
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

3-22-2012

MFIRE-2: A Multi Agent System for Flow-based
Intrusion Detection Using Stochastic Search
Timothy J. Wilson

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Wilson, Timothy J., "MFIRE-2: A Multi Agent System for Flow-based Intrusion Detection Using Stochastic Search" (2012). Theses and
Dissertations. 1166.
https://scholar.afit.edu/etd/1166

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AFTI Scholar (Air Force Institute of Technology)

https://core.ac.uk/display/277529389?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F1166&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1166&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F1166&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1166&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Fetd%2F1166&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/1166?utm_source=scholar.afit.edu%2Fetd%2F1166&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

MFIRE-2: A MULTI AGENT SYSTEM FOR
FLOW-BASED INTRUSION DETECTION

USING STOCHASTIC SEARCH

THESIS

Timothy J. Wilson, Captain, USAF

AFIT/GCO/ENG/12-12

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE;

DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense,
or the United States Government. This material is declared a work of the U.S.
Government and is not subject to copyright protection in the United States.

AFIT/GCO/ENG/12-12

MFIRE-2: A MULTI AGENT SYSTEM FOR FLOW-BASED
INTRUSION DETECTION USING STOCHASTIC SEARCH

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science

Timothy J. Wilson, BCEN

Captain, USAF

March 2012

DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE;

DISTRIBUTION UNLIMITED.

AFIT/GCO/ENG/12-12

MFIRE-2: A MULTI AGENT SYSTEM FOR FLOW-BASED
INTRUSION DETECTION USING STOCHASTIC SEARCH

Timothy J. Wilson, BCEN
Captain, USAF

Approved:

Dr. Gary B. Lamont (Chairman) Date

Dr. Barry E. Mullins (Member) Date

Dr. Gilbert L. Peterson (Member) Date

AFIT/GCO/ENG/12-12

Abstract

Detecting attacks targeted against military and commercial computer networks is

a crucial element in the domain of cyber warfare. Intrusions, Denial of Service at-

tacks and Worm propogations are an ever present threat, and defending networks from

hostile action has become a top priority for both policy makers and network admin-

istrators. The traditional method of signature-based intrusion detection is a primary

mechanism to alert administrators to malicious activity. However, signature-based

methods are not capable of detecting new or novel attacks. In addition, increasing

networking line speeds is making it more difficult to monitor packets and detect mali-

cious signatures. Thus, signature-based ID is relegated to monitoring a small sample

of the total traffic, increasing the likelihood of malicious traffic entering the network

system without scrutiny.

Further characterizing traditional ID is the location from which it is performed,

resulting in network-based and host-based ID systems. Network-based ID has a broad

perspective enabling detection of attacks that are distributed in nature, but may not

protect individual systems effectively without incurring large bandwidth penalties

while collecting data from all hosts. Host-based ID has a comprehensive view of

local systems, but may not be able to detect distributed malicious activity effectively.

A multi agent design paradigm leverages the strengths of both network -based and

host-based ID methods.

While deep packet inspection is only possible on a small subset of messages, flow-

based metrics can be applied universally. Comprehensive analysis of a large percent-

age of network traffic is possible in real time, if a higher level of observation is used.

This method becomes extremely effective when analyzed from multiple points in the

iv

network. flow -based intrusion detection complements traditional signature-based ID

systems.

This research continues development of a novel simulated, multiagent, flow-based

intrusion detection system called MFIRE. Agents in the network are trained to rec-

ognize common attacks, and share data with other agents to improve the overall

effectiveness of the system. A Support Vector Machine (SVM) is the primary classi-

fier with which agents determine if an attack is occurring. Agents are prompted to

move to different locations within the network to find better vantage points, and two

methods for achieving this are developed. One uses a centralized reputation-based

model, and the other uses a decentralized model optimized with stochastic search.

The latter is tested for basic functionality. The reputation model is extensively tested

in two configurations and results show that it is significantly superior to a system with

non-moving agents. The resulting system, MFIRE-2, demonstrates exciting new net-

work defense capabilities, and should be considered for implementation in future cyber

warfare applications.

v

Acknowledgements

I would like to thank all who gave me the inspiration to make this thesis a reality.

My classmates gave continual support throughout our time at AFIT, providing a

sounding board for many ideas and improvements. But it was the time away from

work that gave me the most assistance. I thank the many friends I have developed

over our 18 month endeavor for sharing in both good and tough times, and for their

true Wingman spirit.

And especially I thank Dr. Lamont for his continued drive and encouragement.

Without it I would not have been able to compile such a product as this. I have

learned so much from his efforts, and very few individuals have shown such dedica-

tion to my success in the Air Force.

Timothy J. Wilson

vi

Table of Contents

Page

Abstract . iv

Acknowledgements . vi

List of Figures . ix

List of Tables . xi

List of Abbreviations . xii

I. Introduction . 1

1.1 Network Threats . 2
1.2 Multiagent Intrusion Detection . 5
1.3 Goal and Objectives . 6
1.4 Approach . 6
1.5 Thesis Overview. 7

II. Background . 9

2.1 Network Topology and Routing . 9
2.2 Intrusion Detection Techniques . 12
2.3 Flow-based Intrusion Detection . 14
2.4 Taxonomy of Attacks . 17

2.4.1 Denial of Service Attacks . 17
2.4.2 Vulnerability Scans . 19
2.4.3 Worms . 22

2.5 Pattern Recognition . 23
2.5.1 Classification . 24
2.5.2 Clustering . 25
2.5.3 Support Vector Machines . 26

2.6 Multiagent Systems . 31
2.7 Reputation . 33
2.8 Evolutionary Computation . 35
2.9 Simulation Environment . 37
2.10 SOMAS . 39
2.11 MFIRE v1.0 . 40

III. MFIRE-2 Design . 43

3.1 Simluation Environment . 44
3.1.1 Network design . 47
3.1.2 MAS design . 52

vii

Page

3.1.3 Observations and Features . 58
3.1.4 Attack Models . 59

3.2 Training the Agents . 60
3.2.1 Generating training data . 62
3.2.2 Training the Classifier . 62

3.3 Movement models . 63
3.3.1 Agents using a reputation model . 64
3.3.2 Agents using a free-movement model . 67

IV. MFIRE-2 Experimentation and Analysis . 70

4.1 Experimental Design . 70
4.2 MFIRE-2 Reputation System Experimental Design 71
4.3 MFIRE-2 Evolutionary Algorithm Experimental Design 73
4.4 Analysis . 74

4.4.1 MFIRE-2 Reputation System Performance
Assessment . 74

4.4.2 MFIRE-2 Evolutionary Algorithm Performance
Assessment . 79

V. Conclusions and Future Research . 81

A. MFIRE System Details . 85

B. MFIRE Change Log . 89

C. Evolutionary Algorithms: Details and Applications . 92

3.1 Evolutionary Algorithms: Details . 92
3.2 Evolutionary Algorithms: Applications . 94

Bibliography . 96
Vita . 104

viii

List of Figures

Figure Page

1 Probability density function for Pareto distribution,
α = 1.0, b = 1.0 . 11

2 Network flow . 15

3 Taxonomy of DDoS Attack Mechanisms . 18

4 Poor (a) and Optimal (b) separating hyperplanes of an
SVM. The poorly separating hyperplane offers bad
generalization ability whereas the optimal separating
hyperplane perfectly divides both data sets by
maximizing the margin of the hyperplane . 28

5 SVM separating features with a hyperplane in a higher
dimensional space . 28

6 MFIRE package diagram. 45

7 MFIRE class diagram. 48

8 MFIRE activity and client-server diagrams showing the
system’s normal flow of execution . 53

9 MFIRE detailed activity diagrams for the controller and
the agent . 56

10 MFIRE offline training and online testing execution
paths . 61

11 Classification Rule . 67

12 Movement Actuator . 68

13 Average number of agents moving each period . 75

14 4 agents using reputation model: accuracy (upper
curve) and false positives (lower curve) vs. time . 75

15 8 agents using reputation model: accuracy (upper
curve) and false positives (lower curve) vs. time . 76

16 Accuracy histogram: 4 agents . 77

ix

Figure Page

17 Accuracy histogram: 8 agents . 78

18 Accuracy box plots . 78

19 MFIRE: Messages sent by the controller and received by
agents . 86

20 MFIRE: Messages sent by agents and received by the
controller . 87

21 MFIRE: Messages sent by agents to other agents . 87

22 MFIRE: Messages involved in agent migration . 87

23 MFIRE detailed offline training and online testing
execution paths . 88

x

List of Tables

Table Page

1 Parameters for the spread of active worms . 23

2 Comparison of Iterations 1 and 2 . 57

3 How the AgentController Rates Providers of Shared
Feature Values . 66

4 Reputation System Overall Accuracy . 77

5 Wilcoxon Rank Sum p-values . 79

xi

List of Abbreviations

Abbreviation Page

IDS Intrusion Detection System . 5

MAS Multi Agent Systems . 5

ID Intrusion Detection . 5

BGP Border Gateway Protocol . 9

CD Controlled Distance . 9

FKP Fabrikant-Koutsoupias-Papadimitriou . 10

HIDS Host-based Intrusion Detection System . 12

NIDS Network Intrusion Detection System . 12

UDP User Datagram Protocol . 17

ICMP Internet Control Message Protocol . 17

SVM Support Vector Machines . 26

MAS Multiagent System . 31

EA Evolutionary Algorithm . 36

GAs Genetic Algorithms . 36

ESs Evolution Strategies . 36

EP Evolutionary Programming . 36

RPC Remote Procedure Calls . 46

TCP Transmission Control Protocol . 49

UDP User Datagram Protocol . 49

IANA Internet Assigned Numbers Authority . 49

HTTP Hyper Text Transfer Protocol . 49

MOGAs Multi-Objective Genetic Algorithms . 94

xii

Abbreviation Page

MOMA Multi Objective Memetic Algorithm . 94

PD projection distance . 94

xiii

MFIRE-2: A MULTI AGENT SYSTEM FOR FLOW-BASED
INTRUSION DETECTION USING STOCHASTIC SEARCH

I. Introduction

The Department of Defense is beginning a massive reduction in spending over the

next decade [11]. In spite of this, investment in cyberspace capabilities continues to

grow [11]. Thus, the DoD has outlined a strategy to invest in new capabilities to

maintain a decisive edge in all aspects of cyber:

Modern armed forces cannot conduct high-temp, effective operations with-
out reliable information and communication networks and assured access
to cyberspace and space. Today space systems and their supporting in-
frastructure face a range of threats that may degrade, disrupt or destroy
assets. Accordingly, DoD will continue to work with domestic and inter-
national allies and partners and invest in advanced capabilities to defend
its networks, operational capability and resiliency in cyberspace and space
[11].

Strategic Initiative 2 of the DoD Strategy for Operating in Cyberspace is to “em-

ploy new defense operating concepts to protect DoD networks and systems [2].” This

document highlights that a primary emphasis must be placed on protecting military

networks. As the DoD becomes more reliant on networking as a way to conduct op-

erations, so too do the stakes become higher. Malicious users and other powers con-

tinually push the boundaries of innovation to discover new vulnerabilities [27, 90, 30].

Intrusion detection in particular is a crucial element in this fight. The ability to de-

tect an active attempt to exploit a network is paramount. After all, no reaction can

be attempted if one does not know they are under attack in the first place.

1

1.1 Network Threats

Three major classes of network threats include [84]:

• Attacks that consume network resources, denying their use for legitimate pur-

poses

• Attacks that infiltrate systems, allowing attackers unauthorized access to system

resources, including sensitive data, data storage, privileged relationships with

other systems, and network connectivity

• Unauthorized vulnerability scans, providing attackers vital reconnaissance in

preparation for infiltrating activities

These three threats are mutually reinforcing. For example, a successful scan allows

an attacker to infiltrate networks with great stealth and precision; once in control of

multiple hosts, the attacker may use them to launch a distributed denial of service

attack on another target system or network. Alternatively, the attacker can use these

newly acquired assets to conduct further scans more efficiently / stealthily. As another

example, a clever attacker may launch a denial of service attack on a highly visible

service to divert the attention of security personnel from his infiltration activities.

Within these categories, many types of intrusion are recognized [62]:

Information Gathering—Network devices can be discovered and profiled in much

the same way as other types of systems. Attackers usually start with port scanning.

After they identify open ports, they use banner grabbing and enumeration to detect

device types and to determine operating system and application versions. Armed

with this information, an attacker can attack known vulnerabilities that may not be

updated with security patches.

Sniffing—Sniffing or eavesdropping is the act of monitoring traffic on the network

for data such as plaintext passwords or configuration information. With a simple

2

packet sniffer, an attacker can easily read all plaintext traffic. Also, attackers can

crack packets encrypted by lightweight hashing algorithms.

Spoofing—Spoofing is a means to hide one’s true identity on the network. To create

a spoofed identity, an attacker uses a fake source address that does not represent the

actual address of the packet. Spoofing may be used to hide the original source of

an attack or to work around network access control lists (ACLs) that are in place to

limit host access based on source address rules.

Session Hijacking—Also known as man in the middle attacks, session hijacking

deceives a server or a client into accepting the upstream host as the actual legitimate

host. Instead the upstream host is an attacker’s host that is manipulating the network

so the attacker’s host appears to be the desired destination.

Denial of Service—Denial of service denies legitimate users access to a server or

services. The SYN flood attack is a common example of a network level denial of

service attack. It is easy to launch and difficult to track. The aim of the attack is

to send more requests to a server than it can handle. The attack exploits a potential

vulnerability in the TCP/IP connection establishment mechanism and floods the

server’s pending connection queue.

Viruses, Trojan Horses, and Worms—A virus is a program that is designed to

perform malicious acts and cause disruption to the operating system or applications.

A Trojan horse resembles a virus except that the malicious code is contained inside

what appears to be a harmless data file or executable program. A worm is similar to

a Trojan horse except that it self-replicates from one server to another. Worms are

difficult to detect because they do not regularly create files that can be seen. They

are often noticed only when they begin to consume system resources because the

system slows down or the execution of other programs halt. The Code Red Worm is

one of the most notorious to afflict IIS; it relied upon a buffer overflow vulnerability

3

in a particular ISAPI filter. The success of these attacks on any system is possible

through many vulnerabilities such as weak defaults, software bugs, user error, and

inherent vulnerabilities in Internet protocols.

Footprinting—Examples of footprinting are port scans, ping sweeps, and NetBIOS

enumeration that can be used by attackers to glean valuable system-level information

to help prepare for more significant attacks. The type of information potentially

revealed by footprinting includes account details, operating system and other software

versions, server names, and database schema details.

Password Cracking—If the attacker cannot establish an anonymous connection

with the server, he or she will try to establish an authenticated connection. For this,

the attacker must know a valid username and password combination. Unchanged

default account names, and the use of blank or weak passwords makes the attacker’s

job even easier.

Arbitrary Code Execution—If an attacker can execute malicious code on the server,

the attacker can either compromise server resources or mount further attacks against

downstream systems. The risks posed by arbitrary code execution increase if the

server process under which the attacker’s code runs is over-privileged. Common vul-

nerabilities include weak IIS configuration and unpatched servers that allow path

traversal and buffer overflow attacks, both of which can lead to arbitrary code exe-

cution.

Unauthorized Access—Inadequate access controls could allow an unauthorized

user to access restricted information or perform restricted operations. Common vul-

nerabilities include weak IIS Web access controls, including Web permissions and

weak NTFS permissions.

4

1.2 Multiagent Intrusion Detection

Intrusion Detection Systems are often employed as gatekeepers for a local area

network. The principle focus of the system, whether host-based or network-based, is

to monitor local traffic for signs of malicious activity. Little or no effort is expended

to share the obtained information with another Intrusion Detection System (IDS).

Indeed, there is potential gain in compiling information over a much broader view of

the network. IDSs in different autonomous systems that share information with each

other would be much better placed to develop a collective view of threats progressing

accross the networks.

Taken from another viewpoint, if threats are unpredictable in their location, would

it not be beneficial to move the observing IDS to that point, rather than wait for the

attacker to strike on their own terms? To perform this task, we explore the concept of

a multi-agent IDS, in which individual agents are able to move throughout a network,

and share data to collectively determine if an attack is occurring.

Multi Agent Systems (MAS) for Intrusion Detection (ID) is not a new concept.

Herrero [40] summarizes several multi-agent IDSs, and lists some key areas where

MAS may be appropriate:

• The environment is open, highly dynamic, uncertain, or complex

• Agents are a natural metaphor—Many environments are naturally modeled as

societies of agents, either cooperating with each other to solve complex prob-

lems, or else competing with one-another.

• Distribution of data, control or expertise—A centralized solution is at best

extremely difficult or at worst impossible.

• Legacy systems—Technologically obsolete software but functionally essential to

an organization. One solution to this problem is to wrap the legacy components,

5

providing them with an “agent layer” functionality.

1.3 Goal and Objectives

The goal of this research is to continue the development of a scalable software

architecture for a multi-agent, flow-based intrusion detection system. The following

high-level objectives support this goal:

• Design and evaluate a multi-agent intrusion detection system using a Reputation

system

• Design and evaluate a multi-agent intrusion detection system using stochastic

search

The effectiveness of these two models is compared to the baseline stationary model.

Research results include an evaluation of the environment’s classification performance.

The main output of this research is an effective and efficient simulation environment

to conduct ongoing, flow-based intrusion defense experiments.

1.4 Approach

This research introduces a framework for conducting simulations of networks un-

der attack, and a multiagent system which is trained to detect threats. Individual

agents can be trained using various techniques, and tested in the simulator to vali-

date their effectiveness. The strength of the environment is its open object-oriented

nature, which allows agents and processes of any type to be instantiated. By keeping

standardized network and traffic models, one can test a wide variety of agents under

varying attack models, and qualitatively compare their performance.

A central feature of this framework is the movement of multiple agents within the

network, which allows the agents to find better vantage points for classifying an attack.

6

For this iteration of the design, we seek to compare the effectiveness of two distinct

models for attack identification. These models use the same underlying classifier,

but vary in the way that agents’ movement decisions are made. A reputation system

is used to allow a central controller to dictate agents’ movement decisions. For a

comparison, we also examine the case when agents are at a fixed random location and

no movement is allowed. Finally, the agents are allowed to move freely on their own,

with their behavior optimized using a genetic algorithm. Throughout this document,

these are known as the reputation model, and free-movement model, respectively.

This research follows from two previous efforts by Eric Holloway [41] and David

Hancock [37]. In particular, we seek to continue work by David Hancock which tests

the hypothesis that a flow-based, multi-agent network attack classifier can be made

more effective by employing a reputation system to govern agent mobility. We also

seek to include work inspired by Eric Holloway that created a self-organized multi-

agent network security system using Evolutionary Computation. The two environ-

ments created for these theses used fundamentally different approaches, and because

of this comparing results between the two is difficult. By taking the best elements of

both, a single integrated simulation environment can be created which allows a wide

variety of experiments to be run regarding multi-agent flow-based intrusion detection.

This research includes executing initial baseline experiments to test our combined ap-

proach, and we demonstrate the potential usefulness of such an environment.

1.5 Thesis Overview

This chapter frames the problem and introduces an approach to solving it. Chap-

ter II explores the concepts involved in realizing this approach, including threat mod-

eling, flow-based ID, and evolutionary computation. Chapter III details the design of

our multi agent system called MFIRE-2. Chapter IV presents the experimental per-

7

formance analysis of MFIRE-2. Chapter V concludes with a summary of the research

impact and opportunities for future research.

Results from two experiments demonstrate that MFIRE’s Reputation system al-

lows the agents to find vantage points in the network that increase the system’s

classification accuracy. In addition, the process of using an alternate model for agent

movement is explored. Stochastic search provides a method for agents to optimize a

local movement actuator, so that movement is decentralized, and no longer tied to a

central Reputation scheme.

An important contribution of this thesis is the developed network simulation envi-

ronment, MFIRE-2, which provides a scalable, object-oriented framework to execute

network threat analysis using robust multiagent, flow-based techniques. This environ-

ment supports not only the investigation of the subject multi agent system, but may

be used for other network research investigations as well where the level of abstraction

is suitable for the purpose.

8

II. Background

This investigation focuses on a subset of network-based attacks. Specifically, it

focuses on the challenge of recognizing that a flow-based attack is taking place. This

chapter prepares for that challenge by discussing first the concepts and current re-

search in critical areas relevant to the flow-based attack classification system.

2.1 Network Topology and Routing

The Internet is a network of nodes, comprised of sub-networks. The collection of

routers and other networked devices under the same administrative control is called

an Autonomous System (AS), and gateway routers are responsible for forwarding

traffic to and from other autonomous systems. Although each AS may handle traffic

internally in unique ways, all rely on a common backbone networking protocol for

inter-autonomous system routing called Border Gateway Protocol (BGP). See [54]

for an overview of autonomous systems and BGP.

Two primary modeling concepts within this domain are topology and traffic. With

a firm grasp of these principle aspects, we can devise a system that achieves a good

balance between efficiency and accuracy. Simulation provides a safe and robust envi-

ronment to test our approach and gain greater confidence in its defense characteristics.

As yet, there is no golden bullet for internet topology modeling. However, Spatharis

et al. present a well-balanced approach called the Controlled Distance (CD) Model

[82]. This model balances two key aspects topology: commonly used power-law mod-

els, as found in [26]; and a general approach to “rely on domain knowledge and

exploit the details that matter when dealing with a highly engineered system such as

the Internet” [92].

CD is an updated treatment of an earlier model called Fabrikant-Koutsoupias-

9

Papadimitriou (FKP), and the goal is to address the need for edges between nodes

that are not quite leaves, nor particularly central, but are of intermediate centrality.

As each node i is added to the network and linked to the node j, a second edge is

attached from j to another node k minimizing

mink{α · djk + ecc(k)} (1)

over all k such that the hop distance from j to k is at most a constant c. In this

equation, dij is the Euclidean distance between the nodes and represents the “last

mile cost.” The relative importance of this objective is controlled via the weight

α. The second term is the eccentricity of j and captures the distance from j to the

center.

This model decreases the power law exponent while having high average degree

and several leaves. The authors of [82] declare this to be, in many ways, the “best

performing” of their models in achieving similarity to the Internet’s AS graph. This

model and various alternatives are packaged by the authors in the package TopGen.

Other topology generators include:

• Tiers [24]

• GT-ITM - Georgia Tech Internetwork Topology Models [14]

• Inet [94]

• nem [57]

• BRITE [61]

• GDTANG - Geographic Directed Tel Aviv University Network Generator [8]

• RealNet [19], [18]

10

Figure 1. Probability density function for Pareto distribution, α = 1.0, b = 1.0

RealNet relies on publicly available datasets including BGP tables and traceroute

records, as does [28], but addresses some of the problems inherent in these datasets

and does not attempt to fit specific power-law-based statistics. For example, it gives

direct consideration to the IP-aliasing problem, whereby more routers may be inferred

than actually exist because each router has a different IP address for each of its inter-

faces. It also factors in likely policy relationships between neighboring autonomous

systems [37]. RealNet is promising but not available for the current research. In the

meantime, FKP/CD provides a reasonable approach.

In addition to modeling network topology, simulated internet traffic must also be

examined. A widely used model for packet routing is the Poisson model. Willinger

and Paxson [93] advocate against the Poisson model for better, more fractal-like traffic

distribution models [37]. For network traffic, a Pareto model may be preferred.

The Pareto model exhibits scale-invariant behavior [33]. It has a density function

P (X) = αbα

xα+1 , x ≥ b, which has a heavy tail [52]. Figure 1 shows an example for

α = 1.0, b = 1.0. Willinger and Paxson explain that this heavy tail accounts for

the fractal nature of aggregated network traffic [93]. To generate a random Pareto-

distributed sample, inverse transform sampling is used. Given a random variable U

drawn from the uniform distribution (0, 1), T , is Pareto-distributed [23], and given

11

by

T =
b

U
1
α

(2)

2.2 Intrusion Detection Techniques

Intrusion Detection Systems fall into two pairs of categories: host-based or network-

based; and anomaly-based or signature-based.

A Host-based Intrusion Detection System (HIDS) consists of an agent on a host

that identifies intrusions by analyzing system calls, application logs, file-system mod-

ifications (binaries, password files, capability databases, access control lists, etc.) and

other host activities and state. In a HIDS, sensors usually consist of a software agent.

Some application-based IDS are also part of this category. An example of a HIDS is

OSSEC, developed by Daniel Cidd [20].

Conversely, a Network Intrusion Detection System (NIDS) is an independent plat-

form that identifies intrusions by examining network traffic and monitors multiple

hosts. Network intrusion detection systems gain access to network traffic by connect-

ing to a network hub, network switch configured for port mirroring, or network tap.

In a NIDS, sensors are located at choke points in the network to be monitored, often

in at network borders. Sensors capture all network traffic and analyze the content of

individual packets for malicious traffic. An example of a NIDS is Snort, developed

by Martin Roesch and maintained by Sourcefire Inc. [1].

An Anomaly-Based Intrusion Detection System works by detecting computer in-

trusions and misuse by monitoring system activity and classifying it as either normal

or anomalous. Typically, these systems begin by determining normal operating con-

ditions for bandwidth, protocols, ports and device connections. The classification is

based on heuristics or rules, rather than patterns or signatures, and will detect any

12

type of misuse that falls out of normal system operation. This opposes signature

based systems which can only detect attacks for which a signature has previously

been created.

In order to determine what is attack traffic, the system must be taught to recognize

normal system activity. This is most often accomplished with artificial intelligence

techniques, including neural networks and classifier systems. Another method, known

as strict anomaly detection, is to first define the normal usage of the system using a

strict mathematical model, and flag any deviation from this as an attack. CFEngine

developed by Mark Burgess has support for this technique [12], as well as RRDTool

by Tobi Oetiker [66].

Anomaly-based Intrusion Detection does have some short-comings, namely a high

false positive rate and the ability to be fooled by a correctly delivered attack. At-

tempts have been made to address these issues through payload-based techniques

used by PAYL [89] and MCPAD [69]. Signature-based systems have a very low false-

positive rate, but are more limited in the types of attacks they can detect. Novel

attacks which are designed to thwart signature-based systems may still be detectable

by an anomaly-based system.

Some terminology and important concepts for IDSs are as follows [91]:

• Alert/Alarm: A signal suggesting that a system has been or is being attacked.

• True Positive: A legitimate attack which triggers an IDS to produce an alarm.

• False Positive: An event signaling an IDS to produce an alarm when no attack

has taken place.

• False Negative: A failure of an IDS to detect an actual attack.

• True Negative: When no attack has taken place and no alarm is raised.

13

• Noise: Data or interference that can trigger a false positive.

• Site policy : Guidelines within an organization that control the rules and con-

figurations of an IDS.

• Site policy awareness : An IDS’s ability to dynamically change its rules and

configurations in response to changing environmental activity.

• Confidence value: A value an organization places on an IDS based on past

performance and analysis to help determine its ability to effectively identify an

attack.

• Alarm filtering : The process of categorizing attack alerts produced from an IDS

in order to distinguish false positives from actual attacks.

• Attacker or Intruder : An entity who tries to find a way to gain unauthorized

access to information, inflict harm or engage in other malicious activities.

• Masquerader : A user who does not have the authority to a system, but tries to

access the information as an authorized user. They are generally outside users.

• Misfeasor : They are commonly internals who misuse their powers

• Clandestine user : A user who acts as a supervisor and tries to use his privileges

so as to avoid being captured.

2.3 Flow-based Intrusion Detection

The traditional idea of a network flow, as defined in [95], is a unidirectional data

stream between two computer systems where all transmitted packets of this stream

share the following characteristics: IP source and destination address, source and

destination port, and IP protocol. Thus, all network packets sent from host A to

14

Figure 2. Network flow

host B sharing the above mentioned characteristics form a flow. Every communica-

tion attempt between two computer systems triggers the creation of a flow, even if

no connection is established. In the simplest case, a complete flow is well-defined

when a complete flow set-up and tear-down are observed, as is the case with most

TCP communications. Complexity in any flow definition occurs when the set-up is

incomplete or tear-down is abnormal. UDP is notoriously troublesome because it is

connectionless protocol.

In addition to the above mentioned core characteristics, several other properties

of a flow can be conveyed, for instance:

• The number of packets which have been transferred

• The number of bytes which have been transferred

• The start or end time of a flow

• The disjunction of all TCP flags occurring in the flow

Figure 2 illustrates a bidirectional communication between two computers which

results in the creation of two flows. Host A is the initiator of the communication and

has the IP address 10.0.0.1. Host A sent several packets to host B which is assigned

the IP address 10.1.1.2. The source port of this communication is 4312 on host A

whereas the destination port is 80 on host B. All the network traffic is monitored by

the NetFlow router. The communication finally results in two unidirectional network

flows. The first flow (illustrated as grey squares) describes the communication from

A to B and the second flow (illustrated as white squares) from B to A.

15

Winter [95] describes a technique to collect network flows on actual hardware, with

a commercial package called NetFlow. NetFlow runs on Cisco routers and collects

flow statistics which it sends to a central collector. A separate device can poll this

collector to run analysis on current flows in the network. MFIRE does not use live

network flows – instead all traffic is simulated. However the NetFlow architecture

provides a well-known framework for modeling flows, and this model is useful in our

discussions.

A useful set of real-world flow data and metrics is provided by Andrew Moore

[65]. Real network traffic was collected over a 24-hour period at a research facility

with approximately 1000 active workstations. Individual flows are constructed from

this data, and labeled as idle, interactive (two-way), or bulk (one-way). Only data

and metrics corresponding to the TCP protocol are collected; UDP and ICMP are

ignored. Flows are characterized into 249 metrics.

However, one does not need to observe a specific TCP connection or tear-down to

use flows. A microflow abandons such concepts in favor of observing traffic in a more

immediate fashion. This concept treats flows as a collection of packets to/from nodes,

but does not distinguish bi-directional flows; everything is treated as one-directional.

These flows are robust to incorrectly formatted TCP connections and tear-downs

because they do not rely on those actions for measurement. A disadvantage is that

microflows lose potentially useful information, including the cumulative time that a

connection has been established, or the amount of data sent since the beginning of

a connection. A good comparison between the usefulness of both approaches for the

ID problem is provided in [88].

In the environment used in this research, TCP is not specifically implemented;

rather everything behaves like UDP. Because of this, mircroflows are the obvious

choice. However, future work should examine the use of TCP and full connection-

16

oriented flows.

2.4 Taxonomy of Attacks

This section introduces three common types of network attacks: distributed de-

nial of service, vulnerability Scans and worm propagation. We focus on attacks which

cause significant changes in traffic flows, since this is framework for the current re-

search. Background on other attacks can be found in [80].

2.4.1 Denial of Service Attacks.

Mirkovic [64] presents a comprehensive taxonomy of different DDoS attack types,

Figure 3. For this research, we concentrate on brute-force attacks, also called flood

attacks [83], although the MFIRE environment is capable of simulating any other

model. A flood attack involves malicious agents sending large volumes of traffic to

a victim system, to congest the victim system’s network bandwidth with IP traffic.

The victim system slows down, crashes, or suffers from saturated network bandwidth,

preventing access by legitimate users. Flood attacks can be executed using both User

Datagram Protocol (UDP) and Internet Control Message Protocol (ICMP) packets.

Formal models for DDoS and their detection are proposed in the several articles.

[63] applied to DDoS detection the k-nearest neighbor (kNN) algorithm improved by

feature weighting and selection based on a genetic algorithm. Overall accuracy of

over 97% for known DDoS attacks is achieved, and over 78% in the case of unknown

attacks.

Scepanovic [76] focuses on the scenario in which a cluster-based filter is deployed

at the target network and serves for proactive or reactive defense. A game-theoretic

model is created for the scenario, making it possible to model the defender and

attacker strategies as mathematical optimization tasks. The model is based on the

17

Figure 3. Taxonomy of DDoS Attack Mechanisms

continuous nonlinear knapsack problem. The experimental outcome shows the high

effectiveness of cluster-based filtering in proactive and reactive DDoS defense.

If the DoS attack can be detected eventually, a common question is why do we

need attack detection [68]? There are three reasons for attack detection. First, if a

target can detect an attack before the actual damage occurs, the target can win more

time to implement attack reaction and protect legitimate users. Second, if attacks can

be detected close to attack sources, attack traffic can be filtered before it wastes any

network bandwidth. However, there is generally insufficient attack traffic in the early

stage of an attack and at links close to attack sources. Consequently, it is easy to

mistake legitimate traffic as attack traffic. Therefore, it is challenging to accurately

detect attacks quickly and close to attack sources. Finally, flash crowds are very

similar to DoS attacks, which can cause network congestion and service degradation.

However, flash crowds are caused by legitimate traffic, whereas DoS attacks caused

by malicious traffic. Hence, it is important to differentiate DoS attacks from flash

18

crowds so that targets can react to them separately.

DoS attacks can be easily detected since the target’s services will be degraded, for

example, with a high packet drop rate. Second, false positives are a serious concern

for DoS attack detection. Since the potency of DoS attacks does not depend on the

exploitation of software bugs or protocol vulnerabilities, it only depends on the volume

of attack traffic. Consequently, DoS attack packets do not need to be malformed, such

as invalid fragmentation field or malicious packet payload, to be effective [68]. As a

result, the DoS attack traffic can look very similar to legitimate traffic.

2.4.2 Vulnerability Scans.

A vulnerability scan can be used to conduct network reconnaissance, which is typ-

ically carried out by a remote attacker attempting to gain information or access to a

network on which it is not authorized or allowed. Network reconnaissance is increas-

ingly used to exploit network standards and automated communication methods. The

aim is to determine what types of computers are present, along with additional infor-

mation about those computers; such as the type and version of the operating system.

This information can be analyzed for known or recently discovered vulnerabilities that

can be exploited to gain access to secure networks and computers. Network recon-

naissance is possibly one of the most common applications of passive data analysis.

Numerous tools exist to make reconnaissance easier and more effective.

A port scan is an attack that sends client requests to a range of server port

addresses on a host, with the goal of finding an active port and exploiting a known

vulnerability of that service [78]. The result of a scan on a port is usually generalized

into one of three categories:

• Open: The host sent a reply indicating that a service is listening on the port.

• Closed : The host sent a reply indicating that connections will be denied to the

19

port.

• Filtered : There was no reply from the host.

Potential security concerns exist for both the program responsible for delivering a

service (on open ports), and with the operating system that is running on the host (on

open or closed ports). Filtered ports do not tend to present vulnerabilities. There are

many standard scanning formats, some of which follow standard Internet protocols,

others which (purposefully) do not [80]. Some common techniques are outlined here:

TCP CONNECT scan—The simplest port scanners use the operating system’s

network functions. If a port is open, the operating system completes the TCP three-

way handshake, and the port scanner immediately closes the connection. Otherwise

an error code is returned. This scan mode has the advantage that the user does not

require special privileges. However, using the OS network functions prevents low-level

control, so this scan type is less common. This method is noisy, particularly if it is a

complete sweep of all ports: the services can log the sender IP address and Intrusion

detection systems can raise an alarm.

TCP SYN scan—SYN scan is another form of TCP scanning. Rather than use the

operating system’s network functions, the port scanner generates raw IP packets itself,

and monitors for responses. This scan type is also known as “half-open scanning”,

because it never actually opens a full TCP connection. The port scanner generates

a SYN packet. If the target port is open, it will respond with a SYN-ACK packet.

The scanner host responds with a RST packet, closing the connection before the

handshake is completed.

The use of raw networking has several advantages, giving the scanner full control

of the packets sent and the timeout for responses, and allowing detailed reporting of

the responses. SYN scan has the advantage that the individual services never actually

receive a connection. However, the RST during the handshake can cause problems

20

for some network stacks, in particular simple devices like printers.

UDP scan—UDP is a connectionless protocol so there is no equivalent to a TCP

SYN packet. However, if a UDP packet is sent to a port that is not open, the system

will respond with an ICMP port unreachable message. Most UDP port scanners use

this scanning method, and use the absence of a response to infer that a port is open.

However, if a port is blocked by a firewall, this method will falsely report that the

port is open. If the port unreachable message is blocked, all ports will appear open.

This method is also affected by ICMP rate limiting.

An alternative approach is to send application-specific UDP packets, hoping to

generate an application layer response. For example, sending a DNS query to port

53 will result in a response, if a DNS server is present. This method is much more

reliable at identifying open ports. However, it is limited to scanning ports for which

an application specific probe packet is available. Some tools (e.g., nmap) generally

have probes for less than 20 UDP services, while some commercial tools (e.g., nessus)

have as many as 70. In some cases, a service may be listening on the port, but

configured not to respond to the particular probe packet.

TCP ACK scan—ACK scanning is one of the more unique scan types, as it does

not exactly determine whether the port is open or closed, but whether the port

is filtered or unfiltered. This is especially good when attempting to probe for the

existence of a firewall and its rulesets. Simple packet filtering will allow established

connections (packets with the ACK bit set), whereas a more sophisticated stateful

firewall might not.

TCP FIN scan—Firewalls are, in general, scanning for and blocking covert scans

in the form of SYN packets. FIN packets are able to pass by firewalls with no

modification to its purpose. Closed ports reply to a FIN packet with the appropriate

RST packet, whereas open ports ignore the packet on hand. This is typical behavior

21

due to the nature of TCP, and is in some ways an inescapable downfall.

2.4.3 Worms.

It is vital to detect active worms effectively. In the near future active worms may

spread across the whole Internet in a very short period of time, making the average

detection time critical. A common way to detect worms is to place sensors in a

network to monitor messages sent to non-existent IP addresses. Administrators of

networks are aware of exactly which IP addresses are in use in their domains, and

common worm attacks do not have access to this information. If a message is sent to

a non-existent IP, then this flags the sender as suspicious [17]. Attackers that wish to

build stealth into the system must take preliminary steps to discover a network map

prior to initiating the worm.

Many models exist for worm propagation [17, 55, 87, 99, 100, 49, 77]. The basis

of many of these is the general epidemic model, which considers a fixed population

size N where each individual can be in one of three states: susceptible to the disease

(S), infected (I), or removed (R) [55]. In networking terms, removals can occur if the

victim is taken offline or becomes immune (patched) to the infection. The normal

state progression for an individual is S → I → R, normally termed an SIR model.

But in the networking domain, victims who recover and do not obtain immunity to

the infection will again become susceptible: S → I → S, an SIS model. Also known

as the Epidemiological Model, this is formally represented as:

dn

dt
= β(1− n)− dn (3)

where n(t) is the fraction of infected nodes, β is the infection parameter, and d is the

22

Table 1. Parameters for the spread of active worms

vulnerable machines N number of vulnerable machines
Size of hitlist h number of infected machines at the beginning of the

spread of active worms
Scanning rate s average number of machines scanned by an infected

machine per unit time
Death rate d rate at which an infection is detected on a machine

and eliminated without patching
Patching rate p rate at which an infected or vulnerable machine

becomes invulnerable

death rate. The solution to the above equation is

n(t) =
n0(1− ρ)

n0 + (1− ρ− n0)e−(β−d)t
(4)

where ρ = d
β

and n0 ≡ n(t = 0) = sizeofhitlist
N

= h
N

2.5 Pattern Recognition

In machine learning, pattern recognition is the assignment of a label to a given

input value [75]. An example of pattern recognition is classification, which attempts to

assign each input value to one of a given set of classes. However, pattern recognition

is a more general problem that encompasses other types of output as well. Other

examples are regression, which assigns a real-valued output to each input; sequence

labeling, which assigns a class to each member of a sequence of values; and parsing,

which assigns a parse tree to an input sentence, describing the syntactic structure of

the sentence.

Pattern recognition algorithms generally aim to provide a reasonable answer for

all possible inputs and to do “fuzzy” matching of inputs. This is opposed to pattern

matching algorithms, which look for exact matches in the input with pre-existing

patterns. Algorithms for pattern recognition depend on the type of label output,

23

on whether learning is supervised or unsupervised, and on whether the algorithm is

statistical or non-statistical in nature.

2.5.1 Classification.

In pattern recognition, we want to learn x 7→ y where x ∈ X is an object and

y ∈ Y is a class label. For a 2-class problem, we have x ∈ Rn, y ∈ ±1. Given a

training set (x1, y1)...(xm, ym), we want to train the classifier to generalize such that

given a previously seen x ∈ X it finds a suitable y ∈ Y . In other words, we want

to find a classifier y = f(x, α) where α are the parameters of the function. If we are

choosing our model from the hyperplanes in Rn then we have

f(x,w, b) = sinh(w · x+ b) (5)

We can attempt to learn f(x, α) by choosing a function that performs well on

training data:

Remp(α) = 1/m
m∑
i=1

l(f(xi, α), yi) (6)

where l is the zero-one loss function, l(y, ŷ) if y 6= ŷ and 0 otherwise. Remp is called

the empirical risk, and represents the training error.

We are trying to minimize the overall risk:

R(α) =

∫
l(f(x, α), y)dP (x, y) (7)

where P (x, y) is the (unknown) joint distribution function of x and y. R(α) represents

the test error.

Most methods used for classification use numerical values and are unable to han-

dle symbolic information directly. In the intrusion detection problem, packet data

can be highly qualitative in nature. Many flags are present in packet headers that are

24

non-numerical, but which may be beneficial in detecting an attack. The challenge lies

in converting this information to a form which a classifier can interpret. Experiments

conducted in [39] compare the effectiveness of three different symbolic conversion

methods. Results demonstrate that these three methods improve the prediction abil-

ity of a classifier, with respect to the arbitrary and commonly used assignment of

numerical values. None of the indicated techniques are used in this work, but should

be explored in future research.

2.5.2 Clustering.

Classification requires prototype patterns from each class. Algorithms that derive

the decision or discriminant function using prototype patterns or training data are

called supervised algorithms for learning. Clustering algorithms form a special class of

algorithms that can identify natural groupings of data; and derive the class prototypes

or “cluster centers.” These algorithms do not need training samples and are referred

to as unsupervised learning algorithms. Further, clustering algorithms are not based

on the use of a discriminant function and no decision boundaries are generated.

Cluster-seeking algorithms partition a given set of patterns x1, x2, ..., xN = U into

M disjoint sets. This is done on the basis similarity of patterns in the same class.

Clustering procedures are based on first selecting an appropriate similarity measure.

A commonly used clustering algorithm in this class is the k-means algorithm,

which is based on minimizing a performance index, F. K is the number of clusters

specified by the user, and F is the sum of squared distances of all points in a cluster

to the cluster center.

Assignment step: Assign each observation to the cluster with the closest mean:

S
(t)
i = {xp : ‖xp −m(t)

i ‖ ≤ ‖xp −m
(t)
j ‖∀1 ≤ j ≤ k} (8)

25

Update step: Calculate the new means to be the centroid of the observations in

the cluster:

m
(t+1)
i =

∑
xj∈S

(t)
i

xj (9)

The algorithm is deemed to have converged when the assignments no longer

change. In general, there is no guarantee that it will converge to the global opti-

mum, and the result may depend on the initial clusters. As the k-means algorithm

is usually very fast, it is common to run it multiple times with different starting

conditions.

2.5.3 Support Vector Machines.

The concept of Support Vector Machines (SVM), as proposed by Vladimir Vap-

nik at AT&T Bell Laboratories, emerged from the field of statistical learning theory

[53, 38]. SVMs were originally used to solve supervised two-class classification prob-

lems. Over the years researchers came up with numerous enhancements such as

one-class SVMs and multi-class SVMs. They are a well-known and popular tech-

nique for classification and regression. SVMs feature a general combination of high

accuracy, fast classification and fast training time. The task of supervised two-class

classification is solved by determining an optimal separating hyperplane between the

two given classes. Depending on whether linear or nonlinear SVMs are used, this

determination can happen in a high-dimensional feature space.

Vapnik showed that an upper bound on the true risk can be given by the empirical

risk plus an additional term:

R(α) ≤ Remp(α) +

√
h(log(2m

h
+ 1)− log(n

4
)

m
(10)

where h is the dimensionality of the set of functions parameterized by α. This is

26

a measure of the functions’ capacity or complexity. The more phenomena that are

described, the larger the value of h. Therefore, h is the maximum number of points

that can be separated in all possible ways by that set of functions.

As many other machine learning methods, SVMs operate in vector spaces. The

dimension of the vector space is determined by the amount of features used. An SVM

is characterized by its separating Hyperplane f(x) = w ·Φ(x) + b where w represents

the normal vector perpendicular to the hyperplane, b represents the offset from the

origin, and features are mapped to higher dimensional space with x 7→ Φ(x). For

example, a polynomial mapping is represented by

Φ : R2 → R3(x1, x2 7→ (z1, z2, z3) := (x2
1,
√

(2)x1x2, x
2
2) (11)

A hypothetical hyperplane is illustrated by the dashed line in diagram (a) and

(b) of Figure 4. The hyperplane of diagram (b) is said to separate both data sets

in an optimal way since its margin to the two surrounding lines, representing the

class borders, is maximized. Afterwards, the classification of a vector (i.e., a testing

sample) is performed by determining on which ”side” of the hyperplane the vector

lies, i.e., to which class it belongs.

Diagram (a) of Figure 4 features a less optimal hyperplane. In this case the margin

of the hyperplane is visibly smaller than in diagram (b). This affects the generalization

ability since vectors lying very close to the hyperplane can be classified wrong. The

difficulty of training an SVM now lies in finding the optimal separating hyperplane.

The hyperplane is calculated from a training set (equation), where (equation) (the

exponent g stands for the amount of features) and (equation).

The vectors lying closest to the hyperplane are referred to as support vectors.

Only these vectors are used for calculating the hyperplane.

The dimensionality of Φ(x) can be very large, making w hard to represent in

27

Figure 4. Poor (a) and Optimal (b) separating hyperplanes of an SVM. The poorly
separating hyperplane offers bad generalization ability whereas the optimal separating
hyperplane perfectly divides both data sets by maximizing the margin of the hyperplane

Figure 5. SVM separating features with a hyperplane in a higher dimensional space

28

memory, and hard to solve. Kimeldorf and Wahba (1971) presented the representer

theorem, which shows that

w =
m∑
i=1

αiΦ(xi) (12)

for some variables α. Instead of optimizing w directly we can optimize α. This gives:

f(x) =
m∑
i=1

αiΦ(xi) · Φ(x) + b (13)

and K(xi, x) = Φ(xi) · Φ(x) is called the kernel function.

So far only the linear classification capability of SVMs is introduced. However, by

means of so called kernel functions SVMs are also able to separate data which, at first

glance, might not seem to be linearly separable. An example is illustrated in Figure 5.

The two data sets are not linearly separable without accepting many training errors,

i.e., training vectors which reside on the wrong side of the hyperplane. To solve the

nonlinear classification problem, kernel functions, defined as (equation), are used the

purpose of which is to transform vectors from the lower dimensional input space to

the higher dimensional feature space in which the data sets become linearly separable.

A kernel often recommended for first experiments is the radial basis function kernel

(often also referred to as Gaussian kernel). The kernel requires one variable, namely

(equation).

Here is a subset of popular SVM packages [44]:

• SVMlight [46]: SVMlight, by Joachims, is one of the most widely used SVM

classification and regression packages. It has a fast optimization algorithm,

can be applied to very large datasets, and has a very efficient implementation

of the leave-one-out cross-validation. Distributed as C++ source and binaries

for Linux, Windows, Cygwin, and Solaris. Kernels: polynomial, radial basis

function, and neural (tanh).

29

• LibSVM [15]: LibSVM (Library for Support Vector Machines), is developed by

Chang and Lin and contains C-classification, v-classification, and ε-regression.

Developed in C++ and Java, it supports also multi-class classification, weighted

SVM for unbalanced data, cross-validation and automatic model selection. It

has interfaces for Java, Python, R, Splus, MATLAB, Perl, Ruby, and LabVIEW.

Kernels: linear, polynomial, radial basis function, and neural (tanh).

• SVMTorch: SVMTorch, by Collobert and Bengio, is part of the Torch machine

learning library and implements SVM classification and regression. Distributed

as C++ source code or binaries for Linux and Solaris.

• Weka: Weka is a collection of machine learning algorithms for data mining

tasks. The algorithms can either be applied directly to a dataset or called from

a Java code. Contains an SVM implementation.

• SVM in R: This SVM implementation in R (http://www.r-project.org/) con-

tains C-classification, n-classification, e-regression, and n-regression. Kernels:

linear, polynomial, radial basis, neural (tanh).

• MATLAB SVM Toolbox: This SVM MATLAB toolbox, by Gunn, implements

SVM classification and regression with various kernels: linear, polynomial,

Gaussian radial basis function, exponential radial basis function, neural (tanh),

Fourier series, spline, and B spline.

• TinySVM: TinySVM is a C++ implementation of C-classification and C-regression

which uses sparse vector representation and can handle several ten-thousands of

training examples, and hundred-thousands of feature dimensions. Distributed

as binary/source for Linux and binary for Windows.

• Spider: Spider is an object orientated environment for machine learning in

30

MATLAB, for unsupervised, supervised or semi-supervised machine learning

problems, and includes training, testing, model selection, cross-validation, and

statistical tests. Implements SVM multi-class classification and regression.

• jlibsvm [81]: Heavily refactored Java port of LibSVM. Implements optimized

kernel functions using Java class structure and APIs, and has support for mul-

tithreaded training.

SVMs have shown good results in data classification; however their training com-

plexity is very dependent on the size of the dataset. SVMs are known to be at least

quadratic with the number of training data points. One approach to reduce training

data size is to use a hierarchical clustering algorithm, as described by Horng [42].

That algorithm creates a clustering feature tree, which is then used to merge disjoint

clusters. Experiments using this technique on the intrusion detection problem are

encouraging [42].

2.6 Multiagent Systems

A common design question for any IDS is how to maximize the benefits and min-

imize the penalties associated with network-based as well as host-based approaches.

The Multiagent System (MAS) paradigm offers a way to accomplish this, with the

added advantages of flexibility and robustness provided by this approach.

Russell and Norvig [75] define a single agent through several properties: au-

tonomous operation, ability to perceive the environment, persistence over a long

period of time, ability to adapt to change, and ability to create and pursue goals.

These goals are typically in support of a broader objective. Franklin and Graesser

[31] provide a survey of definitions for software agents, and an associated taxonomy.

Multiagent systems can be used to solve problems that are difficult or impossible

for an individual agent or a monolithic system to solve. A multiagent system is a

31

collection of agents that collaborate, explicitly (e.g., via cooperation) or implicitly

(e.g., via competition) to achieve a broad objective or series of objectives. The main

feature which is achieved when developing multi-agent systems is flexibility, since a

multi-agent system can be added to, modified and reconstructed, without the need

for detailed rewriting of the application. These systems also tend to be rapidly self-

recovering and failure proof, usually due to the heavy redundancy of components and

the self-managed features.

In the networking domain, if agents are required to be mobile, then all hosts in the

network must have a generic agent platform installed which provides the environment

in which the agent executes. Agent migration then consists of sending agent state to

a remote process responsible for reinstantiating the agent.

Jansen lists some specific advantages of a mobile, agent-based IDS [45]:

• Overcoming network latency - if an agent is present on a node requiring remedial

action, the agent can respond more quickly than if action must be initiated by

a central coordinator

• Reducing network load - Communication requirements are reduced by allowing

agents to process sensor data locally, instead of requiring each node to send sets

of sensor observations to a central processing location. Sharing the results of

local processing incurs a relatively light demand on bandwidth.

• Autonomous execution - surviving agents continue to operate when part of the

IDS fails

• Platform independence - agent platforms with standard interfaces may be writ-

ten for multiple operating systems to allow effective MAS execution in a het-

erogeneous OS environment

32

• Dynamic adaptation - the system can be reconfigured during run-time in a

variety of ways. The mobility of the agents allowing them to seek effective

positions is a reconfiguration. Agents can clone themselves or request assistance

from other agents in high demand situations. Selected agents can be replaced

while non-selected agents continue to operate. One can also update repositories

of behaviors and parameters which agents access periodically.

Potential disadvantages include decreased performance and/or increased resource

consumption when mobility is implemented ineffectively. Also, since each agent is a

member of a trusted network that, if compromised, could provide the attacker consid-

erable leverage, digitally signed communications (including migrations) are essential.

2.7 Reputation

Trust and reputation are central to effective interactions in open multi-agent sys-

tems (MAS) in which agents, that are owned by a variety of stakeholders, continuously

enter and leave the system. Such a concept of reputation focuses on the difficulty for

agents to form stable trust relationships necessary for confident interactions. This

implies an environment in which individual agents are greedy, able to make their own

decisions, and not necessarily seeking to optimize the good of the system.

Many computational and theoretical models and approaches to reputation have

been developed [25, 96, 79, 74, 43]. In all cases, electronics personas are created,

which reflect the specific forum under evaluation (ecommerce, social networks, blogs,

etc.). Most of these models are either too abstract or explicitly model an environment

that does not apply to the one presented here. In particular, concepts such as social

networks, past experiences with agents, greed, competition, sparse participation of

agents, building trust over time, and coalitions all miss the mark on the approach

defined in this research. Many of these concepts are good candidates for future

33

research, especially when paired with a fully distributed MAS.

The first objective of this research uses a different definition of reputation. In

the system described, agents do not make decisions on their own. Agents simply use

the available local observations in order to make a classification, which is sent to a

central agent controller. The controller dictates to individual agents whether they

should move to a new location. In this sense, agents are simply the eyes of a single

central controller and cannot be enticed to perform any individual actions. In other

words, all agents are fully trusted. Rather, the view of reputation is of a metric to

judge how capable the agent is to make an informed classification given its current

location.

In the general sense, reputation is what is generally said or believed about an

[agent’s] character or standing [47].

One example of a multiagent system using Reputation is SPORAS [96], in which

new agents start with a minimum reputation value, and build up reputation during

their time on the system. Reputation is raised or lowered based on feedback from other

parties. In addition, agents’ reputation is never allowed to fall below the level of a

new user, thus preventing an agent from purposely exiting and re-entering the system

just to improve its reputation. Our design does not have that issue, but SPORAS

represents some of the concepts that we are seeking. Other research contained in

[43, 74, 79] demonstrate other approaches.

We can consider the concept of Reputational Incentives defined in [13]: the trustor

calculates the reputational gain (or damage) that a trustee will experience as a result

of good (or bad) feedback being communicated to the society, and considers this as

an additional incentive.

Pertaining to the intrusion detection problem, a trust model is defined by [10],

and also makes use of the NetFlow concept of flows. The defined trust model is a

34

specialized knowledge structure which is used by the agents in the second stage of

the processing. It aggregates the anomalies provided by all agents, and integrates the

anomalies of current flows with the similar flows observed in the past. The similarity of

flows is based on comparison of their features. Each network flow can be described by

a set of relevant observable features (feature vector). These features define the feature

space, a metric space on which the trust model of each agent operates. Trustfulness

is determined for significant clusters (significant flow samples) in this space, and the

anomaly of each flow is used to update the trustfulness of centroids in its vicinity.

Therefore, it reflects the past typical anomaly of similar flows in a similar situation.

Each agent uses a distinct set of features to describe the flow, and the added value of

the mechanism (which is similar to ensemble learning/classification) is in combining

the trustfulness assessments aggregated in different trust models into a single coherent

value.

2.8 Evolutionary Computation

In a MAS, there are many “controls” within an agent that define its behavior,

including classifiers, sensors and movement actuators. In the networking domain, it

would be beneficial to find control parameters that optimize the performance of the

IDS. For example, parameters of the agent’s classifier can be changed; but as the

system’s degrees of freedom increase, finding an optimal set of parameters quickly

becomes intractable.

In this and many other application domains it is easier to recognize a good solution

than to find it in the first place. Stochastic search algorithms offer a method for

finding near-optimal solutions to these types of problems [85]. Search can be used on

problems that can be formulated as finding a solution maximizing a criterion among

a number of candidate solutions. Search algorithms move from solution to solution

35

in the space of candidate solutions (the search space) by applying local changes, until

a solution deemed optimal is found or a time bound is elapsed.

The simplest local search algorithm is hill climbing, which is an iterative algorithm

that starts with an arbitrary solution to a problem, then attempts to find a better

solution by incrementally changing a single element of the solution. If the change

produces a better solution, that incremental change is made to the new solution.

This repeats until no further improvements can be found.

Simple hill climbing suffers from a tendency to get stuck at a local maximum.

Some improvements to the algorithm attempt to mitigate this tendency, and include

stochastic hill climbing, random-restart hill climbing, hill-climbing with backtracking

and tabu search.

Another promising alternative is Evolutionary Algorithm (EA) which generate

solutions to optimization problems using techniques inspired by natural evolution,

such as inheritance, mutation, selection, and crossover. The generalized notion of an

EA is applicable to several sub-domains; chiefly, Genetic Algorithms (GAs), Evolu-

tion Strategies (ESs), and Evolutionary Programming (EP) [4, 21, 85]. EAs draw

inspiration from organic evolution as a means of searching for competitive solutions

in situations where efficient search for the optimal solution is elusive (e.g. NP-hard

problems).

In evolutionary computation, the process involves initializing a population of can-

didate solutions, where each solution is a vector of parameters proposed for the system

whose performance is being optimized. Each member of the population is evaluated

by supplying the parameters to the system and measuring performance to determine

the member’s fitness. The measure of performance may be a single value (which

could either represent a single objective or a weighted sum of objectives) or a vector

(e.g. in the case of multi-objective optimization). Fitness values are used as selection

36

criteria to determine which members of the population should survive into the next

generation. Selected members may then undergo recombination and/or mutation to

produce new candidate solutions. Recombination produces offspring by combining

the parameter values of “parent” solutions in some way. Mutation only involves one

“parent” and simply changes specific parameter values as a means of exploring the

solution space. The resulting population may be a mix of old and new solutions. All

are evaluated as before, after which selection happens again, and so on for potentially

many generations until some criteria is satisfied (e.g. some set number of generations

have completed, some performance criteria has been met, or performance ceases to

improve).

Bäck presents a useful EA formalism [4]. Optimization as a minimization of a

function f : M ⊆ Rn → R, M 6= ∅ consists of searching for ~x∗ ∈ M such that

f(~x∗) > −∞ and

∀~x ∈M : f(~x∗) ≤ f(~x)

This is easily converted when optimization requires a maximization. Regardless,

the goal, usually unrealizable within time and other resource constraints, is to find

the global optimum ~x∗ for the objective function f within the feasible region M .

The formal definition of a generic, single objective evolutionary algorithm is pro-

vided in Appendix 3.1.

2.9 Simulation Environment

This section focuses on the underlying simulation framework. Specifically, we look

at Discrete Event Simulation. This method views the simulation as being composed of

a chronological sequence of events, each of which occurs in an instant and changes the

state in the system, possibly resulting in more events being scheduled. Comprehensive

37

treatment of Discrete Event Simulation is given in [7].

Components of DES systems include:

• Clock - The simulation keeps track of current simulation time in appropriate

measurement units, but unlike in real time simulations, time in a DES jumps

from one instantaneous event to the next.

• Schedule - The set of events to handle, typically implemented as a priority queue

sorted by event time.

• Random-Number Generator - pseudorandom, which is desired in order to sup-

port a rerun of a simulation with exactly the same behavior

Typical usage of a DES includes the gathering of statistics, for which facilities may

be provided, and the specification of a stopping condition. As may be the case with

continuous- but not real-time simulation, a discrete event simulation runs at a rate

that is not tied to the real-world clock. When resources permit, simulations may be

run potentially much faster than real time, which is useful for collecting large amounts

of statistics. In other cases, it may be desired that simulations run much slower than

real time, perhaps paused for an extensive period of time via checkpointing, which is

useful for direct observation and analysis of system dynamics.

Parallelization of DES is discussed extensively in [32]. More recently, Park and

Fishwick present their work using graphics processing unit-based clusters in [67].

2.9.0.1 Popular DES Engines.

Some of the more well-known DES options and their areas of emphasis are:

• OMNeT++, [86]: network simulation

• MASON, [56]: agent-based systems simulation

38

• CNET, [60, 59]: network simulation

• GloMoSim, [97]: large-scale wireless networks

• OPNET : network simulation

• NS2, [58]: network simulation

• PARSEC, [6]: parallelization

• SystemC : electronics systems-level modeling

• Tortuga : general DES with Java/Eclipse integration

• SimPy: general DES for Python

For this research, the MASON DES continues to be selected due to its agent-based

features and tight Java integration. OPNET, OMNet++ and NS2/NS3 simulate

routing at a much more detailed level than is needed for our purposes, though may

be explored in future research.

2.10 SOMAS

Self Organized Multi Agent Swarms (SOMAS) was created by Eric Holloway to

study the effects of a dynamic, decentralized intrusion defense system [41]. The

multi agent system is formally modeled as a DEC-POMDP, a I-POMDP, and a new

F(*-POMDP). Agents in the network are evolved using a multi-objective genetic al-

gorithm. These agents have the ability to change location, instantiate other agents

and delete agents, as well as various methods to modify GA chromosomes and fit-

ness values. Also, enemy agents have additional methods of stealing or corrupting

data on a node, sending denial-of-service packets, compromising a node, and oth-

ers. These functions are activated by actuators, which get their input from rules and

39

sensors. The relationship between the sensors, rules and actuators are optimized by

the GA, which allows agents to defend against threats in the network. The agents

learn to defend against attacks in a number of pre-defined scenarios, including: In-

trusion Elimination, Enemy Avoidance, DDoS, and Information War. The primary

goal of SOMAS is to evaluate the effectiveness of self-organization and “entangled

hierarchies” for accomplishing scenario objectives. One of the interesting features of

SOMAS is the ability for agents to take active defensive action in the network, rather

than simply passively detecting an attack. For a complete description of SOMAS, see

[41].

2.11 MFIRE v1.0

MFIRE 1.0 was created by Capt David Hancock as a network simulation environ-

ment to conduct flow-based intrusion detection experiments using a reputation-based

multiagent system [37, 36, 35]. One critique of SOMAS was its rudimentary imple-

mentation of network topology and routing. MFIRE 1.0 was an attempt to create a

more realistic simulation environment. MFIRE 1.0 is written in Java, and makes use

of the MASON DES, and TopGen network topology generator. Networks and gate-

way routers are simulated down to the Autonomous System level, and packet routing

is a faithful implementation of the Border Gateway Protocol. Delays and packet loss

are handled by the system to a reasonable level of realism, while still allowing the

DES to simulate a large network at a fast rate. In addition to the network com-

ponents (nodes, links and packets), the prominent high-level objects are processes,

observations and classifiers. A process object allows arbitrary code to run on any

node. Subclasses derived from processes are made into agents, attackers, background

internet traffic, etc. In addition, each node collects flow-based observations based on

the current and past network traffic. Agents create features from these observations,

40

which are used to classify if an attack is occurring. Agents may use any user-defined

classifier. Finally a Reputation system for the MAS allows a central agent controller

to rate the reliability of each agent’s classifications. This system prompts the agents

to move to better vantage points within the network, and imparts self-organization

to the MAS. Special attention is paid to the design of the MAS communication,

which allows inter-agent communication in the presence of many types of faults (see

Appendix A). The provided hierarchical class structure allows the framework to be

extended for many different experiment types, using an object-oriented approach.

Capt Hancock [37] presents the hypothesis that a flow-based, multi-agent network

attack classifier can be made more effective by:

1. employing a reputation system to govern agent mobility

2. adding a decay factor to each agent’s reputation to further spur agents to find

nodes providing the most “useful” information

From this hypothesis, four objectives are defined:

1. Develop an effective network simulation environment appropriate for the prob-

lem scope.

2. Validate the proper functioning of simulated malicious traffic.

3. Validate the proper command, control, and communications in the multi agent

intrusion detection system.

4. Study the effects of several factors on classification accuracy.

The first three objectives are qualitatively validated with MFIRE 1.0. The fourth

is not finished, and has been incorporated into this research. In particular, MFIRE

1.0 concludes with the realization of the simulation environment (MASON DES), net-

work topology and routing, the MAS, agent intercommunication, reputation system,

41

background user (Pareto) processes, and simple attacker processes (DDoS, Worm,

and Scan). These components are qualitatively validated as a complete, functional

system. Although the classifier framework is put in place, MFIRE 1.0 stops short

of implementing an actual classifier to allow agents to identify an attack; so no final

testing of the reputation system or overall performance experiment is conducted. For

a complete description of MFIRE 1.0 see [37].

This chapter provides background and theory on several topics regarding multi-

agent intrusion detection. Flow-based metrics, discrete event simulation, support

vector classification and stochastic search are key components in our proposed model.

In the next chapter we integrate these concepts into a working framework, MFIRE-2.

42

III. MFIRE-2 Design

An updated design is required for autonomous classification of network attacks

in a live, albeit simulated, network. In this research, we build upon the MFIRE

framework of Hancock [37] by adding additional attack features, implementing a new

attack classification system, and adding facilities to generate training data and test

the system’s classification performance. In addition, we integrate features proposed

by Holloway [41] to allow agents to behave in more elaborate ways. This chapter

introduces these concepts in detail.

Intrusion Detection (ID) system design is an ongoing process, due to the approx-

imation of the network environment and the reaction to it. Thus, the multi agent

system paradigm, with several performance-enhancing details, is leveraged in this de-

sign in order to maximize the performance. The agents are designed to be mobile

and cooperative in terms of sharing feature observations. Over a series of simulated

attacks, the integrated system searches for a ‘good’ distribution of agents.

A recent, innovative network-based anomaly detection system is presented in [48].

The authors use a two-stage classification approach to detect novel intrusions of

various types, and is shown to have good empirical performance. Many IDS sys-

tems have shown in recent years to achieve good performance with real-world traffic

[10, 39, 40, 42, 45, 63, 95]. Our approach is substantially different, in that we seek

a robust environment to generate simulated network traffic; and the goal of our re-

search focuses on improvement in performance given the movement of agents, not on

achieving absolute performance outright. Thus it is difficult to find existing systems

to compare our approach, however many of systems previously mentioned provide a

basis for our key concepts of multi-agent systems, network-based detection, anomaly-

based classification, and flow-based statistics.

The design of a suitable network simulation environment involves the representa-

43

tion of essential network components and operations. Specifically, nodes must route

traffic, generated by processes, over links with limited capacity, in a topology reflec-

tive of what is seen in the real Internet (see Section 2.1). Some of the processes

represented are ‘normal,’ generating traffic according to distributions seen on the

real Internet, while other processes represented are ‘malicious,’ causing congestion on

network links, systematically extracting information regarding potential vulnerabili-

ties of network nodes, and/or spreading copies of themselves to other nodes without

authorization.

To enable the properties described in such a simulated network environment re-

quires a representation of traffic as content-bearing packets, facilities for delivering

these packets to specific destination processes, and facilities for instantiating a net-

work complete with its nodes, links, processes, and properties of each (e.g., respec-

tively routing tables, link capacities, and traffic-generation and response behaviors).

Some of the implementation described in this chapter comes directly from [37],

and is repeated here for completeness. Only information which is relevant to the

updated features of MFIRE-2 is provided. For additional implementation details, the

reader is encouraged to read [37].

3.1 Simluation Environment

This section presents the package hierarchy providing a framework in which to

place the required representations of these concepts. In addition to the network

simulation environment, a multi agent classification system is designed as a set of

processes, with components including agents and an agent controller. To support the

agents’ classification responsibilities, interfaces are designed for classification tech-

niques and feature definitions, enabling changes in detailed implementations without

requiring changes to the system architecture.

44

classifiers
SVMClassifier

classification

features

observations

multi agent system
Agent
AgentController
AgentManager

network
MF_Network
MF_Node
MF_Link
NodeInterface
Packet

scenarios
TopgenNetwork
DDoSTopgenNetwork
ScanTopgenNetwork
WormTopgenNetwork

utilities
PortDirectory

payloads
DoSInstaller
WormInstaller

process
DoSProcess
InsecureProcess
ParetoProcess
PingProcess
ScanProcess
WormProcess

visualization
ModelWithUI
NodePortrayal
LinkPortrayal

MFIRE

MASON
SimState
Schedule
Steppable

Figure 6. MFIRE package diagram.

45

Figure 6 presents a general view of the package hierarchy involved in the simula-

tion. The domain layer consists of the following groups of classes:

• Network - includes representations of physical domain entities of interest. This

is the ‘core’ of the simulation.

• Scenarios - concrete realizations of the abstract MFNetwork. The prominent

class is the TopgenNetwork, which includes facilities for loading a network pro-

duced by the Topgen AS-level Internet topology generator. Each class in this

package is characterized by a a unique set of Processes initially running on a

subset of the nodes.

• Processes - These are analogous to the networked applications on the real In-

ternet. Each Process runs on a host node and may receive and/or generate

traffic.

• Payloads - Specially crafted payloads execute code when opened by a certain

receiving processes. These payloads can be written for legitimate purposes, such

as Remote Procedure Calls (RPC), but our focus is on payloads that install

malicious processes on the receiving node.

• Multi agent system - This package includes the “worker bees” - the Agents, the

“queen bee” - the AgentController, as well as AgentManagers with special local

oversight of any Agents on the same host node.

• Classification - Agents make use of entities in this package to make local clas-

sification decisions. Included are the classification algorithms, enclosed in the

‘classifiers’ package, and the observations and features used. Strictly speaking,

both observations and features are statistics-based calculations, but we distin-

guish the observations as being more “raw” than the features. By ‘feature’ we

46

imply there is something composite in its nature - it may be an average of ob-

servation values or the result of some other series of mathematical operations

on the observations and/or other features.

At the top of Figure 6 is the MASON discrete event simulation engine package,

which provides many vital facilities for the execution of the simulation as well as the

visualization of the same. The details of the visualization are specified via entities in

the visualization package at the bottom of the diagram.

Figure 7 provides a class diagram for some architectural detail of the more promi-

nent aspects of the domain representation. This is not intended to provide a compre-

hensive listing of the classes nor the attributes and methods of each class. Rather,

expressed are some of the essential class associations and hierarchies that drive the

network simulation.

3.1.1 Network design.

The physical network components simulated in this research investigation include

[37]:

• Nodes - each node represents an Autonomous System (AS). Internal to an AS

is a collection of routers, switches, firewalls, and edge devices, including servers

and clients. These devices are all abstracted into one node in our simulation,

represented by the MF Node class in Figure 7. Nodes route traffic via routing

tables, initialized via the Floyd-Warshall shortest path algorithm [29]. This

is analogous to gateway routers employing BGP on the real Internet, though

with BGP, policy decisions often trump routing efficiency (competing Internet

service providers, for example, may refuse to allow ‘through’ traffic without

compensation). Each node is addressable by a unique identification number.

Nodes provide resident processes with basic communications facilities, such as

47

MF_Link
-capacity: double

Packet
-payload: String
-TTL: int
-sourcenodeaddr: int
-destnodeaddr: int
-destport: int
-seqnumber: int
+decrementTTL(): boolean

MF_Node
#intern_iface: NodeInterface
#routingtable: HashMap<Integer, NodeInterface>
#activePorts: HashMap<Integer, ArrayList<Packet»
#addr: int
+requestPort(int): boolean
+releasePort(int): boolean

Process
+port: int
#processMessages()
#generateMessages()

ParetoProcess
-alpha: double
-min: double

DoSProcess
+target: int

ScanProcess

WormProcess
+exploits: ArrayList<Integer>

0..n

1

runs on

2

1..*

1..*0..*
carries

1

0..*

processes

1..2 0..*
generates/receives

MASON::Schedule

+step(SimState): boolean

require

Agent
-localfeaturemeasurements: HashMap<Integer, Double>
-sharedfeaturemeasurements: HashMap<Integer, Double>
-observationmeasurements:
 HashMap<Integer, HashMap<Integer, Double> >
-observations: HashMap<Integer, Observation>
-classifier: Classifier
+classify(): int

0..*
1

receives stats from

1

0..*

shares local stats

AgentController
-agentLocations: HashMap<Integer, Integer>
-agentPorts: HashMap<Integer, Integer>
-agentRatings: HashMap<Integer, Double>
-votes: HashMap<Integer, Double>
-repDecayFactor: double
#accuracyReport(): void

1

1..*

controls

InsecureProcess
+vulnerabilities: ArrayList<Integer>

Steppable

+step(SimState)

provide Steppable

provide Steppable

MF_Network

+setup()
+start()
+finish()
+main(String[])

MASON::SimState
+schedule: Schedule
+doLoop(Class, String[])
+start()
+finish()

NodeInterface
-inbounds: ArrayList<Packet>
-outbounds: ArrayList<Packet>
+put(ArrayList<Packet>)
+put(Packet)
+deliverPackets(): int

1..*

1

1..*0..*
carries

provide Steppable

Figure 7. MFIRE class diagram.

48

the send() method, which creates and sends packets. Nodes implement the

Steppable interface and therefore supply a step() method invoked on each

timestep of the simulation. This method primarily switches packets from the

inbound queues of all NodeInterfaces to the outbound queues of NodeInterfaces

identified in the routing table, via lookup on the packet’s destination address.

• NodeInterfaces - These are intermediaries between Nodes and 1) Links; or 2)

Node’s resident Processes. The first case includes all external-facing interfaces,

while the second describes the Node’s internal interface. Each is an entry/exit

point. All NodeInterfaces have an inbound queue and an outbound queue. The

inbound queue is read by the attached Node and written to by the attached

link. The outbound queue is read by the attached link and written to by the

attached Node.

• Ports - associated with nodes, ports are the communication end points for pro-

cesses running on servers and clients. In the real world, each computer typically

has many thousands of ports associated with each transport-layer protocol. For

example, there are 216 ports available for Transmission Control Protocol (TCP)

and another 216 for User Datagram Protocol (UDP), the number being fixed

by the width of the port field in the segment, respectively datagram header

[70, 71]. In our simulation, each port on an AS node corresponds with a port

on an arbitrary host internal to the AS.

• Port Directory - Certain “well-known” ports are reserved for special purposes.

This is the case with the real Internet, for which a list is maintained by the

Internet Assigned Numbers Authority (IANA) [3] specifies how certain ports

are to be used, such as port 80 for Hyper Text Transfer Protocol (HTTP)

traffic. When these standards are adhered to, finding public services is greatly

49

simplified. Also, filtering of certain expected types of traffic becomes simple.

Observe that, in our simulation, some ports are reserved for components of the

multi agent system.

• Links - links in our network simulation are strictly point-to-point and connect

autonomous systems together. Links are full duplex but have finite bandwidth.

Depending on the scale of the simulation, links may vary in length, affecting

propagation delay. One of three scales is specified at the start of each simulation:

– LOCAL - All links have the same unit length. Packets traverse these links

in one step of simulation time.

– REGIONAL - Link lengths vary from one to ten units. This is useful when

the simulated AS topology spans a continent.

– GLOBAL - Link lengths vary from one to 100 units. This is appropriate

for simulation of an AS topology in which some of the nodes are satellites

in geostationary orbits, for which propogation delays can indeed be on the

order of 100 times those of terrestrial links.

Scale is realized with each link being composed of sublinks. Links implement

the Steppable interface. Each timestep, when the Link’s step() method is

called by the Schedule, the Link causes each Sublink to pass its traffic to its

adjacent Sublink (or, ultimately, NodeInterface).

• Processes - these include processes that strictly generate traffic for the benefit of

the simulation as well as classifying agents that generate actual communication

traffic (primarily to share observations). All processes run on nodes and must be

assigned a port before they can send and receive packets. Processes implement

the Steppable interface. When step() is called, the Process first receives and

processes traffic, and then generates outbound traffic.

50

• Packets - Each packet consists of the following:

– Source node address - identifies the Node of origin

– Source port - the port used by the sending Process

– Destination node address - identifies the Node hosting the intended recip-

ient Process

– Destination port - communication endpoint for the intended recipient Process

– Sequence number - Facilitates sending messages spanning multiple packets

– TTL - Time To Live - the number of hops allowed before some intermediate

Node discards the packet. This mitigates problems arising from routing

loops induced by congestion or misconfiguration of the routing tables.

– Payload - a string containing the message the sending Process wishes to

pass to the intended recipient. The format of this message is entirely up

to the communicating processes.

– size - Indicates the size of the payload, in numbers of characters, if a

real payload is used. If a real payload is not required (e.g. to simulate

background traffic or junk traffic sent by denial-of-service processes), the

sending Process can simply specify the desired size of the packet to be sent,

leaving the payload string null and preserving memory.

With the previous component discussion completed, the flow of our simulation

can be explained. During initialization, after all network components have been

instantiated, all Processes, Nodes, and Links are scheduled to execute associated

tasks on every timestep (e.g. generate traffic, process traffic, move traffic). They are

prioritized as follows:

• First, Processes handle received traffic and generate new traffic

51

• Second, Nodes handle traffic by switching packets from inbound queues to ap-

propriate outbound queues or ports

• Third, Links move traffic along component Sublinks toward the NodeInterfaces

on either end

3.1.2 MAS design.

Figure 8 presents a high-level view of the nominal flow of execution from the

perspective of the MAS. Five states are shown. Figure 8a indicates that the transi-

tion from each state is governed by the clock. This implies synchronization among

participating elements. Typical message exchange for each state is shown in Figure

8b.

The explanation of MFIRE’s high-level states is made simpler by assuming agents

have been collecting observations from their respective host nodes for nearly a full

cycle when it comes time to check in with the AgentController. Furthermore, each

agent is assumed to have a reputation stored with the AgentController.

• Check-in: Agents notify the AgentController of their intention to participate in

the next round of observation exchange and classification. The AgentController

notes the source address and port of each CHECKIN message.

• Transition: The AgentController makes an observation sharing assignment for

each Agent that checked in. It does this by constructing a roulette wheel from

the reputations of other checked-in Agents. This roulette wheel is used to make

a sharing assignment stochastically with preference given to Agents with higher

reputations. The AgentController notifies the selected Agent with an ASSIGN

message.

• Assignments: Selected Agents receive assignments. Some Agents may receive

52

MFIRE MAS

check-in

observation exchange

END observation period

controller notifies all selected subscription providers

agents calculate features and send to subscribers

agents classify activity and send to controller

controller waits for
RESULTS from all agents

all agents wait to
receive MOVE/STAY

controller makes global classification,
updates agent ratings, and sends each

agent MOVE or STAY

[simulation not over]

[simulation over]

END Awaiting RESULTs

END EXCHANGE

END Awaiting CHECKINs

providers receive
assignments

END Awaiting MOVE/STAY
agents migrate or stay

(a) Activity Diagram

Controller Agent 2Agent 1

check‐in

assignments

exchange

results

move/stay

check‐in

…

(b) Communications Example

Figure 8. MFIRE activity and client-server diagrams showing the system’s normal flow
of execution

53

multiple sharing assignments, while others receive none. For each assignment

received, the Agent stores the address and port for the designated recipient as

contained in the ASSIGN message.

• Transition: End the current observation cycle, calculate features, and start

a new observation cycle. Observations are traffic statistics collected on each

timestep. At the end of each observation cycle, there exists an Observation set

for each traffic statistic measured. Features typically summarize one or more

of these Observation sets. Agents calculate Feature values and store them for

later use. Any Agents with sharing assignments also send their set of Feature

values to all assigned recipients using SHARE messages.

• Observation Exchange: Agents wait to receive SHARE messages. Each Agent

expects to receive one.

• Transition: Agents use two classifiers to make two classifications for the net-

work activity observed over the previous cycle. One of these uses only locally

calculated feature values, while the other uses the combined set of local and

received feature values. Agents send the results to the AgentController in a

RESULTS message.

• Results: The AgentController receives RESULTS messages from all checked-in

Agents.

• Transition:

– The AgentController tallies the votes. In each RESULTS message, the

vote is the classification made using the combined local and shared feature

value sets. When this is not available because the Agent never received a

SHARE message, the AgentController uses the classification made using

54

Algorithm 1 MAS Classification

denote classification by agent ai at time t using only local feature values as lit
denote classification by agent ai at time t using combined local and shared feature
values (e.g. from peer agent aj) as cit
denote the majority classification at time t as mt

denote network activity classes as Ak ∈ A for 1 ≤ k ≤ K
denote the vote tally for network activity class Ak at time t as vkt

Require: 0 ≤ θl ≤ 1
procedure MASClassification(θl)

for all received RESULTS messages resultsit do
if resultsit contains a combined classification cit then

add 1 to the vote tally vkt for Ak for k = cit
else

add θl to the vote tally vkt for Ak for k = lit
end if

end for
mt = k : vkt = max

h
vht where 1 ≤ h ≤ K

return mt

end procedure

only the local feature value set, weighted for less influence. The system’s

classification is the majority vote. See Algorithm 1, in which θl represents

the weight of a classification derived from local feature values only.

– The AgentController updates each Agent’s reputation. For each Agent,

each sharing assignment it had garners a rating which can positively or

negatively affect the reputation. Every Agent furthermore has its rep-

utation decayed regardless of whether it had a sharing assignment, and

regardless of whether it checked in. See Algorithm 2.

– The AgentController sends each Agent a STAY or a MOVE instruction

based on whether the Agent’s reputation is above or below a threshold.

• Wrap-up: Agents wait to receive MOVE or STAY. Upon receiving MOVE, an

Agent selects a neighboring node at random and sends a MIGRATE message

to the node’s AgentManager.

55

Awaiting
CHECKINs

Awaiting
RESULTs

Awaiting End of
Observation Period

Awaiting End of
Observation Exchange

Awaiting
MOVE/STAY

CHECKIN

SYNC
SYNCREPLY

RESYNC

STAY MOVE

RESULT

ASSIGN

SHARE

CHECKIN

RESULT
SHARE

ASSIGN

SYNCREPLY

RESYNC

STAY

MOVE

END CHECKIN

END RESULTS

[reputation >= threshold] [reputation < threshold]

[simulation continues]

SYNC

SYNCREPLY

SYNC

CHECKIN

RESULT

RESYNC

[simulation ends]

TIMEOUT

retry = 0;

retry++;

[retry < 3]

[retry >= 3]

MIGRATE

RESYNC
END EXCHANGE

ASSIGN

END OBS PERIOD

SHARE

MOVE

STAY

STAY

MOVE

TIMEOUT

[simulation ends]

[simulation continues]

Only one SHARE message
expected. Verify message
is current.

[Share.getPeriod() >= current_period]

 [Share.getPeriod() < current_period]

Synchronizing
Awaiting Start of

Observation Period

Awaiting Start of
CHECKIN

AgentController Agent

Figure 9. MFIRE detailed activity diagrams for the controller and the agent

56

Table 2. Comparison of Iterations 1 and 2

Iteration 1 Iteration 2

AS Network Scale ‘local’ only ‘local’, ‘regional’, ‘global’

AS Network Size 10 nodes 100 nodes

AS Network Topology manually designed produced by Internet topol-
ogy modeler

Node Behavior restricted processing capac-
ity / shut down under heavy
load

unrestricted processing ca-
pacity

Packet Payloads simulated quantity only payloads implemented and
used for interprocess com-
munication

Attacks DoS DDoS, Worm, Scan

MAS classifier minimum euclidean dis-
tance

support vector machine

MAS communications out-of-band, instantaneous in-band with network-based
delays

Feature Selection wrapper method in a
MOEA

none

MAS Objective identify source and target of
DoS attack

identify type of attack

Figure 9 shows the flow of execution of the Agent and the AgentController inde-

pendently. From this figure it can be deduced that the AgentController has merely

two states: it is either waiting for Agents to check in, or it is waiting for the Agents

to send their results, with significant actions taking place on the transitions between

states as described above. Meanwhile, the Agent has a collection of synchronization-

related states, and three of the nominal states described above. It is either waiting

for an ASSIGN message from the AgentController, or it is waiting for a peer to send

a SHARE message, or it is waiting for a MOVE or STAY message from the Agent-

Controller.

Table 2 summarizes the key differences between this research (Iteration 2) and the

57

system that is quantitatively tested by David Hancock [37] (Iteration 1). In general,

MFIRE features more realistic networking than in previous experimentation.

3.1.3 Observations and Features.

Each observation in MFIRE represents a traffic statistic collected over the dura-

tion of a single time period. These are used to derive feature values, which are the

average and standard deviation of the observations within one observation period.

We take inspriation for flow metrics from both Cisco NetFlow [95] and Moore [65],

with emphasis on implementing metrics applicable to microflows (see Section 2.3).

The fourteen metrics defined here represent a good cross-section of possible flow-based

statistics, but future work should examine additional metrics, including implementing

a macroflow approach (see Section 2.3 and [65]).

The fourteen observations collected by agents in MFIRE:

1. Average number of bytes per < destaddr, destport >-tuple

2. Average number of bytes per < sourceaddr, sourceport >-tuple

3. Number of distinct destination addresses

4. Number of distinct < destaddr, destport >-tuples

5. Number of distinct destination ports

6. Ratio of destination ports to destination addresses

7. Total number of inbound bytes

8. Total number of inbound packets

9. Ratio of packets to < destaddr, destport >-tuples

10. Ratio of packets to < sourceaddr, sourceport >-tuples

58

11. Number of distinct source addresses

12. Number of distinct < sourceaddr, sourceport >-tuples

13. Number of distinct source ports

14. Ratio of source ports to source addresses

Clearly there are many linear dependencies in this set of observations. Care must

be exercised when performing feature selection from this set.

3.1.4 Attack Models.

This research consists of modeling three attacks: DDoS, worm propagation and

vulnerability scan, and one normal (non-attack) mode. In all cases, background

traffic is flowing on the network, and is the predominant source of packets. The

attacks implemented in the current research are designed primarily to test to the

effectiveness of the MAS reputation system. They are in no way a comprehensive

suite of possible malware. Additional attack models should be explored in future

research.

The normal (non-attack) mode consists of only background traffic. For this the

Pareto model described in Section 2.1 is used with parameters α = 2.0, and C ranges

from 0.01 to 0.1, randomly selected prior to each simulation. All other attacks models

also use this background traffic.

The DDoS attack consists ofN processes which flood a single target T with packets

to port p at rate r packets per timestep. N , T , p and r are selected randomly prior

to each simulation. The node locations of the DDoS processes are random, selected

from any nodes in the network.

Worm attacks are implemented by a set of vulnerable processes running on a

subset of nodes in the network. A worm process is equipped with a single exploit

59

that targets a single vulnerability. If the exploit matches the vulnerability on the

target node, the worm is able to instantiate a copy of itself on the target. Worms

do not scan for vulnerabilities before attempting the attacks; they simply make an

attempt. However, the worm process never sends an attack to a non-existent node.

This is only possible if the worm has previously performed a scan, or otherwise been

given knowledge of the current network. The current implementation assumes this

knowledge is available to the worm a priori.

A vulnerability scan is modeled after simple TCP-connect port sweep. Note that

the current MFIRE environment does not implement the TCP protocol explicitly,

however, all processes within the environment are configured to mimic the effects

of TCP and provide replies to incoming packets as needed. In particular the con-

nect message may be replied with a response equivalent to an ACK, ICMP port

unreachable, or ignored. The scan process runs on a single random node, which sends

connection requests to a random subset of N target nodes on the network at rate r

packets per timestep. The scan sends a packet to all ports in the complete range of

common port numbers. N and r are randomly selected prior to each simulation.

3.2 Training the Agents

With the simulation environment set up, we can now turn our attention to agent

training, in preparation for executing actual experiments. Agent training consists

of generating the training data, followed by training the classifier on that data. In

general, we refer to generating training data as running in offline mode, and testing

the MAS as running in online mode. Many of MFIRE’s functionality performs the

same in both modes, and Figure 10 shows the relationship between the two. A more

detailed view is provided in Figure 23 in Appendix A. In offline mode, agents do not

make classifications or move; they are merely located in the network to observe and

60

Figure 10. MFIRE offline training and online testing execution paths

log flow-based traffic statistics. A classification model and scale file are the outputs

generated from this data. In online mode, agents are making active classifications

and moving in the network. The agents’ classifiers use the classification model and

scale file as inputs.

The entire training and testing process is described in three high-level steps:

• First, generate training data (MFIRE offline mode)

• Second, train the classifier (external process)

• Third, test the MAS (MFIRE online mode)

The first two steps are conducted once. After the classifier is trained, the same one

is used in all agents, for both experimental models: reputation, and free-movement.

The final step is performed multiple times, as needed for the final experiments. Ad-

ditionally, note that steps one and three take place within the MFIRE framework

directly, and once set up do not require much user interaction. Step two requires

additional user interaction, and is conducted with external software packages.

61

3.2.1 Generating training data.

The primary class for creating training data is contained is DataGenerator. This

executes simulations in offline mode—that is, agents are located in fixed, random

positions and do not move or generate attack classifications. In all other respects,

the simulation environment behaves exactly the same way as online mode. To create

training files, two agents are located in the network, and record all local flow-based

statistics observed at their node. These files represent raw local data only.

After all of the required simulations are performed, several functions are applied

to the local feature data. First, the two local feature files are combined to create a

single combined feature file. Recall that local features and combined features are used

separately, and an individual classifier is created for both. Local features from two

different agents are converted into three combined features: average, multiple, and

difference of the two. From this point on in the process, the local data and combined

data remain distinct entities and are treated in parallel, although they are handled

in the same way. Second, the feature elements are scaled to between 0 and 1, and a

scale file is created, to be used later in testing. Third, the data is split into separate

training and validation sets.

An additional operation to scrub the data could be added to this process as well.

Scrubbing outliers has been shown to reduce training time and possibly improve

classification generalization by reducing overfitting. This is not part of the current

research, but should be explored in future work.

3.2.2 Training the Classifier.

The chosen classifier for this research is a Support Vector Machine (SVM) (see

[53, 38]). SVM is selected due to its “high generalization performance without the

need to add a priori knowledge,” even in the face of many features [16]. Other

62

classifiers present many potential alternatives, and should be examined further in

future research. The MFIRE environment is written to work with any classifier.

To realize an SVM implementation, the LibSVM package is selected due to its Java

integration and its useful grid search method for finding optimal training parameters.

LibSVM provides the needed multi-class classification technique, implemented inter-

ally as the standard one-vs-one model. We make use of the LibSVM library function

svm predict, standalone executables svmtrain and svmscale, and python script grid.py.

Feature selection is another important aspect to training a classifier. If a smaller

subset of quality features can be provided to the classifier, it will be faster to train,

and may improve classification generalization by reducing overfitting. One possible

approach is to use Bhattacharya coefficient analysis [37]. Another simpler, albeit

more computationally intensive, approach is the “leave-one-out” method. In this,

the classifier is tested multiple times, each with leaving one feature out. In this

way, the experimenter can see which features are useful are which are not. This

method is crude in that it treats features as singular entities and does not consider

the combinatorial effects they may have. A third method is to do a search (see Section

2.8) for useful features. None of these methods are part of the current research, but

should be explored in future work.

3.3 Movement models

The final primary element of MFIRE is the functionality which controls agent

movement. Recall that the goal of this research is to continue the development of a

scalable software architecture for a multi-agent, flow-based intrusion detection system.

The following high-level objectives support this goal:

• Design and evaluate a multi-agent classifier using a Reputation system

• Design and evaluate a multi-agent defense system using an Evolutionary Algo-

63

rithm

In this iteration of the research, the agents use the same classifier for both of the

stated objectives. We are interested in comparing the performance of the MAS using

two different models for the way agents move in the network. The following sections

describe the reputation model and the free-movement model. These two models are

compared to a baseline model of non-moving agents (fixed model). The fixed model

is trivial, and is not described here in detail.

3.3.1 Agents using a reputation model.

The collective activity of the population of agents is tied together at the multi

agent system (MAS) level through a controller, which processes the classification

decisions (‘votes’) of individual agents and reports the majority result. Prior to

classification, agents may receive sharing assignments from the controller, and share

feature values accordingly. Each agent is then able to make a classification based on

local as well as shared feature values.

The controller stores agent reputations. Each round, it calculates a rating for each

sharing assignment an agent was given. The rating depends on a heuristic measure of

how much the shared feature values helped or hurt the recipient’s ability to classify in

step with the majority. After all ratings are processed, the controller may then decay

each agent’s reputation by 10%. The idea is to motivate agents to explore other nodes

when they are not perceived as making any positive contributions to the community.

Algorithm 2 details the idea. The values for variables neutral, positive, bignegative,

and smallnegative are reflected in Table 3.

MFIRE employs a centralized reputation system per the broad categorization of

[43]. This approach puts the reputation of each agent under the control of a central

reputation manager. It allows simplified management of agent interactions, but is

64

Algorithm 2 Reputation Calculation

denote classification by agent aj at time t using only local feature values as ljt
denote classification by agent aj at time t using combined local and shared feature
values (e.g. from peer agent ai) as cjt
denote the majority classification at time t as mt

Require: 0 < decay ≤ 1
procedure CalculateReputations(decay)

for all agents ai do
for all recipients aj of information provided by ai do

if cjt = mt then
if ljt = mt then

ratingij ← neutral
else

ratingij ← positive
end if

else
if ljt = mt then

ratingij ← bignegative
else

ratingij ← smallnegative
end if

end if
reputationi ← reputationi + ratingij

end for
reputationi ← reputationi × decay

end for
end procedure

65

Table 3. How the AgentController Rates Providers of Shared Feature Values

Receiver’s classification result, based on feature sets used

Local Only Local + Shared Rating

Same as majority Same as majority +0

Same as majority Differed from majority -0.1

Differed from majority Same as majority +0.1

Differed from majority Differed from majority -0.05

prone to single point-of-failure issues. Future research will examine the value of a

distributed approach.

Agents start with a base reputation value of 0.5 ± 0.05, which is approximately

twice the migration threshold value of 0.25 used in experimentation. The AgentCon-

troller uses Table 3 to modify reputations according to how well providers’ obser-

vations helped receivers vote in step with the majority. When an agent moves to a

new node, its reputation is reset to the base value. The small ±0.05 random offset

imparts some non-deterministic movement into the agents, and is needed to combat

an observed behavior which causes agents to move in lockstep with each other. This

occurs if agents all make the same classifications period after period, which happens

when they are using a very accurate classifier that is not very sensitive to location

in the network. Moving all at once is undesirable because no attack classification is

given if all agents are in motion. Recall that agents can either be classifying an attack

or moving, not both. In addition to this random offset, we also only allow at most

50% of the agents to move at one time. This ensures that in every period there are

enough stationary agents to make a classification.

When agents vote in step with the majority, and would have done so even without

the use of the shared observations, there is no reason to rate their providers positively

or negatively. On the other hand, if the agent is prepared to vote in step with the

majority, but ends up not doing so due to the influence of the shared observations, the

66

Figure 11. Classification Rule

judgment of the crowd is viewed as superior to the opinion of a single peer and thus

the provider is rated negatively. Real benefit is perceived when they would have voted

out of step with the majority but for the “corrective help” of the shared observations,

and in such cases providers are rated positively. If the agent votes out of step with the

majority and would have done so even without the shared observations, the provider

is rated negatively. But, not so much as if the shared observations had dissuaded the

agent from otherwise voting in step with the majority.

3.3.2 Agents using a free-movement model.

In the reputation model, agents rely on a central controller to provide move or

stay commands. The controller keeps track of reputation of each agent, which is

used for both sharing assignments and movement. The agents themselves do not

make any local decisions. In contrast, the model introduced here decouples agent

movement from the reputation system, and allows agents to move freely on their

67

Figure 12. Movement Actuator

own. The central controller still keeps track of the reputation of each agent for feature

sharing. Each agent controls its own movement locally, via an actuator which provides

a binary activate or non-activate (boolean) decision. SOMAS uses this approach,

and implements the actuator shown in Figure 11, which takes weights from a center

point to determine a binary activation area. These weights are found using a genetic

algorithm.

This research implements a similar model, but incorporates a stochastic element

to the activation decision. It is important to keep agent movement in the network

somewhat randomized, so that they do not cluster at the same node and never explore

other areas. In addition, we like for a potential actuator to be easily manipulated

with a stochastic search routine, such as genetic algorithms. The solution we propose

is a probabilistic segmented actuator, shown in Figure 12. This actuator takes inputs

from N features, and outputs a activation probability. Probability maps are stored

directly in the actuator, and it functions as a quick lookup table, based on the location

68

in feature space. To develop and train such an actuator, one must define three things:

dimensionality (number of features), number of segments, and choose which specific

features are selected. The movement actuator may use the same local and combined

feature sets available to the agents’ attack classifier. For the research, we examine

a 2-feature classifier, with 16 total segments. Features are selected randomly at the

start of the training session. This choice makes a good reference for qualitatively

testing agent behavior when using this actuator. The next chapter provides details

on this as well as a full experiment on the classification capabilities of the centralized

Reputation system.

69

IV. MFIRE-2 Experimentation and Analysis

The previous chapter describes the implementation of MFIRE-2, including the

MASON discrete event simulator, networking features, attack models and SVM clas-

sification. We now turn our attention to testing that the framework operates as

intended, and we perform experiments to validate the classification performance of

the MAS. The next section introduces high-level concepts on experimental design. In

Sections 4.2 and 4.3 we describe the test plans for meeting our two objectives: the

reputation model, and the free-movement model.

4.1 Experimental Design

It is important for an experimental design to help determine whether a new heuris-

tic method contributes something important. Barr et al. [9] present a list of possibil-

ities. A heuristic method makes a contribution if it is:

• Fast: produces high-quality solutions quicker than other approaches;

• Accurate: identifies higher-quality solutions than other approaches;

• Robust: less sensitive to differences in problem characteristics, data quality, and

tuning parameters than other approaches;

• Simple: easy to implement;

• High-impact: solves a new or important problem faster and more accurately

than other approaches;

• Generalizeable: having application to a broad range of problems;

• Innovative: new and creative in its own right.

70

Barr furthermore asserts [9] that research reports about heuristics are valuable if

they are:

• Revealing: offering insight into general heuristic design or the problem structure

by establishing the reasons for an algorithm’s performance and explaining its

behavior;

• Theoretical: providing theoretical insights, such as bounds on solution quality

From Section 1.3 the goal of this research is to develop a scalable software architec-

ture for a multi-agent, flow-based intrusion detection system. We have two high-level

objectives:

• Design and evaluate a multi-agent intrusion detection system using a Reputation

system

• Design and evaluate a multi-agent intrusion detection system using stochastic

search

The heuristics defined by Barr are contained directly within the objectives: Rep-

utation system and Evolutionary Algorithm. Each objective leads to a distinct ex-

periment that must be conducted, and are defined in the following sections.

4.2 MFIRE-2 Reputation System Experimental Design

Testing the effectiveness of the MFIRE-2 MAS using Reputation consists of train-

ing two classifiers (local and combined) using data generated offline, and testing the

MAS online in two modes of operation. In particular, we seek to find the overall

MAS classification accuracy with a 4-agent and 8-agent model. For both models,

we observe the accuracy at the initial time in the simulation, and at the end. The

71

change in accuracy during this time represents the increase in performance attained

from agents finding better vantage points in the network.

To create the training data, we run repeated simulations on a single, 100-node re-

gional network, where each simulation represents a single attack scenario. The attack

is selected one-at-a-time from our four defined scenarios: Normal, DDoS, Worm, and

Scan. Flow-based statistics are captured in two places in the network and processed

to create two training sample sets, local data and combined data. We then train

both classifiers with an SVM using an RBF Kernel, 5-fold cross validation, and a grid

search for optimal parameters C and γ. The two resulting classifier models are used

for all subsequent testing.

To limit the variance in the experiment, all four scenarios are executed 20 times,

and average accuracy recorded. We perform 30 sample observations, which yields

4800 total simulations needed. This sample size is chosen to allow first and second

order statistics to be used to evaluate the results. More observations are preferred,

and 30 is an acceptable number to achieve a good confidence level while still running

in a reasonable time. Each simulation must be performed for a minimum number of

necessary time steps to ensure agents have time to move to better vantage points,

and a time span of 80 time periods is conservatively allocated.

Experiment summary for the Reputation model:

• Four attack scenarios: Normal, DDoS, Worm, Scan

• Each simulation: 80 time periods

• One observation: four scenarios over 20 simulations each

• Total sample size: 30 observations

• Number of agents: four or eight

72

4.3 MFIRE-2 Evolutionary Algorithm Experimental Design

This section defines the approach used to qualitatively validate the functionality

of the free-movement model, using a genetic algorithm. The free-movement model

is created by running a generational genetic algorithm on a population of candidate

solutions. Each successive generation, the individuals become more adapted to solving

the problem. We conduct the GA with the following parameters to qualitatively

validate its functionality:

• Single objective: maximize overall classification accuracy

• Individual solution: real-valued agent movement actuator

• Feature selection: two random features selected

• Maximum evaluations: three generations

The fitness function for this experiment is defined as:

• Four agents in the network

• Four scenarios: Normal, DDoS, Scan and Worm

• Simulated for two observation periods

• Improvement: difference between final accuracy and initial accuracy

• Fitness: average improvement over 2 simulations

The test parameters and fitness function defined here are not meant as a complete

method to find a near-optimal movement actuator, but rather as a method for validat-

ing the core functionality of the MFIRE-2 free-movement model. Specific qualitative

test cases for the free-movement model are:

73

• Fitness function

• Polynomial mutation

• Simulated Binary Crossover (SBX)

• Binary tournament selection

• Parent-child replacement

• Convert actuator to chromosome

• Convert chromosome to actuator

• Save actuator model

• Read actuator model

• Agent behavior

The final results of both the Reputation model and free-movement model are

presented in the next section.

4.4 Analysis

The next two sections provide the detailed results for the experiments defined in

Section 4.1.

4.4.1 MFIRE-2 Reputation System Performance Assessment.

The MFIRE-2 system is tested with the plan described in Section 4.2. Figure 13

shows the number of agents that move in each time period. Figures 14 and 15 show

the average accuracy and false positive rate for the MAS at every time period, for

74

Figure 13. Average number of agents moving each period

Figure 14. 4 agents using reputation model: accuracy (upper curve) and false positives
(lower curve) vs. time

75

Figure 15. 8 agents using reputation model: accuracy (upper curve) and false positives
(lower curve) vs. time

the 4-agent and 8-agent models. Each data point is the average of 80 simulations: 20

for each of the four scenarios.

We now evaluate the relative performance of Reputation system when using 4 or

8 agents in network. When making a classification, the result can be correct, a false

positive, or a false negative (see Section 2.2). Accuracy = numbercorrect
total

. Accuracy

data for all 30 sample observations is provided in Table 5. The columns show results

for each of the two experiments: 4-agent and 8-agent, and provides both the initial

and final accuracy. The same data is shown as a histogram in Figures 16 and 17, and

as a box plot in Figure 18.

To compare any two of the models we use Wilcoxon Rank Sum (or Mann-Whitney)

test, which is a non-parametric statistical hypothesis test for assessing whether one of

two samples of independent observations tends to have larger values than the other.

76

Table 4. Reputation System Overall Accuracy

Initial: 4-
agent

Initial: 8-
agent

Final: 4-
agent

Final: 8-
agent

mean 0.678 0.638 0.821 0.890
median 0.688 0.650 0.820 0.906
stddev 0.038 0.043 0.032 0.043

Figure 16. Accuracy histogram: 4 agents

77

Figure 17. Accuracy histogram: 8 agents

Figure 18. Accuracy box plots

78

Table 5. Wilcoxon Rank Sum p-values

p-value

Initial:4-agent vs. Final:4-agent 2.1× 10−22

Initial:8-agent vs. Final:8-agent 1.8× 10−30

Initial:4-agent vs. Initial:8-agent 4.5× 10−4

Final:4-agent vs. Final:8-agent 3.3× 10−9

It remains the logical choice when the data are ordinal but not interval scaled, so

that the spacing between adjacent values cannot be assumed to be constant. The

MannWhitney test is more robust than the Student t-test, as it is less likely to spuri-

ously indicate significance because of the presence of outliers. We use the MATLAB

ranksum function to compare of all six possible combinations of the three models

under test. A p-value of less than 0.05 indicates a significant difference between the

two models under comparison, with 99% confidence. A p-value of larger than 0.05

indicates there is not sufficient evidence that the two models perform differently.

4.4.2 MFIRE-2 Evolutionary Algorithm Performance Assessment.

The free-movement model is successfully validated by performing the following

individual tests. Observations are performed during run-time code debugging, as

well as a correctly formed outputs.

• Fitness function—Correctly calculates the average accuracy improvement over

4 scenarios and 2 simulations each

• Polynomial mutation—jMetal executes all mutation operations successfully, and

new actuator is created with the correct new real-valued parameters

• SBX crossover—jMetal executes all crossover operations successfully, and two

new child actuators are created with the correct new real-valued parameters,

from two given parent actuators

79

• Binary tournament selection—jMetal correctly selects parents based on fitness

• Parent-child replacement—Children replace their own parents during crossover

operations

• Convert actuator to chromosome—The movement actuator (n-dimensional class

structure) is converted to a jMetal decision variable (one-dimensional, real-

valued list)

• Convert chromosome to actuator—The jMetal decision variable (one-dimensional,

real-valued list) is converted to a movement actuator (n-dimensional class struc-

ture)

• Save actuator model—Movement actuator model is saved to a new text file

• Read actuator model—Movement actuator is read from an existing text file

model

• Agent behavior—All agents in the MAS operate in accordance with their local

movement actuator. The Agent Controller no longer dictates agent movement.

The voting system, reputation system, SVM classifier, Agent Managers, and all

networking features operate correctly while in this mode

This concludes the testing and validation of the two MFIRE-2 classification mod-

els. The complete quantitative analysis is performed for the Reputation model, using

a 4-agent and 8-agent system. The results gained from this experiment provide a

well-formed baseline to compare with potential future approaches. An additional

qualitative analysis of the free-movement model indicates that all features function

correctly, and it is ready for additional testing. The final conclusions for this research

are provided in the next chapter, as well as some suggestions for future work.

80

V. Conclusions and Future Research

The goal of this research is to continue development of a scalable software ar-

chitecture for a multi-agent, flow-based intrusion detection system. The following

high-level objectives support this goal:

• Design and evaluate a multi-agent intrusion detection system using a Reputation

system

• Design and evaluate a multi-agent intrusion detection system using stochastic

search

We are successful in achieving both objectives. The original MFIRE 1.0 frame-

work is updated to indentify simulated network attacks using a SVM classifier. In

addition, two models of agent movement are introduced: one based on a central

reputation system, the other optimized using a genetic algorithm. For the first objec-

tive, A baseline experiment is conducted to find the performance of the MAS when

agents do not move (68% accuracy) (see Section 4.4.1). This represents the lower

bound of classification performance. Moving agents for both the 4-agent model (82%

accuracy) and 8-agent model (89% accuracy) provide a conclusive increase in classi-

fication performance over fixed agents. In both cases, the reputation model’s lowest

observed final accuracy is higher than the model’s highest observed initial accuracy.

This clearly indicates greater performance when agents can find better vantage points,

and is supported by the low p-values with the Wilcoxon Rank Sum test.

One may ask why the attained accuracy is not closer to 100%. The reputation

model and free-movement model introduced in this research are not a panacea. In

general, there are five sources of error that prevent the MAS from achieving 100%

accuracy:

81

1. Limited flow-based statistics are collected on every node

2. The quality/amount of data used for training

3. The ability of the classifier training algorithm to construct a good model

4. The voting system used to convert individual agent classifications into a final

combined classification

5. Number and location of agents in the network

Essentially, our research focuses on holding the first four items constant, while

performing experiments on number 5. Clearly there may be ways to improve the

other aspects listed above, and should be explored in future research. However, the

ultimate goal of developing a scalable software architecture for intrusion detection is

realized. MFIRE-2 has shown good comprehensive performance in defending military

networks from attacks, and should be carefully considered for implementation in cyber

warfare applications.

If selected for continued research or implementation, one key experiment that

should be conducted is to find the maximum potential classification performance

of the system. This research describes the “lower bound” of performance as a set

of non-moving agents. However, we have yet to test any “upper bound”. Indeed

this is harder to quantify, but one possible approach may be to simply increase the

number of agents to the maximum. That is, set one fixed agent at every node. This

essentially takes movement out of the equation. Reputation could still be maintained

for feature sharing assignments. However, no assessment is done to validate how the

reputation and voting system would respond in this situation. In particular, agents

would no longer have their reputations reset by moving, which could have unexpected

consequences.

82

These results open many additional avenues for future research. In particular, one

of our original goals is to incorporate SOMAS work into MFIRE. SOMAS uses agents

with many actuators to take action within the network. These agents are optimized

using a genetic algorithm. It is possible that many different types of agents could

exist on the network simultaneously, each providing specific functionality at specific

locations. This thesis began this endeavor by creating a single movement actuator,

but there is still much to do on this front. In particular, to run any stochastic search

(e.g., genetic algorithm), MFIRE needs to be made more efficient in conducting sim-

ulations. Two approaches are needed to achieve this. First, code must be optimized

to run simulations faster. This requires rethinking the way MASON is used to set

up and run simulations, and the way agents move in the network. Up to this point,

the focus was on well-formed code; not necessarily on efficiency. Second, simulations

must be made to cleanly run in parallel. Fitness functions for a genetic algorithm

would gain considerable speed-up from concurrent processing on a cluster.

A key element of MFIRE-2 is an inherent ability to detect changing attacks in a

dynamic networking environment. Because the agents never actually converge to a

perceived optimal vantage point, they continue to explore the network looking for new

threats. This approach lends itself particularly well to a wireless environment, where

network layout is less constant than a wired network. The focus of our research is on

a single 100-node AS-level layout, but is certainly not limited to that. An exciting

alternative would be to explore the system’s capabilities in a generalized airborne

wireless domain.

Other areas of future work are presented throughout the text, and we provide

some additional items here. First, the attack models that are introduced are sim-

plified versions of those seen in the real world. More complex, realistic models are

possible, especially for worm attacks and vulnerability scans. Botnets provide an

83

exciting opportunity to combine the effects of multiple attacks into a single package.

Ed Skoudis’ book [80] provides a good summary of possible attacks. Second, the rep-

utation and voting system could be improved by changing to a probabilistic model.

Currently, agents in the system provide a single best-guess, which is combined into

a simple majority vote. Another approach would be for agents to provide a proba-

bility estimate for each possible attack. Third, some knowledge of node reputation

should be retained. As is, agents move to a new random node when their reputation

drops low enough. But the low reputation they garnered at that location is lost, so

in future time periods it is likely that another agent will move to this “bad” location.

Keeping track of reputations at the node level could improve performance. Fourth,

MFIRE may be expanded to simulate networks down to a finer level of detail than

top-level autonomous systems and gateway routers. Although one may not want to

simulate every routing detail in these sub networks, there is potential benefit in al-

lowing agents to see explicit details of the source and destination addresses. Fifth,

agents may be given access to information contained in packet headers. This provides

a major advantage in detecting certain types of attacks, in particular vulnerability

scans. Finally, while the framework introduced in this research is based around a

simulated network environment, there is no perfect substitute for real-world network

traffic. Future work should look at incorporating captured packet traffic on existing

networks.

MFIRE is mature enough that these improvements and others can be incorporated

readily. The object-oriented framework can be expanded or focused as needed to run

many conceivable experiments with multiagent systems and intrusion detection.

84

Appendix A. MFIRE System Details

This appendix provides some additional MFIRE details for agent communication,

reprinted from [37] for clarity. In addition, we include a detailed diagram depicting

the relationship between online and offline modes of execution for MFIRE.

The figures provided in this section show the messages used in MFIRE. In each

figure, the left side is used for the sender. The type of the message is displayed first,

and below it, the format. The format is essential for extracting message components

from the packet’s payload, which itself is a single string. On the right side of each

figure, we show the actions that are taken by the recipient.

Figure 19 shows the messages sent from the controller and received by agents.

Figure 20 shows the messages sent from agents and received by the controller.

Figure 21 shows the SHARE message used for feature value exchange between

agents.

Figure 22 shows the messages involved in agent migration. MIGRATE is sent

by an agent that received MOVE from the controller previously. It is sent to the

AgentManager at the migration destination node. The MIGRATE message contains

all information required to reinstantiate the agent at the distant end. MIGRATEACK

is sent by an AgentManager that received a MIGRATE message previously. It is sent

to the AgentManager at the node where the original copy of the migrating agent still

resides. The AgentManager that receives MIGRATEACK terminates the agent.

Figure 23 depicts the relationship between offline training and online testing of

a classifier, when using a SVM trained with libsvm. The bottom half lays out the

execution of initial offline training, which generates a SVM classifier model and as-

sociated scaling file. The top half represents the online testing of a classifier. It uses

the existing classifier model and scale file.

85

ASSIGN

RESYNC

MOVE

STAY

SYNCREPLY

ASSIGN:[end of OBSERVE phase]:
 [dest address of assignment]:[dest port]

ASSIGN

verify message is current:
Assign.getEndObserve() == this.endobserve?
If so, store dest address and port in ArrayList<Integer> tracking all
recipients to whom this agent needs to send feature measurements
at the end of the observation period

RESYNC

RESYNC

send SYNC to controller and go to SYNCHRONIZING mode

SYNCREPLY:[t0]:[t1]:[t2]:[start of next observation period]:
 [CHECKINSlength]:[OBSERVElength]:
 [EXCHANGElength]:[RESULTSlength]:
 [MOVESTAYlength]

SYNCREPLY

Use NTP offset calculation: offset = ((t1-t0)+(t2-t3))/2 and add this
offset to the agent's clock. t3 is the agent's time of receipt of this
SYNCREPLY. Using the updated clock, start collecting at the start of
the next observation period and send CHECKIN at the earliest
opportunity.

MOVE:[end of MOVE/STAY phase]

MOVE

verify message is current:
Move.getEndMoveStay() == this.endmovestay?
If so, send MIGRATE to a neighboring node.
Otherwise, send SYNC to controller and go to
SYNCHRONIZING mode.

STAY:[end of MOVE/STAY phase] verify message is current:
Move.getEndMoveStay() == this.endmovestay?
If so, send MIGRATE to a neighboring node.
Otherwise, send SYNC to controller and go to
SYNCHRONIZING mode.

STAY

Figure 19. MFIRE: Messages sent by the controller and received by agents

86

SYNC

CHECKIN

RESULTS

CHECKIN:[end of CHECKIN phase]:[agentID]

CHECKIN

verify message is current:
Checkin.getEndCheckin() == this.endcheckin?
If so, store source addr & port in ArrayList<Integer>s so that at the
end of the Checkin phase, a sharing assignment is made.
Also, add new entry to agentRatings if the agentID hasn't been seen
before. Set initial rating to a common base value.
Otherwise, send RESYNC.

SYNC:[t0]

SYNC

Reply with SYNCREPLY

RESULTS:[end of RESULTS phase]:[agentID]:
 [combined classification]:[local classification]

verify message is current.
If so, register the combined classification as one vote in the global
classification, unless the combined classification == NONE,
in which case we can use the local classification but weighted
differently than the combined classification.
If the message is not current, disregard the classifications and
send RESYNC.

RESULTS

Figure 20. MFIRE: Messages sent by agents and received by the controller

SHARE

SHARE:[end of EXCHANGE phase]:
 [feature1 ID]:[feature1 value]:
 [feature2 ID]:[feature2 value]:[...]

verify message is current.
If so, store features to use at the end of the EXCHANGE phase
to make the combined classification.
If the message is not current, disregard.

SHARE

Figure 21. MFIRE: Messages sent by agents to other agents

MIGRATE

MIGRATE:
 [classifier class name],[param 1],[param 2],[...]:
 [observation 1 class name]*[o1 param 1]*[o1 param 2]*[...],
 [observation 2 class name]*[o2 param 1]*[o2 param 2]*[...],
 [...]:
 [feature 1 class name]*[f1 param 1]*[f1 param 2]*[...],
 [feature 2 class name]*[f2 param 1]*[f2 param 2]*[...],
 [...]

MIGRATE

Instantiate agent at this node.

MIGRATEACK MIGRATEACK

MIGRATEACK:[original port] Invoke this.host.killProcess([original port])

Figure 22. MFIRE: Messages involved in agent migration

87

F
ig

u
re

2
3
.

M
F

IR
E

d
e
ta

ile
d

o
ffl

in
e

tra
in

in
g

a
n

d
o
n

lin
e

te
stin

g
e
x
e
c
u

tio
n

p
a
th

s

88

local
observations

local features

Agent
end Exchange()

Agent
end Observe()

(offline)
data saved to
training files

local

local
features

features
,.-------,

!-----------.! combine

local
1 r------1 features
~ merge 1

combined !Batures (validation)

Controller
endAwaitingResults()

svm
predict

(offline test)

Appendix B. MFIRE Change Log

This section annotates the changes made from version 1.0 of MFIRE.

• New class ScenarioNetwork: Takes network and process parameters from an

input file instead of defined in code. This helps guarantee experiments are

consistent when run in online and offline modes (data generation versus testing).

This class replaces the need for the other individual network representations

(but not preclude thier use if needed).

• New class DataGenerator: Based on the Experiments class, DataGenerator

runs a simulation to generate training data.

• New class SVMScale: Used by classifiers to consistently scale data. Reads scale

files in libsvm format, and creates scale files during data generation.

• New class OnlineTest: Code base for running online simulations.

• Added new constructor to several mfire.process classes which allows them to

take a string of arguments during creation. This is used by ScenarioNetwork.

• Bug fix: Observation O DestFlows was updated to change an internal vari-

able (hash set destflows) from a class member to a local, like all the other

observations classes.

• New class SVMClassifier: uses libsvm to perform classification.

• AgentController now records classification output to a file, during online test-

ing.

• Bug fix: Agent class now uses a different delimiter for migrate messages. The

original caused crashes during moves.

89

• New class OfflineTest: uses existing simulation data to test classifier accuracy.

This was mostly used for debugging, and is not strictly needed to perform the

experiments listed in this thesis.

• Bug fix: MF Node.ProcessTopgenNodeLine now uses scale instead of TTL when

creating a new node.

• Fixed: Agent IDs are now being maintained between moves.

• Fixed: Reputation updates are now being correctly applied to the provider of

shared features, instead of the recipient.

• Bug fix: Agent reputation is now being reset after a move.

• Reputation change: when resetting reputation, a small plus-or-minus offset is

added to the default value. This fixes a problem where, rarely, agents would

move in lock step with each other and never explore the network in the preferred

stochastic manner.

• New class Actuator: serves as the base class for all agent actuators, similar

to Classifier. They take a feature set as input and output a binary “fire”

decision.

• New class Segmented2DActuator: one instance of an actuator. Takes two fea-

tures, and segments the firing decision into a probabilistic activation map.

Chosen for its ease of manipulation during genetic operations (mutation and

crossover).

• Integration with jMetal: Now calls the jMetal framework to run a single-

objective generational genetic algorithm. Uses a Segmented2DActuator for

decision variables. Implemented as a custom replacement for the jMetal gGA

class.

90

• New class SimulatedAnnealing: implements a simulated annealing algorithm,

as an alternative to a GA.

91

Appendix C. Evolutionary Algorithms: Details and

Applications

This appendix provides formalisms for generic, single objective evolutionary algo-

rithms as well as some examples of how evolutionary algorithms have been applied.

3.1 Evolutionary Algorithms: Details

For a single objective evolutionary algorithm, Bäck defines an EA as an 8-tuple[4]:

EA = (I,Φ,Ω,Ψ, s, ι, µ, λ)

where I is the space of individuals (analagous to the feasible region M). Φ : I → R

is a fitness function that assigns real values to individuals based on performance with

respect to the objective.

Ω = {ωΘ1 , . . . , ωΘz |ωΘi : Iλ → Iλ} ∪ {ωΘ0 : Iµ → Iλ}

is a set of probabilistic genetic operators ωΘi such as mutation or recombination.

Each operator is controlled by specific parameters summarized in the sets Θi ⊂ R.

The selection operator is

sΘs : (Iλ ∪ Iµ+λ)→ Iµ

which may change the number of individuals from λ or λ+µ to µ, where µ, λ ∈ N

and µ = λ is permitted. Here, λ is the number of offspring and µ is the number of

parents in the population. As with the probabilistic genetic operators, the selection

operator may make use of a set of parameters; specifically, Θs.

The termination criterion for the EA is expressed by ι : Iµ → {true, false}. The

92

generation transition function Ψ : Iµ → Iµ specifies the complete process by which we

transition from the population P of the current generation to that of the subsequent

generation:

Ψ = s ◦ ωΘi1
◦ . . . ◦ ωΘij

◦ ωΘi0

Ψ(P) = sΘs(Q ∪ ωΘi1
(. . . (ωΘij

(ωΘi0
(P))) . . .))

Here, {i1, . . . , ij} ⊆ {1, ..., z}. That is to say, Ψ is permitted to use a subset of

available, parameterized operators. Finally, Q ∈ {∅, P}. This way, Ψ may specify

whether selection includes the population as it existed prior to the current generation’s

transformation along with the transformed population. The operator ω0 : Iµ → Iλ

serves to change the population size so that the required λ offspring individuals are

produced from the µ parents. Selection reverts the population size to µ.

A population sequence P (t+ 1) = Ψ(P (t)),∀t ≥ 0 naturally results from Ψ, where

t denotes the generation. Members of P (0) are typically initialized randomly, but

P (0) may also be generated from a specified starting point.

Genetic operators come in many varieties but are broadly categorized by the

number of “parents” involved. Mutation is an example of an asexual genetic operator,

while recombination is typically sexual, involving two parents, but could be extended

(without basis in biology) to involve arbitrarily many parents.

Permissible mutations depend on the representation of the individual. A common

case is the bitstring representation. A bit-flip mutation flips the selected bit with some

probability. Similar single-parameter mutations for parameters in other domains may

involve an attempt to constrain the mutation so that the new value is “close” by some

measure to the old value (for example via shifting by a value drawn from a gaussian

distribution).

93

Other genetic operators are similarly representation-dependent. Common recom-

bination operators include one-point crossover, where a parameter position is selected

at random via some distribution (e.g. uniform), and the offspring is formed by copying

the all parameter values in the first parent up to and including the crossover point,

and taking the rest of its values from the second parent after the crossover point.

In general, n-point crossover extends this concept to n randomly selected crossover

points.

Algorithm 3 Outline of an Evolutionary Algorithm

t := 0
initialize P (0) := {~a1(0), . . . ,~aµ(0)} ∈ Iµ
evaluate P (0) : {Φ(~a1(0)), . . . ,Φ(~aµ(0))}
while ι(P (t)) 6= true do

recombine: P ′(t) := rΘr(P (t))
mutate: P ′′(t) := mΘm(P ′(t))
evaluate: P ′′(t) : {Φ(~a

′′
1(t)), . . . ,Φ(~a

′′

λ(t))}
select: P (t+ 1) := sΘs(P

′′(t) ∪Q)
t := t+ 1

end while

The general outline of an Evolutionary Algorithm is presented by Bäck in algo-

rithm 3 [4].

3.2 Evolutionary Algorithms: Applications

A particularly pertinent example of the application of Evolutionary Algorithms

to pattern recognition comes from Radtke et al. [72]. The authors apply Multi-

Objective Genetic Algorithms (MOGAs) to two parts of a handwritten character

recognition system. First, they use the Multi Objective Memetic Algorithm (MOMA)

[73] to extract a small set of effective features. The fitness function minimizes both

the dimensionality of the feature set and the classification error rate of a projection

distance (PD) classifier [50] on a validation set.

94

The PD is only used as a wrapper for evaluation of the extracted feature set. In

the next step, these features are used to train a diverse set K of p classifiers to be used

as candidates for the final Ensemble of Classifiers [51]. Again, a MOGA is applied, in

this case the popular Non-Dominated Sorting Genetic Algorithm (NSGA-II) [22], for

the subset selection from K. The fitness of each solution (a binary vector of length

p indicating membership of each Ki in the candidate ensemble) in this case is based

on the performance of the ensemble on a validation set.

Another pattern recognition example is presented in [98], in which the authors

study feature selection using single and multi-objective memetic frameworks.

For examples of how these concepts have been applied to intrusion detection, see

[5] for an analysis of MOGAs used to identify encrypted traffic. In [34], Haag applies

a multi-objective artificial immune system to some public network traffic data sets to

detect intrusions.

95

Bibliography

[1] “Snort”. URL www.snort.org.

[2] “Department of Defense Strategy for Operating in Cyberspace”, July 2011.

[3] “Port Numbers”, February 2011. URL http://www.iana.org/assignments/

port-numbers.

[4] Bäck, T. Evolutionary algorithms in theory and practice: evolution strategies,
evolutionary programming, genetic algorithms. Oxford University Press, USA,
1996.

[5] Bacquet, C., A. Zincir-Heywood, and M. Heywood. “An Investigation of Multi-
objective Genetic Algorithms for Encrypted Traffic Identification”. Computa-
tional Intelligence in Security for Information Systems, 93–100, 2009.

[6] Bagrodia, R., R. Meyer, M. Takai, Y. Chen, X. Zeng, J. Martin, and H.Y. Song.
“Parsec: A parallel simulation environment for complex systems”. Computer,
31(10):77–85, 2002. ISSN 0018-9162.

[7] Banks, J., B.L. Nelson, and D.M. Nicol. Discrete-event system simulation.
Prentice Hall, 2009. ISBN 0136062121.

[8] Bar, S., M. Gonen, and A. Wool. “A geographic directed preferential Internet
topology model”. Computer Networks, 51(14):4174–4188, 2007. ISSN 1389-
1286.

[9] Barr, R.S., B.L. Golden, J.P. Kelly, M.G.C. Resende, and W.R. Stewart. “De-
signing and reporting on computational experiments with heuristic methods”.
Journal of Heuristics, 1(1):9–32, 1995. ISSN 1381-1231.

[10] Bartos, Karel, Martin Grill, and Vojttech Krmicek. “Flow Based Network Intru-
sion Detection System using Hardware-Accelerated NetFlow Probes”. CESNET
Conference 2008 Proceedings, pp. 49-56. 2008.

[11] Brewin, Bob. “Defense Technology to Grow Despite Pentatgon Budget Cuts”,
January 2012. URL www.nextgov.com.

[12] Burgess, Mark. “CFEngine”. URL www.cfengine.com.

[13] Burnett, Chris, Timothy J. Norman, and Katia Sycara. “Sources of Sterotypical
Trust in Multi-Agent Systems”. Trust in Agent Societies, 14th Edition. 2011.

[14] Calvert, K.I., M.B. Doar, and E.W. Zegura. “Modeling Internet topology”.
Communications Magazine, IEEE, 35(6):160 –163, June 1997. ISSN 0163-6804.

96

[15] Chang, Chih-Chung and Chih-Jen Lin. LIBSVM: a library for support vector
machines, 2001. Software available at http://www.csie.ntu.edu.tw/~cjlin/
libsvm.

[16] Chapelle, O., P. Haffner, and V.N. Vapnik. “Support vector machines for
histogram-based image classification”. Neural Networks, IEEE Transactions
on, 10(5):1055–1064, 2002. ISSN 1045-9227.

[17] Chen, Z., L. Gao, and K. Kwiat. “Modeling the spread of active worms”. IN-
FOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer
and Communications. IEEE Societies, volume 3, 1890–1900. IEEE, 2003. ISBN
0780377524. ISSN 0743-166X.

[18] Cheng, L. Simulation and topology generation for large-scale distributed sys-
tems. Ph.D. thesis, UNIVERSITY OF BRITISH COLUMBIA, 2009.

[19] Cheng, L., N.C. Hutchinson, and M.R. Ito. “RealNet: A topology genera-
tor based on real internet topology”. Advanced Information Networking and
Applications-Workshops, 2008. AINAW 2008. 22nd International Conference
on, 526–532. IEEE, 2008.

[20] Cid, Daniel. “OSSEC”. URL www.ossec.net.

[21] Coello, C.A.C., G.B. Lamont, and D.A. Van Veldhuizen. Evolutionary algo-
rithms for solving multi-objective problems. Springer-Verlag New York Inc, 2nd
edition, 2007.

[22] Deb, K., S. Agrawal, A. Pratap, and T. Meyarivan. “A fast elitist non-
dominated sorting genetic algorithm for multi-objective optimization: NSGA-
II”. Parallel Problem Solving from Nature PPSN VI, 849–858. Springer, 2000.

[23] Devroye, Luc. “Random variate generation in one line of code”. Proceedings of
the 28th conference on Winter simulation, WSC ’96, 265–272. IEEE Computer
Society, Washington, DC, USA, 1996. ISBN 0-7803-3383-7. URL http://dx.

doi.org/10.1145/256562.256623.

[24] Doar, M.B. “A Better Model for Generating Test Networks”. Conference record,
86. Institute of Electrical and Electronics Engineers, 1996.

[25] Erriquez, Elisabetta. “An abstract framework for reasoning about trust”. Trust
in Agent Societies, 14th Edition. 2011.

[26] Fabrikant, A., E. Koutsoupias, and C. Papadimitriou. “Heuristically optimized
trade-offs: A new paradigm for power laws in the Internet”. Automata, Lan-
guages and Programming, 781–781, 2002.

[27] Falliere, N., L.O. Murchu, and E. Chien. W32. Stuxnet Dossier. Technical
report, Symantec, 2011.

97

[28] Faloutsos, M., P. Faloutsos, and C. Faloutsos. “On power-law relationships of
the internet topology”. Proceedings of the conference on Applications, technolo-
gies, architectures, and protocols for computer communication, 251–262. ACM,
1999. ISBN 1581131356.

[29] Floyd, R.W. “Algorithm 97: shortest path”. Communications of the ACM,
5(6):345, 1962. ISSN 0001-0782.

[30] Fosnock, C. “Computer Worms: Past, Present, and Future”. East Carolina
University, 2005.

[31] Franklin, S. and A. Graesser. “Is it an Agent, or just a Program?: A Taxonomy
for Autonomous Agents”. Intelligent Agents III Agent Theories, Architectures,
and Languages, 21–35, 1997.

[32] Fujimoto, Richard M. “Parallel discrete event simulation”. Commun. ACM,
33:30–53, October 1990. ISSN 0001-0782. URL http://doi.acm.org/10.

1145/84537.84545.

[33] Gordon, J. “Pareto process as a model of self-similar packet traffic”. Global
Telecommunications Conference, 1995. GLOBECOM’95., IEEE, volume 3,
2232–2236. IEEE, 2002. ISBN 0780325095.

[34] Haag, C.R., G.B. Lamont, P.D. Williams, and G.L. Peterson. “An artificial
immune system-inspired multiobjective evolutionary algorithm with application
to the detection of distributed computer network intrusions”. Proceedings of the
6th international conference on Artificial immune systems, 420–435. Springer-
Verlag, 2007.

[35] Hancock, D. and G. Lamont. “Multi Agent Systems on Military Networks”.
IEEE Symposium on Computational Intelligence in Cyber Security. 2011.

[36] Hancock, D. and G. Lamont. “Reputation in a multi agent system for flow-
based network attack classification”. IEEE Symposium on Intelligent Agents.
2011.

[37] Hancock, David. A Multi-Agent System for Flow-Based Intrusion Detection
Using Reputation and Evolutionary Computation. Master’s thesis, Air Force
Institute of Technology, March 2011.

[38] Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. The Elements of
Statistical Learning: Data Mining, Inference, and Prediction, Second Edition
(Springer Series in Statistics). Springer, 2nd ed. 2009. corr. 3rd printing edition,
February 2009. ISBN 0387848576. URL http://www-stat.stanford.edu/

~tibs/ElemStatLearn/.

98

[39] Hernandez-Pereira, E., J.A. Suarez-Romero, O. Fontenla-Romero, and
A. Alonso-Betanzos. “Conversion methods for symbolic features: A comparison
applied to an intrusion detection problem”. Expert Systems with Applications,
36(7):612–617, 2009.

[40] Herrero, Alvaro and Emilio Corchado. “Multiagent Systems for Network Intru-
sion Detection: A Review”. Computational Intelligence in Security for Infor-
mation Systems, 63:143–154, 2009.

[41] Holloway, Eric. Self Organized Multi Agent Swarms for Network Security Con-
trol. Master’s thesis, Air Force Institute of Technology, March 2009.

[42] Horng, Shi-Jinn, M. Su, and Y. Chen. “A novel intrusion detection system
based on hierarchical clustering and support vector machines”. Expert Systems
with Applications, 1:306–313, 2011.

[43] Huynh, T.D., N.R. Jennings, and N.R. Shadbolt. “An integrated trust and rep-
utation model for open multi-agent systems”. Autonomous Agents and Multi-
Agent Systems, 13(2):119–154, 2006. ISSN 1387-2532.

[44] Ivanciuc, Ovidiu. “Applications of Support Vector Machines in Chemistry”,
2007. URL http://www.support-vector-machines.org/SVM_soft.html.

[45] Jansen, W.A. “Intrusion detection with mobile agents”. Computer Communi-
cations, 25(15):1392–1401, 2002. ISSN 0140-3664.

[46] Joachims, Thorsten. “SVM-light”, August 2008. URL http://svmlight.

joachims.org/.

[47] Josang, Audun, Roslan Ismail, and Colin Boyd. “A Survey of Trust and Reputa-
tion Systems for Online Service Provision”. Decision Support Systems, 43:618–
644, 2007.

[48] Karthick, R., Hattiwale V., and B. Ravindran. “Adaptive network intrusion
detection system using a hybrid approach”. Fourth International Conference
on Communication Systems and Networks (COMSNETS), 1:1–7, 2012.

[49] Kim, J., S. Radhakrishnan, and S.K. Dhall. “Measurement and analysis of
worm propagation on Internet network topology”. Computer Communications
and Networks, 2004. ICCCN 2004. Proceedings. 13th International Conference
on, 495–500. IEEE, 2005. ISBN 0780388143. ISSN 1095-2055.

[50] Kimura, F., S. Inoue, T. Wakabayashi, S. Tsuruoka, and Y. Miyake. “Hand-
written numeral recognition using autoassociative neural networks”. Pattern
Recognition, 1998. Proceedings. Fourteenth International Conference on, vol-
ume 1, 166–171. IEEE, 2002. ISBN 0818685123.

99

[51] Kittler, J., M. Hatef, R.P.W. Duin, and J. Matas. “On combining classifiers”.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 20(3):226–
239, 2002. ISSN 0162-8828.

[52] Kong, J., M. Mirza, J. Shu, C. Yoedhana, M. Gerla, and S. Lu. “Random flow
network modeling and simulations for DDoS attack mitigation”. Communica-
tions, 2003. ICC’03. IEEE International Conference on, volume 1, 487–491.
IEEE, 2003. ISBN 0780378024.

[53] Kotsiantis, S. B. “Supervised Machine Learning: A Review of Classification
Techniques”. Informatica, 31:249–268, 2007.

[54] Kurose, J. and K. Ross. Computer Networking: A top-down approach. Pearson
Addison-Wesley, fifth edition, 2009.

[55] Liljenstam, M., Y. Yuan, BJ Premore, and D. Nicol. “A mixed abstraction
level simulation model of large-scale Internet worm infestations”. Modeling,
Analysis and Simulation of Computer and Telecommunications Systems, 2002.
MASCOTS 2002. Proceedings. 10th IEEE International Symposium on, 109–
116. IEEE, 2003. ISBN 0769518400. ISSN 1526-7539.

[56] Luke, Sean. “Multiagent Simulation and the MASON Library”, August 2011.
URL http://cs.gmu.edu/eclab/projects/mason/.

[57] Magoni, D. “nem: A software for network topology analysis and modeling”.
10th IEEE International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunications Systems (MASCOTS), 364. 2002.

[58] McCanne, S., S. Floyd, and K. Fall. “ns2 (network simulator 2)”. last accessed:
February, 23, 2010.

[59] McDonald, C. “The cnet network simulator”. University of Western Australia,
2003.

[60] McDonald, Chris. “The cnet network simulator”. URL http://www.csse.uwa.

edu.au/cnet/index.html.

[61] Medina, A., A. Lakhina, I. Matta, and J. Byers. “BRITE: An approach to
universal topology generation”. Modeling, Analysis and Simulation of Com-
puter and Telecommunication Systems, 2001. Proceedings. Ninth International
Symposium on, 346–353. IEEE, 2002. ISBN 0769513158.

[62] Meier, J.D. “Improving Web Application Security: Threats and Counter-
measures”, June 2003. URL http://msdn.microsoft.com/en-us/library/

ff649874.aspx.

100

[63] Ming-Yang and Su. “Real-time anomaly detection systems for Denial-of-
Service attacks by weighted k-nearest-neighbor classifiers”. Expert Systems
with Applications, 38(4):3492 – 3498, 2011. ISSN 0957-4174. URL http:

//www.sciencedirect.com/science/article/pii/S0957417410009450.

[64] Mirkovic, J. and P. Reiher. “A taxonomy of DDoS attack and DDoS defense
mechanisms”. ACM SIGCOMM Computer Communication Review, 34(2):39–
53, 2004. ISSN 0146-4833.

[65] Moore, Andrew W., Denis Zuev, and Michael L. Crogan. Discriminators for
use in flow-based classification. Technical report, Queen Mary University of
London, 2005.

[66] Oetiker, Tobi. “RRDTool”. URL oss.oetiker.ch/rrdtool.

[67] Park, Hyungwook and Paul A. Fishwick. “A GPU-Based Application
Framework Supporting Fast Discrete-Event Simulation”. Simulation, 86:613–
628, October 2010. ISSN 0037-5497. URL http://dx.doi.org/10.1177/

0037549709340781.

[68] Peng, Tao. Defending Against Distributed Denial of Service Attacks. Ph.D.
thesis, The University of Melbourne, April 2004.

[69] Perdisci, Roberto, Davide Ariu, Prahlad Fogla, Giorgio Giacinto, and Wenke
Lee. “McPAD : A Multiple Classifier System for Accurate Payload-based
Anomaly Detection”. Computer Networks, Special Issue on Traffic Classifi-
cation and Its Applications to Modern Networks, 5:864–881, 2009.

[70] Postel, J. “RFC 793: Transmission control protocol”, 1981.

[71] Postel, J.B. “User Datagram Protocol. RFC 768”, 1980.

[72] Radtke, Paulo V. W., Robert Sabourin, and Tony Wong. “Classification
system optimization with multi-objective genetic algorithms”. Guy Lorette
(editor), Tenth International Workshop on Frontiers in Handwriting Recog-
nition. Université de Rennes 1, Suvisoft, La Baule (France), 10 2006. URL
http://hal.inria.fr/inria-00104200/en/.

[73] Radtke, P.V.W., T. Wong, and R. Sabourin. “A multi-objective memetic al-
gorithm for intelligent feature extraction”. Evolutionary Multi-Criterion Opti-
mization, 767–781. Springer, 2005.

[74] Resnick, P. and R. Zeckhauser. “Trust among strangers in Internet transac-
tions: Empirical analysis of eBay’s reputation system”. Advances in Applied
Microeconomics: A Research Annual, 11:127–157, 2002. ISSN 0278-0984.

[75] Russell, Stuart and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, 2nd edition, December 2002. ISBN 0137903952.

101

[76] Scepanovic, Sanja. Mitigating DDoS attacks with cluster-based filtering. Mas-
ter’s thesis, Aalto University, June 2011.

[77] Sellke, S.H., N.B. Shroff, and S. Bagchi. “Modeling and automated containment
of worms”. IEEE Transactions on Dependable and Secure Computing, 71–86,
2007. ISSN 1545-5971.

[78] Shirey, R. “Internet Security Glossary, Version 2”, August 2007. URL http:

//tools.ietf.org/html/rfc4949.

[79] Shoham, Y. and K. Leyton-Brown. Multiagent systems: algorithmic, game-
theoretic, and logical foundations. Cambridge Univ Pr, 2008. ISBN 0521899435.

[80] Skoudis, Ed and Tom Liston. Counter Hack Reloaded. Prentice Hall, 2nd
edition, January 2006.

[81] Soergel, D. “jlibsvm”, 2009. URL http://dev.davidsoergel.com/trac/

jlibsvm.

[82] Spatharis, A., I. Foudalis, M. Gjoka, P. Krouska, C. Amanatidis, C. Papadim-
itriou, and M. Sideri. “Improved tradeoff-based models of the Internet”. Proc. of
SIWN/IEEE International Conference on Complex Open Distributed Systems,
volume 7. 2008.

[83] Specht, Ruby B., Stephen M.and Lee. “Distributed Denial of Service: Tax-
onomies of Attacks, Tools and Countermeasures”. Proceedings of the 17th In-
ternational Conference on Parallel and Distributed Computing Systems, 2004
International Workshop on Security in Parallel and Distributed Systems, 543–
550. September 2004.

[84] Sperotto, A., G. Schaffrath, R. Sadre, C. Morariu, A. Pras, and B. Stiller.
“An Overview of IP Flow-Based Intrusion Detection”. IEEE Communications
Surveys & Tutorials, 12(3):343–356, 2010. ISSN 1553-877X.

[85] Talbi, E.G. Metaheuristics: from design to implementation. Wiley, 2009. ISBN
0470278587.

[86] Varga, A. et al. “The OMNeT++ discrete event simulation system”. Proceed-
ings of the European Simulation Multiconference (ESM2001), 319–324. 2001.

[87] Wagner, A., T. D
”ubendorfer, B. Plattner, and R. Hiestand. “Experiences with worm propaga-
tion simulations”. Proceedings of the 2003 ACM workshop on Rapid Malcode,
34–41. ACM, 2003. ISBN 1581137850.

[88] Wang, D., G. Chang, X. Feng, and Guo R. “Research on the Detection of
Distributed Denial of Service Attacks Based on the Characteristics of IP Flow”.

102

NPC Proceedings of the IFIP International Conference on Network and Parallel
Computing, 1:86–93, 2008.

[89] Wang, Ke, Gabriela Cretu, and Salvatore Stolfo. Anomalous Payload-based
Worm Detection and Signature Generation. Technical report, Columbia Uni-
versity, 2004.

[90] Weaver, Nicholas, Vern Paxson, Stuart Staniford, and Robert Cunningham.
“A taxonomy of computer worms”. Proceedings of the 2003 ACM workshop on
Rapid malcode, WORM ’03, 11–18. ACM, New York, NY, USA, 2003. ISBN
1-58113-785-0. URL http://doi.acm.org/10.1145/948187.948190.

[91] Whitman, Michael E. and Herbert J. Mattord. Principles of Information Se-
curity. Course Technology, 2011.

[92] Willinger, W., D. Alderson, and J. Doyle. “Mathematics and the Internet: a
source of enormous confusion and great potential”. Notices of the American
Mathematical Society, 56(5):586–599, May 2009.

[93] Willinger, W. and V. Paxson. “Where mathematics meets the Internet”. Notices
of the American Mathematical Society, 45(8):961–971, 1998. ISSN 0002-9920.

[94] Winick, J. and S. Jamin. Inet-3.0: Internet Topology Generator. Technical Re-
port UM-CSE-TR-456-02, Department of EECS, University of Michigan, 2002.

[95] Winter, P., E. Hermann, and M. Zeilinger. “Inductive Intrusion Detection in
Flow-Based Network Data Using One-Class Support Vector Machines”. Proc.
4th IFIP Int New Technologies, Mobility and Security (NTMS) Conf, 1–5. 2011.

[96] Zacharia, G. and P. Maes. “Trust management through reputation mecha-
nisms”. Applied Artificial Intelligence, 14(9):881–907, 2000. ISSN 0883-9514.

[97] Zeng, X., R. Bagrodia, and M. Gerla. “GloMoSim: a library for parallel sim-
ulation of large-scale wireless networks”. ACM SIGSIM Simulation Digest,
28(1):154–161, 1998. ISSN 0163-6103.

[98] Zhu, Z., Y.S. Ong, and J.L. Kuo. “Feature Selection Using Single/Multi-
Objective Memetic Frameworks”. Multi-Objective Memetic Algorithms, 111–
131, 2009.

[99] Zou, C.C., W. Gong, and D. Towsley. “Code red worm propagation model-
ing and analysis”. Proceedings of the 9th ACM conference on Computer and
communications security, 138–147. ACM, 2002. ISBN 1581136129.

[100] Zou, C.C., W. Gong, and D. Towsley. “Worm propagation modeling and analy-
sis under dynamic quarantine defense”. Proceedings of the 2003 ACM workshop
on Rapid Malcode, 60. ACM, 2003. ISBN 1581137850.

103

Vita

Capt Timothy J. Wilson earned his Bachelor of Science degree in Computer En-
gineering at The University of Akron in August 2001. He was comissioned in the Air
Force in February 2003 through Officer Training School (OTS), Maxwell Air Force
Base, Alabama. From 2003-2006, Capt Wilson served as Foreign Materiel Exploita-
tion Project Engineer for the National Air and Space Intelligence Center (NASIC),
where he led teams to reverse engineer enemy electronic weapons (EW) systems.
From 2006-2010, Capt Wilson served with the Electronic Systems Center (ESC) at
Hanscom Air Force Base, Massachusetts. There he served on multiple programs in-
cluding Airborne Maritime Fixed-Station Joint Tactical Radio System (AMF JTRS),
Tactical Datalinks (TDL) Integration, and ESC/EN Executive Officer. Capt Wilson
has earned certifications in the Acquisitions corps and Systems Engineering (SPRDE)
career fields, and has been awarded the Air Force Commendation Medal. Upon grad-
uation, Capt Wilson will be assigned to the 624th Operations Center at Lackland Air
Force Base, San Antonio, Texas.

104

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

22–03–2012 Master’s Thesis Sep 2010 — 22 Mar 2012

MFIRE-2: A Multi Agent System for Flow-Based Intrusion Detection
Using Stochastic Search

Wilson, Timothy J., Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT/GCO/ENG/12-12

Intentionally left blank

DISTRIBUTION STATEMENT A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the United States Government. This
material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

Detecting attacks targeted against military and commercial computer networks is a crucial element in the
domain of cyber warfare. The traditional method of signature-based intrusion detection is a primary mechanism to alert
administrators to malicious activity. However, signature-based methods are not capable of detecting new or novel
attacks. This research continues development of a novel simulated, multiagent, flow-based intrusion detection system
called MFIRE. Agents in the network are trained to recognize common attacks, and share data with other agents to
improve the overall effectiveness of the system. A Support Vector Machine (SVM) is the primary classifier with which
agents determine an attack is occurring. Agents are prompted to move to different locations within the network to find
better vantage points, and two methods for achieving this are developed. One uses a centralized reputation-based model,
and the other uses a decentralized model optimized with stochastic search. The latter is tested for basic functionality,
and ready for continued experimentation. The reputation model is extensively tested in two configurations and results
show that it is significantly superior to a system with non-moving agents.

Flow Based, Intrusion Detection, Multi Agent Systems, Network Security

U U U UU 119

Dr. Gary B. Lamont (ENG)

(937) 255-3636, x4718; gary.lamont@afit.edu

	Air Force Institute of Technology
	AFIT Scholar
	3-22-2012

	MFIRE-2: A Multi Agent System for Flow-based Intrusion Detection Using Stochastic Search
	Timothy J. Wilson
	Recommended Citation

	tmp.1519766534.pdf.1fDJf

