ENNigma: A Framework for Private Neural Networks

Abstract

The increasing concerns about data privacy and the stringent enforcement of data protection laws are placing growing pressure on organizations to secure large datasets. The challenge of ensuring data privacy becomes even more complex in the domains of Artificial Intelligence and Machine Learning due to their requirement for large amounts of data. While approaches like differential privacy and secure multi-party computation allow data to be used with some privacy guarantees, they often compromise data integrity or accessibility as a tradeoff. In contrast, when using encryption-based strategies, this is not the case. While basic encryption only protects data during transmission and storage, Homomorphic Encryption (HE) is able to preserve data privacy during its processing on a centralized server. Despite its advantages, the computational overhead HE introduces is notably challenging when integrated into Neural Networks (NNs), which are already computationally expensive. In this work, we present a framework called ENNigma, which is a Private Neural Network (PNN) that uses HE for data privacy preservation. Unlike some state-of-the-art approaches, ENNigma guarantees data security throughout every operation, maintaining this guarantee even if the server is compromised. The impact of this privacy preservation layer on the NN performance is minimal, with the only major drawback being its computational cost. Several optimizations were implemented to maximize the efficiency of ENNigma, leading to occasional computational time reduction above 50%. In the context of the Network Intrusion Detection System application domain, particularly within the sub-domain of Distributed Denial of Service attack detection, several models were developed and employed to assess ENNigma’s performance in a real-world scenario. These models demonstrated comparable performance to non-private NNs while also achiev ing the two-and-a-half-minute inference latency mark. This suggests that our framework is approaching a state where it can be effectively utilized in real-time applications. The key takeaway is that ENNigma represents a significant advancement in the field of PNN as it ensures data privacy with minimal impact on NN performance. While it is not yet ready for real-world deployment due to its computational complexity, this framework serves as a milestone toward realizing fully private and efficient NNs.As preocupações crescentes com a privacidade de dados e a implementação de leis que visam endereçar este problema, estão a pressionar as organizações para assegurar a segurança das suas bases de dados. Este desafio torna-se ainda mais complexo nos domínios da Inteligência Artificial e Machine Learning, que dependem do acesso a grandes volumes de dados para obterem bons resultados. As abordagens existentes, tal como Differential Privacy e Secure Multi-party Computation, já permitem o uso de dados com algumas garantias de privacidade. No entanto, na maioria das vezes, comprometem a integridade ou a acessibilidade aos mesmos. Por outro lado, ao usar estratégias baseadas em cifras, isso não ocorre. Ao contrário das cifras mais tradicionais, que apenas protegem os dados durante a transmissão e armazenamento, as cifras homomórficas são capazes de preservar a privacidade dos dados durante o seu processamento. Nomeadamente se o mesmo for centralizado num único servidor. Apesar das suas vantagens, o custo computacional introduzido por este tipo de cifras é bastante desafiador quando integrado em Redes Neurais que, por natureza, já são computacionalmente pesadas. Neste trabalho, apresentamos uma biblioteca chamada ENNigma, que é uma Rede Neural Privada construída usando cifras homomórficas para preservar a privacidade dos dados. Ao contrário de algumas abordagens estado-da-arte, a ENNigma garante a segurança dos dados em todas as operações, mantendo essa garantia mesmo que o servidor seja comprometido. O impacto da introdução desta camada de segurança, no desempenho da rede neural, é mínimo, sendo a sua única grande desvantagem o seu custo computacional. Foram ainda implementadas diversas otimizações para maximizar a eficiência da biblioteca apresentada, levando a reduções ocasionais no tempo computacional acima de 50%. No contexto do domínio de aplicação de Sistemas de Detecção de Intrusão em Redes de Computadores, em particular dentro do subdomínio de detecção de ataques do tipo Distributed Denial of Service, vários modelos foram desenvolvidos para avaliar o desempenho da ENNigma num cenário real. Estes modelos demonstraram desempenho comparável às redes neurais não privadas, ao mesmo tempo que alcançaram uma latência de inferência de dois minutos e meio. Isso sugere que a biblioteca apresentada está a aproximar-se de um estado em que pode ser utilizada em aplicações em tempo real. A principal conclusão é que a biblioteca ENNigma representa um avanço significativo na área das Redes Neurais Privadas, pois assegura a privacidade dos dados com um impacto mínimo no desempenho da rede neural. Embora esta ferramenta ainda não esteja pronta para utilização no mundo real, devido à sua complexidade computacional, serve como um marco importante para o desenvolvimento de redes neurais totalmente privadas e eficientes

    Similar works