
Copyright and use of this thesis

This thesis must be used in accordance with the
provisions of the Copyright Act 1968.

Reproduction of material protected by copyright
may be an infringement of copyright and
copyright owners may be entitled to take
legal action against persons who infringe their
copyright.

Section 51 (2) of the Copyright Act permits
an authorized officer of a university library or
archives to provide a copy (by communication
or otherwise) of an unpublished thesis kept in
the library or archives, to a person who satisfies
the authorized officer that he or she requires
the reproduction for the purposes of research
or study.

The Copyright Act grants the creator of a work
a number of moral rights, specifically the right of
attribution, the right against false attribution and
the right of integrity.

You may infringe the author’s moral rights if you:

- fail to acknowledge the author of this thesis if
you quote sections from the work

- attribute this thesis to another author

- subject this thesis to derogatory treatment
which may prejudice the author’s reputation

For further information contact the University’s
Director of Copyright Services

sydney.edu.au/copyright

Resilience Strategies for Network

Challenge Detection, Identification,

and Remediation

Yue Yu

A thesis submitted in fulfilment of

the requirement for the degree of

Doctor of Philosophy

School of Information Technologies

University of Sydney

2013

ii

Abstract

The enormous growth of the Internet and its use in everyday life
make it an attractive target for malicious users. As the network
becomes more complex and sophisticated it becomes more
vulnerable to attack. There is a pressing need for the future internet
to be resilient, manageable and secure.

Our research is on distributed challenge detection and is part of the
EU Resumenet Project (Resilience and Survivability for Future
Networking: Framework, Mechanisms and Experimental Evaluation).
It aims to make networks more resilient to a wide range of
challenges including malicious attacks, misconfiguration, faults, and
operational overloads. Resilience means the ability of the network to
provide an acceptable level of service in the face of significant
challenges; it is a superset of commonly used definitions for
survivability, dependability, and fault tolerance.

Our proposed resilience strategy could detect a challenge situation
by identifying an occurrence and impact in real time, then initiating
appropriate remedial action. Action is autonomously taken to
continue operations as much as possible and to mitigate the damage,
and allowing an acceptable level of service to be maintained. The
contribution of our work is the ability to mitigate a challenge as early
as possible and rapidly detect its root cause.

Also our proposed multi-stage policy based challenge detection
system identifies both the existing and unforeseen challenges. This
has been studied and demonstrated with an unknown worm attack.
Our multi stage approach reduces the computation complexity
compared to the traditional single stage, where one particular
managed object is responsible for all the functions.

The approach we propose in this thesis has the flexibility, scalability,
adaptability, reproducibility and extensibility needed to assist in the
identification and remediation of many future network challenges.

iii

Acknowledgements

I would like to express my gratitude to all those who gave me the
possibility to complete this thesis and PhD study at the University of
Sydney. First and foremost, I would like to acknowledge the people,
who mean world to me, my wonderful parents. I can’t imagine a life
without their love and blessings. I would like to thank for their
endless love, support and encouragement. They deserve my whole
hearted thanks. It wasn’t an easy decision to back university and
start long term commitment for the PhD project after working in the
industry as professional for years. Sometimes, life is about giving up
something at this stage and fulfilling the dreams. That was a big
decision and major turning point in my life.

My beloved parents are always the ones who gave me strength to
reach for the stars and chase my dreams. They raised me with a
love of knowledge and supported me in all my pursuits. I am very
much indebted to my parents, as they are the greatest persons in my
life. They encourage and help me at every stage of my personal and
academic life. Their unconditional support, their patience and
understanding are greatly appreciated. I consider myself the luckiest
in the world to have such a supportive family, standing behind me
with their love.

I also would like to express my sincere gratitude to my supervisor,
Professor Michael Fry, for the continuous support of my PhD study
and research, for his patience, motivation, enthusiasm,
encouragement and immense knowledge. He is the one who gave
me the opportunity to follow my dream, let me participate in a very
interesting project. His guidance helped me in all the time of
research and writing of this thesis.

A special thanks to Professor Aruna Seneviratne. It is my great
honor to be his student. I appreciate all his contributions of time,
ideas, and funding to make my PhD. experience productive and
stimulating. Thank Aruna for giving me the strength and patience to

iv

work through all these years, motivating and inspiring every bit of me
towards new possibilities in life. He is the one who has vision with
the network filed, and guided me through the development of good
collaboration, and eventually lead me to reach the goal of my project.

The expert assistance, hospitality and mentorship of Assoc Prof. Bob
Kummerfeld and Prof. Judy Kay are particularly important for the
whole period of my PhD. Their constant guidance, cooperation and
support have always kept me going ahead. The joy and enthusiasm
they have for their research was contagious and motivational for me,
even during tough times in the PhD. pursuit. They are the ones bring
me into the CHAI group, let me become a member of the group
family.

My special words of thanks should go to Professor Bernhard Plattner,
not only for his good advice but also unsurpassed knowledge of
network security. I truly appreciated his willingness to help, and as a
result, it was a pleasure to have our joint work published on the
international conference. Especially thanks for giving me the
opportunity to visit ETH Zurich in Switzerland for two months. His
guidance, suggestions and support have been invaluable for my
project development. Thanks for introducing me to the ETH Zurich
network group and SWITCH. To Dr. Xenofontas Dimitropoulos and
Prof. Eduard Glatz, I was grateful for the collaboration, assistance
and interpretation of some results presented in this thesis. Thank Dr.
Dominik Schatzmann, for the detailed discussion with SWITCH. To
Dr. Bernhard Ager, Dr. Brian Trammell, Dr. Stephan Neuhaus and
others in the ETH Zurich, it was great to join your group seminar
every week and have individual discussion about your security
project.

I extend my sincere word of thanks to Prof. David Hutchison, Dr.
Paul Smith and Assoc Prof. Alberto Schaeffer-Filho, for their
valuable support and teamwork in the European Union ResumeNet
project. In addition, I would like to thank Dr. Thomas Gamer and Dr.
J.C. Maureira for their useful discussions on the OMNeT.

I also would like to acknowledge that part of our project was carried
out under the European Union Research Framework Programme 7
via the ResumeNet project with contract no. FP7– 24619, so thank
all the partners of the ResumeNet project for their contribution to this

v

work. Also I acknowledge NICTA (National ICT Australia) for
providing me with the necessary funding and fellowship to pursue
research.

Finally, I would like to thank all my friends, particularly the ones in
NICTA and University of Sydney, Your friendship makes my life a
wonderful experience. I cannot list all the names here, but you are
always in my mind.

vi

My Publications Drawing On the Work

Yue Yu, A Distributed Challenge Detection System for Resilient
Networks, DSRC (in conjunction with QShine2010), 7th International
ICST Conference, Vol. 74, LNICST (Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications
Engineering), pp. 584-597 , Springer, Houston, USA, Nov, 2010

Yue Yu, Michael Fry, Alberto E. Schaeffer Filho, Paul Smith,
and David Hutchison, An Adaptive Approach to Network Resilience:
Evolving Challenge Detection and Mitigation, Design of Reliable
Communication Networks (DRCN), pp.172-179, IEEE, Krakow,
Poland, 2011

Alberto E. Schaeffer Filho, Paul Smith, Andreas Mauthe, David
Hutchison, Yue Yu, and Michael Fry, A Framework for the Design
and Evaluation of Network Resilience Management, IEEE/IFIP
Network Operations and Management Symposium (NOMS), USA,
Apr, 2012

Yue Yu, Michael Fry, Bernhard Plattner, Paul Smith, and Alberto E.
Schaeffer Filho., Resilience Strategies for Networked Malware
Detection and Remediation, International Conference on Network
and System Security (NSS), Vol. 7645 of Lecture Notes in Computer
Science, pp. 233-247. Springer, China, 2012

Alberto E. Schaeffer Filho, Andreas Mauthe, David Hutchison, Paul
Smith, Yue Yu, and Michael Fry, PReSET: A toolset for the
evaluation of network resilience strategies. The 13th IFIP/IEEE
International Symposium on Integrated Network Management (IM),
Belgium, 2013

http://www.bibsonomy.org/author/Yu
http://www.bibsonomy.org/author/Fry
http://www.bibsonomy.org/author/Filho
http://www.bibsonomy.org/author/Smith
http://www.bibsonomy.org/author/Hutchison
http://www.bibsonomy.org/author/Filho
http://www.bibsonomy.org/author/Smith
http://www.bibsonomy.org/author/Mauthe
http://www.bibsonomy.org/author/Hutchison
http://www.bibsonomy.org/author/Hutchison
http://www.bibsonomy.org/author/Yu
http://www.bibsonomy.org/author/Fry
http://www.bibsonomy.org/author/Yu
http://www.bibsonomy.org/author/Fry
http://www.bibsonomy.org/author/Plattner
http://www.bibsonomy.org/author/Smith
http://www.bibsonomy.org/author/Filho
http://www.bibsonomy.org/author/Filho
http://www.bibsonomy.org/author/Filho
http://www.bibsonomy.org/author/Mauthe
http://www.bibsonomy.org/author/Hutchison
http://www.bibsonomy.org/author/Smith
http://www.bibsonomy.org/author/Smith
http://www.bibsonomy.org/author/Yu
http://www.bibsonomy.org/author/Fry

vii

Table of Contents

MY PUBLICATIONS DRAWING ON THE WORK ... VI

CHAPTER 1 ... 1

INTRODUCTION .. 1

1.1 BACKGROUND ... 2
1.2 CURRENT APPROACHES ... 4
1.3 A PROPOSED APPROACH TO NETWORK RESILIENCE .. 5
1.4 A DISTRIBUTED CHALLENGE DETECTION FRAMEWORK... 6
1.5 CONTRIBUTIONS .. 7
1.6 THESIS ORGANISATION.. 10

CHAPTER 2 ..12

RELATED WORK...12

2.1 NETWORK MONITOR .. 12
2.2 NETWORK DETECTION AND REMEDIATION .. 14

2.2.1 DDoS .. 17
2.2.2 Malware .. 20
2.2.3 Network faults ... 21

2.3 COMMERCIALIZED PRODUCTS ... 24
2.4 EVALUATION ... 25

2.4.1 Detection Rate and False Alarm .. 25
2.4.2 Latency and Efficiency ... 27
2.4.3 Computation Complexity and Assumption Strength ... 28
2.4.4 Scalability and Robustness .. 28

2.5 SUMMARY OF THE STATE OF THE ART .. 29

CHAPTER 3 ..30

A MULTI-STAGE POLICY-DRIVEN APPROACH TO NETWORK RESILIENCE ..30

3.1. MOTIVATION ... 30
3.2. PROGRESSIVE CHALLENGE IDENTIFICATION ... 31
3.3. POLICY-BASED MANAGEMENT STRATEGIES .. 33
3.4. BENEFITS OF THE APPROACH ... 34
3.5. SUMMARY ... 35

CHAPTER 4 ..37

COMPARISON OF EXPERIMENTAL PLATFORMS ...37

4.1 OFF-LINE IDS DATASETS .. 38
4.1.1 DARPA ... 38
4.1.2 KDD Cup ... 38

4.2 NETWORK SIMULATORS .. 39
4.2.1 The requirement for network simulator .. 39
4.2.2 NS-2 and NS-3, SSFNet, JiST/SWANS and J-Sim ... 40
4.2.3 OMNeT .. 43
4.2.4 The simulated architecture and implementation .. 45

4.3 SUMMARY .. 48

viii

CHAPTER 5 ... 49

VOLUME CHALLENGE RESILIENCE ... 49

5.1. STRATEGY FOR DDOS RESILIENCE ... 49
5.2. EXPERIMENTATION .. 51

5.2.1 Incremental DDoS Detection and Remediation ... 52
5.2.2 Simulating Policy-driven Resilience Strategies .. 56
5.2.3 Results and Discussion ... 57

5.3 DISCUSSION WITH FLASH CROWD .. 60
5.4 SUMMARY .. 63

CHAPTER 6 ... 65

MALWARE ATTACK RESILIENCE .. 65

6.1 STRATEGY FOR MALWARE ATTACK RESILIENCE .. 66
6.1.1. Strategy Overview ... 66
6.1.2 Policy-driven Resilience Mechanisms .. 67
6.1.3 Discussion .. 72

6.2. EXPERIMENTATION .. 72
6.2.1. Worm Simulation .. 74
6.2.2. Identifying and Remediating Witty and CodeRed Worm .. 76
6.2.3. Policy-based Adaptation of Strategies .. 78
6.2.4. Adapt the Resilience Strategy to Detect and Mitigate Slammer Worm 79
6.2.5. Dealing with Unknown Attacks ... 81
6.2.6. Resilience Against Other Malware: Port Scan ... 83
6.2.7. Discussion and Evaluation of approach ... 84

6.3 SUMMARY .. 84

CHAPTER 7 ... 87

NETWORK FAULT RESILIENCE ... 87

7.1 STRATEGY FOR NETWORK FAULT RESILIENCE ... 88
7.2 POLICY-BASED NETWORK FAULT RESILIENCE ALGORITHM .. 89

7.2.1 Experiment of the network fault resilience ... 91
7.3 NETWORK FAULT RESILIENCE USING A CLASSIFIER APPROACH .. 94

7.3.1 Network Fault Resilience Experiment on SWITCH ... 94
7.3.2 Network Fault Resilience Experiment in Simulation .. 100

7.4 SUMMARY .. 102

CHAPTER 8 ... 104

CONCLUSION: EVALUATION OF OUR APPROACH AND FUTURE WORK ... 104

8.1 EVALUATION ... 105
8.1.1 Generality, Efficiency and Scalability ... 105
8.1.2 Early Detection vs Accuracy... 105
8.1.3 Flexibility and Evolution... 106

8.2 FUTURE WORK ... 106

BIBLIOGRAPHY ... 108

APPENDIX... 117

A. CODE FOR LINKMONITOR MO ... 117
B. CODE FOR DDOS RESILIENCE STRATEGY IDSMODULE... 131

ix

List of Figures

Fig. 1. Network resilience strategy .. 4

Fig. 2. Network infrastructure with mechanisms implementing a set of resilience

functions and services ... 6

Fig. 3. Distributed Challenge Detection Framework ... 7

Fig. 4. Coarse to fine grain challenge identification and remediation 32

Fig. 5. Policy-based reconfiguration of mechanisms during run-time 34

Fig. 6. The example topology used for our case study, showing the mechanisms used to

ensure resilience of the network to high-traffic volume challenges 51

Fig. 7. A schematic representation of the enhanced router showing the resilience

mechanisms used .. 52

Fig. 8. Algorithm for incremental challenge identification and remediation 53

Fig. 9. Policy configuring RateLimiterMO and FlowExporterMO, in response to a

detection event generated by the IntrusionDetectionMO 56

Fig. 10. Configuration of the OMNeT++ modules used to implement some of the

managed objects. Channels to the UDP module from the FlowExporter and IDS

modules enables communication within the simulator to other modules, such as

the Classifier ... 57

Fig. 11.Initial results from simulations that implement the algorithm described.

Numbered labels pertain to points in our multi-stage approach. 58

Fig. 12. The malicious and benign traffic dropped at different stages of the algorithm

described in Section IV-A, shown as a percentage of the total dropped 59

Fig. 13. Volume based challenges resilience strategy.. 62

Fig. 14. Entropy result for DDoS attack detection ... 63

Fig. 15. Coarse to fine grain challenge identification and remediation 68

Fig. 16. Algorithm for incremental worm identification and remediation 69

Fig. 17. Example configuration of OMNeT++ modules for network malware resilience

 .. 70

Fig. 18. Overview of the framework for worm resilience strategies 73

Table 1. The Comparison between Different Worms .. 75

Fig. 19. Simulation results for the Worm resilience strategy ... 76

x

Fig. 20. Entropy changes with Witty worm ... 77

Fig. 21. Entropy changes with Code Red worm .. 78

Fig. 22. Simulation results for the Worm resilience strategy with progress mitigation ... 79

Fig. 23. Simulation results for the worm resilience strategy .. 80

Fig. 24. Entropy changes with the Slammer Worm ... 81

Fig. 25. Entropy changes with New worm ... 82

Fig. 26. Entropy changes with Port Scan ... 83

Table 2. Performance evaluation with different malware .. 84

Fig. 27. Entropy based network fault resilience algorithm .. 91

Fig. 28. AS level network topology ... 92

Fig. 29. Traffic changes with the intermittent network fault ... 93

Fig. 30. Destination IP Entropy changes .. 93

Fig. 31. Source IP Entropy changes ... 93

Fig. 32. The backbone for the SWITCHlan network [web1] ... 96

Fig. 33. One way traffic classification process .. 99

Fig. 34. Network Failure observed on the 23rd of June 2011 19:40 at ETH Zurich

[Eduard, 2012] .. 100

Fig. 35. Classifier based network fault resilience algorithm .. 101

Table 3. Rules to classify one-way flow by using the combination of signs (derived from

[Eduard, 2012]) ... 102

1

Chapter 1

Introduction

With the growth of networks and the integration of services,
increasingly severe consequences come from the disruption of
networked services. Quality of life, the economic viability of
businesses, and the security of nations are directly linked to the
resilience, survivability, and dependability of the global network.
However, the network becomes vulnerable with the increased
dependence and sophistication of services. The scale of growth and
deregulation bringing numerous service providers has resulted in a
network that is difficult to manage. There is a pressing need for
better resilience, manageability, and security for the future network.
Therefore, our research in distributed challenge detection is aimed to
make networks more resilient to various challenges. Resilience
means the ability of the network to provide an acceptable level of
service in the face of challenges to normal operation. This service
includes the ability for users and applications to access information
when needed, the maintenance of end-to-end communication

2

association, and the operation of distributed processing and
networked storage.

Research in distributed challenge detection is designed to make
networks more resilient to a wide range of challenges, including:

 unintentional misconfiguration or operational mistakes;

 large-scale natural disasters;

 malicious attacks from intelligent adversaries against the
network hardware, software, or protocol infrastructure including
DDoS (distributed denial of service) attacks;

 environmental challenges of mobility, weak channels, and
unpredictably long delay;

 unusual but legitimate traffic loads

 provider failure.

Therefore, the definition of resilience is a superset of commonly used
definitions for survivability, dependability, and fault tolerance.

Our research investigates a more coherent and systematic approach
to meeting challenges to the Internet than has occurred before. The
key strategy includes monitoring the network to detect the onset of
challenges in real time. Then diagnosing and identifying the
challenge in order to initiate appropriate remedial action, it could also
be used to characterize a set of malicious or normal operational
challenges. This novel remedial action allows an acceptable level of
service to be maintained.

1.1 Background

Computer and communication networks are increasingly critical in
supporting business, leisure and daily life in general. There is also
an obvious increase in cyber-attacks on networked systems. Thus,
there is a compelling need for resilience to be a key property of
networks. The nature of the challenges typically requires the use of
mechanisms across multiple layers of the protocol stack and in
disparate locations of the network. Therefore, ensuring the resilience
of a network requires the systematic design and evaluation of

3

resilience strategies, the careful coordination of various monitoring
and control mechanisms, and the capture of best practices and the
experience of network operators into reusable configurations of
resilience mechanisms. It requires the on-demand adaptation of
network configurations, including specialized resilience functionality,
in response to performance degradation, component faults or
security threats. Because of the consequences of defining poor
management configurations, e.g., further degrading service when the
network is under duress, it is necessary to carefully specify and test
their performance.

This research has been carried out as part of the EU ResumeNet
project (Resilience and Survivability for Future Networking:
Framework, Mechanisms and Experimental Evaluation) that is
supported under the EU FP7 FIRE (Future Internet Research and
Experimentation). Network resilience is considered in the context of
a general two-phase high-level strategy, called D2R2 + DR: as
demonstrate in Fig.1, it includes Defend, Detect, Remediate,
Recover + Diagnose, Refine [Sterbenz et al., 2010].

The resilience aim can be generally achieved via a six-step strategy:

 Defence, according to which the Internet is made robust to
challenges and attacks;

 Detection of an adverse event or challenge that has impaired
normal operation of the Internet and degraded services;

 Remediation in which action is autonomously taken to continue
operations as much as possible and to mitigate the damage;

 Recovery to normal operations once the adverse event has
ended or the attacker has been repelled;

 Diagnose the root cause of the challenge that impaired normal
operation. This could be used to improve the system design
and affect the recovery to a better state;

 Refinement of future behavior based on reflection of the
previous cycle

The first phase comprises the use of defensive measures to protect
the network from foreseeable challenges, the ability to detect real-

4

time challenges that have not been anticipated and subsequently
remediating their effects before the network operation is
compromised, and finally disengage possibly sub-optimal
mechanisms via specific recovery procedures. The second phase
caters for the longer-term evolution of the system, through the
diagnosis of the causes of the challenge and the refinement of the
system operation. In particular, D2R2 can be seen as a conceptual
online control-loop for network resilience operation. Central to the
strategy is the management and reconfiguration of interacting
detection and remediation mechanisms operating in the network
infrastructure. This is the focus of the work reported in this thesis.

Fig. 1. Network resilience strategy

The central notion, first reported in [Yu et al, 2011], is that of multi-
stage resilience strategies, in which the configuration of detection
and remediation mechanisms deployed in the network is dynamically
refined as new information about challenges becomes available.
Policies are used to control the operation of these mechanisms, and
how they should be reconfigured in the face of new types of
challenges or changes in their operational context.

1.2 Current Approaches

A great deal of research effort has focused on the development of
detection and classification techniques, whose output could be used
to trigger the dynamic adaptation of networks to ensure resilience.
For example, for detecting attacks, signature-based systems are

5

currently widely used [Roesch, 1999], and there exist various
approaches to anomaly-based detection of challenges, such as
traffic volume anomalies [Hussain et al., 2003] or changes in network
traffic feature entropy [Lakhina et al., 2005]. (For a survey of
anomaly detection approaches we refer the reader to Chandola et al.
[2009]). Similarly, a number of classification techniques exist that
can be used to identify the cause of an anomaly. (For a survey of
machine learning-based traffic classification techniques we refer the
reader to work by Nguyen and Armitage [2008]). Despite the
multitude of mechanisms and techniques proposed, it is often not
clear how these should be combined and coordinated to enforce
effective resilience strategies in complex multiservice networks. We
expand further on related work below.

1.3 A Proposed Approach to Network Resilience

Communication networks must be resilient to a multitude of
malicious attacks and other challenges to their operation. A
classification of challenges to the global Internet and interdependent
networks has been defined, in which challenges are any
characteristic or condition that impacts the normal operation of the
network [Schaeffer-Filho et al., 2013]

A resilience strategy to address such challenges requires the
management and reconfiguration of interacting detection and
remediation mechanisms that operate in the network infrastructure.
Initially, detection mechanisms support the identification and
categorization of challenges to the network. They may vary from a
simple link monitor that can determine whether high volumes of
traffic are being observed, to sophisticated detection systems and
traffic classifiers that detect anomalous changes in traffic features.
Similarly, a range of remediation mechanisms may be used for
containing the effects of a challenge. For example, various forms of
traffic shaping can be used, from simply blocking traffic to
probabilistic rate limiting, which can be applied at different protocol
levels and to individual network device ports. Firewalls and
OpenFlow switches [Yu et al., 2011], for example, can be used to
block or shape network traffic. A typical network infrastructure of the
kind we are considering, which includes a range of resilience
mechanisms, is shown in Fig. 2.

6

Fig. 2. Network infrastructure with mechanisms implementing a set of resilience functions

and services

In our work, resilience strategies are defined as a set of policies that
reconfigure the operation of resilience mechanisms at run-time in
response to events, such as high link utilisation, malicious attacks or
equipment failures, for example [Limoncelli, 2012]. Policy-based
management is used to control the operation of these mechanisms
in the face of new types of challenges. Thus, different types of
mechanisms can be selectively enabled or reconfigured in specific
operational contexts.

1.4 A Distributed Challenge Detection Framework

Figure 3 introduces a distributed challenge detection framework,
developed under the ResumeNet project, which is the context for the
research presented here. From the outset, we need to understand
the complexity of systems, the various challenges and their root
cause. Assessing which challenge affects the system in which way is
essential to deciding the corresponding mitigation strategy. For
example, a web server could be overloaded in the short term with
many requests, greater than it is provisioned for, and this could be a
DDoS attack or a ‘flash crowd’ event, which is the unusual but
legitimate demand for service. We need to distinguish between
challenges that have similar symptoms, since they require different
remediation.

7

Fig. 3. Distributed Challenge Detection Framework

To do this, the first task is to construct a network that could tolerate
foreseen adversarial events. The optimal topology needs to be
designed. It utilizes the best possible way to interconnect the access
nodes with the corresponding transmission technology. For example,
a fine-tuned routing mechanism will allow good conditioned
connections to be built so that they could react to the failure quickly.

However, for challenges that circumvent network defences, we need
a distributed monitoring and assessment platform that could detect
and identify challenges in real time, and initiate remediation in order
to neutralize the challenge and maintain acceptable levels of
operation. Real time detection and remediation is the focus of this
thesis.

1.5 Contributions

In summary, this thesis proposes and investigates a multi-stage,
policy based strategy for achieving network resilience. The initial
idea arose through discussions between ResumeNet project
partners. The work of this thesis, first reported in (Yue et al, 2011),

8

has contributed to consequent detailed development and
assessment.

The current state-of-the-art, as reviewed in chapter 2, has tended to
focus on improved detection mechanisms for particular challenges,
such as anomaly detection or fault identification. There has been
little focus on how to embed resilience to such challenges within
operational networks, while addressing temporal and resource
constraints. Furthermore, in contrast to the state-of-the-art, we
present a unified approach for dealing with diverse network
challenges.

The multi-stage, policy based framework demonstrated in this thesis
is capable of operating in real time, progressing from initial detection
through identification and remediation. By initially using lightweight
detection and then progressively applying more heavyweight
analysis, a key contribution of our work is the ability to mitigate a
challenge as early as possible and rapidly detect its root cause. The
multi stage approach can effectively reduce computational
complexity compared to existing single stage approaches.

A technical contribution of this thesis is to realize and evaluate this
framework as a number of policy-enabled Managed Objects (MOs)
which co-operatively enforce the resilience of the network. Each MO
will only be triggered by a local manager MO at the time it is needed
rather than executing continually. We have implemented and
demonstrated the framework within a simulation environment. This
circumvents the immense difficulties of experimentation within large
operational networks, but is by definition an abstraction of real
networks. However, we advocate that the same approach could be
implemented in network devices with open APIs.

Through a number of case study implementations this thesis
demonstrates how the proposed approach can enable:

(1) the rapid deployment of appropriate resilience strategies when
challenges are observed at run-time,

(2) autonomic challenge detection and identification, with
simultaneous deployment of remediation strategies,

(3) the use of this common framework to address diverse challenges
such as volume challenges, network malware and network faults,

9

(4) detection and mitigation of both known and unknown challenges,

(5) flexibility and extensibility to new challenges as they emerge and
evolve.

Finally, the work of this thesis has contributed a simulation
environment that can serve as the basis for future work and
evaluation.

Some advantages of our approach, as demonstrated in this thesis,
are as follows.

Efficiency and scalability: our simulation results demonstrate the
effectiveness and efficiency of our detection strategy for a large
network topology. It scales well in a network with large number of
hosts and servers, and also provides a response within a reasonable
time.

Generality: the multi staged policy based platform has the generality
to make the network more resilient by detecting a wide range of
challenges, for example, DDoS attacks, worm propagation, network
faults etc. Different challenges can be investigated using the same
platform.

Reusability: our network resilience strategy is realized by the
cooperation among a number of distributed objects. For different
challenges, we have different detection and remediation strategies.
However, some MOs are reusable and can be applied to various
challenge scenarios. Careful combination of some modules might be
synergistic and bring a broader range of challenge detection.

Extensibility: new challenges will continuously appear. We should
be able to easily extend our proposed platform to detect new
challenges. This could be realized by developing new policy-base
strategies and/or adding new MOs.

Flexibility and Ease of Use: the policies can be configured in a
flexible and easy way. The parameters of the remediation strategy
can simply be adjusted to filter different characteristics of the traffic.

10

1.6 Thesis Organisation

The thesis discusses a resilience strategy for detection and
remediation of network challenges. The rest of this thesis is
organized as following:

In chapter 2, we introduce the background and the related work. A
survey of existing approaches is provided, including network
monitoring, network detection and remediation approaches, and
commercial products.

In chapter 3, we provide the insight of a multi-stage policy-driven
approach to network resilience. The motivation and progressive
challenge identification will be discussed. Policy- based
management strategies and the resilience pattern is proposed to
explain how could we apply policies as the strategies to build into our
framework in order to make the network more resilient. Benefits of
the approach will then be highlighted

In chapter 4, we compare different experimental platforms. The well
known published off-line IDS datasets, for example, DARPA and
KDD Cup will be discussed. We explain the reason why these
datasets were not chosen for our experiment. Following this, we
evaluate various network simulator options and clarify why OMNeT
is selected as the experimental platform.

In chapter 5, the volume challenge resilience strategies are
proposed. A specific DDoS attack resilience approach is presented
to explain how we develop strategy for DDoS resilience. The
incremental DDoS Detection and Remediation strategy and
experimental result will be demonstrated. Following this we will
discuss how to differentiate flash crowd events from DDoS attacks.
Then discuss the current flash crowd identification methodologies.

In chapter 6, our framework is extended to perform the malware
attack resilience strategy. The workflow for malware attack resilience
is proposed, coupled with experimental results for various types of
existing worm, unknown worm and port scan malware detection and
remediation.

In chapter 7, we show our multi stage network fault resilience
strategy. Two approaches are demonstrated here. One is extended

11

from our previous developed multi stage entropy based network
resilience approach to identify network fault. The other one is
developed as the collaboration work during my visit to ETH Zurich,
the classifier based approach could work both on the real dataset
SWITCH network also our network simulation.

In chapter 8, we discuss key metrics to evaluate network resilience
strategies. The metrics include generality, efficiency and scalability,
flexibility and evolution. We then summarize the main contributions
of this thesis and identify future work in our research.

12

Chapter 2

Related Work

In this chapter, we summarize our earlier work on characterizing the
state-of-the-art in challenges detection and classification. We then
discuss how related commercial managed security solutions
compare to the approach presented in our work. After this, we
discussed how the evaluation of the performance carried in the
previous work.

2.1 Network Monitor

The vulnerabilities of the current network and the need for resilience
are widely acknowledged. There has been considerable research
into network monitoring, anomaly detection, fault tolerance, attacks,
anomaly modeling engine separately. We reviewed the latest
technologies in these areas. With the current network monitoring
techniques, threshold based random walks for fast portscan
detection is unscalable [Jung et al., 2004]. The proposed TCAs

13

(threshold crossing alerts) require the cooperation of the
manufacturers to run on the network devices, which will be difficult.
Or they can run on separate hardware, which will be complex [Wuhib
et al., 2006]. Jackson et al. [2007] cope with the distributed monitor
problem in internetworks, but the capability to monitor every link
cannot be assumed.

Today most detection use signature-based IDS that detect known
attacks only. In contrast, anomaly detection is effective in identifying
known and unknown attacks. Real time volume based anomaly
detection is resource challenge [Fry et al., 2010]. The causes for
DoS attacks and mechanisms for defending is surveyed [Peng et al.,
2007], however it is not yet practical to identify attack paths and we
require global cooperation to combat DDoS (Distributed denial of
service) attacks. To evaluate the impact of faults, fault injection is
considered as the first stage. It offers a cost and time effective way
to test system. The method to inject faults into the real network is
proposed in [Labovitzt al., 2001]. Other approaches are presented to
study network survivability. Random events affect node and link
availability, so cause the failures. There is a complete survey of fault
localization [Sethi, 2004]. Open research problems still remain with
multi-layer fault localization, temporal correlation, and distributed
diagnosis.

Increasingly, passive monitoring systems are used to collect data to
observe the underlying behavior of Internet, - fully instrumenting any
but the smallest of networks is impractical and it is impossible to
even partially instrument large parts of the Internet. Shavitt et al.
[2005] present DIMES, a highly distributed global Internet
measurement infrastructure, which measure the structure of the
Internet using a large set of interacting measurement agents. The
main goal is to take full snapshots of the Internet graph, in the AS,
PoP, and router level, annotated with delay and loss statistics, in fine
time resolutions. In future, the authors plan to embed the
measurement results in a geographic metric, and develop measures
which use the Internet evolution characteristics in various regions as
an indicator of economic and social evolution. However, the
simulation shows the BGP topology has about 25% more nodes than
the DIMES topology. This may need to improve in future. Until today,
this project still update so that we could join the testing and volunteer

14

to be the agent, the monitored data will be helpful to establish our
research approach as well.

DIME uses endsystem agents to monitor network properties. In
contrast, ubiquitous endsystem network monitoring presented by
Cook et al. [2006] is more closely related to in-network monitoring
approaches. It provides more detailed view of traffic and solves the
inability to collect the required information using network-only
measurements. The measurement systems must themselves apply
the end-to-end principle. It restores much of the lost visibility and
enables new applications. It provides additional privacy protection
compared to other approaches, also enables selected highly trusted
systems to have different privacy policies. Using real data from an
enterprise shows that collecting and querying data from endsystems
in a large network is practical. In addition, service level monitoring is
necessary to ensure that service levels are adhered to SLA. The key
tool for this is threshold crossing alerts (TCAs), which can notify a
service provider that a certain parameter has exceeded a certain
threshold value, directing attention to those areas where prevention
needs to be taken. Wuhib et al. [2006] present a protocol (TCA-GAP)
and a decentralized architecture that implements a new category of
TCAs for parameters that need to be aggregated across a network,
as opposed to parameters that can be observed from a single device.
Nevertheless, TCA-GAP can run on the network devices themselves
but will require the cooperation of the device manufacturers, which
will be difficult to fulfill. Or they can run on separate hardware, which
will be complex.

Jackson et al. [2007] analyze a subset of the general monitor
placement problem where the goal is to maximize the coverage of
the entire universe of potential communication pairs. It suggests that
the preferred strategy to place monitors should be to instrument one
or two specific inter-AS links per AS for many ASes. However this
approach do not address sampling in their monitors, they deal with
the problem of distributed monitoring in internetworks, where the
capability to monitor every link cannot be assumed.

2.2 Network Detection and Remediation

Diagnosing anomalies is critical for network operators and end users.
Lakhina et al. [2004] propose a general method to diagnose

15

anomalies. It is based on a separation of the high-dimensional space
occupied by a set of network traffic measurements into disjoint
subspaces corresponding to normal and anomalous network
conditions. This separation can be performed effectively by Principal
Component Analysis (PCA). This method can accurately detect
volume anomaly; correctly identify the underlying origin-destination
(OD) flow which is the source of the anomaly; and accurately
estimate the traffic involved in the anomalous OD flow. However, the
methodology needs to be extended to diagnose additional network-
wide anomalies, including routing related anomalies. Also, if
incorporate these algorithms in a toolset, it can better prevent
anomalies.

Lakhina et al. [2004] demonstrated the efficiency of statistical
anomaly detection in aggregated network traffic. The most popular
way to aggregate the traffic is as a Traffic Matrix, where the traffic is
divided according to its ingress and egress points. This has been
first successfully used by Lakhina et al. [2004]. Soule et al. [2007]
further studied the reasons for choosing traffic matrices instead of
any other by comparing three traffic aggregation formalisms: ingress
routers, input links and OD pairs (i.e. traffic matrices). The traffic
aggregation level has a significant impact on the number of detected
and on the false positive rate. It also mentions the aggregation can
be harmful to anomaly detection in two different ways. So the future
needs to study more formalism, detection methods, data sets and
how different formalisms are biased towards detecting certain types
of anomalies. The aggregation with PCA is left for the future work.
Ringberg et al. [2007] did the ongoing work. They show that tuning
PCA to operate effectively in practice is difficult and requires more
robust techniques. The methodology uses their interface with the
PCA anomaly detector written by Lakhina et al. [2004]. They identify
four main challenges of using PCA. Then mentioned before PCA can
be used automatically, need more effective techniques for
determining the dimensionality of the normal subspace, preventing
its contamination, and identifying flows responsible for a given PCA
detection.

Ringberg et al. [2007] also investigated the related work and
demonstrated PCA has also been combined with distributed
monitors to provide more efficient traffic anomaly detection. This has
been designed by Li et al. [2006] named MIND as a distributed multi-

16

dimensional indexing system for network diagnosis. It is the first
operational overlay with new features. Future work will use MIND to
perform online anomaly detection in a large network and then
implementing the actual algorithms that examine detailed traffic
traces based on MIND’s query results and also resolve open issues
in the overlay design area. Furthermore, Peng et al. [2007] present
distributed IDS based on an information sharing model. They
address what information and how to share information problems by
using the cumulative sum algorithm to collect statistics at each local
system, it is simple but robust to monitor changes. Also they use an
offline machine learning approach to coordinate the information
sharing among the distributed IDS, which helps to decide when to
share information so that both the communication overhead and the
detection delay are minimized.

On the other hand, Androulidakis et al. [2009] evaluate the impact of
intelligent flow sampling techniques on the detection of network
anomalies. The research principle is the exploitation of the fact that
for specific-purpose applications such as anomaly detection a large
fraction of information is contained in a small fraction of flows. They
demonstrate that by using sampling techniques that opportunistically
and preferentially sample traffic data could improve detection. To
evaluate the impact of intelligent sampling techniques, an entropy-
based anomaly detection method on a packet trace is adopted.
Recently Shanbhag et al. [2009] design a real-time parallel anomaly
detection system by using multiple existing anomaly detection
algorithms in parallel on thousands of network traffic subclasses to
accurately and sensitively detect anomalies. They also propose a
novel aggregation process to aggregate the vast amount of data
generated. It increases the accuracy of the overall system beyond
that of any single anomaly detection algorithm.

After all, Chandola et al. [2009] provide a comprehensive overview of
the research on anomaly detection. They grouped existing
techniques into different categories based on the underlying
approach adopted by each technique. For each category they
identified key assumptions which can be used as guidelines to
assess the effectiveness of the technique. For each category, they
provide a basic anomaly detection technique, and then show how
the different existing techniques in that category are variants of the
basic technique. After that, they identify the advantages and

17

disadvantages of the techniques, which will help to know which
anomaly detection technique is best suited for a given problem. The
set of technologies covered classification based, clustering based,
nearest neighbor based, statistical, information theoretic, spectral
anomaly detection. The application domain contains cyber-intrusion
detection, fraud detection, medical anomaly detection, industrial
damage detection, image processing, textual anomaly detection and
sensor networks. They also provide a discussion on the
computational complexity of the techniques.

So the future in this field, will 1st, unifies the assumptions made by
different techniques regarding the normal and anomalous behavior
into a statistical or machine learning framework. 2nd, develop new
techniques in contextual and collective anomaly detection area. 3rd,
the need for distributed with privacy-preserving anomaly detection
techniques. 4th, with the emergence of sensor networks, processing
data as it arrives has become a necessity. 5th, finding more and
more applicability is in complex systems.

2.2.1 DDoS

Most intrusion detection systems in use today, such as the popular
Snort [Roesch et al., 1999], are based on signatures. More generic
anomaly detection is often limited by the availability of computational
resources, which is scarce in many environments, such as wireless
mesh or sensor networks [Hugelshofer et al., 2009]. DDoS detection
is only currently carried out on the access network that is under
attack, and new forms of attack that function at the application layer
are hard to distinguish from normal events, requiring non real-time
classification [Peng et al., 2007]. Volume anomaly detection in
realtime is resource challenging, leading to different choices of
sampling that can impact the accuracy of detection [Brauckhoff et al.,
2010]. There are no techniques that can be applied to a variety of
challenge types, which suggests a range of detection mechanisms
need to be in place simultaneously. Classification of challenges in
real-time is not yet feasible, leading to a trade-off between
complexity and accuracy of identification [Peng et al., 2007].
Consequently, differentiating between attacks and normal traffic
overloads, and thus identification of appropriate mitigation, is still
difficult to achieve in real-time.

18

With the development of the internet, today any computer connects
to the Internet is under threat of viruses, worms and attacks from
hackers. Hansman et al. [2005] present a method for the
categorization of both computer and network attacks. It consists of
four dimensions which provide a holistic taxonomy to deal with
inherent problems. Other proposed taxonomies include computer
worms [Nicholas et al., 2003], computer intrusions [Daniel et al.,
1998], and intrusion detection systems [Stefan et al., 2000]. They are
all helpful for us to move the taxonomies towards a knowledge base,
which could detect correlations and classify attacks, then assign the
matched defense mechanism to the individual attack. The defense-
centric taxonomy can be used to predict whether or not defenses
could detect a particular attack based on its classification. [Killourhy,
2004]

The DoS attack is increasing rapidly these years, Hussain et al.
[2003] introduce a framework for classifying DoS attacks based on
header content, transient ramp-up behavior and spectral analysis. In
addition to help understand attack dynamics, it is important for the
development of realistic models of DoS traffic, it can be packaged as
an automated tool to aid in rapid response to attacks, and can also
be used to estimate the level of DoS activity. Mirkovic et al. [2004]
further investigate two taxonomies for classifying DDoS attacks and
defenses. The attack classification highlights commonalities and
important features of attack strategies, which define challenges and
dictate the design of countermeasures. The defense taxonomy
classifies the existing DDoS defenses based on their design
decisions. It then shows how these decisions dictate the advantages
and deficiencies of proposed solutions. It is a first attempt to cut
through the obscurity and structure the knowledge in this field.
However this paper lacks of comparing strengths and weaknesses of
each proposal, and discusses potential countermeasures against
each defense mechanism. Peng et al. [2007] make up this by
presenting a comprehensive survey of the causes for DoS attacks
and the state-of-art mechanisms for defending against DoS attacks.
They evaluate the implementation difficulties, challenges, strengths
and limitations for different techniques. They also mentioned
important steps to combat DoS attacks are increase the reliability of
global network infrastructure and global cooperation, also conclude

19

by highlighting opportunities for an integrated solution to counter
DDoS attacks.

As all the IDS we know of keep per-connection or per-flow state.
Kompella et al. [2004] initiate research with the question whether
one can detect attacks without keeping per-flow state. It shows that
such aggregation will cause problems as behavioral aliasing and
spoofing. The stealthy port-scanning cannot be scalably detected
without keeping per-flow state while several categories of DoS
attacks can. And their proposed Partial Completion Filters (PCFs)
can detect both scanning attacks and partial completion attacks even
with small traffic. The previous network monitor part mentioned
Jackson et al. [2007] placing monitors within ASes. Castelucio et al.
[2009] build upon this and propose an overlay network that provides
an IP-traceback scheme at AS level to deal with DDoS threat. It
contrasts with previous works because it does not require a priori
knowledge of the network topology and allows single-packet
traceback and incremental deployment. They propose a new
extension to the BGP update-message community attribute that
enables information to be passed across AS, also highlight a new
sequence-marking process to remove ambiguities in the traceback
path. The future work need to investigate the feasibility of integrating
this system with a router-level traceback system. Therefore, perform
the traceback at two levels: 1st, the traceback can discover ASes
from where packets are sent and 2nd, the traceback can be
performed inside these ASes, increasing the chance of getting closer
to the attacker sources so that perform more efficient filtering.

Aamir et al. [2013] draw the conclusion based on the survey of the
different techniques of DDoS, infrastructure layer (Layer 3) attacks is
more favored by the attacker than application layer (Layer 7) attacks
in overall scenario. Major DDoS attacks according to the statistics
are SYN flood attacks (Layer 3), GET floods (Layer 7) and
ICMP/UDP flood attacks (Layer 3). Some previous techniques are
focus on the network layer and application layer. And special
methods are developed for the application layer DDoS attack, for
example, the CAPTHA puzzle images could be applied to clients to
evade machine based automated DDoS attacks. But the application
layer DDoS attack is identified as the future challenge as it is difficult
to capture and may not be volume based.

20

2.2.2 Malware

Worms are still a widespread and persistent form of malware,
attacking targets via various channels and strategies. Historically,
most worms have propagated by scanning random IP addresses to
infect vulnerable hosts. The worm will send an infectious payload to
the target port of hosts running the desired services. In 2001, the
code red worm infected 360,000 hosts in 10 hours [Yu et al., 2006].
In 2003, the SQL Sapphire Slammer [Moore et al., 2003] worm
infected tens of thousands hosts in less than half an hour. In 2004,
Cabir appeared as the earliest known worm targeting mobile phones.
Now, worms infect smart phones via the Internet, Storage Cards,
SMS, MMS, and even Bluetooth. Spoofed SMS messages are used
to steal personal bank information by the ZeuS MitMo [La Polla,
2012]. In May 2012, trend micro reported that the
"WORM_STEKCT.EVL_ worm spreads via facebook and instant
messengers [Pantanilla et al., 2012]. Also in May 2012, Iranian
government computers were attacked by Flame, which is complex
modular malware that includes worm-like features. It is said to have
a "close relation" with the previous Stuxnet and Duqu worms [Flame,
2012].

Port scans and worms are a major attack vector for infection and
propagation by botnets. Thus worm attack detection and remediation
remain as serious issues, as is the ability to adapt strategies in the
face of evolving malware. There have been a number of surveys of
worm detection [Li et al., 2008]. The focus is generally on detecting
worm attacks during the propagation phase. The most common
approach is based on signatures, which monitor the payload of
packets to detect sequences of known worms. Examples of
signature-based detection include snort and bro, sonicwall IPS, and
checkpoint IPS. An alternative approach is to monitor protocol
sequences of known worms, such as unsuccessful TCP connection
attempts. However, signature-based detection suffers from scaling
problems. As the number of different worm types grows, so too do
the signature databases that are referenced by detection systems,
increasing the overhead of real-time detection. Furthermore, in
certain resource-constrained environments, such as wireless mesh
networks, conventional signature detection systems are not feasible
due to their overheads [Hugelshofer, 2009].

21

Signature-based detection is limited to detecting known worms. It
cannot detect unknown attacks. Anomaly-based detection observes
network traffic looking for abnormal behavior and generates alarms
for anomalies. The challenges lie in distinguishing normal and
anomalous behavior, and the setting of thresholds to detect
anomalies. If not designed carefully, such systems could generate
many false alarms [Li et al., 2008]. There are also trade-offs between
accuracy and complexity. Simple tools such as volume monitors will
detect large-scale attacks, but may also generate alarms for normal
traffic. Alternatively, more sophisticated and accurate detectors may
incur unreasonable overheads when operating in real time.

Previous work has also addressed worm containment. In [Chen et al.,
2010] an approach to slowing worm propagation is proposed.
However, it would be desirable to achieve complete elimination once
a particular attack is identified. Another method of containment is
address blocking. Once a host is identified as a scanner, all traffic
from this host will be throttled [Chen et al., 2007]. This approach
does not scale well to large-scale attacks from multiple sources.

Camouflaging worms (C-Worms) is difficult to capture since it could
hide itself by blending with the environment in such a way that it
looks analogous to the normal data packet of the network.
Jeevaakatiravan et al. [2013] proposed a novel approach for
detecting C-Worms. The Centralized Worm Detector (CWD)
algorithm is deployed based on digital signature technique to
authenticate each node and monitor the network. With CWD
algorithm, the malicious C-Worm nodes are discarded and the
recovered network is monitored.

In the work reported here we overcome the limitations of existing
techniques by progressively monitoring a range of traffic features.
Worm type anomalies can be identified in real time at an early stage
using incomplete information. Interim remediation strategies can be
applied until full or partial identification of the worm type is concluded.
Furthermore, we offer a platform that enables ongoing development
and refinement of malware detection and remediation strategies.

2.2.3 Network faults

The growth of the network also promotes the possibility of the
various fault occurrences in the network. The fault could degrade the

22

network performance by affecting the network reliability, latency,
throughput, delay, service level and dependability. Algirdas et al.
[2004] give the main definitions relating to dependability, address the
threats to dependability and security (faults, errors, failures), their
attributes (reliability, availability, safety, integrity, maintainability), and
the means for their achievement (fault prevention, fault tolerance,
fault removal, fault forecasting). The fault-error-failure model is
central to the understanding and mastering of the various threats
that may affect a system. While, future research needs to analyze
issues of trust and the allied topic of risk management, searching for
unified measures of dependability and security. Also new
technologies and concepts of man-machine systems will require
continued attention to their specific dependability issues.

As fault management is being addressed as one of the major
components of the network management suite. The generic network
fault diagnosis system consists of four parts. Two network fault
management approaches are reviewed by Lazar et al. [1992], which
cover probabilistic approach and the finite state machine (FSM)
approach. But their problems in general are very hard and many are
NP-complete. However, it might be possible to find sub-optimal
solutions that work well on average and on real scenarios. A more
thorough analysis for modelling fault diagnosis is presented by
Katzela et al. [1995]. It proposes a graph based network model
suitable for alarm correlation and fault localization. They consider the
dependencies among the different objects and a novel approach to
estimate an alarm domain, and then design an algorithm for fault
diagnosis. They also propose a fault diagnosis algorithm suitable for
systems for which an independent failure assumption is valid.

On the other hand, the increased complexity of hardware and
software resources and the asynchronous interaction among
components make fault detection and recovery very challenging. Kim
et al. [2008] present innovative concepts for fault detection, root
cause analysis and self-healing architectures analyzing the duration
of pattern transition sequences during an execution window. It
implements root-cause analysis not only to detect the faults once
they occur, but also to identify the source of fault allowing us to
perform automatic fault recovery. Yu et al. [2008] demonstrate that
the statement-based reduction provides much greater reduction of
the test suites, saves testing expense, but negatively affects the

23

effectiveness of the fault localization. The vector-based reduction
provides less reduction in test-suite size, reduces test expense, but
provides negligible impact on the effectiveness of the fault
localization. This study is helpful in addressing the testing and
debugging costs during the software development process.

As previous mentioned, Katzela et al. [1995] introduced fault
localization from model-based systems. But it has two main
drawbacks: 1st, they require accurate dependency information
amongst network entities, which is usually not available for large
enterprise networks; 2nd, fault inference involves complicated
computation and scales poorly with network size and complexity. In
contrast, Ting et al. [2009] present an approach only requires
elementary topological information and fault signatures to support
matching over high-volume event data. It proposes a framework
Meta (Monitoring network Events with Topology Assistance). They
introduce a new class of indexable fault signatures that encode
temporal evolution of events generated by a network fault as well as
topological relationships, also present an efficient learning algorithm
to extract such fault signatures. However when testing the accuracy
of fault diagnosis find a larger D provides more leeway in identifying
the fault node, especially test recall, this may need to improve in
future. So the further research will cover 1) incorporation of domain
knowledge in training fault signatures; 2) exploration of alternative
models of temporal evolution, 3) search for data structures that can
be incrementally adapted as network evolves; and 4) incorporation of
a richer set of topological relationships derived from multi-layer
networks.

Sethi et al. [2004] also mentioned the weakness with the divide and
conquer algorithm [Katzela et al, 1995], which always explains all the
observed alarms, but may fail to give their best explanation. It does
not handle lost or spurious symptoms and may be used only if there
are failure dependencies among objects. For the case of a system in
which all objects fail independently of one another, a different
algorithm was proposed but it has a polynomial worst case
complexity. Moreover, Sethi et al. [2004] present a comprehensive
survey of fault localization techniques and discuss their advantages
and shortcomings. These techniques derive from different areas of
computer science, including artificial intelligence, graph theory,
neural networks, information theory, and automata theory, and

24

include model-based reasoning tools, model traversing techniques,
case-based reasoning tools, graph-theoretic techniques, and the
codebook approach. However, fault localization in complex systems
remains an open research problem. The most challenging issues
concern multi-layer fault localization, distributed diagnosis, temporal
correlation, fault localization in mobile ad hoc networks, and root
cause analysis in a service-oriented environment.

In hierarchical network, any fault could possibly bring down the
network. Bhagvan et al. [2013] propose Fault Tolerable hierarchical
Network (FTN) approach as a solution to the problems of
hierarchical networks. The innovative method could identify
possibilities of network failure and correspondingly provides specific
recovery mechanism. Their experiment result also shows this
method is better than the conventional approach over the network
parameters: delay, throughput.

2.3 Commercialized Products

Most available commercial managed security solutions are primarily
signature-based, in which network traffic is compared to
predetermined attack patterns known as signatures [Cisco, 2011],
[IBM, 2011], [Enterasys, 2011]. Typically, these systems offer
automated intrusion response based on detected signatures only,
and in many cases require a human operator to interpret anomalous
behavior and take discretionary actions to mitigate it. None of these
systems provide the same level of customization offered by the
progressive multi-stage approach proposed in our work.

HP tipping point has the feature to automatically distribute digital
vaccine when it is released, so that the new signature could be
deployed to protect against the network threats. The threat
management centre (TMC) researches and distributes digital
vaccine periodically. HP TippingPoint application also gives the
option for the network administrator to write custom filters for using
on IPS and SMS devices. However the HP official released digital
vaccine is not open source. So the network administrator must be
very well trained to be able to customize the signature with stand-
alone digital vaccine toolkit. HP is not responsible for the user
customized signature, so the mistaken written signature may cause
the false alarm when scan the network.

25

McAfee also has the NIPS, which help the network to defend against
various malicious attacks. And McAfee Network Security Manager is
used to view, configure, and manage Network Security Platform
Sensor appliance deployments. The released signature set could be
scheduled to automatically update and distribute on the sensors.
Except the regular signature set, the incremental emergency
signature sets that include attack signatures not yet available in
regular signature sets. The incremental emergency signature sets

are meant to address late‑breaking attacks that may need to be

addressed immediately. The emergency signature sets could only
add the new signatures, but don’t contain the full set of signature set.
However if the new attack hasn’t been covered by the emergency or
regular signature set, then it will bring the risk to the network.

Traditionally, system administrators have had the perception (which
is not entirely wrong) that the automatic launch of remedies might
create additional security risks. One of the main advantages of the
approach we propose over commercial solutions is that policies can
be carefully crafted and evaluated on the simulation environment,
and manually modified by a human operator if needed. Also, even
after policies are deployed, they can be modified to cater for specific
contexts and operational events. Moreover, the multistage approach
also permits introducing intermediate stages of remediation, which
might not be optimal by themselves, but will allow the system to
operate with limited performance until the definite root cause is
reliably identified (either automatically or with some level of human
involvement).

2.4 Evaluation

2.4.1 Detection Rate and False Alarm

In network monitor, Jackson et al. [2007] compare the percent of
flows detected then prove that on the region that maximizes the cost
effectiveness breadth-first outperforms depth-first. To investigate the
contribution of different endsystems to the overall traffic, Cook et al.
[2006] analyzed the fraction of traffic observed by endsystems
monitoring as increasing subsets of endsystems are instrumented. It
shows that instrumenting just 1% of endsystems was enough to

26

monitor 99.999% bytes. In the service level monitoring, Wuhib et al.
[2006] determine the correctness of the threshold detection protocol
by measuring the fraction of false negatives/false positives vs.
actually occurred threshold crossings. Ting et al. [2009] measured
the performance of Meta and the baseline approach in detecting
network faults under varying configuration of fault occurrence rate
and topological correlations.

In fault detection, Lazar et al. [2004] mentioned, the choice of the
filter in FSM involves a trade-off between the fault detection rate and
the number of different events passed through. The fault detection
rate is very important for the network fault detection. Kim et al. [2008]
evaluate the anomaly based fault detection approach capabilities.
Then show the detection rate and missed false alarm for all
scenarios they did with different number of grams. Therefore prove
that their approach is superior in various scenarios.

According to Lakhina et al. [2004], the validation approach for
anomalies detection is centered on answering questions: (1) How
well can the method diagnose actual anomalies observed in real
data? (2) How does the time and location of the anomaly affect
performance of the method? In each case, detection success is
measured by two metrics. One is the detection rate. The other is
false alarm rate, which is the fraction of normal measurements that
trigger an erroneous detection. Soule et al. [2007] proved traffic
matrix is the optimal way to aggregate the traffic by comparing
statistical anomalies, true or false positive rate with others. A false
positive is defined as normal traffic that has been detected as an
attack and a false negative as an attack which has not been
detected. [Peng et al. 2007] Ringberg et al. [2007] evaluated PCA’s
sensitivity by comparing the false positive and detection rate in
different networks with three aggregation formalisms. To evaluate
the efficacy of PCF in scalable behavior based detection, Kompella
et al. [2004] monitor the detection rate, false positives and false
negatives in every time bin. A similar observation made by Hussain
et al. [2003]. In addition, Peng et al. [2007] test the model accuracy
of detecting reflector attacks by comparing the false alarm rate for
different broadcast thresholds. To prove that the aggregated
anomaly metric performs better than any individual algorithm,
Shanbhag et al. [2009] compare the receiver operating characteristic
(ROC) curves for the algorithms and the PAD system. A ROC curve

27

is a graphical plot of the true positive rate vs. the false positive rate
for a binary classifier as its threshold is varied. In the anomaly
detection survey, Chandola et al. [2009] mentioned in IDS, the issue
arises with the large sized input is the false alarm rate. Peng et al.
[2009] also demonstrated two measures for DoS attack detection are
detection time and false positive rate. A good detection technique
should have a short detection time and low false positive rate.

2.4.2 Latency and Efficiency

In the service level monitoring, except false alarm, another way
Wuhib et al. [2006] assess the quality of threshold detection by
measuring the delay between the time a crossing is reported by the
protocol and the time of its actual occurrence. Ting et al. [2009]
measure the scalability of the fault diagnosis in Meta by evaluating
the average processing time of each incoming event, under varying
condition of fault occurrence rate, with and without the multi-folded
optimizations introduced. Then prove the efficiency of the execution.

In schemes for fault detection, to evaluate importance with the
information of the dependencies between the objects for the fault
localization process, Katzela et al. [1995] demonstrate that the
fraction of time the divide and conquer algorithm finds the optimum
solution is higher than either the independent algorithm. So it’s more
efficient. They also observe the relative error rate and conclude the
relative error of the divide algorithm is low especially in the case of
the same independent probabilities of failure.

To evaluate MIND performance, Li et al. [2006] measure several
aspects of: Insertion path length, data insertion latency, query cost,
the query latency, the data and traffic distribution across nodes and
links, then show that the MIND could provide low insertion and
response time. Shanbhag et al. [2009] test system ability to identify
anomalies in packet traces by replaying the traces shown. This
ensures that the PAD system receives realistic traffic and the results
are reproducible. Castelucio et al. [2009] analyze traceback
efficiency according to the presence of the proposed AS-level IP-
traceback system. Traceback efficiency is defined as how much of
the attacker path is discovered. They did the simulation for AS
network topologies containing different number of ASes. They also

28

evaluate efficiency with an increasing number of attacking sources in
strategic placement and random placement.

2.4.3 Computation Complexity and Assumption Strength

When Avizienis et al. [2004] evaluate development failures,
mentioned they are usually due to an underestimate of the
complexity of the system to be developed. So complexity analysis is
the key to verify the techniques. To design the fault localization
framework, Katzela et al. [1995] demonstrated the algorithm should
be simple, have low order polynomial computational complexity,
provide quick and accurate response, and should be easily adapted
to a distributed environment. According to soul et al. [2007], traffic
matrix is the popular way to aggregate traffic in statistical anomaly
detection. However the downside is the computation complexity.
With DoS detection, all techniques are based on one or more
assumptions. Peng et al. [2007] conclude that the efficacies of
detection are evaluated with their assumption strength and technical
complexity. They list all the assumptions and find most are not
strong, since attackers can change their attack patterns to overthrow
the assumption and evade detection.

2.4.4 Scalability and Robustness

In decentralized service-level monitoring, to make the TCA robust,
TCA-GAP dynamically reconfigures the overlay after addition and
removal of nodes, also after node and link failures [Wuhib, 2006]. In
a topological analysis of monitor placement, Jackson et al. [2007]
show the percentage of flows detected, for all the combinations of
both inter-AS links and ASes instrumented they explored. The
sequence, monotonically increasing from 1 to a maximum of 8683 to
check the scalability as the number of ASes instrumented increase.
Li et al. [2006] did a large-scale experiment to explore MIND’s
scalability by deploying the MIND prototype on 102 nodes. Then
describe the insertion latency across the entire experiment. This
deployment enabled them to fail individual nodes in a controlled
fashion and observe the availability of data at various levels of
replication. To make the information sharing model for distributed
IDS scalable, Peng et al. [2007] use hierarchical architecture for
wireless sensor network. It significantly reduces the number of
broadcasts for a small increase in delay. Kim et al. [2008] classify

29

data based on the specification supplied with the multi-tier web
benchmark by building four different scenarios. Then prove there’s
slight impact of bulk training data set with the anomaly based fault
detection by showing the good result.

2.5 Summary of the State of the Art

In the distributed challenge detection field, there has been
considerable research with network monitoring, anomalous detection,
fault tolerance, DDoS attacks separately, here we reviewed the
latest technologies in these areas, highlight the relationship,
mentioned their strengths, weakness and future work. However so
far - limited work has been done to systematically embed resilience
into the future Internet or develop and experiment with novel,
distributed mechanisms for monitoring resilience to detect
challenges as they occur. So our research contributes towards the
development of new algorithms and experimental systems to
perform challenge detection and identification. The universally useful
measurement aspects are reviewed. The future platform is flexible,
that means few assumptions has been made about operating
parameters and robustness, meaning that it could give satisfactory
performance under variations in topology and traffic.

The distributed challenge detection project select particular network-
level and service provision scenarios for deepening the mechanism-
level analysis and carrying out experimental evaluation. The
intention has been to develop as much as possible the different
components of the resilience framework. Challenges and their
impact assessment, metrics, policies, and cross-layer techniques,
including monitoring, are the four main components of the proposed
framework. In summary, the published state-of-the-art in challenge
detection and classification varies in the resources that are required,
the timeliness and accuracy of their operation, and the challenges
they can effectively operate with. Therefore, it must be possible to
flexibly organize these mechanisms and dynamically adapt their
operation in a way that is sympathetic to their characteristics and the
likely challenges that will occur. Moreover, configuring these
mechanisms will be complex, especially when one considers their
interaction with those to remediate challenges – an issue that
existing work does not address.

30

Chapter 3

A Multi-Stage Policy-Driven Approach to

Network Resilience

In this chapter, we will explain the motivation for the development of
a multi-stage policy-driven approach to network resilience. Then we
will show how this approach can progressively identify and mitigate
challenges. Policy based management strategies will be introduced.
Lastly, the benefits of this approach will be highlighted.

3.1. Motivation

A crucial part of a resilience strategy involves real-time detection of
challenges, followed by identification to initiate appropriate
remediation. We observe that the current state-of-the-art to
challenge detection is insufficient. Our goal is to advocate a new
autonomic, distributed challenge detection approach. The feasibility
of our framework will be demonstrated through experimentation. We

31

conclude that our case studies provided valuable insight into resilient
networks, which will be useful for further research.

To provide network resilience, a number of mechanisms are needed,
such as monitoring systems, tools to collect IP flow information for
use by intrusion detection and classification systems, and those to
mitigate challenges. However, in complex networks comprising
resilience mechanisms at different layers of the protocol stack and at
disparate locations of the network, it is often difficult to define how
these mechanisms should be coordinated. It is also difficult to define
how the configuration of such mechanisms should change over time,
in response to new types of challenges, context changes, or new
requirements (e.g., new types of SLAs). Furthermore, configurations
should be sympathetic to the points identified in the related work,
namely the varying overheads, timescales, and accuracy of available
detection and classification mechanisms. In this section, we
elaborate on these concerns and their relationship to the mitigation
of challenges, and discuss the motivation of using a policy-based
management framework for defining configurations of resilience
mechanisms.

3.2. Progressive Challenge Identification

Previous work has suggested that due to the overhead of capturing
and inspecting packets it is not possible to employ widely-used
intrusion detection systems on the access points of typical
community-driven wireless mesh networks [Hugelshofer et al., 2009].
Furthermore, for a number of detection activities, increased traffic
load compounds this problem. Network anomaly detection and
classification systems can make use of flow information collected
from vantage points in the network [Lakhina et al., 2005]. There is an
overhead associated with collecting this flow information – a way of
managing this overhead is to introduce sampling; however, as
mentioned earlier, this may have an adverse effect on detection
[Brauckhoff et al., 2010]. Again, increased load, e.g., caused by a
DDoS attack, is likely to make the resources available for flow
collection and detection scarce. Consequently, the effectiveness of
detection and classification systems when the network is heavily
utilized needs careful consideration, as this may have an impact on

32

their ability to provide results, and correspondingly a system’s ability
to perform appropriate mitigation of a challenge.

Closely related to the issue of the overhead of detection
mechanisms is the timeliness and accuracy of the results they yield.
This is important because of the necessity to remediate a challenge
as early as possible, potentially minimizing disruption. Our
assumption is that detection mechanisms that yield coarse-grain
findings about the nature of a challenge, e.g., detect the presence of
an anomaly, are more timely and have a lower overhead than those
that provide more fine-grain information, e.g., give details of the
nature of the anomaly. Furthermore, we assume that fine-grain
information allows better decisions to be made regarding how to
mitigate a challenge. We discuss this notion further, with the use of
an example.

Fig. 4. Coarse to fine grain challenge identification and remediation

Consider the mechanisms depicted in Fig. 4 [Yu et al., 2011] that
could be used to detect and remediate abnormal traffic loads. An
increase in traffic volume may be the result of a DDoS attack, flash
crowd or device misconfiguration. A simple link monitor can provide
local information about an unusual increase in the volume of traffic
observed at a router. If the traffic volume is disruptively high, traffic
on a given link can be shaped (limited) in order to protect
downstream infrastructure and traffic. The detection is relatively
lightweight, fast and coarse grain; correspondingly, the remediation
taken will affect both potentially malicious and benign traffic. A more
sophisticated volume-based anomaly detection technique [Lakhina
et al., 2004] may determine the specific destination address of the

33

increased traffic, and allow shaping of traffic to that destination only
– this would reduce the overall amount of traffic being incorrectly
penalized in the network.

Finally, a more heavyweight machine learning classifier has the
ability to accurately discriminate traffic flows of malicious provenance
from the normal traffic, and permits a more fine grain traffic shaping
strategy to block attack flows alone. In summary, it can be seen that
because of these concerns, the configuration of mechanisms that
realize a resilience strategy needs to evolve at run-time, based on
the challenge information that is currently available. In particular,
taking into account the characteristics of detection and classification
systems, and their interplay with mechanisms used to mitigate a
challenge. We propose to build on the capabilities of a policy-based
management framework to address this issue.

3.3. Policy-based Management Strategies

Our resilience strategy - is policy based. This builds on earlier work
by [Schaeffer-Filho, 2011]. We reuse policies here for the
development of network resilience strategies. The configuration of
the network, and resilience mechanisms therein, that realizes a
resilience strategy can be modified without interrupting service
operation [Damianou et al., 2001]. This is a necessary feature for the
realization of the progressive multi-stage resilience approach, as it
allows the configuration of resilience mechanisms to adapt in
response to the prevailing resources, timeliness and accuracy of
detection and classification mechanisms.

Fig. 5 illustrates how we use policies to reconfigure the operation of
resilience mechanisms during run-time. Events representing either
the occurrence of challenges, e.g., a DDoS attack, or changes in
context, e.g., resource availability, may be used as a trigger for the
reconfiguration of the system. Reconfiguration strategies are
represented as policies, which define how the operation of the
several components in the network should be modified in response
to pre-specified events. The policy interpreter evaluates the events
and makes decisions subject to the current set of policies. Such
decisions may concern the tuning of parameters of the mechanisms,
the re-wiring of their interconnections, and also the dynamic enabling

34

or disabling of the mechanisms currently deployed in a particular
strategy.

Fig. 5. Policy-based reconfiguration of mechanisms during run-time

At any time, the current set of mechanisms may generate new
events which in turn may trigger a different set of policies. This
continuous process will constitute a policy-driven feedback control-
loop [Lupu et al., 2008], in which events trigger policies for the
reconfiguration of resilience mechanisms, which may in turn
generate other events that will trigger different policies and so on.
Note that the set of policies defining the possible reconfiguration
actions is not fixed, and different policies may be loaded or unloaded
over time to reflect better resilience practices or a better
understanding of the challenges the network is facing.

3.4. Benefits of the Approach

When we detect the onset of a challenge or measure the
performance of the network in relation to resilience targets, adaption
of the network could occur. These two factors lead to a set of
coarse-grain and fine-grain adaptations. Coarse-grain adaptation
involves the deployment of resilience patterns, which are

35

configurations of resilience mechanisms, capable of combating a
specific challenge. A challenge analysis module provides information
about the challenges that are affecting a network. This is used to
select which resilience patterns should be invoked. Fine-grain
adaptation involves setting or adjusting the parameters of the
mechanisms that are currently deployed in the network as part of a
pattern.

In our joint work within the ResumeNet project, a pattern is a policy
configuration of resilience mechanisms and their relationships.
Different challenge types will demand specific sets of mechanisms to
monitor features in the network (e.g., current traffic load or alarms
generated by an anomaly detection mechanism), and initiate
remediation actions to combat anomalous behavior (e.g., blocking
malicious flows or selectively dropping packets). This assumes the
existence of autonomous mechanisms supporting a range of
resilience functions in the network.

In our joint work, a framework and a process for the design and
evaluation of network resilience management is presented
[Schaeffer-Filho et al. 2012]. The framework enables (1) the offline
evaluation of resilience strategies to combat several types of
challenges, (2) the generalization of successful solutions into
reusable patterns of mechanisms, and (3) the rapid deployment of
appropriate patterns when challenges are observed at run-time.

The contribution of this thesis is a simulation platform to evaluate the
performance of resilience strategies. The toolset is based on the
integration between the OMNeT++ simulator and Ponder2
framework. It supports the simulation of a range of challenge
scenarios and the resilience strategies used to combat these
challenges. The toolset enables us to identify best practices and the
most effective policy configurations for challenges such as DDoS
attacks, flash crowds and worm propagations.

3.5. Summary

In this chapter, we have discussed the motivation of using a policy-
based management framework for defining configurations of
resilience mechanisms. We described a progressive challenge
identification strategy, which means our initial detection is relatively

36

lightweight, fast and less complete; correspondingly, the remediation
strategy is coarse grain. After further analysis, the root cause of the
challenge could be identified and fine grain mitigation applied.

We propose that our resilience framework is flexible and reusable
and can cater for similar challenges manifesting at different parts of
the network, or variations of a specific form of attack. Our
experimental work now explores this proposal.

37

Chapter 4

Comparison of Experimental Platforms

Building the distributed challenge detection system in the real world
is not an easy task. Firstly, a large topology network is required to
get the meaningful result. Secondly, such network needs large
topology, which will increase the hardware cost and administration
effort. Thirdly, with the current available real world platform, e.g.
AARNET, PlanetLab, it is not convenient to experiment the attack on
these networks. Because it’s hardly to ensure the anomaly detection
system will not disrupt the normal operational network, which will
cause more severe effect. Fourthly, we need to have the full control
with all the nodes in the system so that they could easily be
configured to suit our case [Sethi, 2004]. However, this is also
difficult to be realized in the real world.

The evaluation of large-scale challenges, such as DDoS attacks and
worm propagation, is difficult because these activities are typically
highly distributed in nature and disrupt normal network behavior.
Consequently, resilience strategies to mitigate them can require the

38

coordination of various monitoring and control mechanisms across
different administrative domains, protocol levels and heterogeneous
infrastructures. The use of testbeds for evaluating network
performance and protocol design can involve high costs of hardware
and development effort [Smith et al., 2010]. Moreover, real testbeds
are generally not suitable for the evaluation of large-scale challenges
that tend to affect multiple autonomous systems.

As an alternative, to mitigate costs and address scaling issues
associated with testbeds, we advocate the reproduction of network
challenges and resilience mechanisms in a simulation environment.
To this end, we have developed a toolset that couples policy-based
management and network simulation.

In this chapter, we will first assess the possibility to build the
experiment on offline IDS datasets and network simulation. The
popular public available dataset DARPA and KDD Cup will be
discussed. Following this, we will compare the network simulators,
e.g. NS-2, NS-3. OMNeT, SSFNet. Then we will explain why we
choose OMNeT as our testbed instead of others. At last, the
simulated architecture and implementation will be demonstrated.

4.1 Off-line IDS datasets

4.1.1 DARPA

One possibility to carry our experiment is to use the off-line IDS
datasets such as DARPA [Qiu et al., 2007], KDD Cup and etc, which
could help us to relive from the above real world difficulties but with
the realistic dataset. DARPA is collected between 1998 and 2000
from Lincoln Lab. The 1998 DARPA intrusion detection covers 38
attack types. The training data and test data slightly improved in the
1999, so that 201 instances of 56 types of attacks distributed. Whilst
the 2000 DARPA Intrusion detection scenario specific data sets
include two attack scenarios, also DDoS attack carried out.

4.1.2 KDD Cup

KDD Cup dataset gathered in 1999. It has 41 features and labeled
as normal or an attack, with exactly one specific attack type. Based
on our findings, we decide not to use them as well. First, the dataset
are not up to date, so that the most recently attacks and the

39

unforeseen attacks couldn’t be measured by these existing dataset.
Secondly, Mahoney and Chan [Kotz, 2004] built a trivial IDS and ran
it against the DARPA tcpdump data. They found numerous
irregularities and demonstrate that the DARPA dataset was
fundamentally broken. Thirdly, the performance measure applied in
DARPA’98 Evaluation, ROC Curves, has been widely criticized
[Fessi et al., 2009]. Lastly, it was still useful to evaluate the true
positive performance. However, any false positive results were
meaningless [Doerr et al., 2010].

4.2 Network Simulators

Network simulators could overcome all the mentioned hurdles and
meet the needs by integrating real world applications. However, it
still requires us to compare different simulators to recognize the most
appropriate environment. So we surveyed the widely applied
simulators, NS-2, NS-3, OMNeT, SSFNet, JiST/SWANS and J-Sim.
NS-3 [Mahoney et al., 2003] is the latest updated platform comes
from several different network simulators and developed from 2008.
While SSFNet [Tavallaee et al., 2009], JiST/SWANS [Brugger et al.,
2007] and J-Sim[Weingartner, 2009] nearly inactive since 2004,
2005, 2006 respectively. NS-3 and OMNeT are continuously
supported today.

The policy-driven resilience simulator presented in our work is based
on an integration between the OMNeT++ simulator [Varga et al.,
2008] and the Ponder2 policy framework [Twidle et al., 2008]. The
toolset allows the evaluation of resilience strategies consisting of
instrumented mechanisms within the simulation, whose behavior can
be adapted during run-time – e.g., setting flags, dropping
connections, triggering or stopping monitoring sessions, etc. The
next sections will present the main design decisions and
requirements related to this toolset, as well as describe the
architecture and the attacks and resilience mechanisms supported.

4.2.1 The requirement for network simulator

The toolset is based on the integration of a standard network
simulator to a policy management framework. We have considered
the use of the most popular general purpose network simulators,
including NS-2 [NS-2 Website], NS-3 [NS-3 Website], OMNeT++

40

[OMNeT Website], SSFNet [SSFNet Website] and OPNET [OPNET
Website]. The choice of a suitable platform was constrained by a
number of requirements, namely:

Platform extensibility: the simulator must be extensible, not only in
terms of protocols models, but also its ability to be instrumented to
allow communication with the policy framework;

Availability of models: the availability of a large number of network
models and protocol implementations is required to allow faster
modelling of networks, and their resilience strategies;

Performance & scalability: the simulation platform must be
scalable and present good performance to allow faster and larger
simulations of realistic network topologies;

Modeling generality: the simulation environment should support the
modeling of network components and protocols consisting of
mechanisms for resilience that will reside at protocol layers 1–7.

In terms of platform extensibility, OPNET is the only commercial tool
and the source code for its simulation kernel is not publicly available.
Since we are required to extend the simulator to facilitate the
communication with the policy framework, this is not a viable option.
Most simulators offer an extensive library of network models, apart
from NS-3, which is still a relatively new endeavor and whose
models need to be ported from NS-2 manually, and SSFNet, whose
development was discontinued in 2004 and the availability of new
protocol models is now limited. Moreover, NS-2 has been
consistently reported to offer limited scalability and performance
[Cavin et al., 2002]. Lastly, all simulation environments considered
are suitable for modeling general communication networks and
protocols at different levels.

4.2.2 NS-2 and NS-3, SSFNet, JiST/SWANS and J-Sim

Our work needs large topology, but NS-2 has the scalability issue
with memory usage and simulation run-time [Weingartner et al.,
2009]. However, NS-3 and OMNeT are scalable. Considering the run
time, JiST/SWANS are the fastest, whilst J-Sim is the slowest.
OMNeT is slower than NS-3 but faster than NS-2 [Weingartner et al.,
2009]. NS-3 has lowest computational and less memory demands

41

whereas JiST/SWANS exhaust memory [Kargl et al., 2007]. OMNeT
consume more memory than NS-3 but less than NS-2. In terms of
GUI, NS-3 and NS-2 are relying on source code but OMNeT has a
rich GUI with online visualization. Below we list the similarities and
differences between NS-2 and NS-3.

NS-3 Similarities to NS-2:

 C++ software core

 GNU GPLv2 licensing

 ported ns-2 models: random variables, error models, OLSR,
Calendar Queue scheduler, (more planned)

NS-3 Differences with NS-2:

 Python scripting (or C++ programs) replaces OTcl

 most of the core rewritten

 also based on the yans and GTNetS simulators

 new animators, configuration tools, etc. are in work

We compare the different simulators and list their main differences
as below:

NS-3:

 Ns-3 is not backward compatible, ns-2 scripts cannot be run in
ns-3

 Reuse many models in ns-2

 Replacement for the popular ns-2

 Focus to date has been on setting the long-term architecture

 Trying to avoid some problems with ns-2, such as 1)
interoperability & coupling between models, 2) lack of memory
management, 3) debugging of split language objects

NS-2:

NS-2 is being only lightly maintained at present due to the
development work on NS-3

42

 It is very hard to use when scenarios get bigger and exceed
several hundred nodes, which is not the case for JiST/swans

 In the manet, consume more memory than swan

OMNeT:

 Lags behind the ns-2 simulator on availability of
communication protocol models

 Simulation API is more mature and more powerful than ns-2’s

 Simulation kernel can be embedded in other applications

 Ns-2 lacks many tools and infrastructure components that
OMNeT++ provides: support for hierarchical models, a
graphical

 Editor, separation of models from experiments, graphical
analysis tools, simulation library features such as multiple rng
streams with arbitrary mapping and result collection,
seamlessly integrated parallel simulation support, etc.

 The ns-3 goals include some features (e.g. Parallel simulation,
use of real-life protocol implementations as simulation models)
that have already proven to be useful with OMNeT++

 Simulation results reporting is not adequate

SSFNet:

 DML lacks expressing power and features to scale up to
support large model frameworks built from reusable
components.

 SSFNet also lacks OMNeT++'s INI files, all parameters need to
be given in the DML.

J-Sim:

 Similar to OMNeT++ in that simulation models are hierarchical
and built from self-contained components, but the approach of
assembling components into models is more like NS-2

http://www.ssfnet.org/

43

 The use of TCL makes implementing graphical editors
impossible.

 Model development and debugging can be significantly faster
than C++, However, simulation performance is significantly
weaker than with C++, and it is also not possible to reuse
existing real-life protocol implementations written in C as
simulation models.

 No independent (3rd party) simulation models

 Poor post-technical support

 Far-less pre-built modules and protocols than in other
simulators

 Simulation result reporting is not adequate

OMNeT simulation API is more powerful than NS-2’s. NS-2 is only
lightly maintained now. NS-3 will eventually replace NS-2, but it is
not backward compatible. It is trying to avoid some problems with
NS-2. The NS-3 goals include some features (e.g. real-life protocol,
parallel simulation) that have already proven to be useful with
OMNeT. Moreover, the new animators, configuration tools and etc.
are still in work. In addition, OMNeT offer basic modules, which is
extensible using C++, whilst NS-2 is not easily modifiable. OMNeT
provides well online documentation and active discussion forum.
Overall, our preferred platform should be updated and reliable, so
the flexible and generic simulator OMNeT well suits us.

Based on the comparison, OMNeT++ was chosen as the most
suitable platform for the development of the resilience simulator.
OMNeT++ is considered as one of the most widely used simulators
for research in the area of communication networks [Gamer et al.,
2009]. In our work, we present a description of the architecture and
main components of our OMNeT++ based implementation, and a
comprehensive case study and set of experiments that validate the
use of the toolset for the evaluation of resilience strategies.

4.2.3 OMNeT

OMNeT is a public source C++ based object oriented discrete event
simulator for modeling communication networks, multiprocessors

44

and other distributed or parallel systems [Varga, 2008]. It applies in
diverse domains and written in two languages, NED designed for the
network topology and C++ programmed for the modules. The
compound module assembles from reusable simple modules.
OMNeT utilize Tkenv as the GUI and it is easily debugging and trace.
It could animate the flow of messages and present the node state
changes in the network charts. Hierarchical module structure in
OMNeT++ facilitates dealing with complexity. It could show packet
transmissions while a simulation is running. The topologies of
module connections are specified in the NED language. In addition,
OMNeT++ sources are never patched by models. Simple modules
are then reusable, and can be freely combined like LEGO blocks to
create simulations [Varga, 2008].

Build on OMNeT, INET extends it by package of network protocols
and offers objects, which combined with the channels to complete
the network. Testing our system contains two steps, create various
attacks and detect the anomalies. When consider the background
traffic generation, IDS testing is classified into four categories.
Compared to no background traffic, real or sanitized background
traffic, testing by generating background traffic approach has
benefits such as data freely distributed, no unknown attack and
repeatable simulated traffic [Mell, 2003]. So ReaSE is chosen as our
realistic background traffic and DDoS attack generator. It extends
INET by server and client entities.

To build our network, firstly the realistic AS level topologies is
generated to connect several separate administrative domains. Each
AS is categorized as stub AS or transit AS. One transit AS is built to
provide connections through itself to other networks. The stub AS is
connected to only one other AS. This ensures each AS is accessible
by crossing transit AS only. Two stub ASes and one transit AS are
configured, named SAS1, SAS2 and TAS0. SAS1 connect to SAS2
through TAS0. Secondly, the router level topology within each AS is
specified. Each AS has core, edge and gateway routers placed. The
distinction between different routers is realized by allocating different
bandwidth. Within the AS, it has total min 8 routers and max 15
routers. A few meshed core routers with low node degree that
forward aggregated traffic of a high number of gateway routers with
high node degree [Gamer et al. 2008]. Each edge router connects
between 2 and 13 hosts to the network complete the hierarchical

45

topology. Therefore, each AS has different topology sizes and fills
with nodes independently.

Thirdly, the network built with different traffic profiles to ensure the
reasonable mixture of various protocols. The traffic profiles covers
web, Interactive, mail, misc and ping traffic, which are based on
transport protocols TCP, TCP, TCP, UDP and ICMP respectively.
The router level topology’s host systems are classified into clients
and servers. Clients correspond to the ReaSE module InetUserHost,
whilst servers represents by Web, Mail, and Interactive server.
Fourthly, the bandwidth between different types of nodes are
assigned from ReaSEGUI, also we configure the server fraction
value, which specify the percentage of all router modules of each
router-level topology are replaced by special server nodes. Overall,
136 hosts and servers are placed cross the AS in our network. At
last, since ReaSE integrate the real attack tool tribe flood network to
conduct the DDoS attack, so it is utilized to perform a random
distribution by replacing randomly selected clients InetUserHost with
DDoS zombies. The compound module DDoSZombie contains
simple module TribeFloodNetwork with other INET modules that are
essential to achieve the functionality of an attacking system [Gamer
et al., 2008].

4.2.4 The simulated architecture and implementation

OMNeT++ is a general discrete event simulator that provides the
basic machinery and tools to write simulations. However, in order to
specifically support the modeling of communication networks, the
INET framework2 provides extension models for several wired and
wireless networking protocols, including UDP, TCP, SCTP, IP, IPv6,
Ethernet, PPP, 802.11, MPLS and OSPF. OMNeT++ consists of
C++ modules that communicate via message passing. Messages
are exchanged through input/output gates. Simple modules can be
combined in hierarchies in order to build more complex components,
called compound modules (e.g., mail servers, routers, etc).
OMNeT++ also provides tools for designing network topologies (the
NED language and editor) and supports plug-in extensions (e.g., a
customized event scheduler).

The main motivation for the integration of a policy framework to a
simulation environment was to enable the evaluation of the dynamic

46

reconfiguration of network mechanisms in a resilience strategy.
Fundamentally, any simulation environment could be used to
evaluate hard-wired resilience strategies only, whereas we required
the evaluation of strategies that deploy and reconfigure resilience
mechanisms on-demand, according to attacks or network conditions
that are monitored dynamically.

To implement this dynamic behavior, our joint work chose Ponder2
due to the familiarity with this policy framework. Ponder2 implements
a policy execution framework that supports the enforcement of both
obligation and authorization policies. Ponder2 policies are written in
terms of user-defined managed objects, e.g. adapters for interfacing
with real network equipment. In our case, a managed object
represents component that run in the simulation environment. In the
following, we describe the choices available to realize the integration
between the simulation environment with the policy-management
framework.

1) Integration Techniques: Several techniques to allow the
integration between a network simulator environment and external
third party applications were discussed in [Mayer et al., 2008]:

Socket connection: proxies running within the simulation maintain
socket connections to external applications. Sockets wait for
connections and are responsible for delivering messages from the
simulated components to the third party application, and vice-versa.

Source code integration: this method is straightforward for simple
applications, which require that the third party application needs to
be compiled with the simulation. However, this may be difficult for
larger applications due to dependencies in the build environment.

Shared libraries: is based on the integration between the simulation
tool and the binary code of the third party application. It is similar to
source code integration but avoids problems related to the building
process, because the build environments are kept separated.

The integration between OMNeT++ and Ponder2 is based on
proxies, which is similar to the socket connection method. However,
we are using XMLRPC3 proxy servers running within the simulation
instead. Socket-based integration is suitable when the third party
application does not need large volumes of data from lower layer

47

protocols [Mayer et al., 2008]. Instead, in our implementation,
exchanges are limited to selected control events and corresponding
management commands. This technique may, however, cause CPU
scheduling and synchronization issues since simulations run faster
and consume more CPU than applications running in real-time. We
expect that these issues can be mitigated because, differently from
[Mayer et al., 2008], we do not exchange packet-level information
(large quantity, fast processing) with the policy framework.

2) Implementation: Instrumented mechanisms in the simulation
environment implement an XMLRPC server through the
MechanismExporter component. This component is used to register
and export the management interfaces for the resilience
mechanisms available in the simulation. A management interface
provides callback functions to management operations that can be
used to reconfigure a resilience mechanism, for example, to adjust
the throttling rate of a rate limiter. For each type of mechanism, a
ControlObject defines the management functionality to be exported
via this management interface, and maps invocations to their
respective method implementations on an InstrumentedComponent.
This mapping relies on a table <name, pointer> that matches
different invocations to the correct instance of a specific mechanism.

Whereas the components above implement an XMLRPC server for
exporting the management functionality to the policy framework, a
socket interface has been built to communicate and translate
observed events from the simulation environment to the policy
framework. Events are used to indicate conditions observed in the
simulated network that may require management actions, such as
the detection of an attack.

The EventPublisher component is responsible for establishing a
connection with a Ponder2 instance and generates events of the
form:

eventName?arg1 = val1; arg2 = val2; arg3 = val3; :::

These events are converted to a byte stream and sent via the socket
connection to the Ponder2 instance. At the Ponder2 side, an
EventBroker parses the byte stream received from OMNeT++ and
maps it to Ponder2 events. A Ponder2 event may trigger one or
more event-condition-action (ECA) policies, and the actions specified

48

by a policy define what resilience mechanisms executing within the
simulation environment should be reconfigured and how. References
to these mechanisms are obtained via the MechanismLookup
component. When a Ponder2 policy is triggered, actions are invoked
using the XMLRPC protocol for the respective mechanism, which is
abstracted by an instance of the RemediationAdaptorRPC
component.

Policies specify the required adaptations based on conditions
observed during run-time operation of the network (as opposed to
hardcoded protocols) [Schaeffer-Filho et al., 2011]. The integrated
toolset allows us to analyze a range of wide-scale challenge
scenarios and assess the effectiveness of a set of management
policies controlling the operation of resilience mechanisms
implemented as simulated components.

4.3 Summary

This chapter we discussed the experiment platform options, the off-
line IDS dataset and popular network simulators has been
considered. The merits and drawbacks among different network
simulators, such as NS-2, NS-3, OMNeT, are also listed. Eventually
OMNeT is chosen as the most suitable testbed. Then we proposed
the simulation architecture and implementation.

To simulate various challenges, normally complex simulation scripts
are needed to model the network protocols, topology, and the
challenges. The challenges are separated into malicious and non-
malicious challenges. The malicious challenge (e.g. DDoS attack)
could be monitored by network monitoring models and detected by
anomaly detection models. The DDoS attack resilience and malware
resilience will be discussed in chapter 5 and chapter 6.

The challenges like operational mistakes, unintentional
misconfiguration, accidental fiber cuts, and node failures could be
grouped as non-malicious challenges. This type of challenge
represents most adverse events observed in practice and could be
simulated as random node and link failures [Cetinkaya et al., 2010],
which cause the network failure. And this will be demonstrated in
chapter 7.

49

Chapter 5

Volume Challenge Resilience

In this chapter, we show a policy driven network resilience platform
to detect DDoS attack. This chapter is structured as follows: firstly,
we outline our multi-stage policy-driven approach for network
resilience. Then describes a case study based on DDoS attack
resilience and also some initial results obtained using our simulation
platform. After that, we present a discussion on the issues related to
policy-based management. Follow this, the methodologies for
differentiating DDoS attack and flash crowd have been introduced.
Finally, we outline conclusions.

5.1. Strategy for DDoS Resilience

In the previous work, we found that the published state-of-the-art in
challenge detection and classification varies in the resources that are
required, the timeliness and accuracy of their operation, and the

50

challenges they can effectively operate with. For example, localized
detection in fluctuations of traffic volumes can give a rapid and
relatively lightweight indication of the onset of challenges, such as
Distributed Denial of Service (DDoS) attacks or flash crowd events,
whereas a sophisticated classification system can yield more
accurate information about the challenge, e.g., the identification of
malicious flows, over a longer period of time based on flow
information collected from distributed network locations. However,
these techniques are unlikely to be suitable for detecting and
classifying other forms of challenging behaviors, such as software
faults.

The most difficult task associated with our proposed multi-stage
approach is to define how resilience mechanisms should be
configured, and how those configurations should evolve over time in
response to events, changing context and requirements. These
changes should be achievable without interrupting the operation of
the resilience mechanisms. To address this problem, we propose the
use of a policy-based management framework, which decouples
management strategies from the mechanisms that realize them.

As a proof-of-concept of our approach, we have developed a multi-
stage resilience strategy to progressively ameliorate the effects of a
DDoS attack on a Web service hosted on an ISP’s infrastructure.
Initial results, based on controlling resilience mechanisms
implemented in OMNeT++ via policies, are presented and indicate
the efficacy of our approach.

In order to provide protection to the access network of an Internet
Service Provider (ISP), as shown in Fig. 6, from the effects of a
resource starvation attack, such as a DDoS attack, targeted at a
Web service hosted on the server farm. The figure shows the
physical deployment of a number of resilience mechanisms. It can
be seen in Fig. 6 that such an attack originating from the 10Gbps
Hypernet toward a Web service hosted at the server farm has the
potential to disrupt other hosted services (on the server farm), and
the ISP’s enterprise and domestic customers. Clearly, it is important
that an attack be mitigated rapidly to reduce the impact to these
customers, and protect the infrastructure, such as access routers,
from crashing under exceptionally high load.

51

Fig. 6. The example topology used for our case study, showing the mechanisms used to

ensure resilience of the network to high-traffic volume challenges

5.2. Experimentation

In what follows, we describe how policies are used to define the
management aspects and interactions between the various
resilience mechanisms shown in Fig. 7, to realize a resilience
strategy for our case study. We then present a proof-of-concept
implementation, via simulation, of the multistage policy-based
approach. Our experiments make use of a package of OMNeT++
network simulation modules that implement the resilience
mechanisms shown in Fig. 7. These are controlled by policies that
are expressed using the Ponder2 framework [Twidle et al., 2008].
We describe how OMNeT++ and Ponder2 have been integrated and
outline our initial results.

52

Fig. 7. A schematic representation of the enhanced router showing the resilience

mechanisms used

5.2.1 Incremental DDoS Detection and Remediation

We propose an approach to DDoS attack resilience that
incrementally improves remediation as more fine-grain information
about the nature of the attack is gleaned from various detection and
classification systems. Resilience mechanisms are realized as a
number of policy-enabled Managed Objects (MOs), shown in Fig. 8,
that must co-operatively enforce the resilience of the network. A
physical device, e.g., a router, will typically implement several logical
managed objects, e.g., a link monitor and an IP flow exporter, as
shown in Fig. 7. The algorithm for incremental challenge
identification and remediation applied in this particular scenario is
outlined in Fig. 8, and has the following steps:

53

Fig. 8. Algorithm for incremental challenge identification and remediation

(1) LinkMonitorMO evaluates link utilization at a given periodicity,
with its threshold rate being set by LocalManagerMO.
LinkMonitorMO notifies LocalManagerMO of any sustained traffic
rate above this threshold.

Distributed network monitoring is needed to detect coordinated
attacks. The module we developed to perform the traffic monitor on
the link is called LinkMonitor module. The monitor could continuously
collect traffic information so that values display on the link in real
time. Our development based on the OMNeT cDatarateChannel.
cDatarateChannel and ThruputMeteringChannel are the name of the
developed links in OMNeT simulation. After programming and
debugging with the ThruputMeteringChannel, we further extend its
function to monitor threshold. To gain a comprehensive overview of
the link we monitor, the display could be customized with different
attributes. Properties such as link color, propagation delay, data rate,
can be assigned to connections. The characters could be monitored
include packets number, current packet/sec, average packet/sec,
current bandwidth, average bandwidth, channel utilization, average
utilization, traffic volume, threshold. Channel utilization is the ratio of
current traffic to the maximum traffic, which assists to understand the
network performance and troubleshoot failures.

54

This module implemented as the channel so that offers the flexibility
to collect information from any link within any network to gain the
clear detailed view of its typical behaviour. The threshold monitor
could notify that a certain parameter has exceeded a certain
threshold and direct attention to those areas, so we could be
immediately alert. It could effectively evaluate the network traffic to
pinpoint the sub-network where victim located, and meanwhile
prevent superfluous and incorrect alerting. The traffic values not only
display on the link and shown in the module output in real time, but
also recorded into the output vector file in OMNeT, which could be
traced back to analyse why and when the anomalies behaviour
happens. The output vector captures traffic over time. The collected
historic data demonstrate the network behaviour in terms of
performance and reliability. In addition, real-time statistics are
important for detailed in-depth analysis. To ensure no false alarm
created by the flash crowd also the alert could be raised immediately
after the attack, we embed the timer function into the link monitor.
The alert won’t be generated unless the traffic above threshold for
the continuous reasonable interval time. This method effectively
avoids the events caused by the flash crowd.

(2) LocalManagerMO configures components in the subnetwork
accordingly: on high link utilization, RateLimiterMO is notified to start
limiting all ingress traffic on a link to a given rate. This is the first
remedial action taken, which is coarse grained but reduces the
overall impact of the attack. IntrusionDetectionMO is started to
commence packet level analysis of the link traffic.

(3) IntrusionDetectionMO uses a threshold-based algorithm to count
incoming packets on the link. It raises an event to LocalManagerMO

when it determines the victim IP address.

The anomaly detection module has been developed for the
evaluation of attack detection and traffic analysis. As the LinkMonitor
offers the chance to get close to the victim by raising the alarm on
the sub network where victim positioned, hence could perform
efficient filtering. So the anomaly detection module use the simple
algorithm to identify the victim, this effectively reduce the
computation complexity and cost. The anomaly detection module
implemented as the cSimpleModule and built into the INET
compound module Router. In OMNeT, modules communicate by

55

messages, which contain usual attributes as timestamp and arbitrary
data. The cPacket class extends cMessage with fields to represent
network packets (frames, datagrams, transport packets etc.). Simple
module sends message through output gate. The output gate and
input gate linked by a channel. Therefore, the message travels
through the channel and arrives at the input gate of another simple
module. The Compound module consists of several simple modules
and transparently relaying messages between their inside and the
outside world. The Router includes the modules NetworkLayer,
Routing Table etc. The anomaly detection module interconnected
with NetworkLayer, TCP, and UDP by incoming and outgoing gates
through channel. Every packet transferred into the router will pass
the anomaly detection module for processing. The anomaly
detection module will transparently process different network packets
in a unified way. In addition, we use a hashing table to store the
objects into the IDS table, and the table could iterate through. The
IDS table could be monitored in real time as the module output, and
the event be created immediately after identifying the destination IP
address of the victim.

(4) When LocalManagerMO receives the victim IP from
IntrusionDetectionMO it notifies RateLimiterMO to now limit traffic to
the victim IP only, thus allowing traffic for other IP addresses to be
forwarded as normal. However, this affects both malicious and non-
malicious traffic towards the victim. FlowExporterMO is then enabled
and starts recording IP flows.

(5) FlowExporterMO will truncate flow records after a specific time out
period, e.g., 60s or 180s, and send records to the ClassifierMO with a
given sampling rate, both of which are preconfigured by
LocalManagerMO.

(6) ClassifierMO, through the use of one or more machine learning
classification algorithms, eventually identifies the precise nature of
the flow information it is being sent, e.g., they are benign or part of a
TCP SYN attack, and LocalManagerMO is then notified.

(7) LocalManagerMO now notifies RateLimiterMO to limit only the
attack flows, thus permitting non-malicious traffic to reach the
intended destination.

56

As discussed earlier, we use policies to separate the management
strategy, i.e., the behavior of the resilience mechanisms from their
hard-wired implementation. For example, Fig. 9 illustrates the policy
which implements step 4 of our algorithm, which specifies the limiting
of traffic to the target and configuration of FlowExporterMO. Policies
implementing each of the other steps of our algorithm were defined
in a similar manner.

Fig. 9. Policy configuring RateLimiterMO and FlowExporterMO, in response to a

detection event generated by the IntrusionDetectionMO

5.2.2 Simulating Policy-driven Resilience Strategies

The notion of a policy-driven resilience simulator [Schaeffer-Filho et
al., 2011] has been proposed based on the integration of a network
simulator and a policy management framework. The toolset allows
the evaluation of resilience strategies consisting of instrumented
mechanisms within the simulation, whose behavior can be adapted
during run-time – e.g., setting flags, dropping connections, triggering
or stopping monitoring sessions. Our simulation environment has
two key components: the OMNeT++ simulation environment [Gamer
et al., 2009] and the Ponder2 policy framework [Twidle et al., 2011].
The integration coupling the tools is based on XMLRPC2.

The behavior of the policy-enabled mechanisms in our case study is
implemented using Ponder2 polices. Ponder2 supports the
enforcement of both obligation (event, condition, action) and
authorization (access control) policies. Policies can be dynamically
loaded, enabled, disabled and unloaded to change the behavior of
managed objects without interrupting their functioning. Policies are
written using PonderTalk, which is a high-level control language.
Ponder2 enables the dynamic reconfiguration of the managed
objects, resulting in the invocation of the appropriate management

57

actions specified by the policies. This realizes the transitions in Fig.
10. The managed objects were implemented as OMNeT++ modules,
most as extensions of the standard Router module.

The configuration of these modules is shown in Fig. 10.
FlowExporterMO and IntrusionDetectionMO are positioned above
the network layer implementation, and receive duplicate packets
from that layer. RateLimiterMO sits between the network and
physical layers, and thus has access to every incoming and outgoing
packet. Finally, LinkMonitorMO was created by modifying an existing
channel type, thereby allowing us to place it at any position within
our network. To simulate large-scale IP networks we use the ReaSE
tool [Gamer et al., 2009], which permits the creation of realistic
topologies and the generation of background and attack traffic. Of
particular importance for our experiments, it can generate DDoS
attack traffic based on the Tribe Flood Network [Dittrich, 1999].

Fig. 10. Configuration of the OMNeT++ modules used to implement some of the managed

objects. Channels to the UDP module from the FlowExporter and IDS modules enables

communication within the simulator to other modules, such as the Classifier

5.2.3 Results and Discussion

For our experiments, we simulated a network consisting of twenty
Autonomous Systems (ASes): fourteen stub ASes connected by six
transit ASes. A Web service in one of the stub ASes is configured as
the victim to be attacked by thirty-nine DDoSZombie hosts across
the network – this stub AS represents the network depicted in Fig.6.
In addition, 1105 hosts generate background traffic to a number of
other servers in the network. The various managed objects, are

58

activated on the ingress link from a core router to the gateway of the
AS under attack. That is, the functions of monitoring, intrusion
detection, rate limiting and so on are carried out at the edge of the
AS network, in order to protect the AS’s network. The following
results show the execution of the algorithm in Fig. 8.

(a) DDoS traffic

(b) DDoS and benign traffic

Fig. 11.Initial results from simulations that implement the algorithm described. Numbered

labels pertain to points in our multi-stage approach.

Fig. 11(a) shows the onset of the attack on the ingress link at
approximately 130 seconds (1). The raising of an alarm by
LinkMonitorMO is seen at 139 seconds (2), whereby a sustained
traffic load in excess of the threshold defined in policies has been
reached (currently, an increase in average incoming traffic of four
times the previous average). Shortly thereafter, the effects of the
initial rate limiting of the ingress link by RateLimiterMO can be
observed. The filtering rate can be set by policies, as discussed
earlier. In this case, we discard 70% of all incoming traffic in order to
protect downstream servers and infrastructure. Results derived from
the simulation show that 92% of blocked traffic during this period is
malicious.

59

At 149 seconds (3), IntrusionDetectionMO identifies the destination IP
address of the victim. This is achieved in this case by examining the
destination address of each incoming packet, and raising an event
when one destination accounts for 60% of all packets.
RateLimiterMO is now reconfigured to drop 70% of the traffic
destined for the victim only, as defined in policies. Some legitimate
traffic that is not destined for the victim, which previously was
blocked, is now not filtered. Results from simulation show that in this
period (3-4), 95% of blocked traffic is malicious, while the proportion
of legitimate traffic that is not blocked increases compared to the
previous period (2-3).

Also, ClassifierMO is initiated at (3) and flow exporting from the
router is started. Hereafter, ClassifierMO, receiving flow records from
FlowExporterMO, attempts to identify the specific attack flows. At
209 seconds (4), rate limiting is confined just to the attack flow and
legitimate traffic to the Web service can continue. After 270 seconds
(5), all the malicious traffic is blocked, shown in Fig. 11(a), and the
remaining traffic, shown in Fig. 11(b), pertains to normal background
traffic. Fig. 12 shows how we refine mitigation by increasing the
percentage of malicious traffic limited (red), and conversely
decreasing the percentage of legitimate traffic limited (green).

Fig. 12. The malicious and benign traffic dropped at different stages of the algorithm

described in Section IV-A, shown as a percentage of the total dropped

These results provide a proof-of-concept demonstration of our
approach. They show how a challenge (in this case a malicious
attack) can be dealt with by initially using lightweight detection, and
then progressively applying more heavyweight analysis to identify
the specific challenge. In parallel, the results show the initial

60

application of coarse grain remediation, to minimize disruption to
downstream services, which then moves towards more fine-grain,
attack-specific remediation.

5.3 Discussion with flash crowd

In this section we discuss how our approach could be modified to
deal with benign volume events. A DDoS attack and a flash crowd
display very similar symptoms as the demand for a web site
experiences a sudden increase. From the server side, it is really
difficult to distinguish the DDoS attack and flash crowd event. If the
flash crowd is mistakenly identified as a DDoS attack (which is the
false positive), then all benign traffic to the web site will be denied,
and genuine users will be blocked from accessing the website.. Also
if the DDoS attack has mistakenly be detected as the flash crowd
event (which is false negative), then the attacker could successfully
crash the server, as well as consume the resources such as
computing power and network bandwidth. So finding an efficient and
accurate method to differentiate DDoS attacks and flash crowds is
an important topic.

Previous research has considered this issue Rahmani et al. [2011]
applied a joint-entropy scheme to detect DDoS. The DDoS attack
could aggressively saturate the resources, so there is an unexpected
disproportion between the received number of packets and the
established number of connections. However, for a flash crowd, the
increased number of packets received is always accompanied by an
increased number of connection. The joint-entropy algorithm could
effectively quantify the degree of disproportion to detect traffic
anomalies. However, the authors mention that it is not easy to define
a threshold to cope with both low rate and high rate attacks.

Prasad et al. [2012] proposed an information theoretic framework
using BotNet on ITM (Internet Threat Monitoring) to model flooding
attacks. They demonstrate an effective attack detection and trace-
back using entropy by calculating the entropy variations between
normal and attack traffic. They claim this methodology could
effectively identify both low and high rate attacks. A flash crowd
could be identified as a high rate attack whilst DDoS attacks could
be detected as low rate attacks. Jeyanthi et al. [2011] also applied
an entropy based approach to differentiate DDoS attack from flash

61

crowd in VOIP networks. In the paper, they list a comparison
between DDoS attack and flash crowd, and find that a flash crowd is
more responsive to traffic control - the traffic type mostly is web
traffic and it is mostly predictable. However, a flooding attack could
have any traffic type with unpredictable behaviors. The experiment
has been validated by the simulation on the VOIP call processing
server. The packets queued for the requesting service to the server
appears to be high only for the short period whereas DDoS appears
to be high for much longer. When a server suffers any overload, their
proposed entropy based approach could distinguish between Benign
and malicious events.

Graphic puzzles are widely used to differentiate between botnets
and humans, so could possibly defend against flash crowds. But
human response needs to be involved in this method, which is
inconvenient to the users [Kandula et al., 2005]. Wenlei et al. [2012]
demonstrate a discrimination algorithm using the flow correlation
coefficient as a similarity metric among suspicious flows. They found
the current flow of DDoS attacks are more similar compared to the
flows of flash crowds. The flows of DDoS attacks have higher
probability with similarity compare to flash crowds. They applied flow
similarity features to detect flash crowds under typical botnet size
and organisation. It is effective in dealing with unknown forthcoming
flooding attacks. Experimentation has validated the approach using
real datasets and real attack tools, but there is a need to evaluate
cost and detection accuracy.

Thapngam et al. [2012] also realized that DDoS attacks have
repeatable attack patterns, which are different from a flash crowd.
Their proposed approach is based on Pearson’s correlation
coefficient. It could extract repeatable patterns from DDoS attack but
not flash crowd. Experimentation has been carried out with real
datasets, but it would be interesting to see whether this could be
validated in a real case in real time. Also the authors may want to
improve the approach to detect faster reducing complexity and delay.

62

Fig. 13. Volume based challenges resilience strategy

Based on these findings we propose that we could extend our
resilience strategy to identify a flash crowd. The current information
theory based framework could effectively detect the DDoS attack. As
introduced by Prasad et al. [2012], we develop an EntropyReporter
Module (described in the next chapter) to calculate the entropy
variations between normal and attack traffic. Thus a flash crowd and
DDoS could be differentiated by the high or low rate attack. Figure
13 depicts and enhanced resilience strategy for volume based
challenges. Compared to Figure 8, we add an entropy reporter as
another managed object. After the dramatic traffic increase reported
by the link monitor, the entropy reporter module could further classify
it as a flash crowd or DDoS attack.

Figure 14 shows the entropy result for DDoS attack detection. With
the simulated attack triggered at 130s, the entropy of the Destination
IP and Destination Port turn concentrated, since the target is a single
web server, whilst the entropy of Source IP and Source Port
becomes dispersed. Once the entropy reporter confirms a potential

63

DDoS attack, then appropriate remediation strategies could be
triggered.

Fig. 14. Entropy result for DDoS attack detection

5.4 Summary

This chapter has presented an instance of our incremental policy-
driven approach. Experimentation has demonstrated how this
approach could effectively defend against volume base challenges,
primarily a DDoS attack with possible extension to a flash crowd.
The whole process is controlled by policies that rely on incomplete
challenge and context information to progressively elaborate the
configuration of the mechanisms currently deployed in the network.
Our proof of concept case study, while simple, is a demonstration of
the appropriateness and feasibility of our policy-based approach to
challenge identification and remediation in realistic network settings.
The main contribution of the approach presented in this chapter is to
enable the mitigation of a challenge as early as possible, and refine
the operation of resilience mechanisms as more information
becomes available. We contrast this with a current, commercial
solution.

64

Arbor is a popular DDoS protection, prevention and mitigation
product used in the market, with privileged relationships with majority
of world’s ISPs. Peakflow is used as the flow based passive DDoS
protection service. Arbor’s Active Threat Feed (ATF) and Active
Intelligence Feed (AIF) detects sophisticated attacks.

Arbor can detect three types of anomalies: misuse Anomalies are
traffic of a certain type directed towards individual hosts that exceed
what should normally be seen on a network; profiled anomalies
means the threshold is automatically calculated based on the
customer identified traffic performance for the last 30 days;
fingerprints identifies traffic that matches a user specified signature.

A number of countermeasures are available via Arbor, such as
invalid packet, IP address filter, zombie detection, TCP SYN
authentication, TCP connection reset, traffic shaping, payload
regular expression etc. These mechanisms can all be
accommodated within our approach as Managed Objects and/or
parameter settings.

With our staged approach, we attempt to eventually classify all the
malicious traffic, so only the attack traffic is blocked in mitigation.
Also, our aim is to automate the detection and mitigation stage with
low false alarm rate and increased accuracy.

Our simulation platform can be used for further research into
detection mechanisms, in order to understand how they may be
combined algorithmically to analyze different challenges and the
resource trade-offs involved. To explore the generality of our
approach we have also implemented case studies for a variety of
challenges including malware (e.g., worms and botnets) and non-
malicious challenges (e.g., faults and router misconfigurations).
These are described in the following chapters.

65

Chapter 6

Malware Attack Resilience

Network propagated malware such as worms are a potentially
serious threat, since they can infect and damage a large number of
vulnerable hosts at timescales in which human reaction is unlikely to
be effective. Research on worm detection has produced many
approaches to identifying them. A common approach is to identify a
worm's signature.

However, as worms continue to evolve, this method is incapable of
detecting and mitigating new worms in real time. In our work, we
propose a novel resilience strategy for the detection and remediation
of networked malware. Our strategy can be adapted to detect known
attacks such as worms, and also to provide some level of
remediation for new, unknown attacks. Advantages of our approach
are demonstrated via simulation of various types of worm attack on
an Autonomous System infrastructure. Our strategy is flexible and

66

adaptable, and we show how it can be extended to identify and
remediate network challenges other than worms.

The remainder of this chapter is organized as follows: Section 6.1
provides an overview of background work on policy-based resilience
management. Then outlines our multi-stage, policy-driven approach
applied to the detection and remediation of worms. Section 6.2
presents results from the simulated deployment of worm resilience
strategies for a number of known worm attacks, and also shows how
the flexibility of our framework assists the evolution of resilience
strategies to meet new challenges. Section 6.3 discuss and evaluate
of our approach. Finally, Section 6.4 presents concluding remarks.

6.1 Strategy for Malware Attack Resilience

6.1.1. Strategy Overview

Worms represent a large class of networked malware. Although this
type of malware has been studied for a number of years, according
to recent security reports [PandLabs, 2011], worms constituted
approximately 9% of the successful malware infections in 2011.
Worms are self-replicating, self-propagating malware that can pose a
serious threat to networks. Some worms can spread at great speed,
infecting and potentially damaging a large number of hosts in a very
short time, so that human reaction is unlikely to be effective. There is
a need to develop new mechanisms capable of detecting and
reacting to network propagated attacks in real time. Research on
worm detection has produced many approaches to identify them. A
common approach is to identify a worm's signature. However, in
some network environments the achievement of real-time signature
detection can be hampered by a lack of computational resources.
Furthermore, as worms continue to evolve; this method is incapable
of detecting and mitigating new worms in real time.

We characterize worm attacks, particularly in their propagation
phase, as a type of network challenge. There are a number of
mechanisms that can be used to meet our aim of network resilience.
Detection mechanisms, such as link monitors and anomaly detectors,
assist the identification and categorization of challenges such as

67

worms. Remediation mechanisms, such as rate limiters and firewalls,
are used in the subsequent mitigation of these challenges. Recently,
we have proposed a policy-based, multi-stage resilience approach
[Yu et al., 2011], in which the configuration of detection and
remediation mechanisms deployed in the network is dynamically
refined as new information about challenges becomes available.

In this chapter, we use this approach to manage a range of
resilience mechanisms to combat networked malware attacks such
as worms. We use policies to control the operation of such
mechanisms, and how they should be reconfigured in the face of
different attack behaviors. Instead of relying on known payload
attack signatures, which is the most widely deployed worm detection
method, we show how our approach can embrace and adapt a range
of detection and remediation mechanisms for both known and
unknown attacks. In our case studies, changes in the distribution of
specific traffic features are monitored, and a set of active policies
determines how this information should be interpreted to contain
worm propagation. Resilience strategies are evaluated using a
policy-driven simulation environment [Schaeffer-Filho et al., 2011].
The primary contribution of this paper is a demonstration of the
generality and benefits of our approach for dealing with an ever
changing class of network challenge in the form of worms. We also
show how our approach may easily be extended to deal with other
forms of networked malware such as port scans.

6.1.2 Policy-driven Resilience Mechanisms

We rely on a policy-based approach to monitor and react to various
network challenges. Through policies, we can decouple the “hard-
wired” implementation of resilience mechanisms used to combat a
specific attack from the run-time management system that defines
their role in a resilience strategy. Consequently, resilience strategies
can be adapted without interrupting service operation.

When defining a resilience strategy, there is trade-offs between the
over-heads, timescales and accuracy of available mechanisms for
challenge detection. Our assumption is that detection that yields
coarse-grain findings, e.g. detect the presence of an anomaly, are
more timely and have a lower overhead. Fine-grain information, e.g.
details of the nature of the anomaly, allows better decisions

68

regarding how to mitigate a challenge, but this information is derived
using mechanisms with a higher overhead. Consequently, we
advocate and utilise a multi-stage resilience approach, which is
based on the successive activation of mechanisms to analyse and
remediate a challenge, from initial detection through to eventual
identification. This approach is illustrated in Fig. 15.

Fig. 15. Coarse to fine grain challenge identification and remediation

Initial detection is triggered by lightweight mechanisms, such as a
link monitor. The detection is coarse grain. Then more sophisticated
mechanisms are invoked. This approach allows the resilience
mechanisms to adapt to the prevailing resources, timeliness and
accuracy. This is necessary, as the simultaneous operation of a
large number of challenge-specific detection techniques is too
resource intensive. Through offline and/or online challenge analysis
it is possible to collect network metrics and traffic information. For
example, there is a significant amount of published information
available that can assist understanding of (known) worms. For
unknown challenges, online information needs to be gathered and
analyzed. Ultimately, for each specific challenge, it is then possible
to encode a complete resilience strategy into resilience patterns
[Schaeffer-Filho et al., 2012], representing the policy-driven
configurations of a set of mechanisms for combating that challenge.

In this section, we describe how the resilience approach can be
applied to worm challenges. In our demonstration scenario the goal
is to make an ISP or enterprise network - an Autonomous System
(AS) - resilient to external worm attacks. It is a border protection
strategy, requiring activation of resilience mechanisms at the ingress
links to the AS.

69

Fig. 16. Algorithm for incremental worm identification and remediation

While various mechanisms may be used to identify worm-related
anomalies, we illustrate our approach using volume-based
monitoring and techniques based on information theory. In particular,
we quantify information using entropy [Shannon et al., 1948], which
represents the uncertainty associated with the values of the different
network traffic features observed. The entropy estimation for
anomaly detection relies on the assumption that anomalies will
disturb the distribution of certain traffic features in specific ways
[Lakhina et al., 2005]. The strategy for incremental challenge
identification and remediation is outlined in Fig.16.

An example configuration of some of these modules is shown in Fig.
17 to create an Enhanced Router that includes resilience
functionality. This can be seen as a form of programmable router,
capable of traffic monitoring as well as traffic shaping. In our
implementation, the Entropy Reporter module is positioned above
the network layer implementation, and receives packets from it. The
Rate Limiter resides between the network and physical layers, and
thus has access to every incoming and outgoing packet. As
mentioned earlier, the Worm Differentiator can be used to identify
known worms using entropy measures from the Entropy Reporter
module. Finally, the extended channels that implement the Link
Monitor can monitor both the traffic traversing the enhanced router
via the PPP and Ethernet modules.

70

Fig. 17. Example configuration of OMNeT++ modules for network malware resilience

In the following we detail the operation of each of the resilience
mechanisms, implemented as Managed Objects, which collectively
realize our strategy.

Local Manager: the LocalManagerMO configures the other MOs to
achieve the resilience strategy. These are event-condition-action
(ECA) policies which specify activations and reconfigurations of the
MOs. The policies are represented on the vertical axis of Fig. 17. At
start-up the LocalManagerMO invokes two MOs. On each of the
ingress links to the AS a LinkMonitorMO is activated to start
monitoring link utilization, along with a threshold parameter. An
EntropyReporterMO is also activated along with a list of features that
it is to monitor.

Link Monitor: used for evaluating the link utilization at a given
periodicity, with its threshold being set by LocalManagerMO. Slower
propagating worms may escape detection by volume, which
therefore require another form of early detection.

Entropy Reporter: the EntropyReporterMO continuously monitors
the dispersion of traffic features using the computationally efficient
Shannon entropy algorithm [Zesheng et al, 2009]. The features
monitored are source IP, source port, destination IP, destination port
and protocol. EntropyReporterMO recomputes entropy for the five
features every 10 seconds and stores them in a vector. On
notification of a volume event, LocalManagerMO sets threshold
values to EntropyReporterMO, which then compares the entropy

71

history of each feature to see if a threshold change has been
exceeded. When worms perturb the entropy values of several traffic
features beyond the threshold, EntropyReporterMO generates an
event.

We reference the entropy algorithm used in [Lakhina et al., 2005].
The entropy is used to capture the degree of dispersal or
concentration of a distribution. An empirical histogram X = {ni, i =
1, … , N } , means that feature i occurs ni times. The entropy’s
definition is as below

H(X) = -∑ (

)

Where S = ∑

 is the total number of observations. The same

observation indicates that the distribution is maximally concentrated
and the metric turns to 0. When the distribution is maximally
dispersed, the entropy takes on the value log2 N.

Worm Differentiator: on notification from EntropyReporterMO the
Local-ManagerMO activates the WormDifferentiatorMO along with
details of the perturbed traffic features. The suspicious features are
matched against a database of symptoms of known worms. These
represent relatively short signatures of worms, compared to the
payload-based signatures of existing detection systems. This
reduces the costs of signature matching. If a match is found, an
event is notified that identifies the type of worm along with a flow
specification for the worm packets. However, if no match is found, for
example it is a new type of worm, then alternate action needs to be
taken (see discussion below).

Rate Limiter: on receiving notification from the
WormDifferentiatorMO, the LocalManagerMO invokes the
RateLimiterMO. This module can shape traffic according to
parameters that specify the amount and types of packets to be
discarded. It can limit a percentage of all packets on a link.
Alternatively, it can limit at the flow level. In this case RateLimiterMO
discards all packets that conform to the worm's characteristics, thus
throttling all attack packets, without having to identify attacking
sources.

72

6.1.3 Discussion

The policy-based strategy for worm resilience has advantages over
traditional solutions. Firstly, through the use of an anomaly-based
detection scheme we can potentially detect unknown (zero-day)
worms. Secondly, through the use of policies we can quickly adapt
how the system responds to attacks, since the policies are
decoupled from the implementation of the managed objects and can
be easily changed. Finally, the multi-stage approach introduces
intermediate steps, specified by policies, when dealing with attacks.
Thus, temporary forms of remediation may be put in place while the
challenge is being processed, and until the root cause is reliably
identified.

6.2. Experimentation

The evaluation of strategies for large-scale malware challenges is
difficult. Resilience strategies often require the coordination of
various monitoring and control mechanisms in different parts of the
network. The use of testbeds can involve high costs of hardware and
development effort, and are generally not suitable for large-scale
challenges which can affect multiple autonomous systems. As an
alternative, to mitigate costs and address scaling issues, we
advocate the reproduction of network challenges and resilience
mechanisms in a simulation environment.

Although simulators abstract some of the details of a real network
deployment, our ambition is to develop high-level resilience
strategies. These represent reusable configurations of resilience
mechanisms that address common challenges, which are populated
with mechanism instances and parameterized at deployment time.
As such, we propose that simulation environment abstractions are
tolerable. To evaluate the performance of resilience strategies we
have developed a policy-driven resilience simulator [Schaeffer-Filho
et al., 2012]. The toolset supports the simulation of a range of
network challenges, such as DDoS attacks and worm propagations,
and the implementation of our policy-driven approach to combat
challenges. Resilience strategies for a particular challenge might use
different combinations of mechanisms and policies, and the toolset
enables offline evaluation of strategies.

73

In order to support the network resilience aim, we designed a
resilience framework (illustrated in Fig. 18). For this experiment, we
are using the same environment as described in the previous
chapter. It allows the use of policies to define which mechanisms
must be activated according to events observed. An event broker
resolves event notifications in the simulation (e.g., anomaly
detections, link load) to the policy framework. The policies repository
will coordinate the transitions between the different stages of our
process, based on the challenges observed and the mechanisms
available. The policies incorporate coarse-grain and fine-grain policy
repository. Coarse-grain policy repository involves the deployment of
resilience patterns, which are configurations of resilience
mechanisms, capable of combating a specific challenge. A challenge
analysis module provides information about the challenges that are
affecting a network. This is used to select which resilience patterns
should be invoked. Fine-grain policy repository involves setting or
adjusting the parameters of the mechanisms that are currently
deployed as part of a pattern.

Fig. 18. Overview of the framework for worm resilience strategies

Resilience mechanisms are implemented as instrumented
components. We have implemented the following mechanisms to
achieve our worm resilience strategy. EntropyReporter receives
duplicate packets. Based on the traffic feature monitored, it informs
the type of challenge, for example, it's a DDoS or Worm.

74

WormDifferentiator analyses traffic features to report the type of
worm (e.g. Code Red). RateLimiter is placed in-line between the
network and physical layers. Finally, LinkMonitoris implemented by
modifying an existing channel type, and can be placed at any
position of the topology. Each instrumented object defines a
management interface specifying which operations it supports.
Management interfaces are used by Ponder2 for the invocation of
operations on the simulated objects. Communication between
Ponder2 and OMNeT++ is implemented using XMLRPC. In the
remainder of this section, we evaluate a range of detection and
remediation strategies using this toolset.

6.2.1. Worm Simulation

Our proposed worm resilient strategy detect various types of worms,
to prove that, we did the experiment with three popular worms, code
red worm, Slammer/Sapphire Worm and Witty worm. They all locate
the target by blind scan, which is randomly generating the number as
target IP addresses. In 2001, the well-known code red worm infected
360,000 hosts in 10 hours, it cause average 2.6 billion US dollar loss.
On Jan 25th 2003, SQL Sapphire Slammer worm cause more than
1.2 billion US dollar economic damage. It could exploit the
vulnerability with tens of thousands hosts in less than half an hour,
where human interaction is not feasible. Its novel capability is the
fast propagation speed. The full propagation speed is achieved in
about 3 min (more than 55 million scans per second). Then growth
rate slowed due to the worm saturate the bandwidth so that
insufficient bandwidth to support more growth. Compare to code red
worm, it may exploit fewer vulnerable hosts when slammer
propagate speed is two orders of magnitude faster than code red.
Witty worm spread in 2004, it was the first widely propagated worm
result in information loss due to carried a destructive payload, attack
at the integrity aspect. It targets the buffer overflow vulnerability in
several Internet Security System (ISS) products. The details with
these worms and the comparison among them are listed in table1.

75

 Code Red Slammer/
Sapphire

Witty New
Worm

Target Blind Blind Blind Blind

Propagation Self-carried Self-carried Botnet Self-carried

Character latency-limited bandwidth-
limited

bandwidth-
limited

bandwidth-
limited

Payload Size 4 Kbytes Code size is
376
bytes,
padded with
its requisite
headers, the
payload is
404
UDP packet

Code size is
637 bytes,
with data
from system
memory.
Random UDP
packet size
ranging
between 768
and 1307
bytes

Code size is
600
bytes

Spread
Speed

Slower than
slammer

Faster than
code red

Faster than
slammer

Faster than
witty

Dst Port port 80 port 1434 Random Random

Src Port Random Random port 4000 Random

Payload Payload in
monomorphic
format and has a
signature
starting with
“GET
/default.ida?NNNNNN
N.”

No malicious
content

Payload
contains the
text “(^. ^)
insert witty
message
here

(^.^),”

No
malicious
content

Behaviors Spreads via many
threads, each initiate
connection by sending
TCPSYN packet, then
must wait for the
target send respond
SYN/ACK packet or
timeout if no
response. The thread
is blocked during this
time and cannot infect
others. The response
waiting occupy most
of each thread's time

Overload the
system and
slow
down traffic,
exploit a
buffer
overflow in
an MS
SQL server

Target buffer
overflow
vulnerability
in
several
Internet
Security
Systems
(ISSs)

Exploit a
buffer
overflow
and
overload
the
system

Table 1. The Comparison between Different Worms

76

6.2.2. Identifying and Remediating Witty and CodeRed Worm

We use ReaSE to create topologies and generate synthetic traffic
loads. The authors of this package have previously demonstrated
that the simulated background traffic and the attack traffic are a
realistic approximation of traffic observed in real networks [Gamer et
al., 2008]. ReaSE can generate Code Red Worm propagation. We
have extended the package to simulate the Witty and
Slammer/Saphire worms, and a port scan.

We simulated a network consisting of 35 Autonomous Systems
(ASes): 26 stub ASes connected by 9 transit ASes. 1616 hosts, 71
web servers and 21 interactive servers generate background traffic.
Hosts across the network can be nominated to be zombies, which
generate worm probing packets. Our strategy is simulated at a stub
AS. The various resilience mechanisms are activated on the ingress
link from a core router to the gateway router of this AS.

Fig. 19. Simulation results for the Worm resilience strategy

Fig. 19 shows the volume of traffic on the ingress link for a simulated,
blind scanning Witty worm attack. In this scenario, the attackers sent
a maximum of 8000 probing packets. At the start, LinkMonitor is
activated with an alarm threshold set to an increase in average traffic
on the link of twice the previous average, which is recomputed every
2500 packets. EntropyReporter is also activated to collect
periodically (every ten seconds) packet-level entropy values on five
traffic features: destination IP, destination port, source IP, source
port and protocol. Fig. 18 shows the worm propagation starting at
about 20s (1) Due to the high volume of traffic on the ingress link, an
alarm is raised firstly by LinkMonitor at 29s (2) (This form of early
detection is appropriate for high-volume attacks, but a different
strategy would need to be deployed for low-volume attacks.)

77

Following this, EntropyReporter is interrogated for any significant
changes in the five traffic features. The most recent entropy trend for
each feature is computed and compared with the previous average
entropy, with results showing that destination IP has become
dispersed, destination port dispersed, source port centralised, and
UDP protocol more dispersed. These results are reported back for
further analysis (3). The WormDifferentiator is then invoked and can
identify these changes in entropy as being a signature of the Witty
worm, as described below. Consequently, at 40s (3) RateLimiter is
configured to filter all probing packets, specified as all UDP packets
with a source port 4000.

The features of the Witty worm are that it scans random IP
addresses and destination ports using UDP, with a constant source
port of 4000. Fig. 20 shows the changes in entropy of four of the
features following the onset of the attack at 20s. They indicate
characteristics of this specific worm attack. Furthermore, the
separation between resilience policies and mechanisms permits
easy adaptation of these parameters in an operational context,
should conditions change.

Fig. 20. Entropy changes with Witty worm

In contrast we also show partial results of a simulated Code Red
attack. The scenario is identical to the Witty simulation above. Code
Red also scans random IP addresses, but always to destination port

78

80. These features are indicated in Fig. 21 where, like Witty, the
destination IP becomes more dispersed, but in this case the
destination port becomes more concentrated.

Fig. 21. Entropy changes with Code Red worm

6.2.3. Policy-based Adaptation of Strategies

Our simulation environment enables us to experiment with
parameter settings and test the impact of adaptations of the
strategies by modifying policies, which are executed by the
LocalManager. As an example, worm attacks can generate high
volumes of traffic which lead to denial of service. We may therefore
want to consider adapting our strategy by introducing some early,
interim remediation.

A simple adaptation would be for the LocalManager, at the first
notification from the LinkMonitor at 29s, to also invoke the
RateLimiter to shape all incoming packets. This coarse-grain
remediation remains until the worm has been identified and attack
specific remediation takes over. Fig. 22 shows the Witty attack
scenario with such progressive remediation. Between 29s and 40s,
30% of network traffic on the link is blocked initially. At 40s, the
WormDifferentiator matches the Witty signature then only the
malicious traffic is blocked. Our platform provides results that show
about 28% of benign traffic being blocked during the period of interim
mitigation and 32% of malicious worm packets. We do not claim
these to be ideal results but they are illustrative of our platform. Off-
line risk analysis would determine if the costs (lost benign packets)
are appropriate to the benefits (reduced flooding). Our platform
provides inputs to such analysis, including the applications that are
affected due to the blocking.

79

Fig. 22. Simulation results for the Worm resilience strategy with progress mitigation

6.2.4. Adapt the Resilience Strategy to Detect and Mitigate

Slammer Worm

For this case study, we made use of our SQL Slammer worm
implementation. As a means of infecting new hosts, this malware
continuously sends 404 byte UDP packets to random IP addresses.
If a malicious packet infects a new host, it will start sending probing
packets. Our simulated network consists of 35 Autonomous Systems
(ASes): 26 stub ASes connected by 9 transit ASes, 1700 hosts, 80
web servers and 15 interactive servers generate background traffic.
A maximum of 10,000 probing packets could be sent from an
infected host. A number of hosts throughout the network are initially
nominated to be zombies, which generate worm probing packets.

Fig. 23 shows the volume of traffic on the ingress link for a simulated,
blind scanning Slammer worm attack. At the start, the Link Monitor is
activated with an alarm threshold set to an increase in average traffic
on the link of twice the previous average. The Entropy Reporter
module is also activated to periodically collect packet-level entropy
values on five traffic features: destination IP, destination port, source
IP, source port and protocol. Fig. 23 shows the worm propagation
starting at about 30s (1); an alarm is generated by the Link Monitor
at 37s (2) due to the high volume of traffic on the ingress link. This
form of early detection is appropriate for high-volume attacks. A low-
volume attack will evade detection by the Link Monitor, however, its
traffic feature changes could still be captured by the Entropy
Reporter module. The Entropy Reporter module is interrogated for
any significant changes in the five traffic features. The most recent
entropy trend for each feature is computed and compared with the
previous average entropy.

80

Fig. 23. Simulation results for the worm resilience strategy

Entropy changes are shown in Fig 24, which indicates that the
destination IP and source port have become dispersed, and
destination port and UDP protocol more dispersed. These results are
reported back to further analyze the malicious traffic. Based on the
traffic feature distribution, the malicious traffic is confirmed as the
worm attack at 43s (3). Policies are used to specify a coarse grain
remediation, actioned to initially shape 25% network traffic on the
link. The Worm Differentiator is then invoked and identifies that the
entropy of these traffic feature distributions match a known signature
for the Slammer worm. Further analysis is performed to monitor the
source IP address for all incoming UDP packets.

Source IP addresses appearing at a significantly higher than
average frequency are added to a blacklist. Therefore, at 50s (4)
another policy is used to reconfigure the Rate Limiter to block all
probing packets, specified as all UDP packets from blacklisted
sources with a destination port 1434, i.e., that used by Slammer to
infect hosts.

Our platform provides results that show about 21% of benign traffic
being blocked during the period of interim mitigation and 28% of
malicious worm packets. Off-line risk analysis would determine if the
costs (lost benign packets) are appropriate to the benefits (reduced
flooding). Our platform provides inputs to such analysis, including the

81

Fig. 24. Entropy changes with the Slammer Worm

applications that are affected due to the blocking. A benefit of our
approach is the ease with which it enables experimentation and
refinement of these trade-offs. We can develop and refine strategies
through the configuration of different mechanisms via policies and
the setting of parameters such as thresholds. Our platform generates
results that enable evaluation of strategies. Further experimentation
can identify the trade-offs between early detection and accuracy.
New mechanisms can be added to analyze additional features, such
as volumes at different levels of granularity or protocol.

6.2.5. Dealing with Unknown Attacks

We now demonstrate the generality of our resilience approach to
combat unknown attacks. We illustrate this by fabricating a new
worm. For example, a new worm might try to escape detection in two
ways. Firstly it mutates an existing worm to present new traffic
distribution features. In our case we mutate the Witty worm to
generate random source ports in attack packets. Secondly. The
worm tries to camouflage itself by hibernating for some time during
its propagation. In this case, the worm propagation commences at
20s but lasts for just 4 seconds, then it hibernates before continuing
at 30s. It spreads rapidly by sending UDP malicious packets with
payload size 600 bytes from random source ports to random

82

destination ports. Fig. 25 illustrates the traffic feature changes. The
destination IP becomes more dispersed during propagation. Both
source port and Destination port entropy become significantly more
dispersed. UDP protocol entropy is more dispersed while TCP
protocol is more concentrated.

Fig. 25. Entropy changes with New worm

The new worm features are captured by EntropyReporter but the
WormDifferentiator will find no matched signature for them. Then a
choice of actions to be taken can be defined by policies. A human
operator should be alerted in these cases with a report. Should this
indeed be a new worm, then it will be a simple matter for the
operator to add the new signature. Even without a signature, some
automatic remediation can be implemented to protect the network.

For example, we implemented and simulated the following policy-
based remediation strategy. For this unknown attack,
EntropyReporter infers that the suspected worm is carried in UDP
packets but from a large number of suspicious source ports and
destination ports. Therefore we further analyze the frequency of
suspicious packets by sender host. This could be monitored by
receiving hosts. However this approach will increase computational
overheads and is not easy to deploy in a large scale enterprise
environment. So a better solution is to embed this strategy in the
border router, and activate it once an attack is suspected. Thus, after
the EntropyReporter informs that malicious packets are UDP packets,
further analysis is performed to monitor the source IP address for all
incoming UDP packets. Source IP addresses appearing at a
significantly higher than average frequency is added to a blacklist

83

and RateLimiter is configured to block all packets from blacklisted
sources.

Results for this initial strategy show that, with our background load of
benign traffic, it produces 40% false positive rate (percentage of
benign traffic blocked) while mitigation eventually achieves zero false
negatives. Our platform permits further experiment to refine
strategies, including adjustment of alarm and traffic shaping
thresholds, and produces results whereby strategies can be
evaluated.

6.2.6. Resilience Against Other Malware: Port Scan

We finally show how our worm resilience strategy can be adapted for
another class of known network malware. Port scans are a
reconnaissance phase of many network attacks. Typically, an
attacker searches for potentially vulnerable hosts by trying to
connect to the ports across random IP addresses. In order to further
explore the generality of our approach, we experimented with a port
scan scenario under the same topology. In this scenario the attacker
scans UDP ports across the well-known port range of 0-1023,
attempting to open these ports. Fig. 26 shows the attack starting at
20s, with subsequent changes to traffic features. Destination port
and destination IP entropy increase substantially due to scanning
across many hosts and ports. UDP entropy increases.

Fig. 26. Entropy changes with Port Scan

Once a potential attack is identified we can attempt to apply
mitigation. In our experiment the strategy deployed is similar to the
previous worm remediation. In this case, once an alarm is generated

84

from LinkMonitor, the LocalManager will trigger RateLimiter to
initially block 30% of network traffic on the link. We then commence
analysis of all incoming UDP packets and, as before successively
block packets from high frequency source hosts.

6.2.7. Discussion and Evaluation of approach

A benefit of our approach is the ease with which it enables
experimentation and refinement of these trade-offs. We can develop
and refine strategies through the configuration of different
mechanisms via policy and the setting of parameters such as
thresholds. Our platform generates results that enable evaluation of
strategies. For example, in Table 2 we summarize the features
analyzed in our scenarios and the results of the remediation
strategies deployed. Further experimentation can identify the trade-
offs between early detection and accuracy. New mechanisms can be
added to analyze additional traffic features, such as volumes at
different levels of granularity or protocol sequences.

Table 2. Performance evaluation with different malware

6.3 Summary

In this chapter, we have demonstrated our policy-based, multi-stage
approach for the detection and remediation of network malware,
using worm attacks as a primary example. We demonstrate how our
approach could consistently be deployed to deal with different
malware. In our scenarios, this approach identifies known worms on
the basis of signatures that are defined as entropy perturbations of
certain features. It is also capable of detection of new worms and
enables partial remediation of such attacks. We have shown how we
can extend the system for other forms of networked malware such
as port scans.

85

Our approach overcomes drawbacks of existing approaches
discussed under related work, by operating only lightweight detection
mechanisms while a network is operating normally. More
heavyweight mechanisms are only invoked once the early symptoms
of a potential worm attack are detected. Thus high overhead
containment is only used when there is confidence that a network is
under attack. We also enable early remediation of attacks while the
precise nature of the attack is diagnosed, followed by attack-specific
remediation once the attack is understood. We suggest that our
approach is therefore potentially more resource-efficient than
existing systems, while at the same time no less accurate.

Worm detection is part of all current commercial IDS/IPS products.
Different vendor’s products have different actions in response to
various worm propagations. For example, IBM Proventia
SiteProtector manages the Proventia Network Intrusion Prevention
System G/GX appliance. The core of NIPS in current ISS products is
the ISS Protocol Analysis Module (PAM). It identifies and analyses
443 network protocols and data file formats. As it parses the
protocols and monitors the traffic, it employs a variety of techniques
to report any of 4843 suspicious events as they occur.

Different worms generate different response, for example, block
worm is the response for IRC PrettyPark Worm. The Drop Packet
response requests the sensor to drop the packet that triggered the
signatures, such as ICQ Witty Worm, Slapper Worm, SQL SSRP
Slammer Worm, TFTP MSBlaster Worm, TFTP Nachi Worm. The
Block Connection response requests the sensor to drop all packets
on the connection that triggered the signature, such as HTTP Nimda
Worm, HTTP Spyki PhpInclude Worm, Gnutella Worm, SMB Nimda
Worm, SQL Spida Worm.

Juniper Networks IPS capabilities offer several unique features that
assure network security. Groups of attack signatures are identified
as critical, such as HTTP Bagle Backdoor, Nimda Email Propagation,
Apache Slapper Worm etc. The default action with these worms is
normally to classify them as high severity and drop.

Other popular products such as Cisco IPS, McAfee M series NIPS
have similar, signature-based algorithms. An innovative part of our
work is that it is not only signature based but can classify suspicious

mk:@MSITStore:D:/Users/d701422/Desktop/pam.chm::/protocol.html

86

malware and put in place initial remediation until the nature of the
challenge is analyzed.

We have demonstrated significant advantages of flexibility and
evolvability. Through the separation of policies and mechanisms we
are able to re-use and refine our resilience strategies and
mechanisms. New worm types can be accommodated by micro-level
adaptations such as traffic feature sets and thresholds. Our system
supports the evolution of identification and remediation strategies as
network contexts change. Finally, we have shown how our approach
supports experimentation through simulation of resilience strategies,
mechanisms and parameters prior to actual deployment.

Ongoing work would be appropriate to study how better to quantify
the performance trade-offs of our approach and thus how best to
optimize detection and remediation of the many challenges that
networks face. We have shown the initial application of our approach
to a different form of challenge, a DDoS attack, in chapter 5. We now
further explore the generality of our approach by applying it to non-
malicious challenges.

87

Chapter 7

 Network Fault Resilience

Network fault resilience means the ability of the network to continue
operation while a portion of the network is down. The network fully
recovers when the non-operating component recovers. Fault
tolerance is normally a property designed into the system to achieve
this goal, which means the network could continue normal operation
despite the appearance of hardware or software faults. If the network
is not fault resilient, a single network fault could cause the entire
network to become unavailable.

In this chapter, we extend our network resilience approach to deal
with network faults. In the following, we will demonstrate our strategy
for network fault resilience, and demonstrate validation via simulation
and application to a real, medium sized ISP network: SWITCH. This
latter work was carried out as a collaboration during my visit to ETH
Zurich. The purpose is to demonstrate that the resilience strategy we

88

propose could not only work in a simulation environment, but could
also demonstrate benefits using real ISP data.

7.1 Strategy for Network Fault Resilience

There are a number of causes of network faults, for example, the
hardware fault, software error, environment challenge. Network
faults could be separated into three types. Permanent faults exist in
a network, where the network could not be repaired unless the root
cause could be found. If the network temporarily goes down and
results in minor degradation in service, this is the case for transient
faults. For example, a tree contacting a power line momentarily.
Intermittent faults occur on a discontinuous and periodic basis, and
this could cause a degradation of service for short periods of time.
Intermittent faults are now a growing problem in electronic
equipment. Permanent faults are not difficult to identify, but
intermittent faults are not easy to isolate, because they affect the
system only part of the time, which is generally of very short duration.
However, the service is workable between faults.

In order to demonstrate network resilience with our proposed system,
we extend our platform to identify network failures. Fault detection is
a process of capturing online indications of network disorder
provided by malfunctioning devices in the form of alarms. We
simulate the faults that could be triggered by non-malicious
challenges, to achieve quick and efficient fault management
techniques.

Our model of network failure is that it will result in the packet loss.
With a broken link, the packets will be discarded until a new
connection is rebuilt. Fault remediation could be used, once the
network failure is identified. The overall process of failure recovery
shouldn’t cause long delay in order to ensure network robustness.
With the above understanding, we simulate the network failure
situation. The connection failure could appear in any place within the
network structure.

We designed a connection failure channel based on the OMNeT++
cDatarateChannel, which has the flexibility to be placed as a channel
between any network objects. We schedule connection failure
events to happen at certain simulation times. After recovery, we

89

schedule further failures at another time since occasional failures
could occur more than once on the same connection in a real
network.

We could also simulate multiple concurrent connection failure
channels in the network. The monitoring system should quickly raise
the alarm once a broken link is discovered: the failure detection time
should be as short as possible. Then a real-time solution will be
triggered.

7.2 Policy-based Network Fault Resilience Algorithm

We propose the following proof of concept algorithm to deal with
network faults. Four managed object modules are used by the
algorithm. The details of these modules are as follows.

Link Monitor: In OMNeT++ communication links are realized by
creating “channels.” To implement a module that monitors the
utilization of a link and can trigger an event if a threshold is reached,
we extended the cDatarateChannel class. This allows us to place a
monitoring object in arbitrary locations in a network topology. The
Link Monitor is typically used to indicate the onset of a challenge that
is causing anomalous traffic volumes

Entropy Reporter: entropy is the typical measure of information,
could be used as the effective and efficient method to assess the
changes of the traffic features. Consequently, we have implemented
an entropy-based detection module, which monitors the source IP,
source port, destination IP, destination port and transport protocol
type for changes in entropy. The module computes the entropy of
these five features using Shannon’s entropy algorithm. A threshold
can be defined that triggers an event.

Entropy could be used to evaluate the uncertainty with the traffic
features. When the network faults happens, some of the destination
couldn’t be reached in the short term, so the entropy of the
Destination IP will become more concentrated. The entropy value
quantifies the degree of uncertainty with the traffic feature.

Fault Recovery: once the network fault is detected, the next stage is
helping the network to fully recover. The recovery strategy will

90

eventually affect the reliability of the network. A large scale of
network should tolerate elements/nodes failures while continuing
normal operation. As the number of network failures increase, the
difficulty of network recovery increases. The alarm will be raised
when the network fault is identified. At this stage, either the
automatic or network operator initiated fault recovery solutions are
activated to address the fault and bring the network back to normal
operation.

A few corresponding solutions will be proposed to correct the fault,
for example, the packets could be re-routed to a backup link. The
recovery stage may need to deal with complex dependencies issues
between network elements. To simply replace or reset the network
element may not right, since other network elements may need to be
reconfigured or reset. Any mis-replacement may worsen the
scenario.

The algorithm for network fault resilience is shown in Figure 27. At
the beginning, the local manager will set the threshold and activate
the link monitor, also the entropy reporter will start calculating the
entropy value for five traffic features, which include Destination IP,
Destination Port, Source IP, Source Port and Protocol. Once the
traffic volume rises above the threshold, the alert will be raised in
order to do further in depth analysis. Then the entropy reporter will
check the entropy value changes for each of the traffic features, if
both the entropy of the destination IP and source IP drop significantly,
then we could assume that this is the behavior of a network fault.
This is based on Lakhina [2005]’s findings. At this stage, the network
operator will receive an alarm for the network fault event, and have
the options to choose either automatic recovery, for example, re-
route the packets another link, or manual recovery, such as manually
reset/reconfigure the individual network element.

91

Fig. 27. Entropy based network fault resilience algorithm

7.2.1 Experiment of the network fault resilience

For the case study, our simulated network consists of 35
Autonomous Systems (ASes): 26 stub ASes connected by 9 transit
ASes, 1700 hosts, 80 web servers and 20 interactive servers
generate background traffic.

Our resilience strategy is simulated at a stub AS. Within a single stub
AS, two links between the edge router and gateway router is down
as demonstrated in Figure 28. The network fault we simulated is the
intermittent fault. The connection failure happens at 10 sec and last
for 5 sec. Then the network is back as usual for another 5 sec. After
that, the links fails again. The various resilience mechanisms are
activated on a gateway router of the AS and its ingress link from a
core router. Initially, a Link Monitor module is invoked on each of the
ingress links to monitor link utilization, a threshold parameter is
defined, which if exceeded results in an event being generated. An
Entropy Reporter module is also invoked and configured with a list of
features that it is to monitor.

As mentioned earlier, the Entropy Reporter module continuously
monitors the traffic features’ distributions using Shannon’s entropy
algorithm. In the previous chapters, we show the Entropy Reporter

92

module could be applied to detect malware attacks, for example a
worm or port scan. In this experiment, the same Entropy Reporter
module is deployed to capture network faults. Based on the
distribution of the traffic features, the Entropy Reporter module could
differentiate network faults from other types of malicious attacks.

Fig. 28. AS level network topology

Figure 29 shows the volume of the traffic on the ingress link between
gateway router and core router for the simulated network fault. The
overall traffic drops between 10s and 15s when the connections are
broken, then the network operation back to the normal after 15s. The
traffic falls down again at 20s. Figure 30 and figure 31 represent the
entropy of the destination IP and source IP drop correspondingly
when the network fault occurs.

93

Fig. 29. Traffic changes with the intermittent network fault

Fig. 30. Destination IP Entropy changes

Fig. 31. Source IP Entropy changes

94

7.3 Network Fault Resilience Using a Classifier

Approach

In order to demonstrate the flexibility and adaptability of our
proposed multi-stage policy based challenge detection platform, here
we propose a further solution for network fault detection.

This work has been carried out during my visit to the ETH
Communication Group, which is part of a collaboration between
NICTA and ETH. The classifier has previously been developed and
presented [Eduard et al., 2012]. We further extend this work and
deploy the classifier into our multi-stage policy based network
resilience approach. In the following sections, we introduce how the
classifier based multi-stage network fault resilience strategy could be
applied to classify network faults in the SWITCH network.

7.3.1 Network Fault Resilience Experiment on SWITCH

SWITCH was founded in 1987, as one of the very first organizations
in Switzerland to provide the internet service to the country. As the
medium sized ISP, it offers internet service to approximately 30
Switzerland universities, government institutions, and research labs,
e.g., IBM, PSI, CERN, and other educational institutions.
SWITCHlan has some 2600 kilometers of glass fibers, built through
the whole of Switzerland. it brings Swiss universities and research
institutions together via secure exchange of data at 10 Gigabits/sec.

The backbone of the SWITCH network is depicted in figure 32. The
SWITCH network has six border routers and traffic is collected from
the Cisco border routers only. A flow data collector is deployed to
collect and buffer incoming flow data. It runs software to capture the
data and store it to files (e.g., one file per hour). It also generates
metadata files containing the source of each data packet received
(UDP) or the connection (TCP) and e.g., the timestamp, sequence
number, and other things. The hourly generated files are buffered by
the flow data collector. These files are compressed and available for
download. Normally the data compression happens before the
download with the purpose of saving processing power.

The secure flow data infrastructure is deployed to process the flow
data after archiving, also performing analysis for the archived flow
data. The data will be parsed and investigated at this stage. The

95

processing time is about real time analysis of the archived data. This
process could be accelerated by massive parallelization using
multiple processing nodes. The large amount of flow data will be
stored into the large disk array or tape library. The current storage
server has the capacity for roughly 40TiB. The raw netflow data from
special events (e.g. malicious attacks, network failure) are kept on
the storage servers.

In order to reduce data volume, no packet traces are gathered on the
server, only the flow traces are stored, for example, NetFlow V5 and
NetFlow V9. The complete flow level traffic is captured from the
border router and there is no packets sampling applied. The traffic
comprises both the normal and abnormal traffic happening in the
daily operation network, include network faults, DDoS, network scan,
alpha flows etc. The dataset captured in the SWITCH backbone
network is in large data volume and multidimensional features of the
traffic can be measured.

A flow record is essentially a unidirectional sequence of packets
between two end points that is characterized by the 5-tuple of source
and destination IP address, source and destination port number, and
transport protocol, also other information could also include, for
example, connection start time, connection duration, the number of
packets and bytes transferred. If the flow does not have a reverse
matching flow, then it will be called the one- way flow.

In the SWITCH network, the classifier is deployed to do offline
analysis and the processing chain has been optimized for offline
analyzes on existing/historic traffic data archives. The classifier
validates on 7.41 petabytes of traffic from SWITCH boarder routers,
and 2.2 million IP addresses are monitored. A massive dataset of
NetFlow records was collected without sampling between 2004 and
2010.

As explained earlier, the classifier could be used to detect service
outages based on the one-way to two-way flow ratio targeting a
service. The classifier works as the following stages:

96

Fig. 32. The backbone for the SWITCHlan network [web1]

1. Collecting data

The first step is collecting the traffic data.

For the offline analysis, the flow data will be collected and YAF (Yet
Another Flowmeter) could be used as a soft flow meter to create flow
data files in the standardized IPFIX format. But IPFIX flow data has

97

to distinguish between unidirectional and bidirectional flows to be an
acceptable input to the one-way flow classifier. The one-way
classifier captures the count of one-way flows targeted at
unreachable services

A suitable flow generator is YAF, but any flow generator that uses an
IPFIX flow template including the dedicated standard information
elements for describing bidirectional flows could be applied.

In the SWITCH network, the flow data is gathered from the border
gateway. The SWITCH network topology will be demonstrated in
section 7.3.1. All the incoming and outgoing traffic from the boarder
gateway is monitored.

If it is the edge network, the traffic could also be monitored from a
gateway router. If the classifier works on the one way flow, the
incoming and outgoing traffic will be separated first.

For the online analysis, the traffic is collected in real time from the
simulator.

2. Identify Service and P2P Host

The traffic target service and P2P hosts are monitored all the time,
so that we could get the list of services and P2P hosts. A service is
defined as a triple {IP, protocol, port}. Such 3-tuples registered as
safe destinations and consider all flows to and from these services
as benign one-way flows caused by connection failure due to any
reason, e.g. congestion, outages. This analysis is run over a full
observation period to leverage temporarily running services and
temporary outages of services.

3. Identify unused IP addresses

For the offline analysis, because the traffic is observed over a long
period of time, both the incoming and outgoing traffic are monitored.
So if an IP address never shows up in a two way flow and only
appears in one or two one-way flows, then it will be listed as an
unused IP addresses.

98

4. Assign signs to one-way flows

For the offline analysis, the traffic data is collected and saved into a
CSV (comma separated value) file. Each sign is listed with number
of one-way flows carry it. Sign combinations that do not appear in
the data are not reported to limit the size of the output data.
Additionally, shorter versions of this list are provided that do not
report sign combinations with a flow count below a threshold of
100fpm or 1000fpm (fpm: flows per million).

The output file could be generated to report the sign combinations of
any input one-way flow. The sign sets contained in this file are
aligned with the flows such that e.g. entry 100 describes the flow 100
when flows and sign sets are numbered in ascending order.

5. One-way flow classification

Following the defined rules, the flow class will be classified based on
the 18 signs, if the service is classified as unreachable, then we
could confirm it is network fault.

The analysis focuses on the one way traffic, as when network failure
happens, the packets will send from the source host to the
destination host, but it couldn’t reach the destination due to the fault.
However, there are also other possibilities with one way traffic, for
example peer to peer, malicious scanning, backscatter, suspected
benign, bogon. Figure 33 demonstrates the one way traffic
classification process. The classifier could be deployed to
differentiate network failure from other scenarios. The scheme uses
17 rules and includes the novel heuristics and combine exiting
algorithms. Each one way flow has been assigned with 18 different
signs, to help identify the root cause of the one way flows.

99

Fig. 33. One way traffic classification process

The approach could passively monitor the large dataset without
inflicting network load. The time interval applied to find the
reachability problem is 10 minutes in this case. The impact of
different time interval has been tested on flow metrics aggregated for
the whole day in [Eduard, 2012], and within 10 minutes could
efficiently search for the flow pairs. Three popular services are used
to recognize the connection failure including the email service, main
web site access and the software distribution service. Many services
could be monitored concurrently. Network failure could be confirmed
if all the three services are not reachable by the defined time interval.
There is a large scale of clients affected by the identified network
failure. After classification, the flows data are separated into different
classes. 4.8% of the total one-way flows are classified as the
network failure, while malicious scanning dominates the one–way
flows by occupying 83.5% of all one-way flows.

Another experiment has been carried out to apply the classifier on a
week’s archived NetFlow data from the Department of IT and
Electrical Engineering at ETH Zurich. The coinciding outage was
observed at 19:40 on the 23rd June 2011 and last more than 10 min.
During this interval, the three key services are not reachable. When
monitoring the time series of the volume of one way flows, it is found
that the mail service has a sharp increase when the network failure
happens due to the automatic retry attempt as demonstrate in Figure

100

34. After investigation, it is found that the failure happens due to a
planned router software upgrade.

Fig. 34. Network Failure observed on the 23rd of June 2011 19:40 at ETH Zurich [Eduard,

2012]

7.3.2 Network Fault Resilience Experiment in Simulation

During the visit to ETH Zurich, we worked in cooperation with Eduard
to applied the classifier to our simulation. The classifier approach
had been validated by experimentation in the large dataset at
petabyte level in the SWITCH network. We brought it into the
simulation environment in order to differentiate network failure from
other scenarios, in order to indicate that our policy based multi stage
platform could be extended or adapted with different algorithms to
deal with different challenges and make network more resilient.

Figure 35 depicts the classifier based network fault resilience
algorithm. At the start, LocalManagerMO will set the threshold to the
LinkMonitorMO, so if the network traffic drops dramatically, it will
signal the LocalManagerMO. The FlowExporterMO will truncate flow
records after a specific time out period, e.g., 60s or 180s, and send
records to the ClassifierMO with a given sampling rate, both of which
are preconfigured by LocalManagerMO. Once the FlowExporterMO

101

exports the flow records, they will be used as the input for the
classifier.

Fig. 35. Classifier based network fault resilience algorithm

Network failure could be detected when many services outage
occurs. The classifier will classify the flows based on the 18 different
signs, each flow will be checked against all the signs and identify the
matched ones. The signs of a flow incorporate a number of well-
designed rules, and they will be used to determine the equivalent
class and the unknown class. 14 classification rules are included
within the classifier.

These rules are applied to classify network failure from other one-
way flows. Each rule associates with the specific signs, these signs
need to be present or absent. Once the fault is declared, the fault
recovery process will start to help the network continue normal
operation. A backup path is configured in parallel with the working
path. In order to minimise disruption, a quick switch over will take
place.

102

Class Rules

Malicious
Scanning

1. {TRWscan, ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ , ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑} => Scanner

2. {HCscan, ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ , ⃑⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ , ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑) => Scanner
3. {TRWnom, HCscan} => Scanner

4. {TRWscan, HCscan, ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑) => Scanner

5. {GreyIP, Onepkt, ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ , ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ , ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ , ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ } => Scanner

6. {GreyIP, ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ , ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ , ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑, ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ } => Scanner

7. {Onepkt, ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ , ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑, ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ , ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ,

 ⃑⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ , ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ , ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑, ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑} => Scanner

8. {GreyIP, Onepkt, ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑, ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑, ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ , ⃑⃑ ⃑⃑ ⃑⃑ ⃑ } => Scanner

9. {ICMP, ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑, ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑, ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑, ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ , ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑} => Scanner

Network
Failure

10. {Failure ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑, ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑} => Failure

Suspecte
d Benign

11. { , ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ , ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑) => Benign

12. {Large; ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑, ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑, ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑, ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑, ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ , ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ } =>
Benign

13. {TRWnom, ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑, ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑, ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ } => Benign

14. {ICMP, InOut ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑, ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑, ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑, ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ } => Benign

Table 3. Rules to classify one-way flow by using the combination of signs (derived from

[Eduard, 2012])

7.4 Summary

Fault management is a major component of network management
suite. We need to introduce innovative concepts for fault detection,
root cause analysis and self-healing architectures.

The system should implement root-cause analysis not only to detect
the faults once they occur, but also to identify the source of fault for
performing automatic fault recovery. Different types of network
service faults need to be measured: they range from node
misbehavior at different layers (MAC, routing), to software
misconfigurations. We also need to consider the system's
vulnerabilities include component faults, which is caused by software
bugs or the deterioration of hardware.

103

In the datacenter or the enterprise network, the traditional
methodology to monitor network failure is usually to send probing
packets and/or to check server logs. In our approach, we developed
two ways to perform the task: the entropy based method could be
used to check the pattern of traffic features changes, and the
classifier based method could exploit traffic flow data and monitor
reachability. Passive measurement effectively reduces overhead
compared to the traditional active probing approach. We have
demonstrated further adaptability and extensibility of our approach
by validating different network failure resilience strategies.

104

Chapter 8

Conclusion: Evaluation of Our approach

and Future Work

We have described a novel solution that enables the progressive
multi-stage deployment of resilience mechanisms, based on
incomplete challenge and context information. Volume resilience,
malware resilience and network failure resilience have been
demonstrated in chapter 5, chapter 6 and chapter 7 respectively. We
have illustrated the flexibility of our approach when adapting to new
challenges in the form of zero-day malware. We have also shown
how our approach enables experimentation and development of new
resilience strategies. Here we first summarily evaluate our approach
from different aspects. We conclude by discussing future work in the
context of existing products.

105

8.1 Evaluation

8.1.1 Generality, Efficiency and Scalability

A major challenge for the automatic identification and remediation of
networked malware is that these challenges display a wide array of
features and are also ever changing in their characteristics in order
to evade detection. Our approach allows detection strategies to be
composed such that a range of Managed Objects can be applied to
early detection and subsequent identification. For example, malware
that propagates at high rates can initially be detected via a link
monitor. More stealthy, slower propagating malware can evade
volume based detection, but can possibly be detected by monitoring
entropy of traffic features. In general, we propose that our approach
is capable of adopting and applying a wide range of algorithms that
have been developed in the literature.

Our multi-stage approach permits deployment of strategies for real-
time detection without incurring the overall costs of other approaches.
Always-on, real-time monitoring is relatively lightweight. While more
complex analysis is only invoked at a point where there is confidence
that the network is under challenge.

The approach also enables distributed detection, identification and
remediation. Under the control of a policy-based local manager,
managed objects can be configured and invoked at multiple vantage
points in the network. This can be applied at the level of sub-
networks or across an entire domain.

8.1.2 Early Detection vs Accuracy

Our method is based on packet level analysis, which has the
advantage of early detection of potential attacks. Many previous
approaches are based on flow analysis. However routers or switches
only export flows after a ramp-up period (typically 15 seconds or
more). A further period is then required for anomaly detection
algorithms to analyse an attack. In this time, the whole network will
be at risk [21].

Our packet based approach can detect large-scale attacks more
quickly and can apply interim remediation. This may be at the
expense of accuracy, resulting in high false positive rates, but this is

106

traded off against the protection of network assets provided by early
remediation.

8.1.3 Flexibility and Evolution

Policies are deployed to coordinate different managed objects, and
can be configured in a flexible and simple way via parameterization.
Our platform has the flexibility to enable adaptation of strategies to fit
different detection scenarios and the inclusion of new mechanisms.
For example, a Managed Object to analyze packet payload content
could be added as a stage in the identification of a stealth attack.

New challenges will continue to emerge in networks. We have
shown how our platform can be used to develop resilience strategies
against volume anomalies such as DDoS attacks in chapter 5. In
doing so we easily re-used some of the managed objects described
here, such as LinkMonitor and RateLimiter. We have shown that our
approach can also be used to experiment with and develop
resilience strategies for other forms of challenge, such as network
faults. In general, our approach facilitates development and
deployment of network resilience strategies, which can be further
refined as new challenges emerge and/or our understanding of how
to achieve resilience is enhanced.

8.2 Future Work

This thesis has elaborated some initial, proof-of-concept
implementations to demonstrate our approach to network resilience.
We conclude by exploring briefly how our approach could be
embedded into operational networks, with reference to existing
products.

The limitation of many products is that they are signature based. For
example, snort uses sourcefire certified VRT rules for signatures with
updates available for the registered user. The main benefit of snort is
it gives users the flexibility to create new rules, new plugins and
preprocessors. However if a rule hasn’t been released for a new
attack or the developer hasn’t created the rule, then a new malicious
attack is unlikely to be identified. Likewise the market leading
product checkpoint NGX with IPS gives the engineer the option to

107

automatically update or manually update signatures, but cannot
quarantine or mitigate a new attack.

Our approach could be integrated such that existing tools could
automatically learn the traffic patterns of unknown attacks, and then
provide the network operator the choice to do early network
remediation. Furthermore, we could develop the approach to provide
the operator with information about what particular service or
application was targeted. This would help the operator to further
refine the detection signatures.

A web application firewall (WAF) could be another context for further
research and development. A network firewall normally protects the
network from the network layer, and an IDS/IPS defends from the
transport layer. A network firewall normally has policies configured
for blocking or allowing specific ports/addresses. The IDS/IPS
usually verifies traffic behavior via signatures. However, common
web application attacks like SQL injection, cross site scripting,
cookie tampering, and the top ten OWASP threats are challenging
the network from the application layer. They are unlikely to be
identified by a network firewall or IDS/IPS, and need to combine
IDS/IPS with WAF. Future work could extend our network resilience
strategies to cope with OWASP vulnerabilities and thus protect the
network from the application layer.

Finally, future work could also focus on developing resilience
strategies that integrate the simultaneous detection, identification
and remediation of multiple challenge types including worms, DDoS,
flash crowds, network faults, etc. This may introduce issues of policy
conflict and resolution, and resource trade-offs. Our work enables
experimental scenarios to be explored as new challenges to network
resilience arise.

108

Bibliography

J. P. G. Sterbenz, D. Hutchison, E. K. C¸ etinkaya, A. Jabbar, J. P. Rohrer, M. Sch¨oller,

and P. Smith, “Resilience and survivability in communication networks: Strategies,

principles, and survey of disciplines,” Comput. Netw., vol. 54, no. 8, pp. 1245–1265,

2010.

M. Roesch, “Snort: Lightweight intrusion detection for networks,” in 13th Systems

Administration Conference (LISA). USENIX Association, November 1999.

A. Hussain, J. Heidemann, and C. Papadopoulos, “A framework for classifying denial of

service attacks,” in SIGCOMM ’03: Proceedings of the 2003 conference on

Applications, technologies, architectures, and protocols for computer communications.

New York, NY, USA: ACM, 2003, pp. 99–110.

A. Lakhina, M. Crovella, and C. Diot, “Mining anomalies using traffic feature

distributions,” SIGCOMM Comput. Commun. Rev., vol. 35, no. 4, pp. 217–228, 2005.

V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM

Comput. Surv., vol. 41, no. 3, pp. 1–58, 2009.

 T. T. T. Nguyen and G. J. Armitage, “A survey of techniques for internet traffic

classification using machine learning.” IEEE Communications Surveys and Tutorials,

vol. 10, no. 1-4, pp. 56–76, 2008.

 T. Peng, C. Leckie, and K. Ramamohanarao, “Survey of network-based defense

mechanisms countering the DoS and DDoS problems,” ACM Comput. Surv., vol. 39, no.

1, p. 3, 2007.

Y. Yu, M. Fry, A. Schaeffer-Filho, P. Smith, and D. Hutchison, “An adaptive approach

to network resilience: Evolving challenge detection and mitigation,” in DRCN’11: 8th

International Workshop on Design of Reliable Communication Networks, Krakow,

Poland, October 2011, pp. 172 –179.

T. A. Limoncelli, “OpenFlow: a radical new idea in networking,” Commun. ACM, vol.

55, no. 8, pp. 42–47, Aug. 2012.

Fessi A., Plattner, B., et al.: Resilience and Survivability for future networking:

framework, mechanisms, and experimental evaluation, ResumeNet Deliverable D1.5,

2009.

A. Schaeffer-Filho, P. Smith, A.Mauthe, D.Hutchison, Y. Yu, M. Fry, A Framework for

the Design and Evaluationof Network Resilience Management, in 13th IEEE/IFIP

Network Operations and Management Symposium, USA, 2012.

109

Jung, J., Paxson, V., Berger, A., Balakrishnan, H: Fast portscan detection using

sequential hypothesis testing, IEEE, pp. 211-225, 2004.

Wuhib, F., Stadler, R.: Decentralised Service-Level Monitoring Using Network

Threshold Alerts, IEEE Communications Magazine, pp. 44, 2006.

Jackson, A.W., Milliken, W., Santivanez, C.a., Condell, M., Strayer, W.T.: A

Topological Analysis of Monitor Placement, IEEE, pp.169 – 178, 2007.

Fry, M., Fischer, M., Karaliopoulos, M., Smith, P., Hutchison, D.: Challenge

identification for network resilience, IEEE, 2010.

Labovitz, C., Ahuja, A., Bose, A., Jahanian, F.: Delayed internet routing convergence,

Networking, vol. 9, pp. 293--306, IEEE/ACM Transactions, 2001.

Sethi，M. S., A. S.: A survey of fault localization techniques in computer networks, vol.

53, pp.165--194, Science of Computer Programming, 2004.

Shavitt, Y., & Shir, E., ‘DIMES: Let the Internet Measure Itself’, ACM SIGCOMM, 35,

5 October 2005.

Cook, E., Mortier, R., Donnelly, A., Barham, P., & Isaacs, R., ‘Reclaiming Network-

wide Visibility Using Ubiquitous Endsystem Monitors’, Proceedings of Usenix

Technical Conference, 2006.

Androulidakis, G., Chatzigiannakis, V., and Papavassiliou, S. ‘Network anomaly

detection and classification via opportunistic sampling’, IEEE Network 23, 1, 6-12, 2009.

Algirdas, A., et al., ‘Basic Concepts and Taxonomy of Dependable and Secure

Computing’, IEEE Transactions on Dependable and Secure Computing, 1, 1 pp 11-33,

January 2004.

Beitollahi, H, Deconinck, G., 'Dependable Overlay Networks', Dependable Computing,

2008. PRDC '08. 14th IEEE Pacific Rim International Symposium, 104 - 111, 2008

Castelucio, A., Ziviani, A., and Salles, R. ‘An AS-level overlay network for IP

traceback’, IEEE Network 23, 1, 36-41, 2009

Chandola, V., Banerjee, A., and Kumar, V. ‘Anomaly detection: A survey’, ACM

Computing Surveys 41, 3, July 2009

110

Cook, E., Mortier, R., Donnelly, A., Barham, P., & Isaacs, R., ‘Reclaiming Network-

wide Visibility Using Ubiquitous Endsystem Monitors’, Proceedings of Usenix

Technical Conference, 2006.

Daniel, J., W., ‘A taxonomy of computer intrusions’, Massachusetts Institute Of

Technology Thesis, 1998

Hansman, S., & Hunt, R., ‘A Taxonomy of Network and Computer Attacks’, Computers

and Security, 24, pp 31-43, 2005.

Hussain, A., Heidemann, J., & Papadopoulos, C., ‘A Framework for Classifying Denial

of Service Attacks’, Proceedings of ACM SIGCOMM’03, pp99-110, August 2003

Jackson, A.W., Milliken, W., Santivanez, C.a., Condell, M., & Strayer, W.T. ‘A

Topological Analysis of Monitor Placement’, Sixth IEEE International Symposium on

Network Computing and Applications, 169-178, 2007

Jeffrey, D., Gupta, N., and Gupta, R, ‘Fault localization using value replacement’. In

Proceedings of the 2008 international Symposium on Software Testing and Analysis.

ACM, 167-178, July 2008

Katzela I., & Schwartz, M., 'Schemes for Fault Identification in Communication

Networks', IEEE/ACM Transactions of Networking, 3, 6 December 1995

Killourhy, K., Maxion, R., & Tan, K., ‘A Defence-Centric Taxonomy Based on Attack

Manifestations’, Proceedings of the International Conference on Dependable Systems

and Networks, pp 102-111, June 2004.

Kim, B. U., Al-Nashif, Y., Fayssal, S., Hariri, S., and Yousif, M. 'Anomaly-based fault

detection in pervasive computing system'. ICPS '08, ACM, 147-156, 2008

Kompella, R., Singh, S., & Varghese, G., ‘On Scalable Attack Detection in the Network’,

Proceedings of ACM IMC’04, pp 187-200, October 2004.

Lakhina, A., Crovella, M., & Diot, C., ‘Diagnosing Network-Wide Traffic Anomalies’,

Proceedings of ACM SIGCOMM’04, pp 219-230, September 2004.

Lazar, A., et al, 'Models and Algorithms for Network Fault Detection and Identification:

A Review', ICSS, 92.

111

Li, X., Bian, F., Zhang, H., Diot, C., Govindan, R., Hong, W., & Iannaccone, G., ‘MIND:

A Distributed Multi-Dimensional Indexing System for Network Diagnosis’, Proceedings

of IEEE INFOCOM, April 2006.

Mirkovic, J., & Reiher, P., ‘A taxonomy of DDOS Attacks and Defence Mechanisms’,

ACM Computer Communication Review, 34,2, pp 39-54, April 2004.

Nicholas, W., Vern, P., Stuart, S., R. C., ‘A Taxonomy of Computer Worms’, ACM, 11-

18, 2003

Peng, T., Leckie, C., & Ramamohanarao, K., ‘Information Sharing for Distributed

Intrusion Detection Systems’, Journal of Network and Computer Applications, pp 877-

899, 2007.

Ringberg, H., Soule, A., Rexford, J., & Diot, C., ‘Sensitivity of PCA for Traffic

Anomaly Detection’, Proceedings of ACM SIGMETRICS, pp 109-120, June 2007.

Sethi., M. S. & A. S. 'A survey of fault localization techniques in computer networks.'

Science of Computer Programming, 53: 165-194, 2004

Stefan.A, 'Intrusion detection systems: A survey and taxonomy.' Technical Report 99-15,

Department of Computer Engineering, Chalmers University, March 2000.

Shanbhag, S. & Wolf, T. ‘Accurate anomaly detection through parallelism’. IEEE

Network, 23, 1, 22-28. 2009.

Soule, A., Silveira, F., Ringberg, H., & Diot, C., ‘Challenging the Supremacy of Traffic

Matrices in Anomaly Detection’, Proceedings of ACM IMC’07, pp 105-110, October

2007.

Ting W., Mudhakar S., Dakshi A. & Ling L., ‘Learning, Indexing, and Diagnosing

Network Faults’, Proceedings of the 15th ACM SIGKDD international conference on

Knowledge discovery and data mining, July 2009.

Wang, N., Yuan, Z., and Wang, D. 'Improving Process Fault Detection and Diagnosis

Using Robust PCA and Robust FDA', IEEE Computer Society, 02, 54-59, April 2009.

Wuhib, F., & Stadler, R., ‘Decentralised Service-Level Monitoring Using Network

Threshold Alerts’, IEEE Communications Magazine, 44, 10 October 2006.

Yu, Y., Jones, J. A., and Harrold, M, 'An empirical study of the effects of test-suite

reduction on fault localization', ACM, 201-210, May 2008 Cook

112

F. Hugelshofer, P. Smith, D. Hutchison, and N. J. Race, “Openlids: a lightweight

intrusion detection system for wireless mesh networks,” in MobiCom ’09: Proceedings

of the 15th annual international conference on Mobile computing and networking. New

York, NY, USA: ACM, 2009, pp. 309–320.

D. Brauckhoff, K. Salamatian, and M. May, “A signal processing view on packet

sampling and anomaly detection,” in Proceedings of the 29th conference on Information

communications, ser. INFOCOM’10. Piscataway, NJ, USA: IEEE Press, 2010, pp. 713–

721.

W. Yu et al., “On Defending Peer-to-Peer System-based Active Worm Attacks”, IEEE

Global Telecommunications Conference, IEEE Press,pp. 1757-1761, 2006 .

D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver, “ Inside the

Slammer worm”, IEEE Security and Privacy Magazine, vol. 1(4), 33-39, 2003.

M. La Polla, F. Martinelli, D. Sgandurra, "A Survey on Security for Mobile Devices”,

Communications Surveys Tutorials, IEEE, Issue: 99, 2012 , pp.1-26

C. Pantanilla, "Worm Spreads via Facebook Private Messages, Instant Messengers”,

Malware blog, Trend Micro, May 2012

 "Flame worm one of the most complex threats ever discovered”, Virus bulletin fight

malware and spam, May 2012

P. Li, M. Salour, and X. Su, “A survey of Internet worm detection and containment”,

Communications Surveys & Tutorials, IEEE, vol. 10, no. 1, pp. 20-35, 2008.

C. Chen, Z. Chen, and Y. Li, “Characterizing and defending against divide-conquer

scanning worms”, Computer Networks, vol. 54, no. 18, pp. 3210-3222, Dec 2010.

S. Chen and Y. Tang, “DAW: A distributed antiworm system”, IEEE Transactions on

Parallel and Distributed Systems, pp. 893-906, 2007.

Cisco, “Cisco intrusion prevention system,” Available at: http://www.cisco.com/go/ips.

Accessed in: February 2011.

IBM, “Security network intrusion prevention system,” Available at: http://www-

01.ibm.com/software/tivoli/products/security-networkintrusion-prevention/. Accessed in:

February 2011.

Enterasys Secure Networks, “Enterasys intrusion prevention system,” Available at:

http://enterasys.com/products/advanced-securityapps/dragon-intrusion-detection-

protection.aspx. Accessed in: February 2011.

113

A. Lakhina, M. Crovella, and C. Diot, “Diagnosing network-wide traffic anomalies,” in

SIGCOMM ’04: Proceedings of the 2004 conference on Applications, technologies,

architectures, and protocols for computer communications. New York, NY, USA: ACM,

2004, pp. 219–230.

N. Damianou et al., “The Ponder policy specification language,” in POLICY ‘01. Bristol,

U.K.: IEEE Computer Society, January 2001, pp. 18–39.

E. Lupu, N. Dulay, M. Sloman, J. Sventek, S. Heeps, S. Strowes, K. Twidle, S.-L. Keoh,

and A. Schaeffer-Filho, “AMUSE: autonomic management of ubiquitous systems for e-

health,” Concurrency and Computation: Practice and Experience, John Wiley, vol. 20(3),

pp. 277– 295, May 2008.

A. Schaeffer-Filho, P. Smith, and A. Mauthe, “Policy-driven network simulation: a

resilience case study,” in 26th ACM Symposium on Applied Computing (SAC).

Taichung, Taiwan: ACM, March 2011, pp. 492–497.

A. Schaeffer-Filho, “Supporting management interaction and composition of self-

managed cells,” Ph.D. dissertation, Imperial College London, 2009.

Sethi，M. S., A. S.: A survey of fault localization techniques in computer networks,

vol.53, pp.165--194, Science of Computer Programming, 2004

A. Schaeffer-Filho, A. Mauthe, D. Hutchison, P. Smith, Y. Yu, and M. Fry, “PReSET:

A Toolset for the Evaluation of Network Resilience Strategies”, The 13th IFIP/IEEE

International Symposium on Integrated Network Management(IM), Belgium, 2013

P. Smith, A. Schaeffer-Filho, A. Ali, M. Scholler, N. Kheir, A. Mauthe, and D.

Hutchison, “Strategies for network resilience: Capitalising on policies,” in 4th

International Conference on Autonomous Infrastructure, Management and Security

(AIMS). Zurich, Switzerland: LNCS, June 2010, pp. 118–122.

 T. R. Henderson, S. Roy, S. Floyd, and G. F. Riley, “ns-3 project goals,” in WNS2 ’06:

Proceeding from the 2006 workshop on ns-2: the IP network simulator. New York, NY,

USA: ACM, 2006, p. 13.

Qiu, L., Zhang, Y., Wang, F., Han, M. K., Mahajan, R.: A general model of wireless

interference, pp. 171--182, ACM, NY, USA, 2007

Kotz, D., Newport, C., Gray, R. S., Liu, J., Yuan, Y., Elliott, C.: Experimental

evaluation of wireless simulation assumptions, Technical Report, Dartmouth College,

2004.

Fessi A., Plattner, B., et al.: Resilience and Survivability for future networking:

framework, mechanisms, and experimental evaluation, ResumeNet Deliverable D1.5,

2009

114

Doerr, C., Smith, P., et al., Resilience and Survivability for future networking:

framework, mechanisms, and experimental evaluation, ResumeNet Deliverable D2.3a,

2010

Mahoney, M. V, Chan, P. K.: An analysis of the 1999 DARPA/Lincoln Laboratory

Evaluation Data for network anomaly detection, In Proc. 6th Intl. Symp. on Recent

Advances in Intrusion Detection, 2003

Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.: A Detailed Analysis of the KDD CUP

99 Data Set, IEEE (2009).

Brugger, T.: KDD Cup ’99 dataset considered harmful, White Paper, Department of

Computer Science, University of California Davis (2007)

Weingartner, E., vom Lehn, H., Wehrle, K: A performance comparison of recent

network simulators, pp.1--5, IEEE, Germany (2009)

A. Varga and R. Hornig, “An overview of the OMNeT++ simulation environment,” in

SIMUTools ’08: Proceedings of the 1st International Conference on Simulation Tools

and Techniques. Marseille, France: ICST, 2008, pp. 1–10.

K. Twidle, E. Lupu, N. Dulay, and M. Sloman, “Ponder2 - a policy environment for

autonomous pervasive systems,” in POLICY ’08: IEEE Workshop on Policies for

Distributed Systems and Networks. Palisades, NY, USA: IEEE Computer Society, 2008,

pp. 245–246.

D. Cavin, Y. Sasson, and A. Schiper, “On the accuracy of MANET simulators,” in

POMC ’02: Proceedings of the second ACM international workshop on Principles of

mobile computing. New York, NY, USA: ACM, 2002, pp. 38–43.

T. Gamer and C. P. Mayer, “Large-scale evaluation of distributed attack detection,” in

Simutools ’09: Proceedings of the 2nd International Conference on Simulation Tools

and Techniques. ICST, Brussels, Belgium, Belgium: ICST (Institute for Computer

Sciences, Social-Informatics and Telecommunications Engineering), 2009, pp. 1–8.

Weingartner, E., vom Lehn, H., Wehrle, K: A performance comparison of recent

network simulators, pp.1--5, IEEE, Germany, 2009

Kargl, F., Schoch, E.: Simulation of MANETs: A qualitative comparison between

JiST/SWANS and NS-2, International Workshop on MobiEval, 2007

Varga, A.: OMNeT++ User Manual, http://www.omnetpp.org/doc/manual/usman.html

http://www.omnetpp.org/doc/manual/usman.html

115

Mell, P., Hu, V., Lipmann, R., et al.: An Overview of Issues in Testing Intrusion

Detection Systems, Technical Report, National Institute of Standard and Technology,

2003

T. Gamer and M. Scharf, “Realistic Simulation Environments for IP-based Networks”,

In Proceedings of the OMNeT++Workshop,Marseille, France, March 2008.

C. P. Mayer and T. Gamer, “Integrating real world applications into OMNeT++,”

Institute of Telematics, Universit¨at Karlsruhe (TH), Telematics Technical Report TM-

2008-2, Feb. 2008. [Online]. Available: http://doc.tm.uka.de/2008/TM-2008-2.pdf

Cetinkaya, E. K., Jabbar, A., Mahmood, R., Sterbenz, J. P. G.: Modelling Network

Attacks and Challenges: A Simulation-based Approach, EDCC, Valencia, Spain, 2010

A. Varga, “The OMNET++ discrete event simulation system,” in Proceedings of the

European Simulation Multiconference. Prague, Czech Republic: SCS – European

Publishing House, June 2001, pp. 319–324.

 D. Dittrich, “The “Tribe Flood Network” distributed denial of service attack tool,”

University of Washington, http://staff.washington.edu/dittrich/misc/tfn.analysis.txt,

Technical Report, 1999.

M. Charalambides, P. Flegkas, G. Pavlou, A. Bandara, E. Lupu, A. Russo, N. Dulay, M.

Sloman, and J. Rubio-Loyola, “Policy conflict analysis for quality of service

management,” in Proceedings of the 6th IEEE International Workshop on Policies for

Distributed Systems and Networks (POLICY). IEEE Computer Society, Washington,

DC, USA 2005, pp. 99–108.

M. Charalambides, P. Flegkas, G. Pavlou, J. Rubio-Loyola, A. Bandara, E. Lupu, A.

Russo, M. Sloman, and N. Dulay, “Dynamic policy analysis and conflict resolution for

diffserv quality of service management,” in Proceedings of the 10th IEEE/IFIP Network

Operations and Management Symposium (NOMS), 2006.

 M. Steinder and A. S. Sethi, “Probabilistic fault diagnosis in communication systems

through incremental hypothesis updating,” Computer Networks, vol. 45, no. 4, pp. 537–

562, 2004.

C. E. Shannon, “A mathematical theory of communication”, The Bell System Technical

Journal, vol. 27, pp. 379_423, July, October 1948.

S. Chen and Y. Tang,”DAW: A distributed antiworm system,” IEEE Transactions on

Parallel and Distributed Systems”, pp. 893-906, 2007.

D. Brauckhoff, K. Salamatian, M. May, “A signal processing view on packet sampling

and anomaly detection”, INFOCOM, USA: IEEE Press, pp. 713-721, 2010.

http://doc.tm.uka.de/2008/TM-2008-2.pdf

116

C. Zesheng et al., "An Information-Theoretic View of Network-Aware Malware

Attacks”, IEEE Transactions on Information Forensics and Security,pp.530-541, 2009.

PandLabs, “PandaLabs Annual Report 2011 Summary,” Panda Security, Tech. Rep.,

2011. [Online]. Available: http://press.pandasecurity.com/wp-

content/uploads/2012/01/Annual-Report-PandaLabs-2011.pdf

E. Glatz and X. Dimitropoulos. Classifying Internet One-way Traffic. In Proceedings of

ACM SIGCOMM Internet Measurement Conference, 2012.

K. Munivara Prasad ,A. Rama Mohan Reddy, K.venugopal Rao,An efficient detection of

flooding attacks to Internet Threat Monitors (ITM) using entropy variations under low

traffic,IEEE Third International Conference on Computing Communication &

Networking Technologies (ICCCNT), 2012 , 26-28 July 2012,pages-1-11.

Devi, S. Renuka, and P. Yogesh. "Detection of Application Layer Ddos Attacks Using

Information Theory Based Metrics", 2012

Jeyanthi, N. and Iyengar, N. C. S. N. , “An entropy based approach to detect and

distinguish DDoS attacks from flash crowds in VoIP networks”. International Journal of

Network Security, 14, 257–269, 2012

Shui Yu, Weijia Jia, Song Guo, Yong Xiang, and Feilong Tang ”Discriminating DDoS

Attacks from Flash Crowds Using Flow Correlation Coefficient” IEEE Transactions On

Parallel and Distributed Systems, Vol. 23, No. 6, June 2012

Muhammad Aamir, and Muhammad Arif, “Study and Performance Evaluation on

Recent DDoS Trends of Attack & Defense”, I.J. Information Technology and Computer

Sciencem, Jul 2013

Jeevaakatiravan, D.Hemapriyadharshini, C.Chellapan, R.Dhanalakshmi, “A Novel

Approach For Detecting Smart Camouflaging Worm”, Journal of Theoretical and

Applied Information Technology, Jan 2013

Bhagvan Krishna Gupta, Ankit Mundra, Nitin Rakesh, “Failure Detection and Recovery

in Hierarchical Network Using FTN Approach”, IJCSI International Journal of

Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013

[Web1] SWITCHlan Backbone 2012,

http://www.switch.ch/export/sites/default/uni/network/lan/_files/SWITCHlan-

Karte2012.pdf

http://press.pandasecurity.com/wp-content/uploads/2012/01/Annual-Report-PandaLabs-2011.pdf
http://press.pandasecurity.com/wp-content/uploads/2012/01/Annual-Report-PandaLabs-2011.pdf
http://www.switch.ch/export/sites/default/uni/network/lan/_files/SWITCHlan-Karte2012.pdf
http://www.switch.ch/export/sites/default/uni/network/lan/_files/SWITCHlan-Karte2012.pdf

117

Appendix

A. Code for LinkMonitor MO

/**

 * @file LinkMonitor.cc

 * @brief An implementation of the Link Monitor Managed Object.

 * @author Tina Yu (tinayu@it.usyd.edu.au)

* */

// This program is free software; you can redistribute it and/or

// modify it under the terms of the GNU Lesser General Public
License

// as published by the Free Software Foundation; either version 2

// of the License, or (at your option) any later version.

//

// This program is distributed in the hope that it will be useful,

// but WITHOUT ANY WARRANTY; without even the implied
warranty of

// MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the

// GNU Lesser General Public License for more details.

//

// You should have received a copy of the GNU Lesser General
Public License

// along with this program; if not, see <http://www.gnu.org/licenses/>.

118

#include "LinkMonitor.h"

#include <sstream>

#include "EventPublisher.h"

#include "MechanismExporter.h"

#include <string>

#include "IPDatagram_m.h"

Register_Class(LinkMonitor);

bool triggered;

LinkMonitor::LinkMonitor(const char *name) :
cDatarateChannel(name)

{

 batchSize = 10;

 maxInterval = 0.1;

 threshold = 100;

 intvlTime = 100;

 cnt = 0;

 value = 0;

 triggered_count = 0;

 numPackets = 0;

 numBits = 0;

 triggered = false;

119

 intvlStartTime = intvlLastPkTime = 0;

 intvlNumPackets = benignNumPackets = maliciousNumPackets =
intvlNumBits = 0;

}

LinkMonitor::~LinkMonitor()

{

 delete out_vectors["N"];

 delete out_vectors["V"];

 delete out_vectors["p"];

 delete out_vectors["b"];

 delete out_vectors["m"];

 delete out_vectors["b"];

 delete out_vectors["P"];

 delete out_vectors["B"];

 delete out_vectors["T"];

}

bool LinkMonitor::initializeChannel(int stage) {

 cDatarateChannel::initializeChannel(stage);

 const char *fmt = this->par("format");

 char buf[200];

120

 char *p = buf;

 std::stringstream n;

 for (const char *fp = fmt; *fp && buf+200-p>20; fp++)

 {

 n.str("");

 switch (*fp)

 {

 case 'N': // number of packets

 n << "Number of Packets from " << this-
>getSourceGate()->getOwnerModule()->getFullPath();

 this-
>out_vectors.insert(std::make_pair<const char*,cOutVector*>
("N",new cOutVector(n.str().c_str())));

 break;

 case 'V': // volume (in bytes)

 n << "Volume from " << this-
>getSourceGate()->getOwnerModule()->getFullPath();

 this-
>out_vectors.insert(std::make_pair<const char*,cOutVector*>
("V",new cOutVector(n.str().c_str())));

 break;

 case 'p': // current packet/sec

 n << "current overall packet/sec from " <<
this->getSourceGate()->getOwnerModule()->getFullPath();

 this-
>out_vectors.insert(std::make_pair<const char*,cOutVector*>
("p",new cOutVector(n.str().c_str())));

121

 n.str("");

 n << "current malicious packet/sec from " <<
this->getSourceGate()->getOwnerModule()->getFullPath();

 this->out_vectors.insert(std::make_pair<const
char*,cOutVector*> ("m",new cOutVector(n.str().c_str())));

 n.str("");

 n << "current benign packet/sec from " <<
this->getSourceGate()->getOwnerModule()->getFullPath();

 this->out_vectors.insert(std::make_pair<const
char*,cOutVector*> ("b",new cOutVector(n.str().c_str())));

 break;

 case 'b': // current bandwidth

 n << "CurrentBandwidth from " << this-
>getSourceGate()->getOwnerModule()->getFullPath();

 this-
>out_vectors.insert(std::make_pair<const char*,cOutVector*>
("b",new cOutVector(n.str().c_str())));

 break;

 case 'P': // average packet/sec on [0,now)

 n << "average packet/sec from " << this-
>getSourceGate()->getOwnerModule()->getFullPath();

 this-
>out_vectors.insert(std::make_pair<const char*,cOutVector*>
("P",new cOutVector(n.str().c_str())));

 break;

 case 'B': // average bandwidth on [0,now)

 n << "AverageBandwidth from " << this-
>getSourceGate()->getOwnerModule()->getFullPath();

122

 this-
>out_vectors.insert(std::make_pair<const char*,cOutVector*>
("B",new cOutVector(n.str().c_str())));

 break;

 case 'T': // threashold checking

 n << "Value from" << this->getSourceGate()-
>getOwnerModule()->getFullPath();

 this-
>out_vectors.insert(std::make_pair<const char*,cOutVector*>
("T",new cOutVector(n.str().c_str())));

 break;

 default:

 *p++ = *fp;

 }

 }

 return false;

}

#if OMNETPP_VERSION>0x0400

void LinkMonitor::processMessage(cMessage *msg, simtime_t t,
result_t& result)

{

 cDatarateChannel::processMessage(msg, t,result);

 if (dynamic_cast<cPacket*>(msg)) {

 // count packets and bits

 numPackets++;

123

 numBits += ((cPacket*)msg)->getBitLength();

 if (intvlNumPackets >= batchSize || t-intvlStartTime >=
maxInterval)

 beginNewInterval(t);

 intvlNumPackets++;

 string name = msg->getName();

 if ((name.compare("udp_flood") == 0) ||
(name.compare("SYN-Flood") == 0) || (name.compare("ping_flood")
== 0)) {

 maliciousNumPackets++;

 } else {

 benignNumPackets++;

 //cerr << name << endl;

 }

 intvlNumBits += ((cPacket*)msg)->getBitLength();

 intvlLastPkTime = t;

 updateDisplay();

 }

}

#else

bool LinkMonitor::deliver(cMessage *msg, simtime_t t)

{

 bool ret = cDatarateChannel::deliver(msg, t);

124

 if (dynamic_cast<cPacket*>(msg)) {

 numPackets++;

 numBits += ((cPacket*)msg)->getBitLength();

 if (intvlNumPackets >= batchSize || t-intvlStartTime >=
maxInterval)

 beginNewInterval(t);

 intvlNumPackets++;

 intvlNumBits += ((cPacket*)msg)->getBitLength();

 intvlLastPkTime = t;

 // update display

 updateDisplay();

 }

 return ret;

}

#endif

void LinkMonitor::beginNewInterval(simtime_t now) {

 simtime_t duration = now - intvlStartTime;

 currentBitPerSec = intvlNumBits/duration;

125

 currentPkPerSec = intvlNumPackets/duration;

 maliciousPkPerSec = maliciousNumPackets/duration;

 benignPkPerSec = benignNumPackets/duration;

 intvlStartTime = now;

 intvlNumPackets = maliciousNumPackets = benignNumPackets =
intvlNumBits = 0;

}

void LinkMonitor::updateDisplay()

{

 const char *fmt = this->par("format");

 char buf[200];

 char *p = buf;

 simtime_t tt = getTransmissionFinishTime();

 if (tt==0) tt = simTime();

 double bps = (tt==0) ? 0 : numBits/tt;

 double bytes;

 for (const char *fp = fmt; *fp && buf+200-p>20; fp++)

 {

 switch (*fp)

 {

 case 'N': // number of packets

 p += sprintf(p, "N: %ld", numPackets);

126

 this->out_vectors["N"]->record(numPackets);

 EV << "NUMBER OF PACKETS " << numPackets << "\n";

 break;

 case 'V': // volume (in bytes)

 bytes = floor(numBits/8);

 this->out_vectors["V"]->record(bytes);

 if (bytes<1024) {

 p += sprintf(p, "V: %gB", bytes);

 EV << "VOLUME " << bytes << "B\n";

 } else if (bytes<1024*1024) {

 p += sprintf(p, "V: %.3gKB", bytes/1024);

 EV << "VOLUME " << bytes/1024 << "KB\n";

 } else {

 p += sprintf(p, "V: %.3gMB", bytes/1024/1024);

 EV << "VOLUME " << bytes/1024/1024 << "MB\n";

 }

 break;

 case 'p': // current packet/sec

 p += sprintf(p, "p: %.3gpps", currentPkPerSec);

 if (currentPkPerSec >= 0) {

 this->out_vectors["p"]-
>record(currentPkPerSec);this->out_vectors["p"]-
>record(currentPkPerSec);

127

 this->out_vectors["b"]-
>record(benignPkPerSec);this->out_vectors["b"]-
>record(benignPkPerSec);

 this->out_vectors["m"]-
>record(maliciousPkPerSec);this->out_vectors["m"]-
>record(maliciousPkPerSec);}

 EV << "CURRENT " << currentPkPerSec << "packet/sec
\n";

 if ((currentPkPerSec>=3000) && triggered ==
false) {

 triggered_count++;

 if (triggered_count == 100) {

 triggered = true;

 vector<string> values;

 values.push_back(this-
>getFullPath());

 std::string s;

 std::stringstream out;

 out << this->getSourceGate()-
>getNextGate()->getIndex();

 s = out.str();

 values.push_back(s);

 EventPublisher publisher;

 publisher.publish("load",values);

 }

 }

 break;

128

 case 'b': // current bandwidth

 this->out_vectors["b"]->record(currentBitPerSec);

 if (currentBitPerSec<1000000){

 p += sprintf(p, "b: %.3gk", currentBitPerSec/1000);

 EV << "CURRENT BW " << currentBitPerSec/1000 <<
"k\n";

 }

 else{

 p += sprintf(p, "b: %.3gM", currentBitPerSec/1000000);

 EV << "CURRENT BW " << currentBitPerSec/1000000
<< "M\n";

 }

 break;

 case 'P': // average packet/sec on [0,now)

 p += sprintf(p, "Avg P: %.3gpps", tt==0 ? 0 :
numPackets/tt);

 this->out_vectors["P"]->record(tt==0 ? 0 : numPackets/tt);

 EV << "AVERAGE " << numPackets/tt<< "packet/sec \n";

 break;

 case 'T': // check threshold

 p += sprintf(p, "T: %d", value);

129

 this->out_vectors["T"]->record(value);

 if (currentPkPerSec > threshold){

 cnt += 1;

 if (cnt == intvlTime)

 value = 1;

 }

 else {

 cnt=0;

 value = 0;

 }

 EV << "VALUE " << value << " \n";

 break;

 case 'B': // average bandwidth on [0,now)

 this->out_vectors["B"]->record(bps);

 bubble("this is B");

 if (bps<1000000){

 p += sprintf(p, "Avg B: %.3gk", bps/1000);

 EV << "AVERAGE BW " << bps/1000 << "k\n";

 }

 else{

 p += sprintf(p, "Avg B: %.3gM", bps/1000000);

 EV << "AVERAGE BW " << bps/1000000 << "M\n";

 }

130

 break;

 default:

 *p++ = *fp;

 }

 }

 *p = '\0';

 getSourceGate()->getDisplayString().setTagArg("t", 0, buf);

}

131

B. Code for DDoS Resilience Strategy IDSModule

/**

 * @file IDSModule.cc

 * @brief An implementation of the Intrusion Detection System
Managed Object.

 * @author Tina Yu (tinayu@it.usyd.edu.au)

 * @date 22/09/10

 * */

// This program is free software; you can redistribute it and/or

// modify it under the terms of the GNU Lesser General Public
License

// as published by the Free Software Foundation; either version 2

// of the License, or (at your option) any later version.

//

// This program is distributed in the hope that it will be useful,

// but WITHOUT ANY WARRANTY; without even the implied
warranty of

// MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the

// GNU Lesser General Public License for more details.

//

// You should have received a copy of the GNU Lesser General
Public License

// along with this program; if not, see <http://www.gnu.org/licenses/>.

#include "IDSModule.h"

132

#include "IPDatagram_m.h"

#include <iostream>

#include <string>

#include "TCPSegment.h"

#include "UDPPacket.h"

#include "SCTPMessage_m.h"

#include "UDPSocket.h"

#include "IPAddressResolver.h"

#include "IDS_message_m.h"

#include <map>

#include <tr1/unordered_map>

#include "MechanismExporter.h"

#include <string>

#include "EventPublisher.h"

using namespace std;

bool report;

Define_Module (IDSModule);

IDS::~IDS() {

}

133

IDS::IDS() {

 destination_ip = "0.0.0.0";

 packet_count = 1;

 seen = false;

}

typedef std::tr1::unordered_map<string, IDS> IDSTable;

IDSTable tableIDS;

//Initialise

void IDSModule::initialize(int stage) {

 EV<< "IDS initialised!\n";

 packetCount = 0;

 mechanism_exporter.registerIDS(this, this->getFullPath());

 report = false;

}

void IDSModule::handleMessage(cMessage *message) {

 //Get sim time

 simtime_t current_time = simTime();

 if (message->isPacket()) {

 packetCount++;

134

 EV<< "\nTotal number of packets: " <<
packetCount << "\n";

 IDS new_IDS;

 //Cast to a packet

 cPacket *packet = check_and_cast<cPacket
*>(message);

 //Cast to a datagram

 IPDatagram *datagram =
check_and_cast<IPDatagram *>(packet);

 //Get destination IP

 IPAddress destination_ip = datagram-
>getDestAddress();

 new_IDS.destination_ip=destination_ip;

 string destination_string = destination_ip.str();

 string key = destination_string;

 IDSTable::iterator iter;

 iter = tableIDS.find(key);

 if (iter != tableIDS.end()) {

 EV<< "Repeat IP: "<< key;

 //Increase packet count

 iter->second.packet_count++;

 unsigned int c = iter->second.packet_count;

135

 float prob = float(c)/float(packetCount);

 if (prob > 0.7) {

 simtime_t detection_time = simTime();

 char * current_ip=(char *)(iter-
>first.c_str());

 static char victim_ip[10];

 if (strcmp(current_ip, victim_ip)!=0) {

 strcpy(victim_ip, current_ip);

 }

 else {

 if ((report == true) && iter-
>second.seen == false) {

 iter->second.seen = true;

 vector<string> values;

 values.push_back(iter-
>first);

 EventPublisher publisher;

 publisher.publish("intrusion",values);

 }

 EV << "Found Victim!\n" <<
"Victim IP: " << iter->first <<"\n";

 }

136

 }

 } else if (iter == tableIDS.end()) {

 tableIDS.insert(std::make_pair(key,new_IDS));

 }

 }

 send(message,"distack");

}

void IDSModule::setReport(string action) {

 if (action.compare("on") == 0) {

 report = true;

 } else if (action.compare("off") == 0) {

 report = false;

 }

}

void IDSModule::finish() {

 EV<< "IDS finished!\n";

}

	Copyright_Statement
	YueYu_thesis.pdf

