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SUMMARY 

  Nowadays, the use of remote sensing in applications to detect and monitor changes 

in the global environment is being promoted as a means of resolving problems in 

many fields such as agriculture, forestry, and civil engineering.  In particular, the 

author’s ultimate aim is to contribute to detection and monitoring processes that 

minimize damage inflicted on the agricultural industry specially for date palm trees in 

the Middle East.   

  In the Middle East, the date palm tree is considered the most important species, both 

agriculturally and economically.  However, during the past few decades, the date 

palm tree has faced risks in terms of survival following the infestation of an insect, the 

red palm weevil. These insects bore into the trunk, damaging the tree and ultimately 

causing it to die. 

  Microwaves can be used to remotely monitor various types of vegetation, and thus to 

non-invasively determine conditions without harming the object being measured. 

Therefore, in this dissertation, we proposed the use of three RCS measurement 

systems developed specifically for the purpose of this study. Each system was 

equipped with different frequency band (L, X and Ku bands), the three frequency 

bands chosen are those most commonly used for remote sensing.     

 Two experiments are carried out using the developed RCS measurement systems that 

are applied to prove that microwave backscattering can be utilized to remotely 

measure the water content in objects (specifically, palm trees) and, thus, determine 

changing conditions in terms of tree health. 

  Issues addressed during experimentation included the methods used to measure and 

evaluate microwave backscattering intensity, and the information that can be obtained 

about an object through the analysis of microwave backscattering measurements alone.  



xiv 

  In the first experiment, our goal was to measure the water content inside cylindrical-

shaped objects made of phenolic foam material with different water content levels 

using only microwave backscattering. 

  The experiment was carried out in an anechoic chamber using RCS measurement 

systems three frequency bands: L, X, and Ku. Four objects with a different volume of 

water permeating were irradiated by microwaves, and the backscattering was 

measured. The columns were placed on a turntable and rotated one revolution (i.e., 

360º) while taking about 75,000 continuous measurements of the entire surface. The 

measurements were then evaluated based on variance and median of the calculated 

radar cross-section (RCS) values. As a result of measuring the microwave 

backscattering, it was found that the higher the water content in the column, the 

higher the RCS median, average, and maximum values for that object in all three 

bands.  

The second experiment, which expands on the successful first experiment explained, 

replacing the cylindrical-shaped objects with actual palm tree trunks (Sago palm) and 

periodically irradiating the tree trunks over a set timespan to determine whether 

changes in the trunks’ condition can be monitored by analyzing the intensity of the 

microwaves backscattered off them.  The goal of this experiment is to confirm 

whether or not changes that occur in tree trunks over a period of time due to some 

influence can be measured remotely using microwave backscattering. If it is proven 

that this is possible, the changing state of trees can be monitored remotely, doing so 

non-invasively without causing physical damage or harm to the trees. The results of 

the L band measurements suggest interesting possibilities. Irradiating microwaves in 

the L band or lower frequencies, it was shown that change inside an object, even a 

thick-barked tree like the Sago palm tree used in this experiment, can be determined. 



xv 

  This dissertation is presented in six chapters. Chapter 1 begins by explaining the 

importance of measuring the water content in vegetation such as plants and trees,  

describing the fundamental principle of electromagnetic waves (microwaves) and the 

ways in which these waves can be applied to measure water content in objects, and 

expanding the application of microwaves in various fields, such as the remote sensing 

of water content in vegetation. Chapter 2 explains the methods for utilizing 

microwaves to measure water content.  The chapter discusses the traditional method, 

proposes a new methodology utilizing microwave backscattering, and provides an 

explanation of microwave backscattering.  Chapter 3 discusses conventional devices 

and systems utilized to measure water content, including the transmissivity water 

content meter, the weather radar, ultra-wide-band radar (UWB), vector network 

analyzers (VNAs) and the proposed developed system (i.e., the RCS measurement 

system) for enabling measurements in the field sometime in the future.  The chapter 

explains the RCS measurement system structure, measurement mechanism and 

processes, and advanced features that make it unique as compared to other devices. 

Chapter 4 presents the first experiment, which focuses on measuring the water content 

in cylindrical-shaped objects made of a foam material. Chapter 5 presents the second 

experiment, which expands on the experiment explained in Chapter 4, replacing the 

cylindrical-shaped objects with actual palm tree trunks and periodically irradiating the 

tree trunks over a set timespan to determine whether changes in the trunks’ condition 

can be monitored by analyzing the intensity of the microwaves backscattered off them. 

Chapter 6 discusses and concludes the findings, and explains plans for future work. 



 

 1 

 

 

 

CHAPTER 1 – INTRODUCTION 

  



 

 2 

1-1  The Importance of Measuring Water Content in Vegetation Such 

as Plants and Trees 

  The amount of attention that global warming receives has grown dramatically 

throughout the world.  In parallel to this, but not reported as extensively, are 

increasingly serious problems with the Earth’s ecosystem—ecological abnormalities 

that are just as important because they affect the micro-ecosystems of plant and 

animal life. Changes in ecosystems and regional climates believed to be caused by 

global warming and environmental pollution are key topics of discussion around the 

world. In Europe, it has been reported that flowering, leaf development and the 

fruition time of vegetation have abnormally quickened in 78% of 542 species of 

plants in the past 30 years (i.e., from 1971 to 2000) [1]. In China, the number of 

bamboo trees—the panda’s main source of food—has drastically decreased, and the 

possibility of the extinction of wild pandas has become a major concern [2]. In Africa, 

the Sahara Desert continues expanding southward, with 1.5 million hectares of land 

moving towards desertification per year [3]. Economically weak and developing 

countries tend to suffer the most from environmental change, which leaves them 

susceptible to food shortages and agricultural damage resulting from droughts, floods, 

and other extreme conditions. 

  In the Middle East, the date palm tree (Phoenix dactylifera) is considered the most 

important species, both agriculturally and economically.  The fruit that the tree 

produces is a highly valued and sought-after agricultural product, and has been a 

primary source of food in Middle Eastern countries for centuries [4].  

  However, during the past few decades, the date palm tree has faced risks in terms of 

survival following the infestation of an insect, the red palm weevil (Rhynchophorus 

ferrugineus) (Fig.1-1).  These insects bore into the trunk, where they lay their eggs.  

After the larvae hatch, they feed on the soft, wet internal wood, damaging the tree and 
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ultimately causing it to die [5].  Adult red palm weevils can fly tens of kilometers, 

allowing the insect to infest palm trees on farms throughout the region.  It has been 

reported that infestation by the insect is expanding across many areas, including 

Eastern Asian countries [6][7].  

 

Figure 1-1 Red palm weevils at different life stages. 

 

  

 Date palm tree farms in the Middle East are found primarily in arid areas. A healthy 

date palm stores a larger volume of water in its trunk than do other trees in the region.  

However, because the date palm tree’s outer bark is characteristically very dry in 

appearance and touch, it is difficult to detect the moisture content and health of the 

tree by visual inspection. 

  Saving infested trees is possible if the insects’ presence is discovered in its early 

stages.  However, finding the insects at an early stage is difficult because the damage 

they inflict upon the tree is internal and appears only during a later stage of infestation.  
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Another issue is that the farm areas used for growing date palm trees are widespread, 

making it virtually impossible to inspect the trees one by one for infestation.  

Therefore, an efficient process to check tree health is needed [8].  

In organisms such as plants and animals, fluctuations in internal water content 

significantly affect life support. In humans, approximately 60% of the adult body is 

water; if this amount reduces by 5%, the result can be reactions such as heat stroke [9]. 

For fresh foods such as fruits and vegetables, the amount of water contained 

significantly affect taste and quality [10]. In addition, decreased water content in a 

tree trunk is regarded as an indication of internal erosion caused by the infestation of 

microorganisms or insects, or by the invasion of small animals. In the study of natural 

disasters, research
 
has shown that underground water content and soil saturation can 

induce avalanches and landslides, and the resulting destructive power is related to 

internal water content [11]. The possibility of measuring water content—or its 

changes—in an object will create a different solution for such issues in agriculture 

fields.  

  Hypothetically, if it is possible to closely monitor regional ecosystems in a way that 

helps prevent the loss of agricultural crops, the result could help reduce the economic 

and food shortage problems that result from global warming and other climatic 

changes. 

1-2  Using Electromagnetic Radiation to Measure Water Content 

  Various methods exist to monitor the health conditions of living organisms. These 

methods differ depending on the characteristics of the organism being monitored.  In 

the case of vegetation, good indicators are the leaf’s visual appearance and the 

amount of water it holds internally[12].  For example, monitoring the water content of 
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fruits and vegetables is a useful way to determine a crop’s maturity, while monitoring 

the internal moisture of grains has proven beneficial in managing grain storage and 

preserving taste[13].  In the case of tropical evergreens and palm trees, the change in 

water content in the tree trunk is a good indicator of tree health. 

  Electromagnetic radiation (i.e., microwaves) behaves in a specific manner based on 

wave theory.  Essentially, microwaves form a pulsating electric field that varies in 

magnitude, moving perpendicular to the direction in which the microwaves are 

traveling and a magnetic field oriented at right angles to that electric field.  

Additionally, microwaves maintain two characteristics that are particularly important 

for understanding their use in extracting information from remote sensing data: 

wavelength and frequency (Fig. 1-2).  Wavelength is the length of one wave cycle, 

measured as the distance between successive wave crests. Frequency is the number of 

cycles of a wave passing a fixed point per unit of time.  These two characteristics are 

related using Maxwell’s wave theory formula (Eq. 1-1),  

𝑐 = λν    (Eq. 1-1) 

  where λ is the wavelength in meters, ν is the frequency in hertz and 𝑐 is the speed of 

light. Therefore, the two are inversely related to each other: the shorter the 

wavelength, the higher the frequency, and the longer the wavelength, the lower the 

frequency. 
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Figure 1-2 Wavelength and frequency of microwaves. 

 

 

  “Microwaves” refers to the electromagnetic radiation of frequencies ranging from 

approximately 300 MHz to 300 GHz. Microwaves have been applied in various ways 

depending on the frequency range.  Lower frequencies offer a significant advantage in 

the measurement of soil and vegetation moisture; the difference in frequency used 

leads to a significant difference in the vegetation penetration capability (Fig. 1-3). 

 

 
Figure 1-3 Electromagnetic spectrum. 

 

 

  Applying the abovementioned principle, and considering their characteristics, 

microwaves are used to measure objects’ water content in various fields.  In terms of 

socio-economic improvements, the use of microwaves to monitor and measure 

applications has been extremely beneficial, especially in the areas of forestry, 

agriculture and civil engineering.  Examples of such water resource management 

include monitoring precipitation [14], measuring and monitoring soil moisture content 
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[15][16], and managing vegetation, such as monitoring deforestation [17] and 

desertification [18].  In addition, meteorological stations around the world use 

microwaves to inform regions about inclement weather. 

  The number of applications for monitoring vegetation is increasing, but as with soil 

moisture applications, most vegetation applications cover vast areas, and limited 

development has been achieved in terms of monitoring the status/conditions of plants 

individually.  It is also known that information about the water content in vegetation 

is vital for monitoring plant health and growth status, and that such information can 

be used for early detection of the presence of disease and/or the infestation of harmful 

insects. For example, the presence of certain insects—such as the red palm weevil, 

which feeds on and harms date palm trees by tunneling through their internal tissue— 

in or on plants is directly related to the amount of water in the tree [19].   

  Agri-food moisture measurement applications have become an essential means of 

ensuring food quality; such measurements are achieved using various techniques 

[20][21]. However, these measurements are carried out mainly in factories and 

laboratories, and require sensors connected to moisture meters or specially 

manufactured devices [22].  Even so, based on the abovementioned applications, it is 

believed that the measurement of water content using microwaves is, in general, 

advantageous. 

1-3  New Technologies and Broadening Practical Applications 

  A high possibility exists of a dramatic future expansion in the practical application 

of microwaves in various areas in the future.  The driving force behind this expansion 

is the rapid advancement in related technological areas in recent years—for example, 

the evolution of mobile telephone technologies and the ongoing application of radar 
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in the automobile industry and transportation infrastructure.  As a result, the features 

of massive and bulky radar equipment applied several years ago in large-scale, high-

cost systems mounted in satellites and large aircraft are now becoming available in 

much smaller-sized systems that can be obtained at affordable prices. This makes 

them attractive for lower-budget projects. For example, private enterprises can now 

relatively easily obtain synthetic aperture radar (SAR) equipment and components at a 

lower price. 

  Evolutionary improvements have also been made in the design tools for microwave-

related electronic circuits and antennas. These tools are now readily available.  Device 

development that once required repeated trial and error and daunting calculations 

during the design phase is now simulated using computers and simulation tools, 

making tasks easier to implement and complete, and doing so at a much lower cost.  

  Several types of microwave measuring devices are now available, and their cost is 

much more reasonable.  As a result, the investment risk for system development is 

decreasing. Accordingly, several small companies are now developing microwave-

related equipment.  One example is the transmission-type microwave moisture meter 

[23], which uses microwave transmission and reception to take measurements. The 

energy of the microwaves passing through the water molecules inside an object is 

consumed, and the transmitted energy is attenuated. After this, the amount of moisture 

inside the object can be calculated based on the amount of attenuated microwaves.  

This device is currently utilized to measure residual moisture in various substances 

such as lumber for construction, and earth and sand sediments. It is also used to 

measure the water content of foodstuffs and chemicals [24]. 

  We believe that if we can measure the water content inside the solid by utilizing 

state-of-the-art technology, we can obtain greater merit than ever in solving 
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environmental problems, especially in vegetation related issues. Therefore, this 

dissertation summarizes the results of a new challenge to utilize our proposed 

technology in the field of remote sensing to measure the water content inside the 

targeted objects. 

1-4  Thesis Structure 

  This thesis and the supporting content herein are derived from the author’s sincere 

interest in developing a methodology for expanding the use of microwave 

technologies in the agriculture/farming industry.  Witnessing the destructiveness of 

the red palm weevil in the Middle Eastern date industry became the driving force 

behind the author’s focus on this subject matter.  The goal is to successfully deliver 

technologies and/or products that support the realization of a better life for all.  

  The remainder of this dissertation is presented as follows. Chapter 2 explains the 

basic principles behind methods that utilize microwaves to measure water content. 

The chapter discusses the traditional method and proposes a new methodology; the 

former is based on the use of the dielectric constant to determine water content, while 

the latter is based on the use of the measurement and evaluation of microwave 

backscattering intensity to determine water content. The chapter also includes an 

explanation of microwave backscattering.   

  Chapter 3 discusses conventional devices and systems used to measure water content, 

including the transmissivity water content meter, the weather radar, ultra-wide-band 

radar (UWB), vector network analyzers (VNAs), and the proposed developed system 

(i.e., the RCS measurement system) for enabling measurements in the field sometime 

in the future. The chapter also explains the device structure, the measurement 
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mechanism and processes, and the advanced features that make it unique compared to 

other devices.    

  Chapter 4 presents the first experiment, which focuses on measuring the water 

content in cylindrical-shaped objects made of a foam material. Our goal was to 

measure the water content inside phenolic foam columns using only microwave 

backscattering measurements by using a RCS measurement system developed for 

airborne synthetic aperture radar (SAR). The experiment was carried out in an 

anechoic chamber using RCS measurement systems three frequency bands: L, X, and 

Ku. The column irradiated with microwaves was a cylinder of phenolic foam capable 

of holding various volumes of water. Four objects with a different volume of water 

permeating were irradiated by microwaves, and the backscattering was measured. In 

consideration of the influence of microwave fading, the columns were placed on a 

turntable and rotated one revolution (i.e., 360º) while taking about 75,000 continuous 

measurements of the entire surface. The measurements were then evaluated based on 

variance and median of the calculated radar cross-section (RCS) values. As a result of 

measuring the microwave backscattering, it was found that the higher the water 

content in the column, the higher the RCS median, average, and maximum values for 

that object in all three bands. Regarding the L band, it was clearly shown that it was 

possible to distinguish when the volume content of water was 25% and 50%. Also, 

when the water content of the column was relatively small, the range of dispersion 

was large, and when the water content exceeded a certain value, the dispersion widths 

began to converge. This indicates the possibility that analyzing the variance of the 

microwave backscattering may be a clue to knowing the dispersion state of the water 

content of the object. In this experiment, the microwave backscattering was 
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continuously measured while rotating the object one time, and a statistical method 

was used to analyze the results.  

  Chapter 5 presents the second experiment, which expands on the experiment 

explained in Chapter 4, replacing the cylindrical-shaped objects with actual palm tree 

trunks and periodically irradiating the tree trunks over a set timespan to determine 

whether changes in the trunks’ condition can be monitored by analyzing the intensity 

of the microwaves backscattered off them.  The goal of this experiment is to confirm 

whether or not changes that occur in tree trunks over a period of time due to some 

influence can be measured remotely using microwave backscattering. If it is proven 

that this is possible, the changing state of trees can be monitored remotely, doing so 

non-invasively without causing physical damage or harm to the trees. The results of 

the L band measurements suggest interesting possibilities. Irradiating microwaves in 

the L band or lower frequencies, it was shown that change inside an object, even a 

thick-barked tree like the Sago palm tree used in this experiment, can be determined. 

  Chapter 6 presents the author’s discussion and conclusions, and explains plans for 

future work. 
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2-1 Measurement Target and Method  

  There are two major methods utilizes microwave to determine water content, by 

measuring the dielectric constant of an object, and by utilizing the microwave 

backscattering.  

 Various applications measure the dielectric constant to determine the water content in 

materials. For example, in food materials such as wheat, grains, and building 

materials such as bricks, concrete, and timbers [25][26]. 

  An example for the microwave backscattering methods is the applications of soil 

moisture and vegetation cover measurements using satellites or aircraft equipped with 

synthetic aperture radar (SAR) or scatterometers that take measurements using 

different frequency bands, such as L-, X- and Ku-bands [27][28][29].   

  Ulaby and Dobson conducted extensive studies of terrain using microwave 

backscattering methodology, and collected hundreds of thousands of data points 

derived from measurements using both airborne and ground-based scatterometer 

systems. They compiled those data points into tables and a database, which other 

researchers have referenced.  This information has been used as a standard not only 

for calibration and measurement accuracy, but also for detailed category identification. 

In addition, the measurement results have been analyzed using statistical methods, 

and are considered a reliable information source. Here, the relationship between 

various objects, such as rocky soil, vegetation, snow, ice and artifacts (city), and 

microwave backscattering is shown as a distribution chart, along with theoretical 

considerations [30]. 
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The methods for utilizing dielectric constant and microwave backscattering will be 

explained in detail in the next section. 

2-2 Utilizing Dielectric Constant 

  One of the most-used techniques for estimating water content is measuring an 

object’s dielectric properties. The dielectric constant is the measurement of an 

object’s ability to store an electrical charge; the loss factor is the measurement of the 

electromagnetic field energy (oscillation) that microwaves in the object generate.  

When microwaves irradiate a given object, a change occurs in the distribution of that 

object’s molecular charges.  The resulting measurement of the charge distribution in 

the object is known as the object’s “dielectric permittivity.”  The expression of 

dielectric permittivity in relation to free space is the “relative permittivity.”  Relative 

permittivity is related to the dielectric constant and loss factor, as shown by (Eq. 2-1): 

𝐸𝑟 = 𝐸𝑟
′ − 𝐽𝐸𝑟

′′    (Eq. 2-1) 

  where, 𝐸𝑟 is the relative permittivity, 𝐸𝑟
′  is the dielectric constant and 𝐽𝐸𝑟

′′ represents 

the loss factor [31].  

  Two methods exist to measure an object’s dielectric properties: invasive and non-

invasive [32].  The invasive method requires that sensors (e.g., a metal rod or probe) 

be inserted into the object to measure the dielectric properties (Fig. 2-1 A).  Therefore, 

this method creates the problem of damaging the object. The non-invasive method 

requires placing the object between two antennas to measure the dielectric properties 

(Fig. 2-1 B).  This is referred to as the “free-space method”.  During the measurement 

process, the sensors/antennas are commonly connected to a VNA [33][34][35]. 
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Figure 2-1 Dielectric properties measurement methods.  

 

  Various studies have compared the accuracy of measuring the dielectric constant 

against that of a microwave backscattering analysis, and evidence exists that the use 

of the dielectric constant measurement is more accurate. For example, a study 

concluded that backscattering analysis, while having an exponential relationship to 

the dielectric constant, is not as accurate, as it overestimated the soil content 

[36][37][38]. 

  Even so, while the invasive measurement of dielectric constant is more accurate and 

requires less computational time, this measurement method cannot be used to meet 

this study’s objectives, as it requires direct contact with the object being measured.  

  Additionally, while the non-invasive method has succeeded at measuring the water 

content in various objects, for example, using it to measure the water content in foods, 

wood and other products in a manufacturing setting, the need to have antennas on 
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opposite sides of the object being measured is not appropriate for this study’s 

objectives.   

  Another issue that could arise includes random error due to noise, drift and/or 

environmental factors such as temperature, humidity, and barometric pressure, which 

cannot be accounted for in measurement calibrations. This leaves the data susceptible 

to error due to small fluctuations in conditions at the time of measurement. 

  Finally, while VNAs are commonly used to gather data during dielectric property 

analysis, as stated above, VNA operational specifications are not sufficient to enable 

their use in gathering the microwave backscattered data required for measuring the 

water content in remote objects. 

2-3  Utilizing Microwave Backscattering 

  By definition, microwave backscattering is “the scattering of electromagnetic field 

radiation (microwaves) in a direction opposite to that of the incident direction of 

travel caused by reflecting off of the bipolar molecular structures in the object the 

microwaves are passing through”.  Water is one such bipolar molecular structure. 

Therefore, when microwaves penetrate an object in the incident direction of radiation, 

and when that object contains water, the microwaves are reflected.  Accordingly, the 

theory proposed herein is that microwave backscattering can be used as a non-

invasive remote sensing method capable of detecting the water content in objects 

irradiated by microwaves by measuring the microwave backscattering intensity. 

However, merely recording the intensity of the microwaves backscattered from an 

object does not reveal the water content.  A method of analyzing and evaluating the 

intensity measurements obtained is also required.  
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2-3.1 Theoretical model of microwave backscatter and reflection 

  Backscatter is a diffuse reflection scattered in all directions after microwaves contact 

an object’s surface. The size of the scattered particles is often parameterized by the 

ratio 𝑥 (Eq. 2-2): 

𝑥 =
2𝜋𝑟

λ
    (Eq. 2-2) 

  where r is the characteristic length (radius) and λ is the microwave wavelength. This 

wavelength dependency is characteristic of dipole scattering, and volume dependence 

applies to all scattering mechanisms. 

  When the object presents 𝑥  ≫ 1, scattering is geometric in shape. With Mie 

scattering, when 𝑥 is an intermediate (𝑥 ≃ 1), phase variations caused by the object’s 

surface generate interference. Here, the water droplet diameter is equivalent to the 

size of the optical refraction and will increase along with increased diffraction in the 

direction of wave travel. This results in weaker backscatter.  

  In the case of Rayleigh scattering, which is the microwave theory applied in weather 

radar to measure the reflection off raindrops in clouds, the scattered particles are very 

small, 𝑥 ≪ 1, less than one-tenth the size of the wavelength. Accordingly, the entire 

surface radiates the same phase. In other words, if the wavelength is larger than the 

raindrop’s diameter, the measured backscatter is proportionate to the object’s ability 

(power) to reflect the microwave times the object’s reflection properties to the power 

of six [39]. 

  The microwave vertical reflectance for a dielectric medium such as water is 

expressed by (Eq. 2-3): 
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𝛾 =
√𝜀−1

√𝜀+1
  (Eq. 2-3) 

where 𝜀 is the dielectric constant. Therefore, the reflectance depends on the dielectric 

constant. As the microwave frequency increases, the dielectric constant decreases due 

to the "dipolar polarization effect," so vertical reflectance decreases as the frequency 

increases [40]. 

2-3.2 Applying radar cross-section (RCS) values to measure water content 

  When a radar signal is incident on a target, one of the most important parameters for 

detection is the amount of energy reflected (i.e., backscattered). The measure of the 

target’s ‘size’ is called its radar cross-section (RCS)[41]. An object’s RCS value is 

defined as the effective area intercepting an amount of incident power which, when 

scattered isotopically, produces a level of reflected power at the receiver (antenna) 

equal to that from the object.  The following equation is used to calculate the RCS (Eq. 

2-4): 

𝑅𝐶𝑆 =
𝑆𝑅(4𝜋)3𝑅4

𝐴.𝐺𝑇.𝐺𝑅.λ2
    (Eq. 2-4) 

  where 𝑆𝑅 is the received power, 𝐴 is the receiver gain, 𝐺 is the antenna gain, 𝑅 is the 

distance between the antenna and the object, and λ is the radar’s wavelength. 

  The backscattering coefficient depends highly on the scattering mechanism involved. 

Scattering mechanisms can be classified into surface and volume scattering [42]. The 

amount of energy reflected due to surface scattering depends on the surface roughness, 

wavelength and angle of incidence. The smoother the surface, the less power is 

backscattered because the surface behaves like a mirror. Volume scattering occurs 

when the microwaves penetrate an object’s surface. The penetration depth depends on 
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the microwave wavelength and the object’s surface characteristics. It increases with 

higher wavelengths and decreases as the object’s water content increases [43]. 

  One of the objectives of this study was to obtain the RCS values for the entire 

surface of the objects being measured and to analyze those values to determine the 

characteristics including water content of each object. For Experiment 2 (Chapter 5), 

RCS values for each palm tree trunk measured were obtained at different times over a 

period of approximately three months, and were analyzed to determine the tree trunks’ 

conditions.  This required calibrating the systems before taking the actual palm tree 

trunk measurements and incorporating the calibration values as reference data when 

calculating the RCS after taking all the measurements. 

2-3.3 Calibration for data measurement 

  In measurements using radar, determining the non-inductivity, mass and volume of 

an object is impossible. However, it is possible to calculate the reflection intensity 

from the relative reflection intensity using radar cross-section (RCS) values.  

  A theoretical RCS value is calculated using (Eq. 2-5), where 𝐿 is the corner reflector 

diameter utilized for calibration, and λ is the microwave’s wavelength. 

12 𝜋𝐿4

λ2
    (Eq. 2-5)   

  To calculate the RCS for each object measured, the value of the receiver gain (𝐴) 

must be found to determine the RCS for the data that each scatterometer measured. 

This is done using (Eq. 2-6), where RCS denotes the theoretical RCS value, 𝑆𝑅 is the 

energy measured during calibration, 𝐺𝑇  is the transmitter antenna gain, 𝐺𝑅  is the 

receiver antenna gain and 𝑅 is the distance from the column. 
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𝐴 =
𝑆𝑅(4𝜋)3𝑅4

𝐺𝑇.𝐺𝑅.λ2.𝑅𝐶𝑆
    (Eq. 2-6) 

  After finding the value of 𝐴 , the value of RCS is calculated for each column 

measured using (Eq. 2-7). 

𝑅𝐶𝑆 =
𝑆𝑅(4𝜋)3𝑅4

𝐴.𝐺𝑇.𝐺𝑅.λ2
    (Eq. 2-7) 
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3-1  Conventional Devices/Systems and Related Problems 

  Several devices utilize microwaves to measure objects’ water content. This section 

discusses several conventional devices/systems.  

 

[Transmissivity water content meter] 

  Transmissivity water content meters use the transmission and reception of 

microwaves to take measurements. The energy of the microwaves that come in 

contact with water molecules inside an object is consumed, the transmitted energy is 

attenuated, and the amount of moisture inside the object is calculated based on the 

amount of attenuated microwaves.  Therefore, if the conditions of the object and its 

surrounding environment are appropriate, the accurate measurement of moisture 

content as an order of percent (weight ratio) is possible.  This method is currently 

used to measure residual moisture in various substances, such as lumber for 

construction, and earth and sand sediments. The method is also used to measure the 

water content of foodstuffs and chemicals [32].  

  However, though transmissivity water content meters can measure the water in an 

object without physical contact, some restrictions exist with respect to its practical use.  

The fact that the object to be measured must be placed between two opposing 

antennas limits the size, shape and location of the objects that can be measured. 

Furthermore, taking such a device into the field to measure the water content of 

objects existing in nature is difficult. Therefore, the use of transmissivity water 

content meters is not appropriate for achieving the author’s objectives.  
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[VNAs] 

  VNAs were introduced in the 1980s for use in radio frequency (RF) metrology, 

including microwave measurements and the development and manufacture of avionic 

and radar components; that is, they measure the incident, reflection, and transmission 

of electromagnetic energy in electrical devices and networks. Essentially, network 

analysis focuses on the accurate measurement of the ratio of reflected signal to 

incident signal and the ratio of transmitted signal to incident signal [44]. Over the 

years, this has advanced into the measurement of devices and systems that utilize 

wireless technologies. 

 

[Weather radar systems] 

  Backscattering is essentially by microwaves that arrive at an object and are then 

diffusely reflected by either the shape/construction of the surface or bipolar molecular 

substances such as water when passing through the object. Examples in the field of 

weather radar system operation are Rayleigh scattering and Mie scattering, which are 

utilized to measure the backscattering of fine water droplets in the air. In Rayleigh 

scattering, when the wavelength is longer than the diameter of the water droplets in 

the air, backscattering is proportional to the object power multiplied by the object-

specific reflection properties multiplied to the sixth power. In the case of Mie 

scattering, if the water droplet’s diameter is close to the wavelength, diffraction in the 

direction of wave travel and optical refraction increases, and backscattering is 

diminished [39][45]. 

  These systems are also not applicable to this experiment because they use higher-

frequency bands with shorter wavelengths. Additionally, the required equipment is 

large in size, measures targets primarily from far distances and covers a vast area. 
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[UWB radar] 

  As reported, the measurement of water using microwaves is presently done only to 

measure small samples in a closed space or to measure wide-spread particles of water, 

like distant clouds. Accordingly, with these systems, it is difficult to measure 

backscattering at closer ranges, such as a few meters to several hundred meters, as is 

possible with the ultra-wide-band (UWB) radar. 

  UWB radar has the advantages of utilizing very low-power electromagnetic waves 

that are harmless to the human body and requiring very low average power to operate. 

Therefore, applied research in the field of medical welfare and the like is progressing. 

UWB radar can detect periodic movement, such as the limb motion, breathing, and 

heartbeat of humans. Other applications, such as underground sensing at short 

distances and collision avoidance of mobile devices such as automobiles, are being 

studied. One reported disadvantage is the difficulty involved in analyzing subtle 

changes in signal strength because, due to low power, it is susceptible to noise. Also, 

multiple sensors are necessary to expand the detection area [46][47][48]. 

 

[Synthetic Aperture Radar (SAR)] 

  Synthetic Aperture Radar (SAR) is a type of side looking radar system, the system 

can be installed on satellites and aircrafts which move in a high speed. By radiating 

the electric micro-wave in a special form and controlling the direction of the antenna 

precisely while it is moving, SAR system synthesize a big antenna in a SAR processor 

and it can generate high-resolution black and white images such as a map of the 

ground. Moreover, the images are able to be overlaid with the satellite image or a real 
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map etc., accurately, with SAR precisely measuring latitude and the longitude at the 

same time (Fig. 3-1). 

  There are numerous studies on soil moisture measurement. Most data collected for 

soil moisture are by using SAR or scatterometers mounted on satellites or airplanes 

equipped with different frequency bands. The measurement of soil moisture covers a 

wide geographical area; therefore, it is difficult to measure small areas, also it is hard   

to measure the same area every time its required by using SAR.  

  Measurement for vegetation covers the measurement of fields or farms such as corn, 

soybeans and wheat to monitor its conditions [49], also for forest observing [50]. 

Likewise, similar to soil moisture applications, most vegetation applications cover 

vast areas which make it difficult to monitor the status of the plants one by one to 

monitor its conditions. 
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Figure 3-1 Airborne SAR system mounted on an aircraft while operation. 

 

3-2  The Developed System for Backscattering Measurements 

  As explained in Chapter 1, the rapid evolution of microwave and electronics 

technologies has prompted the downsizing of devices and components, leading to the 

application of microwaves in fields in which the achievement of results capable of 

realizing practical use had, at one point, been difficult.  One example is the field of 

remote sensing, which now utilizes advanced sensing technologies such as SAR.  

More compact equipment and systems also require less power to operate. For these 

reasons, it is believed that remote sensing technologies can now be utilized practically 

to create inexpensive and convenient tools for monitoring plant growth conditions in 

relatively isolated areas. 

  Making remote sensing equipment smaller and easier to use also creates the ability 

to resolve issues like measurement granularity and measurement distance, which were 

previously considered problematic.  

 

[The proposed RCS measurement system]  

  This system will enable the measurement of trees individually from multiple 

directions and under a relatively wide range of natural growth situations.  The 

device’s main body is based on a SAR transceiver mounted on small aircraft.  The 

compact size and lighter weight of the unit (i.e., the RCS measurement system) 

contribute to ease of handling, setup, and mobility.  The system also requires 

significantly less power to operate than conventional SAR equipment. 

  As shown in Fig. 3-2, three RCS measurement systems were built for the 

experiments. All were constructed to enable stand-alone use and with customized 
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specifications that ensure highly useful features and convenience for the efficient 

remote sensing of vegetation in natural surroundings.  Fig. 3-3 shows a sample 

illustration of the RCS measurement system configuration. 

 
Figure 3-2 The RCS measurement system systems: L-band (top), X-band 

(bottom left) and Ku-band (bottom right). 
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Figure 3-3 Configuration of the RCS measurement systems used. 

 

  One feature of the developed RCS measurement systems is that they enable time-

domain measurement, which is the method of transforming the frequency domain into 

the time domain.  This is convenient for calculating the distance of the object being 

measured, thereby allowing its position to be determined.  Another feature is the use 

of frequency-modulated continuous wave (FMCW) transmission technology.  This is 

useful because it enables the rapid and continuous measurement of objects in motion, 

which is beneficial because the objects in the experiments were placed on a rotator 

that turned 360º to subject the objects’ entire surfaces to microwave irradiation.  In 

practical terms, the rapid measurement of objects while in motion is beneficial 

because trees, while stationary, could sway due to the presence of wind, thereby 

possibly affecting measurement accuracy. 

  The RCS measurement system’s other key features include low-power 

consumption/transmission, light weight, and ease of mobility.  The fact that they can 

be operated utilizing a battery power source leads to a more affordable operating cost 

and enables the RCS measurement system’s use in the field.  

  Table 3-1 provides a comparison of the RCS measurement system developed and a 

common VNA, thereby clarifying the reason for the utilization of the RCS 

measurement system.  As shown here, the RCS measurement system operate at an 

amazingly fast speed of 1,250 measurements per second, which is ideal for measuring 

objects in motion and increases the feasibility of their practical use for measuring the 

water content of trees in the field. 
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Table 3-1 Comparison of RCS measurement system and common VNA features. 

Features RCS measurement system VNA 

Measurement 

Speed 

800μs  0.1-1sec 

 

Transmission 

technology  

FMCW STEP FM (Not suitable for 

radar) 

Transmission 

power 

100mW 10mW 

Frequency bands Ku-band = 17GHz 

X-band = 9GHz 

L-band = 1.2GHz 

Open 

Bandwidth Ku-band = 300MHz 

X-band = 300MHz 

L-band = 85MHz 

Based on antenna and 

measurement time 
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4-1  Outline and Purpose of the Experiment  

  The goal of this study is to find the relationship between reflection intensity and 

water content by measuring microwave backscattering from a phenolic foam column 

with different water content in each microwave band. 

  The issues that must be considered in this experiment are as follows. The first is 

what can be learned from microwave backscattering measurements alone. One of the 

properties of microwaves is their ability to pass through nonconductive materials. In 

materials containing a bipolar molecular structure, such as water [51], the microwave 

generates a vibration that is converted to thermal energy. The amount of energy lost is 

proportional to the amount of water the material contains [52]. This suggests that a 

solid object’s water content has a significant effect on the amount of energy that can 

penetrate the object. Additionally, water has reflective properties. When a microwave 

collides with the surface of water, part of the energy is reflected in a complicated 

manner, and scattering may occur depending on the conditions at that moment. 

Therefore, the total energy of a microwave radiated at an object is the sum of the 

transmitted energy, the amount of energy consumed internally as thermal energy, and 

the energy backscattered. This indicates that it is difficult to determine the absolute 

value of the water content in an object utilizing only the measurement of microwave 

backscattering intensity. 

  The next issue is the method of measuring and evaluating the intensity of microwave 

backscattering. Microwaves induce a fading effect because of complex reflections and 

repeated scattering due to the shape and size of the object to be radiated and to 

environmental factors in the surrounding area. Therefore, unambiguously determining 

the reflection intensity is a difficult task. Furthermore, because fading changes 
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considerably due to delicate differences, such as antenna position and object position, 

a complete reproduction of the measurement results is difficult as well. 

  In consideration of these points, in this study, phenolic foam columns (i.e., solid 

objects), each containing different volumes of water, were placed one at a time in an 

anechoic chamber, and microwave backscattering measurements were performed for 

each. Measurements were taken of the entire surface (the full circumference of the 

column), and the results compared considering each column’s water content. To avoid 

influences other than water content, the objects were made of a cylindrical foam 

material that had a low relative dielectric constant, a high water absorption ratio per 

unit volume, and a simple and homogeneous internal structure. The microwave source 

was a low-power radar (FMCW) RCS measurement system. The bands used were L, 

X, and Ku, which were chosen assuming practical public use in the future. Finally, all 

the measurement results were evaluated using variance, average, and median. 

4-2  Target Material  

  Cylindrical-shaped columns comprising multiple phenolic foam discs (Oasis 

Rainbow Foam, Item No. 37001) were measured. Each disc was 5 cm in height and 

20 cm in diameter at the base. As shown in Fig. 4-1, by stacking the phenolic foam 

discs, a column of foam 75 cm in height and 20 cm in diameter at the base was 

formed. This material had a high water absorption capability, which was crucial for 

keeping the projected surface area constant while changing the volume of water 

content.  
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Figure 4-1 The phenolic foam columns used in this study. 
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4-2.1  Physical characteristics 

  Phenolic foam is made from a resin with a dielectric constant of 2.0 - 2.6. The foam 

resin used for this experiment had an expansion ratio of 1:45. The relative dielectric 

constant is lower than that of dry snow ice (relative dielectric constant = 3.3) and dry 

soil (relative dielectric constant = 2.5-3.0). Therefore, it is reasonable to conclude that 

the actual dielectric constant without moisture is considerably lower. Additionally, the 

surface is very smoothly formed, and individual cells are 0.3-0.5 mm or less, which is 

visually uniform. 

4-2.2 Setup and experimental conditions for the columns 

  For this study, four water content conditions were prepared representing 50% 

(WTR50), and approximately 35% (WTR35), 25% (WTR25) and 0% (WTR0) 

saturation1. These percentages represent the volume ratio of water to the volume of 

the column. Table 4-1 shows the details and other typical materials. 

Table 4-1. Volumetric ratio of phenolic foam column and water content. 

Condition Total weight (g) Water weight (g) Volume (cm
3
)

Water weight to 

volume ratio

WTR0 650 0 23,562 0.00

WTR10 3,000 2,350 - 0.10

WTR25 6,000 5,350 - 0.23

WTR35 9,000 8,350 - 0.36

WTR50 12,000 11,350 - 0.49

 

 

                                                 
1 During the process of the experiment, a measurement failure occurred with the 10% (WTR10) water-content-

level condition. It is assumed that this failure was due to the submergence of the sample into the water instead of 

the pouring of water into it. Submerging the sample caused water distribution in the phenolic foam to originate 

from the outside, seeping into the foam rather than being concentrated only inside under the surface. This 

adversely affected the reflection results for the WTR0 water-content-level approximation. Therefore, the results 

were not utilized for this experiment. 
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  In related studies, water content is generally expressed as a weight to volume ratio. 

However, this experiment does not use weight to volume ratio. Rather, percentages 

are used. This is because the water does not disperse evenly in the column, as 

described below. Here, if the water content is indicated by the volume ratio, a 

misunderstanding may result. 

  One of the obstacles faced in this experiment was controlling the distribution of 

water in the column, which may have affected backscattering measurements and 

analysis results. To investigate the variation in water distribution in a phenolic foam 

column, a test was conducted using colored water. Four different water content 

conditions (WTR50, approximately WTR35 and WTR25, and WTR0) were created 

by slowly adding colored water to the pieces of foam. After production of the four 

water content conditions, the foam pieces were cut in half to enable observation of the 

internal water distribution. Fig. 4-2 shows the results of this test, indicating that the 

water distribution is different for each water content volume.  

  During preparation of the columns for measurement of the water content, the even 

distribution of water throughout the objects was difficult to achieve. Therefore, 

because the deviation of the column’s moisture content causes fading, it has a 

significant effect on the variation in microwave backscattering intensity. To avoid this 

influence, the columns were rotated on a turntable to enable measurement results for 

the entire column surface (circumference).  

4-3  Experimental Design and Process  

  Foam columns containing different volumes of water were placed in an anechoic 

chamber and were irradiated with microwaves one at a time. The backscattering 
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intensities were recorded to detect each object’s water content.  A detailed description 

is provided hereafter.  

 

 
Figure 4-2 Distribution of water absorbed by each piece of phenolic foam for 

each level of water content. 

 



 

 37 

4-3.1 Apparatus 

  The apparatuses required for the experiment included an anechoic chamber in which 

the measurements were carried out. Three RCS measurement systems were each set to 

a different frequency band and equipped with two horn antennas, a rotator (i.e., a 

motorized table capable of turning the object 360º), and a computer system for 

controlling the RCS measurement systems, storing the measurement data and 

analyzing the experiment’s results.  Fig. 4-3 illustrates the overall experimental setup. 

 

 
Figure 4-3 Schematic diagram of the experiment configuration; the RCS 

measurement system, rotating table, phenolic foam column and rotation 

controller were placed in an anechoic chamber, with the rotating table holding 

the column positioned 2.9m from the system. 

 

[Anechoic chamber] 

  To ensure that only backscattering from a specific object was measured, the 

researchers had to minimize the reflection of microwaves from objects other than the 

one being targeted.  Furthermore, in addition to eliminating possible interference, 

because the experiments were conducted in Japan, compliance with the Japan Radio 

Law was necessary.  This was achieved by carrying out all measurements in an 

anechoic chamber, thereby creating a fully controlled environment that allowed 

measurements to focus on the relationship between the microwaves and water content 

RCS Measurement System 
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volume of each object.  The dimensions of the anechoic chamber were 5 meters in 

length, 3 meters in width and 1.9 meters in height (Fig. 4-4). 

 
Figure 4-4 The anechoic chamber. 
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[RCS measurement systems and horn antennas] 

  Table 4-2 presents the RCS measurement systems’ specifications.  The three 

frequency bands chosen were the L-, X- and Ku-bands, those most commonly used 

for remote sensing.  

 

 

 

Table 4-2 RCS measurement system specifications. 

Band L X Ku

Modulation FMCW FMCW FMCW

PRF [μs]  800 800 800

Frequency [GHz] 1.2 9 17

Bandwidth [MHz] 85 300 300
 

 

  The antennas for each frequency band had different specifications as well, as 

presented in Table 4-3. 

 

Table 4-3 Horn antenna specifications. 

Band L X Ku

Size [mm] W×H 384×284 42×35 32×23

Antenna gain [dB] 14.52 11.29 14.62

3dB Beam width 55-degree Typ. 55-degree Typ. 55-degree Typ.
 

 

 

[Rotator] 

  The objects to be measured were placed on a rotator that completed one full rotation 

every 60 seconds, enabling the measurement of the entire circumference of the object 

sitting on it.  The rotator diameter was 1.2 meters, and it was positioned directly in 

front of the middle of the antennas at a distance of 2.9 meters. It was operated by a 

control system located outside the anechoic chamber. 
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[System control] 

  The computer system used to control the RCS measurement systems and collect the 

measurement data during the experiments was a laptop employing the Microsoft 

Windows operating system and using custom-made software created by the company 

that developed the RCS measurement systems. 

4-3.2 Measurement method utilizing the RCS measurement system 

  The first determination to make was which microwave frequencies to utilize for the 

experiments.  Microwaves have different penetration depths depending on the 

wavelength irradiated [53].  Longer wavelengths penetrate deeper, and the possibility 

of detecting internal changes inside the object is higher.  For this reason, the L-band 

microwave frequency was chosen.  Additionally, shorter wavelengths, like X-band or 

Ku-band microwaves, are suitable for capturing changes in shape at the surface.  Each 

of these wavelengths is known to have intrinsic characteristics, and these three 

frequencies are the most commonly used bands in the remote sensing field.  Therefore, 

the decision was made to utilize the L-, X- and Ku-bands. 

  The issue of fading is also important, as its influence always appears when 

microwaves are used to take measurements.  Multipath fading caused by the object 

being measured is the result of complicated microwave reflections and scattering due 

to the object’s surface shape and/or internal composition.  Accordingly, analysis of 

the fading pattern enables the observation of changes in the object.  Therefore, the 

multipath fading caused by the objects’ shape and internal composition was measured 

by analyzing the measurement data of the entire circumference.  To achieve this, the 

RCS measurement systems were set to continuously measure backscattering, doing so 

at a very high speed. 
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  The RCS measurement systems developed can conduct high-speed measurements at 

a close range (i.e., one meter to several kilometers).  Additionally, the minimum 

resolution range was 170 cm for the L-band, and 50 cm for the X-band and Ku-band. 

  As previously mentioned, each band has unique characteristics and different 

penetration levels.  Each RCS measurement system was connected to horn antennas 

designed to be polarized vertically VV and horizontally HH when rotated 90º, except 

for the L-band, for which only VV was used due to the chamber’s limited size and the 

antennas’ large size.   

4-3.3 Experiment process 

  The three RCS measurement systems, each equipped with a different frequency band 

(i.e., L, X, and Ku), were placed in the anechoic chamber one at a time and used to 

irradiate the objects.  Each object’s microwave backscattering intensities were 

measured; the backscattering intensities were captured and recorded, and later 

analyzed to determine differences in the characteristics of the objects’ surface and 

internal structure.  Before the measurements were taken, the three RCS measurement 

systems were calibrated using a trihedral corner reflector with a surface area of 0.1 

meters. 

  Each object was set on the rotator, one at a time, and separately measured using each 

frequency band and both VV and HH polarizations, except for L-band HH 

polarization.2   During measurements, the RCS measurement system was connected to 

a laptop computer located outside the anechoic chamber.  The computer controlled the 

rotator speed and RCS measurement system operation, and was equipped with 

                                                 
2 Due to space limitations for antenna placement in the anechoic chamber, the large size of the L-band antennas 

did not enable their use in an ideal position for HH polarization. Placing them close to each other would have 

caused antenna-to-antenna coupling and interfered with the measurement results. Thus, HH polarization for the L-

band was not conducted. 
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custom-made software for recording the raw data measured.  The raw data was later 

processed to determine the received power  𝑆𝑅 , which was used to calculate each 

object’s RCS. 

  During measurement, the rotator turned a full 360º for a period of one minute.  This 

enabled the consideration of fading’s influence by measuring microwave 

backscattering over the entire surface of the object and conducting a statistical 

analysis of the results. 

   To determine the position of the object during each measurement, the RCS 

measurement systems measured backscattering applying the FMCW time domain 

method.  The bandwidths were set at 85 MHz for the L-band and 300 MHz each for 

the X-band and Ku-band.  Therefore, the range pixel size was 1.7 meters for the L-

band, and 0.5 meters each for the X-band and Ku-band. 

  The RCS measurement systems were set to take one measurement per 800 

microseconds (μs).  Because measurements were continuous, 1,250 data points per 

second were obtained.  This enabled investigation of the effects of measurement and 

noise, and measurement of the data’s variance and median.  Furthermore, this level of 

data collection helped ensure the accuracy of measurements. 

  Throughout the experiment, the objective was to obtain the RCS values for each 

object and to determine the objects’ conditions based on those values.  The calibration 

values obtained for the three RCS measurement systems before starting the 

experiments were used as reference data when calculating the RCS values. 

4-3.4 Measurement procedure 

  Each measurement was divided into three parts. In the first part, the three RCS 

measurement systems were calibrated using a trihedral corner reflector with an edge 

dimension of 0.1 m. Calibration for polarization was conducted as well. The results of 
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the calibration were used to calculate the column’s RCS and applied as a reference to 

estimate the column’s position. 

  The second part tested the phenolic foam column for four water content conditions. 

The first measurement was conducted using the column containing the maximum 

amount of water it could absorb (WTR50). Columns with water volumes of 

approximately WTR35 and WTR25, respectively, were measured next. The fourth 

and final measurement was a column with no water (WTR0). For each condition, the 

column was rotated as explained above and separately tested for both polarizations, 

irradiating with the three frequency bands, one at a time. To provide a baseline for 

comparison with the other conditions, backscattering was measured for 10 seconds 

without using a column (referred to as “NO”). 

  Each RCS measurement system was set to execute one measurement per 800 μs; 

therefore, during a 60 seconds, approximately 75,000 data points were recorded per 

range pixel. The RCS measurement systems were connected to a computer equipped 

with custom-made software that collected the raw data during the measurements. 

After the experiment, the raw data collected from the RCS measurement systems was 

processed to determine the energy reflected (𝑆𝑅) by the column. This was later used to 

calculate each column’s RCS value.  

  The last part involved ensuring that the phenolic foam used was susceptible to 

penetration by microwaves. An experiment using a spectrum analyzer was conducted 

to test the penetration level for the different water content levels. The column was 

placed between the RCS measurement system and the spectrum analyzer receiver 

antenna, and the microwaves that penetrated the column were measured using the 

spectrum analyzer. As shown in Fig. 4-5, the receiving antenna of the spectrum 
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analyzer was held by hand and positioned near the column (3-5 cm) on the opposite 

side of the column facing the RCS measurement system to measure the attenuated 

power. A measurement was also taken without placing a column between the RCS 

measurement system and the antenna. 

 
Figure 4-5 The data collection process for the phenolic foam column microwave 

penetration test. 

4-4   Results 

  The purpose of this experiment was to investigate the characteristics of microwave 

backscattering and determine whether direct microwave backscattering can confirm 

different water content volumes in objects.  Due to the similarity of the results for the 

VV and HH polarizations, only VV polarization graphs are presented.  It was found 

that, using the method the author applied, measuring and analyzing microwave 

backscattering is possible to determine water content volume in different objects.   

The results of the experiment are provided hereafter. 
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4-4.1 Validity of the data 

  First, to confirm the validity of the data, the RCS measurement systems were 

calibrated and the baseline data measured using a corner reflector as the target object. 

In Fig. 4-6 (A), the measurement results for the microwaves of the three frequency 

bands reflected off the corner reflector are shown as variation rates. The fluctuations 

in the microwave intensities of each band reflected off the corner reflector were 

minimal; all were within ±0.4%. In addition, the RCS measurement systems used in 

this experiment recorded data measurements as a complex number. This enables 

phase analysis of the data. The phase is determined by the distance from the antenna 

to the column. Therefore, the amount of phase shift can be converted into the change 

in the distance between the antenna and the column. That is, a check of the phase shift 

fluctuation can confirm whether the measurements were taken correctly. In Fig. 4-6 

(B), the phase shift variation rate is shown in the results measured for the corner 

reflector. Here, it is found that the phase shift variation rate is stable at ± 3° or less. 

All the data measured was checked by phase shift based on the above, and the 

stability and accuracy of measurements were confirmed. Additionally, measurement 

results for which the phase shift fluctuation rate was extremely large were deemed to 

be failed measurements and were excluded from the evaluation. 
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Figure 4-6 Variation in the ratio of (A) backscattering intensity from the corner 

reflector and (B) phase shift as the result of VV polarization. 

 

4-4.2 Microwave penetration to the target column 

  Figure 4-7 shows the microwave penetration power values measured for four 

columns with varying water content levels (i.e., WTR0, WTR25, WTR35, and 

WTR50) and without a column (NO). The receiving power of WTR0 and NO are 

almost the same value. This means the column’s attenuation can be negligible. In 

more detail, the microwave penetration power decreases as the column’s water 

content increases between WTR0 and WTR35 in all bands. However, such a 

reduction is not seen between WTR35 and WTR50.  
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Figure 4-7  The penetration results of the phenolic foam columns. 

 

  The following reasons are conceivable. Figure 4-2 is a cross-sectional image of the 

column showing a change in water content area due to an increase in water 

penetration. As shown here, from WTR0 to WTR35, the distribution of water inside 

the column gradually expands from the center towards the outer surface. Additionally, 

as shown in Fig. 4-5, the spectrum analyzer receiving antenna is positioned very close 

to the column. For WTR0 to WTR35, as the distribution of water content expands 

from the center portion of the column, the shielding area of the opening in the 

receiving antenna expands but is almost completely shielded at approximately 

WTR35. Therefore, attenuation of the microwave penetration level decreases as water 

content increases from WTR0 to WTR35. The results of the microwave penetration 

test indicate that, for L-, X- and Ku-bands, it is possible to distinguish the water 



 

 48 

content inside the column between WTR0, WTR25 and WTR35 using the penetration 

level. However, it is not possible to distinguish between WTR35 and WTR50.  

4-4.3 Measurement results and analysis 

  Figure 4-8 shows examples of measurement results (WTR35 in L-VV, X-VV, and 

Ku-VV). Each column was placed on the turntable individually and rotated at a 

constant angular velocity. Then, the data during the 360° rotation was measured. In 

this figure, the vertical axis shows the RCS calculated from the reflected power, while 

the horizontal axis indicates the column’s rotation angle.  
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Figure 4-8 The L-VV, X-VV and Ku-VV measurement results for one full 

rotation of columns with water content of WTR35. 
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  These results show significant fluctuation during column rotation. It is believed that 

this is because many microwave reflection points are scattered inside the column. 

That is, the microwave radiated from the transmitting antenna is reflected by the 

reflection points scattered inside the column, and amplitude fluctuation occurred 

because of the phase difference of the receiving signal during the column’s rotation. 

Additionally, the phase shift due to the change in path length is proportional to the 

microwave’s frequency. The fluctuation of the RCS caused by rotating the column 

(Fig. 4-8) shows fast fluctuation at a high frequency (Ku-VV) and slow fluctuation at 

a low frequency (L-VV). Therefore, this experiment’s measurement results represent 

the microwave reflections off the water inside the column, which was considered 

appropriate for conducting an analysis and evaluation using a statistical method. 

Therefore, for subsequent measurement results, RCS is expressed as a statistical value.  
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Figure 4-9 The RCS distribution charts of backscattering measurement results 

for WTR0, WTR25, WTR35 and WTR50, NO, and CR. 

 

  Figure 4-9 shows the results of microwave backscattering measurements using a 

histogram. The four measurement results of the column, NO, and corner reflector 

(CR) are shown for each of the three frequency bands. Each graph’s horizontal axis 

represents the value of RCS with a linear scale. In the case of CR and NO, because 

the measurement results are irrelevant to the turntable’s rotation, it is almost constant 
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for all bands. However, only in the case of X-VV are there slight fluctuations in the 

NO results. It seems that this fluctuation is caused by a reflected wave from the 

rotating table itself. In addition, although some fluctuations are seen in WTR0 for all 

three bands, this indicates that phase attenuation due to the column is hardly observed, 

though phase variation due to the propagation path is observed. However, because the 

measurement results for NO are located near the median value of the measurement 

results for WTR0, it can be said that the average measurement results for WTR0 are 

no different from the results for NO. 

  Based on the results of this and Section 4-4.2, it is believed that the column used in 

this experiment has a sufficiently high permeability to radio waves. Therefore, it can 

be said that the measurement results for WTR25, WTR35, and WTR50 are almost 

entirely the backscattering intensity from the column’s water content. 
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CHAPTER 5 – MEASUREMENT OF 

WATER CONTENT IN PALM TREE 

TRUNKS 
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5-1  Outline and Purpose of the Experiment  

  As the follow-on to the positive results of previous experiment, the RCS 

measurement systems developed were utilized to measure the intensities of 

microwaves backscattered from palm tree trunks irradiated from all sides to determine 

whether the methodology is applicable to the practical monitoring of actual trees [57]. 

 
Figure 5-1 Sago palm tree. 

 

  The tree species chosen as the object of measurement was the sago palm (i.e., Cycas 

revolute), a tree found in Japan that is the most similar in structure to the date palm 

trees of the Middle East (Fig. 5-1).  For purposes of this experiment, to simulate the 

conditions of a red palm weevil infestation of a date palm tree, the trunks of healthy 

sago palm trees were harvested, truncated and subjected to periodic measurement of 

microwave backscattering intensity for three months.  The measurements recorded 

throughout the experimental period were then analyzed to determine whether changes 

in the tree trunks were detectable. 
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5-2  Target Material  

  The objects measured in this experiment were palm tree trunks, as most of the water 

that palm trees contain is in their trunks [58].  To prepare a trunk-only form, the stems, 

leaves, and roots were removed.  This also allowed for more accurate detection and 

monitoring of internal change.  Additionally, to promote the drying process, an 

incision the length of the tree trunk was made, as were two holes—one each at the 

center of the top and bottom of the tree trunk.  

  Because trees have unique characteristics (e.g., size, weight, and water content), 10 

palm tree trunks were prepared as the sample through which to compare changes in 

surface and internal conditions over time (Fig. 5-2).  Date palm trees do not grow in 

Japan; thus, the sago palm tree (i.e., Cycas revoluta) was used as a substitute.  To 

measure and monitor the entire surface of each object, the tree trunks were placed one 

at a time on a slow-turning rotator, and each trunk was turned 360º during irradiation, 

enabling the measurement of changes in the trunks from all angles. 
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Figure 5-2 The 10 palm tree trunks used. 

 

5-3  Experimental Design and Process  

5-3.1 Apparatuses  

  This experiment utilized the same equipment utilized for previous experiment in 

chapter 4.  These devices were equipped with the features and specifications required 

to conduct remote sensing backscattering measurements in a natural setting. 

  All measurements were conducted in the same anechoic chamber. Time-domain 

measurement was incorporated, enabling the extraction of only the reflection intensity 

from a specific distance. Fading was also considered.  Other experimental parameters 

were equivalent to those specified for Experiment 1. 
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5-3.2 Palm tree trunk preparation and care during the experiment 

Artificially introducing sudden changes in the state of a living tree, such as damage 

caused by pest infestation, is a difficult task.  Therefore, to simulate this state, the 

palm trees were truncated, thereby cutting off the ability of water to enter the tree via 

the root system. In addition, to promote drying, two holes were bored the length of the 

tree trunk, from the center of the top to the center of the bottom (Fig. 5-3).  The 

average characteristics of the individual trees were also compared. 

 
Figure 5-3 Tree trunks after preparation. 

   

  To measure moisture loss, the weight of each tree trunk was recorded every few days. 

Weight measurements were conducted on the following dates: 10 April, 28 April, 2 

June and 23 June 2015. Table 5-1 shows the palm tree trunk weights for each day. 
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Table 5-1 Palm tree trunk weights on dates measured. 

Tree weight table (kg) 

Tree No. / Date 4/10 4/28 6/2 6/23 

1 29.51 28.09 22.35 19.23 

2 24.24 22.95 17.99 15.12 

3 24.92 23.68 18.64 15.98 

4 20.33 19.3 14.91 11.76 

5 21.38 20.17 17.29 15.78 

6 13.79 13.25 10.39 9.13 

7 19.59 18.74 15.62 13.89 

8 17.82 16.87 13.70 11.75 

9 18.08 17.4 15.12 14.07 

10 11.05 10.49 8.26 7.18 

 

  At the time of tree trunk preparation, each trunk was measured for diameter and 

thickness. The projected area was calculated, as shown in Table 5-2. 

Table 5-2 Tree trunk measurements. 

Tree No. Diameter Thickness Projected Area (m) 

1 0.230 0.720 0.166 

2 0.195 0.755 0.147 

3 0.220 0.655 0.144 

4 0.200 0.675 0.135 

5 0.205 0.635 0.130 

6 0.200 0.590 0.118 

7 0.180 0.645 0.116 

8 0.195 0.580 0.113 

9 0.185 0.610 0.113 

10 0.180 0.485 0.087 

 

5-3.3 Measurement process 

  As in the previous experiment, the RCS measurement systems were first calibrated 

using a trihedral corner reflector with a surface area of 0.1 m.  Next, the palm tree 

trunks were placed on the rotator, one at a time, and measured separately using each 

frequency band and both polarizations (Figs. 5-4, 5-5 and 5-6). The RCS 

measurement systems were connected to the same computer utilized for the first 

experiment. The same software was used to record and collect the raw data measured.  
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The raw data was then processed to determine the received power 𝑆𝑅, which was used 

to calculate the RCS values for each palm tree trunk. 

  

 
Figure 5-4 The palm tree trunk L-band measurement. 
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Figure 5-5 The palm tree trunk X-band measurement. 
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Figure 5-6 The palm tree trunk Ku-band measurement. 

 



 

 62 

5-3.4 Measurement parameters and equations used 

  The objective of this experiment was to calculate the RCS values of palm tree trunks 

at different stages of tree health (simulated by trunk moisture content), thereby 

determining the possibility of non-invasively determining palm tree health in a natural 

environment.  

  The RCS measurement systems were set to take one measurement every 800 

microseconds (μs). Bandwidths were set to 300 MHz for the Ku-band and X-band, 

and 85 MHz for the L-band. Additionally, the data recorded underwent dedicated 

processing until the plotting of the final results. 

5-3.5 Data processing 

  First, the data recorded (i.e., backscattering intensities from objects) was 

transformed from time scale to distance scale using Fast Fourier Transform (FFT).  

Next, the object position was determined based on the distance between the antenna 

and the object (i.e., measured manually in meters in the chamber before the 

experiment).  The object position in the data was displayed in pixels, with the pixel 

range being 1.7 meters for the L-band and 0.5 meters each for the Ku-band and X-

band.  

  Next, the microwave backscattering intensities were calculated.  The data compiled 

comprised very complex numbers, equaling the summation of the microwaves 

reflected from every point on the object.  The sum of the backscattering intensity from 

the object at specific angles was determined by calculating the amplitude’s absolute 

value.  The data measured was then converted into RCS values using the reference 

data obtained from the corner reflector during RCS measurement system calibration.  

Finally, the RCS values calculated were plotted to display the distribution of values, 
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and the changes in the conditions of each palm tree trunk on the various measurement 

dates were compared. 

  If only the average of the RCS values (data points) is calculated based on 

measurements during rotation, accounting for and showing the meaningful differences 

in the reflected RCS values may not be possible.  Therefore, to clearly show the data’s 

validity, the RCS value distribution of all measurements (i.e., not the average RCS 

value) was plotted. 

5-4  Results 

  Due to the similarity of the results for the VV and HH polarizations, only VV 

polarization graphs are presented.  Additionally, it should be noted that failed 

measurement attempts were experienced for the first three palm tree trunks (i.e., Nos. 

1, 2 and 3) using the Ku-band RCS measurement system on day 53 and for all the 

palm tree trunks using the Ku-band on day 74.  In addition to histograms, RCS 

maximum (max), mean (mean) and minimum (min) values are used to show the 

distribution of RCS values. 

  Fig. 5-7 shows the results of plotting the number of days on the horizontal axis and 

the change in mass on the vertical axis.  The results indicate that although some 

differences exist in each data set, mass loss was almost linear for all tree trunks.  

Although a difference exists in reduction rate, considering the difference in volume 

and mass, the loss was almost the same for each trunk. 
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Figure 5-7 Mass loss from the palm trees during the experiment period. 

 

  The values obtained reveal a smaller mass, which is believed to be related to various 

factors, including loss of moisture.  The graph shown here reveals that the mass of 

each palm tree trunk decreased almost linearly during the three months after the trees 

were harvested. 

5-4.1 Evaluation considerations  

  During evaluation of the measurements, the following issues were considered: 

1) All the measurement data was converted into RCS values and the results displayed 

in a linear-scale graph.  Because comparing the results of each measurement is a 

vital component of this experiment, all measurement results were converted into RCS 

values.  Generally, microwave measurements are displayed logarithmically; however, 

this study displays the data utilizing the linear-scale order to compare shapes using a 

histogram. 

2) To obtain the most accurate measurement results, evaluations used the maximum 

value (max), minimum value (min) and mean value (mean). In addition, a histogram 
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of the results measured using the entire surface of the tree trunk was created. During 

the taking of microwave measurements, depending on the positional relationship 

between the object and the measuring device/antenna, finding a fluctuation in the 

measurement results due to fading is possible.  A method to suppress fading’s 

influence was applied through the collection of a significant amount of data by 

rotating each object 360º and analyzing the results utilizing dispersion. 

3) Measurements were taken four times over 74 days period.  The first set of 

measurements was taken on the first day, the second set on the day 18, the third set on 

the day 53, and the fourth and final set on the day 74.   

  For each set of measurements, the same procedure was followed.  To simulate as 

natural a setting as possible at the time of measurement, the tree trunks were stored in 

a dark, well-ventilated location with a stable temperature and humidity.  Because the 

expectation was that a period of time between measurements would be required to 

allow the moisture content to fall based on natural evaporation, measurements were 

conducted at intervals of two to five weeks. 

5-4.2 Exclusion of inconclusive data  

  The graphs of each band plotting the change in maximum, mean and minimum RCS 

values for the ten tree trunks are shown in Figs. 5-8, 5-9 and 5-10.  The measurement 

dates are plotted on the horizontal axis.  Based on the results plotted in the graph, the 

L-band measurements show a definite tendency among the results.  For tree trunks No. 

1 and No. 6, the RCS values are slightly lower than the others.  A possible reason for 

this is that a tree trunk of shorter length and/or thinner physical size is generally 

believed to result in a smaller projected area.  Tree trunk No. 1 was visibly thinner 

and shorter than the other tree trunks; therefore, the fact that the measured RCS values 

are lower is understandable.  However, regarding tree trunk No. 6, although the 
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measured RCS values were low on average, there is little difference in size compared 

to the other trees. Accordingly, the reason for the lower values is unknown.  Because 

the measurement values for tree trunks No. 1 and No. 6 showed a different tendency 

in the graph plotting RCS values and elapsed days, they are excluded from further 

discussion. 
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Figure 5-8  RCS maximum, mean and minimum values for the 10 palm 

tree trunks irradiated utilizing the L-band at separate times. 
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Figure 5-9  RCS maximum, mean and minimum values for the 10 palm 

tree trunks irradiated utilizing the X-band at separate times. 
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Figure 5-10  RCS maximum, mean and minimum values for the 10 palm 

tree trunks irradiated utilizing the Ku-band at separate times.  
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5-4.3 Comparison of measurement results over the experimental period 

  As seen in Figs. 5-9 and 5-10, regarding the measurement results for the X-band and 

Ku-band, all measurements were distinctively separated, and depicting a trend is 

difficult.  Fig. 5-8 shows the results for L-band irradiation.  From this, except for tree 

trunks No. 1 and No. 6, the maximum value is relatively the same, the minimum value 

decreases and the median value decreases slightly.  Even when plotted in a graph 

showing the measurement results, the amplitude of the tree trunk measurements 

plotted in the graph moves downward over time.  Therefore, it is clear that a 

relationship exists between the passage of time and the lower minimum value.  

Additionally, as previously discussed, the internal change caused by moisture loss and 

other factors was confirmed by monitoring the palm tree trunks’ mass.  Based on 

these two factors, a relationship was found for L-band measurement results: the 

backscattering minimum value decreases over time as the tree trunk loses its mass. 

  The reason for this phenomenon is that the mass loss in the various palm tree trunks 

does not occur equilaterally among all trees. Some trees may lose mass easily, while 

others may retain it for a more extended period.  This results in unequal mass loss 

inside the palm tree trunks, causing multipath fading, and is possibly due to changes 

in fading variation and pattern, as shown in Fig. 5-11.  Other reasons could be the 

biological changes that occur inside the palm tree trunks after they have been 

harvested, such as the destruction of tree cells and infection by bacteria or decay.  
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Figure 5-11  L-band measurement fading variation and pattern 

for tree No. 7 during a 360º rotation. 

5-4.4 Histogram observations  

  To clarify the results, the results of measurements recorded utilizing each band are 

presented in histograms.  Figs. 5-12, 5-13 and 5-14 show the histograms of palm tree 

trunks Nos. 7, 8 and 10 for the L-, X- and Ku-bands.  From these results, almost no 

change in the histograms for the X-band and Ku-band can be seen over time in Figs. 

5-13 and 5-14.  A Gaussian distribution or Rayleigh distribution is always apparent; 

however, only the L-band shows a distinctive shape for all measurement results. As 

time passes, lower scattering increases.  This L-band characteristic was also observed 

in the other palm tree trunks. Similar results are shown in Fig. 5-12. 
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Figure 5-12 Histograms of tree trunk Nos. 7, 8 and 10 for the L-band. 
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Figure 5-13 Histograms of tree trunk Nos. 7, 8 and 10 for the X-band. 
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Figure 5-14 Histograms of tree trunk Nos. 7, 8 and 10 for the Ku-band. 
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CHAPTER  6 – DISCUSSION AND 

CONCLUSION  
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6-1  Discussion on Measurement of Water Content 

6-1.1 Water Content in Foam Material 

  The purpose of this experiment was to measure the water content inside phenolic 

foam columns using microwave backscattering and applying the L-, X- and Ku-band 

frequencies. For this purpose, customized RCS measurement systems and an anechoic 

chamber were prepared, while a column of cylindrical foam was prepared as the 

target sample. For each water volume measured, water was carefully added to the 

column in the amount reported, and continuous measurements were made for the 

column’s full circumference (360°). This is probably the first time that measurements 

have been taken applying such a method. 

  The experimental results show that, for all bands, the RCS mean value increased as 

the water content inside the column increased. Also, a change in the distribution of 

the RCS value with respect to the water content volume was observed. These results 

indicate the possibility of distinguishing differences in water content in phenolic foam 

columns using microwave backscattering. 

  Especially when using L-VV polarization, it is important to note that the difference 

could be distinguished even for the WTR25 and WTR50 cases. This is because many 

objects in the natural world contain a water-per-volume ratio of more than 50%. As 

the introduction mentioned, various fruits and vegetables have water content ratios 

greater than 50%. Similar species of trees include varieties in whose trunks the water 

content exceeds 50% per volume ratio. When pests infest such fruits or trees, their 

water content often declines to less than 25%. On the other hand, in a natural 

environment like a desert or dry agricultural soil in a field, the water content of the 

natural substance usually is less than 25%. Therefore, microwave backscattering of 
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the L-band can be used to observe the continuous change in the water content of trees 

or fruits. It can also be applied to the prevention of problematic agricultural issues 

such as pest infestation.  

  However, these conclusions stem from experimental results obtained under optimal 

conditions in an anechoic chamber. Additionally, in the L-band experiment, 

horizontal polarization (HH) was not measured. Furthermore, when selecting the 

object to be measured, more data collection is necessary using conditions such as 

various shapes and materials. In that case, the interference and analytical effects 

between the microwaves and object must also be considered. In addition, because 

substances that are present in nature comprise elements other than water, the study of 

experimental methods and evaluation methods is necessary to avoid these effects. 

Therefore, in the future, experiments must be carried out in a more realistic 

environment. 

  This experiment revealed a large fluctuation in the microwaves received, which 

seems to be due to the uneven dispersion of water content inside the column. The 

analysis of this variation using advanced statistics and pattern-matching technology 

applying artificial intelligence may enable further analysis, to a finer degree, of the 

moisture dispersed in the object. In the future, we will continue research based on this 

point. 

6-1.1.1 Comparison with other water measurements 

  The dielectric constant and geometrical construction of the column material used in 

this experiment appears to be close to that of compressed snow or sand, as described 

in Section 4-2.1. Several studies have been conducted related to microwave 

reflections from various elements, such as soil, ice and snow [54][15][55][56]. Here, 
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we compare our experiment results with the results of a survey on reflections from 

snow, conducted by Ulaby and Dobson [30]. These researchers surveyed and 

collected data on radar backscattering in the field using various targets. Among the 

data they collected, the measurement of snow (wet and dry) using microwave 

backscattering bears some resemblance to our study, especially dry snow, which is 

mostly ice instead of free water, almost fully permeable to microwaves, and foam-like.  

 

 

 

Table 6-1 A comparison of dry snow and wet snow backscattering coefficients, 

and the L-VV polarization results for our experiment. The first horizontal line is 

dry snow values, the second horizontal line is wet snow values, and the following 

lines are values from our experiment. 
Band Max 95 %ile 75 %ile Median 25 %ile 5 %ile Min Mean S.D.

L Dry 0° 12.9 11.2 8.3 6.2 3.8 -1.9 -7.2 5.7 4

L Wet 0° 15 12.3 9.7 7.2 4.1 -2.4 -6.8 6.7 4.4

L WTR0 -5.81 -6.43 -7.36 -8.08 -8.94 -9.83 -11.58 -8.13 1.01

L WTR25 -3.68 -4.13 -4.57 -5.50 -7.15 -10.51 -25.59 -6.23 2.41

L WTR35 -2.91 -3.06 -3.31 -3.85 -5.32 -6.83 -7.63 -4.34 1.26

L WTR50 -2.82 -2.95 -3.02 -3.14 -3.22 -3.38 -3.51 -3.13 0.13

(Backscattering coefficient: σ°)

 

 

 

 

 

 

Table 6-2 A comparison of dry snow and wet snow backscattering coefficients, 

and the X-VV polarization results for our experiment. The first horizontal line is 

dry snow values, the second horizontal line is wet snow values, and the following 

lines are values from our experiment. 
Band Max 95 %ile 75 %ile Median 25 %ile 5 %ile Min Mean S.D.

X Dry 0° 15.9 14.6 12.4 9.3 6.2 3.4 2 9.3 3.7

X Wet 0° 9.8 9.1 6.2 0 0 0 -5 2.8 3.7

X WTR0 8.82 7.62 6.33 5.07 3.65 -0.14 -20.72 4.67 2.38

X WTR25 13.34 12.71 11.34 10.22 8.14 2.16 -17.89 9.13 3.73

X WTR35 12.99 12.36 11.72 11.14 10.20 8.12 3.29 10.81 1.30

X WTR50 14.18 13.96 13.60 13.14 12.37 11.42 10.63 12.93 0.80

(Backscattering coefficient: σ°)
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Table 6-3 A comparison of dry snow and wet snow backscattering coefficients, 

and the Ku-VV polarization results for our experiment. The first horizontal line 

is dry snow values, the second horizontal line is wet snow values, and the 

following lines are values from our experiment. 
Band Max 95 %ile 75 %ile Median 25 %ile 5 %ile Min Mean S.D.

Ku Dry 0° 18.7 16.3 12.8 10.7 8 3.4 1.1 10.3 3.8

Ku Wet 0° 14.8 14.2 12.7 10.2 3.3 0 -1.2 8.5 5

Ku WTR0 7.65 6.26 5.00 3.90 2.19 -1.18 -18.71 3.35 2.41

Ku WTR25 14.77 13.71 12.47 11.45 9.30 5.81 -8.32 10.70 2.51

Ku WTR35 14.75 14.28 13.52 12.79 11.18 8.72 3.39 12.22 1.79

Ku WTR50 15.47 15.02 14.68 14.14 13.64 12.63 10.38 14.05 0.79

(Backscattering coefficient: σ°)

 

 

  Tables 6-1, 6-2 and 6-3 show the descriptive statistics of backscatter coefficients that 

Ulaby and Dobson surveyed, and the descriptive statistics from our study for L-VV, 

X-VV, and Ku-VV, respectively. It is worth noting that the descriptive statistics from 

Ulaby and Dobson’s survey and those from the present study have a statistically 

different aspect. Each “data point” in Ulaby and Dobson’s survey is a backscatter 

coefficient shown in their survey and is a representative value in and of itself. Thus, 

for instance, the mean shown in Ulaby and Dobson’s survey is the “mean of means,” 

and the standard deviation shown may be a value close to the standard error rather 

than the standard deviation. On the other hand, the descriptive statistics shown in the 

tables of the present study are derived from single measurements, and the mean (or 

median) stands as one representative value. In this sense, Ulaby and Dobson’s 

descriptive statistics may be considered a "possible range of backscatter coefficient 

means, or representative values."  

  A rough estimation of the possible L-VV backscatter coefficient range, for instance a 

99% confidence interval, based on the mean and standard deviation for wet and dry 

snow would be -3.60 to 15.00 dB for dry snow and -3.53 to 16.93 dB for wet snow. 
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The average backscatter coefficients from our measurements were mostly outside the 

above ranges as well, except for those of WTR50. The difference between dry snow 

and wet snow shown in Ulaby and Dobson’s survey was around 1 dB, which is 

relatively small and makes the types of snow difficult to distinguish from each other.  

The same applies to our observation, which exhibits a difference of about 2 dB 

between water conditions. Instead, the standard deviation from our observed data 

(note, again, that Ulaby and Dobson’s standard deviation should be assumed to be a 

standard error of the mean) is largely different between water content conditions. As 

described earlier, standard deviation along with the average of the measured data may 

be a useful index for estimating a column’s water content. 

  In comparing X-VV polarization, most of the mean backscatter coefficients from our 

observations are not in the “possible range of backscatter coefficient mean” for wet 

snow. On the other hand, mean backscatter coefficients for the conditions of WTR25 

to WTR50 measured using Ku-VV were in the range of possible mean backscatter 

coefficients.  

6-1.1.2 Discussion of microwave wavelength and target object size 

  As shown in Fig. 4-1, this experiment used a column made of phenolic foam having 

a diameter of 20 cm and a height of 75 cm. Additionally, as shown in Fig. 4-3, the 

column was placed on the rotating table and a RCS measurement system was 

positioned 2.9 m from the column in the horizontal direction. The wavelength of the 

L-band RCS measurement system that this experiment used was about 23.5 cm; this 

value is close to the column’s diameter. In such a case, it is conceivable that a 

complicated interference exists in the measurement results due to the Mie scattering 

or diffraction effect that Chapter 2 described. However, this experiment measures 
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only the backscattering components of the enormous number of reflection points 

scattered in the column. This measurement was taken in an anechoic chamber. 

Therefore, the influence of forward scattering, such as Mie scattering or a diffraction 

effect, can be ignored. 

6-1.1.3 Comparison of column water contents and microwave backscattering 

  In Fig. 6-1, the distribution of RCS values for the L-VV, X-VV and Ku-VV 

polarizations is shown as a box and whisker chart. In this figure, the bottom whisker 

indicates the 5th percentile, while the top whisker indicates the 95th percentile. 

Additionally, the bottom of the box is the 25th percentile, the top of the box is the 

75th percentile and the line segment in the box is the median (50th percentile).  

Paying attention to the position of the interquartile range (IQR), one can see that it 

moves upward in the order of WTR0, WTR25, WTR35, and WTR50. Therefore, 

when a sufficient number of measured values is obtained, as in this experiment, the 

fact becomes clear that backscattering increases in any band as the internal water 

content increases. 

  Next, even with a comparison using the 5th and 95th percentile whiskers that are 

more stringent than the IQR, the bottom whiskers of WTR50 are located above the 

top whiskers of WTR0 for all three bands. This comparison shows that the data 

distributions of the WTR50 and WTR0 columns can be distinguished from each other 

for all bands. Notably, for the L-VV band, as shown in Fig. 6-1 (A), the bottom 

whisker of WTR50 is higher than the top whisker of WTR25. Therefore, in L-VV, 

distinguishing between WTR50 and WTR25 is possible. 
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  Finally, for all bands, variations in the dispersion range width should be noticed. 

From WTR0 to WTR25, the dispersion range width expanded rapidly. This is 

considered to be the effect of unevenness in the distribution of reflection points when 

the reflection point increases as the amount of water penetrating the column increases. 

In WTR25 to WTR35, although the number of reflection points increases, because the 

unevenness of distribution is maintained, it is believed the median value moves 

upward while maintaining the dispersion range width. In WTR35 to WTR50, the 

uneven distribution began decreasing due to an increase in the column’s reflection 

point. The width of variance also began converging. Particularly, for L-VV, the 

distribution unevenness of the reflection points for WTR50 was nearly gone, and it is 

believed that dispersion became very narrow.  

  These results clearly show that distinguishing differences in water content using 

microwave backscattering is possible.  
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Figure 6-1 Box whisker charts for the distribution of RCS values obtained using 

L-VV, X-VV, and Ku-VV polarization. 
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6-2  Water Content in Palm Tree Trunks  

  Following the successful measurements, analyses, and results of the previous 

experiment, this experiment was conducted to test the applicability of utilizing only 

microwave backscattering measurements to determine changes in the water content 

volume of actual plants (i.e., palm trees) over a period of time.  The experiment found 

that, for the X-band and Ku-band, determining a change in palm tree trunks’ internal 

structure is difficult. Based on the characteristic measurement results obtained by 

applying the short-wavelength X-band and Ku-band, in terms of the scattering 

properties of the tree trunk surfaces, the conclusion was that the sago palm tree is 

covered by a thick epidermis (i.e., hard bark).  

  However, the results of the L-band measurements presented interesting possibilities. 

Irradiating the palm tree trunks with L-band microwaves, or possibly even lower 

frequencies, enabled the observation of changes inside the tree trunk, including even 

the thick-barked sago palm trees that this experiment used.  Importantly, as done in 

this experiment, the utilization of histograms rather than numerical values appears to 

be a practical method for recognizing a pattern or patterns. This concept will become 

more viable as advancements are made in the rapidly developing area of pattern 

recognition technology. 

  The purpose of this dissertation was to prove that the water content in palm trees can 

be determined utilizing only microwave backscattering measurements and by 

analyzing the results. This was achieved by showing the relationship between the 

direct microwave backscattering results obtained utilizing the L-band and the loss of 

mass in the palm tree trunks measured.  This relationship is assumed to be a 

characteristic trait based on the basic properties of microwaves and the ways in which 

they react when they come into contact with a bipolar molecular structure. 
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  However, the explanation for the change in multipath fading is only an assumption.  

In the graphs plotted using the number of days elapsed and the mean values (Fig. 5-8), 

numerous instances show a sudden change in the latter half of the measurements 

taken. This may be related to a change other than moisture loss, e.g., destruction of 

tree cells, decay, etc.  Future studies must clarify this issue by increasing the accuracy 

of the measurements taken.  

  Additionally, this study was the first attempt to display a large amount of data 

utilizing multipath fading in a histogram. Therefore, it may be possible to determine 

the internal structure of tree trunks in detail by improving the pattern analysis method. 

For future research, the investigation of new methods of analysis is desirable. 

6-3  Conclusion 

   In this dissertation, the author purpose was to prove that the differences in water 

content in vegetation such as palm trees can be determined using only an analysis of 

the microwave backscattering measured from the object. The backscattered 

microwaves were recorded by RCS measurement systems developed with 

specifications that enabled high speed, remote measurement.  

  From the result of the first experiment, it was proven that differences in the water 

content of foam cylinders prepared with varying volumes of water can be 

distinguished by all the three frequency bands. The conducted experiment is very 

unique, and the obtained results will help further studies regarding active microwave 

remote sensing of water content. 

The success of this experiment motivates us to use actual palm tree trunks, and an 

experimental regime representing the phenomenon of the trees being gradually 

depleted of water over a period of time was used. A similar method of irradiating the 
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tree trunks with the three microwave frequencies, measuring the microwaves 

backscattered, and the ensuing analysis of the recorded results proved that microwave 

backscattering can be used to remotely measure the water content in objects more 

specifically, palm trees and thus, determine changing conditions in tree health.  

  Also, it was found that the X-band and Ku-band frequencies, with shorter 

wavelengths, are not capable of penetrating harder skinned vegetation like the sago 

palm used for this study. However, they can be used to determine distance and 

external characteristics. Still, the L-band was able to penetrate the object, reflect off 

the bipolar molecular structures (i.e., water) and provide a backscattering intensity 

sufficient for determining the water content level.  

Therefore, it has been concluded that the objective of this experiment in this study to 

measure and monitor the state of change in palm trees using only microwave 

backscattering was achieved. Also, this measurement method is new, and it could add 

a new approach to measuring moisture content and palm tree conditions 

noninvasively. 

   Of course, as witnessed in the results analysis, the backscattering intensity is larger 

in parallel with higher water content. Even so, using the method presented in both 

experiments, the detection of water content of objects containing 25% and even lower, 

0%, was still possible. In a natural environment, especially in arid regions, the water 

content per volume is often below 25%.  Furthermore, in daily surroundings, (i.e., the 

dry wood used in construction), the water content is approximately 6 to 10% 

(converted to volume ratio). The water content of fields, relatively dry soil and the 

like is also often below 25%.  Accordingly, it is presumed that, using the L-band 

wavelength, water content conditions can be distinguished among objects utilizing 

only microwave backscattering.  
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6-4  Future Work  

  The conclusions are derived from experimental results obtained under only the best 

possible measurement conditions, in an anechoic chamber without interference and 

under controlled climatic conditions.  In the future, experiments in a more realistic 

environment are required.  Furthermore, in selecting objects to be measured, it is 

necessary to add more data by repeating the experiment using various shapes and 

materials. This experiment found that statistical and probabilistic analysis and pattern 

matching technology to estimate the similarity of results is important for fading 

analysis.  However, knowledge of this matter is minimal at present.  In recent years, 

the use of artificial intelligence to conduct such a signal analysis has begun. Although 

this is still an unknown area and is in the early stages of development, considering the 

success achieved in other areas, hope exists that a new methodology will be created 

for data analysis in remote sensing.  

   The author’s future goal is to study the water content conditions of actual date palm 

trees and related characteristics.  Because date palm trees contain more water in their 

trunks as compared to other tree species, date palm tree trunks with different water 

content levels will be tested to determine the possibility of using microwaves to 

monitor tree health conditions.  Additionally, a method of monitoring palm trees 

individually from different angles will be investigated.  If the experiment succeeds in 

distinguishing between different water content levels, combining the use of RCS 

measurement systems in agriculture will be beneficial in terms of monitoring the 

health of vegetation and agriculture products. 
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