3,710 research outputs found

    Improvement of detectability for CMOS floating gate defects in supply current test

    Get PDF
    We already proposed a supply current test method for detecting floating gate defects in CMOS ICs. In the method, increase of the supply current caused by defects is promoted by superposing a sinusoidal signal on the supply voltage. In this study, we propose one way to improve detectability of the method for the defects. They are detected by analyzing the frequency of supply current and judging whether secondary harmonics of the sinusoidal signal exist or not. Effectiveness of our way is confirmed by some experiments.</p

    Low-frequency noise impact on CMOS image sensors

    Get PDF
    CMOS image sensors are nowadays extensively used in imaging applications even for high-end applications. This is really possible thanks to a reduction of noise obtained, among others, by Correlated Double Sampling (CDS) readout. Random Telegraph Signal (RTS) noise has thus become an issue for low light level applications especially in the context of downscaling transistor size. This paper describes the analysis of in-pixel source follower transistor RTS noise filtering by CDS circuit. The measurement of a non Gaussian distribution with a positive skew of image sensor output noise is analysed. Impact of dimensions (W and L) of the in-pixel source follower is demonstrated. Circuit to circuit pixel output noise dispersion on 12 circuits coming from 3 different wafers is also analysed and weak dispersion is seen

    A design for testability study on a high performance automatic gain control circuit.

    Get PDF
    A comprehensive testability study on a commercial automatic gain control circuit is presented which aims to identify design for testability (DfT) modifications to both reduce production test cost and improve test quality. A fault simulation strategy based on layout extracted faults has been used to support the study. The paper proposes a number of DfT modifications at the layout, schematic and system levels together with testability. Guidelines that may well have generic applicability. Proposals for using the modifications to achieve partial self test are made and estimates of achieved fault coverage and quality levels presente

    March CRF: an Efficient Test for Complex Read Faults in SRAM Memories

    No full text
    In this paper we study Complex Read Faults in SRAMs, a combination of various malfunctions that affect the read operation in nanoscale memories. All the memory elements involved in the read operation are studied, underlining the causes of the realistic faults concerning this operation. The requirements to cover these fault models are given. We show that the different causes of read failure are independent and may coexist in nanoscale SRAMs, summing their effects and provoking Complex Read Faults, CRFs. We show that the test methodology to cover this new read faults consists in test patterns that match the requirements to cover all the different simple read fault models. We propose a low complexity (?2N) test, March CRF, that covers effectively all the realistic Complex Read Fault

    Displacement Damage Effects in Pinned Photodiode CMOS Image Sensors

    Get PDF
    This paper investigates the effects of displacement damage in Pinned Photodiode (PPD) CMOS Image Sensors (CIS) using proton and neutron irradiations. The DDD ranges from 12 TeV/g to 1.2times106{1.2 times 10^{6}} TeV/g. Particle fluence up to 5times10145 times 10^{14} n.cm −2^{-2} is investigated to observe electro-optic degradation in harsh environments. The dark current is also investigated and it would appear that it is possible to use the dark current spectroscopy in PPD CIS. The dark current random telegraph signal is also observed and characterized using the maximum transition amplitude

    Power supply current [IPS] based testing of CMOS amplifier circuit with and without floating gate input transistors

    Get PDF
    This work presents a case study, which attempts to improve the fault diagnosis and testability of the power supply current based testing methodology applied to a typical two-stage CMOS operational amplifier and is extended to operational amplifier with floating gate input transistors*. The proposed test method takes the advantage of good fault coverage through the use of a simple power supply current measurement based test technique, which only needs an ac input stimulus at the input and no additional circuitry. The faults simulating possible manufacturing defects have been introduced using the fault injection transistors. In the present work, variations of ac ripple in the power supply current IPS, passing through VDD under the application of an ac input stimulus is measured to detect injected faults in the CMOS amplifier. The effect of parametric variation is taken into consideration by setting tolerance limit of ± 5% on the fault-free IPS value. The fault is identified if the power supply current, IPS falls outside the deviation given by the tolerance limit. This method presented can also be generalized to the test structures of other floating-gate MOS analog and mixed signal integrated circuits

    Testing a CMOS operational amplifier circuit using a combination of oscillation and IDDQ test methods

    Get PDF
    This work presents a case study, which attempts to improve the fault diagnosis and testability of the oscillation testing methodology applied to a typical two-stage CMOS operational amplifier. The proposed test method takes the advantage of good fault coverage through the use of a simple oscillation based test technique, which needs no test signal generation and combines it with quiescent supply current (IDDQ) testing to provide a fault confirmation. A built in current sensor (BICS), which introduces insignificant performance degradation of the circuit-under-test (CUT), has been utilized to monitor the power supply quiescent current changes in the CUT. The testability has also been enhanced in the testing procedure using a simple fault-injection technique. The approach is attractive for its simplicity, robustness and capability of built-in-self test (BIST) implementation. It can also be generalized to the oscillation based test structures of other CMOS analog and mixed-signal integrated circuits. The practical results and simulations confirm the functionality of the proposed test method

    CMOS floating gate defect detection using I/sub DDQ/ test with DC power supply superposed by AC component

    Get PDF
    In this paper, we propose a new I/sub DDQ/ test method for detecting floating gate defects in CMOS ICs. In the method, an unusual increase of the supply current, caused by defects, is promoted by superposing an AC component on the DC power supply. The feasibility of the test is examined by some experiments on four DUTs with an intentionally caused defect. The results showed that our method could detect clearly all the defects, one of which may be detected by neither any functional logic test nor any conventional I/sub DDQ/ test.</p

    Validating foundry technologies for extended mission profiles

    Get PDF
    This paper presents a process qualification and characterization strategy that can extend the foundry process reliability potential to meet specific automotive mission profile requirements. In this case study, data and analyses are provided that lead to sufficient confidence for pushing the allowed mission profile envelope of a process towards more aggressive (automotive) applications.\ud \u

    Test-Signal Search for Mixed-Signal Cores in a System-on-Chip

    Get PDF
    The well-known approach towards testing mixed-signal cores is functional testing and basically measuring key parameters of the core. However, especially if performance requirements increase, and embedded cores are considered, functional testing becomes technically and economically less attractive. A more cost-effective approach could be accomplished by a combination of reduced functional tests and added structural tests. In addition, it will also improve the debugging facilities of cores. Basic problem remains the large computational effort for analogue structural testing. In this paper, we introduce the concept of Testability Transfer Function for both analogue as well as digital parts in a mixed-signal core. This opens new possibilities for efficient structural testing of embedded mixed-signal cores, thereby adding to\ud the quality of tests
    • 

    corecore