32 research outputs found

    Non-Contact Detection of Breathing Using a Microwave Sensor

    Get PDF
    In this paper the use of a continuous-wave microwave sensor as a non-contact tool for quantitative measurement of respiratory tidal volume has been evaluated by experimentation in seventeen healthy volunteers. The sensor working principle is reported and several causes that can affect its response are analyzed. A suitable data processing has been devised able to reject the majority of breath measurements taken under non suitable conditions. Furthermore, a relationship between microwave sensor measurements and volume inspired and expired at quiet breathing (tidal volume) has been found

    HERMA-Heartbeat Microwave Authentication

    Get PDF
    Systems and methods for identifying and/or authenticating individuals utilizing microwave sensing modules are disclosed. A HEaRtbeat Microwave Authentication (HERMA) system can enable the active identification and/or authentication of a user by analyzing reflected RF signals that contain a person's unique characteristics related to their heartbeats. An illumination signal is transmitted towards a person where a reflected signal captures the motion of the skin and tissue (i.e. displacement) due to the person's heartbeats. The HERMA system can utilize existing transmitters in a mobile device (e.g. Wi-Fi, Bluetooth, Cellphone signals) as the illumination source with at least one external receive antenna. The received reflected signals can be pre-processed and analyzed to identify and/or authenticate a user

    Microwave Radar Sensor Modules

    Get PDF
    Systems and methods for detecting biometrics using microwave radar sensor modules are disclosed. Integrated microwave sensor modules can include a transmitter unit configured to generate at least one continuous wave transmit signal based upon at least one frequency control signal, a receiver unit configured to utilize a cancellation path to cancel contributions to a return signal based upon at least one cancellation path control signal, and a microcontroller unit that includes a processor, a memory containing a microcontroller application, where the microcontroller application configures the processor to generate at least one frequency control signal to generate least one CW transmit signal having a plurality of frequencies, generate at least one cancellation path control signal to automatically adjust the cancellation path in real time, receive at least one demodulated signal, digitize the at least one demodulated signal, and update the at least one frequency control and cancellation path control signals

    Methods for Doppler Radar Monitoring of Physiological Signals

    Get PDF
    Unobtrusive health monitoring includes advantages such as long-term monitoring of rarely occurring conditions or of slow changes in health, at reasonable costs. In addition, the preparation of electrodes or other sensors is not needed. Currently, the main limitation of remote patient monitoring is not in the existing communication infrastructure but the lack of reliable, easy-to-use, and well-studied sensors.The aim of this thesis was to develop methods for monitoring cardiac and respiratory activity with microwave continuous wave (CW) Doppler radar. When considering cardiac and respiration monitoring, the heart and respiration rates are often the first monitored parameters. The motivation of this thesis, however, is to measure not only rate-related parameters but also the cardiac and respiratory waveforms, including the chest wall displacement information.This dissertation thoroughly explores the signal processing methods for accurate chest wall displacement measurement with a radar sensor. The sensor prototype and measurement setup choices are reported. The contributions of this dissertation encompass an I/Q imbalance estimation method and a nonlinear demodulation method for a quadrature radar sensor. Unlike the previous imbalance estimation methods, the proposed method does not require the use of laboratory equipment. The proposed nonlinear demodulation method, on the other hand, is shown to be more accurate than other methods in low-noise cases. In addition, the separation of the cardiac and respiratory components with independent component analysis (ICA) is discussed. The developed methods were validated with simulations and with simplified measurement setups in an office environment. The performance of the nonlinear demodulation method was also studied with three patients for sleep-time respiration monitoring. This is the first time that whole-night measurements have been analyzed with the method in an uncontrolled environment. Data synchronization between the radar sensor and a commercial polysomnographic (PSG) device was assured with a developed infrared (IR) link, which is reported as a side result.The developed methods enable the extraction of more useful information from a radar sensor and extend its application. This brings Doppler radar sensors one step closer to large-scale commercial use for a wide range of applications, including home health monitoring, sleep-time respiration monitoring, and measuring gating signals for medical imaging

    uwb pulse propagation into human tissues

    Get PDF
    In this paper the propagation of a UWB pulse into a layered model of the human body is studied to characterize absorption and reflection of the UWB signal due to the different body tissues. Several time behaviours for the incident UWB pulse are considered and compared with reference to the feasibility of breath and heartbeat activity monitoring. Results show that if the UWB source is placed far from the human body, the reflection coming from the interface between air and skin can be used to detect the respiratory activity. On the contrary, if the UWB source is placed close to the human body, a small reflection due to the interface between the posterior lung wall and the bone, which is well distanced in time from the reflections due to the first layers of the body model, can be used to detect lung and heart changes associated with the cardio-respiratory activity

    Antennas And Wave Propagation In Wireless Body Area Networks: Design And Evaluation Techniques

    Get PDF
    Recently, fabrication of miniature electronic devices that can be used for wireless connectivity becomes of great interest in many applications. This has resulted in many small and compact wireless devices that are either implantable or wearable. As these devices are small, the space for the antenna is limited. An antenna is the part of the wireless device that receives and transmits a wireless signal. Implantable and wearable antennas are very susceptible to harmful performance degradation caused by the human body and very difficult to integrate, if not designed properly. A designer need to minimize unwanted radiation absorption by the human body to avoid potential health issues. Moreover, a wearable antenna will be inevitably exposed to user movements and has to deal with influences such as crumpling and bending. These deformations can cause degraded performance or a shifted frequency response, which might render the antenna less effective. The existing wearable and implantable antennas’ topologies and designs under discussion still suffer from many challenges such as unstable antenna behavior, low bandwidth, considerable power generation, less biocompatibility, and comparatively bigger size. The work presented in this thesis focused on two main aspects. Part one of the work presents the design, realization, and performance evaluation of two wearable antennas based on flexible and textile materials. In order to achieve high body-antenna isolation, hence, minimal coupling between human body and antenna and to achieve performance enhancement artificial magnetic conductor is integrated with the antenna. The proposed wearable antennas feature a small footprint and low profile characteristics and achieved a wider -10 dB input impedance bandwidth compared to wearable antennas reported in literature. In addition, using new materials in wearable antenna design such as flexible magneto-dielectric and dielectric/magnetic layered substrates is investigated. Effectiveness of using such materials revealed to achieve further improvements in antenna radiation characteristics and bandwidth and to stabilize antenna performance under bending and on body conditions compared to artificial magnetic conductor based antenna. The design of a wideband biocompatible implantable antenna is presented. The antenna features small size (i.e., the antenna size in planar form is 2.52 mm3), wide -10 dB input impedance bandwidth of 7.31 GHz, and low coupling to human tissues. In part two, an overview of investigations done for two wireless body area network applications is presented. The applications are: (a) respiratory rate measurement using ultra-wide band radar system and (b) an accurate phase-based localization method of radio frequency identification tag. The ultimate goal is to study how the antenna design can affect the overall system performance and define its limitations and capabilities. In the first studied application, results indicate that the proposed sensing system is less affected and shows less error when an antenna with directive radiation pattern, low cross-polarization, and stable phase center is used. In the second studied application, results indicate that effects of mutual coupling between the array elements on the phase values are negligible. Thus, the phase of the reflected waves from the tag is mainly determined by the distance between the tag and each antenna element, and is not affected by the induced currents on the other elements

    Remote cardiac monitoring using radar

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 119-122).Recording a patient's vital signs without physical contact is a challenging research problem with applications in medicine, search and rescue, and security. In order to study this problem, an ultra wide band (UWB) pulse radar and a fixed-frequency amplitude based radar were constructed and evaluated. The UWB radar was not reliable and did not produce repeatable results, but the fixed-frequency radar successfully recorded heartbeat signatures from twelve human subjects at a distance of 0.5 - 3 meters. The effects of several variables on the results were analyzed. Two experiments conducted to determine the physiological source of the radar amplitude modulations suggest that the modulation is from chest movement, not electrically induced impedance changes.by Jonathan S. Burnham.M.Eng

    Telemedicine

    Get PDF
    Telemedicine is a rapidly evolving field as new technologies are implemented for example for the development of wireless sensors, quality data transmission. Using the Internet applications such as counseling, clinical consultation support and home care monitoring and management are more and more realized, which improves access to high level medical care in underserved areas. The 23 chapters of this book present manifold examples of telemedicine treating both theoretical and practical foundations and application scenarios
    corecore