312 research outputs found

    Comparative study of the effectiveness of existing methods for low-rate DDoS attacks detection

    Get PDF
    Denial-of-Services (DoS) attacks are nowadays one of the main problems for small and large companies as they entail a high recovery cost in relation to the frequency that they are suffered. Depending on the intensity of the attack launched, these can be defined as high-rate attacks, which seek for a huge shipment of packets in a short space of time, and low-rate attacks, which seek for a continuous delivery of lower proportion of packets for longer time. Being able to detect the latter type is much more complicated due to its similarity with legitimate traffic and, therefore, easily avoids state-of-the-art detection and mitigation measures. The real-time detection of these attacks is certainly a challenge for computer security. This work focuses on presenting some existing detection methods for DoS low-rate attacks as well as analyzing their effectiveness in a simulated traffic environment

    Exploiting cloud utility models for profit and ruin

    Get PDF
    A key characteristic that has led to the early adoption of public cloud computing is the utility pricing model that governs the cost of compute resources consumed. Similar to public utilities like gas and electricity, cloud consumers only pay for the resources they consume and only for the time they are utilized. As a result and pursuant to a Cloud Service Provider\u27s (CSP) Terms of Agreement, cloud consumers are responsible for all computational costs incurred within and in support of their rented computing environments whether these resources were consumed in good faith or not. While initial threat modeling and security research on the public cloud model has primarily focused on the confidentiality and integrity of data transferred, processed, and stored in the cloud, little attention has been paid to the external threat sources that have the capability to affect the financial viability of cloud-hosted services. Bounded by a utility pricing model, Internet-facing web resources hosted in the cloud are vulnerable to Fraudulent Resource Consumption (FRC) attacks. Unlike an application-layer DDoS attack that consumes resources with the goal of disrupting short-term availability, a FRC attack is a considerably more subtle attack that instead targets the utility model over an extended time period. By fraudulently consuming web resources in sufficient volume (i.e. data transferred out of the cloud), an attacker is able to inflict significant fraudulent charges to the victim. This work introduces and thoroughly describes the FRC attack and discusses why current application-layer DDoS mitigation schemes are not applicable to a more subtle attack. The work goes on to propose three detection metrics that together form the criteria for detecting a FRC attack from that of normal web activity and an attribution methodology capable of accurately identifying FRC attack clients. Experimental results based on plausible and challenging attack scenarios show that an attacker, without knowledge of the training web log, has a difficult time mimicking the self-similar and consistent request semantics of normal web activity necessary to carryout a successful FRC attack

    Resilience Strategies for Network Challenge Detection, Identification and Remediation

    Get PDF
    The enormous growth of the Internet and its use in everyday life make it an attractive target for malicious users. As the network becomes more complex and sophisticated it becomes more vulnerable to attack. There is a pressing need for the future internet to be resilient, manageable and secure. Our research is on distributed challenge detection and is part of the EU Resumenet Project (Resilience and Survivability for Future Networking: Framework, Mechanisms and Experimental Evaluation). It aims to make networks more resilient to a wide range of challenges including malicious attacks, misconfiguration, faults, and operational overloads. Resilience means the ability of the network to provide an acceptable level of service in the face of significant challenges; it is a superset of commonly used definitions for survivability, dependability, and fault tolerance. Our proposed resilience strategy could detect a challenge situation by identifying an occurrence and impact in real time, then initiating appropriate remedial action. Action is autonomously taken to continue operations as much as possible and to mitigate the damage, and allowing an acceptable level of service to be maintained. The contribution of our work is the ability to mitigate a challenge as early as possible and rapidly detect its root cause. Also our proposed multi-stage policy based challenge detection system identifies both the existing and unforeseen challenges. This has been studied and demonstrated with an unknown worm attack. Our multi stage approach reduces the computation complexity compared to the traditional single stage, where one particular managed object is responsible for all the functions. The approach we propose in this thesis has the flexibility, scalability, adaptability, reproducibility and extensibility needed to assist in the identification and remediation of many future network challenges

    A Study of Very Short Intermittent DDoS Attacks on the Performance of Web Services in Clouds

    Get PDF
    Distributed Denial-of-Service (DDoS) attacks for web applications such as e-commerce are increasing in size, scale, and frequency. The emerging elastic cloud computing cannot defend against ever-evolving new types of DDoS attacks, since they exploit various newly discovered network or system vulnerabilities even in the cloud platform, bypassing not only the state-of-the-art defense mechanisms but also the elasticity mechanisms of cloud computing. In this dissertation, we focus on a new type of low-volume DDoS attack, Very Short Intermittent DDoS Attacks, which can hurt the performance of web applications deployed in the cloud via transiently saturating the critical bottleneck resource of the target systems by means of external attack HTTP requests outside the cloud or internal resource contention inside the cloud. We have explored external attacks by modeling the n-tier web applications with queuing network theory and implementing the attacking framework based-on feedback control theory. We have explored internal attacks by investigating and exploiting resource contention and performance interference to locate a target VM (virtual machine) and degrade its performance

    The Proceedings of 14th Australian Digital Forensics Conference, 5-6 December 2016, Edith Cowan University, Perth, Australia

    Get PDF
    Conference Foreword This is the fifth year that the Australian Digital Forensics Conference has been held under the banner of the Security Research Institute, which is in part due to the success of the security conference program at ECU. As with previous years, the conference continues to see a quality papers with a number from local and international authors. 11 papers were submitted and following a double blind peer review process, 8 were accepted for final presentation and publication. Conferences such as these are simply not possible without willing volunteers who follow through with the commitment they have initially made, and I would like to take this opportunity to thank the conference committee for their tireless efforts in this regard. These efforts have included but not been limited to the reviewing and editing of the conference papers, and helping with the planning, organisation and execution of the conference. Particular thanks go to those international reviewers who took the time to review papers for the conference, irrespective of the fact that they are unable to attend this year. To our sponsors and supporters a vote of thanks for both the financial and moral support provided to the conference. Finally, to the student volunteers and staff of the ECU Security Research Institute, your efforts as always are appreciated and invaluable. Yours sincerely, Conference Chair Professor Craig Valli Director, Security Research Institut

    Denial of Service in Web-Domains: Building Defenses Against Next-Generation Attack Behavior

    Get PDF
    The existing state-of-the-art in the field of application layer Distributed Denial of Service (DDoS) protection is generally designed, and thus effective, only for static web domains. To the best of our knowledge, our work is the first that studies the problem of application layer DDoS defense in web domains of dynamic content and organization, and for next-generation bot behaviour. In the first part of this thesis, we focus on the following research tasks: 1) we identify the main weaknesses of the existing application-layer anti-DDoS solutions as proposed in research literature and in the industry, 2) we obtain a comprehensive picture of the current-day as well as the next-generation application-layer attack behaviour and 3) we propose novel techniques, based on a multidisciplinary approach that combines offline machine learning algorithms and statistical analysis, for detection of suspicious web visitors in static web domains. Then, in the second part of the thesis, we propose and evaluate a novel anti-DDoS system that detects a broad range of application-layer DDoS attacks, both in static and dynamic web domains, through the use of advanced techniques of data mining. The key advantage of our system relative to other systems that resort to the use of challenge-response tests (such as CAPTCHAs) in combating malicious bots is that our system minimizes the number of these tests that are presented to valid human visitors while succeeding in preventing most malicious attackers from accessing the web site. The results of the experimental evaluation of the proposed system demonstrate effective detection of current and future variants of application layer DDoS attacks

    New Methods for Network Traffic Anomaly Detection

    Get PDF
    In this thesis we examine the efficacy of applying outlier detection techniques to understand the behaviour of anomalies in communication network traffic. We have identified several shortcomings. Our most finding is that known techniques either focus on characterizing the spatial or temporal behaviour of traffic but rarely both. For example DoS attacks are anomalies which violate temporal patterns while port scans violate the spatial equilibrium of network traffic. To address this observed weakness we have designed a new method for outlier detection based spectral decomposition of the Hankel matrix. The Hankel matrix is spatio-temporal correlation matrix and has been used in many other domains including climate data analysis and econometrics. Using our approach we can seamlessly integrate the discovery of both spatial and temporal anomalies. Comparison with other state of the art methods in the networks community confirms that our approach can discover both DoS and port scan attacks. The spectral decomposition of the Hankel matrix is closely tied to the problem of inference in Linear Dynamical Systems (LDS). We introduce a new problem, the Online Selective Anomaly Detection (OSAD) problem, to model the situation where the objective is to report new anomalies in the system and suppress know faults. For example, in the network setting an operator may be interested in triggering an alarm for malicious attacks but not on faults caused by equipment failure. In order to solve OSAD we combine techniques from machine learning and control theory in a unique fashion. Machine Learning ideas are used to learn the parameters of an underlying data generating system. Control theory techniques are used to model the feedback and modify the residual generated by the data generating state model. Experiments on synthetic and real data sets confirm that the OSAD problem captures a general scenario and tightly integrates machine learning and control theory to solve a practical problem

    MFIRE-2: A Multi Agent System for Flow-based Intrusion Detection Using Stochastic Search

    Get PDF
    Detecting attacks targeted against military and commercial computer networks is a crucial element in the domain of cyberwarfare. The traditional method of signature-based intrusion detection is a primary mechanism to alert administrators to malicious activity. However, signature-based methods are not capable of detecting new or novel attacks. This research continues the development of a novel simulated, multiagent, flow-based intrusion detection system called MFIRE. Agents in the network are trained to recognize common attacks, and they share data with other agents to improve the overall effectiveness of the system. A Support Vector Machine (SVM) is the primary classifier with which agents determine an attack is occurring. Agents are prompted to move to different locations within the network to find better vantage points, and two methods for achieving this are developed. One uses a centralized reputation-based model, and the other uses a decentralized model optimized with stochastic search. The latter is tested for basic functionality. The reputation model is extensively tested in two configurations and results show that it is significantly superior to a system with non-moving agents. The resulting system, MFIRE-2, demonstrates exciting new network defense capabilities, and should be considered for implementation in future cyberwarfare applications
    • …
    corecore