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Abstract 
 

 

The enormous growth of the Internet and its use in everyday life 
make it an attractive target for malicious users. As the network 
becomes more complex and sophisticated it becomes more 
vulnerable to attack. There is a pressing need for the future internet 
to be resilient, manageable and secure. 

Our research is on distributed challenge detection and is part of the 
EU Resumenet Project (Resilience and Survivability for Future 
Networking: Framework, Mechanisms and Experimental Evaluation). 
It aims to make networks more resilient to a wide range of 
challenges including malicious attacks, misconfiguration, faults, and 
operational overloads. Resilience means the ability of the network to 
provide an acceptable level of service in the face of significant 
challenges; it is a superset of commonly used definitions for 
survivability, dependability, and fault tolerance. 

Our proposed resilience strategy could detect a challenge situation 
by identifying an occurrence and impact in real time, then initiating 
appropriate remedial action. Action is autonomously taken to 
continue operations as much as possible and to mitigate the damage, 
and allowing an acceptable level of service to be maintained.  The 
contribution of our work is the ability to mitigate a challenge as early 
as possible and rapidly detect its root cause.  

Also our proposed multi-stage policy based challenge detection 
system identifies both the existing and unforeseen challenges. This 
has been studied and demonstrated with an unknown worm attack. 
Our multi stage approach reduces the computation complexity 
compared to the traditional single stage, where one particular 
managed object is responsible for all the functions. 

The approach we propose in this thesis has the flexibility, scalability, 
adaptability, reproducibility and extensibility needed to assist in the 
identification and remediation of many future network challenges. 
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Introduction 
 

 

 

 

 

 

 
With the growth of networks and the integration of services, 
increasingly severe consequences come from the disruption of 
networked services. Quality of life, the economic viability of 
businesses, and the security of nations are directly linked to the 
resilience, survivability, and dependability of the global network. 
However, the network becomes vulnerable with the increased 
dependence and sophistication of services. The scale of growth and 
deregulation bringing numerous service providers has resulted in a 
network that is difficult to manage. There is a pressing need for 
better resilience, manageability, and security for the future network. 
Therefore, our research in distributed challenge detection is aimed to 
make networks more resilient to various challenges. Resilience 
means the ability of the network to provide an acceptable level of 
service in the face of challenges to normal operation. This service 
includes the ability for users and applications to access information 
when needed, the maintenance of end-to-end communication 
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association, and the operation of distributed processing and 
networked storage. 

Research in distributed challenge detection is designed to make 
networks more resilient to a wide range of challenges, including:  

 unintentional misconfiguration or operational mistakes;  

 large-scale natural disasters;  

 malicious attacks from intelligent adversaries against the 
network hardware, software, or protocol infrastructure including 
DDoS (distributed denial of service) attacks;  

 environmental challenges of mobility, weak channels, and 
unpredictably long delay;  

 unusual but legitimate traffic loads 

 provider failure.   

Therefore, the definition of resilience is a superset of commonly used 
definitions for survivability, dependability, and fault tolerance. 

Our research investigates a more coherent and systematic approach 
to meeting challenges to the Internet than has occurred before. The 
key strategy includes monitoring the network to detect the onset of 
challenges in real time. Then diagnosing and identifying the 
challenge in order to initiate appropriate remedial action, it could also 
be used to characterize a set of malicious or normal operational 
challenges. This novel remedial action allows an acceptable level of 
service to be maintained.  

1.1  Background  

Computer and communication networks are increasingly critical in 
supporting business, leisure and daily life in general. There is also 
an obvious increase in cyber-attacks on networked systems. Thus, 
there is a compelling need for resilience to be a key property of 
networks. The nature of the challenges typically requires the use of 
mechanisms across multiple layers of the protocol stack and in 
disparate locations of the network. Therefore, ensuring the resilience 
of a network requires the systematic design and evaluation of 
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resilience strategies, the careful coordination of various monitoring 
and control mechanisms, and the capture of best practices and the 
experience of network operators into reusable configurations of 
resilience mechanisms. It requires the on-demand adaptation of 
network configurations, including specialized resilience functionality, 
in response to performance degradation, component faults or 
security threats. Because of the consequences of defining poor 
management configurations, e.g., further degrading service when the 
network is under duress, it is necessary to carefully specify and test 
their performance. 

This research has been carried out as part of the EU ResumeNet 
project (Resilience and Survivability for Future Networking: 
Framework, Mechanisms and Experimental Evaluation) that is 
supported under the EU FP7 FIRE (Future Internet Research and 
Experimentation). Network resilience is considered in the context of 
a general two-phase high-level strategy, called D2R2 + DR: as 
demonstrate in Fig.1, it includes Defend, Detect, Remediate, 
Recover + Diagnose, Refine [Sterbenz et al., 2010].  

The resilience aim can be generally achieved via a six-step strategy: 

 Defence, according to which the Internet is made robust to 
challenges and attacks; 

 Detection of an adverse event or challenge that has impaired 
normal operation of the Internet and degraded services; 

 Remediation in which action is autonomously taken to continue 
operations as much as possible and to mitigate the damage; 

 Recovery to normal operations once the adverse event has 
ended or the attacker has been repelled; 

 Diagnose the root cause of the challenge that impaired normal 
operation. This could be used to improve the system design 
and affect the recovery to a better state; 

 Refinement of future behavior based on reflection of the 
previous cycle  

The first phase comprises the use of defensive measures to protect 
the network from foreseeable challenges, the ability to detect real-
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time challenges that have not been anticipated and subsequently 
remediating their effects before the network operation is 
compromised, and finally disengage possibly sub-optimal 
mechanisms via specific recovery procedures. The second phase 
caters for the longer-term evolution of the system, through the 
diagnosis of the causes of the challenge and the refinement of the 
system operation. In particular, D2R2 can be seen as a conceptual 
online control-loop for network resilience operation. Central to the 
strategy is the management and reconfiguration of interacting 
detection and remediation mechanisms operating in the network 
infrastructure. This is the focus of the work reported in this thesis. 

 

Fig. 1. Network resilience strategy 

The central notion, first reported in [Yu et al, 2011], is that of multi-
stage resilience strategies, in which the configuration of detection 
and remediation mechanisms deployed in the network is dynamically 
refined as new information about challenges becomes available. 
Policies are used to control the operation of these mechanisms, and 
how they should be reconfigured in the face of new types of 
challenges or changes in their operational context. 

1.2  Current Approaches 

A great deal of research effort has focused on the development of 
detection and classification techniques, whose output could be used 
to trigger the dynamic adaptation of networks to ensure resilience. 
For example, for detecting attacks, signature-based systems are 
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currently widely used [Roesch, 1999], and there exist various 
approaches to anomaly-based detection of challenges, such as 
traffic volume anomalies [Hussain et al., 2003] or changes in network 
traffic feature entropy [Lakhina et al., 2005]. (For a survey of 
anomaly detection approaches we refer the reader to Chandola et al. 
[2009]). Similarly, a number of classification techniques exist that 
can be used to identify the cause of an anomaly. (For a survey of 
machine learning-based traffic classification techniques we refer the 
reader to work by Nguyen and Armitage [2008]). Despite the 
multitude of mechanisms and techniques proposed, it is often not 
clear how these should be combined and coordinated to enforce 
effective resilience strategies in complex multiservice networks. We 
expand further on related work below. 

1.3  A Proposed Approach to Network Resilience 

Communication networks must be resilient to a multitude of 
malicious attacks and other challenges to their operation. A 
classification of challenges to the global Internet and interdependent 
networks has been defined, in which challenges are any 
characteristic or condition that impacts the normal operation of the 
network [Schaeffer-Filho et al., 2013] 

A resilience strategy to address such challenges requires the 
management and reconfiguration of interacting detection and 
remediation mechanisms that operate in the network infrastructure. 
Initially, detection mechanisms support the identification and 
categorization of challenges to the network. They may vary from a 
simple link monitor that can determine whether high volumes of 
traffic are being observed, to sophisticated detection systems and 
traffic classifiers that detect anomalous changes in traffic features. 
Similarly, a range of remediation mechanisms may be used for 
containing the effects of a challenge. For example, various forms of 
traffic shaping can be used, from simply blocking traffic to 
probabilistic rate limiting, which can be applied at different protocol 
levels and to individual network device ports. Firewalls and 
OpenFlow switches [Yu et al., 2011], for example, can be used to 
block or shape network traffic. A typical network infrastructure of the 
kind we are considering, which includes a range of resilience 
mechanisms, is shown in Fig. 2. 
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Fig. 2. Network infrastructure with mechanisms implementing a set of resilience functions 

and services 

In our work, resilience strategies are defined as a set of policies that 
reconfigure the operation of resilience mechanisms at run-time in 
response to events, such as high link utilisation, malicious attacks or 
equipment failures, for example [Limoncelli, 2012]. Policy-based 
management is used to control the operation of these mechanisms 
in the face of new types of challenges. Thus, different types of 
mechanisms can be selectively enabled or reconfigured in specific 
operational contexts. 

1.4  A Distributed Challenge Detection Framework 

Figure 3 introduces a distributed challenge detection framework, 
developed under the ResumeNet project, which is the context for the 
research presented here. From the outset, we need to understand 
the complexity of systems, the various challenges and their root 
cause. Assessing which challenge affects the system in which way is 
essential to deciding the corresponding mitigation strategy. For 
example, a web server could be overloaded in the short term with 
many requests, greater than it is provisioned for, and this could be a 
DDoS attack or a ‘flash crowd’ event, which is the unusual but 
legitimate demand for service. We need to distinguish between 
challenges that have similar symptoms, since they require different 
remediation.  
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Fig. 3. Distributed Challenge Detection Framework 

To do this, the first task is to construct a network that could tolerate 
foreseen adversarial events. The optimal topology needs to be 
designed. It utilizes the best possible way to interconnect the access 
nodes with the corresponding transmission technology. For example, 
a fine-tuned routing mechanism will allow good conditioned 
connections to be built so that they could react to the failure quickly. 

However, for challenges that circumvent network defences, we need 
a distributed monitoring and assessment platform that could detect 
and identify challenges in real time, and initiate remediation in order 
to neutralize the challenge and maintain acceptable levels of 
operation. Real time detection and remediation is the focus of this 
thesis. 

1.5  Contributions 

In summary, this thesis proposes and investigates a multi-stage, 
policy based strategy for achieving network resilience. The initial 
idea arose through discussions between ResumeNet project 
partners. The work of this thesis, first reported in (Yue et al, 2011), 
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has contributed to consequent detailed development and 
assessment. 

The current state-of-the-art, as reviewed in chapter 2, has tended to 
focus on improved detection mechanisms for particular challenges, 
such as anomaly detection or fault identification. There has been 
little focus on how to embed resilience to such challenges within 
operational networks, while addressing temporal and resource 
constraints. Furthermore, in contrast to the state-of-the-art, we 
present a unified approach for dealing with diverse network 
challenges. 

The multi-stage, policy based framework demonstrated in this thesis 
is capable of operating in real time, progressing from initial detection 
through identification and remediation. By initially using lightweight 
detection and then progressively applying more heavyweight 
analysis, a key contribution of our work is the ability to mitigate a 
challenge as early as possible and rapidly detect its root cause. The 
multi stage approach can effectively reduce computational 
complexity compared to existing single stage approaches. 

A technical contribution of this thesis is to realize and evaluate this 
framework as a number of policy-enabled Managed Objects (MOs) 
which co-operatively enforce the resilience of the network. Each MO 
will only be triggered by a local manager MO at the time it is needed 
rather than executing continually. We have implemented and 
demonstrated the framework within a simulation environment. This 
circumvents the immense difficulties of experimentation within large 
operational networks, but is by definition an abstraction of real 
networks. However, we advocate that the same approach could be 
implemented in network devices with open APIs. 

Through a number of case study implementations this thesis 
demonstrates how the proposed approach can enable: 

(1) the rapid deployment of appropriate resilience strategies when 
challenges are observed at run-time,  

(2) autonomic challenge detection and identification, with 
simultaneous deployment of remediation strategies, 

(3) the use of this common framework to address diverse challenges 
such as volume challenges, network malware and network faults, 
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(4)  detection and mitigation of both known and unknown challenges, 

(5)  flexibility and extensibility to new challenges as they emerge and 
evolve. 

Finally, the work of this thesis has contributed a simulation 
environment that can serve as the basis for future work and 
evaluation. 

Some advantages of our approach, as demonstrated in this thesis, 
are as follows. 

Efficiency and scalability: our simulation results demonstrate the 
effectiveness and efficiency of our detection strategy for a large 
network topology. It scales well in a network with large number of 
hosts and servers, and also provides a response within a reasonable 
time.   

Generality: the multi staged policy based platform has the generality 
to make the network more resilient by detecting a wide range of 
challenges, for example, DDoS attacks, worm propagation, network 
faults etc. Different challenges can be investigated using the same 
platform. 

Reusability: our network resilience strategy is realized by the 
cooperation among a number of distributed objects. For different 
challenges, we have different detection and remediation strategies. 
However, some MOs are reusable and can be applied to various 
challenge scenarios. Careful combination of some modules might be 
synergistic and bring a broader range of challenge detection.  

Extensibility: new challenges will continuously appear. We should 
be able to easily extend our proposed platform to detect new 
challenges. This could be realized by developing new policy-base 
strategies and/or adding new MOs. 

Flexibility and Ease of Use: the policies can be configured in a 
flexible and easy way. The parameters of the remediation strategy 
can simply be adjusted to filter different characteristics of the traffic. 
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1.6  Thesis Organisation 

The thesis discusses a resilience strategy for detection and 
remediation of network challenges. The rest of this thesis is 
organized as following: 

In chapter 2, we introduce the background and the related work. A 
survey of existing approaches is provided, including network 
monitoring, network detection and remediation approaches, and 
commercial products. 

In chapter 3, we provide the insight of a multi-stage policy-driven 
approach to network resilience. The motivation and progressive 
challenge identification will be discussed. Policy- based 
management strategies and the resilience pattern is proposed to 
explain how could we apply policies as the strategies to build into our 
framework in order to make the network more resilient. Benefits of 
the approach will then be highlighted 

In chapter 4, we compare different experimental platforms. The well 
known published off-line IDS datasets, for example, DARPA and 
KDD Cup will be discussed. We explain the reason why these 
datasets were not chosen for our experiment. Following this, we 
evaluate various network simulator options and clarify why OMNeT 
is selected as the experimental platform. 

In chapter 5, the volume challenge resilience strategies are 
proposed. A specific DDoS attack resilience approach is presented 
to explain how we develop strategy for DDoS resilience. The 
incremental DDoS Detection and Remediation strategy and 
experimental result will be demonstrated. Following this we will 
discuss how to differentiate flash crowd events from DDoS attacks. 
Then discuss the current flash crowd identification methodologies. 

In chapter 6, our framework is extended to perform the malware 
attack resilience strategy. The workflow for malware attack resilience 
is proposed, coupled with experimental results for various types of 
existing worm, unknown worm and port scan malware detection and 
remediation.  

In chapter 7, we show our multi stage network fault resilience 
strategy. Two approaches are demonstrated here. One is extended 
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from our previous developed multi stage entropy based network 
resilience approach to identify network fault. The other one is 
developed as the collaboration work during my visit to ETH Zurich, 
the classifier based approach could work both on the real dataset 
SWITCH network also our network simulation.    

In chapter 8, we discuss key metrics to evaluate network resilience 
strategies. The metrics include generality, efficiency and scalability, 
flexibility and evolution. We then summarize the main contributions 
of this thesis and identify future work in our research. 
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In this chapter, we summarize our earlier work on characterizing the 
state-of-the-art in challenges detection and classification. We then 
discuss how related commercial managed security solutions 
compare to the approach presented in our work. After this, we 
discussed how the evaluation of the performance carried in the 
previous work.  

2.1  Network Monitor 

The vulnerabilities of the current network and the need for resilience 
are widely acknowledged. There has been considerable research 
into network monitoring, anomaly detection, fault tolerance, attacks, 
anomaly modeling engine separately. We reviewed the latest 
technologies in these areas. With the current network monitoring 
techniques, threshold based random walks for fast portscan 
detection is unscalable [Jung et al., 2004]. The proposed TCAs 
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(threshold crossing alerts) require the cooperation of the 
manufacturers to run on the network devices, which will be difficult. 
Or they can run on separate hardware, which will be complex [Wuhib 
et al., 2006]. Jackson et al. [2007] cope with the distributed monitor 
problem in internetworks, but the capability to monitor every link 
cannot be assumed.  

Today most detection use signature-based IDS that detect known 
attacks only. In contrast, anomaly detection is effective in identifying 
known and unknown attacks. Real time volume based anomaly 
detection is resource challenge [Fry et al., 2010]. The causes for 
DoS attacks and mechanisms for defending is surveyed [Peng et al., 
2007], however it is not yet practical to identify attack paths and we 
require global cooperation to combat DDoS (Distributed denial of 
service) attacks. To evaluate the impact of faults, fault injection is 
considered as the first stage. It offers a cost and time effective way 
to test system. The method to inject faults into the real network is 
proposed in [Labovitzt al., 2001]. Other approaches are presented to 
study network survivability. Random events affect node and link 
availability, so cause the failures. There is a complete survey of fault 
localization [Sethi, 2004]. Open research problems still remain with 
multi-layer fault localization, temporal correlation, and distributed 
diagnosis. 

Increasingly, passive monitoring systems are used to collect data to 
observe the underlying behavior of Internet, - fully instrumenting any 
but the smallest of networks is impractical and it is impossible to 
even partially instrument large parts of the Internet. Shavitt et al. 
[2005] present DIMES, a highly distributed global Internet 
measurement infrastructure, which measure the structure of the 
Internet using a large set of interacting measurement agents. The 
main goal is to take full snapshots of the Internet graph, in the AS, 
PoP, and router level, annotated with delay and loss statistics, in fine 
time resolutions. In future, the authors plan to embed the 
measurement results in a geographic metric, and develop measures 
which use the Internet evolution characteristics in various regions as 
an indicator of economic and social evolution. However, the 
simulation shows the BGP topology has about 25% more nodes than 
the DIMES topology. This may need to improve in future. Until today, 
this project still update so that we could join the testing and volunteer 
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to be the agent, the monitored data will be helpful to establish our 
research approach as well. 

DIME uses endsystem agents to monitor network properties. In 
contrast, ubiquitous endsystem network monitoring presented by 
Cook et al. [2006] is more closely related to in-network monitoring 
approaches. It provides more detailed view of traffic and solves the 
inability to collect the required information using network-only 
measurements. The measurement systems must themselves apply 
the end-to-end principle. It restores much of the lost visibility and 
enables new applications. It provides additional privacy protection 
compared to other approaches, also enables selected highly trusted 
systems to have different privacy policies. Using real data from an 
enterprise shows that collecting and querying data from endsystems 
in a large network is practical. In addition, service level monitoring is 
necessary to ensure that service levels are adhered to SLA. The key 
tool for this is threshold crossing alerts (TCAs), which can notify a 
service provider that a certain parameter has exceeded a certain 
threshold value, directing attention to those areas where prevention 
needs to be taken. Wuhib et al. [2006] present a protocol (TCA-GAP) 
and a decentralized architecture that implements a new category of 
TCAs for parameters that need to be aggregated across a network, 
as opposed to parameters that can be observed from a single device. 
Nevertheless, TCA-GAP can run on the network devices themselves 
but will require the cooperation of the device manufacturers, which 
will be difficult to fulfill. Or they can run on separate hardware, which 
will be complex. 

Jackson et al. [2007] analyze a subset of the general monitor 
placement problem where the goal is to maximize the coverage of 
the entire universe of potential communication pairs. It suggests that 
the preferred strategy to place monitors should be to instrument one 
or two specific inter-AS links per AS for many ASes. However this 
approach do not address sampling in their monitors, they deal with 
the problem of distributed monitoring in internetworks, where the 
capability to monitor every link cannot be assumed. 

2.2  Network Detection and Remediation 

Diagnosing anomalies is critical for network operators and end users. 
Lakhina et al. [2004] propose a general method to diagnose 
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anomalies. It is based on a separation of the high-dimensional space 
occupied by a set of network traffic measurements into disjoint 
subspaces corresponding to normal and anomalous network 
conditions. This separation can be performed effectively by Principal 
Component Analysis (PCA). This method can accurately detect 
volume anomaly; correctly identify the underlying origin-destination 
(OD) flow which is the source of the anomaly; and accurately 
estimate the traffic involved in the anomalous OD flow. However, the 
methodology needs to be extended to diagnose additional network-
wide anomalies, including routing related anomalies. Also, if 
incorporate these algorithms in a toolset, it can better prevent 
anomalies.  

Lakhina et al. [2004] demonstrated the efficiency of statistical 
anomaly detection in aggregated network traffic. The most popular 
way to aggregate the traffic is as a Traffic Matrix, where the traffic is 
divided according to its ingress and egress points. This has been 
first successfully used by Lakhina et al. [2004]. Soule et al. [2007] 
further studied the reasons for choosing traffic matrices instead of 
any other by comparing three traffic aggregation formalisms: ingress 
routers, input links and OD pairs (i.e. traffic matrices). The traffic 
aggregation level has a significant impact on the number of detected 
and on the false positive rate. It also mentions the aggregation can 
be harmful to anomaly detection in two different ways. So the future 
needs to study more formalism, detection methods, data sets and 
how different formalisms are biased towards detecting certain types 
of anomalies. The aggregation with PCA is left for the future work. 
Ringberg et al. [2007] did the ongoing work. They show that tuning 
PCA to operate effectively in practice is difficult and requires more 
robust techniques. The methodology uses their interface with the 
PCA anomaly detector written by Lakhina et al. [2004]. They identify 
four main challenges of using PCA. Then mentioned before PCA can 
be used automatically, need more effective techniques for 
determining the dimensionality of the normal subspace, preventing 
its contamination, and identifying flows responsible for a given PCA 
detection.  

Ringberg et al. [2007] also investigated the related work and 
demonstrated PCA has also been combined with distributed 
monitors to provide more efficient traffic anomaly detection. This has 
been designed by Li et al. [2006] named MIND as a distributed multi-
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dimensional indexing system for network diagnosis. It is the first 
operational overlay with new features. Future work will use MIND to 
perform online anomaly detection in a large network and then 
implementing the actual algorithms that examine detailed traffic 
traces based on MIND’s query results and also resolve open issues 
in the overlay design area. Furthermore, Peng et al. [2007] present 
distributed IDS based on an information sharing model. They 
address what information and how to share information problems by 
using the cumulative sum algorithm to collect statistics at each local 
system, it is simple but robust to monitor changes. Also they use an 
offline machine learning approach to coordinate the information 
sharing among the distributed IDS, which helps to decide when to 
share information so that both the communication overhead and the 
detection delay are minimized.    

On the other hand, Androulidakis et al. [2009] evaluate the impact of 
intelligent flow sampling techniques on the detection of network 
anomalies. The research principle is the exploitation of the fact that 
for specific-purpose applications such as anomaly detection a large 
fraction of information is contained in a small fraction of flows. They 
demonstrate that by using sampling techniques that opportunistically 
and preferentially sample traffic data could improve detection. To 
evaluate the impact of intelligent sampling techniques, an entropy-
based anomaly detection method on a packet trace is adopted. 
Recently Shanbhag et al. [2009] design a real-time parallel anomaly 
detection system by using multiple existing anomaly detection 
algorithms in parallel on thousands of network traffic subclasses to 
accurately and sensitively detect anomalies. They also propose a 
novel aggregation process to aggregate the vast amount of data 
generated. It increases the accuracy of the overall system beyond 
that of any single anomaly detection algorithm. 

After all, Chandola et al. [2009] provide a comprehensive overview of 
the research on anomaly detection. They grouped existing 
techniques into different categories based on the underlying 
approach adopted by each technique. For each category they 
identified key assumptions which can be used as guidelines to 
assess the effectiveness of the technique. For each category, they 
provide a basic anomaly detection technique, and then show how 
the different existing techniques in that category are variants of the 
basic technique. After that, they identify the advantages and 
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disadvantages of the techniques, which will help to know which 
anomaly detection technique is best suited for a given problem. The 
set of technologies covered classification based, clustering based, 
nearest neighbor based, statistical, information theoretic, spectral 
anomaly detection. The application domain contains cyber-intrusion 
detection, fraud detection, medical anomaly detection, industrial 
damage detection, image processing, textual anomaly detection and 
sensor networks. They also provide a discussion on the 
computational complexity of the techniques.    

So the future in this field, will 1st, unifies the assumptions made by 
different techniques regarding the normal and anomalous behavior 
into a statistical or machine learning framework. 2nd, develop new 
techniques in contextual and collective anomaly detection area. 3rd, 
the need for distributed with privacy-preserving anomaly detection 
techniques. 4th, with the emergence of sensor networks, processing 
data as it arrives has become a necessity. 5th, finding more and 
more applicability is in complex systems. 

2.2.1 DDoS 

Most intrusion detection systems in use today, such as the popular 
Snort [Roesch et al., 1999], are based on signatures. More generic 
anomaly detection is often limited by the availability of computational 
resources, which is scarce in many environments, such as wireless 
mesh or sensor networks [Hugelshofer et al., 2009]. DDoS detection 
is only currently carried out on the access network that is under 
attack, and new forms of attack that function at the application layer 
are hard to distinguish from normal events, requiring non real-time 
classification [Peng et al., 2007]. Volume anomaly detection in 
realtime is resource challenging, leading to different choices of 
sampling that can impact the accuracy of detection [Brauckhoff et al., 
2010]. There are no techniques that can be applied to a variety of 
challenge types, which suggests a range of detection mechanisms 
need to be in place simultaneously. Classification of challenges in 
real-time is not yet feasible, leading to a trade-off between 
complexity and accuracy of identification [Peng et al., 2007]. 
Consequently, differentiating between attacks and normal traffic 
overloads, and thus identification of appropriate mitigation, is still 
difficult to achieve in real-time. 
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With the development of the internet, today any computer connects 
to the Internet is under threat of viruses, worms and attacks from 
hackers. Hansman et al. [2005] present a method for the 
categorization of both computer and network attacks. It consists of 
four dimensions which provide a holistic taxonomy to deal with 
inherent problems. Other proposed taxonomies include computer 
worms [Nicholas et al., 2003], computer intrusions [Daniel et al., 
1998], and intrusion detection systems [Stefan et al., 2000]. They are 
all helpful for us to move the taxonomies towards a knowledge base, 
which could detect correlations and classify attacks, then assign the 
matched defense mechanism to the individual attack. The defense-
centric taxonomy can be used to predict whether or not defenses 
could detect a particular attack based on its classification. [Killourhy, 
2004] 

The DoS attack is increasing rapidly these years, Hussain et al. 
[2003] introduce a framework for classifying DoS attacks based on 
header content, transient ramp-up behavior and spectral analysis. In 
addition to help understand attack dynamics, it is important for the 
development of realistic models of DoS traffic, it can be packaged as 
an automated tool to aid in rapid response to attacks, and can also 
be used to estimate the level of DoS activity. Mirkovic et al. [2004] 
further investigate two taxonomies for classifying DDoS attacks and 
defenses. The attack classification highlights commonalities and 
important features of attack strategies, which define challenges and 
dictate the design of countermeasures. The defense taxonomy 
classifies the existing DDoS defenses based on their design 
decisions. It then shows how these decisions dictate the advantages 
and deficiencies of proposed solutions. It is a first attempt to cut 
through the obscurity and structure the knowledge in this field. 
However this paper lacks of comparing strengths and weaknesses of 
each proposal, and discusses potential countermeasures against 
each defense mechanism. Peng et al. [2007] make up this by 
presenting a comprehensive survey of the causes for DoS attacks 
and the state-of-art mechanisms for defending against DoS attacks. 
They evaluate the implementation difficulties, challenges, strengths 
and limitations for different techniques. They also mentioned 
important steps to combat DoS attacks are increase the reliability of 
global network infrastructure and global cooperation, also conclude 



19 

 

by highlighting opportunities for an integrated solution to counter 
DDoS attacks. 

As all the IDS we know of keep per-connection or per-flow state. 
Kompella et al. [2004] initiate research with the question whether 
one can detect attacks without keeping per-flow state. It shows that 
such aggregation will cause problems as behavioral aliasing and 
spoofing. The stealthy port-scanning cannot be scalably detected 
without keeping per-flow state while several categories of DoS 
attacks can. And their proposed Partial Completion Filters (PCFs) 
can detect both scanning attacks and partial completion attacks even 
with small traffic. The previous network monitor part mentioned 
Jackson et al. [2007] placing monitors within ASes. Castelucio et al. 
[2009] build upon this and propose an overlay network that provides 
an IP-traceback scheme at AS level to deal with DDoS threat. It 
contrasts with previous works because it does not require a priori 
knowledge of the network topology and allows single-packet 
traceback and incremental deployment. They propose a new 
extension to the BGP update-message community attribute that 
enables information to be passed across AS, also highlight a new 
sequence-marking process to remove ambiguities in the traceback 
path. The future work need to investigate the feasibility of integrating 
this system with a router-level traceback system. Therefore, perform 
the traceback at two levels: 1st, the traceback can discover ASes 
from where packets are sent and 2nd, the traceback can be 
performed inside these ASes, increasing the chance of getting closer 
to the attacker sources so that perform more efficient filtering.  

Aamir et al. [2013] draw the conclusion based on the survey of the 
different techniques of DDoS, infrastructure layer (Layer 3) attacks is 
more favored by the attacker than application layer (Layer 7) attacks 
in overall scenario. Major DDoS attacks according to the statistics 
are SYN flood attacks (Layer 3), GET floods (Layer 7) and 
ICMP/UDP flood attacks (Layer 3). Some previous techniques are 
focus on the network layer and application layer. And special 
methods are developed for the application layer DDoS attack, for 
example, the CAPTHA puzzle images could be applied to clients to 
evade machine based automated DDoS attacks. But the application 
layer DDoS attack is identified as the future challenge as it is difficult 
to capture and may not be volume based. 
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2.2.2 Malware 

Worms are still a widespread and persistent form of malware, 
attacking targets via various channels and strategies. Historically, 
most worms have propagated by scanning random IP addresses to 
infect vulnerable hosts. The worm will send an infectious payload to 
the target port of hosts running the desired services. In 2001, the 
code red worm infected 360,000 hosts in 10 hours [Yu et al., 2006]. 
In 2003, the SQL Sapphire Slammer [Moore et al., 2003] worm 
infected tens of thousands hosts in less than half an hour. In 2004, 
Cabir appeared as the earliest known worm targeting mobile phones. 
Now, worms infect smart phones via the Internet, Storage Cards, 
SMS, MMS, and even Bluetooth. Spoofed SMS messages are used 
to steal personal bank information by the ZeuS MitMo [La Polla, 
2012]. In May 2012, trend micro reported that the 
"WORM_STEKCT.EVL_ worm spreads via facebook and instant 
messengers [Pantanilla et al., 2012]. Also in May 2012, Iranian 
government computers were attacked by Flame, which is complex 
modular malware that includes worm-like features. It is said to have 
a "close relation" with the previous Stuxnet and Duqu worms [Flame, 
2012]. 

Port scans and worms are a major attack vector for infection and 
propagation by botnets. Thus worm attack detection and remediation 
remain as serious issues, as is the ability to adapt strategies in the 
face of evolving malware. There have been a number of surveys of 
worm detection [Li et al., 2008]. The focus is generally on detecting 
worm attacks during the propagation phase. The most common 
approach is based on signatures, which monitor the payload of 
packets to detect sequences of known worms. Examples of 
signature-based detection include snort and bro, sonicwall IPS, and 
checkpoint IPS. An alternative approach is to monitor protocol 
sequences of known worms, such as unsuccessful TCP connection 
attempts. However, signature-based detection suffers from scaling 
problems. As the number of different worm types grows, so too do 
the signature databases that are referenced by detection systems, 
increasing the overhead of real-time detection. Furthermore, in 
certain resource-constrained environments, such as wireless mesh 
networks, conventional signature detection systems are not feasible 
due to their overheads [Hugelshofer, 2009].  
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Signature-based detection is limited to detecting known worms. It 
cannot detect unknown attacks. Anomaly-based detection observes 
network traffic looking for abnormal behavior and generates alarms 
for anomalies. The challenges lie in distinguishing normal and 
anomalous behavior, and the setting of thresholds to detect 
anomalies. If not designed carefully, such systems could generate 
many false alarms [Li et al., 2008]. There are also trade-offs between 
accuracy and complexity. Simple tools such as volume monitors will 
detect large-scale attacks, but may also generate alarms for normal 
traffic. Alternatively, more sophisticated and accurate detectors may 
incur unreasonable overheads when operating in real time. 

Previous work has also addressed worm containment. In [Chen et al., 
2010] an approach to slowing worm propagation is proposed. 
However, it would be desirable to achieve complete elimination once 
a particular attack is identified. Another method of containment is 
address blocking. Once a host is identified as a scanner, all traffic 
from this host will be throttled [Chen et al., 2007]. This approach 
does not scale well to large-scale attacks from multiple sources. 

Camouflaging worms (C-Worms) is difficult to capture since it could 
hide itself by blending with the environment in such a way that it 
looks analogous to the normal data packet of the network. 
Jeevaakatiravan et al. [2013] proposed a novel approach for 
detecting C-Worms. The Centralized Worm Detector (CWD) 
algorithm is deployed based on digital signature technique to 
authenticate each node and monitor the network. With CWD 
algorithm, the malicious C-Worm nodes are discarded and the 
recovered network is monitored. 

In the work reported here we overcome the limitations of existing 
techniques by progressively monitoring a range of traffic features. 
Worm type anomalies can be identified in real time at an early stage 
using incomplete information. Interim remediation strategies can be 
applied until full or partial identification of the worm type is concluded. 
Furthermore, we offer a platform that enables ongoing development 
and refinement of malware detection and remediation strategies. 

2.2.3 Network faults 

The growth of the network also promotes the possibility of the 
various fault occurrences in the network. The fault could degrade the 



22 

 

network performance by affecting the network reliability, latency, 
throughput, delay, service level and dependability. Algirdas et al. 
[2004] give the main definitions relating to dependability, address the 
threats to dependability and security (faults, errors, failures), their 
attributes (reliability, availability, safety, integrity, maintainability), and 
the means for their achievement (fault prevention, fault tolerance, 
fault removal, fault forecasting). The fault-error-failure model is 
central to the understanding and mastering of the various threats 
that may affect a system. While, future research needs to analyze 
issues of trust and the allied topic of risk management, searching for 
unified measures of dependability and security. Also new 
technologies and concepts of man-machine systems will require 
continued attention to their specific dependability issues.  

As fault management is being addressed as one of the major 
components of the network management suite. The generic network 
fault diagnosis system consists of four parts. Two network fault 
management approaches are reviewed by Lazar et al. [1992], which 
cover probabilistic approach and the finite state machine (FSM) 
approach. But their problems in general are very hard and many are 
NP-complete. However, it might be possible to find sub-optimal 
solutions that work well on average and on real scenarios. A more 
thorough analysis for modelling fault diagnosis is presented by 
Katzela et al. [1995]. It proposes a graph based network model 
suitable for alarm correlation and fault localization. They consider the 
dependencies among the different objects and a novel approach to 
estimate an alarm domain, and then design an algorithm for fault 
diagnosis. They also propose a fault diagnosis algorithm suitable for 
systems for which an independent failure assumption is valid.  

On the other hand, the increased complexity of hardware and 
software resources and the asynchronous interaction among 
components make fault detection and recovery very challenging. Kim 
et al. [2008] present innovative concepts for fault detection, root 
cause analysis and self-healing architectures analyzing the duration 
of pattern transition sequences during an execution window. It 
implements root-cause analysis not only to detect the faults once 
they occur, but also to identify the source of fault allowing us to 
perform automatic fault recovery. Yu et al. [2008] demonstrate that 
the statement-based reduction provides much greater reduction of 
the test suites, saves testing expense, but negatively affects the 
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effectiveness of the fault localization. The vector-based reduction 
provides less reduction in test-suite size, reduces test expense, but 
provides negligible impact on the effectiveness of the fault 
localization. This study is helpful in addressing the testing and 
debugging costs during the software development process.  

As previous mentioned, Katzela et al. [1995] introduced fault 
localization from model-based systems. But it has two main 
drawbacks: 1st, they require accurate dependency information 
amongst network entities, which is usually not available for large 
enterprise networks; 2nd, fault inference involves complicated 
computation and scales poorly with network size and complexity. In 
contrast, Ting et al. [2009] present an approach only requires 
elementary topological information and fault signatures to support 
matching over high-volume event data. It proposes a framework 
Meta (Monitoring network Events with Topology Assistance). They 
introduce a new class of indexable fault signatures that encode 
temporal evolution of events generated by a network fault as well as 
topological relationships, also present an efficient learning algorithm 
to extract such fault signatures. However when testing the accuracy 
of fault diagnosis find a larger D provides more leeway in identifying 
the fault node, especially test recall, this may need to improve in 
future. So the further research will cover 1) incorporation of domain 
knowledge in training fault signatures; 2) exploration of alternative 
models of temporal evolution, 3) search for data structures that can 
be incrementally adapted as network evolves; and 4) incorporation of 
a richer set of topological relationships derived from multi-layer 
networks.  

Sethi et al. [2004] also mentioned the weakness with the divide and 
conquer algorithm [Katzela et al, 1995], which always explains all the 
observed alarms, but may fail to give their best explanation. It does 
not handle lost or spurious symptoms and may be used only if there 
are failure dependencies among objects. For the case of a system in 
which all objects fail independently of one another, a different 
algorithm was proposed but it has a polynomial worst case 
complexity. Moreover, Sethi et al. [2004] present a comprehensive 
survey of fault localization techniques and discuss their advantages 
and shortcomings. These techniques derive from different areas of 
computer science, including artificial intelligence, graph theory, 
neural networks, information theory, and automata theory, and 
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include model-based reasoning tools, model traversing techniques, 
case-based reasoning tools, graph-theoretic techniques, and the 
codebook approach. However, fault localization in complex systems 
remains an open research problem. The most challenging issues 
concern multi-layer fault localization, distributed diagnosis, temporal 
correlation, fault localization in mobile ad hoc networks, and root 
cause analysis in a service-oriented environment. 

In hierarchical network, any fault could possibly bring down the 
network. Bhagvan et al. [2013] propose Fault Tolerable hierarchical 
Network (FTN) approach as a solution to the problems of 
hierarchical networks. The innovative method could identify 
possibilities of network failure and correspondingly provides specific 
recovery mechanism. Their experiment result also shows this 
method is better than the conventional approach over the network 
parameters: delay, throughput. 

2.3  Commercialized Products 

Most available commercial managed security solutions are primarily 
signature-based, in which network traffic is compared to 
predetermined attack patterns known as signatures [Cisco, 2011], 
[IBM, 2011], [Enterasys, 2011]. Typically, these systems offer 
automated intrusion response based on detected signatures only, 
and in many cases require a human operator to interpret anomalous 
behavior and take discretionary actions to mitigate it. None of these 
systems provide the same level of customization offered by the 
progressive multi-stage approach proposed in our work. 

HP tipping point has the feature to automatically distribute digital 
vaccine when it is released, so that the new signature could be 
deployed to protect against the network threats. The threat 
management centre (TMC) researches and distributes digital 
vaccine periodically. HP TippingPoint application also gives the 
option for the network administrator to write custom filters for using 
on IPS and SMS devices. However the HP official released digital 
vaccine is not open source. So the network administrator must be 
very well trained to be able to customize the signature with stand-
alone digital vaccine toolkit. HP is not responsible for the user 
customized signature, so the mistaken written signature may cause 
the false alarm when scan the network.  
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McAfee also has the NIPS, which help the network to defend against 
various malicious attacks. And McAfee Network Security Manager is 
used to view, configure, and manage Network Security Platform 
Sensor appliance deployments. The released signature set could be 
scheduled to automatically update and distribute on the sensors. 
Except the regular signature set, the incremental emergency 
signature sets that include attack signatures not yet available in 
regular signature sets. The incremental emergency signature sets 

are meant to address late‑breaking attacks that may need to be 

addressed immediately. The emergency signature sets could only 
add the new signatures, but don’t contain the full set of signature set. 
However if the new attack hasn’t been covered by the emergency or 
regular signature set, then it will bring the risk to the network. 

Traditionally, system administrators have had the perception (which 
is not entirely wrong) that the automatic launch of remedies might 
create additional security risks. One of the main advantages of the 
approach we propose over commercial solutions is that policies can 
be carefully crafted and evaluated on the simulation environment, 
and manually modified by a human operator if needed. Also, even 
after policies are deployed, they can be modified to cater for specific 
contexts and operational events. Moreover, the multistage approach 
also permits introducing intermediate stages of remediation, which 
might not be optimal by themselves, but will allow the system to 
operate with limited performance until the definite root cause is 
reliably identified (either automatically or with some level of human 
involvement). 

 

2.4  Evaluation  

2.4.1 Detection Rate and False Alarm 

In network monitor, Jackson et al. [2007] compare the percent of 
flows detected then prove that on the region that maximizes the cost 
effectiveness breadth-first outperforms depth-first. To investigate the 
contribution of different endsystems to the overall traffic, Cook et al. 
[2006] analyzed the fraction of traffic observed by endsystems 
monitoring as increasing subsets of endsystems are instrumented. It 
shows that instrumenting just 1% of endsystems was enough to 
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monitor 99.999% bytes. In the service level monitoring, Wuhib et al. 
[2006] determine the correctness of the threshold detection protocol 
by measuring the fraction of false negatives/false positives vs. 
actually occurred threshold crossings. Ting et al. [2009] measured 
the performance of Meta and the baseline approach in detecting 
network faults under varying configuration of fault occurrence rate 
and topological correlations.  

In fault detection, Lazar et al. [2004] mentioned, the choice of the 
filter in FSM involves a trade-off between the fault detection rate and 
the number of different events passed through. The fault detection 
rate is very important for the network fault detection. Kim et al. [2008] 
evaluate the anomaly based fault detection approach capabilities. 
Then show the detection rate and missed false alarm for all 
scenarios they did with different number of grams. Therefore prove 
that their approach is superior in various scenarios.  

According to Lakhina et al. [2004], the validation approach for 
anomalies detection is centered on answering questions: (1) How 
well can the method diagnose actual anomalies observed in real 
data? (2) How does the time and location of the anomaly affect 
performance of the method? In each case, detection success is 
measured by two metrics. One is the detection rate. The other is 
false alarm rate, which is the fraction of normal measurements that 
trigger an erroneous detection. Soule et al. [2007] proved traffic 
matrix is the optimal way to aggregate the traffic by comparing 
statistical anomalies, true or false positive rate with others. A false 
positive is defined as normal traffic that has been detected as an 
attack and a false negative as an attack which has not been 
detected. [Peng et al. 2007] Ringberg et al. [2007] evaluated PCA’s 
sensitivity by comparing the false positive and detection rate in 
different networks with three aggregation formalisms. To evaluate 
the efficacy of PCF in scalable behavior based detection, Kompella 
et al. [2004] monitor the detection rate, false positives and false 
negatives in every time bin. A similar observation made by Hussain 
et al. [2003]. In addition, Peng et al. [2007] test the model accuracy 
of detecting reflector attacks by comparing the false alarm rate for 
different broadcast thresholds. To prove that the aggregated 
anomaly metric performs better than any individual algorithm, 
Shanbhag et al. [2009] compare the receiver operating characteristic 
(ROC) curves for the algorithms and the PAD system. A ROC curve 
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is a graphical plot of the true positive rate vs. the false positive rate 
for a binary classifier as its threshold is varied. In the anomaly 
detection survey, Chandola et al. [2009] mentioned in IDS, the issue 
arises with the large sized input is the false alarm rate. Peng et al. 
[2009] also demonstrated two measures for DoS attack detection are 
detection time and false positive rate. A good detection technique 
should have a short detection time and low false positive rate.  

2.4.2 Latency and Efficiency 

In the service level monitoring, except false alarm, another way 
Wuhib et al. [2006] assess the quality of threshold detection by 
measuring the delay between the time a crossing is reported by the 
protocol and the time of its actual occurrence. Ting et al. [2009] 
measure the scalability of the fault diagnosis in Meta by evaluating 
the average processing time of each incoming event, under varying 
condition of fault occurrence rate, with and without the multi-folded 
optimizations introduced. Then prove the efficiency of the execution. 

In schemes for fault detection, to evaluate importance with the 
information of the dependencies between the objects for the fault 
localization process, Katzela et al. [1995] demonstrate that the 
fraction of time the divide and conquer algorithm finds the optimum 
solution is higher than either the independent algorithm. So it’s more 
efficient. They also observe the relative error rate and conclude the 
relative error of the divide algorithm is low especially in the case of 
the same independent probabilities of failure.  

To evaluate MIND performance, Li et al. [2006] measure several 
aspects of: Insertion path length, data insertion latency, query cost, 
the query latency, the data and traffic distribution across nodes and 
links, then show that the MIND could provide low insertion and 
response time. Shanbhag et al. [2009] test system ability to identify 
anomalies in packet traces by replaying the traces shown. This 
ensures that the PAD system receives realistic traffic and the results 
are reproducible. Castelucio et al. [2009] analyze traceback 
efficiency according to the presence of the proposed AS-level IP-
traceback system. Traceback efficiency is defined as how much of 
the attacker path is discovered. They did the simulation for AS 
network topologies containing different number of ASes. They also 
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evaluate efficiency with an increasing number of attacking sources in 
strategic placement and random placement.  

2.4.3 Computation Complexity and Assumption Strength  

When Avizienis et al. [2004] evaluate development failures, 
mentioned they are usually due to an underestimate of the 
complexity of the system to be developed. So complexity analysis is 
the key to verify the techniques. To design the fault localization 
framework, Katzela et al. [1995] demonstrated the algorithm should 
be simple, have low order polynomial computational complexity, 
provide quick and accurate response, and should be easily adapted 
to a distributed environment. According to soul et al. [2007], traffic 
matrix is the popular way to aggregate traffic in statistical anomaly 
detection. However the downside is the computation complexity. 
With DoS detection, all techniques are based on one or more 
assumptions. Peng et al. [2007] conclude that the efficacies of 
detection are evaluated with their assumption strength and technical 
complexity. They list all the assumptions and find most are not 
strong, since attackers can change their attack patterns to overthrow 
the assumption and evade detection.   

2.4.4 Scalability and Robustness 

In decentralized service-level monitoring, to make the TCA robust, 
TCA-GAP dynamically reconfigures the overlay after addition and 
removal of nodes, also after node and link failures [Wuhib, 2006]. In 
a topological analysis of monitor placement, Jackson et al. [2007] 
show the percentage of flows detected, for all the combinations of 
both inter-AS links and ASes instrumented they explored. The 
sequence, monotonically increasing from 1 to a maximum of 8683 to 
check the scalability as the number of ASes instrumented increase. 
Li et al. [2006] did a large-scale experiment to explore MIND’s 
scalability by deploying the MIND prototype on 102 nodes. Then 
describe the insertion latency across the entire experiment. This 
deployment enabled them to fail individual nodes in a controlled 
fashion and observe the availability of data at various levels of 
replication. To make the information sharing model for distributed 
IDS scalable, Peng et al. [2007] use hierarchical architecture for 
wireless sensor network. It significantly reduces the number of 
broadcasts for a small increase in delay. Kim et al. [2008] classify 
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data based on the specification supplied with the multi-tier web 
benchmark by building four different scenarios. Then prove there’s 
slight impact of bulk training data set with the anomaly based fault 
detection by showing the good result.  

2.5  Summary of the State of the Art 

In the distributed challenge detection field, there has been 
considerable research with network monitoring, anomalous detection, 
fault tolerance, DDoS attacks separately, here we reviewed the 
latest technologies in these areas, highlight the relationship, 
mentioned their strengths, weakness and future work. However so 
far - limited work has been done to systematically embed resilience 
into the future Internet or develop and experiment with novel, 
distributed mechanisms for monitoring resilience to detect 
challenges as they occur. So our research contributes towards the 
development of new algorithms and experimental systems to 
perform challenge detection and identification. The universally useful 
measurement aspects are reviewed. The future platform is flexible, 
that means few assumptions has been made about operating 
parameters and robustness, meaning that it could give satisfactory 
performance under variations in topology and traffic.  

The distributed challenge detection project select particular network-
level and service provision scenarios for deepening the mechanism-
level analysis and carrying out experimental evaluation. The 
intention has been to develop as much as possible the different 
components of the resilience framework. Challenges and their 
impact assessment, metrics, policies, and cross-layer techniques, 
including monitoring, are the four main components of the proposed 
framework. In summary, the published state-of-the-art in challenge 
detection and classification varies in the resources that are required, 
the timeliness and accuracy of their operation, and the challenges 
they can effectively operate with. Therefore, it must be possible to 
flexibly organize these mechanisms and dynamically adapt their 
operation in a way that is sympathetic to their characteristics and the 
likely challenges that will occur. Moreover, configuring these 
mechanisms will be complex, especially when one considers their 
interaction with those to remediate challenges – an issue that 
existing work does not address. 
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In this chapter, we will explain the motivation for the development of 
a multi-stage policy-driven approach to network resilience. Then we 
will show how this approach can progressively identify and mitigate 
challenges. Policy based management strategies will be introduced. 
Lastly, the benefits of this approach will be highlighted.  

3.1. Motivation 

A crucial part of a resilience strategy involves real-time detection of 
challenges, followed by identification to initiate appropriate 
remediation. We observe that the current state-of-the-art to 
challenge detection is insufficient. Our goal is to advocate a new 
autonomic, distributed challenge detection approach. The feasibility 
of our framework will be demonstrated through experimentation. We 
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conclude that our case studies provided valuable insight into resilient 
networks, which will be useful for further research. 

To provide network resilience, a number of mechanisms are needed, 
such as monitoring systems, tools to collect IP flow information for 
use by intrusion detection and classification systems, and those to 
mitigate challenges. However, in complex networks comprising 
resilience mechanisms at different layers of the protocol stack and at 
disparate locations of the network, it is often difficult to define how 
these mechanisms should be coordinated. It is also difficult to define 
how the configuration of such mechanisms should change over time, 
in response to new types of challenges, context changes, or new 
requirements (e.g., new types of SLAs). Furthermore, configurations 
should be sympathetic to the points identified in the related work, 
namely the varying overheads, timescales, and accuracy of available 
detection and classification mechanisms. In this section, we 
elaborate on these concerns and their relationship to the mitigation 
of challenges, and discuss the motivation of using a policy-based 
management framework for defining configurations of resilience 
mechanisms. 

 

3.2. Progressive Challenge Identification 

Previous work has suggested that due to the overhead of capturing 
and inspecting packets it is not possible to employ widely-used 
intrusion detection systems on the access points of typical 
community-driven wireless mesh networks [Hugelshofer et al., 2009]. 
Furthermore, for a number of detection activities, increased traffic 
load compounds this problem. Network anomaly detection and 
classification systems can make use of flow information collected 
from vantage points in the network [Lakhina et al., 2005]. There is an 
overhead associated with collecting this flow information – a way of 
managing this overhead is to introduce sampling; however, as 
mentioned earlier, this may have an adverse effect on detection 
[Brauckhoff et al., 2010]. Again, increased load, e.g., caused by a 
DDoS attack, is likely to make the resources available for flow 
collection and detection scarce. Consequently, the effectiveness of 
detection and classification systems when the network is heavily 
utilized needs careful consideration, as this may have an impact on 
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their ability to provide results, and correspondingly a system’s ability 
to perform appropriate mitigation of a challenge. 

Closely related to the issue of the overhead of detection 
mechanisms is the timeliness and accuracy of the results they yield. 
This is important because of the necessity to remediate a challenge 
as early as possible, potentially minimizing disruption. Our 
assumption is that detection mechanisms that yield coarse-grain 
findings about the nature of a challenge, e.g., detect the presence of 
an anomaly, are more timely and have a lower overhead than those 
that provide more fine-grain information, e.g., give details of the 
nature of the anomaly. Furthermore, we assume that fine-grain 
information allows better decisions to be made regarding how to 
mitigate a challenge. We discuss this notion further, with the use of 
an example. 

 

Fig. 4. Coarse to fine grain challenge identification and remediation 

Consider the mechanisms depicted in Fig. 4 [Yu et al., 2011] that 
could be used to detect and remediate abnormal traffic loads. An 
increase in traffic volume may be the result of a DDoS attack, flash 
crowd or device misconfiguration. A simple link monitor can provide 
local information about an unusual increase in the volume of traffic 
observed at a router. If the traffic volume is disruptively high, traffic 
on a given link can be shaped (limited) in order to protect 
downstream infrastructure and  traffic. The detection is relatively 
lightweight, fast and coarse grain; correspondingly, the remediation 
taken will affect both potentially malicious and benign traffic. A more 
sophisticated volume-based anomaly detection technique [Lakhina 
et al., 2004] may determine the specific destination address of the 



33 

 

increased traffic, and allow shaping of traffic to that destination only 
– this would reduce the overall amount of traffic being incorrectly 
penalized in the network.  

Finally, a more heavyweight machine learning classifier has the 
ability to accurately discriminate traffic flows of malicious provenance 
from the normal traffic, and permits a more fine grain traffic shaping 
strategy to block attack flows alone. In summary, it can be seen that 
because of these concerns, the configuration of mechanisms that 
realize a resilience strategy needs to evolve at run-time, based on 
the challenge information that is currently available. In particular, 
taking into account the characteristics of detection and classification 
systems, and their interplay with mechanisms used to mitigate a 
challenge. We propose to build on the capabilities of a policy-based 
management framework to address this issue. 

3.3. Policy-based Management Strategies 

Our resilience strategy - is policy based. This builds on earlier work 
by [Schaeffer-Filho, 2011]. We reuse policies here for the 
development of network resilience strategies. The configuration of 
the network, and resilience mechanisms therein, that realizes a 
resilience strategy can be modified without interrupting service 
operation [Damianou et al., 2001]. This is a necessary feature for the 
realization of the progressive multi-stage resilience approach, as it 
allows the configuration of resilience mechanisms to adapt in 
response to the prevailing resources, timeliness and accuracy of 
detection and classification mechanisms. 

Fig. 5 illustrates how we use policies to reconfigure the operation of 
resilience mechanisms during run-time. Events representing either 
the occurrence of challenges, e.g., a DDoS attack, or changes in 
context, e.g., resource availability, may be used as a trigger for the 
reconfiguration of the system. Reconfiguration strategies are 
represented as policies, which define how the operation of the 
several components in the network should be modified in response 
to pre-specified events. The policy interpreter evaluates the events 
and makes decisions subject to the current set of policies. Such 
decisions may concern the tuning of parameters of the mechanisms, 
the re-wiring of their interconnections, and also the dynamic enabling 
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or disabling of the mechanisms currently deployed in a particular 
strategy. 

 

Fig. 5. Policy-based reconfiguration of mechanisms during run-time 

At any time, the current set of mechanisms may generate new 
events which in turn may trigger a different set of policies. This 
continuous process will constitute a policy-driven feedback control-
loop [Lupu et al., 2008], in which events trigger policies for the 
reconfiguration of resilience mechanisms, which may in turn 
generate other events that will trigger different policies and so on. 
Note that the set of policies defining the possible reconfiguration 
actions is not fixed, and different policies may be loaded or unloaded 
over time to reflect better resilience practices or a better 
understanding of the challenges the network is facing. 

3.4. Benefits of the Approach 

When we detect the onset of a challenge or measure the 
performance of the network in relation to resilience targets, adaption 
of the network could occur. These two factors lead to a set of 
coarse-grain and fine-grain adaptations. Coarse-grain adaptation 
involves the deployment of resilience patterns, which are 
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configurations of resilience mechanisms, capable of combating a 
specific challenge. A challenge analysis module provides information 
about the challenges that are affecting a network. This is used to 
select which resilience patterns should be invoked. Fine-grain 
adaptation involves setting or adjusting the parameters of the 
mechanisms that are currently deployed in the network as part of a 
pattern. 

In our joint work within the ResumeNet project, a pattern is a policy 
configuration of resilience mechanisms and their relationships. 
Different challenge types will demand specific sets of mechanisms to 
monitor features in the network (e.g., current traffic load or alarms 
generated by an anomaly detection mechanism), and initiate 
remediation actions to combat anomalous behavior (e.g., blocking 
malicious flows or selectively dropping packets). This assumes the 
existence of autonomous mechanisms supporting a range of 
resilience functions in the network. 

In our joint work, a framework and a process for the design and 
evaluation of network resilience management is presented 
[Schaeffer-Filho et al. 2012]. The framework enables (1) the offline 
evaluation of resilience strategies to combat several types of 
challenges, (2) the generalization of successful solutions into 
reusable patterns of mechanisms, and (3) the rapid deployment of 
appropriate patterns when challenges are observed at run-time. 

The contribution of this thesis is a simulation platform to evaluate the 
performance of resilience strategies. The toolset is based on the 
integration between the OMNeT++ simulator and Ponder2 
framework. It supports the simulation of a range of challenge 
scenarios and the resilience strategies used to combat these 
challenges. The toolset enables us to identify best practices and the 
most effective policy configurations for challenges such as DDoS 
attacks, flash crowds and worm propagations.  

3.5. Summary  

In this chapter, we have discussed the motivation of using a policy-
based management framework for defining configurations of 
resilience mechanisms. We described a progressive challenge 
identification strategy, which means our initial detection is relatively 
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lightweight, fast and less complete; correspondingly, the remediation 
strategy is coarse grain. After further analysis, the root cause of the 
challenge could be identified and fine grain mitigation applied.  

We propose that our resilience framework is flexible and reusable 
and can cater for similar challenges manifesting at different parts of 
the network, or variations of a specific form of attack. Our 
experimental work now explores this proposal. 
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Building the distributed challenge detection system in the real world 
is not an easy task.  Firstly, a large topology network is required to 
get the meaningful result. Secondly, such network needs large 
topology, which will increase the hardware cost and administration 
effort. Thirdly, with the current available real world platform, e.g. 
AARNET, PlanetLab, it is not convenient to experiment the attack on 
these networks. Because it’s hardly to ensure the anomaly detection 
system will not disrupt the normal operational network, which will 
cause more severe effect. Fourthly, we need to have the full control 
with all the nodes in the system so that they could easily be 
configured to suit our case [Sethi, 2004]. However, this is also 
difficult to be realized in the real world. 

The evaluation of large-scale challenges, such as DDoS attacks and 
worm propagation, is difficult because these activities are typically 
highly distributed in nature and disrupt normal network behavior. 
Consequently, resilience strategies to mitigate them can require the 
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coordination of various monitoring and control mechanisms across 
different administrative domains, protocol levels and heterogeneous 
infrastructures. The use of testbeds for evaluating network 
performance and protocol design can involve high costs of hardware 
and development effort [Smith et al., 2010]. Moreover, real testbeds 
are generally not suitable for the evaluation of large-scale challenges 
that tend to affect multiple autonomous systems. 

As an alternative, to mitigate costs and address scaling issues 
associated with testbeds, we advocate the reproduction of network 
challenges and resilience mechanisms in a simulation environment. 
To this end, we have developed a toolset that couples policy-based 
management and network simulation. 

In this chapter, we will first assess the possibility to build the 
experiment on offline IDS datasets and network simulation. The 
popular public available dataset DARPA and KDD Cup will be 
discussed. Following this, we will compare the network simulators, 
e.g. NS-2, NS-3. OMNeT, SSFNet. Then we will explain why we 
choose OMNeT as our testbed instead of others. At last, the 
simulated architecture and implementation will be demonstrated. 

4.1 Off-line IDS datasets 

4.1.1 DARPA 

One possibility to carry our experiment is to use the off-line IDS 
datasets such as DARPA [Qiu et al., 2007], KDD Cup and etc, which 
could help us to relive from the above real world difficulties but with 
the realistic dataset. DARPA is collected between 1998 and 2000 
from Lincoln Lab. The 1998 DARPA intrusion detection covers 38 
attack types. The training data and test data slightly improved in the 
1999, so that 201 instances of 56 types of attacks distributed. Whilst 
the 2000 DARPA Intrusion detection scenario specific data sets 
include two attack scenarios, also DDoS attack carried out. 

4.1.2 KDD Cup 

KDD Cup dataset gathered in 1999. It has 41 features and labeled 
as normal or an attack, with exactly one specific attack type. Based 
on our findings, we decide not to use them as well. First, the dataset 
are not up to date, so that the most recently attacks and the 
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unforeseen attacks couldn’t be measured by these existing dataset. 
Secondly, Mahoney and Chan [Kotz, 2004] built a trivial IDS and ran 
it against the DARPA tcpdump data. They found numerous 
irregularities and demonstrate that the DARPA dataset was 
fundamentally broken. Thirdly, the performance measure applied in 
DARPA’98 Evaluation, ROC Curves, has been widely criticized 
[Fessi et al., 2009]. Lastly, it was still useful to evaluate the true 
positive performance. However, any false positive results were 
meaningless [Doerr et al., 2010]. 

4.2 Network Simulators 

Network simulators could overcome all the mentioned hurdles and 
meet the needs by integrating real world applications. However, it 
still requires us to compare different simulators to recognize the most 
appropriate environment. So we surveyed the widely applied 
simulators, NS-2, NS-3, OMNeT, SSFNet, JiST/SWANS and J-Sim. 
NS-3 [Mahoney et al., 2003] is the latest updated platform comes 
from several different network simulators and developed from 2008. 
While SSFNet [Tavallaee et al., 2009], JiST/SWANS [Brugger et al., 
2007] and J-Sim[Weingartner, 2009] nearly inactive since 2004, 
2005, 2006 respectively. NS-3 and OMNeT are continuously 
supported today. 

The policy-driven resilience simulator presented in our work is based 
on an integration between the OMNeT++ simulator [Varga et al., 
2008] and the Ponder2 policy framework [Twidle et al., 2008]. The 
toolset allows the evaluation of resilience strategies consisting of 
instrumented mechanisms within the simulation, whose behavior can 
be adapted during run-time – e.g., setting flags, dropping 
connections, triggering or stopping monitoring sessions, etc. The 
next sections will present the main design decisions and 
requirements related to this toolset, as well as describe the 
architecture and the attacks and resilience mechanisms supported. 

4.2.1 The requirement for network simulator 

The toolset is based on the integration of a standard network 
simulator to a policy management framework. We have considered 
the use of the most popular general purpose network simulators, 
including NS-2 [NS-2 Website], NS-3 [NS-3 Website], OMNeT++ 
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[OMNeT Website], SSFNet [SSFNet Website] and OPNET [OPNET 
Website]. The choice of a suitable platform was constrained by a 
number of requirements, namely:  

Platform extensibility: the simulator must be extensible, not only in 
terms of protocols models, but also its ability to be instrumented to 
allow communication with the policy framework; 

Availability of models: the availability of a large number of network 
models and protocol implementations is required to allow faster 
modelling of networks, and their resilience strategies; 

Performance & scalability: the simulation platform must be 
scalable and present good performance to allow faster and larger 
simulations of realistic network topologies; 

Modeling generality: the simulation environment should support the 
modeling of network components and protocols consisting of 
mechanisms for resilience that will reside at protocol layers 1–7. 

In terms of platform extensibility, OPNET is the only commercial tool 
and the source code for its simulation kernel is not publicly available. 
Since we are required to extend the simulator to facilitate the 
communication with the policy framework, this is not a viable option. 
Most simulators offer an extensive library of network models, apart 
from NS-3, which is still a relatively new endeavor and whose 
models need to be ported from NS-2 manually, and SSFNet, whose 
development was discontinued in 2004 and the availability of new 
protocol models is now limited. Moreover, NS-2 has been 
consistently reported to offer limited scalability and performance 
[Cavin et al., 2002]. Lastly, all simulation environments considered 
are suitable for modeling general communication networks and 
protocols at different levels. 

4.2.2 NS-2 and NS-3, SSFNet, JiST/SWANS and J-Sim 

Our work needs large topology, but NS-2 has the scalability issue 
with memory usage and simulation run-time [Weingartner et al., 
2009]. However, NS-3 and OMNeT are scalable. Considering the run 
time, JiST/SWANS are the fastest, whilst J-Sim is the slowest. 
OMNeT is slower than NS-3 but faster than NS-2 [Weingartner et al., 
2009]. NS-3 has lowest computational and less memory demands 
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whereas JiST/SWANS exhaust memory [Kargl et al., 2007]. OMNeT 
consume more memory than NS-3 but less than NS-2. In terms of 
GUI, NS-3 and NS-2 are relying on source code but OMNeT has a 
rich GUI with online visualization. Below we list the similarities and 
differences between NS-2 and NS-3. 

NS-3 Similarities to NS-2: 

 C++ software core 

 GNU GPLv2 licensing 

 ported ns-2 models: random variables, error models, OLSR, 
Calendar Queue scheduler, (more planned) 

NS-3 Differences with NS-2:   

 Python scripting (or C++ programs) replaces OTcl  

 most of the core rewritten 

 also based on the yans and GTNetS simulators 

 new animators, configuration tools, etc. are in work 

 

We compare the different simulators and list their main differences 
as below: 

NS-3: 

 Ns-3 is not backward compatible, ns-2 scripts cannot be run in 
ns-3 

 Reuse many models in ns-2 

 Replacement for the popular ns-2   

 Focus to date has been on setting the long-term architecture 

 Trying to avoid some problems with ns-2, such as 1) 
interoperability & coupling between models, 2) lack of memory 
management, 3) debugging of split language objects 

 

NS-2: 

NS-2 is being only lightly maintained at present due to the 
development work on NS-3 
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 It is very hard to use when scenarios get bigger and exceed 
several hundred nodes, which is not the case for JiST/swans 

 In the manet, consume more memory than swan 

 
OMNeT: 

 Lags behind the ns-2 simulator on availability of 
communication protocol models 

 Simulation API is more mature and more powerful than ns-2’s 

 Simulation kernel can be embedded in other applications 

 Ns-2 lacks many tools and infrastructure components that 
OMNeT++ provides: support for hierarchical models, a 
graphical 

 Editor, separation of models from experiments, graphical 
analysis tools, simulation library features such as multiple rng 
streams with arbitrary mapping and result collection, 
seamlessly integrated parallel simulation support, etc. 

 The ns-3 goals include some features (e.g. Parallel simulation, 
use of real-life protocol implementations as simulation models) 
that have already proven to be useful with OMNeT++ 

 Simulation results reporting is not adequate 

 

SSFNet: 

 DML lacks expressing power and features to scale up to 
support large model frameworks built from reusable 
components.  

 SSFNet also lacks OMNeT++'s INI files, all parameters need to 
be given in the DML. 

 

J-Sim: 

 Similar to OMNeT++ in that simulation models are hierarchical 
and built from self-contained components, but the approach of 
assembling components into models is more like NS-2 

http://www.ssfnet.org/
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 The use of TCL makes implementing graphical editors 
impossible. 

 Model development and debugging can be significantly faster 
than C++, However, simulation performance is significantly 
weaker than with C++, and it is also not possible to reuse 
existing real-life protocol implementations written in C as 
simulation models. 

 No independent (3rd party) simulation models  

 Poor post-technical support 

 Far-less pre-built modules and protocols than in other 
simulators  

 Simulation result reporting is not adequate 

OMNeT simulation API is more powerful than NS-2’s. NS-2 is only 
lightly maintained now. NS-3 will eventually replace NS-2, but it is 
not backward compatible. It is trying to avoid some problems with 
NS-2. The NS-3 goals include some features (e.g. real-life protocol, 
parallel simulation) that have already proven to be useful with 
OMNeT. Moreover, the new animators, configuration tools and etc. 
are still in work. In addition, OMNeT offer basic modules, which is 
extensible using C++, whilst NS-2 is not easily modifiable. OMNeT 
provides well online documentation and active discussion forum. 
Overall, our preferred platform should be updated and reliable, so 
the flexible and generic simulator OMNeT well suits us. 

Based on the comparison, OMNeT++ was chosen as the most 
suitable platform for the development of the resilience simulator. 
OMNeT++ is considered as one of the most widely used simulators 
for research in the area of communication networks [Gamer et al., 
2009]. In our work, we present a description of the architecture and 
main components of our OMNeT++ based implementation, and a 
comprehensive case study and set of experiments that validate the 
use of the toolset for the evaluation of resilience strategies. 

4.2.3 OMNeT 

OMNeT is a public source C++ based object oriented discrete event 
simulator for modeling communication networks, multiprocessors 
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and other distributed or parallel systems [Varga, 2008]. It applies in 
diverse domains and written in two languages, NED designed for the 
network topology and C++ programmed for the modules. The 
compound module assembles from reusable simple modules. 
OMNeT utilize Tkenv as the GUI and it is easily debugging and trace. 
It could animate the flow of messages and present the node state 
changes in the network charts. Hierarchical module structure in 
OMNeT++ facilitates dealing with complexity. It could show packet 
transmissions while a simulation is running. The topologies of 
module connections are specified in the NED language. In addition, 
OMNeT++ sources are never patched by models. Simple modules 
are then reusable, and can be freely combined like LEGO blocks to 
create simulations [Varga, 2008]. 

Build on OMNeT, INET extends it by package of network protocols 
and offers objects, which combined with the channels to complete 
the network. Testing our system contains two steps, create various 
attacks and detect the anomalies. When consider the background 
traffic generation, IDS testing is classified into four categories. 
Compared to no background traffic, real or sanitized background 
traffic, testing by generating background traffic approach has 
benefits such as data freely distributed, no unknown attack and 
repeatable simulated traffic [Mell, 2003]. So ReaSE is chosen as our 
realistic background traffic and DDoS attack generator. It extends 
INET by server and client entities.  

To build our network, firstly the realistic AS level topologies is 
generated to connect several separate administrative domains. Each 
AS is categorized as stub AS or transit AS. One transit AS is built to 
provide connections through itself to other networks. The stub AS is 
connected to only one other AS. This ensures each AS is accessible 
by crossing transit AS only. Two stub ASes and one transit AS are 
configured, named SAS1, SAS2 and TAS0. SAS1 connect to SAS2 
through TAS0. Secondly, the router level topology within each AS is 
specified. Each AS has core, edge and gateway routers placed. The 
distinction between different routers is realized by allocating different 
bandwidth. Within the AS, it has total min 8 routers and max 15 
routers. A few meshed core routers with low node degree that 
forward aggregated traffic of a high number of gateway routers with 
high node degree [Gamer et al. 2008]. Each edge router connects 
between 2 and 13 hosts to the network complete the hierarchical 
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topology. Therefore, each AS has different topology sizes and fills 
with nodes independently. 

Thirdly, the network built with different traffic profiles to ensure the 
reasonable mixture of various protocols. The traffic profiles covers 
web, Interactive, mail, misc and ping traffic, which are based on 
transport protocols TCP, TCP, TCP, UDP and ICMP respectively. 
The router level topology’s host systems are classified into clients 
and servers. Clients correspond to the ReaSE module InetUserHost, 
whilst servers represents by Web, Mail, and Interactive server. 
Fourthly, the bandwidth between different types of nodes are 
assigned from ReaSEGUI, also we configure the server fraction 
value, which specify the percentage of all router modules of each 
router-level topology are replaced by special server nodes. Overall, 
136 hosts and servers are placed cross the AS in our network. At 
last, since ReaSE integrate the real attack tool tribe flood network to 
conduct the DDoS attack, so it is utilized to perform a random 
distribution by replacing randomly selected clients InetUserHost with 
DDoS zombies. The compound module DDoSZombie contains 
simple module TribeFloodNetwork with other INET modules that are 
essential to achieve the functionality of an attacking system [Gamer 
et al., 2008]. 

4.2.4 The simulated architecture and implementation 

OMNeT++ is a general discrete event simulator that provides the 
basic machinery and tools to write simulations. However, in order to 
specifically support the modeling of communication networks, the 
INET framework2 provides extension models for several wired and 
wireless networking protocols, including UDP, TCP, SCTP, IP, IPv6, 
Ethernet, PPP, 802.11, MPLS and OSPF. OMNeT++ consists of 
C++ modules that communicate via message passing. Messages 
are exchanged through input/output gates. Simple modules can be 
combined in hierarchies in order to build more complex components, 
called compound modules (e.g., mail servers, routers, etc). 
OMNeT++ also provides tools for designing network topologies (the 
NED language and editor) and supports plug-in extensions (e.g., a 
customized event scheduler). 

The main motivation for the integration of a policy framework to a 
simulation environment was to enable the evaluation of the dynamic 
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reconfiguration of network mechanisms in a resilience strategy. 
Fundamentally, any simulation environment could be used to 
evaluate hard-wired resilience strategies only, whereas we required 
the evaluation of strategies that deploy and reconfigure resilience 
mechanisms on-demand, according to attacks or network conditions 
that are monitored dynamically. 

To implement this dynamic behavior, our joint work chose Ponder2 
due to the familiarity with this policy framework. Ponder2 implements 
a policy execution framework that supports the enforcement of both 
obligation and authorization policies. Ponder2 policies are written in 
terms of user-defined managed objects, e.g. adapters for interfacing 
with real network equipment. In our case, a managed object 
represents component that run in the simulation environment. In the 
following, we describe the choices available to realize the integration 
between the simulation environment with the policy-management 
framework. 

1) Integration Techniques: Several techniques to allow the 
integration between a network simulator environment and external 
third party applications were discussed in [Mayer et al., 2008]: 

Socket connection: proxies running within the simulation maintain 
socket connections to external applications. Sockets wait for 
connections and are responsible for delivering messages from the 
simulated components to the third party application, and vice-versa. 

Source code integration: this method is straightforward for simple 
applications, which require that the third party application needs to 
be compiled with the simulation. However, this may be difficult for 
larger applications due to dependencies in the build environment. 

Shared libraries: is based on the integration between the simulation 
tool and the binary code of the third party application. It is similar to 
source code integration but avoids problems related to the building 
process, because the build environments are kept separated. 

The integration between OMNeT++ and Ponder2 is based on 
proxies, which is similar to the socket connection method. However, 
we are using XMLRPC3 proxy servers running within the simulation 
instead. Socket-based integration is suitable when the third party 
application does not need large volumes of data from lower layer 
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protocols [Mayer et al., 2008]. Instead, in our implementation, 
exchanges are limited to selected control events and corresponding 
management commands. This technique may, however, cause CPU 
scheduling and synchronization issues since simulations run faster 
and consume more CPU than applications running in real-time. We 
expect that these issues can be mitigated because, differently from 
[Mayer et al., 2008], we do not exchange packet-level information 
(large quantity, fast processing) with the policy framework. 

2) Implementation:  Instrumented mechanisms in the simulation 
environment implement an XMLRPC server through the 
MechanismExporter component. This component is used to register 
and export the management interfaces for the resilience 
mechanisms available in the simulation. A management interface 
provides callback functions to management operations that can be 
used to reconfigure a resilience mechanism, for example, to adjust 
the throttling rate of a rate limiter. For each type of mechanism, a 
ControlObject defines the management functionality to be exported 
via this management interface, and maps invocations to their 
respective method implementations on an InstrumentedComponent. 
This mapping relies on a table <name, pointer> that matches 
different invocations to the correct instance of a specific mechanism. 

Whereas the components above implement an XMLRPC server for 
exporting the management functionality to the policy framework, a 
socket interface has been built to communicate and translate 
observed events from the simulation environment to the policy 
framework. Events are used to indicate conditions observed in the 
simulated network that may require management actions, such as 
the detection of an attack.  

The EventPublisher component is responsible for establishing a 
connection with a Ponder2 instance and generates events of the 
form: 

eventName?arg1 = val1; arg2 = val2; arg3 = val3; ::: 

These events are converted to a byte stream and sent via the socket 
connection to the Ponder2 instance. At the Ponder2 side, an 
EventBroker parses the byte stream received from OMNeT++ and 
maps it to Ponder2 events. A Ponder2 event may trigger one or 
more event-condition-action (ECA) policies, and the actions specified 
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by a policy define what resilience mechanisms executing within the 
simulation environment should be reconfigured and how. References 
to these mechanisms are obtained via the MechanismLookup 
component. When a Ponder2 policy is triggered, actions are invoked 
using the XMLRPC protocol for the respective mechanism, which is 
abstracted by an instance of the RemediationAdaptorRPC 
component. 

Policies specify the required adaptations based on conditions 
observed during run-time operation of the network (as opposed to 
hardcoded protocols) [Schaeffer-Filho et al., 2011]. The integrated 
toolset allows us to analyze a range of wide-scale challenge 
scenarios and assess the effectiveness of a set of management 
policies controlling the operation of resilience mechanisms 
implemented as simulated components. 

4.3 Summary 

This chapter we discussed the experiment platform options, the off-
line IDS dataset and popular network simulators has been 
considered. The merits and drawbacks among different network 
simulators, such as NS-2, NS-3, OMNeT, are also listed. Eventually 
OMNeT is chosen as the most suitable testbed. Then we proposed 
the simulation architecture and implementation.  

To simulate various challenges, normally complex simulation scripts 
are needed to model the network protocols, topology, and the 
challenges. The challenges are separated into malicious and non-
malicious challenges. The malicious challenge (e.g. DDoS attack) 
could be monitored by network monitoring models and detected by 
anomaly detection models. The DDoS attack resilience and malware 
resilience will be discussed in chapter 5 and chapter 6.  

The challenges like operational mistakes, unintentional 
misconfiguration, accidental fiber cuts, and node failures could be 
grouped as non-malicious challenges. This type of challenge 
represents most adverse events observed in practice and could be 
simulated as random node and link failures [Cetinkaya et al., 2010], 
which cause the network failure. And this will be demonstrated in 
chapter 7. 
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In this chapter, we show a policy driven network resilience platform 
to detect DDoS attack. This chapter is structured as follows: firstly, 
we outline our multi-stage policy-driven approach for network 
resilience. Then describes a case study based on DDoS attack 
resilience and also some initial results obtained using our simulation 
platform. After that, we present a discussion on the issues related to 
policy-based management. Follow this, the methodologies for 
differentiating DDoS attack and flash crowd have been introduced. 
Finally, we outline conclusions. 

5.1. Strategy for DDoS Resilience 

In the previous work, we found that the published state-of-the-art in 
challenge detection and classification varies in the resources that are 
required, the timeliness and accuracy of their operation, and the 
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challenges they can effectively operate with. For example, localized 
detection in fluctuations of traffic volumes can give a rapid and 
relatively lightweight indication of the onset of challenges, such as 
Distributed Denial of Service (DDoS) attacks or flash crowd events, 
whereas a sophisticated classification system can yield more 
accurate information about the challenge, e.g., the identification of 
malicious flows, over a longer period of time based on flow 
information collected from distributed network locations. However, 
these techniques are unlikely to be suitable for detecting and 
classifying other forms of challenging behaviors, such as software 
faults. 

The most difficult task associated with our proposed multi-stage 
approach is to define how resilience mechanisms should be 
configured, and how those configurations should evolve over time in 
response to events, changing context and requirements. These 
changes should be achievable without interrupting the operation of 
the resilience mechanisms. To address this problem, we propose the 
use of a policy-based management framework, which decouples 
management strategies from the mechanisms that realize them. 

As a proof-of-concept of our approach, we have developed a multi-
stage resilience strategy to progressively ameliorate the effects of a 
DDoS attack on a Web service hosted on an ISP’s infrastructure. 
Initial results, based on controlling resilience mechanisms 
implemented in OMNeT++ via policies, are presented and indicate 
the efficacy of our approach. 

In order to provide protection to the access network of an Internet 
Service Provider (ISP), as shown in Fig. 6, from the effects of a 
resource starvation attack, such as a DDoS attack, targeted at a 
Web service hosted on the server farm. The figure shows the 
physical deployment of a number of resilience mechanisms. It can 
be seen in Fig. 6 that such an attack originating from the 10Gbps 
Hypernet toward a Web service hosted at the server farm has the 
potential to disrupt other hosted services (on the server farm), and 
the ISP’s enterprise and domestic customers. Clearly, it is important 
that an attack be mitigated rapidly to reduce the impact to these 
customers, and protect the infrastructure, such as access routers, 
from crashing under exceptionally high load. 
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Fig. 6. The example topology used for our case study, showing the mechanisms used to 

ensure resilience of the network to high-traffic volume challenges 

5.2. Experimentation  

In what follows, we describe how policies are used to define the 
management aspects and interactions between the various 
resilience mechanisms shown in Fig. 7, to realize a resilience 
strategy for our case study. We then present a proof-of-concept 
implementation, via simulation, of the multistage policy-based 
approach. Our experiments make use of a package of OMNeT++ 
network simulation modules that implement the resilience 
mechanisms shown in Fig. 7. These are controlled by policies that 
are expressed using the Ponder2 framework [Twidle et al., 2008]. 
We describe how OMNeT++ and Ponder2 have been integrated and 
outline our initial results. 
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Fig. 7. A schematic representation of the enhanced router showing the resilience 

mechanisms used 

5.2.1 Incremental DDoS Detection and Remediation 

We propose an approach to DDoS attack resilience that 
incrementally improves remediation as more fine-grain information 
about the nature of the attack is gleaned from various detection and 
classification systems. Resilience mechanisms are realized as a 
number of policy-enabled Managed Objects (MOs), shown in Fig. 8, 
that must co-operatively enforce the resilience of the network. A 
physical device, e.g., a router, will typically implement several logical 
managed objects, e.g., a link monitor and an IP flow exporter, as 
shown in Fig. 7. The algorithm for incremental challenge 
identification and remediation applied in this particular scenario is 
outlined in Fig. 8, and has the following steps: 
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Fig. 8. Algorithm for incremental challenge identification and remediation   

(1) LinkMonitorMO evaluates link utilization at a given periodicity, 
with its threshold rate being set by LocalManagerMO. 
LinkMonitorMO notifies LocalManagerMO of any sustained traffic 
rate above this threshold. 

Distributed network monitoring is needed to detect coordinated 
attacks. The module we developed to perform the traffic monitor on 
the link is called LinkMonitor module. The monitor could continuously 
collect traffic information so that values display on the link in real 
time. Our development based on the OMNeT cDatarateChannel. 
cDatarateChannel and ThruputMeteringChannel are the name of the 
developed links in OMNeT simulation. After programming and 
debugging with the ThruputMeteringChannel, we further extend its 
function to monitor threshold. To gain a comprehensive overview of 
the link we monitor, the display could be customized with different 
attributes. Properties such as link color, propagation delay, data rate, 
can be assigned to connections. The characters could be monitored 
include packets number, current packet/sec, average packet/sec, 
current bandwidth, average bandwidth, channel utilization, average 
utilization, traffic volume, threshold. Channel utilization is the ratio of 
current traffic to the maximum traffic, which assists to understand the 
network performance and troubleshoot failures.  
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This module implemented as the channel so that offers the flexibility 
to collect information from any link within any network to gain the 
clear detailed view of its typical behaviour. The threshold monitor 
could notify that a certain parameter has exceeded a certain 
threshold and direct attention to those areas, so we could be 
immediately alert. It could effectively evaluate the network traffic to 
pinpoint the sub-network where victim located, and meanwhile 
prevent superfluous and incorrect alerting. The traffic values not only 
display on the link and shown in the module output in real time, but 
also recorded into the output vector file in OMNeT, which could be 
traced back to analyse why and when the anomalies behaviour 
happens. The output vector captures traffic over time. The collected 
historic data demonstrate the network behaviour in terms of 
performance and reliability. In addition, real-time statistics are 
important for detailed in-depth analysis. To ensure no false alarm 
created by the flash crowd also the alert could be raised immediately 
after the attack, we embed the timer function into the link monitor. 
The alert won’t be generated unless the traffic above threshold for 
the continuous reasonable interval time. This method effectively 
avoids the events caused by the flash crowd. 

(2) LocalManagerMO configures components in the subnetwork 
accordingly: on high link utilization, RateLimiterMO is notified to start 
limiting all ingress traffic on a link to a given rate. This is the first 
remedial action taken, which is coarse grained but reduces the 
overall impact of the attack. IntrusionDetectionMO is started to 
commence packet level analysis of the link traffic. 

(3) IntrusionDetectionMO uses a threshold-based algorithm to count 
incoming packets on the link. It raises an event to LocalManagerMO 

when it determines the victim IP address. 

The anomaly detection module has been developed for the 
evaluation of attack detection and traffic analysis. As the LinkMonitor 
offers the chance to get close to the victim by raising the alarm on 
the sub network where victim positioned, hence could perform 
efficient filtering. So the anomaly detection module use the simple 
algorithm to identify the victim, this effectively reduce the 
computation complexity and cost. The anomaly detection module 
implemented as the cSimpleModule and built into the INET 
compound module Router. In OMNeT, modules communicate by 
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messages, which contain usual attributes as timestamp and arbitrary 
data. The cPacket class extends cMessage with fields to represent 
network packets (frames, datagrams, transport packets etc.). Simple 
module sends message through output gate. The output gate and 
input gate linked by a channel. Therefore, the message travels 
through the channel and arrives at the input gate of another simple 
module. The Compound module consists of several simple modules 
and transparently relaying messages between their inside and the 
outside world. The Router includes the modules NetworkLayer, 
Routing Table etc. The anomaly detection module interconnected 
with NetworkLayer, TCP, and UDP by incoming and outgoing gates 
through channel. Every packet transferred into the router will pass 
the anomaly detection module for processing. The anomaly 
detection module will transparently process different network packets 
in a unified way. In addition, we use a hashing table to store the 
objects into the IDS table, and the table could iterate through. The 
IDS table could be monitored in real time as the module output, and 
the event be created immediately after identifying the destination IP 
address of the victim. 

(4) When LocalManagerMO receives the victim IP from 
IntrusionDetectionMO it notifies RateLimiterMO to now limit traffic to 
the victim IP only, thus allowing traffic for other IP addresses to be 
forwarded as normal. However, this affects both malicious and non-
malicious traffic towards the victim. FlowExporterMO is then enabled 
and starts recording IP flows. 

(5) FlowExporterMO will truncate flow records after a specific time out 
period, e.g., 60s or 180s, and send records to the ClassifierMO with a 
given sampling rate, both of which are preconfigured by 
LocalManagerMO. 

(6) ClassifierMO, through the use of one or more machine learning 
classification algorithms, eventually identifies the precise nature of 
the flow information it is being sent, e.g., they are benign or part of a 
TCP SYN attack, and LocalManagerMO is then notified. 

(7) LocalManagerMO now notifies RateLimiterMO to limit only the 
attack flows, thus permitting non-malicious traffic to reach the 
intended destination. 
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As discussed earlier, we use policies to separate the management 
strategy, i.e., the behavior of the resilience mechanisms from their 
hard-wired implementation. For example, Fig. 9 illustrates the policy 
which implements step 4 of our algorithm, which specifies the limiting 
of traffic to the target and configuration of FlowExporterMO. Policies 
implementing each of the other steps of our algorithm were defined 
in a similar manner. 

 

Fig. 9. Policy configuring RateLimiterMO and FlowExporterMO, in response to a 

detection event generated by the IntrusionDetectionMO 

5.2.2 Simulating Policy-driven Resilience Strategies 

The notion of a policy-driven resilience simulator [Schaeffer-Filho et 
al., 2011] has been proposed based on the integration of a network 
simulator and a policy management framework. The toolset allows 
the evaluation of resilience strategies consisting of instrumented 
mechanisms within the simulation, whose behavior can be adapted 
during run-time – e.g., setting flags, dropping connections, triggering 
or stopping monitoring sessions. Our simulation environment has 
two key components: the OMNeT++ simulation environment [Gamer 
et al., 2009] and the Ponder2 policy framework [Twidle et al., 2011]. 
The integration coupling the tools is based on XMLRPC2. 

The behavior of the policy-enabled mechanisms in our case study is 
implemented using Ponder2 polices. Ponder2 supports the 
enforcement of both obligation (event, condition, action) and 
authorization (access control) policies. Policies can be dynamically 
loaded, enabled, disabled and unloaded to change the behavior of 
managed objects without interrupting their functioning. Policies are 
written using PonderTalk, which is a high-level control language. 
Ponder2 enables the dynamic reconfiguration of the managed 
objects, resulting in the invocation of the appropriate management 
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actions specified by the policies. This realizes the transitions in Fig. 
10. The managed objects were implemented as OMNeT++ modules, 
most as extensions of the standard Router module.  

The configuration of these modules is shown in Fig. 10. 
FlowExporterMO and IntrusionDetectionMO are positioned above 
the network layer implementation, and receive duplicate packets 
from that layer. RateLimiterMO sits between the network and 
physical layers, and thus has access to every incoming and outgoing 
packet. Finally, LinkMonitorMO was created by modifying an existing 
channel type, thereby allowing us to place it at any position within 
our network. To simulate large-scale IP networks we use the ReaSE 
tool [Gamer et al., 2009], which permits the creation of realistic 
topologies and the generation of background and attack traffic. Of 
particular importance for our experiments, it can generate DDoS 
attack traffic based on the Tribe Flood Network [Dittrich, 1999]. 

 

Fig. 10. Configuration of the OMNeT++ modules used to implement some of the managed 

objects. Channels to the UDP module from the FlowExporter and IDS modules enables 

communication within the simulator to other modules, such as the Classifier 

5.2.3 Results and Discussion 

For our experiments, we simulated a network consisting of twenty 
Autonomous Systems (ASes): fourteen stub ASes connected by six 
transit ASes. A Web service in one of the stub ASes is configured as 
the victim to be attacked by thirty-nine DDoSZombie hosts across 
the network – this stub AS represents the network depicted in Fig.6. 
In addition, 1105 hosts generate background traffic to a number of 
other servers in the network. The various managed objects, are 
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activated on the ingress link from a core router to the gateway of the 
AS under attack. That is, the functions of monitoring, intrusion 
detection, rate limiting and so on are carried out at the edge of the 
AS network, in order to protect the AS’s network. The following 
results show the execution of the algorithm in Fig. 8. 

 

(a) DDoS traffic 

 

(b) DDoS and benign traffic 

Fig. 11.Initial results from simulations that implement the algorithm described. Numbered 

labels pertain to points in our multi-stage approach. 

Fig. 11(a) shows the onset of the attack on the ingress link at 
approximately 130 seconds (1). The raising of an alarm by 
LinkMonitorMO is seen at 139 seconds (2), whereby a sustained 
traffic load in excess of the threshold defined in policies has been 
reached (currently, an increase in average incoming traffic of four 
times the previous average). Shortly thereafter, the effects of the 
initial rate limiting of the ingress link by RateLimiterMO can be 
observed. The filtering rate can be set by policies, as discussed 
earlier. In this case, we discard 70% of all incoming traffic in order to 
protect downstream servers and infrastructure. Results derived from 
the simulation show that 92% of blocked traffic during this period is 
malicious. 
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At 149 seconds (3), IntrusionDetectionMO identifies the destination IP 
address of the victim. This is achieved in this case by examining the 
destination address of each incoming packet, and raising an event 
when one destination accounts for 60% of all packets. 
RateLimiterMO is now reconfigured to drop 70% of the traffic 
destined for the victim only, as defined in policies. Some legitimate 
traffic that is not destined for the victim, which previously was 
blocked, is now not filtered. Results from simulation show that in this 
period (3-4), 95% of blocked traffic is malicious, while the proportion 
of legitimate traffic that is not blocked increases compared to the 
previous period (2-3).  

Also, ClassifierMO is initiated at (3) and flow exporting from the 
router is started. Hereafter, ClassifierMO, receiving flow records from 
FlowExporterMO, attempts to identify the specific attack flows. At 
209 seconds (4), rate limiting is confined just to the attack flow and 
legitimate traffic to the Web service can continue. After 270 seconds 
(5), all the malicious traffic is blocked, shown in Fig. 11(a), and the 
remaining traffic, shown in Fig. 11(b), pertains to normal background 
traffic. Fig. 12 shows how we refine mitigation by increasing the 
percentage of malicious traffic limited (red), and conversely 
decreasing the percentage of legitimate traffic limited (green). 

 

Fig. 12. The malicious and benign traffic dropped at different stages of the algorithm 

described in Section IV-A, shown as a percentage of the total dropped 

These results provide a proof-of-concept demonstration of our 
approach. They show how a challenge (in this case a malicious 
attack) can be dealt with by initially using lightweight detection, and 
then progressively applying more heavyweight analysis to identify 
the specific challenge. In parallel, the results show the initial 
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application of coarse grain remediation, to minimize disruption to 
downstream services, which then moves towards more fine-grain, 
attack-specific remediation. 

5.3 Discussion with flash crowd 

In this section we discuss how our approach could be modified to 
deal with benign volume events. A DDoS attack and a flash crowd 
display very similar symptoms as the demand for a web site 
experiences a sudden increase.  From the server side, it is really 
difficult to distinguish the DDoS attack and flash crowd event. If the 
flash crowd is mistakenly identified as a DDoS attack (which is the 
false positive), then all benign traffic to the web site will be denied, 
and genuine users will be blocked from accessing the website.. Also 
if the DDoS attack has mistakenly be detected as the flash crowd 
event (which is false negative), then the attacker could successfully 
crash the server, as well as consume the resources such as 
computing power and network bandwidth. So finding an efficient and 
accurate method to differentiate DDoS attacks and flash crowds is 
an important topic. 

Previous research has considered this issue Rahmani et al. [2011] 
applied a joint-entropy scheme to detect DDoS. The DDoS attack 
could aggressively saturate the resources, so there is an unexpected 
disproportion between the received number of packets and the 
established number of connections. However, for a flash crowd, the 
increased number of packets received is always accompanied by an 
increased number of connection.  The joint-entropy algorithm could 
effectively quantify the degree of disproportion to detect traffic 
anomalies. However, the authors mention that it is not easy to define 
a threshold to cope with both low rate and high rate attacks.  

Prasad et al. [2012] proposed an information theoretic framework 
using BotNet on ITM (Internet Threat Monitoring) to model flooding 
attacks. They demonstrate an effective attack detection and trace-
back using entropy by calculating the entropy variations between 
normal and attack traffic. They claim this methodology could 
effectively identify both low and high rate attacks. A flash crowd 
could be identified as a high rate attack whilst DDoS attacks could 
be detected as low rate attacks. Jeyanthi et al. [2011] also applied 
an entropy based approach to differentiate DDoS attack from flash 
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crowd in VOIP networks. In the paper, they list a comparison 
between DDoS attack and flash crowd, and find that a flash crowd is 
more responsive to traffic control - the traffic type mostly is web 
traffic and it is mostly predictable. However, a flooding attack could 
have any traffic type with unpredictable behaviors. The experiment 
has been validated by the simulation on the VOIP call processing 
server. The packets queued for the requesting service to the server 
appears to be high only for the short period whereas DDoS appears 
to be high for much longer. When a server suffers any overload, their 
proposed entropy based approach could distinguish between Benign 
and malicious events.  

Graphic puzzles are widely used to differentiate between botnets 
and humans, so could possibly defend against flash crowds. But 
human response needs to be involved in this method, which is 
inconvenient to the users [Kandula et al., 2005]. Wenlei et al. [2012] 
demonstrate a discrimination algorithm using the flow correlation 
coefficient as a similarity metric among suspicious flows. They found 
the current flow of DDoS attacks are more similar compared to the 
flows of flash crowds. The flows of DDoS attacks have higher 
probability with similarity compare to flash crowds. They applied flow 
similarity features to detect flash crowds under typical botnet size 
and organisation. It is effective in dealing with unknown forthcoming 
flooding attacks. Experimentation has validated the approach using 
real datasets and real attack tools, but there is a need to evaluate 
cost and detection accuracy.  

Thapngam et al. [2012] also realized that DDoS attacks have 
repeatable attack patterns, which are different from a flash crowd. 
Their proposed approach is based on Pearson’s correlation 
coefficient. It could extract repeatable patterns from DDoS attack but 
not flash crowd. Experimentation has been carried out with real 
datasets, but it would be interesting to see whether this could be 
validated in a real case in real time. Also the authors may want to 
improve the approach to detect faster reducing complexity and delay. 
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Fig. 13. Volume based challenges resilience strategy 

Based on these findings we propose that we could extend our 
resilience strategy to identify a flash crowd. The current information 
theory based framework could effectively detect the DDoS attack. As 
introduced by Prasad et al. [2012], we develop an EntropyReporter 
Module (described in the next chapter) to calculate the entropy 
variations between normal and attack traffic. Thus a flash crowd and 
DDoS could be differentiated by the high or low rate attack. Figure 
13 depicts and enhanced resilience strategy for volume based 
challenges. Compared to Figure 8, we add an entropy reporter as 
another managed object. After the dramatic traffic increase reported 
by the link monitor, the entropy reporter module could further classify 
it as a flash crowd or DDoS attack. 

Figure 14 shows the entropy result for DDoS attack detection. With 
the simulated attack triggered at 130s, the entropy of the Destination 
IP and Destination Port turn concentrated, since the target is a single 
web server, whilst the entropy of Source IP and Source Port 
becomes dispersed. Once the entropy reporter confirms a potential 
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DDoS attack, then appropriate remediation strategies could be 
triggered. 

 

Fig. 14. Entropy result for DDoS attack detection 

5.4 Summary  

This chapter has presented an instance of our incremental policy-
driven approach. Experimentation has demonstrated how this 
approach could effectively defend against volume base challenges, 
primarily a DDoS attack with possible extension to a flash crowd. 
The whole process is controlled by policies that rely on incomplete 
challenge and context information to progressively elaborate the 
configuration of the mechanisms currently deployed in the network. 
Our proof of concept case study, while simple, is a demonstration of 
the appropriateness and feasibility of our policy-based approach to 
challenge identification and remediation in realistic network settings. 
The main contribution of the approach presented in this chapter is to 
enable the mitigation of a challenge as early as possible, and refine 
the operation of resilience mechanisms as more information 
becomes available. We contrast this with a current, commercial 
solution. 
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Arbor is a popular DDoS protection, prevention and mitigation 
product used in the market, with privileged relationships with majority 
of world’s ISPs. Peakflow is used as the flow based passive DDoS 
protection service. Arbor’s Active Threat Feed (ATF) and Active 
Intelligence Feed (AIF) detects sophisticated attacks. 

Arbor can detect three types of anomalies: misuse Anomalies are 
traffic of a certain type directed towards individual hosts that exceed 
what should normally be seen on a network; profiled anomalies 
means the threshold is automatically calculated based on the 
customer identified traffic performance for the last 30 days; 
fingerprints identifies traffic that matches a user specified signature. 

A number of countermeasures are available via Arbor, such as 
invalid packet, IP address filter, zombie detection, TCP SYN 
authentication, TCP connection reset, traffic shaping, payload 
regular expression etc. These mechanisms can all be 
accommodated within our approach as Managed Objects and/or 
parameter settings. 

With our staged approach, we attempt to eventually classify all the 
malicious traffic, so only the attack traffic is blocked in mitigation. 
Also, our aim is to automate the detection and mitigation stage with 
low false alarm rate and increased accuracy. 

Our simulation platform can be used for further research into 
detection mechanisms, in order to understand how they may be 
combined algorithmically to analyze different challenges and the 
resource trade-offs involved. To explore the generality of our 
approach we have also implemented case studies for a variety of 
challenges including malware (e.g., worms and botnets) and non-
malicious challenges (e.g., faults and router misconfigurations). 
These are described in the following chapters.  

 

 

 

 

 



65 

 

 

 

 

Chapter 6 
 

 

 

 

 

Malware Attack Resilience   

  
 

 

 

 

 

 
Network propagated malware such as worms are a potentially 
serious threat, since they can infect and damage a large number of 
vulnerable hosts at timescales in which human reaction is unlikely to 
be effective. Research on worm detection has produced many 
approaches to identifying them. A common approach is to identify a 
worm's signature.  

However, as worms continue to evolve, this method is incapable of 
detecting and mitigating new worms in real time. In our work, we 
propose a novel resilience strategy for the detection and remediation 
of networked malware. Our strategy can be adapted to detect known 
attacks such as worms, and also to provide some level of 
remediation for new, unknown attacks. Advantages of our approach 
are demonstrated via simulation of various types of worm attack on 
an Autonomous System infrastructure. Our strategy is flexible and 
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adaptable, and we show how it can be extended to identify and 
remediate network challenges other than worms. 

The remainder of this chapter is organized as follows:  Section 6.1 
provides an overview of background work on policy-based resilience 
management. Then outlines our multi-stage, policy-driven approach 
applied to the detection and remediation of worms. Section 6.2 
presents results from the simulated deployment of worm resilience 
strategies for a number of known worm attacks, and also shows how 
the flexibility of our framework assists the evolution of resilience 
strategies to meet new challenges. Section 6.3 discuss and evaluate 
of our approach. Finally, Section 6.4 presents concluding remarks. 

 

6.1 Strategy for Malware Attack Resilience 

6.1.1. Strategy Overview 

Worms represent a large class of networked malware. Although this 
type of malware has been studied for a number of years, according 
to recent security reports [PandLabs, 2011], worms constituted 
approximately 9% of the successful malware infections in 2011. 
Worms are self-replicating, self-propagating malware that can pose a 
serious threat to networks. Some worms can spread at great speed, 
infecting and potentially damaging a large number of hosts in a very 
short time, so that human reaction is unlikely to be effective. There is 
a need to develop new mechanisms capable of detecting and 
reacting to network propagated attacks in real time. Research on 
worm detection has produced many approaches to identify them. A 
common approach is to identify a worm's signature. However, in 
some network environments the achievement of real-time signature 
detection can be hampered by a lack of computational resources. 
Furthermore, as worms continue to evolve; this method is incapable 
of detecting and mitigating new worms in real time.  

We characterize worm attacks, particularly in their propagation 
phase, as a type of network challenge. There are a number of 
mechanisms that can be used to meet our aim of network resilience. 
Detection mechanisms, such as link monitors and anomaly detectors, 
assist the identification and categorization of challenges such as 
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worms. Remediation mechanisms, such as rate limiters and firewalls, 
are used in the subsequent mitigation of these challenges. Recently, 
we have proposed a policy-based, multi-stage resilience approach 
[Yu et al., 2011], in which the configuration of detection and 
remediation mechanisms deployed in the network is dynamically 
refined as new information about challenges becomes available. 

In this chapter, we use this approach to manage a range of 
resilience mechanisms to combat networked malware attacks such 
as worms. We use policies to control the operation of such 
mechanisms, and how they should be reconfigured in the face of 
different attack behaviors. Instead of relying on known payload 
attack signatures, which is the most widely deployed worm detection 
method, we show how our approach can embrace and adapt a range 
of detection and remediation mechanisms for both known and 
unknown attacks. In our case studies, changes in the distribution of 
specific traffic features are monitored, and a set of active policies 
determines how this information should be interpreted to contain 
worm propagation. Resilience strategies are evaluated using a 
policy-driven simulation environment [Schaeffer-Filho et al., 2011]. 
The primary contribution of this paper is a demonstration of the 
generality and benefits of our approach for dealing with an ever 
changing class of network challenge in the form of worms. We also 
show how our approach may easily be extended to deal with other 
forms of networked malware such as port scans. 

6.1.2 Policy-driven Resilience Mechanisms 

We rely on a policy-based approach to monitor and react to various 
network challenges. Through policies, we can decouple the “hard-
wired” implementation of resilience mechanisms used to combat a 
specific attack from the run-time management system that defines 
their role in a resilience strategy. Consequently, resilience strategies 
can be adapted without interrupting service operation.  

When defining a resilience strategy, there is trade-offs between the 
over-heads, timescales and accuracy of available mechanisms for 
challenge detection. Our assumption is that detection that yields 
coarse-grain findings, e.g. detect the presence of an anomaly, are 
more timely and have a lower overhead. Fine-grain information, e.g. 
details of the nature of the anomaly, allows better decisions 
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regarding how to mitigate a challenge, but this information is derived 
using mechanisms with a higher overhead. Consequently, we 
advocate and utilise a multi-stage resilience approach, which is 
based on the successive activation of mechanisms to analyse and 
remediate a challenge, from initial detection through to eventual 
identification. This approach is illustrated in Fig. 15. 

 

Fig. 15. Coarse to fine grain challenge identification and remediation 

Initial detection is triggered by lightweight mechanisms, such as a 
link monitor. The detection is coarse grain. Then more sophisticated 
mechanisms are invoked. This approach allows the resilience 
mechanisms to adapt to the prevailing resources, timeliness and 
accuracy. This is necessary, as the simultaneous operation of a 
large number of challenge-specific detection techniques is too 
resource intensive. Through offline and/or online challenge analysis 
it is possible to collect network metrics and traffic information. For 
example, there is a significant amount of published information 
available that can assist understanding of (known) worms. For 
unknown challenges, online information needs to be gathered and 
analyzed. Ultimately, for each specific challenge, it is then possible 
to encode a complete resilience strategy into resilience patterns 
[Schaeffer-Filho et al., 2012], representing the policy-driven 
configurations of a set of mechanisms for combating that challenge. 

In this section, we describe how the resilience approach can be 
applied to worm challenges. In our demonstration scenario the goal 
is to make an ISP or enterprise network - an Autonomous System 
(AS) - resilient to external worm attacks. It is a border protection 
strategy, requiring activation of resilience mechanisms at the ingress 
links to the AS. 
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Fig. 16.  Algorithm for incremental worm identification and remediation 

While various mechanisms may be used to identify worm-related 
anomalies, we illustrate our approach using volume-based 
monitoring and techniques based on information theory. In particular, 
we quantify information using entropy [Shannon et al., 1948], which 
represents the uncertainty associated with the values of the different 
network traffic features observed. The entropy estimation for 
anomaly detection relies on the assumption that anomalies will 
disturb the distribution of certain traffic features in specific ways 
[Lakhina et al., 2005]. The strategy for incremental challenge 
identification and remediation is outlined in Fig.16.  

An example configuration of some of these modules is shown in Fig. 
17 to create an Enhanced Router that includes resilience 
functionality. This can be seen as a form of programmable router, 
capable of traffic monitoring as well as traffic shaping. In our 
implementation, the Entropy Reporter module is positioned above 
the network layer implementation, and receives packets from it. The 
Rate Limiter resides between the network and physical layers, and 
thus has access to every incoming and outgoing packet. As 
mentioned earlier, the Worm Differentiator can be used to identify 
known worms using entropy measures from the Entropy Reporter 
module. Finally, the extended channels that implement the Link 
Monitor can monitor both the traffic traversing the enhanced router 
via the PPP and Ethernet modules. 
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Fig. 17.  Example configuration of OMNeT++ modules for network malware resilience  

In the following we detail the operation of each of the resilience 
mechanisms, implemented as Managed Objects, which collectively 
realize our strategy. 

Local Manager: the LocalManagerMO configures the other MOs to 
achieve the resilience strategy. These are event-condition-action 
(ECA) policies which specify activations and reconfigurations of the 
MOs. The policies are represented on the vertical axis of Fig. 17. At 
start-up the LocalManagerMO invokes two MOs. On each of the 
ingress links to the AS a LinkMonitorMO is activated to start 
monitoring link utilization, along with a threshold parameter. An 
EntropyReporterMO is also activated along with a list of features that 
it is to monitor. 

Link Monitor: used for evaluating the link utilization at a given 
periodicity, with its threshold being set by LocalManagerMO. Slower 
propagating worms may escape detection by volume, which 
therefore require another form of early detection. 

Entropy Reporter: the EntropyReporterMO continuously monitors 
the dispersion of traffic features using the computationally efficient 
Shannon entropy algorithm [Zesheng et al, 2009]. The features 
monitored are source IP, source port, destination IP, destination port 
and protocol. EntropyReporterMO recomputes entropy for the five 
features every 10 seconds and stores them in a vector. On 
notification of a volume event, LocalManagerMO sets threshold 
values to EntropyReporterMO, which then compares the entropy 
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history of each feature to see if a threshold change has been 
exceeded. When worms perturb the entropy values of several traffic 
features beyond the threshold, EntropyReporterMO generates an 
event. 

We reference the entropy algorithm used in [Lakhina et al., 2005]. 
The entropy is used to capture the degree of dispersal or 
concentration of a distribution. An empirical histogram X = {ni,  i = 
1, … , N } , means that feature i occurs ni times. The entropy’s 
definition is as below 

H(X) = -∑ (
  

 
)            

 
    

Where S = ∑   
 
     is the total number of observations. The same 

observation indicates that the distribution is maximally concentrated 
and the metric turns to 0. When the distribution is maximally 
dispersed, the entropy takes on the value log2 N. 

Worm Differentiator: on notification from EntropyReporterMO the 
Local-ManagerMO activates the WormDifferentiatorMO along with 
details of the perturbed traffic features. The suspicious features are 
matched against a database of symptoms of known worms. These 
represent relatively short signatures of worms, compared to the 
payload-based signatures of existing detection systems. This 
reduces the costs of signature matching. If a match is found, an 
event is notified that identifies the type of worm along with a flow 
specification for the worm packets. However, if no match is found, for 
example it is a new type of worm, then alternate action needs to be 
taken (see discussion below). 

Rate Limiter: on receiving notification from the 
WormDifferentiatorMO, the LocalManagerMO invokes the 
RateLimiterMO. This module can shape traffic according to 
parameters that specify the amount and types of packets to be 
discarded. It can limit a percentage of all packets on a link. 
Alternatively, it can limit at the flow level. In this case RateLimiterMO 
discards all packets that conform to the worm's characteristics, thus 
throttling all attack packets, without having to identify attacking 
sources. 
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6.1.3 Discussion 

The policy-based strategy for worm resilience has advantages over 
traditional solutions. Firstly, through the use of an anomaly-based 
detection scheme we can potentially detect unknown (zero-day) 
worms. Secondly, through the use of policies we can quickly adapt 
how the system responds to attacks, since the policies are 
decoupled from the implementation of the managed objects and can 
be easily changed. Finally, the multi-stage approach introduces 
intermediate steps, specified by policies, when dealing with attacks. 
Thus, temporary forms of remediation may be put in place while the 
challenge is being processed, and until the root cause is reliably 
identified. 

6.2. Experimentation 

The evaluation of strategies for large-scale malware challenges is 
difficult. Resilience strategies often require the coordination of 
various monitoring and control mechanisms in different parts of the 
network. The use of testbeds can involve high costs of hardware and 
development effort, and are generally not suitable for large-scale 
challenges which can affect multiple autonomous systems. As an 
alternative, to mitigate costs and address scaling issues, we 
advocate the reproduction of network challenges and resilience 
mechanisms in a simulation environment.  

Although simulators abstract some of the details of a real network 
deployment, our ambition is to develop high-level resilience 
strategies. These represent reusable configurations of resilience 
mechanisms that address common challenges, which are populated 
with mechanism instances and parameterized at deployment time. 
As such, we propose that simulation environment abstractions are 
tolerable. To evaluate the performance of resilience strategies we 
have developed a policy-driven resilience simulator [Schaeffer-Filho 
et al., 2012]. The toolset supports the simulation of a range of 
network challenges, such as DDoS attacks and worm propagations, 
and the implementation of our policy-driven approach to combat 
challenges. Resilience strategies for a particular challenge might use 
different combinations of mechanisms and policies, and the toolset 
enables offline evaluation of strategies. 
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In order to support the network resilience aim, we designed a 
resilience framework (illustrated in Fig. 18). For this experiment, we 
are using the same environment as described in the previous 
chapter. It allows the use of policies to define which mechanisms 
must be activated according to events observed. An event broker 
resolves event notifications in the simulation (e.g., anomaly 
detections, link load) to the policy framework. The policies repository 
will coordinate the transitions between the different stages of our 
process, based on the challenges observed and the mechanisms 
available. The policies incorporate coarse-grain and fine-grain policy 
repository. Coarse-grain policy repository involves the deployment of 
resilience patterns, which are configurations of resilience 
mechanisms, capable of combating a specific challenge. A challenge 
analysis module provides information about the challenges that are 
affecting a network. This is used to select which resilience patterns 
should be invoked. Fine-grain policy repository involves setting or 
adjusting the parameters of the mechanisms that are currently 
deployed as part of a pattern. 

 

Fig. 18. Overview of the framework for worm resilience strategies 

Resilience mechanisms are implemented as instrumented 
components. We have implemented the following mechanisms to 
achieve our worm resilience strategy. EntropyReporter receives 
duplicate packets. Based on the traffic feature monitored, it informs 
the type of challenge, for example, it's a DDoS or Worm. 
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WormDifferentiator analyses traffic features to report the type of 
worm (e.g. Code Red). RateLimiter is placed in-line between the 
network and physical layers. Finally, LinkMonitoris implemented by 
modifying an existing channel type, and can be placed at any 
position of the topology. Each instrumented object defines a 
management interface specifying which operations it supports. 
Management interfaces are used by Ponder2 for the invocation of 
operations on the simulated objects. Communication between 
Ponder2 and OMNeT++ is implemented using XMLRPC. In the 
remainder of this section, we evaluate a range of detection and 
remediation strategies using this toolset. 

6.2.1. Worm Simulation 

Our proposed worm resilient strategy detect various types of worms, 
to prove that, we did the experiment with three popular worms, code 
red worm, Slammer/Sapphire Worm and Witty worm. They all locate 
the target by blind scan, which is randomly generating the number as 
target IP addresses. In 2001, the well-known code red worm infected 
360,000 hosts in 10 hours, it cause average 2.6 billion US dollar loss. 
On Jan 25th 2003, SQL Sapphire Slammer worm cause more than 
1.2 billion US dollar economic damage. It could exploit the 
vulnerability with tens of thousands hosts in less than half an hour, 
where human interaction is not feasible. Its novel capability is the 
fast propagation speed. The full propagation speed is achieved in 
about 3 min (more than 55 million scans per second). Then growth 
rate slowed due to the worm saturate the bandwidth so that 
insufficient bandwidth to support more growth. Compare to code red 
worm, it may exploit fewer vulnerable hosts when slammer 
propagate speed is two orders of magnitude faster than code red. 
Witty worm spread in 2004, it was the first widely propagated worm 
result in information loss due to carried a destructive payload, attack 
at the integrity aspect. It targets the buffer overflow vulnerability in 
several Internet Security System (ISS) products. The details with 
these worms and the comparison among them are listed in table1. 
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 Code Red Slammer/ 
Sapphire 

Witty New 
Worm 

Target Blind Blind Blind Blind 

Propagation Self-carried Self-carried Botnet Self-carried 

Character latency-limited bandwidth-
limited 

bandwidth-
limited 

bandwidth-
limited 

Payload Size 4 Kbytes Code size is 
376 
bytes, 
padded with 
its requisite 
headers, the 
payload is 
404 
UDP packet 

Code size is 
637 bytes, 
with data 
from system 
memory. 
Random UDP 
packet size 
ranging 
between 768 
and 1307 
bytes 

Code size is 
600 
bytes 

Spread 
Speed 

Slower than 
slammer 

Faster than 
code red 

Faster than 
slammer 

Faster than 
witty 

Dst Port port 80 port 1434 Random Random 

Src Port Random Random port 4000 Random 

Payload Payload in 
monomorphic 
format and has a 
signature 
starting with 
“GET 
/default.ida?NNNNNN
N.” 

No malicious 
content 

Payload 
contains the 
text “(^. ^) 
insert witty 
message 
here 

(^.^),” 

No 
malicious 
content 

Behaviors Spreads via many 
threads, each initiate 
connection by sending 
TCPSYN packet, then 
must wait for the 
target send respond 
SYN/ACK packet or 
timeout if no 
response. The thread 
is blocked during this 
time and cannot infect 
others. The response 
waiting occupy most 
of each thread's time 

Overload the 
system and 
slow 
down traffic, 
exploit a 
buffer 
overflow in 
an MS 
SQL server 

Target buffer 
overflow 
vulnerability 
in 
several 
Internet 
Security 
Systems 
(ISSs) 

Exploit a 
buffer 
overflow 
and 
overload 
the 
system 

Table 1. The Comparison between Different Worms 



76 

 

6.2.2. Identifying and Remediating Witty and CodeRed Worm  

We use ReaSE to create topologies and generate synthetic traffic 
loads. The authors of this package have previously demonstrated 
that the simulated background traffic and the attack traffic are a 
realistic approximation of traffic observed in real networks [Gamer et 
al., 2008]. ReaSE can generate Code Red Worm propagation. We 
have extended the package to simulate the Witty and 
Slammer/Saphire worms, and a port scan. 

We simulated a network consisting of 35 Autonomous Systems 
(ASes): 26 stub ASes connected by 9 transit ASes. 1616 hosts, 71 
web servers and 21 interactive servers generate background traffic. 
Hosts across the network can be nominated to be zombies, which 
generate worm probing packets. Our strategy is simulated at a stub 
AS. The various resilience mechanisms are activated on the ingress 
link from a core router to the gateway router of this AS. 

 

Fig. 19. Simulation results for the Worm resilience strategy 

Fig. 19 shows the volume of traffic on the ingress link for a simulated, 
blind scanning Witty worm attack. In this scenario, the attackers sent 
a maximum of 8000 probing packets. At the start, LinkMonitor is 
activated with an alarm threshold set to an increase in average traffic 
on the link of twice the previous average, which is recomputed every 
2500 packets. EntropyReporter is also activated to collect 
periodically (every ten seconds) packet-level entropy values on five 
traffic features: destination IP, destination port, source IP, source 
port and protocol. Fig. 18 shows the worm propagation starting at 
about 20s (1) Due to the high volume of traffic on the ingress link, an 
alarm is raised firstly by LinkMonitor at 29s (2) (This form of early 
detection is appropriate for high-volume attacks, but a different 
strategy would need to be deployed for low-volume attacks.) 
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Following this, EntropyReporter is interrogated for any significant 
changes in the five traffic features. The most recent entropy trend for 
each feature is computed and compared with the previous average 
entropy, with results showing that destination IP has become 
dispersed, destination port dispersed, source port centralised, and 
UDP protocol more dispersed. These results are reported back for 
further analysis (3). The WormDifferentiator is then invoked and can 
identify these changes in entropy as being a signature of the Witty 
worm, as described below. Consequently, at 40s (3) RateLimiter is 
configured to filter all probing packets, specified as all UDP packets 
with a source port 4000. 

The features of the Witty worm are that it scans random IP 
addresses and destination ports using UDP, with a constant source 
port of 4000. Fig. 20 shows the changes in entropy of four of the 
features following the onset of the attack at 20s. They indicate 
characteristics of this specific worm attack. Furthermore, the 
separation between resilience policies and mechanisms permits 
easy adaptation of these parameters in an operational context, 
should conditions change.  

 

Fig. 20. Entropy changes with Witty worm 

In contrast we also show partial results of a simulated Code Red 
attack. The scenario is identical to the Witty simulation above. Code 
Red also scans random IP addresses, but always to destination port 
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80. These features are indicated in Fig. 21 where, like Witty, the 
destination IP becomes more dispersed, but in this case the 
destination port becomes more concentrated. 

 

Fig. 21. Entropy changes with Code Red worm 

6.2.3. Policy-based Adaptation of Strategies 

Our simulation environment enables us to experiment with 
parameter settings and test the impact of adaptations of the 
strategies by modifying policies, which are executed by the 
LocalManager. As an example, worm attacks can generate high 
volumes of traffic which lead to denial of service. We may therefore 
want to consider adapting our strategy by introducing some early, 
interim remediation.  

A simple adaptation would be for the LocalManager, at the first 
notification from the LinkMonitor at 29s, to also invoke the 
RateLimiter to shape all incoming packets. This coarse-grain 
remediation remains until the worm has been identified and attack 
specific remediation takes over. Fig. 22 shows the Witty attack 
scenario with such progressive remediation. Between 29s and 40s, 
30% of network traffic on the link is blocked initially. At 40s, the 
WormDifferentiator matches the Witty signature then only the 
malicious traffic is blocked. Our platform provides results that show 
about 28% of benign traffic being blocked during the period of interim 
mitigation and 32% of malicious worm packets. We do not claim 
these to be ideal results but they are illustrative of our platform. Off-
line risk analysis would determine if the costs (lost benign packets) 
are appropriate to the benefits (reduced flooding). Our platform 
provides inputs to such analysis, including the applications that are 
affected due to the blocking. 
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Fig. 22. Simulation results for the Worm resilience strategy with progress mitigation 

6.2.4. Adapt the Resilience Strategy to Detect and Mitigate 

Slammer Worm 

For this case study, we made use of our SQL Slammer worm 
implementation. As a means of infecting new hosts, this malware 
continuously sends 404 byte UDP packets to random IP addresses. 
If a malicious packet infects a new host, it will start sending probing 
packets. Our simulated network consists of 35 Autonomous Systems 
(ASes): 26 stub ASes connected by 9 transit ASes, 1700 hosts, 80 
web servers and 15 interactive servers generate background traffic. 
A maximum of 10,000 probing packets could be sent from an 
infected host. A number of hosts throughout the network are initially 
nominated to be zombies, which generate worm probing packets. 

Fig. 23 shows the volume of traffic on the ingress link for a simulated, 
blind scanning Slammer worm attack. At the start, the Link Monitor is 
activated with an alarm threshold set to an increase in average traffic 
on the link of twice the previous average. The Entropy Reporter 
module is also activated to periodically collect packet-level entropy 
values on five traffic features: destination IP, destination port, source 
IP, source port and protocol. Fig. 23 shows the worm propagation 
starting at about 30s (1); an alarm is generated by the Link Monitor 
at 37s (2) due to the high volume of traffic on the ingress link. This 
form of early detection is appropriate for high-volume attacks. A low-
volume attack will evade detection by the Link Monitor, however, its 
traffic feature changes could still be captured by the Entropy 
Reporter module. The Entropy Reporter module is interrogated for 
any significant changes in the five traffic features. The most recent 
entropy trend for each feature is computed and compared with the 
previous average entropy. 
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Fig. 23. Simulation results for the worm resilience strategy 

Entropy changes are shown in Fig 24, which indicates that the 
destination IP and source port have become dispersed, and 
destination port and UDP protocol more dispersed. These results are 
reported back to further analyze the malicious traffic. Based on the 
traffic feature distribution, the malicious traffic is confirmed as the 
worm attack at 43s (3). Policies are used to specify a coarse grain 
remediation, actioned to initially shape 25% network traffic on the 
link. The Worm Differentiator is then invoked and identifies that the 
entropy of these traffic feature distributions match a known signature 
for the Slammer worm. Further analysis is performed to monitor the 
source IP address for all incoming UDP packets. 

Source IP addresses appearing at a significantly higher than 
average frequency are added to a blacklist. Therefore, at 50s (4) 
another policy is used to reconfigure the Rate Limiter to block all 
probing packets, specified as all UDP packets from blacklisted 
sources with a destination port 1434, i.e., that used by Slammer to 
infect hosts. 

Our platform provides results that show about 21% of benign traffic 
being blocked during the period of interim mitigation and 28% of 
malicious worm packets. Off-line risk analysis would determine if the 
costs (lost benign packets) are appropriate to the benefits (reduced 
flooding). Our platform provides inputs to such analysis, including the  



81 

 

 

Fig. 24. Entropy changes with the Slammer Worm 

applications that are affected due to the blocking. A benefit of our 
approach is the ease with which it enables experimentation and 
refinement of these trade-offs. We can develop and refine strategies 
through the configuration of different mechanisms via policies and 
the setting of parameters such as thresholds. Our platform generates 
results that enable evaluation of strategies. Further experimentation 
can identify the trade-offs between early detection and accuracy. 
New mechanisms can be added to analyze additional features, such 
as volumes at different levels of granularity or protocol. 

6.2.5. Dealing with Unknown Attacks 

We now demonstrate the generality of our resilience approach to 
combat unknown attacks. We illustrate this by fabricating a new 
worm. For example, a new worm might try to escape detection in two 
ways. Firstly it mutates an existing worm to present new traffic 
distribution features. In our case we mutate the Witty worm to 
generate random source ports in attack packets. Secondly. The 
worm tries to camouflage itself by hibernating for some time during 
its propagation. In this case, the worm propagation commences at 
20s but lasts for just 4 seconds, then it hibernates before continuing 
at 30s. It spreads rapidly by sending UDP malicious packets with 
payload size 600 bytes from random source ports to random 
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destination ports. Fig. 25 illustrates the traffic feature changes. The 
destination IP becomes more dispersed during propagation. Both 
source port and Destination port entropy become significantly more 
dispersed. UDP protocol entropy is more dispersed while TCP 
protocol is more concentrated. 

 

Fig. 25. Entropy changes with New worm 

The new worm features are captured by EntropyReporter but the 
WormDifferentiator will find no matched signature for them. Then a 
choice of actions to be taken can be defined by policies. A human 
operator should be alerted in these cases with a report. Should this 
indeed be a new worm, then it will be a simple matter for the 
operator to add the new signature. Even without a signature, some 
automatic remediation can be implemented to protect the network.  

For example, we implemented and simulated the following policy-
based remediation strategy. For this unknown attack, 
EntropyReporter infers that the suspected worm is carried in UDP 
packets but from a large number of suspicious source ports and 
destination ports. Therefore we further analyze the frequency of 
suspicious packets by sender host. This could be monitored by 
receiving hosts. However this approach will increase computational 
overheads and is not easy to deploy in a large scale enterprise 
environment. So a better solution is to embed this strategy in the 
border router, and activate it once an attack is suspected. Thus, after 
the EntropyReporter informs that malicious packets are UDP packets, 
further analysis is performed to monitor the source IP address for all 
incoming UDP packets. Source IP addresses appearing at a 
significantly higher than average frequency is added to a blacklist 
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and RateLimiter is configured to block all packets from blacklisted 
sources. 

Results for this initial strategy show that, with our background load of 
benign traffic, it produces 40% false positive rate (percentage of 
benign traffic blocked) while mitigation eventually achieves zero false 
negatives. Our platform permits further experiment to refine 
strategies, including adjustment of alarm and traffic shaping 
thresholds, and produces results whereby strategies can be 
evaluated. 

6.2.6. Resilience Against Other Malware: Port Scan 

We finally show how our worm resilience strategy can be adapted for 
another class of known network malware. Port scans are a 
reconnaissance phase of many network attacks. Typically, an 
attacker searches for potentially vulnerable hosts by trying to 
connect to the ports across random IP addresses. In order to further 
explore the generality of our approach, we experimented with a port 
scan scenario under the same topology. In this scenario the attacker 
scans UDP ports across the well-known port range of 0-1023, 
attempting to open these ports. Fig. 26 shows the attack starting at 
20s, with subsequent changes to traffic features. Destination port 
and destination IP entropy increase substantially due to scanning 
across many hosts and ports. UDP entropy increases. 

 

Fig. 26. Entropy changes with Port Scan 

Once a potential attack is identified we can attempt to apply 
mitigation. In our experiment the strategy deployed is similar to the 
previous worm remediation. In this case, once an alarm is generated 
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from LinkMonitor, the LocalManager will trigger RateLimiter to 
initially block 30% of network traffic on the link. We then commence 
analysis of all incoming UDP packets and, as before successively 
block packets from high frequency source hosts. 

6.2.7. Discussion and Evaluation of approach 

A benefit of our approach is the ease with which it enables 
experimentation and refinement of these trade-offs. We can develop 
and refine strategies through the configuration of different 
mechanisms via policy and the setting of parameters such as 
thresholds. Our platform generates results that enable evaluation of 
strategies. For example, in Table 2 we summarize the features 
analyzed in our scenarios and the results of the remediation 
strategies deployed. Further experimentation can identify the trade-
offs between early detection and accuracy. New mechanisms can be 
added to analyze additional traffic features, such as volumes at 
different levels of granularity or protocol sequences. 

 

Table 2. Performance evaluation with different malware 

6.3 Summary  

In this chapter, we have demonstrated our policy-based, multi-stage 
approach for the detection and remediation of network malware, 
using worm attacks as a primary example. We demonstrate how our 
approach could consistently be deployed to deal with different 
malware. In our scenarios, this approach identifies known worms on 
the basis of signatures that are defined as entropy perturbations of 
certain features. It is also capable of detection of new worms and 
enables partial remediation of such attacks. We have shown how we 
can extend the system for other forms of networked malware such 
as port scans. 
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Our approach overcomes drawbacks of existing approaches 
discussed under related work, by operating only lightweight detection 
mechanisms while a network is operating normally. More 
heavyweight mechanisms are only invoked once the early symptoms 
of a potential worm attack are detected. Thus high overhead 
containment is only used when there is confidence that a network is 
under attack. We also enable early remediation of attacks while the 
precise nature of the attack is diagnosed, followed by attack-specific 
remediation once the attack is understood. We suggest that our 
approach is therefore potentially more resource-efficient than 
existing systems, while at the same time no less accurate.  

Worm detection is part of all current commercial IDS/IPS products. 
Different vendor’s products have different actions in response to 
various worm propagations. For example, IBM Proventia 
SiteProtector manages the Proventia Network Intrusion Prevention 
System G/GX appliance. The core of NIPS in current ISS products is 
the ISS Protocol Analysis Module (PAM). It identifies and analyses 
443 network protocols and data file formats. As it parses the 
protocols and monitors the traffic, it employs a variety of techniques 
to report any of 4843 suspicious events as they occur. 

Different worms generate different response, for example, block 
worm is the response for IRC PrettyPark Worm. The Drop Packet 
response requests the sensor to drop the packet that triggered the 
signatures, such as ICQ Witty Worm, Slapper Worm, SQL SSRP 
Slammer Worm, TFTP MSBlaster Worm, TFTP Nachi Worm. The 
Block Connection response requests the sensor to drop all packets 
on the connection that triggered the signature, such as HTTP Nimda 
Worm, HTTP Spyki PhpInclude Worm, Gnutella Worm, SMB Nimda 
Worm, SQL Spida Worm. 

Juniper Networks IPS capabilities offer several unique features that 
assure network security. Groups of attack signatures are identified 
as critical, such as HTTP Bagle Backdoor, Nimda Email Propagation, 
Apache Slapper Worm etc. The default action with these worms is 
normally to classify them as high severity and drop. 

Other popular products such as Cisco IPS, McAfee M series NIPS 
have similar, signature-based algorithms. An innovative part of our 
work is that it is not only signature based but can classify suspicious 

mk:@MSITStore:D:/Users/d701422/Desktop/pam.chm::/protocol.html


86 

 

malware and put in place initial remediation until the nature of the 
challenge is analyzed. 

We have demonstrated significant advantages of flexibility and 
evolvability. Through the separation of policies and mechanisms we 
are able to re-use and refine our resilience strategies and 
mechanisms. New worm types can be accommodated by micro-level 
adaptations such as traffic feature sets and thresholds. Our system 
supports the evolution of identification and remediation strategies as 
network contexts change. Finally, we have shown how our approach 
supports experimentation through simulation of resilience strategies, 
mechanisms and parameters prior to actual deployment.  

Ongoing work would be appropriate to study how better to quantify 
the performance trade-offs of our approach and thus how best to 
optimize detection and remediation of the many challenges that 
networks face. We have shown the initial application of our approach 
to a different form of challenge, a DDoS attack, in chapter 5. We now 
further explore the generality of our approach by applying it to non-
malicious challenges.  



87 

 

 

 

 

Chapter 7 
 

 

 

 

 

 Network Fault Resilience  
 

 

 

 

 

 

 
Network fault resilience means the ability of the network to continue 
operation while a portion of the network is down. The network fully 
recovers when the non-operating component recovers. Fault 
tolerance is normally a property designed into the system to achieve 
this goal, which means the network could continue normal operation 
despite the appearance of hardware or software faults. If the network 
is not fault resilient, a single network fault could cause the entire 
network to become unavailable.  

In this chapter, we extend our network resilience approach to deal 
with network faults. In the following, we will demonstrate our strategy 
for network fault resilience, and demonstrate validation via simulation 
and application to a real, medium sized ISP network: SWITCH. This 
latter work was carried out as a collaboration during my visit to ETH 
Zurich. The purpose is to demonstrate that the resilience strategy we 



88 

 

propose could not only work in a simulation environment, but could 
also demonstrate benefits using real ISP data. 

7.1  Strategy for Network Fault Resilience  

There are a number of causes of network faults, for example, the 
hardware fault, software error, environment challenge. Network 
faults could be separated into three types. Permanent faults exist in 
a network, where the network could not be repaired unless the root 
cause could be found. If the network temporarily goes down and 
results in minor degradation in service, this is the case for transient 
faults. For example, a tree contacting a power line momentarily. 
Intermittent faults occur on a discontinuous and periodic basis, and 
this could cause a degradation of service for short periods of time. 
Intermittent faults are now a growing problem in electronic 
equipment. Permanent faults are not difficult to identify, but 
intermittent faults are not easy to isolate, because they affect the 
system only part of the time, which is generally of very short duration. 
However, the service is workable between faults. 

In order to demonstrate network resilience with our proposed system, 
we extend our platform to identify network failures. Fault detection is 
a process of capturing online indications of network disorder 
provided by malfunctioning devices in the form of alarms. We 
simulate the faults that could be triggered by non-malicious 
challenges, to achieve quick and efficient fault management 
techniques. 

Our model of network failure is that it will result in the packet loss. 
With a broken link, the packets will be discarded until a new 
connection is rebuilt. Fault remediation could be used, once the 
network failure is identified. The overall process of failure recovery 
shouldn’t cause long delay in order to ensure network robustness. 
With the above understanding, we simulate the network failure 
situation. The connection failure could appear in any place within the 
network structure.  

We designed a connection failure channel based on the OMNeT++ 
cDatarateChannel, which has the flexibility to be placed as a channel 
between any network objects. We schedule connection failure 
events to happen at certain simulation times. After recovery, we 
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schedule further failures at another time since occasional failures 
could occur more than once on the same connection in a real 
network.  

We could also simulate multiple concurrent connection failure 
channels in the network. The monitoring system should quickly raise 
the alarm once a broken link is discovered: the failure detection time 
should be as short as possible. Then a real-time solution will be 
triggered.  

 

7.2  Policy-based Network Fault Resilience Algorithm 

We propose the following proof of concept algorithm to deal with 
network faults. Four managed object modules are used by the 
algorithm. The details of these modules are as follows. 

Link Monitor: In OMNeT++ communication links are realized by 
creating “channels.” To implement a module that monitors the 
utilization of a link and can trigger an event if a threshold is reached, 
we extended the cDatarateChannel class. This allows us to place a 
monitoring object in arbitrary locations in a network topology. The 
Link Monitor is typically used to indicate the onset of a challenge that 
is causing anomalous traffic volumes 

Entropy Reporter: entropy is the typical measure of information, 
could be used as the effective and efficient method to assess the 
changes of the traffic features. Consequently, we have implemented 
an entropy-based detection module, which monitors the source IP, 
source port, destination IP, destination port and transport protocol 
type for changes in entropy. The module computes the entropy of 
these five features using Shannon’s entropy algorithm. A threshold 
can be defined that triggers an event. 

Entropy could be used to evaluate the uncertainty with the traffic 
features.  When the network faults happens, some of the destination 
couldn’t be reached in the short term, so the entropy of the 
Destination IP will become more concentrated. The entropy value 
quantifies the degree of uncertainty with the traffic feature. 

Fault Recovery: once the network fault is detected, the next stage is 
helping the network to fully recover. The recovery strategy will 
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eventually affect the reliability of the network. A large scale of 
network should tolerate elements/nodes failures while continuing 
normal operation. As the number of network failures increase, the 
difficulty of network recovery increases. The alarm will be raised 
when the network fault is identified. At this stage, either the 
automatic or network operator initiated fault recovery solutions are 
activated to address the fault and bring the network back to normal 
operation.  

A few corresponding solutions will be proposed to correct the fault, 
for example, the packets could be re-routed to a backup link. The 
recovery stage may need to deal with complex dependencies issues 
between network elements. To simply replace or reset the network 
element may not right, since other network elements may need to be 
reconfigured or reset. Any mis-replacement may worsen the 
scenario. 

The algorithm for network fault resilience is shown in Figure 27. At 
the beginning, the local manager will set the threshold and activate 
the link monitor, also the entropy reporter will start calculating the 
entropy value for five traffic features, which include Destination IP, 
Destination Port, Source IP, Source Port and Protocol. Once the 
traffic volume rises above the threshold, the alert will be raised in 
order to do further in depth analysis. Then the entropy reporter will 
check the entropy value changes for each of the traffic features, if 
both the entropy of the destination IP and source IP drop significantly, 
then we could assume that this is the behavior of a network fault. 
This is based on Lakhina [2005]’s findings. At this stage, the network 
operator will receive an alarm for the network fault event, and have 
the options to choose either automatic recovery, for example, re-
route the packets another link, or manual recovery, such as manually 
reset/reconfigure the individual network element. 
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Fig. 27. Entropy based network fault resilience algorithm 

7.2.1 Experiment of the network fault resilience  

For the case study, our simulated network consists of 35 
Autonomous Systems (ASes): 26 stub ASes connected by 9 transit 
ASes, 1700 hosts, 80 web servers and 20 interactive servers 
generate background traffic.  

Our resilience strategy is simulated at a stub AS. Within a single stub 
AS, two links between the edge router and gateway router is down 
as demonstrated in Figure 28. The network fault we simulated is the 
intermittent fault. The connection failure happens at 10 sec and last 
for 5 sec. Then the network is back as usual for another 5 sec. After 
that, the links fails again. The various resilience mechanisms are 
activated on a gateway router of the AS and its ingress link from a 
core router. Initially, a Link Monitor module is invoked on each of the 
ingress links to monitor link utilization, a threshold parameter is 
defined, which if exceeded results in an event being generated. An 
Entropy Reporter module is also invoked and configured with a list of 
features that it is to monitor.  

As mentioned earlier, the Entropy Reporter module continuously 
monitors the traffic features’ distributions using Shannon’s entropy 
algorithm. In the previous chapters, we show the Entropy Reporter 
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module could be applied to detect malware attacks, for example a 
worm or port scan. In this experiment, the same Entropy Reporter 
module is deployed to capture network faults. Based on the 
distribution of the traffic features, the Entropy Reporter module could 
differentiate network faults from other types of malicious attacks.  

 

 
 

Fig. 28. AS level network topology 

Figure 29 shows the volume of the traffic on the ingress link between 
gateway router and core router for the simulated network fault.  The 
overall traffic drops between 10s and 15s when the connections are 
broken, then the network operation back to the normal after 15s. The 
traffic falls down again at 20s. Figure 30 and figure 31 represent the 
entropy of the destination IP and source IP drop correspondingly 
when the network fault occurs.  
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Fig. 29. Traffic changes with the intermittent network fault 

 

Fig. 30. Destination IP Entropy changes  

 

Fig. 31. Source IP Entropy changes  
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7.3  Network Fault Resilience Using a Classifier 

Approach 

In order to demonstrate the flexibility and adaptability of our 
proposed multi-stage policy based challenge detection platform, here 
we propose a further solution for network fault detection.  

This work has been carried out during my visit to the ETH 
Communication Group, which is part of a collaboration between 
NICTA and ETH. The classifier has previously been developed and 
presented [Eduard et al., 2012]. We further extend this work and 
deploy the classifier into our multi-stage policy based network 
resilience approach. In the following sections, we introduce how the 
classifier based multi-stage network fault resilience strategy could be 
applied to classify network faults in the SWITCH network.  

7.3.1 Network Fault Resilience Experiment on SWITCH 

SWITCH was founded in 1987, as one of the very first organizations 
in Switzerland to provide the internet service to the country. As the 
medium sized ISP, it offers internet service to approximately 30 
Switzerland universities, government institutions, and research labs, 
e.g., IBM, PSI, CERN, and other educational institutions. 
SWITCHlan has some 2600 kilometers of glass fibers, built through 
the whole of Switzerland. it brings Swiss universities and research 
institutions together via secure exchange of data at 10 Gigabits/sec.  

The backbone of the SWITCH network is depicted in figure 32. The 
SWITCH network has six border routers and traffic is collected from 
the Cisco border routers only. A flow data collector is deployed to 
collect and buffer incoming flow data. It runs software to capture the 
data and store it to files (e.g., one file per hour). It also generates 
metadata files containing the source of each data packet received 
(UDP) or the connection (TCP) and e.g., the timestamp, sequence 
number, and other things. The hourly generated files are buffered by 
the flow data collector. These files are compressed and available for 
download.  Normally the data compression happens before the 
download with the purpose of saving processing power.  

The secure flow data infrastructure is deployed to process the flow 
data after archiving, also performing analysis for the archived flow 
data. The data will be parsed and investigated at this stage. The 
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processing time is about real time analysis of the archived data. This 
process could be accelerated by massive parallelization using 
multiple processing nodes. The large amount of flow data will be 
stored into the large disk array or tape library. The current storage 
server has the capacity for roughly 40TiB. The raw netflow data from 
special events (e.g. malicious attacks, network failure) are kept on 
the storage servers. 

In order to reduce data volume, no packet traces are gathered on the 
server, only the flow traces are stored, for example, NetFlow V5 and 
NetFlow V9. The complete flow level traffic is captured from the 
border router and there is no packets sampling applied. The traffic 
comprises both the normal and abnormal traffic happening in the 
daily operation network, include network faults, DDoS, network scan, 
alpha flows etc. The dataset captured in the SWITCH backbone 
network is in large data volume and multidimensional features of the 
traffic can be measured. 

A flow record is essentially a unidirectional sequence of packets 
between two end points that is characterized by the 5-tuple of source 
and destination IP address, source and destination port number, and 
transport protocol, also other information could also include, for 
example,  connection start time, connection duration, the number of 
packets and bytes transferred.  If the flow does not have a reverse 
matching flow, then it will be called the one- way flow. 

In the SWITCH network, the classifier is deployed to do offline 
analysis and the processing chain has been optimized for offline 
analyzes on existing/historic traffic data archives. The classifier 
validates on 7.41 petabytes of traffic from SWITCH boarder routers, 
and 2.2 million IP addresses are monitored. A massive dataset of 
NetFlow records was collected without sampling between 2004 and 
2010.  

As explained earlier, the classifier could be used to detect service 
outages based on the one-way to two-way flow ratio targeting a 
service. The classifier works as the following stages: 
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Fig. 32. The backbone for the SWITCHlan network [web1] 

1. Collecting data 

The first step is collecting the traffic data.  

For the offline analysis, the flow data will be collected and YAF (Yet 
Another Flowmeter) could be used as a soft flow meter to create flow 
data files in the standardized IPFIX format. But IPFIX flow data has 
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to distinguish between unidirectional and bidirectional flows to be an 
acceptable input to the one-way flow classifier. The one-way 
classifier captures the count of one-way flows targeted at 
unreachable services 

A suitable flow generator is YAF, but any flow generator that uses an 
IPFIX flow template including the dedicated standard information 
elements for describing bidirectional flows could be applied.   

In the SWITCH network, the flow data is gathered from the border 
gateway. The SWITCH network topology will be demonstrated in 
section 7.3.1. All the incoming and outgoing traffic from the boarder 
gateway is monitored.  

If it is the edge network, the traffic could also be monitored from a 
gateway router. If the classifier works on the one way flow, the 
incoming and outgoing traffic will be separated first.  

For the online analysis, the traffic is collected in real time from the 
simulator. 

 

2. Identify Service and P2P Host 

The traffic target service and P2P hosts are monitored all the time, 
so that we could get the list of services and P2P hosts. A service is 
defined as a triple {IP, protocol, port}. Such 3-tuples registered as 
safe destinations and consider all flows to and from these services 
as benign one-way flows caused by connection failure due to any 
reason, e.g. congestion, outages. This analysis is run over a full 
observation period to leverage temporarily running services and 
temporary outages of services. 

 

3. Identify unused IP addresses 

For the offline analysis, because the traffic is observed over a long 
period of time, both the incoming and outgoing traffic are monitored. 
So if an IP address never shows up in a two way flow and only 
appears in one or two one-way flows, then it will be listed as an 
unused IP addresses.  



98 

 

4. Assign signs to one-way flows 

For the offline analysis, the traffic data is collected and saved into a 
CSV (comma separated value) file. Each sign is listed with number 
of one-way flows carry it. Sign combinations that do not appear in 
the data are not reported to limit the size of the output data. 
Additionally, shorter versions of this list are provided that do not 
report sign combinations with a flow count below a threshold of 
100fpm or 1000fpm (fpm: flows per million). 

The output file could be generated to report the sign combinations of 
any input one-way flow. The sign sets contained in this file are 
aligned with the flows such that e.g. entry 100 describes the flow 100 
when flows and sign sets are numbered in ascending order.  

 

5. One-way flow classification 

Following the defined rules, the flow class will be classified based on 
the 18 signs, if the service is classified as unreachable, then we 
could confirm it is network fault. 

The analysis focuses on the one way traffic, as when network failure 
happens, the packets will send from the source host to the 
destination host, but it couldn’t reach the destination due to the fault. 
However, there are also other possibilities with one way traffic, for 
example peer to peer, malicious scanning, backscatter, suspected 
benign, bogon. Figure 33 demonstrates the one way traffic 
classification process. The classifier could be deployed to 
differentiate network failure from other scenarios. The scheme uses 
17 rules and includes the novel heuristics and combine exiting 
algorithms. Each one way flow has been assigned with 18 different 
signs, to help identify the root cause of the one way flows.  
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Fig. 33. One way traffic classification process 

The approach could passively monitor the large dataset without 
inflicting network load. The time interval applied to find the 
reachability problem is 10 minutes in this case. The impact of 
different time interval has been tested on flow metrics aggregated for 
the whole day in [Eduard, 2012], and within 10 minutes could 
efficiently search for the flow pairs. Three popular services are used 
to recognize the connection failure including the email service, main 
web site access and the software distribution service. Many services 
could be monitored concurrently. Network failure could be confirmed 
if all the three services are not reachable by the defined time interval. 
There is a large scale of clients affected by the identified network 
failure. After classification, the flows data are separated into different 
classes. 4.8% of the total one-way flows are classified as the 
network failure, while malicious scanning dominates the one–way 
flows by occupying 83.5% of all one-way flows. 

Another experiment has been carried out to apply the classifier on a 
week’s archived NetFlow data from the Department of IT and 
Electrical Engineering at ETH Zurich. The coinciding outage was 
observed at 19:40 on the 23rd June 2011 and last more than 10 min. 
During this interval, the three key services are not reachable. When 
monitoring the time series of the volume of one way flows, it is found 
that the mail service has a sharp increase when the network failure 
happens due to the automatic retry attempt as demonstrate in Figure 
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34. After investigation, it is found that the failure happens due to a 
planned router software upgrade. 

 

Fig. 34. Network Failure observed on the 23rd of June 2011 19:40 at ETH Zurich [Eduard, 

2012] 

7.3.2 Network Fault Resilience Experiment in Simulation 

During the visit to ETH Zurich, we worked in cooperation with Eduard 
to applied the classifier to our simulation. The classifier approach 
had been validated by experimentation in the large dataset at 
petabyte level in the SWITCH network. We brought it into the 
simulation environment in order to differentiate network failure from 
other scenarios, in order to indicate that our policy based multi stage 
platform could be extended or adapted with different algorithms to 
deal with different challenges and make network more resilient.  

Figure 35 depicts the classifier based network fault resilience 
algorithm. At the start, LocalManagerMO will set the threshold to the 
LinkMonitorMO, so if the network traffic drops dramatically, it will 
signal the LocalManagerMO. The FlowExporterMO will truncate flow 
records after a specific time out period, e.g., 60s or 180s, and send 
records to the ClassifierMO with a given sampling rate, both of which 
are preconfigured by LocalManagerMO. Once the FlowExporterMO 
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exports the flow records, they will be used as the input for the 
classifier.  

     

Fig. 35. Classifier based network fault resilience algorithm  

Network failure could be detected when many services outage 
occurs. The classifier will classify the flows based on the 18 different 
signs, each flow will be checked against all the signs and identify the 
matched ones. The signs of a flow incorporate a number of well-
designed rules, and they will be used to determine the equivalent 
class and the unknown class. 14 classification rules are included 
within the classifier.   

These rules are applied to classify network failure from other one-
way flows. Each rule associates with the specific signs, these signs 
need to be present or absent. Once the fault is declared, the fault 
recovery process will start to help the network continue normal 
operation. A backup path is configured in parallel with the working 
path. In order to minimise disruption, a quick switch over will take 
place.  
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Class Rules 

Malicious 
Scanning 

1. {TRWscan,       ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ,      ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑} => Scanner 

2. {HCscan,        ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ,       ⃑⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ,      ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ ) => Scanner 
3. {TRWnom, HCscan} => Scanner 

4. {TRWscan, HCscan,      ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑) => Scanner 

5. {GreyIP, Onepkt,       ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ,         ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ,     ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ,    ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  } => Scanner 

6. {GreyIP,        ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ,       ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ,       ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑,      ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  } => Scanner 

7. {Onepkt,        ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ,        ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑,     ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ,       ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  , 

      ⃑⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ,        ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ,      ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑,       ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑} => Scanner 

8. {GreyIP, Onepkt,        ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑,       ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑,     ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ,    ⃑⃑ ⃑⃑ ⃑⃑  ⃑ } => Scanner 

9. {ICMP,        ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑,       ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑,       ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑,      ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ,      ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑} => Scanner 

Network 
Failure 

10. {Failure        ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑,       ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑} => Failure 

Suspecte
d Benign 

11. {      ,        ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ,       ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑) => Benign 

12. {Large;       ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑,         ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑,       ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑,        ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑,      ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ,     ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  } => 
Benign 

13. {TRWnom,       ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑,        ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑,        ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  } => Benign 

14. {ICMP, InOut        ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑,       ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑,        ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑,      ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  } => Benign 

Table 3. Rules to classify one-way flow by using the combination of signs (derived from 

[Eduard, 2012]) 

 

7.4  Summary 

Fault management is a major component of network management 
suite. We need to introduce innovative concepts for fault detection, 
root cause analysis and self-healing architectures.  

The system should implement root-cause analysis not only to detect 
the faults once they occur, but also to identify the source of fault for 
performing automatic fault recovery. Different types of network 
service faults need to be measured: they range from node 
misbehavior at different layers (MAC, routing), to software 
misconfigurations. We also need to consider the system's 
vulnerabilities include component faults, which is caused by software 
bugs or the deterioration of hardware. 
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In the datacenter or the enterprise network, the traditional 
methodology to monitor network failure is usually to send probing 
packets and/or to check server logs. In our approach, we developed 
two ways to perform the task: the entropy based method could be 
used to check the pattern of traffic features changes, and the 
classifier based method could exploit traffic flow data and monitor 
reachability. Passive measurement effectively reduces overhead 
compared to the traditional active probing approach. We have 
demonstrated further adaptability and extensibility of our approach 
by validating different network failure resilience strategies. 
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Chapter 8 
 

 

 

 

 

 

Conclusion: Evaluation of Our approach 

and Future Work 
 

 

 

 

 

 
We have described a novel solution that enables the progressive 
multi-stage deployment of resilience mechanisms, based on 
incomplete challenge and context information. Volume resilience, 
malware resilience and network failure resilience have been 
demonstrated in chapter 5, chapter 6 and chapter 7 respectively. We 
have illustrated the flexibility of our approach when adapting to new 
challenges in the form of zero-day malware. We have also shown 
how our approach enables experimentation and development of new 
resilience strategies. Here we first summarily evaluate our approach 
from different aspects. We conclude by discussing future work in the 
context of existing products. 
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8.1 Evaluation  

8.1.1 Generality, Efficiency and Scalability 

A major challenge for the automatic identification and remediation of 
networked malware is that these challenges display a wide array of 
features and are also ever changing in their characteristics in order 
to evade detection. Our approach allows detection strategies to be 
composed such that a range of Managed Objects can be applied to 
early detection and subsequent identification. For example, malware 
that propagates at high rates can initially be detected via a link 
monitor. More stealthy, slower propagating malware can evade 
volume based detection, but can possibly be detected by monitoring 
entropy of traffic features. In general, we propose that our approach 
is capable of adopting and applying a wide range of algorithms that 
have been developed in the literature. 

Our multi-stage approach permits deployment of strategies for real-
time detection without incurring the overall costs of other approaches. 
Always-on, real-time monitoring is relatively lightweight. While more 
complex analysis is only invoked at a point where there is confidence 
that the network is under challenge. 

The approach also enables distributed detection, identification and 
remediation. Under the control of a policy-based local manager, 
managed objects can be configured and invoked at multiple vantage 
points in the network. This can be applied at the level of sub-
networks or across an entire domain.  

8.1.2 Early Detection vs Accuracy 

Our method is based on packet level analysis, which has the 
advantage of early detection of potential attacks. Many previous 
approaches are based on flow analysis. However routers or switches 
only export flows after a ramp-up period (typically 15 seconds or 
more). A further period is then required for anomaly detection 
algorithms to analyse an attack. In this time, the whole network will 
be at risk [21]. 

Our packet based approach can detect large-scale attacks more 
quickly and can apply interim remediation. This may be at the 
expense of accuracy, resulting in high false positive rates, but this is 
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traded off against the protection of network assets provided by early 
remediation. 

8.1.3 Flexibility and Evolution 

Policies are deployed to coordinate different managed objects, and 
can be configured in a flexible and simple way via parameterization. 
Our platform has the flexibility to enable adaptation of strategies to fit 
different detection scenarios and the inclusion of new mechanisms. 
For example, a Managed Object to analyze packet payload content 
could be added as a stage in the identification of a stealth attack. 

New challenges will continue to emerge in networks. We have 
shown how our platform can be used to develop resilience strategies 
against volume anomalies such as DDoS attacks in chapter 5. In 
doing so we easily re-used some of the managed objects described 
here, such as LinkMonitor and RateLimiter. We have shown that our 
approach can also be used to experiment with and develop 
resilience strategies for other forms of challenge, such as network 
faults. In general, our approach facilitates development and 
deployment of network resilience strategies, which can be further 
refined as new challenges emerge and/or our understanding of how 
to achieve resilience is enhanced. 

 

8.2 Future Work 

This thesis has elaborated some initial, proof-of-concept 
implementations to demonstrate our approach to network resilience. 
We conclude by exploring briefly how our approach could be 
embedded into operational networks, with reference to existing 
products. 

The limitation of many products is that they are signature based. For 
example, snort uses sourcefire certified VRT rules for signatures with 
updates available for the registered user. The main benefit of snort is 
it gives users the flexibility to create new rules, new plugins and 
preprocessors. However if a rule hasn’t been released for a new 
attack or the developer hasn’t created the rule, then a new malicious 
attack is unlikely to be identified. Likewise the market leading 
product checkpoint NGX with IPS gives the engineer the option to 
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automatically update or manually update signatures, but cannot 
quarantine or mitigate a new attack. 

Our approach could be integrated such that existing tools could 
automatically learn the traffic patterns of unknown attacks, and then 
provide the network operator the choice to do early network 
remediation. Furthermore, we could develop the approach to provide 
the operator with information about what particular service or 
application was targeted. This would help the operator to further 
refine the detection signatures.  

A web application firewall (WAF) could be another context for further 
research and development. A network firewall normally protects the 
network from the network layer, and an IDS/IPS defends from the 
transport layer. A network firewall normally has policies configured 
for blocking or allowing specific ports/addresses. The IDS/IPS 
usually verifies traffic behavior via signatures. However, common 
web application attacks like SQL injection, cross site scripting, 
cookie tampering, and the top ten OWASP threats are challenging 
the network from the application layer. They are unlikely to be 
identified by a network firewall or IDS/IPS, and need to combine 
IDS/IPS with WAF. Future work could extend our network resilience 
strategies to cope with OWASP vulnerabilities and thus protect the 
network from the application layer.  

Finally, future work could also focus on developing resilience 
strategies that integrate the simultaneous detection, identification 
and remediation of multiple challenge types including worms, DDoS, 
flash crowds, network faults, etc. This may introduce issues of policy 
conflict and resolution, and resource trade-offs. Our work enables 
experimental scenarios to be explored as new challenges to network 
resilience arise. 
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Appendix 

 

A. Code for LinkMonitor MO 

/** 

 * @file LinkMonitor.cc 

 * @brief An implementation of the Link Monitor Managed Object. 

 * @author Tina Yu (tinayu@it.usyd.edu.au) 

* */ 

 

// This program is free software; you can redistribute it and/or 

// modify it under the terms of the GNU Lesser General Public 
License 

// as published by the Free Software Foundation; either version 2 

// of the License, or (at your option) any later version. 

// 

// This program is distributed in the hope that it will be useful, 

// but WITHOUT ANY WARRANTY; without even the implied 
warranty of 

// MERCHANTABILITY or FITNESS FOR A PARTICULAR 
PURPOSE.  See the 

// GNU Lesser General Public License for more details. 

// 

// You should have received a copy of the GNU Lesser General 
Public License 

// along with this program; if not, see <http://www.gnu.org/licenses/>. 
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#include "LinkMonitor.h" 

#include <sstream> 

#include "EventPublisher.h" 

#include "MechanismExporter.h" 

#include <string> 

#include "IPDatagram_m.h" 

 

Register_Class(LinkMonitor); 

 

bool triggered; 

 

LinkMonitor::LinkMonitor(const char *name) : 
cDatarateChannel(name) 

{ 

    batchSize = 10; 

    maxInterval = 0.1; 

    threshold = 100;    

    intvlTime = 100; 

    cnt = 0; 

    value = 0; 

    triggered_count = 0; 

    numPackets = 0; 

    numBits = 0; 

    triggered = false; 
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    intvlStartTime = intvlLastPkTime = 0; 

    intvlNumPackets = benignNumPackets = maliciousNumPackets = 
intvlNumBits = 0; 

} 

 

LinkMonitor::~LinkMonitor() 

{ 

 delete out_vectors["N"];  

 delete out_vectors["V"];  

 delete out_vectors["p"];  

 delete out_vectors["b"];  

 delete out_vectors["m"]; 

 delete out_vectors["b"]; 

 delete out_vectors["P"]; 

 delete out_vectors["B"]; 

 delete out_vectors["T"]; 

} 

 

bool LinkMonitor::initializeChannel(int stage) { 

 

 cDatarateChannel::initializeChannel(stage); 

 

 const char *fmt = this->par("format"); 

 char buf[200]; 
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 char *p = buf; 

 std::stringstream n; 

 for (const char *fp = fmt; *fp && buf+200-p>20; fp++) 

 { 

   n.str(""); 

   switch (*fp) 

   { 

    case 'N': // number of packets 

     n << "Number of Packets from " << this-
>getSourceGate()->getOwnerModule()->getFullPath(); 

     this-
>out_vectors.insert(std::make_pair<const char*,cOutVector*> 
("N",new cOutVector(n.str().c_str()))); 

 

     break; 

    case 'V': // volume (in bytes) 

     n << "Volume from " << this-
>getSourceGate()->getOwnerModule()->getFullPath(); 

     this-
>out_vectors.insert(std::make_pair<const char*,cOutVector*> 
("V",new cOutVector(n.str().c_str()))); 

     break; 

    case 'p': // current packet/sec 

     n << "current overall packet/sec from " << 
this->getSourceGate()->getOwnerModule()->getFullPath(); 

     this-
>out_vectors.insert(std::make_pair<const char*,cOutVector*> 
("p",new cOutVector(n.str().c_str()))); 
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     n.str(""); 

     n << "current malicious packet/sec from " << 
this->getSourceGate()->getOwnerModule()->getFullPath(); 

    this->out_vectors.insert(std::make_pair<const 
char*,cOutVector*> ("m",new cOutVector(n.str().c_str()))); 

    n.str(""); 

    n << "current benign packet/sec from " << 
this->getSourceGate()->getOwnerModule()->getFullPath(); 

    this->out_vectors.insert(std::make_pair<const 
char*,cOutVector*> ("b",new cOutVector(n.str().c_str()))); 

     break; 

    case 'b': // current bandwidth 

     n << "CurrentBandwidth from " << this-
>getSourceGate()->getOwnerModule()->getFullPath(); 

     this-
>out_vectors.insert(std::make_pair<const char*,cOutVector*> 
("b",new cOutVector(n.str().c_str()))); 

     break; 

    case 'P': // average packet/sec on [0,now) 

     n << "average packet/sec from " << this-
>getSourceGate()->getOwnerModule()->getFullPath(); 

     this-
>out_vectors.insert(std::make_pair<const char*,cOutVector*> 
("P",new cOutVector(n.str().c_str()))); 

     break; 

    case 'B': // average bandwidth on [0,now) 

     n << "AverageBandwidth from " << this-
>getSourceGate()->getOwnerModule()->getFullPath(); 
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     this-
>out_vectors.insert(std::make_pair<const char*,cOutVector*> 
("B",new cOutVector(n.str().c_str()))); 

     break; 

   case 'T': // threashold checking  

     n << "Value from" << this->getSourceGate()-
>getOwnerModule()->getFullPath(); 

     this-
>out_vectors.insert(std::make_pair<const char*,cOutVector*> 
("T",new cOutVector(n.str().c_str()))); 

     break; 

    default: 

     *p++ = *fp; 

   } 

 } 

 

 return false; 

} 

#if OMNETPP_VERSION>0x0400 

void LinkMonitor::processMessage(cMessage *msg, simtime_t t, 
result_t& result) 

{ 

    cDatarateChannel::processMessage(msg, t,result); 

    if (dynamic_cast<cPacket*>(msg)) { 

 

  // count packets and bits 

  numPackets++; 
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  numBits += ((cPacket*)msg)->getBitLength(); 

 

  if (intvlNumPackets >= batchSize || t-intvlStartTime >= 
maxInterval) 

   beginNewInterval(t); 

 

  intvlNumPackets++; 

  string name = msg->getName(); 

  if ((name.compare("udp_flood") == 0) || 
(name.compare("SYN-Flood") == 0) || (name.compare("ping_flood") 
== 0)) { 

   maliciousNumPackets++; 

  } else { 

   benignNumPackets++; 

   //cerr << name << endl; 

  } 

  intvlNumBits += ((cPacket*)msg)->getBitLength(); 

  intvlLastPkTime = t; 

 

  updateDisplay(); 

    } 

} 

#else 

bool LinkMonitor::deliver(cMessage *msg, simtime_t t) 

{ 

    bool ret = cDatarateChannel::deliver(msg, t); 
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    if (dynamic_cast<cPacket*>(msg)) { 

 

  numPackets++; 

  numBits += ((cPacket*)msg)->getBitLength(); 

 

  if (intvlNumPackets >= batchSize || t-intvlStartTime >= 
maxInterval) 

   beginNewInterval(t); 

 

  intvlNumPackets++; 

  intvlNumBits += ((cPacket*)msg)->getBitLength(); 

  intvlLastPkTime = t; 

 

  // update display   

  updateDisplay(); 

    } 

    return ret; 

} 

#endif 

 

void LinkMonitor::beginNewInterval(simtime_t now) { 

    simtime_t duration = now - intvlStartTime; 

 

    currentBitPerSec = intvlNumBits/duration; 
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    currentPkPerSec = intvlNumPackets/duration; 

    maliciousPkPerSec = maliciousNumPackets/duration; 

    benignPkPerSec = benignNumPackets/duration; 

 

    intvlStartTime = now; 

    intvlNumPackets = maliciousNumPackets = benignNumPackets = 
intvlNumBits = 0; 

} 

 

void LinkMonitor::updateDisplay() 

{ 

    const char *fmt = this->par("format"); 

 

    char buf[200]; 

    char *p = buf; 

    simtime_t tt = getTransmissionFinishTime(); 

    if (tt==0) tt = simTime(); 

    double bps = (tt==0) ? 0 : numBits/tt; 

    double bytes; 

    for (const char *fp = fmt; *fp && buf+200-p>20; fp++) 

    { 

        switch (*fp) 

        { 

            case 'N': // number of packets 

                p += sprintf(p, "N: %ld", numPackets); 
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                this->out_vectors["N"]->record(numPackets); 

                EV << "NUMBER OF PACKETS " << numPackets << "\n";   

                break; 

            case 'V': // volume (in bytes) 

                bytes = floor(numBits/8); 

                this->out_vectors["V"]->record(bytes); 

                if (bytes<1024) { 

                    p += sprintf(p, "V: %gB", bytes); 

                    EV << "VOLUME " << bytes << "B\n";   

                } else if (bytes<1024*1024) { 

                    p += sprintf(p, "V: %.3gKB", bytes/1024); 

                    EV << "VOLUME " << bytes/1024 << "KB\n";   

                } else { 

                    p += sprintf(p, "V: %.3gMB", bytes/1024/1024); 

                    EV << "VOLUME " << bytes/1024/1024 << "MB\n";   

                } 

                break; 

 

            case 'p': // current packet/sec 

             p += sprintf(p, "p: %.3gpps", currentPkPerSec); 

             if (currentPkPerSec >= 0 ) { 

              this->out_vectors["p"]-
>record(currentPkPerSec);this->out_vectors["p"]-
>record(currentPkPerSec); 
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              this->out_vectors["b"]-
>record(benignPkPerSec);this->out_vectors["b"]-
>record(benignPkPerSec); 

              this->out_vectors["m"]-
>record(maliciousPkPerSec);this->out_vectors["m"]-
>record(maliciousPkPerSec);} 

 

             EV << "CURRENT " << currentPkPerSec << "packet/sec 
\n"; 

    if ((currentPkPerSec>=3000) && triggered == 
false) { 

     triggered_count++; 

     if (triggered_count == 100) { 

      triggered = true; 

      vector<string> values; 

      values.push_back(this-
>getFullPath()); 

      std::string s; 

      std::stringstream out; 

      out << this->getSourceGate()-
>getNextGate()->getIndex(); 

      s = out.str(); 

      values.push_back(s); 

      EventPublisher publisher; 

      publisher.publish("load",values); 

     } 

    } 

   break; 
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            case 'b': // current bandwidth 

             this->out_vectors["b"]->record(currentBitPerSec); 

 

                if (currentBitPerSec<1000000){ 

                    p += sprintf(p, "b: %.3gk", currentBitPerSec/1000); 

                    EV << "CURRENT BW " << currentBitPerSec/1000 << 
"k\n"; 

                } 

                else{ 

                    p += sprintf(p, "b: %.3gM", currentBitPerSec/1000000); 

                    EV << "CURRENT BW " << currentBitPerSec/1000000 
<< "M\n"; 

                } 

                break; 

 

            case 'P': // average packet/sec on [0,now) 

                p += sprintf(p, "Avg P: %.3gpps", tt==0 ? 0 : 
numPackets/tt); 

                this->out_vectors["P"]->record(tt==0 ? 0 : numPackets/tt); 

                EV << "AVERAGE " << numPackets/tt<< "packet/sec \n";   

 

                break; 

 

            case 'T': // check threshold 

             p += sprintf(p, "T: %d", value); 
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             this->out_vectors["T"]->record(value); 

             if (currentPkPerSec > threshold){ 

              cnt += 1; 

              if (cnt == intvlTime) 

               value = 1; 

             }  

             else { 

              cnt=0; 

              value = 0; 

             } 

 

                EV << "VALUE " << value << " \n";  

                break; 

 

            case 'B': // average bandwidth on [0,now) 

             this->out_vectors["B"]->record(bps); 

             bubble("this is B"); 

                if (bps<1000000){ 

                    p += sprintf(p, "Avg B: %.3gk", bps/1000); 

      EV << "AVERAGE BW " << bps/1000 << "k\n";   

                } 

                else{ 

                    p += sprintf(p, "Avg B: %.3gM", bps/1000000); 

                    EV << "AVERAGE BW " << bps/1000000 << "M\n";   

                } 
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                break; 

 

            default: 

                *p++ = *fp; 

        } 

    } 

    *p = '\0'; 

 

    getSourceGate()->getDisplayString().setTagArg("t", 0, buf); 

 

} 
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B. Code for DDoS Resilience Strategy IDSModule 

/** 

 * @file IDSModule.cc 

 * @brief An implementation of the Intrusion Detection System 
Managed Object. 

 * @author Tina Yu (tinayu@it.usyd.edu.au) 

 * @date 22/09/10 

 * */ 

 

// This program is free software; you can redistribute it and/or 

// modify it under the terms of the GNU Lesser General Public 
License 

// as published by the Free Software Foundation; either version 2 

// of the License, or (at your option) any later version. 

// 

// This program is distributed in the hope that it will be useful, 

// but WITHOUT ANY WARRANTY; without even the implied 
warranty of 

// MERCHANTABILITY or FITNESS FOR A PARTICULAR 
PURPOSE.  See the 

// GNU Lesser General Public License for more details. 

// 

// You should have received a copy of the GNU Lesser General 
Public License 

// along with this program; if not, see <http://www.gnu.org/licenses/>. 

 

#include "IDSModule.h" 
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#include "IPDatagram_m.h" 

#include <iostream> 

#include <string> 

#include "TCPSegment.h" 

#include "UDPPacket.h" 

#include "SCTPMessage_m.h" 

#include "UDPSocket.h" 

#include "IPAddressResolver.h" 

#include "IDS_message_m.h" 

#include <map> 

#include <tr1/unordered_map> 

#include "MechanismExporter.h" 

#include <string> 

#include "EventPublisher.h" 

 

using namespace std; 

 

bool report; 

 

Define_Module ( IDSModule); 

 

IDS::~IDS() { 

 

} 
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IDS::IDS() { 

 destination_ip = "0.0.0.0"; 

 packet_count = 1; 

 seen = false; 

} 

 

typedef std::tr1::unordered_map<string, IDS> IDSTable; 

IDSTable tableIDS; 

 

//Initialise 

void IDSModule::initialize(int stage) { 

 EV<< "IDS initialised!\n"; 

 packetCount = 0; 

 mechanism_exporter.registerIDS(this, this->getFullPath()); 

 report = false; 

} 

 

void IDSModule::handleMessage(cMessage *message) { 

 //Get sim time 

 simtime_t current_time = simTime(); 

 

 

 

  if (message->isPacket()) { 

   packetCount++; 
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   EV<< "\nTotal number of packets: " << 
packetCount << "\n"; 

   IDS new_IDS; 

   //Cast to a packet 

   cPacket *packet = check_and_cast<cPacket 
*>(message); 

   //Cast to a datagram 

   IPDatagram *datagram = 
check_and_cast<IPDatagram *>(packet); 

   //Get destination IP 

   IPAddress destination_ip = datagram-
>getDestAddress(); 

   new_IDS.destination_ip=destination_ip; 

 

   string destination_string = destination_ip.str(); 

 

   string key = destination_string; 

 

   IDSTable::iterator iter; 

    

   iter = tableIDS.find(key); 

   if (iter != tableIDS.end()) { 

    EV<< "Repeat IP: "<< key; 

    //Increase packet count 

    iter->second.packet_count++; 

    unsigned int c = iter->second.packet_count; 



135 

 

    float prob = float(c)/float(packetCount); 

    if (prob > 0.7) { 

 

     simtime_t detection_time = simTime(); 

 

     char * current_ip=(char *)(iter-
>first.c_str()); 

     static char victim_ip[10]; 

 

     if (strcmp(current_ip, victim_ip)!=0) { 

      strcpy(victim_ip, current_ip); 

     } 

     else { 

 

      if ((report == true) && iter-
>second.seen == false) { 

       iter->second.seen = true; 

       vector<string> values; 

       values.push_back(iter-
>first); 

       EventPublisher publisher; 

      
 publisher.publish("intrusion",values); 

      } 

      EV << "Found Victim!\n" << 
"Victim IP: " << iter->first <<"\n"; 

     } 
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    } 

   } else if (iter == tableIDS.end()) { 

   
 tableIDS.insert( std::make_pair(key,new_IDS) ); 

   } 

  } 

 

 send(message,"distack"); 

} 

 

void IDSModule::setReport(string action) { 

 if (action.compare("on") == 0) { 

  report = true; 

 } else if (action.compare("off") == 0) { 

  report = false; 

 } 

} 

 

void IDSModule::finish() { 

 EV<< "IDS finished!\n"; 

} 
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