2,309 research outputs found

    Object Association Across Multiple Moving Cameras In Planar Scenes

    Get PDF
    In this dissertation, we address the problem of object detection and object association across multiple cameras over large areas that are well modeled by planes. We present a unifying probabilistic framework that captures the underlying geometry of planar scenes, and present algorithms to estimate geometric relationships between different cameras, which are subsequently used for co-operative association of objects. We first present a local1 object detection scheme that has three fundamental innovations over existing approaches. First, the model of the intensities of image pixels as independent random variables is challenged and it is asserted that useful correlation exists in intensities of spatially proximal pixels. This correlation is exploited to sustain high levels of detection accuracy in the presence of dynamic scene behavior, nominal misalignments and motion due to parallax. By using a non-parametric density estimation method over a joint domain-range representation of image pixels, complex dependencies between the domain (location) and range (color) are directly modeled. We present a model of the background as a single probability density. Second, temporal persistence is introduced as a detection criterion. Unlike previous approaches to object detection that detect objects by building adaptive models of the background, the foreground is modeled to augment the detection of objects (without explicit tracking), since objects detected in the preceding frame contain substantial evidence for detection in the current frame. Finally, the background and foreground models are used competitively in a MAP-MRF decision framework, stressing spatial context as a condition of detecting interesting objects and the posterior function is maximized efficiently by finding the minimum cut of a capacitated graph. Experimental validation of the method is performed and presented on a diverse set of data. We then address the problem of associating objects across multiple cameras in planar scenes. Since cameras may be moving, there is a possibility of both spatial and temporal non-overlap in the fields of view of the camera. We first address the case where spatial and temporal overlap can be assumed. Since the cameras are moving and often widely separated, direct appearance-based or proximity-based constraints cannot be used. Instead, we exploit geometric constraints on the relationship between the motion of each object across cameras, to test multiple correspondence hypotheses, without assuming any prior calibration information. Here, there are three contributions. First, we present a statistically and geometrically meaningful means of evaluating a hypothesized correspondence between multiple objects in multiple cameras. Second, since multiple cameras exist, ensuring coherency in association, i.e. transitive closure is maintained between more than two cameras, is an essential requirement. To ensure such coherency we pose the problem of object associating across cameras as a k-dimensional matching and use an approximation to find the association. We show that, under appropriate conditions, re-entering objects can also be re-associated to their original labels. Third, we show that as a result of associating objects across the cameras, a concurrent visualization of multiple aerial video streams is possible. Results are shown on a number of real and controlled scenarios with multiple objects observed by multiple cameras, validating our qualitative models. Finally, we present a unifying framework for object association across multiple cameras and for estimating inter-camera homographies between (spatially and temporally) overlapping and non-overlapping cameras, whether they are moving or non-moving. By making use of explicit polynomial models for the kinematics of objects, we present algorithms to estimate inter-frame homographies. Under an appropriate measurement noise model, an EM algorithm is applied for the maximum likelihood estimation of the inter-camera homographies and kinematic parameters. Rather than fit curves locally (in each camera) and match them across views, we present an approach that simultaneously refines the estimates of inter-camera homographies and curve coefficients globally. We demonstrate the efficacy of the approach on a number of real sequences taken from aerial cameras, and report quantitative performance during simulations

    Introduction to Drone Detection Radar with Emphasis on Automatic Target Recognition (ATR) technology

    Full text link
    This paper discusses the challenges of detecting and categorizing small drones with radar automatic target recognition (ATR) technology. The authors suggest integrating ATR capabilities into drone detection radar systems to improve performance and manage emerging threats. The study focuses primarily on drones in Group 1 and 2. The paper highlights the need to consider kinetic features and signal signatures, such as micro-Doppler, in ATR techniques to efficiently recognize small drones. The authors also present a comprehensive drone detection radar system design that balances detection and tracking requirements, incorporating parameter adjustment based on scattering region theory. They offer an example of a performance improvement achieved using feedback and situational awareness mechanisms with the integrated ATR capabilities. Furthermore, the paper examines challenges related to one-way attack drones and explores the potential of cognitive radar as a solution. The integration of ATR capabilities transforms a 3D radar system into a 4D radar system, resulting in improved drone detection performance. These advancements are useful in military, civilian, and commercial applications, and ongoing research and development efforts are essential to keep radar systems effective and ready to detect, track, and respond to emerging threats.Comment: 17 pages, 14 figures, submitted to a journal and being under revie

    Correlation of partial frames in video matching

    Get PDF
    Correlating and fusing video frames from distributed and moving sensors is important area of video matching. It is especially difficult for frames with objects at long distances that are visible as single pixels where the algorithms cannot exploit the structure of each object. The proposed algorithm correlates partial frames with such small objects using the algebraic structural approach that exploits structural relations between objects including ratios of areas. The algorithm is fully affine invariant, which includes any rotation, shift, and scaling

    Toward Sensor Modular Autonomy for Persistent Land Intelligence Surveillance and Reconnaissance (ISR)

    Get PDF
    Currently, most land Intelligence, Surveillance and Reconnaissance (ISR) assets (e.g. EO/IR cameras) are simply data collectors. Understanding, decision making and sensor control are performed by the human operators, involving high cognitive load. Any automation in the system has traditionally involved bespoke design of centralised systems that are highly specific for the assets/targets/environment under consideration, resulting in complex, non-flexible systems that exhibit poor interoperability. We address a concept of Autonomous Sensor Modules (ASMs) for land ISR, where these modules have the ability to make low-level decisions on their own in order to fulfil a higher-level objective, and plug in, with the minimum of preconfiguration, to a High Level Decision Making Module (HLDMM) through a middleware integration layer. The dual requisites of autonomy and interoperability create challenges around information fusion and asset management in an autonomous hierarchical system, which are addressed in this work. This paper presents the results of a demonstration system, known as Sensing for Asset Protection with Integrated Electronic Networked Technology (SAPIENT), which was shown in realistic base protection scenarios with live sensors and targets. The SAPIENT system performed sensor cueing, intelligent fusion, sensor tasking, target hand-off and compensation for compromised sensors, without human control, and enabled rapid integration of ISR assets at the time of system deployment, rather than at design-time. Potential benefits include rapid interoperability for coalition operations, situation understanding with low operator cognitive burden and autonomous sensor management in heterogenous sensor systems

    Multi-modal video analysis for early fire detection

    Get PDF
    In dit proefschrift worden verschillende aspecten van een intelligent videogebaseerd branddetectiesysteem onderzocht. In een eerste luik ligt de nadruk op de multimodale verwerking van visuele, infrarood en time-of-flight videobeelden, die de louter visuele detectie verbetert. Om de verwerkingskost zo minimaal mogelijk te houden, met het oog op real-time detectie, is er voor elk van het type sensoren een set ’low-cost’ brandkarakteristieken geselecteerd die vuur en vlammen uniek beschrijven. Door het samenvoegen van de verschillende typen informatie kunnen het aantal gemiste detecties en valse alarmen worden gereduceerd, wat resulteert in een significante verbetering van videogebaseerde branddetectie. Om de multimodale detectieresultaten te kunnen combineren, dienen de multimodale beelden wel geregistreerd (~gealigneerd) te zijn. Het tweede luik van dit proefschrift focust zich hoofdzakelijk op dit samenvoegen van multimodale data en behandelt een nieuwe silhouet gebaseerde registratiemethode. In het derde en tevens laatste luik van dit proefschrift worden methodes voorgesteld om videogebaseerde brandanalyse, en in een latere fase ook brandmodellering, uit te voeren. Elk van de voorgestelde technieken voor multimodale detectie en multi-view lokalisatie zijn uitvoerig getest in de praktijk. Zo werden onder andere succesvolle testen uitgevoerd voor de vroegtijdige detectie van wagenbranden in ondergrondse parkeergarages

    An Impulse Detection Methodology and System with Emphasis on Weapon Fire Detection

    Get PDF
    This dissertation proposes a methodology for detecting impulse signatures. An algorithm with specific emphasis on weapon fire detection is proposed. Multiple systems in which the detection algorithm can operate, are proposed. In order for detection systems to be used in practical application, they must have high detection performance, minimizing false alarms, be cost effective, and utilize available hardware. Most applications require real time processing and increased range performance, and some applications require detection from mobile platforms. This dissertation intends to provide a methodology for impulse detection, demonstrated for the specific application case of weapon fire detection, that is intended for real world application, taking into account acceptable algorithm performance, feasible system design, and practical implementation. The proposed detection algorithm is implemented with multiple sensors, allowing spectral waveband versatility in system design. The proposed algorithm is also shown to operate at a variety of video frame rates, allowing for practical design using available common, commercial off the shelf hardware. Detection, false alarm, and classification performance are provided, given the use of different sensors and associated wavebands. The false alarms are further mitigated through use of an adaptive, multi-layer classification scheme, leading to potential on-the-move application. The algorithm is shown to work in real time. The proposed system, including algorithm and hardware, is provided. Additional systems are proposed which attempt to complement the strengths and alleviate the weaknesses of the hardware and algorithm. Systems are proposed to mitigate saturation clutter signals and increase detection of saturated targets through the use of position, navigation, and timing sensors, acoustic sensors, and imaging sensors. Furthermore, systems are provided which increase target detection and provide increased functionality, improving the cost effectiveness of the system. The resulting algorithm is shown to enable detection of weapon fire targets, while minimizing false alarms, for real-world, fieldable applications. The work presented demonstrates the complexity of detection algorithm and system design for practical applications in complex environments and also emphasizes the complex interactions and considerations when designing a practical system, where system design is the intersection of algorithm performance and design, hardware performance and design, and size, weight, power, cost, and processing

    Optical Tracking for Relative Positioning in Automated Aerial Refueling

    Get PDF
    An algorithm is designed to extract features from video of an air refueling tanker for use in determining the precise relative position of a receiver aircraft. The algorithm is based on receiving a known estimate of the tanker aircraft\u27s position and attitude. The algorithm then uses a known feature model of the tanker to predict the location of those features on a video frame. A corner detector is used to extract features from the video. The measured corners are then associated with known features and tracked from frame to frame. For each frame, the associated features are used to calculate three dimensional pointing vectors to the features of the tanker. These vectors are passed to a navigation algorithm which uses extended Kalman filters, as well as data-linked INS data to solve for the relative position of the tanker. The algorithms were tested using data from a flight test accomplished by the USAF Test Pilot School using a C-12C as a simulated tanker and a Learjet LJ-24 as the simulated receiver. The system was able to provide at least a dozen useful measurements per frame, with and without projection error

    Computer Vision Algorithms for Mobile Camera Applications

    Get PDF
    Wearable and mobile sensors have found widespread use in recent years due to their ever-decreasing cost, ease of deployment and use, and ability to provide continuous monitoring as opposed to sensors installed at fixed locations. Since many smart phones are now equipped with a variety of sensors, including accelerometer, gyroscope, magnetometer, microphone and camera, it has become more feasible to develop algorithms for activity monitoring, guidance and navigation of unmanned vehicles, autonomous driving and driver assistance, by using data from one or more of these sensors. In this thesis, we focus on multiple mobile camera applications, and present lightweight algorithms suitable for embedded mobile platforms. The mobile camera scenarios presented in the thesis are: (i) activity detection and step counting from wearable cameras, (ii) door detection for indoor navigation of unmanned vehicles, and (iii) traffic sign detection from vehicle-mounted cameras. First, we present a fall detection and activity classification system developed for embedded smart camera platform CITRIC. In our system, the camera platform is worn by the subject, as opposed to static sensors installed at fixed locations in certain rooms, and, therefore, monitoring is not limited to confined areas, and extends to wherever the subject may travel including indoors and outdoors. Next, we present a real-time smart phone-based fall detection system, wherein we implement camera and accelerometer based fall-detection on Samsung Galaxy S™ 4. We fuse these two sensor modalities to have a more robust fall detection system. Then, we introduce a fall detection algorithm with autonomous thresholding using relative-entropy within the class of Ali-Silvey distance measures. As another wearable camera application, we present a footstep counting algorithm using a smart phone camera. This algorithm provides more accurate step-count compared to using only accelerometer data in smart phones and smart watches at various body locations. As a second mobile camera scenario, we study autonomous indoor navigation of unmanned vehicles. A novel approach is proposed to autonomously detect and verify doorway openings by using the Google Project Tango™ platform. The third mobile camera scenario involves vehicle-mounted cameras. More specifically, we focus on traffic sign detection from lower-resolution and noisy videos captured from vehicle-mounted cameras. We present a new method for accurate traffic sign detection, incorporating Aggregate Channel Features and Chain Code Histograms, with the goal of providing much faster training and testing, and comparable or better performance, with respect to deep neural network approaches, without requiring specialized processors. Proposed computer vision algorithms provide promising results for various useful applications despite the limited energy and processing capabilities of mobile devices

    Deep learning-based vessel detection from very high and medium resolution optical satellite images as component of maritime surveillance systems

    Get PDF
    This thesis presents an end-to-end multiclass vessel detection method from optical satellite images. The proposed workflow covers the complete processing chain and involves rapid image enhancement techniques, the fusion with automatic identification system (AIS) data, and the detection algorithm based on convolutional neural networks (CNN). The algorithms presented are implemented in the form of independent software processors and integrated in an automated processing chain as part of the Earth Observation Maritime Surveillance System (EO-MARISS).In der vorliegenden Arbeit wird eine Methode zur Detektion von Schiffen unterschiedlicher Klassen in optischen Satellitenbildern vorgestellt. Diese gliedert sich in drei aufeinanderfolgende Funktionen: i) die Bildbearbeitung zur Verbesserung der Bildeigenschaften, ii) die Datenfusion mit den Daten des Automatischen Identifikation Systems (AIS) und iii) dem auf „Convolutional Neural Network“ (CNN) basierenden Detektionsalgorithmus. Die vorgestellten Algorithmen wurden in Form eigenständiger Softwareprozessoren implementiert und als Teil des maritimen Erdbeobachtungssystems integriert
    • …
    corecore