5039 0.7152 0.5567 1.0000 0.5039
Z 0.9999 0.9999 0.9999 1.0000 0.9997 0.9999


