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Abstract

Outlier detection is a well developed topic in data mining and has made remarkable in-

roads into many application domains. In this thesis we examine the efficacy of applying

outlier detection techniques to understand the behaviour of anomalies in communication

network traffic. We have identified several shortcomings. Our most finding is that known

techniques either focus on characterizing the spatial or temporal behaviour of traffic but

rarely both. For example DoS attacks are anomalies which violate temporal patterns

while port scans violate the spatial equilibrium of network traffic. To address this ob-

served weakness we have designed a new method for outlier detection based spectral

decomposition of the Hankel matrix. The Hankel matrix is spatio-temporal correlation

matrix and has been used in many other domains including climate data analysis and

econometrics. To the best of our knowledge it has not been used for analysis of network

traffic before. Using our approach we can seamlessly integrate the discovery of both

spatial and temporal anomalies. Comparison with other state of the art methods in the

networks community confirms that our approach can discover both DoS and port scan at-

tacks. The spectral decomposition of the Hankel matrix is closely tied to the problem of

inference in Linear Dynamical Systems (LDS). We introduce a new problem, the Online

Selective Anomaly Detection (OSAD) problem, to model the situation where the objective

is to report new anomalies in the system and suppress know faults. For example, in the

network setting an operator may be interested in triggering an alarm for malicious attacks

but not on faults caused by equipment failure. In order to solve OSAD we combine tech-

niques from machine learning and control theory in a unique fashion. Machine Learning

ideas are used to learn the parameters of an underlying data generating system. Control

theory techniques are used to model the feedback and modify the residual generated by

the data generating state model. Experiments on synthetic and real data sets confirm that

the OSAD problem captures a general scenario and tightly integrates machine learning

and control theory to solve a practical problem.
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1

Introduction

THE aim of this thesis is to pose and address the problem of outlier detection in the
context of complex and big multivariate time series by combining learning and

control theory. In this chapter we describe the main contributions of our thesis and
provide an overview of our methodology and results.

Outlier mining is the identification of unexpected, rare, and suspicious objects
which do not conform to an expected pattern or other items in data volumes [4]. Exam-
ples of outliers could be fraudulent activities in financial transaction records, Internet
intrusions, medical and health problems, measurement errors in data derived from sen-
sors or community outliers in information networks. Determining outliers is highly
dependent on the context of the study and there is no rigid definition of what consti-
tutes an anomaly.

In particular in the context of network anomaly detection (either malware attacks
or failures), the outliers are often not rare items, but sudden eruptions in network ac-
tivity. This pattern does not follow the common statistical definition of an outlier as
an exceptional objective, and many outlier detection methods will fail on such data,
unless it has been aggregated applicably.

To model the statistical properties of big data, it is often sensible to assume each
observation to be correlated to the value of an underlying latent variable with less
dimension, called state, that is evolving over the course of the sequence. In the other
word, to separate the normal from the abnormal, a key idea is to operate in the latent as
opposed to the observational space. The latent variable(s) captures the intrinsic (albeit
unknown) state of the data and gives rise to the observational data. True anomalies

1



1. INTRODUCTION

will cause changes in the intrinsic state of the data which will then be reflected in
observations. For example, normal network traffic in Internet can be considered as a
superposition of several periodic trends (half-day, daily, weekly, etc.). These trends
are not overtly visible and are obfuscated by the normal variation in traffic. Random
noise will only cause a change in measurement and will not have an effect on latent
variables. Thus by directly operating with the latent variable, will lead to higher recall
and precision and ultimately better detection capability.

The question will be just raised here is how information about the changes in the
latent space can be retained using only a fractional measurement or observation? Or,
is this possible to build the intrinsic structure of a dynamic sequence by observing a
partial of its behaviour? A key theorem from Taken in 1981 [5], called Embedding

Theorem, replied to this fundamental problem in control theory, by proving that a suf-
ficiently long set of observations from a dynamic object has enough information for
recovering its unknown latent variables. In the other word, we do not have to measure
all the latent variables of the system. The theorem specifically illustrates that the latent
variables can be retained using method of delays which builds a Hankel matrix from
observations.

We show that how Hankel matrices make us able to recover the structural change
in internal state of an observation in both model-based and model-free schemes.

One application we mainly focus is Network Anomaly Detection. Malicious In-
ternet attacks are increasingly growing in both volume and sophistication. Experts
have estimated that cybercrime now costs businesses hundreds of billions a year with
a Web-based attack was blocked every 0.35 seconds in 20121.

Current state of the art techniques are either designed or able to detect a certain
class of network anomalies at the cost of others. For example, wavelets analysis is quite
accurate for detecting denial of service attacks (DoS) but is less accurate for identifying
port scans [6, 7]. On the other hand, the recently introduced ASTUTE technique has
exactly the opposite performance and displays high accuracy for detecting port scans
but not DoS attacks [8, 9].

DoS and port scan attacks are emblematic of two types of deviations in network
traffic. Fig. 4.12 shows how the number of flows and their packet counts change dur-
ing real DoS attacks and port scans in a real network trace (the data will be introduced

1Source: http://www.symantec.com/threatreport/.
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Figure 1.1: Characterization of DoS attacks and port scans by the number of flows and the
change in packet volume, for a traffic trace observed on a link in Abilene network, April
2007.

in section 3.5). DoS attacks are characterized by large changes in a (relatively) small

number of flows as the attacking hosts send a large number of small packets, typi-

cally TCP SYN segments, to deplete system resources in the attacked host. Thus DoS

like anomalies cause high temporal variation in the flows packet volume and can be

detected using techniques based on time series analysis [6, 10, 11, 12, 13].

A port scan attack is typically accomplished by sending small packets as connec-

tions requests to a large number of different ports on a single destination IP address. At

the flow level, they are therefore characterized as small increases in a large number of

flows. Thus time series approaches often fail to detect port scans. This has prompted

the introduction of new techniques, like the recently introduced ASTUTE method, to

detect for spatial correlation across flows in order to find port scan attacks [8, 9].

In order to simultaneously capture both attacks we need to capture deviations from

both the inherent spatial and temporal correlation in network traffic. In this project we

present Multivariate Singular Spectrum Analysis (M-SSA), as a technique which can

unify the detection of network anomalies. M-SSA is the successor of Singular Spec-
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1. INTRODUCTION

trum Analysis (SSA) as a robust version of the Taken’s idea to reconstruct latent space
from a time series [14, 15]. M-SSA requires the construction of a spatio-temporal co-
variance matrix which is then factorized using Singular Value Decomposition (SVD).

We show that (M-SSA) can significantly be applied to Internet traffic flows in order
to provides a model for anomaly detection.

In the case where the state evolving through time by a linear function and the noise
terms are assumed to be Gaussian, the resulting model is called a Linear Dynamical

System (LDS). The term dynamic model accounts for the behaviour of an object over
time, in contrast a static (or steady-state) model calculates the objects behaviour in
equilibrium, and thus is time-invariant. LDSs are an important tool for modelling
time series in engineering, controls and economics as well as the physical and social
sciences.

If data is generated by a LDS, then the SVD decomposition of the Hankel matrix
can be used to estimate the LDS parameters. Several algorithms have been proposed
including those based on gradient descent, Expectation Maximization, subspace iden-
tification and spectral approaches [16, 17, 18, 19].

The standard approach to detect outliers using an LDS is to use the inferred A and
C matrices to compute the latent and observed error variables as:

ε(t) := x(t)− x̂(t)
e(t) := y(t)− ŷ(t)

where x̂ and ŷ are estimated using LDS. Then given a threshold parameter δ , an
anomaly is reported whenever, e(t)> δ .

There exists situations in which the objective is not to report all anomalies but
suppress some known user-defined patterns or even known anomalous pattern. As an
instance, port scanning represent a sizable portion of Internet anomalies which some
times administrator wants to ignore and instead focus on more significant illegal ac-
tivities like DoS attacks. Another example is Sleep EEG data in which tow significant
anomalies are Sleep Spindle (SS) and K-Complexes (KC). Around 100 sleep spindles
will occur during the course of a night. The number of K-Complexes is much fewer.
For some experiments scientists are interested in identifying both sleep spindles and
K-Complexes but only want to be notified with an alert when a non-spindle anomaly
occurs (for example K-Complexes).
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x0 x1 x2 xT

y0 y1 y2 yT
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y(t)=Cx(t)

x(t+1)=Ax(t) 
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Latent error

Observed  error

e(t)=Cε(t)

ε(t+1)=Aε(t) 

LDS error model parameters: θ =(A,C)

Figure 1.2: A linear dynamic system is a model which defines a linear relationship be-
tween the latent (or hidden) state of the model and observed outputs. The LDS parameters
A and C need to be estimated from data. The LDS can also be used to model the relation-
ship between the latent and the observed residuals (right figure).

In this research, We introduce the Online Selective Anomaly Detection (OSAD)
problem which captures a particular scenario in sleep research.

The solution of the OSAD problem combines techniques form both data mining
and control theory. Data Mining is used to model and infer the normal EEG pattern
per subject. Experiments have shown that model parameters do not transfer accurately
across to other subjects. In our case we will use a Linear Dynamical System (LDS)
to model the EEG time series. Then based on frequency analysis, we infer the sleep
spindle (SS) pattern and integrate the pattern as a disturbance into the LDS. The control
theory part is used to design a new residual which suppresses SS signals but faithfully
represents other errors generated by the LDS model. Thus by selectively suppressing
SS pattern, the objectives of the OSAD problem are achieved.

for example, consider Figure 4.1. The top frame shows a typical EEG time series
with both the SS and KC highlighted. The middle frame shows a typical residual time
series based on an LDS model. The bottom frame shows a new residual designed to
solve the OSAD problem. Notice that the error due to the presence of SS is suppressed
but the residual due to the appearance of KC remains unaffected.

1.1 Contribution

We make the following four contributions:

• We have carried out an exhaustive survey of the traffic anomaly detection prob-
lem by creating a taxonomy based which includes: type of anomaly, time and
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Figure 1.3: Sleep spindles (SS) along with K-Complexes (KC) are defining characteristics
of stage 2 sleep. Both SS and KC will show up as residuals in an LDS system. The OSAD
problem will lead to a new residual time-series where SS will be automatically suppressed
but KC will remain unaffected. Due to relatively high frequency of SS, there are certain
situations where sleep scientists only want to be alerted when a non-SS anomaly occurs

network granularity, detection method.

• A key observation that we have made is that network anomalies can be distin-
guished on the basis of within (temporal) and between (spatial) correlation. For
example, DoS attacks are distinguished by violating the existing within corre-
lation in a time series, while port scans are violate spatial correlation. Based
on this observation we have designed a unified approach for network anomaly
detection based on Hankel (trajectory) matrix decomposition. To the best of our
knowlege, this is the first approach which can accurately detect both DoS attacks
and port scans.

• We introduce a new computational problem, the Online Selective Anomaly De-
tection (OSAD), to model a specific scenario emerging while analysing time se-
ries data obtained from sleep experiments. The OSAD problem was introduced
to design a residual system, where all anomalies (known and unknown) are de-
tected but the system only triggers an alarm when non-SS anomalies appear.

• In order to solve OSAD, we combine techniques from data mining and control
theory. In particular we will use a Linear Dynamic System (LDS) to model the
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1.1 Contribution

underlying data generating process and use control theory techniques to design
an appropriate residual system. In particular a function of the residual will be
used to manipulate the changes in the error. The design objective will be to map
the anomalies generated by the P pattern into the null space of the new residual.
We claim that is one of the rare occasions where control theory techniques have
been integrated with a data mining solution.
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2

Background on Network Anomaly
Detection

CYBERATTACKS are now widely reported in the media and their frequency is grow-

ing. The aim of network intrusion detection techniques is to identify the digital

signatures of known and predefined attacks in network traffic. However, cyber-attacks

are constantly evolving and traditional intrusion detection systems are unable to detect

what are called zero-day attacks. A new class of detection techniques which are based

on the statistical analysis of network traffic have emerged for identifying zero-day at-

tacks. These systems are often called network anomaly detection systems (NADS).

The aim of this chapter is to survey known techniques in NADS and to suggest direc-

tions for future research. We present an exhaustive survey for the problem of traffic

anomaly detection containing all the information the problem-solver needs for under-

standing and addressing the problem. Then we provide a taxonomy of current solu-

tions in order to identify their contributions and point out their impacts as well as their

drawbacks.

2.1 Preliminaries

Experts have estimated that cybercrime now costs businesses hundreds of billions a

year. In 2012 a Web-based attack was blocked every 0.35 seconds1. Malicious Internet

1Source: http://www.symantec.com/threatreport/.
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Figure 2.1: The 2010 costs per compromised record of data breaches by primary causes,
along with frequency of the causes. The highest costs were due to malicious attacks.2

attacks are increasingly growing in both volume and sophistication. For example, the

Internet Security Threat Report published by Symantec1 in early 2012 noted web-

based attacks increased by 36%, compared to the previous year, with over 4500 new

attacks each day. The report also stated that 403 million new variants of malware were

created in 2011, a 41% increase over 2010. Some high profile attacks which have made

it to world headlines include the Stuxnet computer worm attack in 2010 and the denial

of service attacks on credit card companies by supporters of Wikileaks.

Besides public and government concern about the security of the Internet infras-

tructure, considerable costs are incurred by organizations and companies to repair the

damage after a cyber attack. A recent study in the US, UK and Australia estimated

the cost per data record compromised by data breaches caused by malicious attacks,

negligence and system failures. The cost due to malicious attacks were highest in

all three countries (see Figure 1). For example, in the United States, the cost per af-

fected data record caused by a malicious attack was 318USD compared to 210USD

due to negligence and 196USD due to system failure. Similarly the Annual US Cost

of Data Breach Study2 notes that the average of total per-incident costs in 2010 was

nearly 7.2 million, an increase of 7% from 2009, while the most expensive data breach

event cost one organization 35.3 million to resolve. To fix network problems quickly

and thus limit losses, we must be able to detect abnormal events in an acceptable

time. Most commercially available security products use a signature-based model

1Symantec Corp., Internet Security Threat Report, http://www.symantec.com/
2 A benchmark study of 51 U.S. companies, 38 UK companies, and 19 Australia companies related

to breaches of sensitive information conducted by Ponemon Institute, LLC , http://www.symantec.com/
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2.1 Preliminaries

Figure 2.2: The number of new signature codes created by Symantec as malicious events.
An explosive growth of new attack patterns is noticed in the Symantec reports from 2002
to 2010.1

[20, 21, 22, 23, 24, 25, 26] to prevent against malicious attacks. Systems which use

signatures for detecting network anomalies are often called Intrusion Detection Sys-

tems (IDS). A signature is a distinctive pattern associated with a known attack(s). Once

an attack is identified a signature is created and then registered with the system. For

example, a common signature is to check if both the SYN and FIN flags in a TCP

packet are simultaneously set. These are mutually exclusive flags as they determine

the beginning and end of a tcp transmission sequence. How a system will react to

these packets will depend upon the underlying operating system in place. Thus this

attack can be used to determine the operating system in use.

There are two major limitations of signature-based systems. The first is that signature-

based systems are vulnerable to new and previously unknown attacks. These are re-

ferred to as zero-days attacks. The second, is the fact that the number of attacks in

growing at a rapid pace. According to a Symantec report, more than 286 million new

threats were detected just in 2010, which is a huge increase compared to previous

years. Fig.2.2 shows the number of new signatures created by Symantec each year

from 2002 to 2010. There has been a dramatic rise in the number of new attack pat-

terns discovered and documented during recent years.

Due to the above noted limitations of signature-based attacks the research focus has

shifted to a statistical approach for detecting network anomalies. The key idea behind a

statistical-based approach is to create a statistical profile of “normal traffic” and report
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2. BACKGROUND ON NETWORK ANOMALY DETECTION

deviations away from the normal behaviour as anomalies. The aim of this survey is

to elaborate on this idea and survey the various techniques which have been used for

both creating normal profiles but also detection systems which report deviations from

normal behavior.

Detecting anomalous behavior through monitoring network resources is the main

purpose of anomaly identification systems. Anomaly detection in the context of com-

puter networks is finding unusual and large changes of interest in network traffic.

Anomalies can be caused by many reasons, ranging from intentional attacks, e.g dis-

tributed denial of service (DDoS), to unusual network traffic, e.g flash crowds. Anomaly

identification can be implemented on a traditional intrusion detection system (IDS) or

a network anomaly detection system (NADS). Traditional IDS are based on finding

attacks corresponding to predefined pattern data sets, known as signatures.

In response to the need for more effective identification, NADS have been intro-

duced not only to detect zero-day attacks without any pre-identified signature, but to

profile normal behavior of the network and address suspected incidents. Anomaly de-

tection is an emerging research topic, although various commercial intrusion detection

tools have been developed. Despite significant progress in the field of security, con-

siderable research gaps remain. Addressing this issue involves developing an effective

design approach for finding abnormal patterns in network behavior. Such a problem

can be well addressed in data mining framework. However, there are reasons that make

network anomaly detection a hard target for data mining approaches. First, network

anomaly detection has not been clearly defined or mathematically clarified. Computer

networks are huge in size and varied in data. Despite research progress in explaining

traffic behavior in computer networks, the relation between network topologies and

data transfer is still largely an open question. Second, a lack of agreement about how

anomalies are defined makes it difficult to solve the problem of finding them. Most of

the available data-sets lack confirmed labels of actual attacks experienced in a real net-

work. Anomaly investigators manually identify and categorize anomalies using ground

truth. Third, there is no substantial model for describing the behavior of computer net-

works in the context of data crossing over them. As a result, statistical non-parametric

approaches are thus far the best data mining techniques for determining abnormalities

in network data. However, few parametric approaches have been introduced to explain
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2.2 The NAD Problem Statement

network behavior as a priori, in which any deviation from typical model would be con-
sidered as anomalous.
Developing an effective design approach to ensure efficient practical performance is
therefore a high priority if we are to devote the next generation of network anomaly
detection systems.

2.2 The NAD Problem Statement

Network providers are concerned about any change in traffic that might impact their
Service-Level Agreements (SLAs) with their customers, including faulty or miscon-
figured routers, unexpected traffic such as flash crowds, and malware threats posed to
their networks. Network anomaly detection dates back to the 80s when James Ander-
son introduced the notion of intrusion detection in a seminal paper [27]. This was the
first prominent discussion of the concept of detecting misuses and determining user
behaviors, and led to developments of auditing subsystems in every operating system.
This work provided the foundation for future intrusion detection systems. In 1984,
Dorothy Denning from SRI International helped to launch the intrusion detection ex-
pert system (IDES) on the original internet, ARPANET. Traditional intrusion detection
solutions that have grown out of these efforts are almost all signature-based methods.
A signature-based intrusion detection system uses a set of pre-configured and pre-
determined attack patterns, known as signatures, to catch a specific, malicious incident
in network traffic. This is usually referred to as misuse detection in network. The set of
the signatures must be frequently brought up to date to recognise new emerging threats
to reach a high level of security performance [21].
In 1987, Denning published her important paper – An Intrusion Detection Model – in
which she introduced the concept of network anomaly detection systems as an alarm
scheme for abnormal system behavior [28]. Putting together an activity profile of nor-
mal activities over time and finding the deviation from these typical behaviors, she es-
tablished a NAD approach, in contrast with the traditional IDS approach. This concept
provided computer/network security field with the foundation for developing commer-
cial IDS. An anomaly-based IDS sets up a routine activity baseline based on normal
network traffic assessments. Thus, the behavior of network traffic activity can be mon-
itored to enable action when network behavior varies from the typical activity profile.
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2. BACKGROUND ON NETWORK ANOMALY DETECTION

In summary, while an IDS detects a known misuse signature in network traffic, NAD

tries to identify a new or previously unknown abnormal behavior.

The research community has proposed a number of technical solutions to look for un-

usual changes in traffic behaviour and subsequently determines the causes of these

changes. Traffic packets flowing through an Internet point consist of actual data, pay-

load, routed by the headers which contain identification information such as the source

and destination IP address of the traffic.
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Figure 2.3: Traffic data is very dynamic, showing a long term trend pattern, transient
oscillations with high frequency and significant changes in these oscillations are typically
associated with anomalies.

Usually, sampled traffic from each node is processed for a period of time and a

predefined sampling rate. Also, in order to avoid synchronization issues, usually traffic

flow data is aggregated into time bins which can be some defined minutes. Anomaly

detection procedures typically consist of two steps: (1) building a model that represents

the time series, and (2) using the model to flag an anomaly whenever the observed

traffic deviates from it. We employ an example taken from the Abilene network1 traffic

to demonstrate the concept of an anomaly detection in networks. The dotted line in

Fig.2.3 shows a time series of the number of packets counted every five minutes on a

link connecting users of Internet2 to a backbone router in New York. The long term

trend is decoupled from the transient oscillation by using a Fourier analysis; shown

with the solid line. Next, the detector method provides the tolerance for deviation

1 http://www.internet2.edu/
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2.2 The NAD Problem Statement

from the baseline model, and consequently a time point is flagged anomalous if the
observed value violates the tolerance.

2.2.1 Traffic Metrics

Early anomaly detection techniques investigated so-called volume metrics, i.e., the
total number of packets, bytes, or connections observed on a single network link
[6, 10, 11, 12, 13, 23, 29, 30, 31]. Volume metrics are immediately related to link’s
utilization so that high utilization can indicate attacks or flash crowds, while unusually
low utilization can indicate link failures and routing changes. Since the early detectors
were introduced to be installed in access links (e.g., in academic campuses [6] and en-
terprises [10]) where traffic is less aggregated than in backbones, volume investigation
could easily expose the unusual events of these networks. Although, many anoma-
lies could be covered by gigabytes of background traffic when an anomaly detector is
deployed in the internet’s core, but there are many anomalies that are difficult to be
detected by volume analysis. This type of anomalies could be caught by analysing
non-volume metrics such as number of flows observed in a link, or a network. Port
scans are a prototype example of this sort of anomalies. Flow is a significant traffic
metric widely used for anomalous traffic behaviour.

A TCP/IP flow is uniquely identified by as a unidirectional sequence of packets
all sharing all of the following 5 values of header parameters, called 5-tuple, within a
certain time period:

• Source IP address

• Destination IP address

• Source port number

• Destination port number

• Layer 4 protocol (TCP/UDP/ICMP)

With the increase in availability of flow-level traces (e.g., Cisco Net Flow1 and
Juniper J-Flow2), Lakhina et al. [32] proposed using the entropy of header features
of the flows, e.g. IP addresses and ports, as an effective metric for anomaly detection.
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2. BACKGROUND ON NETWORK ANOMALY DETECTION

This was on the ground that entropy is a measure of dispersion and concentration in a

given distribution. For example, the entropy of source IP addresses decreases during a

DoS attack because the distribution of packets per address is concentrated in attacker

IP address.

Some succeeding works have explored the use of other information-theoretic met-

rics in anomaly detection: Gu et al. [33] proposed the Kullback-Leibler (KL) diver-

gence, to compare the distribution of packet classes inside a time bin to a baseline

distribution obtained through a Maximum-Entropy optimization problem.

Later, Nychis et al. [34] showed that the entropies of flow size and degree distribu-

tions can flag low-volume anomalies in their dataset that go unnoticed in the entropies

of features like addresses and ports.

2.2.2 Traffic Aggregation

Network monitoring systems needs to use data reduction practices to handle overload

situations and generate practical traffic time series. This usually consists of packet/

traffic sampling, flow aggregation or a combination of them. Cisco’s NetFlow 1, per-

haps the most deployed solution in todays routers, uses packet sampling schemes to

handle the large volumes of data exported and to reduce the load on the router. The

sampling rate is defined at configuration time, and network administrators set it to a

conservative value e.g, 1/100 or 1/1000 packets.

Various solutions for sampling techniques are available including Adaptive Net-

Flow [35], which is able to tune the sampling rate to the memory consumption , Flow

Slices [36] ,which uses a combination of packet sampling and a variant of thresholds

adapted to runtime conditions.

Another solution is using an aggregation technique, instead of sampling, to handle

memory and CPU limitations [37]. [38] extended the Cisco’s NetFlow into a report of

12 traffic summaries which are the answers for a number of predefined questions.

Note that using any traffic aggregations would generally lead to less accurate anal-

ysis as aggregations can contain too little, or too much, traffic, presenting a mixture of

both legitimate and anomalous flows.

1Cisco NetFlow http://www.cisco.com/web/go/netflow/
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2.2.3 Network Known-Anomalies Characterisation

Network attacks have evolved during recent years and became progressively more

complicated. Malicious attacks are classified in distinct categories including a wide

variety of viruses, worms and vicious programs. In the other side, there are some le-

gitimate events that lead to abnormal behaviors in network. Here some of common

network abnormalities and threats are described in order to a provide a general view of

network anomalies.

DoS/DDoS: The goal of a denial of service attack is to make a target system’s

resource unavailable to prevent legitimate users from gaining access to the service

provided. Typically attacker floods the target server until it becomes overloaded and

cannot route legitimate traffic because of capacity deficient. The main feature of DoS

attacks is the emergence of a spike in traffic data towards a dominant destination IP

[39, 40].

Port scan: In a port scan attack, intruder scans TCP or UDP vulnerable ports to

find services they can break into. Any spike in traffic data from a dominant source IP

is assumed to be a suspected port scan attack [41].

Flash crowd: Flash-crowds occur when there is an unusually large demand for a

resource, and are the non-malicious version of distributed denial of service (DDoS).

The distinctive feature of a flash crowd is again a spike in traffic data to a dominant

destination IP [39].

Worm: Computer worms are self-replicating program codes that are executed in-

dependently and spread across a network. Abusing security flaws in a target computer,

a worm send copies of itself to other computers on the network without user involve-

ment.

Ingress shift: An ingress shift anomaly happens when a customer shifts traffic

from one ingress point to another. As an instance, when a client changes addresses

of services or modifies routing policies in a service there will be an ingress shift. The

main attribute of an ingress shift is that traffic in one group of OD flows, which include

the existing ingress point; decrease while there will be a spike in another group of

OD flows which involved a new ingress point [41].

Point to multipoint: It can be defined as distribution of content from a single

source, e.g. one server, to many destinations, e.g. users. During a point-to-multipoint
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event there will be a spike in traffic from a dominant source to the same port of numer-

ous destinations [41].

Outage events: Outage anomalies are equipment failures or maintenance events

that cause decrease (or even to zero) in traffic exchanged between an origin and des-

tination pair. When an outage happens, there is a dramatic decrease in traffic from a

dominant source to a dominant destination. Outage anomalies are equipment failures

or maintenance events that cause a decrease (even to zero) in traffic exchanged between

an origin and destination pair.

Network anomalies can be classified based on their traffic properties, regardless

of whether they represent malicious attacks, legal but abnormal incidents, or technical

failures [42, 43].

Table 2.1: Characterizing network anomalies based on their features, number of bytes
(#B), packets (#P) , flows (#F) and the entropy of flows features.

Anomalies volume non− volume

#B #P #F entropies

DoS/DDoS ⇑ ⇑ m
port scan ⇑ m
flash crowd ⇑ ⇑ m
worm ⇑ m
ingress shift ⇑ ⇑ ⇑ m
point to multi-point ⇑ ⇑ m
outage ⇑

The arrows ⇑ show spike in the feature.
The arrows m show change in the feature.

Traffic volume measurement in each time bin can be based on packet counting

or byte counting. Packet-count traffic is the total number of packets counted in an

OD flow or link measurement, while byte-count traffic is the total number of bytes.

Some volume anomalies involve byte-count traffic change and some make changes in

packet-count traffic; some anomalies can affect both. Network anomalies and threats
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Figure 2.4: The Abilene network includes 11 regional aggregation points (giga-PoPs).

can be characterised based on their feature properties, as Table 2.1 shows a summary

of anomalies feature characterisation.

2.2.4 Network-Wide Anomaly Detection

Diagnosing traffic anomalies spanning multiple links in a network is called network-

wide anomaly detection. Significant traffic demand in a whole network is known as

origin-destination flows (OD flows); described as a volume of traffic flows between all

pair of PoPs in a specified network [44, 45, 46]. The links, where each OD flow passes

through the network between source and destination, is determined in a routing matrix

and consequently the superposition of those OD flows results in the traffic observed on

each links.

In this work we use the Abilene network1, used widely for network anomaly de-

tection [8, 12, 32, 47, 48, 49].

This network includes 11 regional network aggregation points (giga-PoPs) with an

OC-192c (10 Gbps) backbone connecting many universities, research labs and affiliate

member institutions. The geographical topology of this network is shown in Fig.2.4.

Consider a subset of the network consisting of four nodes: Cleveland, NewYork, Wash-

ington DC, and Atlanta, as shown in Fig.2.4. This network is being observed at time

1Internet2 - http://www.internet2.edu/
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t. Suppose there are Four OD flows between NewYork and Washington DC (denoted

by x1,t), NewYork and Atlanta (denoted by x2,t), Washinton DC and Atlanta (denoted

by x3,t) and Atlanta and Cleveland (denoted by x4,t). Therefore, the traffic observed on

the NewYork node, denoted by y1,t and called NewYork link, is the following superpo-

sition of passing OD flows:

y1,t = x1,t + x2,t

And if it is done respectively for all links, the equations will be:
y1,t
y2,t
y3,t
y4,t

=


1 1 0 0
1 0 1 0
0 1 1 1
0 0 0 1




x1,t
x2,t
x3,t
x4,t


Or in vector form:

yt = Atxt

At is called the Routing matrix and that describes the routes of all OD flows. In a

general network of M links and N OD flows, Routing matrix A= (amn)(M×N) is defined

as:

amn =

{
1 if OD flow n pass through link m
0 otherwise

Assuming At is constant, we expand the traffic equation over time interval of t =

[1, ...,T ], where vector yt of size M is replaced by matrix Y(M×T ); which shows the

traffic over links during time interval [1, ...,T ]; and vector xt of size N is replaced by

matrix X(N×T ); which is the traffic volume over N routes during same time interval. So

the equation in matrix form will be:

Y(M×T ) = A(M×N)X(N×T )

Column vectors of Y and X represent the traffic volume of all M links or all N OD flows

at different times, while row vectors in them display time series of traffic volume in

links and OD flows, respectively. This traffic equation describes the relation between

two multivariate time series in networks, OD flows and link matrices, which are con-

nected to each other via Routing matrix.

Every sudden change in an OD flow traffic X is formally considered to be a volume

anomaly, which often spans over several links in a network [41, 50, 51]. Such changes
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can be due to a range of anomalies surrounding changes in volume metrics in traffic.

These anomalies are known as volume anomalies. For instance, when a DoS attack

is launched, a large number of packets is sent from one host to a target server, which

means that number of packets between this OD pair should dramatically increase dur-

ing the attack time.

Early detectors relied on volume metrics, i.e., the total number of packets, bytes,

or connections observed per time slot on a link (for example NewYork link in Abilene

network). This was due to the availability of volume metrics through SNMP (Simple

Network Management Protocol is an Internet-standard protocol for managing devices

on IP networks). Then OD flow matrix X would be estimated through link measure-

ments Y by solving an inverse problem. This process, called Network Tomography and

its connection to anomaly detection will be discussed in next section. In a major work,

Lakhina et al. [47] proposed analysing the spatial correlation across link measurements

Y from multiple links in a network, to find the so-called network-wide anomalies.

Accurately estimating OD flows (which typically are only estimated from link counts)

can be very complex. Soule et al. [12, 52] discussed that traffic matrix X is indeed

better than links and routers Y , because they lead to fewer false alarms. Later in a

followed work, Lakhina et al. [32] aggregated traffic according to origin-destination

(OD) flows and applied spatial correlation analysis directly to the traffic matrix X in a

network, leading to a wider range of anomalies.

2.2.5 Network Anomography

Network anomography was first introduced by Zhang et. al, [13], to refer to the prob-

lem of finding network anomalies in the context of network tomography schemes. The

term network tomography was coined by Vardi in 1996 [53], as the problem of estimat-

ing OD flow matrix X through link measurements Y . Network tomography has opened

up an area of network study that involves solving an inverse under-determined linear

equation system. A number of studies have attempted to solve the network inference

problem, a major problem in traffic engineering. Network anomography framework

tries to infer network anomalies (changes in OD flows) from non-direct measurements

21



2. BACKGROUND ON NETWORK ANOMALY DETECTION

(link load measurements) [13]. To describe the scheme, again consider the network

shown in Fig.2.5 and the corresponding traffic equation:

Y(M×T) = A(M×N)X(N×T)

Assuming only link data measurements (matrix Y ) are available, there are two solution

strategies for finding traffic anomalies in the above equation: early inverse and late

inverse. The early inverse, which normally senses more instinctively, comprises two

steps:

1. Network tomography: finding OD flow matrix by solving the inverse equation

of X = A−1Y , which is an inference problem.

2. Anomaly detection: finding anomalies in inferred OD flow matrix, which is a

detection problem.

Despite this simple and straightforward concept, the early inverse strategy deals with

an ill-posed inverse problem whose solutions cannot be always available or accurate,

so any imprecision will affect the results at next step. Late inverse strategy has been

proposed [13] by moving the inverse problem to a later step and substituting anomaly

detection in truthful link-load measurements for unavailable OD flow matrix masses:

1. Anomaly detection: finding link anomalies in link-load measurements, which is

a detection problem.

2. Anomaly Inference: inferring OD flow anomalies from link anomalies, which is

an inverse problem.

Thus, network anomography involves solving an inverse problem. Two solutions have

been discussed for the linear inverse problem: classical Pseudoinverse and recently

proposed maximum sparsity. Pseudoinverse is the common solution for finding inverse

matrix in general, while maximum sparsity has been proved to show better results [13].
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Pseudoinverse solution: With common assumption that A has full-column rank, its
Pseudoinverse, denoted by A+, gives a unique solution for inferred anomaly vectorx,
denoted by x̃, based on least square error. Since the matrix A normally has fewer rows
(number of links) than columns (number of OD pairs), so it is an under-determined
case. We only need to search for a vector x̃ with minimum Euclidean norm l2 – in
other words, to minimize the difference between A+x̃ and ỹ:

‖ A+x̃− ỹ ‖2

Minimise ‖ x̃ ‖2 subject to ‖ A+x̃− ỹ ‖2 is minimal
Euclidean norm is defined by:

‖ x̃ ‖2 =
√

∑
i

x̃2
i

Pseudoinverse is the classical solution to inverse problems, but the results in most ap-
plications are not useful because unknown coefficients seldom have zero effects [13].

Maximum sparsity solution: More recent studies have focused on enforcing the
sparsity constraint when solving for the under-determined system of linear equations.
Since there are typically just a few large values of anomalies at each point of time, the
data is sparse. Consequently, we can maximize the sparsity of x̃ by minimizing its l0,
which means maximizing the number of zero coefficients. Minimize ‖ x̃ ‖0 subject to
ỹ = A+x̃ where:

‖ x̃ ‖0 = ∑
i

x̃0
i

This minimisation is computationally intractable and NP-hard because of the non-
convexity of l0. In practical terms, there are two strategies to deal with minimising
the l0 norm: either using heuristics such as greedy algorithms as good examples, or
using a convex function to approximately minimise the l0 norm. Based on a recent
work on under-determined systems [54, 55], minimising the l1 norm is equivalent to
minimising the l0 norm in sparse solutions. In fact, l0 is convexified by replacing with
l1, defined as:

‖ x̃ ‖1 = ∑
i
| x̃i |

Minimising the l1 norm is done as a linear program by available efficient methods.
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92%
8%

8%

wide-network detection single-link detection

Figure 2.5: Running Kalman filter on Abilene data shows the overlap between anomaly
found by each approach is large while both approaches find some anomalies that the other
misses.

2.2.6 Single-link Vs. Network-wide Detection

Separating normal and anomalous network-wide traffic conditions we are able to find

anomalies spanning multiple links in a network. There are many advantages related

with network-wide traffic analysis but they are also followed by some disadvantages.

The first drawback that has to be faced while using this framework is the need for

ISP (Internet Service Providers) support. Some other drawbacks related with network-

wide methods are that it is computationally expensive, it needs centralised algorithm

and provides only single time scale analysis. There has been no quantitative evalu-

ation of the advantage that network-wide frameworks have over single-link methods.

However, in a sole work, Silveira et al. [56] run Kalman Filter as one of the network-

wide anomaly detection techniques, using the data from all links in Inetnet2 at once,

and also individually for each link. They report two important observations: first the

intersection of anomalies found by both approaches is about 92%, and second both

approaches have same complement anomalies around 8%. In the other word, both of

them miss some anomalies which are only found by the other.

2.2.7 A Unified Statement

Network anomaly detection schemes aim at defining network traffic as

Traffic ≈ F( [normal component] , [abnormal component] ) + Noise
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Assume that the variability of Internet traffic is characterised by a distribution which

generates the observational data and is corrupted by external anomalous events and

internal noise in the system as

y(t) = F(α1, ...,αm,)+ ε(t)

where F corresponds to the unknown distribution and ε(t) captures the noise in the

system. By monitoring the traffic flowing through an Internet point we obtain a time

series of scalar measurements:

y = (y(1),y(2),y(3), . . . ...y(t), . . . ,y(n))

Here, each element of the time series could represent a certain time varying network

traffic characteristic, for example, the volume of traffic or the entropy of flows in a

certain time granularity. The ”Residual function” defined by

R(y;α0;α1; ...;αM) = y−F(α1, ...,αm,)

captures the difference between observations and the expected variations. Since the

residual function R(x;αm) is identical to ε(t) which captures the noise in the system

for the normal traffic behaviour, the first challenge then is to choose the proper fit F

for normal behaviour and the second is how to investigate the residual space to flag an

anomaly. The different NAD solutions differ mainly in their strategies for facing these

challenges. Robust and reliable solutions to the above abstract problem require very

accurate traffic models that have the ability to capture the statistical characteristics of

the actual traffic on the network. However, the complexity of network traffic variability

due to long-range dependence, self-similarity and, more recently, multifractality leads

many NAD methods into failure.

2.3 The Solutions

2.3.1 Classification of NAD Solutions

Many approaches have been cited in the literature to address the network anomaly de-

tection problem. We identify the contributions from proposed works by dividing them
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into sub-problems within traffic anomaly detection: (1) the network layer where traffic

data are observed; and (2) the traffic metrics that can expose anomalies; and (3) the

granularity of observation and (4) the time scale for observation and finally (5) the sta-

tistical techniques used to flag outliers in these traffic metrics. These sub-problems are

identified in a taxonomy shown in Fig.2.6. Note that we separate this work from those

analyse control data e.g., routing messages; also from those that analyse traffic from

specific applications e.g., e-mail. The purpose of this work is to survey those tech-

niques that have been analysing the general traffic data regardless of the application.

Network stack - Early NAD solutions have treated anomalies as non-conformities

in the overall traffic volume measured in the Data-Link layer of the network stack. The

volume indices can be either byte counts or packet counts. In wide-network granular-

ity, the OD flow anomalies must be inferred by solving an under-determined inverse

problem in the network traffic equation (discussed in section 2.2).

Next generation solutions developed with the increase in availability of flow-level

traces by tools like Cisco NetFlow1 and Juniper J-Flow2). Measurements in network

layer include flow data on top of traffic volume count.

Granularity - There tow classes of approach within the current anomaly detection

techniques; one exploits measurements from multiple vantage points called network-

wide detection and the other one focuses on measurements from a single link. A wide-

network anomaly detection approach can expos a wider range of suspicious events;

although it would lead to a greater computational cost.

Traffic metric - NADS initially used traffic volume resource and gradually im-

proved by introducing metrics of higher level of information, e.g. number of flows.

Volume metrics including either packet counts or byte counts are available through

protocols such as SNMP at Data-Link Layer. SNMP, a monitoring and management

protocol, can measure the data at the link level by counting the number of packets or

bytes entering the node, which results in matrix Y in the network traffic equation.

1Cisco NetFlow http://www.cisco.com/web/go/netflow/
2Juniper JFlow http://www.juniper.net/products/junos/
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The number of traffic flows has been commonly used as an effective resource met-
ric for identifying a wide range of volume and non-volume anomalies as large classes
of anomalies do not cause noticeable change in traffic volume e.g., a slight port scan.
Newer traffic analysing tools, e.g. Cisco’s NetFlow, which was developed by Cisco
Systems [57] and soon after became an industry standard for IP flow traffic measure-
ment, measures the data at the network layer.

Another innovative metric for traffic measured in IP networks is the entropy of
feature distributions. This metric calculates the normalised entropy of information in
packet header. It has been shown that the patterns of many network anomalies have
significant effects on this introduced measure [34].

Time scale - Most of the proposed techniques are based on time series analysis, in
which a daily, weekly or monthly window of time bins is specified for constructing uni-
variate/multivariate traffic matrices. Alternatively, consecutive time approach focuses
only on every two consecutive time bins for analysis and decision making. Therefore,
consecutive time analysis performs a local search of outliers in data, compared to the
time series analysis that mines outliers within a whole set of data as global outliers.

Potential anomalies - In general, based on granularity, time window in data pre-
sentation, and statistical technique, each methods is capable of finding different types
of anomalies in a network.

According to this classification, the first generation of NAD solutions is subspace
method using link-level data, and involves detecting link anomalies and then infer-
ring flow anomalies from them by solving an under-determined inverse problem. The
subspace method using link-level data successfully spots volume anomalies. This sub-
space method is directly applied to the network-level time series in the next generation
of the techniques and consequently, the inference problem would not be involved. The
subspace method using network-level data could identify a wider range of volume and
non-volume anomalies. The subspace method is the basis of many methodologies in-
troduced to find anomalies, but Ringberg et al. have shown [58] that it is incapable of
finding normal-space anomalies, and is very sensitive to parameter tuning.
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Figure 2.6: Our proposed taxonomy provides a classification framework for network anomaly diagnosis methodologies.
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Statistical Approaches

Spectral MethodsTime series Methods

Frequency VarianceForecasting

Wavelets

Fourier 

PCA-basedKalman Filter

EWMA

Holt-Winters  
ARIMA

State-Space

Smoothing Linear fitting
ASTUTE

Time-consequtive model

Subspace methods

Figure 2.7: Classification of network anomaly detection methodologies based on the ap-
plied approaches.

Soule et al. [12] proposed the Kalman filter as a forecasting model for detecting

and inferring anomalies in multiple links of a network, using both link measurements

and IP flows counts. The third generation appeared in another work by Lakhina et al.

[32], in which they applied the subspace method once again on the entropies metric and

showed it yields a wider range of traffic anomalies. ASTUTE is the latest effort which

offers using a new statistical model to expose anomalies that are more difficult to find

by other approaches [59, 60, 61]. Since ASTUTE is incapable of finding anomalies

associated with large number of flows, Silveira et al. suggested using a hybrid system

consisting of ASTUTE and one of the common methods. However, implementing a

hybrid system is likely to be complicated in practice.

We also classify the proposed methods based on characteristics derived from their

technical approach, shown as Fig.2.7.

2.3.2 Timeseries Forecasting

Early traffic anomaly detectors have been developed on conventional time series fore-

casting techniques. They use historical observed traffic to build a predictive model;

and consequently a prediction error between the observed and forecast values is com-

29



2. BACKGROUND ON NETWORK ANOMALY DETECTION

puted. If this error violates a given detection threshold the method flags an alarm. Two

types of time series forecasting approaches used for building traffic forecast prototype:

(1) smoothing models and (2) Box-Jenkins models. Brutlag [10] and Krishnamurthy et

al. [11, 39] proposed smoothing models: Moving Average, its weighted successors S-

shaped Moving Average and Exponentially Weighted Moving Average (EWMA) and

a Holt-Winters model. Consider the traffic Y of m× T measured as volume counts/

flow counts or entropies. then: Moving average model:

ŷt =
∑

i=Q
i=1 ŷt−i

Q

Exponentially Weighted Moving Average (EWMA):

ŷt = αyt−1 +(1−α)ŷt−1

and Holt-Winters model which accounts for linear and seasonal trends:

ŷt = at−1 +bt−1 + ct−m

The three components correspond to a baseline, a linear trend and a seasonal trend

respectively. The formulas to update these coefficients are

at = α(y− t− ct−m)+(1−α)(at−1 +bt−1)

bt = β (at−at−1)+(1−β )bt−1

ct = γ(yt−at)+(1− γ)ct−m

2.3.3 Frequency Analysis

Frequency techniques, in general, transform a time series into a new frequency space,

decomposing it into low, medium, and high frequency components. A NAD method

using this approach assumes that normal traffic patterns lie in the low frequency com-

ponents, and that changes in the medium and high frequency components are due to

anomalies. So NAD frequency methods filter out high and medium frequencies com-

ponents as they are supposed to capture the fast changes in traffic.
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2.3.3.1 Fourier Analysis

Zhang et al. [13] applied a Fourier transform to decomposes the traffic time series into
a linear mixture of Sine and Cosine principal components to investigate its frequency
variations. Let y[t] be the traffic measured as volume counts, flow counts or entropies.

• Transform y[t] into the frequency domain using a Discrete Fourier Transform
(DFT) defined by

f [t] =
1
T

T−1

∑
k=0

y[k]e− j 2π

T kt for 0≤ k ≤ T −1

• Set low frequency components to 0

f [k] = 0 for k ∈ [1, fc]∪ [T − fc,T ]

where fc is called cut-off frequency. For example, for a 5-minute aggregated
traffic data a cut-off frequency of one cycle per hour corresponds to fc =

5
60T .

• Use the Inverse Discrete Fourier Transform (IDFT) to reconstruct the traffic in
time domain by

ỹ[t] =
T−1

∑
k=0

f [k]e j 2π

T kt , for 0≤ k ≤ T −1

This is the residual space resulting from the Fourier analysis.

R(t, fc) = ỹ[t]

The most popular algorithm for calculating both DFT and IDFT is Fast Fourier Trans-
formation (FFT).

2.3.3.2 Wavelet Analysis

A more sophisticated spectral method used for network anomaly detection is Wavelet
analysis, as developed by Barford et al. [6] and discussed by [13, 62]. Since classical
Fourier analysis is not able to tackle fast and intermittent variation in data, the new
wavelet-based spectral approach is based on embedding a manifold in time domain
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to study time-frequency variations of the data. In theory, a Wavelet transformation de-
composes a time series into localised and scaled component by discriminating between
fast and slow oscillations. Hence, it projects the data onto a set of non-orthogonal func-
tions. A NAD algorithm based on Wavelets shares the same principle as the FFT based
approach: filter out mid and high frequency components as residual space. The algo-
rithm can be summarised as following.

• Apply a multi-level one-dimensional Wavelet decomposition on each row of traf-
fic matrix to get the Wavelet transformed of the traffic series

f [t,τ] =
1√
c

T−1

∑
k=0

y[k]ψ[(
k
c
− τ)T ]

where c is scaling factor, τ is time factor and ψ represents the Wavelet function.
The Wavelet function used in the implementations is Daubechies [63] Wavelet
of order 6.

• Set the coefficients at frequencies higher than a cut-off level ωc. In [6, 8, 13] ωc

of 3 used meaning only coefficient at frequency level 1,2 and 3 are kept.

• Reconstruct the high frequency space of the traffic by applying the Wavelet re-
construction procedure

ỹ[t] =

This is the residual space resulting from the Fourier analysis.

R(t,ωc) = ỹ[t]

Later, Lu et al. in [7] attempt to extract a wider range of anomalies using wavelet
approximation and prediction by ARX (AutoRegressive with eXogenous) model.

2.3.4 Subspace Method Using Link Data

Lakhina et al. [51] introduced the subspace method using principle component analy-
sis to detect anomalies through link-data measurements, and combined it with a greedy
algorithm to infer wide-network anomalies.
Principal component analysis: Known as one of the most common appearances of

32



2.3 The Solutions

non-parametric methods in the dimensionality reduction problem [64, 65, 66, 67], prin-
cipal components analysis (PCA) projects a multivariate space into a new subspace
with the smaller number of uncorrelated variables while the rebuilt data has as little as
possible change in variance. The new set of axes are called the principle component
of main data. The first principal component represents the variable that captures max-
imal variance of data, and the next subsequent component corresponds to the variable
capturing remaining maximal variance and is orthogonal to the first. The next ones
have smaller variances and point to the directions of remaining orthogonal principal
components.
Mathematical calculation includes eigenvalue decomposition of the covariance matrix
of the data set, after removing the mean of the data for each attribute. By applying
PCA to a matrix Y of size T ×m, a set of m principle components {u1, ...,u j, ...,um} is
computed. Supposing (‖Yu ‖2)

2 is the variance captured by each principal component,
then the first principal component u1 is given by:

u1 = argmax
‖u‖2=1

‖ Yu ‖2

While the jth principal component u j is:

u j = argmax
‖u‖2=1

‖ (Y−
j−1

∑
i=1

Yujuj
′)u ‖2

Subspace method based on PCA : There are a number of statistical tests for anoma-
lies using PCA. Dunia and Qin [68, 69] introduced a subspace approach based on the
decomposition of a main space of data into normal and anomalous subspaces, using
the projection of the data on the first few principle components and on the last few,
respectively. In [51] and [50], Lakhina et al. applied this approach to the network
anomaly detection problem using link measured volume traffic. In general, the last
few principal components are likely to contain information that does not conform to
the normal data [65]. Since the first few principal components capture most of variance
in the dataset, they are strongly related to one or more of the original variables.
Consider the traffic Y of m×T measured as volume counts from m links of a wide-
network over T times and apply PCA. Once ”Principle Components” have been deter-
mined by singular value decomposition of the covariance matrix, they are ordered by
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higher captured variance. Since PCs with higher variance characteristics are associated

with common periodic and deterministic trends, they tend to capture the most signif-

icant normal behaviour. So, the first, let say k, eigenvectors form a subspace called

normal subspace S̄ . PCs with low variance qualities are related to atypical and ab-

normal activities, so the remaining m− k eigenvectors form an anomalous or residual

subspace S̃. Followed by projecting the link traffic data Y onto these two assemblies,

normal and abnormal subspace of data appear:

Y = Ȳ+ Ỹ

Where Ȳ is a projection of Y onto S̄ and Ỹ is its projection onto S̃. Eventually if the

norm of a vector ỹt , t = {1, ...,T}, is large, then it is associated with an anomaly.

Thus, in last step, an alert threshold is applied across anomalous subspace to quantify

the significance of its vectors and detect suspected anomalies. When an anomaly oc-

curs, the normal residual component will change significantly, while it is reasonable to

assume that the normal components do not change. One of the proposed thresholds is

squared prediction error (SPE) , defined as:

R = (‖ ỹ ‖2)
2 = (‖ y− ȳ ‖2)

2

By applying a Q-statistics threshold for the squared prediction error at the 1−β con-

fidence level, the time of an anomaly is detected [51, 70]. The subspace method’s

detailed procedure has been presented in algorithm 2.

Anomography: Now, one needs to infer anomalies in OD flows from detected anoma-

lies in link data. Lakhina et al. [51] applied a greedy algorithm to identify anomalies.

Let denote A(:,i) as the ith column of the matrix A; define αi = A(:,i)/ ‖ A(:,i) ‖2 and

consider a set of hypothesized anomalies {χi}I
i=1 such that every anomaly vector χ is

a M×1 vector. Each non-zero element in χi represents an OD flow that participates in

the anomaly. For each anomalous time bin, the state vector can be decomposed to:

y = ẏ+αiχi

34



2.3 The Solutions

As a maximum sparsity approach, the best estimate can be computed as:

χ̂ = argmin
χi

‖ ỹ− α̂χi ‖2

This gives χ̂ = (α̃ ′α̃)−1α̃ ′ỹ by applying ỹ = (I−UU′)y and α̃ = (I−UU ′)α . Let
Ũ = (I−UU ′), now the anomaly χ̃ can be identified in the following two-steps:

1. compute ẏ by:

ẏ = y−αχi = (I−α(α̃ ′α̃)−1
α̃
′Ũ)y

2. anomaly χ̃i is given as i = argmini ‖ Ũ ẏi ‖2

2.3.5 Subspace Method Using Flow Data

Traffic flows are the source of rich information in networks. New flow monitoring tools
such as Cisco’s NetFlow understand the origin, the traffic destination, the time of day
and the application utilization. Recording this data, we can construct rich information
resources for traffic flows, which until now has not been easily available [71]. Again,
consider the network with specified N OD flows (in terms of byte counts, packet counts
and IP flow counts) over a specified time interval [1 T ]. In this network, OD flow
traffic matrix is constructed as X(N×T); where each row X(i, :) corresponds to the time
series of ith OD flow, (1≤ i≤ N), and each column X(:, t) represents the observed
OD flows at time t, (1≤ t≤ T). The OD flow matrix can be constructed in terms
of byte counts, packet counts, or IP flow counts. Applying PCA subspace method
directly to this data will detect network anomalies, for which the inference problem is
not involved.

2.3.6 Kalman Filter Method

Soule et al. [12] proposed using a Kalman filter as a forecasting model for detecting
anomalies in multiple links of a network. The Kalman filter has its root in dynamic
systems theory where the changes over time that occur in a set of variables is described
by employing some equations. The main advantage of this model over the subspace
method is that it is able to exploit both temporal and spatial correlations in data while
the subspace method only exploits spatial correlation.
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The idea is that since the OD flows are not directly measured while link measurements

are observed, the whole network can be considered as a linear dynamic system with

some hidden variables (OD flows) and observable dependent variables (link measure-

ments). Assuming that OD flows are hidden states of a dynamic system and the link

data are measurable output of the system, one can build a linear dynamic state space

model. Therefore, this dynamic model incorporates both OD flow data and link data,

and captures both temporal and spatial correlation in traffic flows. Such a model can be

used for estimating the OD flows from link measurements and then finding anomalies

through filtering the estimated states (estimated OD flows).

Modelling a linear dynamic system includes two steps: relating the observations to the

states and capturing the dynamic behaviour of the states as the evolution of states in

time. The first step is easily done by using traffic equation Yt = AtXt +Vt , where the

term Vt represents the stochastic measurement errors associated with the data collection

step; all of these parameters are defined for a general discrete time t. The second step

includes modelling the variability in states behaviour. Because of the diverse range

of variability, such as daily periodic trends and small magnitude random fluctuations,

the traffic in the network presents highly variable behaviour. Modelling this dynamic

behaviour involves complexity but provides rich information about a system. For this

purpose, a linear predictive model is constructed to relate the states between time t +1

and t as Xt+1 =BtXt +Wt , where Bt is called transition matrix, which captures temporal

and spatial correlations in the system, and Wt , which is a noise process representing

both the randomness in the fluctuation of a flow and the imperfection of the prediction

model. The completed model based on both described equations is given by:

{
Xt+1 = BtXt +Wt
Yt = AtXt+Vt

Assuming that both the state-noise Wt and the measurement-noise Vt are uncorre-

lated, and are zero-mean Gaussian white-noise processes and with covariance matrices

Qt and Rt , and given a set of observations {Y1, . . . ,Yt+1}, the aim of the problem is to

establish an estimation filter to generate an optimal estimate of the states in time t +1,

denoted by X̂t+1, while the optimality function is defined as Minimum Variance Error

Estimator:
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E[‖Xt+1− X̂t+1‖
2
]

= E[(Xt+1− X̂t+1)
′(Xt+1− X̂t+1)]

The Kalman filter deals with this problem by using a two-step updating strategy,

(1) prediction (or time update) and (2) correction (or measurement update) that iterate

for each time t. The time update projects the current state estimate ahead in time. The

measurement update adjusts the projected estimate by an actual measurement at that

time. Denote X̂t|i as the estimate of the state at time t given observations up to i. Be-

cause of the noise term Wt with covariance Qt , this estimation will have an associated

variability, which is the covariance of the error denoted by Pt|i. Based on this descrip-

tion, the the filter updates the estimation of the states in an iteration loop as follows:

Prediction: Given X̂t‖t and Pt‖i, the state is predicted and the variance of this estima-

tion is computed: {
X̂t+1|t = Bt X̂t|t
Pt+1|t = BtPt|tBt

′+Qt

Correction: Given the result from prediction step, the error between predicted and

observed outputs is:

εt+1 = Yt+1−At X̂t|t

This is called innovation or measurement residual. And also the residual covari-

ance is:

St+1 = AtPt+1|tAt
′+Rt+1

And finally the states are updated as:

X̂t+1|t+1 = X̂t+1|t +Pt+1|tA
′S−1

t+1Ỹt+1

Pt+1|t+1 = (I−Pt+1|tA
′S−1

t+1A)Pt+1|t

The term that multiplied to Ỹt+1 in correction equation is known as Optimal Kalman

Gain:

Kt+1 = Pt+1|tA
′S−1

t+1
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By substituting the Kalman gain in the above equations, they are simplified to:

X̂t+1|t+1 = X̂t+1|t +Kt+1εt+1

Pt+1|t+1 = (I−Kt+1A)Pt+1|t

By populating an optimal estimation of traffic matrix X̂t+1|t+1, The Kalman filter pro-

vides us with a rich information that can be used for anomaly detection. Supposing

that the Kalman filter estimates traffic matrix well, so the correction factors added to

an a priori estimate X̂t+1|t to adjust an a posteriori estimate X̂t+1|t+1 should be negli-

gible. Thus the appearance of a large correction of the model can be considered an

anomaly event, and the error that is generated by the predictor should be examined for

anomalies. The first error is called ”innovation” denoted by ε , which has been already

defined:

εt+1 = Yt+1−At X̂t+1|t

This is considered to be the white Gaussian noise, with covariance matrix E[εt+1ε ′t+1] =

St+1. Since anomalies in the OD flows are sought, so the error between the estimated

state X̂t+1|t+1 and predicted X̂t+1|t is defined as:

Rt+1 = X̂t+1|t+1− X̂t+1|t = Kt+1εt+1

This is also called the innovation process, which is a zero-mean Gaussian process with

variance:
∆t+1 = E[Rt+1R′t+1]

= Kt+1(APt+1|tA′+Rt+1)K′t+1

Any non-zero residual can be interpreted as the occurrence of an anomaly; therefore

examining these residuals achieves anomaly detection. The detailed procedure of us-

ing Kalman filter for anomaly detection has been presented in algorithm 3.

Model calibration: Using the Kalman filter model requires the matrices A,B,Q,R.

These matrices represent the dynamic behaviour of a network system. Finding such a

dynamic model for a network is not straightforward; however, any estimation of these

dynamic variables can be very useful for a diverse application of network issues such

as network monitoring, load prediction and anomaly detection. Assuming that the
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matrices A and R are known, matrices B and Q can be estimated using an expectation-

maximisation algorithm [12, 52]. There is a need for the historic data of states of the

system (OD flows) to be used in the algorithm to estimate B and Q. So, OD flow

data is used to calibrate the dynamic equations and then the Kalman filter is used for

anomaly prediction. In [12] it has been showed that the Kalman filter needs to be

re-calibrated every few days (using OD flow data), while it filters the unpredictable

process of network dynamics using only link measurements.

2.3.7 Multiway Subspace Method Using Feature Distributions

Traffic volume plays an important role in the characterisation of volume anomalies,

but other features of traffic data must be investigated for non-volume anomaly detec-

tion. Some anomalies, such as port scans, do not change volume metrics during attack

time, but rather change the distribution of packet attributes. When a port scan occurs,

regardless of volume changes it causes the distribution of traffic towards many desti-

nation addresses while checking only a few destination ports. Thus, there will be a

concentration of destination addresses of the victim along with a dispersion of desti-

nation ports. both feature distributions changed over the time that scan is running. On

the other hand, volume measurements do not present much information about differ-

ence in anomalies, apart from volume, while unusual distributional properties in traffic

features reveal rich information about the structure of different anomalies, which can

be used for valuable automatic classification.

However high-dimensionality curses in the distributions of traffic features prevent the

direct analysis of all distributions at the same time. It is necessary to summarise ef-

fectively the different aspects of feature distributions in a way that is suitable for both

detection and classification. The ”entropy” is assumed to be a descriptive metric capa-

ble of finding distributional changes in time series.

Lakhina et al. [32], proposed the entropy of feature distributions in traffic data as a

new metric for anomaly detection. They employed an extended version of the subspace

method to expose a wider range of anomalies.

Entropy of feature distributions: As mentioned above, we look for unusual changes

in a distribution while we are also interested in the degree of dispersal or concentration
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of the changes. The term ”entropy” has been suggested as a metric that satisfies both.

Intuitively, the entropy measures the diversity of the data through a predefined time

window. Suppose F is a random variable that can take a range of values { f1... fN},
while p( fi) denotes the probability that F takes the value fi:

p( fi) = Pr[F = fi]

the entropy of the random variable F will be:

H(F) =−
N

∑
i=1

(p( fi)× log2 p( fi))

The minimum value of the entropy is zero if all the observed data points are the same;

this is maximum concentration. Maximum value of entropy is log2 N, when each data

point appears exactly the same number of times; this is maximum diversity. Divided

by log2 N, the entropy is normalised to be in the [0,1] interval.

To reveal this information from traffic flows, the entropy can be calculated for any

traffic features. Traffic features emerge as the field in the header of a packet. The

four most important components of traffic features are source address, destination ad-

dress, source port and destination port. Suppose the source address is the feature F

whose distribution we want to construct. Suppose there are N distinct PoPs with N IP

addresses from f1 to fN , so for the time of observation:

p( fi) =
the number of observed fi in the sample

the number of total observations in the sample

So the distribution for the source address will be:

p( fi) =
the number of packets with source address fi

the total number of packets in the sample

By constructing this equation for source port, destination IP address and destination

port, respectively, we achieve four time series of feature distributions.

In addition, since the number of distinct values in the sampled set of packets N, af-

fects directly the sampled entropy, so unusual traffic volume may also produce unusual

entropy values.
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Multiway subspace method: Anomalies typically change the distributions of mul-

tiple features of traffic. For example, when a DoS Attack happens, there will be a

significant change in destination and source address distributions. In fact, entropies of

both features decrease in the time interval that attack occurs. The first requirement is to

isolate the change spanning to the multiple feature distributions. In addition, anomalies

in a wide network topology, have significant impact on multiple OD flows; it means

the second requirement is to exploit the changes spanning to multiple OD flows. Based

on both requirements, Lakhina et al. in [32] introduced a multiway subspace method

that can look for correlations between ensembles of OD flows along with all features

of each OD flow. Putting together four obtained entropy series, defined for important

features of traffic, they framed a multiway multivariate data matrix H, size T × 4N,

which contains four sub-matrices, all with size T ×N as HsrcIP, hdesIP, HsrcPn, HdesPn:

H =
(
HsrcIP HdesIP HsrcPn HdesPn

)
T×4N

The employed features include source and destination IP addresses along with port

source and port destination. For example, HsrcIP is defined as multivariate entropy of

source IP address series of length T time bins for each OD flow as follows:

HsrcIP(t,n) = the entropy value at time t for OD flow n

This process is run for other features as well to construct the above discussed multiway

multivariate data matrix H.

By applying the standard subspace method discussed in section 2.3.4, the normal

and abnormal subspaces, denoted by H̃ and H̄, will appear. Each OD flow feature-

space can be expressed as:

H = H̄ + H̃

Setting an alert threshold corresponding to a desired false alarm rate, unusually large

values of residuals ‖ H̃ ‖2 are considered as anomalies:

R = (||H− H̄||2)2 = (||H̃||2)2
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2.3.8 ASTUTE: An Equilibrium Model

Recently a new model based on equilibrium analysis has been proposed under the name

ASTUTE (A Short-Timescale Uncorrelated Traffic Equilibrium) [8, 9, 49]. The work-

ing assumptions of ASTUTE are that normal traffic consists mainly of uncorrelated

flows and a signal for correlation in flows is indicative of an anomaly.

ASTUTE is based on a statistical test for inferring strong correlations among active

flows on a single link. Supposedly, ASTUTE is established to find anomalies triggered

by strongly correlated flow changes, i.e., events where several flows change their vol-

ume all together. They showed that many types of events (e.g., scanning and DDoS

attacks) cause strongly correlated flows.

The new approach is not building up a normal traffic model using historical data

and is therefore immune against data poisoning, but rather is based on two assumptions

for empirical properties of the flows observed on a single link: timescale and correla-

tion. If observed flows satisfy two specified assumptions regarding these properties,

the traffic flows show equilibrium. These two assumptions, which form the core of the

ASTUTE statistical test, are:

Assumption 1: Different flows that arrive at a link are statistically independent in

terms of three properties: arrival time bins, number of time bins where the flow is ac-

tive, and the vector flow volume for each active time bin.

Assumption 2: The distributions of these three vector properties are time-stationary.

Consider two consecutive time bins, t and t+1. Suppose there are N active flows

F = {f1, f2, . . . , fN} in time t or t +1. For each flow in F, the volume change of fi from

t to t+1 is denoted by δf,t and ∆t = {δ f1,t ,δ f2,t , . . . ,δ fN,t} represents the set of changes

for all the active flows. The consequence of the ASTUTE model is determined in the

following theorem, which is the basis of the proposed approach.

Theorem 1 If assumptions 1 and 2 hold, the variables of ∆t are i.i.d. random vari-
ables1.

1Independent and identically distributed random variable with zero means
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Result 1 A set of active flows F satisfies the ASTUTE model if the computed confi-
dence interval for δ̂t (average volume changes across flows) includes zero. Otherwise,
there is an ASTUTE anomaly at the time bin t.

If the changes of the flows in the above model ∆t are considered as a sample pop-
ulation with sample mean of δ̂t and the sample standard deviation of σ̂t, then for large
N, δ̂t will have a confidence interval of (1−β ):

CI
δ̂t
= [δ̂t−Tβ σ̂t/

√
N, δ̂t +Tβ σ̂t/

√
N]

The quantity T ′ is clearly the smallest value of Tβ that leads to an interval containing
zero:

T′ =
δ̂

σ̂

√
N

T′ is called the ”ASTUTE Assessment Value” (AAV ) of a given time bin t. It has been
shown that for a large number of flows (at least 100) in a time bin, the AAV distribution
is close to the Gaussian distribution [8, 9].
Since the Tβ is the (1−β

2 )th percentile of the standard Gaussian distribution and AAV
for large number of flows has same distribution too, so the ASTUTE is violated if and
only if:

‖T′‖2 > ‖Tβ‖2

Now suppose that the ASTUTE is violated because the confidence interval does
not contain the zero. There are three reasons for this violation:

• First, the confidence interval does not contain the zero for a fraction β of time
bins. So it is expected for this fraction that ASTUTE model to be violated by
normal traffic. This is called false positive rate and for decreasing it we should
increase the Tβ in the above inequality.

• Second, based on the ASTUTE theorem, some sets of flows do not hold the sec-
ond assumption. The author in [8, 9] has established an experiment to pinpoint
the time scales where stationarity assumption is held. It has been shown in [8, 9]
that the flow properties are stationary for time bins between 1 and 5 minutes.
Therefore, if flows are measured in 5 minutes time bins, they would hold the
second assumption.
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• Third, eventually the trigger must be the violation of the flow independence as-

sumption. So an anomaly occurred because of observing strongly correlated

flows.

ASTUTE uses a statistical test based on an arguable flow independence assump-

tion. Assuming that flows are independent is reasonable for backbone links as the

author discussed in [8]. But if the nature of the Internet traffic become strongly corre-

lated then the ASTUTE approach is not applicable anymore [8].

In addition to the flow independence assumption, there are limitations arising from

the other assumptions employed in ASTUTE. The first limitation concerns the active

capacity of the link. This method is only valid on the unsaturated link because for a

fully saturated link, the AAV (based on the average changes) is equal to zero and no

anomaly will be triggered [8].

The next limitation arises from the determined nature of the model. ASTUTE seeks

strong correlations due to concurrent changes among several flows. Based on this, AS-

TUTE cannot trigger an anomaly for a single high-volume flow because the ratio of δ̂t
σ̂t

in AAV does not reach a large amount when both nominator and denominator increase

at the same rate. Thus, large volume anomalies caused by one or a few flows cannot

be detected as a result of ASTUTE. Therefore, the main drawback of ASTUTE as a

detector is that it cannot detect anomalies if they are aggregated into a few large flows.

But finding these anomalies is simple for most other methods. Therefore the question

is how strong the correlation should be to be triggered by ASTUTE? The answer will

depend on the threshold Tβ , as Silveiria and et al. [8] showed that for a large enough

number of changes (greater than 100) at least T2
β

anomalous flows should be involved

to be detected by ASTUTE.

The main advantage of ASTUTE as a detector is that it can detect a different range

of anomalies which are difficult to be found by other methods. In the computational

aspect ASTUTE has low complexity (looking only at that time bin and the previous

one) and in sensitivity aspect it is quite robust as it has only one threshold to be tuned.

Although all the results are under certain statistical assumptions. The ASTUTE’s pro-

cedure has been presented in algorithm 4.
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2.4 Evaluation Scheme

2.4.1 Anomaly Decision

The residual space (or residual assessment value, e.g. AAV in the ASTUTE technique)

resulting from the solutions must be investigated for anomalies. The general property

of the proposed traffic anomaly detection solutions ensures that the residual is an un-

correlated random process with a specific variance (and mean). This variance is an

essential part of any anomaly filtering algorithm and is used to determine if an obser-

vation is normal or not. The Kalman filter and ASTUTE model as well as PCA based

methods are defined in the context of a Gaussian hypothesis. This means the residual

resulting from the normal behaviour is an uncorrelated white Gaussian process with

a known variance. This property is an inherent part of Kalman filtering, due to the

whitening property of the filter, and ASTUTE, due to the main fundamental theorem

of the model. The subspace method using PCA is also defined in the context of a

Gaussian hypothesis. Note that Kalman filter and PCA based methods can be used in

non-Gaussian situations but they will not be optimal. Let’s assume an anomaly a[t]

happens at time t. The residual space at time t can be decomposed as:

R[t] = RGussion[t]+Ranomaly[t].

In the other word, an anomaly a[t] can be detected only if for some value of t, the

R[t] deviates from a decision threshold.

Under the Gaussian assumption for the normal residual process, two basic assess-

ments of accuracy ,(1) the false positive probability and (2) true detection probability,

can be computed as the result of threshold application.

Detection probability is sensitive to true positives and disregards false alarms, and

false positive probability is sensitive to false alarms while ignores false negatives. To

estimate the comprehensive combinations of false and true positive rates that a so-

lution is able to provide, the ”Receiver Operating Characteristic” (ROC) is used. A

ROC curve can be derived by plotting the points (false positive rate, detection rate) for

varying values of the decision threshold. ROC measures the ability of the detection to

discriminate between two alternative outcomes, thus measuring resolution. Selecting

every threshold will produce a specific contingency table that generates one point of
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the ROC curve. ROC curves describe the full trade-off between false positives and

false negatives over all possible threshold settings, in particular, and over operating

conditions, in general.

The area under the ROC curves, AUCs, is frequently used as a score for performance

accuracy because the more rapidly a ROC curve climbs towards the upper left corner,

the better the performance of its generating result. Therefore, comparing the AUCs

corresponding to different experiments enables the evaluation of their performance.

Therefore, ROC curve, are well studied to addressing the challenging aspect of trade-

offs between two important evaluation metrics. Moreover, note that AUS in different

ROCs corresponding to different approaches can be used for a comparative evaluation.

2.4.1.1 Decision Variable (Dβ )

Decision threshold value (i.e., when to raise an alarm for any anomaly investigating

R space) is critically functioned by false positive rates. Decision threshold must have

associations with different residual spaces (are to be compared) in order to permit a

direct and fair comparison between them. This is the major challenge in the evaluation

where different techniques are to be compared.

Kalman assessment value, innovation process (see section 2.3.6), follows a Gaussian

white noise process if the traffic changes are normally distributed. Thus, given a target

false positive rate β , the corresponding Kalman threshold is the percentile 1− β/2

of the standard normal distribution. This is analogous to the AAV in ASTUTE (see

section 2.3.8).

For the decision threshold value, the PCA-based methods in [32, 47, 48] use the vari-

ables proposed by Jackson et al. [70] and Jensen et al. [72]. The threshold Dβ is

defined as
Dβ = Q(λk+1 : λ`×m,β )

= φ1[
(1−β )

√
(2φ2h2)

φ1
+1+ φ2h(h−1)

φ 2
1

]1/h

denotes the threshold for the 1−β confidence level, corresponds to a false alarm rate

of β , and

h = 1− 2φ1φ3

3φ 2
2

, φi =
`m

∑
j=k+1

λi for i = 1,2,3.
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Based on Jensen et al. [72] the Q in the above equation follows a Gaussian distribution,

and this convergence is robust even when the original data deviates from a Gaussian

distribution.

Therefore a given false positive rate, one can calculate the threshold has for all PCA-

based techniques, ASTUTE and Kalman filter.

Unlike the above discussed techniques, there is no well-known relationship between

the frequency-based techniques threshold value and the target false positive rate.

Zhang et al. [13] addressed the problem of comparing techniques with different thresh-

old scales. Specifically, for evaluation one pick Dβ so that non-scalable techniques

(e.g. Fourier, Wavelet) can catch as many anomalies as the techniques with adjusted

threshold.

2.4.2 Bayesian Detection Rate

So far we have described the basic measures of accuracy for evaluating effectiveness

of anomaly detection techniques. In general, the effectiveness of a detector can be de-

scribed as ”identifying intrusive events while keeping the false alarm rate at a tolerant

point”. Axelsson et. al [73] showed that due to the base-rate fallacy phenomena, the

key factor that limits the performance of detection systems is the false alarm rate. The

base-rate fallacy is described in terms of the Bayesian detection rate that is actually

the probability of being a real anomaly event for a positive alarm. Let us describe this

by explaining the proper formulations. Suppose AR and ¬AR denote real anomalous

and non-anomalous events, and AD and ¬AD denote the detected as anomaly and not

detected as anomaly by system, which determines whether the alarm is set off. Based

on these assumptions:

PoD = P(AD|AR)

PoFD = P(AD|¬AR)

No suppose that an alarm rises; how likely is it that the detected event is a real attack?

This probability, which quantifies our ultimate interest in detection systems, is called

Bayesian detection rate and is defined as:

Bayesian detection rate = P(AR|AD)
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Figure 2.8: Bayesian detection rate versus False alarm rate

The reverse aspect of this measure is that when there is no alarm, how much should
we worry? In other words, how likely is it that the normal tagged events would be a
missed attack i.e. how much is P(¬AR|¬AD)? Therefore we need to maximize both
probabilities for a proficient detection system. P(AR|AD) can be calculated using Bay’s
theorem:

P(AR|AD) =
P(AR)P(AD|AR)

P(AR)P(AD|AR)+P(¬AR)P(AD|¬AR)

Here, to clarify the main factors in effectiveness of detection systems, we make some
assumptions based on a hypothesized network, including 10 audit records per anomaly,
2 anomalies per day, and 1,000,000 audit records per day. Therefore:

P(AR) = (
1.106

2.10
)−1 = 2.10−5

P(¬AR) = 1−P(AR) = 0.99998

and

P(AR|AD) =
2.10−5.P(AD|AR)

2.10−5.P(AD|AR)+0.99998.P(AD|¬AR)

As the equation shows, the dominant factor is the factor of false positive detection
rate in the denominator. Fig.2.8 depicts the values of Bayesian detection rate versus
false positive rates for different detection rates. To achieve the desired maximum for
P(AR|AD) = 100%, which is unattainable in practice, we would need to limit false
alarm rate on the order of 10−5 to have only 66% of Bayesian detection rate! Thus, with
this very low false alarm rate along with perfect detection rate, only about two-thirds
of alarms are true abnormalities. Considering a realistic detection rate of 70% and the
same false alarm rate, the Bayesian detection rate would be about 58%, meaning that
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Figure 2.9: Layout of NICTA testbed, wireless types and channels. Note that all the links
are wireless.

only half of alarms are true positives! The main cause of this circumstance, which

is called base-rate fallacy, is because the problem is looking for a few rare points of

anomalous events in an overwhelming number of normal points. As networks become

huge and facilities faster, audit data sets become larger, but it is unlikely that attack

activities will increase at the same rate.

2.5 Experiments and Discussion

Data: We use traffic data measured in an outdoor test-bed network developed as the

smart transport and roads communications (STaRComm) project at National ICT Aus-

tralia in Sydney1. This network has been used to produce a real traffic data set polluted

with some common representative attacks. The network structure consists of seven

nodes that have been connected through wireless channels and one gateway mesh node

inside the School of IT at the University of Sydney2. The layout of the testbed in

Sydney with all wireless links attributes, is shown in Fig.2.9. More detail of design,

structure and measurement can be find at [74, 75].

1National ICT Australia www.nicta.com.au
2IT School, The University of Sydney www.it.sydney.edu.au
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Figure 2.10: The time series of the number of transmitted packets during an observation
window; DoS and Ping flood can be distinguished through flow count.
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Figure 2.11: The time series of number of OD-flows involved in each time bin; port Scan
can be distinguished through flow count.

Fig.2.10 shows the time series of the number of transmitted packets during an ob-
servation window – the sum of all packets in each time bin; Fig.2.11 represents the
time series of number of OD-flows involved in each time bin (the number of flows in
each time bin with no-zero packet). As these plots show, anomalies associated with
DoS and Ping Flood can be distinguished via packet count analysis because of sig-
nificant changes in number of packets, while the anomalies associated with port scan
can be distinguished through flow count analysis because of significant changes in the
number of flows. The anomalies associated with node scans cannot be distinguished
by either analysis, because the testbed is only a small network of seven nodes, and
therefore node scans do not produce a significant number of packets or flows.

To show how different proposed techniques detect attacks in traffic data we apply
them to the constructed time series of NICTA testbed. We use PCA, ASTUTE and
Kalman filter to find anomalies from the same data in order to compare their detection
performance. The setting used in PCA includes top k = 1, and confidence interval for
1−β = 95%. We used same setting of confidence interval for ASTUTE and Kalman
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Table 2.2: Number of anomalies detected by different introduced techniques

Anomalies #Total #found by PCA #found by ASTUTE #found by Kakman filter #not-found

DoS attacks 3 3 0 3 0
Ping flood 1 1 0 1 0
port-scan attacks 4 1 4 0 1
node-scan 1 0 1 0 1

all attacks 9 4 5 5 1

filter. Table 2.2 shows the number of anomalies per type found by each method.
Result: We observe that the PCA can only find DoS attacks (including ping flood)

as long as k = 1 is used for separating normal space from abnormal one. Note that
this result is highly dependent on this setting so that if we chose k = 4 then non of the
volume anomalies are detected. This will be discussed as the main issue of PCA in the
section 2.5.1. Furthermore, ASTUTE is more effective at finding port scans as these
attacks usually involve a large number of small flows comparing with DoS attacks
which contain a few large flows. The Kalman filter is also capable of finding volume
anomalies such as DoS and Ping flood while it cannot distinguish port scans as they
contain small flows. We shall summarize that ASTUTE is accurate at finding non -
volume anomalies; PCA is moderately effective at detecting volume attacks but the
result is highly dependent on the tuning parameters; and the Kalman Filter is capable
of finding various high volume attacks but it needs to be recalibrated frequently which
involves a high computational cost.

2.5.1 PCA: Efficient Technique with Limitations

Principal component analysis is thus far the best statistical technique to detect network
traffic anomalies. This approach, however, has empirical limitations.The inherent lim-
itation of PCA in the statistical literature has been already discussed by [76] and [12].
The sensitivity of PCA’s effectiveness has been addressed by Ringberg et al [58] as
well. They showed experimentally that the PCA method is not only sensitive to the
parameter that must be tuned , but that good results depend on the aggregation of the
data that has been used. Another challenging point is related to the transformation
stage. Although PCA’s transformation helps to detect correlations, it makes it difficult
to identify the original location of anomalies. Therefore, the main problems with the
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Figure 2.12: The first 40 eigenvalues calculated for NICTA dataset.

PCA-subspace methodology can be explained in terms of two processes: defining nor-

malcy and remapping the coordinates.

The PCA-subspace method can be determined in three steps: modelling, detection and

identification. The modeling phase includes separating normal and abnormal space by

selecting the number of top principal components. In fact, the number of top PCs will

determine the dimensionality of normal subspace. Different number of top PCs gen-

erates different normal and anomalous subspaces which is the main challenge of the

methodology. Different methods have been proposed for tuning the number of top PCs,

such as the 3σ deviation heuristic [50, 51], but results have shown that the methodol-

ogy is still highly sensitive to the number of PCs included. The second issue in the

modelling stage concerns contaminated normal subspace. If a very large anomaly ap-

pears in data, it will capture a large fraction of variance and consequently is included

among top PCs. Therefore, large anomalies not only pollute the definition of normalcy

but invalidate the intuitive assumption that the top PCs are semi-periodic by causing a

spike in the first few PCs. The PCA-subspace method cannot detect sufficiently large

anomalies in normal subspace because of its phenomenon.

The detection step includes analysing residuals to raise an alarm for the events on

top of a defined threshold. So this step provides us with another tunable parameter,

the detection threshold, which has a great impact on false positive rate. This threshold

should be tuned so that the best trade-off between the false positive rate and the total

detection rate is managed. Finally, we need to identify anomalies original location in

the last step. The PCA-subspace method finds spikes on data projected on anomalous
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Figure 2.13: The NICTA dataset and the anomalies on the first three principal compo-
nents. The variance was 0.99 for the three principal components.

subspace, whereas we need to know where it happened. In other words, we must iden-

tify which host, for example, is responsible for the detected anomaly to generate more

actions for solving the problem or blocking the attackers. So far, all PCA-subspace

methods have employed heuristics to associate a PCA-detected anomaly associated

with a specific location.

To clarify PCA’s limitations, we applied PCA to NICTA’s traffic data, including a di-

verse range of volume and non-volume anomalies. We used a packet count traffic

matrix as test data set. In this data set (except for the four volume anomalies), the

remaining time bins are in the direction of the first eigenvector; thus, it is not difficult

to detect these anomalies using the PCA. Fig.2.12 and Fig.2.13 show the first 50 eigen-

values and the PCA plot of the data set, respectively. The PCA result depends largely

on the number of eigenvectors for normal subspace. In this data set, by choosing the

number of eigenvectors k = 1 we successfully detected all four volume anomalies. If

k = 2, only one volume anomaly was found, and if k = 3, all anomalies found were

incorrect. Port Scan anomalies and node scans were not detected at all, which is pre-

dictable, because these types of anomaly do not have impact on packet count data.
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2. BACKGROUND ON NETWORK ANOMALY DETECTION

2.5.2 ASTUTE: Anomalies and Correlation

Giving an example, in this section we describe how ASTUTE model spots anomalies.

Suppose there are 2 active flows F = { f1, f2} in an arbitrary three consecutive time

bins, t to t +2.

F(t +0) : f (0)1 f (0)2

F(t +1) : f (1)1 f (1)2

F(t +2) : f (2)1 f (2)2

Suppose matrix X as volume time series of flows as:

X =


x

f (0)1
x

f (0)2
x

f (1)1
x

f (1)2
x

f (2)1
x

f (2)2


where x f t

i
denotes the volume of fi at time t.

ASTUTE basically assumes that these flows f1 and f2 are uncorrelated, otherwise

an anomaly happens. So the default situation is a zero correlation and the correlation

is sought in a temporal variability.

Such important assumption elicits the resulting conclusion: the changes of the ac-

tive flows volume are standard Gaussian i.i.d. variables. Based on this result, AS-

TUTE’s threshold for having zero mean changes in the flows volume is given by:

AAV =
δ̂

σ̂

√
N

ASTUTE model is looking for the time bins in which the active flows are cor-

related. In the other word, any point which violates the AAV threshold presents the

existence of correlated flows in the related time bin. Note that ASTUTE determines

the correlated flows by looking at two time consecutive bins. Let’s define:

X t
i =

[
x fi,t

x fi,t+1

]
then:

∆1 = {δ f1,0,δ f2,0}
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where δ f1,0 = x
f (1)1
− x

f (0)1
and δ f2,0 = x

f (1)2
− x

f (0)2
. AAV is calculated by main sta-

tistical properties of the change vector ∆1 = {δ f1,0,δ f2,0} with mean of δ1 and standard
deviation of σ1:

δ1 =
δ f1,0 +δ f2,0

2
and:

σ1 =
1√
2

√
(δ f1,0−δ1)2 +(δ f2,0−δ1)2

Substituting δ1 and σ1 in AAV1 =
δ1
σ1

√
2 we will achieve:

AAV1 =
δ f1,0 +δ f2,0

|δ f1,0−δ f2,0|

We consider all possible scenarios for changes in the volume of flows from t = 0 to
t = 1 and discuss how AAV threshold spots an abnormal flow or flows. We depict AAV

variation over the change in the flows volume in Fig.2.14 by assuming a green point
as initial point (x f1,0,x f2,0). We observe how the change over time can cause an AAV

violation alarm.

Scenario 1: If the volume of f1 and f2 change but the changes stay the same, AAV

reaches infinity. This reveals in fact the two flows are absolutely correlated. Setting
AAV = 7, equivalent to a false positive rate of p = 2× 10−5 [8], shows we make the

model to tolerate
δ f1,0
δ f2,0

= p+1
p−1 and still consider f1 and f2 correlated. This has been

shown in Fig.2.14 when the initial green point goes to any red point in hatched area.

Scenario 2: If the volume of f1 and f2 change in opposite way (one increases while
the other decreases) but the absolute changes stay the same, AAV reaches zero. This
shows that the two flows are absolutely negative correlated. Despite ASTUTE model
is to find correlated flows, but it is unable to find this type of correlated flows.

Scenario 3: If the volume of one of the flows changes but the other one stays
the same, AAV reaches one. This two flows are absolutely uncorrelated. Basically
ASTUTE consider flows in these areas uncorrelated.
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Figure 2.14: Schematic illustration of embedding a linear manifold into a time sires of
M variables using a window of length L. By sliding this M×L window in the horizontal
(x,τ)-plane, we look for spatio-temporal patterns, E-EOFs.

The above discussion can be generalised to N flows using the mean and standard

deviation calculated for N changes and some algebraic calculation:

AAVt =
∑

N
i=1 δ fi,t√

∑
i 6= j
i, j=1:N(δ fi,t −δ f j,t )

2

√
N−1

Theorem 2 AAV is relatively large when port scans happen i.e.

AAVt p� 1

Proof: Port scans are a large number of flows change their volumes but the changes

are small. The numerator of the ratio AAVt is highly greater than the denominator

because changes are small and their difference is much smaller.

(δ fan,t −δ f j,t )
2 ≈ ε
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Then:

AAVt =
∑

N
i=1 δ fi,t√

∑
i6= j
i, j=1:N(δ fi,t −δ f j,t )

2

√
N−1

≈
∑

N
i=1 δ fi,t√

ε
� 1

Theorem 3 AAV is approximately equal to 1 when DoSs happen i.e.

AAVtd ≈ 1

Proof: DoS attacks are a few number of flows change their volume dramatically.
Suppose only one flow fan is responsible for a DoS attack with a large number of
packet change:

δ fan,t � δ f j,t ∀ j ∈ [2 : N]

Based on this, the difference between this flow’s change and the other flows (δ fan,t−
δ f j,t ) is is dominated by the δ fan,t :

(δ fan,t −δ f j,t )
2 ≈ δ

2
fi,t

In the other side the δ fan,t appears in N−1 expression of differences:

AAVt =
∑

N
i=1 δ fi,t√

∑
i6= j
i, j=1:N(δ fi,t −δ f j,t )

2

√
N−1

≈
δ fan,t√

(N−1)δ 2
fi,t

=±1

2.6 Summary

Traditional intrusion detection systems are based on finding attacks corresponding to
predefined patterns known as signature. In contrast, network anomaly detection sys-
tems have been introduced to detect zero-day attacks without pre-identified signatures,
to profile normal behavior automatically, and to address suspected incidents.

In this chapter we defined NAD problem in the context of data mining as a math-
ematical problem. We showed that the complexity of the problem is due to various
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2. BACKGROUND ON NETWORK ANOMALY DETECTION

requirement of a detection problem in comparison with today’s huge networks. Some
of the most influential solutions have been described. A taxonomy of the techniques
based on the their approaches to solve NAD is proposed. Most methods have been
based on the non-parametric PCA, which shows considerable drawbacks in practice.
Furthermore, almost all the techniques show the capacity to find only some specific
types of anomalies.
In summary, mining anomalies in network traffic has been researched and some ap-
proaches have been proposed, however, finding general anomalies in today’s huge and
complex networks remains a big challenge.
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3

Spatio/Temporal Decomposition for
Anomaly Detection

IN this chapter we focus on the detection of network anomalies, such as Denial of

Service (DoS) attacks and port scans, in a unified manner. While there has been

extensive research on network anomaly detection, current state of the art methods are

only able to detect one class of anomalies at the cost of others. Some anomalies (e.g.

DoS attacks) are marked by a temporal variation while others (e.g. port scans) exhibit

correlation across multiple traffic flows. Our method can identify both of these phe-

nomenon using an approach based on the spectral decomposition of a Hankel matrix.

We show this can detect deviations from correlations between traffic flows, as well as

temporal variations within a flow, present in observed network traffic data. Detailed

experiments on synthetic and real network traces show a significant improvement in

detection capability over competing approaches. In the process we also address the

issue of robustness of anomaly detection systems in a principled fashion.

3.1 Introduction

In its most abstract form, network traffic can be described by a time series y(t), where y

represents the observed state of the traffic. For example, y(t) could simply be the total

number of packets or could be a vector, where each component represents an active

flow. A flow is an aggregation of packets by attributes such as source and destination
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3. SPATIO/TEMPORAL DECOMPOSITION FOR ANOMALY DETECTION

IP address.

In order to detect anomalies in network traffic we must first model the generative

process, which gives rise to the observable time series < y(t)>. Assume that the latent

variables x(t). The relationship between y(t) and x(t) can be abstractly represented

by a model as y(t) = M(x(t)). We can learn the model and obtain an estimation as

ŷ = M(x̂(t)). Then an anomaly occurs of time t if y(t)− ŷ(t) is greater than a pre-

defined threshold. In order to design the generative model we have to capture different

forms of correlation between variables of the system which we describe here.

3.1.1 Between and Within Flow Correlation

An important aspect that needs to be captured in any model of network traffic is the

presence of between and within correlation in packet flows. For example, consider

Fig.3.1(a), which shows the the time series of two flows, f1(t) and f2(t). The point

labeled D is an example where the correlation within flow f1(t) flows has deviated from

the expected norm. Similarly, the point labeled P is where the correlation between the

two flows f1 and f2 has deviated in a localized time window. The anomaly D is an

example of a Denial of Service (DoS) attack while an anomaly P is an example of port

scan. Discovering events like P and D is the focus of this paper.

3.1.2 The Trajectory/Hankel Matrix

A key tool that we will use to detect correlation deviation in network traffic, is the tra-

jectory (or Hankel) matrix that will be constructed from the observed time series (see

[5, 14, 15, 17, 18, 19, 77]). For example, given two flows { f1(i), f2(i)}T
i=1, the Hankel

matrix (H) of window length L < T of the two flows is given by


f1(1) . . . f1(L)
f1(2) . . . f1(L+1)

...
...

...
f1(T −L+1) . . . f1(T )

∣∣∣∣∣∣∣∣∣
f2(1) . . . f2(L)
f2(2) . . . f2(L+1)

...
...

...
f2(T −L+1) . . . f2(T )



Now the key insight of the paper, is that the SVD of correlation (or covariance) matrix
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Figure 3.1: (a) An example of two flows f1 and f2 experiencing two different anomalies
DoS attack (D) and port scan (P). (b) SVD finds D anomaly and misses P one as it is in its
normal space. (c) and (d): mapping the f1 and f2 vector into a 2-dimensional space and
applying SVD both P and D anomalies are detectable.

of the Hankel matrix (H), will capture both between and within correlation in network

flows. Thus a low rank decomposition of H will characterize the manifold structure

M between the flows as well as help identify the anomalies which deviate from the

inferred manifold structure. For example, Fig. 3.1(b), shows the relationship between

the flows f1 and f2 and also the direction of the most dominant eigenvector of the

standard correlation matrix (without the time lag). This decomposition is unable to

capture the port scan (P) anomaly because, P is not a simple violation of the between

flow correlation but the existing correlation is violated only in a localized time window.

In Fig. 3.1(c), it is clear that a time window lag (L = 1), captures the spatial correlation

in a small time window and thus the P anomaly is away from the main eigenvector. In

Fig. 3.1(d), there is no correlation violation within flow f2 and thus the P anomaly is
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in the direction of the main eigenvector.
The remainder of this paper is structured as follows. Section 3.2 describes the

important role of Hankel matrices in capturing the underlying dynamic of a system.
Section 3.3 explains the algorithm behind the singular spectrum analysis. The char-
acterization of network anomalies is abstractly presented in section 3.4. Section 3.5
presents a validation of the different analysis algorithm based on SSA on a real traf-
fic data and analyses their capability for anomaly detection. A brief background is
presented in section 3.6 and we discuss some conclusion remarks in section 3.7.

3.2 Hankel Matrix and Generative Model

We now justify the decomposition of the Hankel matrix based on a generative model of
the data. In particular we show that if data is generated by a Linear Dynamical System
(LDS), then the SVD decomposition of the Hankel matrix can be used to estimate the
LDS parameters. Assume a LDS given by:

x(t +1) = Ax(t)+w(t)
y(t) =Cx(t)+ v(t)

where

• x(t) ∈ Rn is the system state vector,

• A defines the system’s dynamics,

• w is the vector that captures the system error, e.g. a random vector from N(0,Q),

• y(t) ∈ Rm is the observation vector,

• C is the measurement function,

• v is the vector that represents the measurement error, e.g. a random vector from
N(0,R),

Fig.4.2 presents a graphical model of LDS.

Problem 1 Assume that some data is generated from a LDS governed by the equation
above. Given a sequence of observations {yi}n

i=1, estimate A,C,Q and R.
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Y(t)=CX(t)

X(t+1)=AX(t) 

θ =(A,C)

Figure 3.2: The graphical model of a linear dynamic system (LDS)

To solve the above problem, we need to define the Hankel matrix of the observations

as

H(t) =


y(t) y(t +1) y(t +2) ... y(n− `+1)

y(t +1) y(t +2) . . . ...
...

y(t + `) . . . y(n)


where y(t) is m× n observation at time t, and H is a `× n′ where n′ = n− `+ 1.

Equivalently, H is a Hankel matrix if and only if there exists a sequence s1,s2,s3, ...

such that Hi, j = si+ j−1 (see [78]). Therefore, every Hankel matrix uniquely determines

a time series and every time series can be transferred into a Hankel matrix, i.e.

H(t− i)⇔ yi(t)

where yi(t) = {y(i),y(i+1), ...,y(t), ...}.
By replacing the entries of the Hankel matrix with their equivalent from the LDS:

H(1) =


CAx(0) CAx(1) CAx(2) ... CAx(n− `)

CAx(1) CAx(2) . . . ...
...

CAx(`−1) . . . CAx(n−1)

=


CAx(0) CA2x(0) CA3x(0) ... CAn−`+1x(0)

CA2x(0) CA3x(0) . . . ...
...

CA`x(0) . . . CAnx(0)



=
(
CA CA2 CA3 ... CA`

)T ·
(
x(0) Ax(0) A2x(0) . . . An−`−2x(0)

)
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Define:
P .
=
(
CA CA2 CA3 ... CA`

)T

Q .
=
(
x(0) Ax(0) A2x(0) . . . An−`−2x(0)

)
then:

H(1) = PQ

The shifted Hankel matrices can be described by:

H(i) = PAi−1Q

To obtain the matrices A and C, perform SVD of H(1):

H(1) =UΣ2V T

where Σ2 is a diagonal `× ` matrix containing the singular values and the ` columns
of U are the singular vectors. Selecting the top-k (1 < k < `) singular values from the
matrix Σ2,denoted by Σk, and k associated singular vectors, denoted by Uk, we define
reduced rank matrices:

Pk
.
= UkΣk

Qk
.
= ΣkV T

Using the reduced rank matrices Pk and Qk, the shifted Hankel matrix Ĥ(2) is estimated
as:

Ĥ(2) = PkAkQk
=UkΣAkΣV T

The matrix Ak can be approximated as:

Ak = (UkΣk)
+Ĥ(2)(ΣkV T )+

where + marks the pseudoinverse of the matrices. Given Ak we can estimate Ck as:

Ck = P−1
1 Ak

where P1 is the first m rows of the matrix P.
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Therefore, using SVD of a Hankel matrix we can estimate a generative model for

any given time series. Now, given Ak and Ck (assuming x(0) is known), we can estimate

the error space as:

δk(t) = y(t)− ŷ(t)
= y(t)−Ckx̂(t)
= y(t)−CkAkx̂(t−1)

and an outlier is reported whenever |δk| exceeds a predefined threshold.

In practice, we are able to use the decomposition of the Hankel matrix to identify

outliers without any assumption for underlying dynamic, e.g. linearity. Perform the

SDV of the Hankel matrix and chose (1 < k ≤ `) to divide the spectral decomposition

into two disjoint spaces:

H(1) =UΣ2V T

= ∑
k
i=1 λ

1/2
i UiV ′i +∑

`
i=k+1 λ

1/2
i UiV ′i

Define Ĥ(1) .
= ∑

k
i=1 λ

1/2
i UiV ′i and ∆k

.
= ∑

`
i=k+1 λ

1/2
i UiV ′i , then:

∆k = H(1)− Ĥ(1)

∆k is the error between the original Hankel matrix and the estimated one Ĥ(1). Since

every Hankel matrix is associated with a time series, if Ĥ(1) would be Hankel then

the error space ∆k is a Hankel and uniquely defines a time series, e.g. δk. This Time

series represents the residual time series to be investigated for anomalies. The tool for

achieving this residual is Hankelization operator, which transforms an arbitrary `×n′

matrix to the form of a Hankel matrix. A Detailed procedure of Hankeliztion is given

in Appendix B.

We showed that by the use of spectral decomposition of a Hankel matrix con-

structed based on a lag window of ` we can estimate the residual space of time series

with respect to the high variations. A neat step-by-step algorithm for this approach is

explained next.
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3.3 Multivariate Singular Spectrum Analysis Algorithm

The application of SVD to Hankel matrix is known as SSA or M-SSA. The key ad-
vantage of M-SSA is its ability to succinctly capture both between (spatial) and within
(temporal) correlation in the underlying network traffic flows. Here we give a step-by-
step introduction to SSA, as a method of discovering anomalies.

1. Assume the network flow volume through a router at a pre-specified level of
granularity (e.g.five minutes) is given by the time series.

y1,y2, . . . ,ym,wm+1,wm+2, . . . ,wn,yn+1,yn+2, . . .

We have used both y and w to indicate that the nature of traffic has changed for
n−m+ 1 time steps after ym. In practice we of course don’t know where and
when the traffic changes and is precisely what we want to infer.

2. Choose an integer ` < m, known as the embedding dimension and form the Han-

kel matrix for the x part of the time series.

Y =


y1 y2 . . . y`
y2 y3 . . . y`+1
. . . . . . . . . . . .
ym−`+1 ym−`+2 . . . ym


Where each Yi = (yi,yi+1, . . . ,yi+`)

′, is of dimension `. In SSA, the assumption
is that Y captures the main dynamics of the network flow. We now apply the
Singular Value Decomposition (SVD) of Y as follows.

3. For the `× ` covariance matrix of Y give by

C = Y ×Y ′

4. Compute the eigen-decomposition of C = [U,D] where U is matrix where each
column is a eigenvector and D is the diagonal matrix of eigenvalues. The rela-
tionship between C, U and D is given as

CU(:, i) = D(i, i)U(:, i) for each i
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3.3 Multivariate Singular Spectrum Analysis Algorithm

5. Form an k-dimensional subspace M of R` where k≤ `, by using the top-k eigen-
vectors of U , i.e., M=UsU ′s. The space M is where the ”normal” traffic lives and
our objective is to look for changes in the flow which cannot be explained by M.
This is achieved by projecting a sliding window of ` dimensional vectors on M

and raising an alarm whenever the deviation between a vector and its projection
on M becomes large.

6. For example, consider a `-dim vector which contains parts of the changed traffic
y′is.

z = (ym−1,ym,w1, . . . ,w`−m−1)
′.

Then, the deviation between z and its projection on M is given by e = ‖z−Mz‖.
Assuming that the wi’s were generated by anomalous traffic, then the deviation
e will be large relative to deviations caused by normal traffic.

7. To reconstruct the refined time series we proceed in a manner inverse to the step
2. On the other hand, if the objective is to reconstruct the original time series
then we have to apply a Hankelization (inverse) operator. The network anomaly
detection process remains unaffected by the inverse operation. More details can
be found in [79, 80, 81, 82].

Before we go into further details about SSA we illustrate the key steps using a simple
example.

Example 1 Assume that a sample time series is given as

y(t) =


sin(.2t)+ ε(t) if 1≤ t ≤ 175
sin(.3t)+ ε(t) if 176≤ t ≤ 375
sin(.2t)+ ε(t) if 376≤ t ≤ 560

Here ε(t) is gaussian N(0,1) noise. Notice that there is a change in the time series

between t = 176 and t = 376. Fig. 4.1(a and b) show the example time series without
the noise and the time series with added noise. Fig. 4.1(c) shows the deviation of the
signal for different values of ` and k. It is clear that the deviation becomes larger near
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Figure 3.3: An example of using SSA to detect changes in a time series for various com-
bination of parameter values ` and k. The time series changes in the middle which is
reflected in the deviation in the bottom figure.

time step 176 and then returns to its normal value after the change signal disappears
around time step 376.

3.3.1 Choice of Parameters in SSA

The key idea in SSA is the use of a trajectory matrix Y which then factorized using

SVD. The formal relationship between Y and the underlying dynamics of the time

series has been extensively researched in both the statistics and physics community.

The key take away from the theoretical literature is that for an appropriate choice of `,

the trajectory matrix will capture the appropriate dynamics of the underlying system

(see [5, 14, 15, 82]). The choice of ` along with k (the dimensionality of the projected

subspace) and the threshold (e) are three important parameters that need to calibrated

and set. These parameters are like “knobs” which a network administrator can use to

adapt to specific network characteristics.
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Example 1 above already provides some indication of how the choices of ` and

k have on time series monitoring. For example, for ` = 20, the deviation e is less

than for other values of `. This may surprising at first but notice the initial part of the

time series has an intrinsic dimensionality of 1 (as it is composed of one sin term).

Thus a smaller value of ` is better at capturing the dynamics of the time series than a

larger value `= 50,70. Now consider, the two cases where L = 50 but k = 2 or k = 4.

Notice that the projected error (in the middle) is almost identical but at the tails the

projection error is higher for k = 2 than k = 4. This shows that while the choice of k

has a significant impact on the projection error of the normal traffic, when it comes to

detecting the anomalous part the method is quite robust for different choices of k. In

fact this is one of the key strengths of SSA that we will exploit in the analysis of real

network traffic data.

3.4 Network Anomaly Types

A key contribution of our paper is that the approach based on M-SSA is able to detect

almost all known types of network anomalies. In this section we describe the differ-

ent types of common anomalies and explain why M-SSA provides subsumes other

anomaly detectors. Table 3.1 lists the common anomalies defined using the flow as a

5-tuple (source IP address, destination IP address, source port number, destination port

number, transport protocol). More details can be found in [8, 9, 32, 48].

A Denial of Service (DoS) attack occurs when the attacking hosts send a large number

of small packets - typically TCP SYN segments - to the attacked host and service, i.e.

a single IP address and port number, in order to deplete the system resources in the

target host. The resulting traffic from DoS attack consists of a relatively small num-

ber of flows with large packet counts as DoS attack tools often forge the source port

number. Note that the specific case of Distributed Denial of Service (DDoS) attacks

is effectively the same attack, but with several source IP addresses. The number of

attacking hosts however, is typically much smaller than the packet count. We thus con-

sider DDoS to be a special case of a DoS attack, and label as such.
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Table 3.1: Network anomalies considered

Anomalies Description (flow is defined as one 5-tuple)

DoS attack a few flows with a large increase in packet count
port scan large increase in number of flows with a small packet count

large file transfer a few flows with a large increase in packet count, (but typically
less than DoS attack)

prefix outages drop in number of flows (from one IP prefix)

link outages time intervals where all traffic disappear.

Port scans are typically used by attackers to discover open ports on the target host.

This is accomplished by sending small packets as connections requests to a large num-

ber of different ports on a single destination IP address. At the flow level, they are

therefore characterized as an increase in the number of flows, each with a small packet

count.

Large file transfers are characterized by a few flows with packet counts which are

significantly larger than what common applications use.

Prefix outages occurs when part of the network becomes unreachable, they can be

identified when traffic from one or more IP prefixes disappears, which translates in a

drop in the number of flows.

Link outage is in a way a more severe version of Prefix outage, where the number of

flows on the link drop close to zero.

3.5 Experimental evaluation

We have evaluated our proposed approach using both real and synthetic data sets. For

comparison we have implemented well known network anomaly techniques based on

wavelets, kalman filtering, fourier analysis and the more recent ASTUTE method. The
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Table 3.2: Alternative methods used in the experiments

Techniques are implemented by adjusting parameters as proposed in the literature.

Fourier analysis [13]
We use fast Fourier transform (FFT) algorithm and set the cut off frequency to one
cycle per 2 hours.

Wavelet analysis [6, 13]
We use a multi-level, 1-dimension wavelet algorithm, with Daubechies mother
wavelet of order 6 and set the cut off frequency to 3.

Kalman Filter [12]
The target false positive rate of 2×10−5 is applied to the innovation process.

ASTUTE [8, 9]
The target false positive rate of 2×10−5 is applied to the AAV process.

use of synthetic data sets and simulation is a prerequisite for a rigorous evaluation

strategy for network anomaly detection ([8, 12, 83]).

3.5.1 Detection Capability

We evaluate the detection capability of M-SSA using two real network traces which

we now describe.

3.5.1.1 Datasets

The first traffic trace if from the Abilene network1 and has been used previously for

network anomaly detection (see [8, 9, 32, 48]). The data set consists of a one month

traffic trace from a backbone router in New York during August 2007. The Juniper

router used to collect the data generated sampled J-flow statistics at the rate of 1/100.

The flows were aggregated at five minute intervals. The key attributes of the flow are:

number of packets, number of distinct source IP addresses, number of distinct desti-

nation IP addresses, number of distinct source port numbers and number of distinct

1Internet2 - http://www.internet2.edu/
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destination ports numbers.
The second, and more recent, traffic trace is from the MAWI (Measurement and

Analysis on the WIDE Internet) archive project in Japan1. Here the data was sampled
from a 150Mbps trans-pacific link between Japan and the United States for 63-hours
in April 2012.

Labelling traffic traces with anomalies is notoriously difficult. The commonly ac-
cepted method is to combine algorithmic detection with manual inspection of the data.
We have followed the URCA (Unsupervised Root Cause Analysis) method proposed
by [49] with a false positive rate of 2×10−9, followed by a thorough manual inspec-
tion of the data set.

3.5.1.2 Results

Table 3.3 and Fig. 3.9 show the results of the different methods including M-SSA. The
following are the key take aways.

1. M-SSA is capable of detecting a much wider range of anomalies regardless of
their types. For the Abilene data, M-SSA was able to identify 100% of DoS
attacks and over 95% port scans. Similarly on the MAWI data set the detection
rate was 100% for DoS attacks and over 90% for port scans.

2. All other techniques (which were compared) can be placed in two groups: Wavelets,
Kalman and Fourier have high detection rates only for DoS attacks while AS-
TUTE performs exceedingly well only for port scan anomalies.

3. In the Abilene data, around 7% of the anomalies are related to link outages. Here
again, M-SSA has a 100% detection rate and except for Fourier, other techniques
also have a high detection rate with Wavelets doing the best.

To understand the results better we have carried out a deeper analysis by examining
the characteristic features of the anomalies. In Fig. 4.11 we plot the known Abilene
anomalies using two features. The x-axis represents the change in packet counts be-
tween two consecutive time bins. The y-axis represents the number of distinct flows (5
tuples) in the time bin.

1http://www.wide.ad.jp/project/wg/mawi.html
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Table 3.3: Number of anomalies per type found by each technique in two traffic traces
from Abilene and WIDE networks. M-SSA is able to discover both DoS and port scan in
both networks.

Trace: Internet2, from Abilene backbone

Period: August 2007

ASTUTE Kalman Wavelet Fourier M-SSA Hybrid†

Anomalies class Labeled

DoS attacks 44 1 37 41 17 44 44

port scans 221 198 0 18 0 211 216

large-file transfer 2 2 0 0 0 2 2

link outage 18 12 12 17 6 18 18

prefix outage 1 1 0 0 0 1 1

Total found 276 214 51 76 265 271

Trace: MAWI, from WIDE backbone

Period: April 2012‡

ASTUTE Kalman Wavelet Fourier M-SSA Hybrid†

Anomalies class Labeled

DoS attacks 9 1 7 8 4 9 9

port scans 98 89 11 19 0 89 89

large-file transfer 1 1 1 0 0 1 1

link outage 2 2 1 1 0 2 2

Total found 111 93 20 28 4 101 101

† Hybrid refers to ASTUTE ∪ Kalman ∪Wavelet
‡ This a 63-hours trace in the early days of the month.
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Figure 3.4: Timeseries plots of measured and reconstructed data along with related resid-
ual vector squared magnitude; for one day of both traffic traces from Abilene and WIDE
networks. Triggered alarms shown as red circles.
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The first observation is that the set of anomalies are clustered in distinct groups,

with the set of anomalies detected by Wavelet and Kalman approximately common

(Wavelet is slightly better in detecting some port scans). Secondly, the Kalman filter

and Wavelet techniques are not able to find anomalies caused by large number of flows

with small packet counts. These includes anomalies where the rate of change in packet

count in individual flows over time is small, e.g. port scans, prefix outages and file

transfers. Wavelet as a time-frequency technique is able to flag sudden changes in

traffic, but will miss any small variations such as port scans and absorb them in the

main trend.

The Kalman filter technique is effective at detecting anomalies when the packet

count variation over time is significant, such as DoS attacks. This is expected, as

Kalman Filtering is essentially a forecasting technique in the time dimension. Another

observation is that ASTUTE is not able to detect anomalies involving a few large flows

(bottom right hand corner of Fig. 4.11), such as DoS attacks. This is also expected, as

ASTUTE is not able to detect large volume change in a few number of flows, because

the AAV process threshold is not violated (as the denominator of AAV is the standard

deviation which will be large) as mentioned by [9, 49].

The results and analysis clearly suggest, as has been noted before by [8], that a

hybrid approach consisting of ASTUTE and Kalman (or Wavelet) will capture most of

the anomalies. Importantly, Fig. 4.11 shows that the proposed M-SSA based approach

is able to detect anomalies regardless of their location on the feature properties map.

M-SSA is able to detect significant temporal changes in traffic as well as changes in

the number of flows. M-SSA searches for correlation across flows properties (ASTUTE

applies the same search concept between flows), while at the same time looking for

temporal variation in a lag window dimension of `. ASTUTE is limited to two consecu-

tive time bins.

3.5.2 Detection Performance

In order to evaluate the robustness and sensitivity of M-SSA we have designed a

simulation set up where we inject artificial anomalies in real traces and measure the

trade-off between the true positive and false positives using ROC curves. One of the

biggest challenges in network anomaly detection systems, and which has limited their
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Figure 3.5: Anomalies feature map shows DoS attacks are associated with a small number
of flows with large number of packets, while port scans are a larger number of flows
correlated in same time. The coverage of M-SSA subsumes all the techniques.

widespread adoption, is the high false positive rate exhibited by most existing tech-

niques (see [83, 84]).

3.5.2.1 Simulation

Our simulation is based on real trace data augmented with anomalous traffic injected in

a similar fashion as in [8, 83, 84]. However and in addition to previous work, we build

a simulation model which captures several distinctive characteristics of anomalies. We

consider the distribution of time between anomalies, duration, magnitude (packet count

for DoS attacks, number of flows for port scans, etc), and the anomaly type distribution

(DoS, port scan, etc).

We first estimate the above parameters based on available observations in traffic

traces. For example Fig. 3.6 and Fig. 3.7 show the histograms of these property values

for DoS attacks and port scans respectively, as observed in the Abilene trace. We start

the simulation assuming a non-anomalous time bin and choose the next attack time, by

sampling from the empirical probability distribution of the time between anomalies.

The anomaly type is then also chosen by sampling from the anomaly type distribution.

At this point, a synthetic anomaly is generated by sampling from the anomaly dura-

tion and magnitude distribution, and injected into the synthetic trace. This process is

repeated until the end of the simulation. The resulting trace therefore inherit the most
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Figure 3.6: Illustration of the distribution histograms used to simulate DoS attacks. Dis-
tribution histograms characterize the duration of attacks and size of attack (e.g. number of
flows involved in the attack plus the change in the packet volume)

significant statistical properties of the real data, e.g. the frequency of attacks and their

magnitude.

3.5.2.2 Results

The trade-off between false positive and true positive rate using the simulation data are

captured using the ROC curve and are shown in Fig. 3.8. The simulation parameters for

all algorithms are set as per Table 3.2. The ROC curves depicted in Fig. 3.8 show that

M-SSA has higher true positive rate for a given false positive rate, compared with all

other techniques. For example, for a false positive rate of 0.01%, M-SSA detects 90%

of anomalies, whereas Wavelet and ASTUTE only detect 77% and 81% respectively. A

Hybrid detector including Wavelets, Kalman and ASTUTE shows slightly better trade-

off for a false positive rate less than 10−5 but M-SSA is better for the rest of interval.

The Area Under Curve (AUC) which measures the overall performance of the detector

has been shown in Fig. 3.8 (left).
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3.5.3 Configuration of Parameters

We now evaluate the impact of the parameters: Lag Window Length (`), the dimen-

sionality k of the projected space and the detection threshold qβ .

3.5.3.1 Lag window length (`)

The key concept to take away from the theoretical literature is that for an appropriate

choice of `, the Hankel matrix will capture the appropriate dynamics of the underlying

system (see [5]. According to [5, 14, 15] and [80], in choosing ` one must consider the

trade-off between the maximum period (frequency) resolved and the statistical confi-

dence of the result. A large value of ` will potentially better capture the long range

trends but the size of the covariance matrix will be larger which will have to be esti-

mated from a time series of effective length n− `+1.

The choice of ` has a significant impact on detection performance of different

anomalies. DoS attacks and port scans are emblematic of two types of deviations in

network traffic. DoS attacks are characterized by large changes in a (relatively) small

number of flows as the attacking hosts send a large number of small packets to de-

plete system resources in the attacked host (see Fig. 3.6 and Fig. 4.11). Thus DoS like

anomalies cause high temporal variation (within flows correlation) in the responsible

flows and can be detected using techniques based on time series analysis. Port scans,

on the other hand, are characterized by small increases in a large number of flows (see

Fig. 3.7 and Fig. 4.11). Thus, we need to detect spatial correlation across flows (i.e.

correlation between the flows) in order to find port scans. We run an experiment to test

the impact of window length on capturing within and between flows correlation of the

traffic data. ROC curves in Fig. 3.9a and Fig. 3.9b present DoS and port scan detection

performance (separately) for varying window length. We describe the main findings

learned from this experiment as follows.

• It is clear that the detection of DoS is almost independent of the window length

(Fig. 3.9a). This is expected as DoS attacks cause high correlation within flows

(temporal variations) and this can be always captured even if the window length
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Figure 3.9: The impact of window length ` on detecting DoS attacks and port scans.
Notice that ` has almost no impact on on DoS detection but significant impact on port scan
detection.

is zero, i.e. even the common PCA is able to report DoS attacks.

• Across flows correlation is crucially dependent on window length as shown in
Fig. 3.9b. Thus the choice of window size has significant impact on detection
of port scans. When the window length is zero the correlation across the flows
can not be captured. When the window length is large across flows correlation is
suppressed. What is required is a localized window where deviation from normal
correlation can be detected. According to the experiment, detecting port scans is
improved for window lengths of `= {4,8,12} (hours) and worsened for smaller
or larger window lengths.

3.5.3.2 Grouping indices (k)

Another important parameter of M-SSA affecting results is the grouping indices, i.e.
which components are grouped to provide the reconstructed data. The aim of our tech-
nique is to make a decomposition of the observed traffic into the sum of underlying
traffic system (can be a number of interpretable components such as a slowly varying
trend, oscillatory components) and a structureless noise, as Y = X +E. The decompo-
sition of the series Y into these two part is viable if the resulting additive components X
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and E are approximately separable from each other. Suppose the the full reconstructed

components are denoted by Vi = Mz for i = {1,2, ...,m× `}. To select which com-

ponents to group, we compute the weighted correlation matrix (w-corr), where each

element of the matrix ρi j is defined as:

ρi j =
covw(Vi,Vj)

σw(Vi)σw(Vj)

using:

σ
2
w(Vi) =W ′V

′
i Vi , covw(Vi,Vj) =W ′V ′i Vj

where wt = min{t, `,n−`} for t = {1 : n} is the weighting vector. If the absolute value

of the w-correlations for two Vi and Vj is small (ideally zero), so the corresponding

series are almost w-orthogonal and well separable. Fig. 3.10 shows the absolute values

of w-correlation for the first 50 reconstructed components. This is a grade matrix plot

from red (corresponding to 1) to blue (corresponding to 0), which shows both the sep-

arability and dominance of components with highest eigenvalues values. This plot is

useful to select how many components to select in the reconstruction phase, as we only

need to select the first k components with the largest w-corr values. From Fig. 3.10,

we observe that the absolute value of the w-correlation for first 10 components are nat-

urally grouped, a property that is observed for both the Abilene and MAWI data sets.

We therefore suggest to use the first 10 components for the reconstruction when using

M-SSA. So the X = ∑
i=10
i=1 Vi and residual space E = Y −X . In next section we will

see that how the values of w-correlation can also be checked for adjusting the decision

parameter (qβ ) so that a false positive rate can be met.

3.5.3.3 Decision Variable (qβ )

For the decision threshold value (i.e., when to raise an alarm for any anomaly investi-

gating E space), we use the variables proposed in previous studies (see [47, 70, 72])in

network anomaly detection but we address the problem associated with this criteria as

discussed by [58]. The threshold qβ is defined as

qβ = Q(λk+1 : λ`×m,β )

= φ1[
(1−β )

√
(2φ2h2)

φ1
+1+ φ2h(h−1)

φ 2
1

]1/h
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Figure 3.10: Absolute values of w-correlation matrix plotted for the first 50 reconstructed
components. The gaps in the scatter plot indicates how many components to select.

denotes the threshold for the 1−β confidence level, corresponds to a false alarm rate

of β , and

h = 1− 2φ1φ3

3φ 2
2

, φi =
`m

∑
j=k+1

λi for i = 1,2,3.

Based on [72] the Q in the above equation follows a gaussian distribution, and this

convergence is robust even when the original data deviates from a gaussian distribution.

[58] had questioned the robustness of the Q metric - especially in the low false positive

regime. [85] have shown that the main reason the metric is not robust is because

the use of standard PCA results in a residual which exhibits temporal correlation. In

principle the residual should correspond to noise and be completely uncorrelated. Thus

by ensuring that temporal correlation (in the case of KL transform) and spatio-temporal

correlation (in the case of M-SSA) is captured by the model, the Q metric is robust.

The w-correlation matrix computed above can help verify if the residual space,

given by E = Y −X where X is the reconstructed space, contains correlated elements

or not. For example, the w-correlation plot in Fig. 3.10 clearly shows that that when

X is the space spanned by Vi for i > 10, the reconstructed elements are strongly w-

orthogonal in both Abilene and MAWI traffic, resulting in uncorrelated residuals.
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3.6 Related Work

Current network infrastructure is protected against malicious attacks by signature-

based Intrusion Detection Systems (IDS) ([86, 87]). However, it is well known that

attackers can circumvent these systems by generating small modifications of known

signatures.

In principle, anomaly-based detection systems (ADS) offer an attractive alterative

to signature-based systems. ADS are based on the notion of ””statistical normality”,

and malicious events are those that cause deviations from normal behavior. The major

challenge is to characterize normal traffic subject to the constraint that network traffic

exhibits non-stationary behavior.

Existing techniques for ADS are based on decomposition methods of network time

series. For example [32, 47, 48] has proposed the use of Principal Component Anal-

ysis (PCA) for detection of network wide anomalies. [13] has compared the use of

Fourier, Wavelets and ARIMA methods for detection of link anomalies and then have

used `1 optimization to recover the origin-destination pairs which may have caused

the link anomalies to appear. Further refinements on PCA and state methods like

Kalman Filtering have been extensively investigated for first extracting the normal

behavior and then reporting deviations from normality as potential anomalies (see

[6, 7, 10, 11, 12, 13]).

The mathematical basis of Singular Spectrum Analysis (SSA) is the celebrated re-

sult in nonlinear dynamics due to [5]. Taken’s theorem asserts that the latent non-linear

dynamics governing can be recovered using a delayed time embedding of the observ-

able time series. The first practical use of Taken’s theorem for time series analysis and

the connection with spectral methods like singular value decomposition (SVD) was

first proposed by [14, 15]. Further application of the technique in climate and geo-

physical time series analysis has been extensively investigated in [79, 80, 81, 88, 89,

90, 91, 92].
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3.7 Summary

In this chapter we have proposed a unified and robust method for network anomaly
detection based on Multivariate Singular Spectrum Analysis (M-SSA). As M-SSA can
detect deviations from both spatial and temporal correlation present in the data, it al-
lows for the detection of both DoS and port scan attacks. A DoS attack is an example of
temporal deviation while a port scan attack violates spatial correlation. Besides the use
of M-SSA for network anomaly detection, we have carried out a comprehensive evalu-
ation and compared M-SSA with other approaches based on wavelets, fourier analysis,
kalman filtering and the recently introduced ASTUTE method. We have also carried
out a rigorous analysis of the parameter configurations that accompany the use of M-
SSA and address some of the important issues that have been raised in the networks
community. Finally we have introduced a new labeled dataset from a large backbone
link between Japan and the United States.
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4

OSAD: Online Selective Anomaly
Detection

IN this chapter, we introduce a new computational problem, the ”Online Selective

Anomaly Detection” (OSAD) problem, to model the situation where the objective

is to report new anomalies in the system and suppress known faults.

In order to solve OSAD we first have to model the underlying system and learn

its parameters using techniques from machine learning. In order to selectively report

anomalies we have to design a residual system which can suppress certain forms of

behavior of the underlying system. We use control theoretic ideas to accomplish the

design of the residual system. Experiments on synthetic and real data sets confirm that

the OSAD problem captures a general scenario and tightly integrates machine learning

and control theory to solve a practical problem.

The rest of the chapter is as follows. Section 4.1 provides the motivations for the

problem posed. In Section 4.2, we rigorously define the OSAD problem. In Section 4.3

we present our methodology to infer the parameters of the LDS and use control theory

to design a new residual system. In Section 4.4, we apply our approach to real sleep

data and evaluate our results. We overview related work in Section 4.6.

4.1 Motivations for OSAD

The OSAD problem arose while analyzing network traffic data and sleep EEG data.
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Sleep EEG data two significant anomalies are Sleep Spindle (SS) and K-Complexes

(KC). Around 100 sleep spindles will occur during the course of a night. The num-

ber of K-Complexes is much fewer. For some experiments scientists are interested in

identifying both sleep spindles and K-Complexes but only want to be notified with an

alert when a non-spindle anomaly occurs (for example K-Complexes).

Another application of OSAD can be found in network traffic data analysis. Net-

work traffic consists of a flow of packets between nodes in the system. Thus over time,

we can assume that the flow settles into an equilibrium pattern. Periodically, there are

perturbations in the equilibrium due to various network conditions including malicious

attacks like Denial of Service (DoS) and Port Scans. If we model the flow as a time se-

ries and learn the model, then in many cases, attacks show up as deviations (residual)

between the learnt model and the observations. Often the interest is to identify new

anomalies while suppressing known deviations or faults in the system. For example, in

some networks it may be more important to identify Port Scans than DoS as the former

are harbingers of future attacks.

4.1.1 Human Sleep EEG

Research in human sleep condition has emerged as a rapidly growing area within

medicine, biology and physics. A defining aspect of sleep research is the large amount

of data that is generated in a typical sleep experiment.

A sleep experiment consists of a human subject, in a state of sleep, whose neural

activity is being recorded with Electroencephalography (EEG) [2, 3]. A typical full

night EEG time-series, recorded between 4-64 locations on the scalp, at 200 Hz, for

eight hours, will generate approximately 300MB of data. A typical clinical study will

have between ten and fifty subjects. Surprisingly vast majority of sleep clinics still use

a manual process to analyze the recorded EEG time-series. Hence there is considerable

interest in automating the analysis of EEG generated from sleep experiments.

Scientists have segmented sleep into several stages based on the responsiveness of

the subject and other physiological features. Of particular important is what is termed

as stage 2 (moderately deep sleep). This stage is characterized by two phenomenon that

occur in the EEG time series. These are sleep spindles, which are transient bursts of

neural activity with a characteristic frequency of 12–14 Hz, and K-Complexes, which
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Figure 4.1: Sleep spindles (SS) along with K-Complexes (KC) are defining characteristics
of stage 2 sleep. Both SS and KC will show up as residuals in an LDS system. The OSAD
problem will lead to a new residual time-series where SS will be automatically supressed
but KC will remain unaffected. Due to relatively high frequency of SS, there are certain
situations where sleep scientists only want to be alerted when a non-SS anomaly occurs

are short, large-amplitude voltage spikes. Both phenomena are implicated in memory

consolidation and learning, but the physiology and mechanisms by which they occur

are not yet fully understood, see [2, 3, 93, 94].

In order to study these phenomena, they anomalies must be first located and iden-

tified in the EEG data. This can be challenging because they occur for an extremely

short duration and irregularly. For example, sleep spindles and K-Complexes typically

last less than 1sec and there are only on the order of 100 of these events over the course

of an entire night. Identification of these events is further complicated by the presence

of artifacts in the data, often caused by movement of the subject, but which can also

occur due to electrical noise or loose electrodes connections. These artifacts must be

ignored when attempting to identify sleep spindles and K-Complexes. Because the

electric fields produced by the brain are quite weak (the induced electrical potential is

on the order of 50 µV), the signals also contain a significant noise component.

In this paper we introduce the Online Selective Anomaly Detection (OSAD) prob-

lem which captures a particular scenario in sleep research. As noted above, around 100

sleep spindles will occur during the course of a night. The number of K-Complexes is

much fewer. For some experiments scientists are interested in identifying both sleep
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4. OSAD: ONLINE SELECTIVE ANOMALY DETECTION

spindles and K-Complexes but only want to be notified with an alert when a non-
spindle anomaly occurs (for example K-Complexes).

The solution of the OSAD problem combines techniques form both data mining
and control theory. Data Mining is used to model and infer the normal EEG pattern
per subject. Experiments have shown that model parameters do not transfer accurately
across to other subjects. In our case we will use a Linear Dynamical System (LDS)
to model the EEG time series. Then based on frequency analysis, we infer the sleep
spindle (SS) pattern and integrate the pattern as a disturbance into the LDS. The control
theory part is used to design a new residual which suppresses SS signals but faithfully
represents other errors generated by the LDS model. Thus by selectively suppressing
SS pattern, the objectives of the OSAD problem are achieved.

For example, consider Figure 4.1. The top frame shows a typical EEG time series
with both the SS and KC highlighted. The middle frame shows a typical residual time
series based on an LDS model. The bottom frame shows a new residual designed to
solve the OSAD problem. Notice that the error due to the presence of SS is suppressed
but the residual due to the appearance of KC remains unaffected.

The main contributions of this chapter are:

• We introduce the Online Selective Anomaly Detection(OSAD) to address the
requirement of selectively reporting sleep anomalies based on specifications by
domain experts.

• In order to solve OSAD, we combine techniques from data mining and control
theory. In particular we will use a Linear Dynamic System (LDS) to model the
underlying data generating process and use control theory techniques to design
an appropriate residual system.

4.2 Problem Definition

In this section we present our problem statement for selective anomaly detection.
The starting point is an observed time series of N points y = {yi}N

i=1 where each
yi ∈ Rm. Furthermore, we assume that the y measures the output of a system which is
generated from a latent variable x ∈ Rn. The relationship between x and y is governed
by a standard Linear Dynamic system (LDS) model [95] which is specified as
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x0 x1 x2 xT

y0 y1 y2 yT

Latent variable

Observations

y(t)=Cx(t)

x(t+1)=Ax(t) 

LDS parameters θ =(A,C)

ε0 ε1 ε2 εT

e0 e1 e2 eT

Latent error

Observed  error

e(t)=Cε(t)

ε(t+1)=Aε(t) 

LDS error model parameters: θ =(A,C)

Figure 4.2: A linear dynamic system is a model which defines a linear relationship be-
tween the latent (or hidden) state of the model and observed outputs. The LDS parameters
A and C need to be estimated from data. The LDS can also be used to model the relation-
ship between the latent and the observed residuals (right figure).

x(t +1) = Ax(t)
y(t) = Cx(t)

Here A is an n× n state matrix which governs the dynamics of the LDS while C
is an m× n observation matrix. The modern convention is to represent the LDS as

graphical model as shown in Figure 4.2. The state of the system, x, evolves according

to LDS beginning at time t = 0, with value x0. The standard learning problem is as

follows.

Problem 2 (Learning Problem) Given an observable time series {yi}N
i=1 and assum-

ing that the observed y and the latent x are governed by an LDS, infer A and C.
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The standard LDS inference problem has been extensively studied in both the ma-

chine learning and control theory literature. Several algorithms have been proposed

including those based on gradient descent, expectation maximization, subspace iden-

tification and spectral approaches [16, 17, 18, 19]. Several extensions of LDS to in-

clude non-linear relationships as well as to include stochastic disturbances have been

proposed. However, for sleep analysis, the above LDS will suffice. For the sake of

completeness, in the Appendix we will describe a simple but effective approach for

inferring A and C based on a spectral method [19].

The standard approach to detect outliers using an LDS is to use the inferred A and

C matrices to compute the latent and observed error variables as:

ε(t) := x(t)− x̂(t)
e(t) := y(t)− ŷ(t)

where x̂ and ŷ are estimated using LDS. Then given a threshold parameter δ , an

anomaly is reported whenever, e(t) > δ . However, our objective is not to report all

anomalies but suppress some known user-defined patterns or even known anomalous

pattern. We now formalize the notion of pattern.

Definition 1 A pattern P is a user-defined matrix which operates in the latent space.

In our context, we will design a specific matrix P for a sleep spindle. The matrix P
is integrated into the LDS as

x(t +1) = Ax(t)+Pζ (t)
y(t) = Cx(t)

We are now ready to define the design part of the OSAD problem.

Problem 3 (Design Problem) Given an LDS, a pattern P in the latent space, design
a residual r(t) such that

r(t) =

{
0 if ε(t) = Pζ (t)
Se(t) otherwise
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Here S is suitably defined linear transformation on e(t). Notice that the residual

r(t) depends both on the latent error ε(t) and the observed error e(t). In practice, r(t)

will never be exactly zero when the pattern P is active but will have small absolute

values.

4.3 The OSAD Method

In this section we propose a method based on statistical inference and control theory to

provide a solution of the OSAD problem. Using the LDS, we first develop a Dynamic

Residue Model (DRM). Then we will show how to adjust the DRM parameters in

order to design a residual r(t) which will satisfy the constraints of the problem, i.e. the

selected anomalous pattern will be canceled (or projected out) in the generated residual

space.

4.3.1 DRM Formulation

Assume data is generated by an LDS. Any deviation of the state from its expected value

can be captured by a structured error model. Intuitively, the discrepancy between the

observed error e(t) and latent error ε(t) is modeled by the same LDS (because of

linearity):

ε(t +1) = Aε(t)+Pξ (t)
e(t) = Cε(t)

The above error model can be used to detect changes occurring in the latent space.

We design a feedback loop (as shown in Figure 4.3) to effect the output of the error

model. In particular a function of the residual will be used to manipulate the changes in

the error. The design objective will be to map the anomalies generated by the P pattern

into the null space of the new residual. The DRM based on this feedback design is

developed as follows:

To design the feedback we define two transformation matrices W and F for error

values to be weighted as:

r(t) := We(t)
u(t) := Fe(t)
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Observed error

εt

et

Latent error

rtut

{F}

{W}

New residual

Feedback

ε0 ε1 εT

r0 r1 rT

Latent error

New residual

r(t)=WC ε(t)

ε(t+1)=(A-FC) ε(t) 

DRM design parameters: θ2 = (F, W)

u(t)=Fe(t)

r(t)=We(t)

Figure 4.3: Using parameter F a virtual input u(t) is generated to feed the error back to
the latent space. The error e(t) is is then calibrated by W to generate a new residual space
r(t).

F will be used as the feedback gain matrix and maps the error to the feedback

vector u(t), and W is the residual weighting matrix that generates the new residual

r(t). Now feeding back u(t) into the LDS (as shown in Figure 4.2), with u(t), the

residual dynamic model will be:

x̂(t +1) = Ax̂(t)+u(t)
= Ax̂(t)+Fe(t)
= Ax̂(t)+F(y(t)− ŷ(t))
= Ax̂(t)+F(Cx(t)−Cx̂(t))
= Ax̂(t)+FCx(t)−FCx̂(t)
= (A−FC)x̂(t)+FCx(t)
= (A−FC)x̂(t)+Fy(t)

Notice that since the residual is a linear transformation of the error, its rank (sup-

pose r(t) ∈ Rp) can not be larger than the observation dimension, i.e., p≤ m.

We are now able to define the dynamic of the latent error as:

ε(t +1) = x(t +1)− x̂(t +1)
= Ax(t)− (A−FC)x̂(t)−Fy(t)
= Ax(t)−Ax̂(t)−FC)x̂(t)+FCx(t)
= (A−FC)(x(t)− x̂(t))
= (A−FC)ε(t)
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and the residue r(t) is obtained as:

r(t) = W(y(t)− ŷ(t))
= W(Cx(t)−Cx̂(t))
= WC(x(t)− x̂(t))
= WCε(t)

We therefore have the following dynamic model for the latent error:

ε(t +1) = (A−FC)ε(t)
r(t) = WCε(t)

Notice that the observed residue r(t) is governed by state error ε(t) through matrix
WC while it evolves in time through A−FC.

To simplify the notation, denote C f = WC and A f = A−FC. The DRM is then
defined as:

ε(t +1) = A f ε(t)
r(t) = C f ε(t)

The graphical diagram for this error model is shown in Figure 4.3.

4.3.2 OSAD Parameter Design

In this section we address the problem of designing the F and W matrix with objective
of making the DRM insensitive to anomalies generated by P. The overarching design
is shown in Figure 4.4 and is related to the use of control theory for fault diagnosis
[96, 97, 98]. A typical LDS model will output the observed error e(t). However, the
OSAD model has a feedback loop which takes W and F matrices as input and return a
variable u(t) which is fed back into the model. The observed error is also transformed
by a W matrix. The F and the W matrices satisfy the constraints which involve the A,
C and the P matrices.

Since the model is time-dependent, we follow a standard approach and map the
model into the frequency domain using a Z-transform to design the W and F matri-
ces. In the frequency domain, it will be easier to design matrices W and F such that
WC(A−FC) = 0 and WCP = 0.

Definition 2 The Z-transform of a discrete-time sequence x(k) is the series X(z) de-
fined as

X(z) = Z{x(k)}=
∞

∑
0

x(k)z−k.
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Observation 1 Two important (and well known) properties of the Z-transform are lin-
earity and time shifting:

ax(k)+by(t) Z←→ aX(z)+bY (Z)

x(k+b) Z←→ zbX(z)

Applying Z-transform Z() to the DRM yields:

zE(z) = A fE(z)+Pξξξ (z)
E(z) = (zI−A f )

−1Pξξξ (z)

and:

R(z) = C fE(z)
= [C f (zI−A f )

−1P]ξξξ (z)

in which ξξξ (z) = Z(ξ (t)), ϑϑϑ = Z(ϑ(t)), R(z) = Z(r(t)). The transfer gain between

ξξξ and R:

Gξ (z) := C f (zI−A f )
−1P

Thus if Gξ would be zero, the residual R(z) is independent of the ξξξ (z). In the

other word, to make R(z) independent of ξξξ (z), one must null the space of Gξ (z). Then

whenever P occurs it is transferred by a zero gain to the residual space. To find the null

space Gξ (z) = 0, we expand it as:

Gξ (z) = z−1C f (I+A f z−1 +A2
f z−2 + ...)P

= 0

The sufficient conditions for Gξ (z) to be nulled are C f P = 0 and either C f A f = 0

or A f P = 0. Thus we have the following result.

Theorem 4 For a DRM, a sufficient condition for Gξ (z) = 0 is

C f P = 0 and {C f A f = 0 or A f P = 0}
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Now as C f =WC, for C f P= 0 it is sufficient that WC be orthogonal to P. Further-

more for C f A f = 0, it is sufficient to design a matrix A f such that its left eigenvectors

corresponding to the zero eigenvalue are orthogonal to P. Similarly, for A f P = 0, it is

sufficient to design a matrix A f , such that the right eigenvectors corresponding to the

zero eigenvalues are orthogonal to P. See Appendix D.

Now, to design a system which operates in an online fashion we proceed as follows.

From the definition of residue:

r(t) = W[y(t)− ŷ(t)]

Using the Z-transform, the computational form of the residual will be:

R(z) = [W−C f (zI−A f )
−1F]Y (z)

Since C f A f = 0:

C f (zI−A f )
−1F = z−1C f

Replacing this result to the above R(z) equation:

R(z) = (W− z−1C f F)Y (z)

Applying the inverse Z-transform, the equation will be:

r(t) =
[
W −C f F

][ y(t)
y(t−1)

]
This clearly says that the residual can be represented directly in terms of the observa-

tions. This property is crucial to make the anomaly detection system operate in near

real-time.

4.3.3 Eigenpair Assignment and the F Matrix

In this section we explain the eigenpair assignment problem and its solution which

is used for designing the matrix F. Recall from Theorem 1, that we require either

C f A f = 0 or A f P = 0.
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Figure 4.4: The complete diagram of OSAD. Using parameters W and F the residue space
r(t) is calibrated to cancel the impact of Pξ (t).
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Problem 4 Given a set of scalars {λi} and a set of n-vectors {vi} (for i = 1,2, ...,n),
find a real matrix Ao (m×n) such that the eigenvalues of Ao are precisely those of the
set of scalars {λi} with corresponding eigenvectors the set {vi}.

Given the residue model transition matrix A f = A−FC, the problem is to find a
matrix F such that this matrix has the eigenvalues {λi} corresponding to eigenvectors
{vi},i.e.,:

(A−FC)vi = λivi

or: [
A−λiI C′

][ vi
−Fvi

]
= 0

Define qi :=−Fvi, then:

[
A−λiI C′

][vi
qi

]
= 0

The implication of the above statement is of great importance: The vectors
[
vi qi

]′
must be in the kernel space of

[
A−λiI C′

]
, meaning, for i = 1,2, ...,n:

[
q1 q2 ... qn

]
=
[
−Fv1 −Fv2 ... −Fvn

]
The matrix F now can be obtained as:

F =−
[
q1 q2 ... qn

][
v1 v2 ... vn

]+
where ’+’ stands for pseudoinverse. The whole procedure is summarized in algo-

rithm 1.

4.3.4 Degrees of Freedom of P

There is an an important constraint that the matrix P must satisfy for the DRM ap-
proach to be valid solution of the OSAD problem. As the WCP = 0, a necessary
condition is that

rank(P)≤ rank(C)

In the other word, the effective number of independent perturbations generated
by the matrix P is bounded by the effective number of independent measurements
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Algorithm 1 Find F such that the set {λi,vi} be the eigenpairs of A−FC

1: Input A,C, λi = 0 ∀i and vi = P(:, i).

2: Output F such that (A−FC)P = 0.

3: for i = 1 : n do

4: φi = null
[
A−λiI C′

]
5: Find an element [vi qi]

′ ∈ φi

6: end for

7: F =−
(

q1 q2 ... qn

)(
v1 v2 ... vn

)+
governed by the observation matrix C, see [97]. For example, if C is the independent
matrix on an LDS where the state vector has dimensionality n, then the rank of the P
matrix must be less than (n−1).

4.3.5 Inferring the Matrix P

The OSAD model is predicated on the existence of a P matrix. This matrix can be
provided by a domain expert or can sometimes be inferred from data. For example,
in the case of sleep spindle, frequency analysis shows that sleep spindles occur in the
interval twelve to fourteen Hz. The exact frequency can change from one subject to
another. The signature for K-Complexes is more a function of the amplitude of the
signal rather than the frequency.

We now show how to construct a P matrix from data. For example, suppose there
exists a frequency/peridicity T = f−1 in the EEG time series or:

x(t +T) = x(t)

Replace this in linear dynamics:

x(t +1) = Ax(t)
= Ax(t +T)

Applying z-transform:

zX(z) = AzTX(z)

98



4.3 The OSAD Method

Using Tailor expansion we expand zT around z = 1:

zT ≈ 1+α +β z+ γz2

where α = 0.5T(T−3), β = 0.5T(T−1) and γ =−T(T−2). An approximation

by this expansion will be:

zX(z) ≈ AX(z)+αAX(z)+β zAX(z)+ γz2X(z)

Returning to the time-domain, we obtain

x(t +1) ≈ Ax(t)+αAx(t)+βAx(t +1)+ γAx(t +2)
≈ Ax(t)+ [αA βA γA][x(t) x(t +1) x(t +2)]′

4.3.6 Summary Example

To summarize, the solution of the OSAD problem requires the availability of the fol-

lowing matrices:

Table 4.1: Parameters for learning and design

Matrix Description Source

A The State Matrix Inferred from data

C The Observation Matrix Inferred from data

P The Pattern Matrix Given by domain-expert

F Feedback Gain Matrix Designed using Theorem 1

W Error Weighting Matrix Designed using Theorem 1

We will now give a concrete example. Assume we have an LDS system given as

ε(t +1) = Aε(t)+Pξ (t)
e(t) = Cε(t)

Assume have identified the A and C matrices as
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A =

(
0.5 0.3
0.3 0.2

)
and C =

(
1 0
0 1

)
and P =

(
1 1
2 2

)
Now, to form the OSAD model, we have to identify W and F such that:

1. W is in the null space of CP and

2. A−FC has its left eigenvectors (corresponding to the 0 eigenvalue ), the rows
of WC.

Since C is the identity matrix, an example of W is

W =

(
2 −1
2 −1

)
Similarly, an example of F matrix is

F =

(
0.0 0.2
−0.7 0

)
As mentioned, the residual matrix is given by

r(t) =
(

1.3 −1.4
1.3 −1.4

)(
y(t)

y(t−1)

)

4.4 Experimental Result

We now report on the experiments that have been carried out to test the effective of
the proposed OSAD solution on sleep data. Our particular focus will be determining if
OSAD can recognize sleep spindle and K-Complex anomalies and selectively raise an
alert for non-Spindle anomalies.

4.4.1 Sleep Data Set

Our data set consists of EEG time series from four health controls (age 25-36) as
described in [99]. Recordings were made with an Alice-4 system (Respironics, Mur-
raysville PA, USA) at the Woolcock Institute of Medical Research, at Sydney Univer-
sity, using 6 EEG channels with a sampling rate of 200 Hz, and electrodes positioned
according to the International 10-20 system [2, 3], see Figure 4.5. The International
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C3 C4cz

Fz

Pz

Oz

Figure 4.5: The position of scalp electrodes for EEG experiment follows the International
10-20 system [2, 3].

10/20 system is an internationally recognized method to describe the location of scalp

electrodes. In this study we only examine the Cz electrode. A notch filter at 50 Hz

(as provided by the Alice-4 system) was used to remove mains voltage interference.

No other hardware filters were used. Spindles and K-Complexes were labeled using

another automation program and then manually evaluated. As previously noted, while

data from only four subjects were used, a typical EEG session generates a large amount

of personal data.

4.4.2 Inference of A and C Matrices

Our first task is to learn the A and C matrices from the LDS for each subject. Others

have reported, and our experiments confirm, that EEG of each subject tends to different

and separate models need to learnt per subject. For each subject we took a sample of

size 2000 (10 seconds) of EEG time series which did not contain either sleep spindle

or K-Complex. We then formed a 2000× 6 data matrix, O. The columns of the O
matrix are time series associated with the six channels of EEG. We used both subspace

and spectral methods to infer the matrices A and C. Both these methods are based

on SVD decomposition of the O matrix and require as input the rank required of the
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Figure 4.6: The RMSE error obtained from both methods are comparable. Notice the
RMSE increases as the rank of LDS is reduced.

inferred matrices. We evaluated the inferred matrices using RMSE and the results are

shown in Figure 4.6a and Figure 4.6b. Both the subspace and spectral methods have

similar performance and RMSE goes up significantly when the rank falls below five.

We selected a rank six matrix (maximum possible rank) for both A and C. In terms of

running time, the two methods are comparable as we have to carry out an SVD of a

relatively small 6×6 matrix.

4.4.3 Detection of SS and K-Complex

For each of the four subjects, statistics of the labeled sleep spindles and K-Complexes

and those detected by the LDS are shown in Table 4.2. For LDS detection, we used

a threshold derived from CUSUM which automatically adjusts for mean and standard

deviation of the observed residual time series e(t). To specify a CUSUM threshold

we applied the alpha and beta approach in [100] and we set the probabilities of a false

positive and a false negative to 10−4 and the change detection parameter to 1 sigma, in

all subjects.

In all four subjects, the LDS residual slightly under predicts the number of spindles

and K-Complexes. Since each labeled and predicted SS and K-Complex spans a time-
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Table 4.2: Summary statistics of results. LDS is quite accurate but tends to over-predict
the number of anomalies.

No. of Labeled Anomalies No. of Detected Anomalies

Spindle K-Complex Spindle K-Complex

subject 1 170 277 164 251

subject 2 6 13 6 11

subject 3 23 38 21 37

subject 4 141 205 132 186

interval, we have modified the definitions of precision and recall to account for the

intervals. For a given subject, let {[ai,bi]}n
i=1 be the intervals of the labeled anomalies

(spindles or K-Complex). Let {[a′j,b
′
j]}m

j=1 be the predicted spindles. Then

precision=
∑

n
i=1 ∑

m
j=1 |[ai,bi]∩ [a

′
j,b
′
j]|

∑
m
j=1 |[a

′
j,b
′
j]|

and

recall=
∑

n
i=1 ∑

m
j=1 |[ai,bi]∩ [a

′
j,b
′
j]|

∑
m
j=1 |[a j,b j]|

Here, |[ai,bi]|, is the number of points in the time interval [ai,bi]. With these defini-

tions in place, Table 4.3 and Table 4.4 show the precision and recall SS and K-Complex

across alls the subjects. In general both precision and recall are high across subjects,

but precision is significantly more higher than recall. For SS, the recall varies more

than precision ranging for 71.24% to 97.18%. Also notice that the length of detection

of both SS and K-Complex is higher compared to their labeled lengths.

4.4.4 Evaluation across Subjects

We now investigate the transfer properties of the inferred LDS across subjects. That

is, we learn the A an C matrices on one subject and evaluate it against an another. We
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Table 4.3: Summary statistics for spindles. LDS has higher precision than recall and total
length of predicted interval is higher than the length of labeled intervals.

Total time of spindles Performance

Labeled in sec Detected in sec Recall Precision

subject 1 129.8 168.74 95.53% 71.24%

subject 2 3.45 3.55 97.38% 97.18%

subject 3 15.15 16.23 95.66% 83.88%

subject 4 93.5 103.2 95.42% 79.15%

Table 4.4: Summary statistics for K-Complex. Both precision and recall are high. Total
length of predicted interval is higher than labeled intervals.

Total time of K-Complex Performance

Labeled in sec Detected in sec Recall Precision

subject 1 198.23 216.35 93.43% 90.45%

subject 2 11.48 11.25 94.12% 92.76%

subject 3 21.39 24.56 92.06% 91.01%

subject 4 147.68 160.49 93.73% 91.28%
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Table 4.5: Recall across subjects. A substantial reduction in accuracy when model of one
subject is evaluated against the EEG of another.

A1,C1,W1,F1 A2,C2,W2,F2 A3,C3,W3,F3 A4,C4,W4,F4

subject 1 71.24% 38.13% 44.13% 41.29%

subject 2 41.32% 97.18% 35.26% 37.85%

subject 3 48.74% 43.21% 83.88% 44.43%

subject 4 51.26% 43.81% 35.36% 79.15%

Table 4.6: Precision across the subjects. Again, a substantial reduction in accuracy when
model of one subjected is evaluated against another.

A1,C1,W1,F1 A2,C2,W2,F2 A3,C3,W3,F3 A4,C4,W4,F4

subject 1 95.53% 41.11% 47.19% 43.67%

subject 2 39.54% 97.38% 37.82% 39.21%

subject 3 48.21% 41.29% 95.77% 41.83%

subject 4 51.77% 53.34% 33.49% 95.42%

just focus on the anomaly. The recall and precision results are shown in Table 4.5

and Table 4.6 respectively. The diagonal of the table corresponds to the results in

Table 4.3 and Table 4.4. It is clear that there is a substantial reduction in accuracy

and that indeed the EEG of subjects varies substantially. We have also computed the

”average” A and C matrix and evaluated against all the four subjects. The results are

shown in Table 4.7. While there is an improvement compared to results in Table 4.5

and Table 4.6, the absolute performance is still quite low compared to the situation

where the learning was customized per individual subject.
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Table 4.7: Recall and Precision on each subject evaluated against an averaged model.
Again, a substantial reduction in accuracy compared to individual models.

Recall Precision

subject 1 69.35% 51.39%

subject 2 65.43% 57.22%

subject 3 61.77% 61.47%

subject 4 68.12% 53.92%

4.4.5 Performance of Designed Residual

In this section we evaluate whether the new residual r(t) satisfies the design criterion.

Recall, r(t) was designed to suppress the signal whenever a sleep spindle (SS) appears

and behave like the observed error e(t) in otherwise. Figure 4.7 shows the distribution

for |r(t)− e(t)|2 for values of t when t is in (and not in) the predicted SS interval

[a
′
j,b
′
j] for some j. It is clear that the distribution when t is in a predicted SS interval

is towards the right compared to when it is not in the interval. This is because in an

SS interval, r(t) will have a small absolute value (by design). In a non-SS interval,

r(t) will be a linear function of e(t), as r(t) = We(t). This behavior is observed across

subjects suggesting that in all cases that r(t) is behaving as designed. Furthermore in

Figure 4.8, we plot the |r(t)| against |e(t)| when t is not in a spindle interval. Again we

observe a straight line behavior, providing further confirmation that r(t) is behaving

according to specifications.

4.4.6 Delay in Detection of Anomalies

OSAD detects anomalies in near real time. We now discuss the lag between the ap-

pearance of a SS and before it is reported by the LDS. Figure 4.9 presents the delay

distributions for subject 1 and subject 4 who experienced 164 and 132 labeled sleep

spindles, respectively. In general, the predicted SS interval are longer and contain the

actual intervals. This is confirmed in Figure 4.10 which shows one specific example of

the location of the labeled sleep spindle and the predicted interval. In this case (which

106



4.4 Experimental Result

0 10 20 30
0

0.1

0.2

0.3

0.4

0.5

 

 

r(t)−e(t) for t in SS
r(t)−e(t) for t not in SS

(a) subject 1

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

 

 

r(t)−e(t) t in SS

r(t)−e(t) for t not in SS

(b) subject 2

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 
r(t)−e(t) for t not in SS
r(t)−e(t) for t in SS

(c) subject 3

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 

r(t)−e(t) for t in SS
r(t)−e(t) for t not in SS

(d) subject 4

Figure 4.7: Comparison of the distribution of the norm of r(t)− e(t) for SS and non-SS
intervals. In all four subjects the designed residual suppresses spindles as designed as the
norm is higher for SS intervals.
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Figure 4.8: the |r(t)| against |e(t)| when t is not in a spindle interval as r(t) = We(t)

is typical), the prediction of SS begins before and ends later than the labeled spindle.

Table 4.8 shows the results of the mean delay between matched intervals. Thus a mean

of (ai,a′i) equal to -0.0678 implies that on average, there was a delay of 1/200 second

before LDS reported an anomaly. On the other hand for subject 2 there the SS was,

on average, reported before it showed up in the labeled sequence. As noted in [99],

this is consistent with the observation (and confirmed by double-blind scoring) that the

labeling of SS is more conservative i.e., SS are labeled for a shorter duration than what

they should be.

4.5 OSAD for Network Traffic Data

The OSAD problem is quite general and not limited to sleep analytics. Here we sum-

marize its application for the detection of anomalies in communication network traffic.

DoS and port scan attacks are emblematic of two types of deviations in network traf-

fic. DoS attacks are characterized by large changes in a (relatively) small number of

flows as the attacking hosts send a large number of small packets, typically TCP SYN

segments, to deplete system resources in the attacked host. Thus DoS like anomalies
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Figure 4.9: OSAD provides near real time detection. The delay between the actual ap-
pearance of a spindle and the predicted appearance is a fraction of a second. Similarly the
lag between when the actual spindle disappears and it is reported to disappear is very small
too. The x-axis is in seconds.

cause high temporal variation in the flows packet volume and can be detected using

techniques based on time series analysis [6, 10, 11, 12, 13]. A port scan attack is

typically accomplished by sending small packets as connections requests to a large

number of different ports on a single destination IP address. At the flow level, they are

therefore characterized as small increases in a large number of flows. Thus time series

approaches often fail to detect port scans. Thus we can design perturbation matrices P
which are specific to both DoS and port scans.

Table 4.8: Delay statistics. The lag between appearance and prediction of SS is, on aver-
age, a fraction of a second.

Mean(ai−a′i) Mean(bi−b′i)” Std(ai−a′i) Std(bi−b′i)

subject 1 -0.0678 - 0.0961 +0.0589 +0.0995

subject 2 +0.0041 +0.0016 +0.0113 +0.0089

subject 3 -0.0426 +0.0663 +0.0550 +0.0478

subject 4 -0.0340 -0.0480 +0.0474 +0.0407
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Figure 4.10: Top: Cz data and a typical sleep spindle labeled. Bottom: Residual and
detected sleep spindle. In general the predicted spindle interval is longer than the labeled
interval. The predicted interval tends to include the labeled interval, i.e., it begins earlier
and finishes later. The EEG shows that the labeled intervals are actually quite conservative.

We use a widely known network traffic trace from the Abilene network1 which has

been widely used in network research [8, 12, 32, 47, 49]. The data set consists of a

one month traffic trace from a backbone router in New York during August 2007. The

data is aggregated at the five minute time intervals based on flows. Each five minute

interval was either labeled as non-anomalous or with the specific anomaly observed

during the interval.

As before we used both a subspace method [17] to estimate the LDS parameters,
θ = {A,C,Q}, the entropy of each five minute interval based on source IPs, (2) des-
tination IPs, (3) source ports, and (4) destination ports. The observation is a vector of
y(t) = (IPsrc IPdes portsrc portdes)

′ and y(t) ∈ R4, e.g m = 4. We chose n = 4
leading to x(t) ∈ R4, , and A ∈ R4×4, and C ∈ R4×4 are the state transition and the
observation matrices.

x(t +1) = Ax(t)+Pξ (t)
y(t) = Cx(t)+ξ (t)

1Internet2 - http://www.internet2.edu/
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Figure 4.11: Characterization of DoS attacks and port scans by the number of flows and
the change in packet volume for a traffic trace observed on a link in Abilene network April
2007.
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Figure 4.12: DoS attacks cause large changes within a few flows: the entropies
of source/destination IP addresses and source/destinations ports significantly decrease.
A port scan attack cause small changes across many flows: the entropies of
source/destination IP addresses and source ports decrease while the entropies of desti-
nation ports increase dramatically.

A DoS attack by at time td is characterized by a fall in the entropies. Thus:

∆x(td) = x(td)− x(td−1)
=

(
−α1 −α2 −α3 −α4

)′
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where {αi} are positive scalars. Now we can use the DRM to suppress DoS attacks,
by defining a P matrix as:

P =
(
−α1 −α2 −α3 −α4

)′
By looking at specific instances of DoS attacks, we noticed that the entropies approxi-
mately fell down by rate of −5 for the New York link in Abilene network. Therefore,
we consider Pd =

(
−5 −5 −5 −5

)′.
Similarly, port scans are characterized by source entropies falling and destination

entropies increasing. Again, by observing real instances of port scans we set the P
matrix as
Pp =

(
−3 −3 −3 +5

)′.
4.6 Related work

Automatic detection of sleep spindles is now an important topic in biomedical research.
Different techniques including FFTs, wavelet analysis and autoregressive time series
modeling have been applied for sleep spindle detection [101, 102, 103]. Attempts to
integrate SVM to detect sleep spindles have also been explored [104]. There seems to
be a large variability between sleep EEG across subjects. In our experiments we have
also observed this phenomenon. This combined with the large amount of EEG noise
has resulted in low level of agreement on the exact profile of sleep spindle [105].

The use of ”Linear Dynamical Systems” (LDS) to model time series is ubiquitous
both in computer science [95] and control theory [17, 18, 106, 107, 108]. Expressing
LDS in the language of graphical models and connections with HMM have been ex-
tensively examined in machine learning. The use of LDS for anomaly detection has
also been investigated in network anomaly detection, among other areas [12]. The
use of subspace identification methods for inferring the parameters of LDS have been
discussed by Overschee [17]. Subspace methods estimate LDS parameters through
a spectral decomposition of a matrix of observations to yield an estimate of the un-
derlying state space. Subspace methods have low computational cost, are robust to
perturbations and are relatively easy to implement. The recently introduced spectral
learning methods are variations of the subspace method [19, 77]
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The use of eigenstructure assignment to alter the residual of an LDS has been
investigated in the control theory literature especially in the context of fault diagno-
sis [109].Our approach closely follows the work Patton et. al. [110] who have used
eigenstructure assignment for altering the LDS model using feedback. Other varia-
tions of LDS and fault diagnosis are discussed in [96, 97, 98, 111].

4.7 Summary

In this chapter we have introduced a new problem, the Online Selective Anomaly De-
tection (OSAD) to capture a specific scenario in sleep research. Scientists working
on sleep EEG data required an alert system, which trigger alerts on selected anoma-
lies. For example, sleep stage two is characterized by two known anomalies: sleep
spindle and K-complex. The requirement was to design a system which detected both
anomalies but only generated an alert when a non sleep spindle anomaly appeared. We
combined methods from data mining, machine learning and control theory to design
such a system. Experiments on real data set demonstrate that our approach is accurate
and produces the required results and is potentially applicable to many other situations.
We also note that data from sleep EEG provides a fertile ground to apply existing data
mining methodologies and potentially design new computational problems and algo-
rithms.

114



5

Conclusion

THIS thesis has addressed the anomaly detection problem in the context of complex

time series using both learning and control theory.

The study has first presented some of the current practical challenges for anomaly

detection in traffic time series by providing updated and detailed information on prob-

lem framework, traffic metrics, anomalies characterization, extractions techniques and

solutions. Furthermore, we also showed how the state-of-the-art detection schemes

vary in result and reported the strengths and shortcomings found. Specifically, we

analysed a testbed traffic data set for anomaly detection and provided an empirical

comparison about the type and characteristics of the threats every technique is able to

flag.

Second, we have proposed a unified and robust method for network anomaly de-

tection based on Multivariate Singular Spectrum Analysis (M-SSA). As M-SSA can

detect deviations from both spatial and temporal correlation present in the data, it al-

lows for the detection of both DoS and port scan attacks. A DoS attack is an example

of temporal deviation while a port scan attack violates spatial correlation. Besides the

use of M-SSA for network anomaly detection, we have carried out a comprehensive

evaluation and compared M-SSA with other approaches based on wavelets, Fourier

analysis, Kalman filtering and the recently introduced ASTUTE method. We have

also carried out a rigorous analysis of the parameter configurations that accompany the

use of M-SSA and address some of the important issues that have been raised in the

networks community. Finally we have introduced a new labeled dataset from a large
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backbone link between Japan and the United States. Moreover, we showed that the
proposed method, achieves the best overall performance for scan detection.

Third, we have introduced a new problem, the Online Selective Anomaly Detection
(OSAD) to capture a specific scenario in sleep research. Scientists working on sleep
EEG data required an alert system, which trigger alerts on selected anomalies. For
example, sleep stage two is characterized by two known anomalies: sleep spindle and
K-complex. The requirement was to design a system which detected both anomalies
but only generated an alert when a non sleep spindle anomaly appeared. We com-
bined methods from data mining, machine learning and control theory to design such
a system. Experiments on real data set demonstrate that our approach is accurate and
produces the required results and is potentially applicable to many other situations. We
also note that data from sleep EEG provides a fertile ground to apply existing data min-
ing methodologies and potentially design new computational problems and algorithms.
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Pseudocodes
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A. PSEUDOCODES

A.1 PCA-Based Subspace Method

Here we present the pseudocode of subspace method using PCA.

Algorithm 2 Subspace method based on PCA

1: Input: Y, alert_threshold

2: Output: anomalous_time

3: Covar= (YY’)/(M-1); {% calculate covariance matrix of link load measurements Y}

4: [PC,Landa]=eig(Covar); {% determine the PCs of Y by the singular value decomposition of
covariance matrix}

5: [Landa,i]=sort(-diag(Landa)); {% order the eigenvalues by higher properties}

6: Landa=-Landa;

7: PC=PC(:,i); {% order the PCs by higher variance properties}

8: U = PC(:,1:k); {% choose the top k of PCs with the highest eigenvalues and construct normal
subspace PCs U(M×k)}

9: Ȳ= UU’Y; {% project Y on these k axes to determine normal traffic subspace Y}

10: Ỹ= (I-UU’)Y; {% map Y on residual axes to determine anomalous traffic subspace Ỹ}

11: for t = 1→ T do

12: SPE = norm(Ỹ (:, t))2; {% calculate the Euclidian norm of each vector in Ỹ}

13: if SPE> alert-threshold then
14: anomalous_time= [anomalous_time t];
15: end if

16: end for
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A.2 Kalman Filter for Anomaly Detection

A.2 Kalman Filter for Anomaly Detection

Here we present the pseudocode of the method of Kalman filtering for anomaly detec-
tion.

Algorithm 3 Kalman Filter

1: Input: A, B, Q, R {Input the state space computed matrices and covariances}

2: Input: X̂0, P̂0 {}Initialize the state and the variance of the estimation

3: Input: alert\_threshold {}Input the threshold for residual analysis for (1− β ) confidence
interval

4: for t = 0→ T do

5: X̂t+1 = BX̂t {}estimate the state

6: P̂t+1 = BPtB′+Q {}calculate the variance of the estimation

7: εt+1 = Yt+1−AX̂t+1 {}calculate error of the prediction

8: St+1 = AP̂t+1A′+R {}calculate Variance of the prediction error

9: Kt+1 = P̂t+1A′S−1
t+1 {}calculate Kalman gain

10: X̃t+1 = X̂t+1 + P̂t+1A′R−1εt+1 {}update the estimated state

11: P̃t+1 = (I−Kt+1A)P̂t+1 {}update the variance of estimation

12: ηt+1 = X̃t+1− X̂t+1 {}calculate the residuals which is a Gaussian zero-mean process

13: if ηt+1 violates alert-threshold then
14: anomalous_time= [anomalous_time t]; {if residual violates the alert-threshold, an

anomaly has occurred at t}
15: end if

16: end for
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A.3 ASTUTE for Network Anomaly Detection

Here we present the pseudocode of ASTUTE for anomaly detection.

Algorithm 4 ASTUTE

1: Input: alert threshold {input the state space computed matrices and covariances}

2: Input: F0 = {f1,0, f2,0, . . . , fN,0} { input the initial flow matrix}

Require: 1≤ time bins≤ 5 {flows must be measured in less than 5 minute time bins to hold the second
assumption.}

Require: ∀t : N ≥ 100 {only for at least 100 flows in a time bin, the AVV distribution is close to the
Gaussian distribution.}

3: for t = 0→ T do

4: Input : Ft+1 = { f1,t+1, f2,t+1, . . . , fN,t+1} {input the flow matrix}

5: N = Size(Ft+1)

6: for i = 1→ N do

7: δfi,t = fi,t+1− fi,t {compute the change of flow fi from time bin t to t+1}

8: end for

9: ∆t = {δf1,t ,δf2,t , . . . ,δfN,t} {construct the et of changes for all the active flows}

10: δ̂t = mean(∆t) {calculate the sample mean of the set of changes}

11: σ̂t = standard deviation (∆t) {calculate the sample standard deviation of the set of changes}

12: AAV = δ̂t
σ̂t

√
N {calculate the ASTUTE assessment value}

13: if AAV violates alert threshold then

14: anomalous_time= [anomalous_time t]; {if AAV violates the alert threshold, an anomaly
has occurred at t}

15: end if

16: end for
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Appendix B

Hankelization

The purpose of Hankelization is to transform an arbitrary matrix to the form of a Han-
kel matrix, which subsequently corresponds to a time series. Hankelization operator
H act on any arbitrary matrix M to turn it into a Hankle matrix, M=HM such that it
is the nearest one to M in respect to the matrix norm.

Problem 5 Find the nearest Hankel matrix M to the matrix M (with respect to the
matrix norm), i.e.

argmin
M

||M−M||2 (B.1)

subject to
Mi, j =Mi−1, j+1

Solution: Assume Mi, j as the entries of the matrix M, then the n-th element of the
resulting series is obtained by averaging Mi, j over all i and j such that i+ j = n+2
(see [81] and [78] for details).
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Appendix C

DRM and Kalman Filter

If there is no constrained on the anomaly detection problem the but the latent variables
and observations are governed by a linear stochastic difference model, then the DRM
is reduced to a Kalman filter problem.
Suppose ω(t) := Pξ (t)+η(t), then:

x(t +1) = Ax(t)+ω(t)
y(t) = Cx(t)+υ(t)

ω ∼ N(0,Q)
ν ∼ N(0,R)

By defining a white Gaussian distribution as ε ∼ N(0,I), then the error model can be
obtained:

ε(t +1) = Aε(t)+P
e(t) = CPC′+R

PC′ ε(t)

Where P = E(εεT ) is the latent error covariance. Based on the Kalman theory [18,
106, 112, 113] the error model can be obtained as:

ε(t +1) = Aε(t)+P
e(t) = K−1ε(t)

where K called Kalman gain is given by:

K =
PC′

CPC′+R
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Appendix D

Proof of Theorem 1

Theorem 1. For a DRM, a sufficient condition for Gξ (z) to be zero, is

C f P = 0 and {C f A f = 0 or A f P = 0}

Proof: Let the set {λi = 0,vi}, for i = 1 : n, be the left eigenvectors and corresponding
eigenvalues of A f , i.e.

viA f = λivi
= 0

If one chooses v1 as the rows of matrix [WC], then:[
v1 ... vn

]′A f = 0 ⇒ WCA f = 0

The matrix A f = A−FC, so it is sufficient to chose F so that the set {λi = 0,vi =

[CW]′} to be assigned as left eigenpairs of (A−FC).

In the other side, suppose If the columns of P are the right eigenvectors of A f

corresponding to zero-values eigenvectors, then

A f vi = 0 ⇒ A f P = 0

So it is sufficient to chose F so that the set {λi = 0,vi = P} to be assigned as right
eigenpairs of (A−FC).
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[12] AUGUSTIN SOULE, KAVÉ SALAMATIAN, ANTONIO NUCCI, AND NINA TAFT. Traf-
fic matrix tracking using Kalman filters. SIGMETRICS Perform. Eval. Rev., 33(3):24–
31, December 2005. 3, 15, 19, 21, 29, 35, 39, 51, 71, 83, 109, 110, 112

[13] YIN ZHANG, ZIHUI GE, ALBERT GREENBERG, AND MATTHEW ROUGHAN. Net-
work anomography. In Proceedings of the 5th ACM SIGCOMM conference on Inter-
net Measurement, IMC ’05, pages 30–30. USENIX Association, 2005. 3, 15, 21, 22,
23, 31, 32, 47, 71, 83, 109

[14] D.S. BROOMHEAD AND G. P. KING. Extracting qualitative dynamics from experi-
mental data. In Physica D, Nonlinear Phenomena, 20, pages 217 – 236, 1986. 4, 60,
68, 79, 83

[15] D. S. BROOMHEAD AND G. P. KING. On the qualitative analysis of experimental
dynamical systems. Nonlinear Phenomena and Chaos, pages 113–144, 1986. 4, 60,
68, 79, 83

[16] R. H. SHUMWAY AND D. S. STOFFER. AN APPROACH TO TIME SERIES
SMOOTHING AND FORECASTING USING THE EM ALGORITHM. Journal
of Time Series Analysis, 3(4):253–264, 1982. 4, 90

[17] P. VAN OVERSCHEE AND L.R. DE MOOR. Subspace identification for linear systems:
theory, implementation, applications, 1. Kluwer Academic Publishers, 1996. 4, 60, 90,
110, 112

128



REFERENCES

[18] LENNART LJUNG. System Identification. John Wiley & Sons, Inc., 2001. 4, 60, 90,
112, 123

[19] B. BOOTS, S. SIDDIQI, AND G. GORDON. Closing the Learning-Planning Loop with
Predictive State Representations. In Proceedings of Robotics: Science and Systems,
Zaragoza, Spain, June 2010. 4, 60, 90, 112

[20] DEBRA ANDERSON, TERESA F. LUNT, HAROLD JAVITZ, ANN TAMARU, AND AL-
FONSO VALDES. Detecting Unusual Program Behavior Using the Statistical Com-
ponents of Next-generation Intrusion Detection Expert System NIDES. Technical
report, SRI-CSL-95-07, Computer Science Laboratory, SRI International, 1995. 11

[21] MICHAEL E. WHITMAN AND HERBERT J. MATTORD. Principles of Information Se-
curity. Course Technology Press, Boston, MA, United States, 4rd edition, 2011. 11,
13

[22] DOROTHY E. DENNING. Information warfare and security. Addison-Wesley Longman
Ltd., 1999. 11

[23] FRANK FEATHER, DAN SIEWIOREK, AND ROY MAXION. Fault detection in an Eth-
ernet network using anomaly signature matching. SIGCOMM Comput. Commun.
Rev., 23(4):279–288, 1993. 11, 15

[24] CYNTHIA S. HOOD AND CHUANYI JI. Proactive Network Fault Detection. In IN-
FOCOM ’97: Proceedings of the INFOCOM ’97. Sixteenth Annual Joint Conference of
the IEEE Computer and Communications Societies. Driving the Information Revolution,
page 1147. IEEE Computer Society, 1997. 11

[25] IRENE KATZELA AND MISCHA SCHWARTZ. Schemes for fault identification in com-
munication networks. IEEE/ACM Trans. Netw., 3(6):753–764, 1995. 11

[26] M. THOTTAN AND C. JI. Anomaly detection in IP networks. IEEE Transactions in
Signal Processing, 51(8):2191–2204, 2003. 11

[27] JAMES P. ANDERSON. Computer security threat monitoring and surveillance. Tech-
nical report, James P. Anderson Company, Fort Washington, Pennsylvania, 1980. 13

[28] DOROTHY E. DENNING. An Intrusion-Detection Model. IEEE Trans. Softw. Eng.,
13(2):222–232, 1987. 13

129



REFERENCES

[29] ANUKOOL LAKHINA, JOHN W BYERS, MARK CROVELLA, AND IBRAHIM MATTA.
On the geographic location of Internet resources. Selected Areas in Communications,
IEEE Journal on, 21(6):934–948, 2003. 15

[30] MATTHEW ROUGHAN, TIM GRIFFIN, MORLEY MAO, ALBERT GREENBERG, AND

BRIAN FREEMAN. Combining routing and traffic data for detection of IP forward-
ing anomalies. In SIGMETRICS ’04/Performance ’04: Proceedings of the joint interna-
tional conference on Measurement and modeling of computer systems, pages 416–417.
ACM, 2004. 15

[31] AMY WARD, PETER GLYNN, AND KATHY RICHARDSON. Internet service perfor-
mance failure detection. SIGMETRICS Perform. Eval. Rev., 26(3):38–43, December
1998. 15

[32] ANUKOOL LAKHINA, MARK CROVELLA, AND CHRISTOPHE DIOT. Mining
anomalies using traffic feature distributions. SIGCOMM Comput. Commun. Rev.,
35(4):217–228, August 2005. 15, 19, 21, 29, 39, 41, 46, 69, 71, 83, 110

[33] YU GU, ANDREW MCCALLUM, AND DON TOWSLEY. Detecting anomalies in net-
work traffic using maximum entropy estimation. In Proceedings of the 5th ACM
SIGCOMM conference on Internet Measurement, IMC ’05, pages 32–32, Berkeley, CA,
USA, 2005. USENIX Association. 16

[34] GEORGE NYCHIS, VYAS SEKAR, DAVID G. ANDERSEN, HYONG KIM, AND HUI

ZHANG. An empirical evaluation of entropy-based traffic anomaly detection. In
Internet Measurement Comference, pages 151–156, 2008. 16, 27

[35] CRISTIAN ESTAN, KEN KEYS, DAVID MOORE, AND GEORGE VARGHESE. Building
a better NetFlow. In SIGCOMM, pages 245–256. ACM, 2004. 16

[36] RAMANA RAO KOMPELLA AND CRISTIAN ESTAN. The Power of Slicing in Internet
Flow Measurement. In Internet Measurment Conference, pages 105–118. USENIX
Association, 2005. 16

[37] LIHUA YUAN, CHEN-NEE CHUAH, AND PRASANT MOHAPATRA. ProgME: towards
programmable network measurement. In JUN MURAI AND KENJIRO CHO, editors,
SIGCOMM, pages 97–108. ACM, 2007. 16

[38] KEN KEYS, DAVID MOORE, AND CRISTIAN ESTAN. A robust system for accurate
real-time summaries of internet traffic. In SIGMETRICS, pages 85–96. ACM, 2005.
16

130



REFERENCES

[39] JAEYEON JUNG, BALACHANDER KRISHNAMURTHY, AND MICHAEL RABINOVICH.
Flash crowds and denial of service attacks: characterization and implications for
CDNs and web sites. In Proceedings of the 11th international conference on World
Wide Web, WWW ’02, pages 293–304. ACM, 2002. 17, 30

[40] ALEFIYA HUSSAIN, JOHN HEIDEMANN, AND CHRISTOS PAPADOPOULOS. A frame-
work for classifying denial of service attacks. In Proceedings of the 2003 conference
on Applications, technologies, architectures, and protocols for computer communica-
tions, SIGCOMM ’03, pages 99–110, 2003. 17

[41] ANUKOOL LAKHINA, MARK CROVELLA, AND CHRISTIPHE DIOT. Characterization
of network-wide anomalies in traffic flows. In Proceedings of the 4th ACM SIGCOMM
conference on Internet measurement, IMC ’04, pages 201–206. ACM, 2004. 17, 18, 20

[42] PAUL BARFORD AND DAVID PLONKA. Characteristics of network traffic flow
anomalies. In Proceedings of the 1st ACM SIGCOMM Workshop on Internet Mea-
surement, IMW ’01, pages 69–73. ACM, 2001. 18

[43] VERN PAXSON. Measurements and analysis of end-to-end Internet dynamics. Tech-
nical report, Computer Science Division, University of California, Berkeley, 1997. 18

[44] K. CLAFFY, H. BRAUN, AND G. POLYZOS. Internet traffic flow profiling. Technical
report, Applied Network Research, San Diego Supercomputer Center, Mar 1994. 19

[45] ANJA FELDMANN, ALBERT GREENBERG, CARSTEN LUND, NICK REINGOLD, JEN-
NIFER REXFORD, AND FRED TRUE. Deriving traffic demands for operational IP
networks: methodology and experience. IEEE/ACM Trans. Netw., 9(3):265–280, June
2001. 19

[46] YIN ZHANG, MATTHEW ROUGHAN, CARSTEN LUND, AND DAVID DONOHO. An
information-theoretic approach to traffic matrix estimation. In Proceedings of the
2003 conference on Applications, technologies, architectures, and protocols for com-
puter communications, SIGCOMM ’03, pages 301–312. ACM, 2003. 19

[47] ANUKOOL LAKHINA, MARK CROVELLA, AND CHRISTOPHE DIOT. Diagnosing
network-wide traffic anomalies. SIGCOMM Comput. Commun. Rev., 34(4):219–230,
2004. 19, 21, 46, 81, 83, 110

131



REFERENCES

[48] ANUKOOL LAKHINA, MARK CROVELLA, AND CHRISTOPHE DIOT. Characteriza-
tion of network-wide anomalies in traffic flows. In Proceedings of the 4th ACM SIG-
COMM conference on Internet measurement, 35, pages 201–206, 2004. 19, 46, 69, 71,
83

[49] FERNANDO SILVEIRA AND CHRISTOPHE DIOT. URCA: pulling out anomalies by
their root causes. In Proceedings of the 29th IEEE INFOCOM 2010 conference, pages
722–730, 2010. 19, 42, 72, 75, 110

[50] ANUKOOL LAKHINA, KONSTANTINA PAPAGIANNAKI, MARK CROVELLA,
CHRISTOPHE DIOT, ERIC D. KOLACZYK, AND NINA TAFT. Structural analy-
sis of network traffic flows. SIGMETRICS Perform. Eval. Rev., 32(1):61–72, June
2004. 20, 33, 52

[51] ANUKOOL LAKHINA, MARK CROVELLA, AND CHRISTOPHE DIOT. Diagnosing
network-wide traffic anomalies. In SIGCOMM ’04: Proceedings of the 2004 con-
ference on Applications, technologies, architectures, and protocols for computer com-
munications, pages 219–230, 2004. 20, 32, 33, 34, 52
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