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ABSTRACT

W EARABLE and mobile sensors have found widespread use in recent years

due to their ever-decreasing cost, ease of deployment and use, and ability to

provide continuous monitoring as opposed to sensors installed at fixed locations. Since

many smart phones are now equipped with a variety of sensors, including accelerometer,

gyroscope, magnetometer, microphone and camera, it has become more feasible to de-

velop algorithms for activity monitoring, guidance and navigation of unmanned vehicles,

autonomous driving and driver assistance, by using data from one or more of these sensors.

In this thesis, we focus on multiple mobile camera applications, and present lightweight al-

gorithms suitable for embedded mobile platforms. The mobile camera scenarios presented

in the thesis are: (i) activity detection and step counting from wearable cameras, (ii) door

detection for indoor navigation of unmanned vehicles, and (iii) traffic sign detection from

vehicle-mounted cameras.

First, we present a fall detection and activity classification system developed for em-

bedded smart camera platform CITRIC. In our system, the camera platform is worn by the

subject, as opposed to static sensors installed at fixed locations in certain rooms, and, there-

fore, monitoring is not limited to confined areas, and extends to wherever the subject may

travel including indoors and outdoors. Next, we present a real-time smart phone-based fall

detection system, wherein we implement camera and accelerometer based fall-detection

on Samsung Galaxy S™ 4. We fuse these two sensor modalities to have a more robust

fall detection system. Then, we introduce a fall detection algorithm with autonomous

thresholding using relative-entropy within the class of Ali-Silvey distance measures. As

another wearable camera application, we present a footstep counting algorithm using a

smart phone camera. This algorithm provides more accurate step-count compared to using



only accelerometer data in smart phones and smart watches at various body locations.

As a second mobile camera scenario, we study autonomous indoor navigation of un-

manned vehicles. A novel approach is proposed to autonomously detect and verify doorway

openings by using the Google Project Tango™ platform.

The third mobile camera scenario involves vehicle-mounted cameras. More specifi-

cally, we focus on traffic sign detection from lower-resolution and noisy videos captured

from vehicle-mounted cameras. We present a new method for accurate traffic sign detec-

tion, incorporating Aggregate Channel Features and Chain Code Histograms, with the goal

of providing much faster training and testing, and comparable or better performance, with

respect to deep neural network approaches, without requiring specialized processors. Pro-

posed computer vision algorithms provide promising results for various useful applications

despite the limited energy and processing capabilities of mobile devices.
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1

CHAPTER 1

INTRODUCTION

Mobile sensors, including cameras, have found widespread use in recent years due to their ever-

decreasing cost, ease of deployment and use, and ability to provide continuous monitoring, across

larger areas, as opposed to static sensors installed at fixed locations. Since many smart phones and

tablets are now equipped with a variety of sensors, including accelerometer, gyroscope, magne-

tometer, microphone and camera, it has become more feasible to develop algorithms for different

applications by using data from one or more of these sensors. In addition, since these mobile devices

are also equipped with processors, many of these algorithms can be implemented locally onboard.

In this thesis, we focus on multiple mobile camera applications, and present lightweight algorithms

suitable for embedded mobile platforms. The mobile camera scenarios presented in this thesis are:

(i) activity detection and step counting from wearable cameras; (ii) door detection for indoor nav-

igation of unmanned vehicles, and (iii) traffic sign detection from vehicle-mounted cameras for

autonomous driving and driver assistance.

Wearable sensors are widely being used to monitor daily human activities and vital signs. Ro-

bust detection of events and activities, such as falling, sitting and lying down, is a key to a reliable

activity monitoring system. While fast and precise detection of falls is critical in providing immedi-

ate medical attention, other activities like sitting and lying down can provide valuable information

for early diagnosis of potential health problems. In this thesis, we first present a fall detection and

activity classification system using wearable mobile cameras. Since the camera is worn by the sub-
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ject, monitoring is not limited to confined areas, and extends to wherever the subject may travel

including indoors and outdoors. We propose an autonomous fall detection system by taking a com-

pletely different view compared to existing vision-based activity monitoring systems and applying

a reverse approach. In our system, in contrast to static sensors installed at fixed locations, the cam-

era is worn by the subject, and thus, monitoring is not limited only to areas where the sensors are

located, and extends to wherever the subject may travel. Furthermore, since the captured images are

not of the subject, privacy concerns are alleviated. Proposed fall detection algorithm employs his-

tograms of edge orientations and strengths, and proposes an optical flow-based method for activity

classification.

As mentioned above, thanks to the recent advances in wearable device technology, it has be-

come feasible to employ them as standalone platforms and perform different tasks. Mobile devices

provide high processing capability and various sensor information such as camera, accelerometer,

gyroscope and magnetometer. Therefore, we also present a fall detection system using wearable de-

vices, e.g., smart phones and tablets, equipped with cameras and accelerometers. A camera provides

abundance of information, and the results presented here show that fusing camera and accelerometer

data not only increases the detection rate, but also decreases the number of false alarms compared

to only accelerometer-based or only camera-based systems. We employ histograms of edge orien-

tations together with the accelerometer data for smart phone optimized fall detection system. The

proposed algorithm can run in real-time on an actual smart phone and has been used for experimen-

tal evaluation with different subjects.

In order to increase the accuracy for camera-based detection even further, we then present an-

other fall detection algorithm, which incorporates different features, and computes the threshold

autonomously. We employ a modified version of the histograms of oriented gradients (HOG) to-

gether with the gradient local binary patterns (GLBP). It has been shown that, with the same training

set, the GLBP feature is more descriptive and discriminative than HOG, histograms of template, and

semantic local binary patterns. Moreover, we autonomously compute a threshold, for the detection

of fall events, from the training data based on relative entropy, which is a member of Ali-Silvey

distance measures. Overall performance improvement regarding detection with lower false posi-

tives has been presented for both indoor and outdoor experiments as wells as various types of falls
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including falls from standing up position and falls from sitting down position.

As another application of wearable cameras, we present an algorithm for autonomous foot-

step counting by using camera data from a mobile device. Accelerometer-based step counters are

commonly available, especially after being integrated into smart phones and smart watches. Ac-

celerometer data is also used to measure traveled distance for indoor positioning systems. Yet,

accelerometer-based algorithms are prone to over-counting, since they also count other routine

movements, including movements of the phone, as steps. In addition, when users walk really slowly,

or when they stop and start walking again, the accelerometer-based counting becomes unreliable.

Since accurate step detection is very important for indoor positioning systems, more precise alterna-

tives are needed for step detection and counting. Therefore, we present a robust and reliable method

for counting footsteps using videos captured with a Samsung Galaxy S™ 4 smart phone.

As a second mobile camera scenario, we study autonomous indoor navigation of unmanned

vehicles by using vehicle-mounted cameras. Fully autonomous navigation of unmanned aerial ve-

hicles, without relying on pre-installed tags or markers, still remains a challenge for GPS-denied

areas and complex indoor environments. Doors are important for navigation as the entry and exit

points. A novel approach is proposed to autonomously detect doorways by using the Google Project

Tango™ platform. We first detect the candidate door openings from the 3D point cloud, and then use

a pre-trained detector on corresponding RGB image regions to verify if these openings are indeed

doors. We employ Aggregate Channel Features (ACF) for detection, which are computationally effi-

cient for real-time applications. We obtain the doorway detections from depth sensor and then check

the corresponding regions in RGB images to verify that they are actual door openings. Since door

detection is only performed on candidate regions, the system is more robust against false positives.

Mobile cameras are also being employed in intelligent transportation systems as wehicle-mounted

cameras. For instance, accurate traffic sign detection, from vehicle-mounted cameras, is an impor-

tant task for driving assistance, autonomous driving, and warning purposes. It is a challenging task

especially when the videos acquired from mobile cameras on portable devices are low-quality. In

this thesis, we focus on naturalistic videos captured from vehicle-mounted cameras. Recently, it

has been shown that Region-based Convolutional Neural Networks (R-CNN) [1] provide high ac-

curacy rates in object detection tasks. Yet, R-CNN-based methods are computationally expensive,
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and often require a Graphics Processing Unit (GPU) for faster training and processing. Thus, we

present a new method, incorporating Aggregate Channel Features (ACF) [2] and Chain Code His-

tograms (CCH) [3], with the goal of providing much faster training and testing, and comparable or

better performance with respect to deep neural network approaches, without requiring specialized

processors.

Proposed computer vision algorithms provide promising results for various useful applications

despite the limited energy and processing capabilities of mobile devices.

1.1 Research Impact and Publications

We present our methods and algorithms with possible applications aimed for mobile cameras. In

certain applications, we also incorporate other sensor modalities, more specifically accelerometers

and infrared depth cameras, for improved detection and classification purposes. The mobile cam-

era applications we focus on include fall detection, activity classification and footstep counting

from wearable cameras, and doorway detection for autonomous navigation of unmanned vehicles,

and traffic sign detection from lower-resolution and noisy videos using cameras of mobile devices.

These algorithms have been designed to be implemented on mobile platforms, despite limited en-

ergy and processing capabilities of mobile devices. Mobile cameras provide continuous monitoring

and data across larger areas, as opposed to static cameras that can only monitor certain parts of an

environment.

Previous fall detection works in the literature concentrate on gyroscope/accelerometer-based

systems, stationary acoustic/vibration based approaches or static camera-based systems. Accelerom-

eters, gyroscopes, or magnetometers have their own limitations such as lacking generalization across

different people and test data, being prone to false positives, and requiring higher number of sensors

for accurate classification and detection. On the other hand, static camera and acoustic/vibration-

based sensors are limited to the environment, where they are installed. The developed system is

among the first camera-based systems that use a mobile wearable camera, as opposed to static cam-

eras installed in certain rooms. Thus, monitoring is not limited to conned areas, and extends to

wherever the subject may travel including indoors and outdoors. Furthermore, since the captured
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images are not of the subject, privacy concerns of the subjects are alleviated. We also implemented a

real-time fall detection system using a Samsung Galaxy S4 smartphone and its’ front-facing camera

camera and accelerometer. The average detection rates obtained when using only the accelerome-

ter, only the camera and when fusing accelerometer and camera modalities were 65.66%, 74.33%

and 91%, respectively. Moreover, on 30 min-videos from 10 subjects, performing different daily

activities such as running and using the stairs, it was shown that fusing accelerometer and camera

data decreased the number of false positives. More specifically, the average number of false posi-

tives were 3.4 and 6.3 when using fusion of camera and accelerometer data, and only accelerometer

data, respectively. Experimental results and trials with actual Samsung Galaxy phones show that

the proposed method, combining two different sensor modalities, provides much higher sensitiv-

ity, and a significant decrease in the number of false positives during daily activities, compared to

accelerometer-only and camera-only methods.

In our improved fall detection work, incorporating gradient local binary patterns (GLBP) in-

creases the overall accuracy on our fall detection dataset, while relative entropy-based automatic

thresholding provides optimal operating point for fall detection. For fall detection problem, we pro-

pose an optimal selection criteria based on information theoretic based relative entropy approach.

We created a database of videos recorded with a wearable camera. We recorded and labeled around

300 activities performed by 10 different people. Activities include walking, sitting down, lying

down, walking and falling down for activity detection and classification purposes. Experimental re-

sults show that, with the autonomously computed threshold, the proposed method provides 93.78%

and 89.8% accuracy for detecting falls with indoor and outdoor experiments, respectively.

For autonomous footstep counting work, we constructed another database of videos recording

the feet movement of 10 people while they are walking. This is the first method to use mobile

camera for tracking and counting footsteps without relying on template matching for footsteps. The

method provided significantly less error rate compared to the accelerometer-based step counting

apps running on a smart watch, and smart phones held in hand, and carried in front pocket, back

pocket, or inside a backpack. The experimental results show that camera-based step counting has

the lowest average error rate for different users, and is more reliable compared to accelerometer-

based counters. In addition, the results show the high sensitivity of the accelerometer-based step
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counters to the location of the device and high variance in their performance across different users.

We also presented a new method for accurate traffic sign detection from lower-resolution and

noisy videos captured by vehicle-mounted cameras. In this method, we incorporate Aggregate

Channel Features (ACF) and Chain Code Histograms (CCH) with the goal of providing much faster

training and testing, and obtaining comparable or better performance with respect to deep neural

network approaches without requiring specialized processors. We used a custom dataset of lower

resolution and noisy images and videos for both training and testing of the proposed detector. We

tested different detector performances on 39 videos samples from various weather and daylight

conditions. The proposed method provided the highest true positive rate for lower false positive

values while performing much faster than Fast-RCNN on CPU.

The research presented in this thesis resulted in several publications including a book chapter

and respected IEEE journals and international conference proceedings.

1.1.1 Book Chapter

• K. Ozcan, A. Mahabalagiri, and S. Velipasalar, "Automatic Fall Detection and Activity Clas-

sification by a Wearable Camera," Distributed Embedded Smart Cameras, pp. 151–172,

Springer New York, New York, NY, 2014.

1.1.2 Peer-Reviewed Journal Publications

• K. Ozcan, S. Velipasalar, and P. K. Varshney, "Autonomous Fall Detection with Wearable

Cameras by Using Relative Entropy Distance Measure," IEEE Transactions on Human-Machine

Systems, vol. 47, no. 1, pp. 31-39, Feb. 2017.

• M. Cornacchia, K. Ozcan, Y. Zheng and S. Velipasalar, "A Survey on Activity Detection and

Classification Using Wearable Sensors," IEEE Sensors Journal, vol. 17, no. 2, pp. 386-403,

Jan.15, 2017.

• K. Ozcan and S. Velipasalar, "Wearable Camera- and Accelerometer-Based Fall Detection

on Portable Devices," IEEE Embedded Systems Letters, vol. 8, no. 1, pp. 6-9, March 2016.
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• K. Ozcan, A. K. Mahabalagiri, M. Casares and S. Velipasalar, "Automatic Fall Detection and

Activity Classification by a Wearable Embedded Smart Camera," IEEE Journal on Emerging

and Selected Topics in Circuits and Systems, vol. 3, no. 2, pp. 125-136, June 2013.

1.1.3 Peer-Reviewed Conference Publications

• B. Kakillioglu, K. Ozcan and S. Velipasalar, "Doorway detection for autonomous indoor

navigation of unmanned vehicles," 2016 IEEE International Conference on Image Processing

(ICIP), Phoenix, AZ, USA, 2016, pp. 3837-3841.

• K. Ozcan, A. Mahabalagiri and S. Velipasalar, "Autonomous tracking and counting of foot-

steps by mobile phone cameras," 2015 49th Asilomar Conference on Signals, Systems and

Computers, Pacific Grove, CA, 2015, pp. 1408-1412.

• K. Ozcan and S. Velipasalar. 2015. Robust and reliable step counting by mobile phone

cameras. In Proceedings of the 9th International Conference on Distributed Smart Cameras

(ICDSC ’15). ACM, New York, NY, USA, 164-169.

• Y. Zheng, K. Ozcan, S. Velipasalar, Hao Shen, and Qinru Qiu. 2014. Energy Efficient Track-

ing by Dynamic Voltage and Frequency Scaling on Android Smart Phones. In Proceedings of

the International Conference on Distributed Smart Cameras (ICDSC ’14). ACM, New York,

NY, USA.

• A. Mahabalagiri, K. Ozcan, and S. Velipasalar, “Camera motion detection for mobile smart

cameras using segmented edge-based optical flow," Advanced Video and Signal Based Surveil-

lance (AVSS), 2014 11th IEEE International Conference on, vol., no., pp.271,276, 26-29

Aug. 2014.

• A. Mahabalagiri, K. Ozcan, and S. Velipasalar, “A robust edge-based optical flow method

for elderly activity classification with wearable smart cameras," Distributed Smart Cameras

(ICDSC), 2013 Seventh International Conference on, vol., no., pp.1,6, Oct. 29 2013-Nov. 1

2013.
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• K. Ozcan, A. Mahabalagiri, and S. Velipasalar, “Fall detection and activity classification

using a wearable smart camera," Multimedia and Expo (ICME), 2013 IEEE International

Conference on, vol., no., pp.1,6, 15-19 July 2013.

• M. Casares, K. Ozcan, A. Mahabalagiri, and S. Velipasalar, “Automatic fall detection by a

wearable embedded smart camera," Distributed Smart Cameras (ICDSC), 2012 Sixth Inter-

national Conference on, vol., no., pp.1,6, Oct. 30 2012-Nov. 2 2012.

1.2 Organization of Thesis

The remainder of this thesis is organized as follows:

In Chapter 2, we provide a summary of recent publications within the area of wearable cameras

and their applications for healthcare, activity detection and classification. In addition to the type of

sensors and type of activities classified, we provide details on learning algorithm type, and extent of

experimental setup. We further discuss where the processing is performed, i.e., local versus remote

processing, for different systems.

In Chapter 3, we present a fall detection and activity classification system developed for em-

bedded smart camera platform CITRIC [4]. Experimental results show the success of the proposed

method.

Next, in Chapter 4, we present a fall detection algorithm, that incorporates accelerometer and

camera data, and is implemented on an actual smart phone.

Then, in Chapter 5, we present another camera-based fall detection algorithm, which incor-

porates different image features and computes the threshold autonomously. The threshold for fall

detection is computed from the training data based on relative entropy, which is a member of Ali-

Silvey distance measures.

The autonomous footstep counting algorithm is presented in Chapter 6.

In Chapter 7, we present the autonomous doorway detection and verification algorithm for au-

tonomous indoor navigation unmanned vehicles.

In Chapter 8, we present our proposed autonomous traffic sign detection algorithm for lower

resolution and noisy videos. We compare the performance of the proposed method with other
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detectors, namely a pure ACF-based detector, and Fast R-CNN-based detector, both in terms of

accuracy, through ROC curves, and processing times on lower-resolution videos. The conclusions

and future work are presented in Chapter 9.
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CHAPTER 2

RELATED WORK ON ACTIVITY

CLASSIFICATION USING WEARABLE

SENSORS

In this chapter, we provide an extensive summary of related works in human activity classification

using wearable sensors. Human activity detection and classification are important for a wide range

of applications including monitoring activities of elderly people for assistive living, robotics, human

computer interaction, and surveillance. With developing technology and decreasing cost of devices

with various sensors, life-logging has become more popular. Many of these applications still require

a person to manually record activities. There is a growing demand for autonomous activity moni-

toring and classification systems. Therefore, we present the state-of-the-art in activity monitoring

systems, specifically for the ones employing wearable cameras.

Existing activity monitoring systems can be broadly classified into two categories based on how

the sensors are deployed: (1) fixed sensor setting, where information is gathered from static sensors

mounted at fixed locations, and (2) mobile sensor setting, where the sensors are wearable and thus

mobile. The alternative to fixed-sensor settings for activity monitoring is mobile sensing, where

the sensors are wearable and activity is monitored in a more first-person perspective. Before the

last decade and a half, wearable technologies were often large and cumbersome devices more often
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found in specialized healthcare facilities. However, for the last decade or so we observe mobile sen-

sors become more widespread. The change was spurred by a shift of cultural acceptance of mobile

devices, the advancement in hardware size and power, and the marketing of smartphones. The ac-

ceptance of mobile hardware can be seen through the statistic that in 1998 the U.S. census recorded

that only 31% of households had cellphones compared to the 71% of households in 2005 [5]. Now,

there are smartphones, wrist worn and sensor-equipped watches, and even glasses equipped with

onboard computing.

With wearable and mobile technologies already a part of our daily lives, human activity detec-

tion and classification approaches have become both feasible and more culturally acceptable. This

type of mobile sensing also allows monitoring of subjects wherever they may travel. With the avail-

ability of affordable hardware for the purposes of mobile sensing, and the widespread use of mobile

devices, the focus of this chapter is therefore on activity classification using wearable cameras.

We group activities into two main categories: (1) activities involving global body motion and

(2) activities involving local interaction. Global motion type activities will include ambulation,

transportation, and exercise/fitness activities. We use the term global motion activities to describe

motions that involve displacement of the entire body, such as walking, running, and climbing stairs.

Local interaction activities are those that generally involve the interaction with an object and would

be the activities which are categorized in [6] as phone usage and daily activities. Specifically, local

interaction type activities do not involve motion of the entire body, but rather only involve motion of

the extremities. These local interactions often require additional context in terms of identification of

an object with which a subject is interacting. For example, the local interaction activity of brushing

teeth involves the use of a tooth brush. Although we use these two categories to group papers, not

all works classify tasks only from either global or local activities, works such as [7, 8, 9, 10, 11]

classify activities from both categories.

2.1 Recent work using only wearable cameras

Over the years, the flexibility of wearable camera systems has improved due to decreasing cam-

era and processor sizes and increasing resolution as well as processing power. Table 2.1 groups
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Table 2.1: Papers classified by activity type (Global Body Motion or Local Interaction) using Camera

Global Body Motion Activities
Activity Type References

Sitting [20, 21]
Standing [22, 21]
Walking [23, 20, 24, 21, 13, 25]
Running [23, 24, 25]
Jumping -

Lying [21]
Stairs [13, 25]
Other [20, 22, 21, 26, 13, 14, 27, 28]

Local Interaction Activities
Activity Type References

Hygeine Activity [29, 30, 17, 31]
House Cleaning [29, 30, 17, 31]

Eating [29, 30, 17, 31]
Construction Activities -

Food Preparation [32, 16, 15, 33, 29, 30, 17, 31, 34]
Office Activities [35, 29, 30, 17, 31, 34, 26]

Other [36, 37, 38]

camera-based works into two classes (based on whether they focus on global body motion or local

interaction with objects), and lists different activity types that these works address. Initially, many

of the efforts involved backpack-based camera systems such as those in [12]. Camera technologies

have now been developed to the point where image capture can be accomplished by less intrusive

setups. Numerous demonstration systems, especially with the introduction of Google Glass®, have

prototyped algorithms for activity classification based on images captured from an eye-glass worn

camera [9][13]. Others have adopted head-[14, 15, 16] or chest-mounted cameras [17, 18]. Bam-

bach [19] summarizes the advances in computer vision algorithms for egocentric video.

While these wearable camera-based activity classification systems can be distinguished from

one another in terms of the placement of the camera on the body, the majority of these camera based

setups choose either a head or torso-mounted configuration. Additionally, all works include only a

single camera and often do not specify the number of subjects or have fewer than 10 subjects. The

high-level distinguishing factor between these camera-based systems is the type of features extracted

from the scene. These features may be more general, high-level scene features that quantify the
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motion of the scene or more fine-grained details that try to capture interactions of the subject with

objects in the scene. We therefore group the wearable camera-based activity classification work

into two categories: Global body motion and local interaction activity classification described in

Sections 2.1.1 and 2.1.2, respectively.

2.1.1 Global Body Motion Activity Classification

While there are some works in the area of global motion activity classification based on wearable

cameras, one will notice that this section has comparatively less number of works than the global

body motion activity detection using accelerometer, magnetometer, or gyroscope. Nonetheless,

there are some works that have explored global motion using camera-based techniques. Global body

motion is often inferred from images based on an estimate of the camera motion. The methods for

estimating this camera motion often fall into two main groups, (i) techniques that leverage methods

based on point-based features [39, 40, 41, 22], and (ii) techniques that employ optical flow like

features [13, 25, 26, 14, 28].

While some works employing point-based features used standard detection algorithms such as

Speeded Up Robust Features (SURF) [22], others focused on developing novel point-based features.

Zhang et al. [40, 41] use a novel point feature detection based on defining interest points from the

covariance matrix of intensities at each pixel. They then calculate motion histograms based on the

point features to capture the global motion distribution in the video.

The optical flow based techniques appear to differ based on the learning algorithm employed.

Kitani et al. [26] investigate the use of motion-based histograms from optical flow vectors and unsu-

pervised Dirichlet learning on classification of 11 sports-based ego-actions. Zhan et al. [13] extract

optical flow features for each frame, and pool the optical flow vectors over numerous frames to

provide temporal context. They compare three classification approaches, namely K-Nearest Neigh-

bor (KNN), SVM, and LogitBoost. The approach also includes a comparison with and without an

HMM. Yin et al. [25] also use an optical flow technique, but employ an SVM for classification.

There are still other works that do not exactly fall into describing global motion based on local

point features or optical flow based features. Song and Chen [21] use a histogram of oriented

gradients approach to detect humans from their camera-based system. However, in the case of
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[21], their system is using a mobile camera on a robot watching the human. Similarly, Watanabe

and Hatanaka [24] also use a different setup of the camera, wherein a single hip or waist-mounted

camera is employed to describe the gait of individual. Unlike other works, the camera is facing

downward and motion is relative to the waist position. A walking state at each frame is composed

of the position of the waist, and relative position of joints, as well as the angular speed of the camera.

It is assumed that the intrinsic parameters of the camera are known and the world coordinates of the

observed points are known.

2.1.2 Local Interaction Activity Classification

The works, described in Section 2.1.1, focusing on higher level, global body motion activities,

while comparable to and competitive with the accelerometer-based approaches, do not necessarily

take advantage of the visual details captured by cameras. Thus, other researchers have considered

the ability to classify more detailed activities [32, 16, 36, 35, 33]. To capture this variety of classi-

fication, the works in this section view activities as involving a subject and object interaction or the

interaction of multiple subjects.

The majority of the works, discussed in this section, will be on classifying activities that involve

object and subject interactions, however we do not want to ignore works such as [38, 32] that classify

interactions between multiple subjects. Aghazadeh et al. [38] propose novelty detection in egocen-

tric video by measuring appearance and geometric similarity of individual frames and exploiting

the invariant temporal order of the activity to determine if a subject runs into a friend, subject gives

directions, or the subject goes to an ice cream shop. Fathi et al. [32] similarly classify the type of

interaction multiple subjects are involved in, such as a dialogue, monologue, or discussion.

To begin to understand these interactions, there have been supporting works that contributed to

individual aspects of being able to tackle the larger problem of activity classification. These sup-

porting works have addressed problems such as detecting a hand [37], better recognizing an object

from an egoview [42], methods for gaze/attention focus detection and 3D estimation of hand-held

objects [43], or linking an object to a location [44]. Another area of work has been in form of video

summarization, which contributes to activity classification by developing techniques for temporally

segmenting a video into distinct actions. The ability to properly segment regions of activity has been
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further improved by several works of Grauman et al. [45, 46, 47, 48, 49] that proposed algorithms

for video event summarization for ego-centric videos including predicting important objects and

people [46, 47], extracting frames that might be a snapshot from ego-centric video [45], and video

summarization of daily activity ego-centric videos based on detected objects and their relations and

co-occurrences [48]. In addition to temporal segmentation, Lee and Grauman [49] also explored

within frame segmentation, developing region cues indicative of high-level saliency.

Attempts at activity classification, began with works such as [35] by Mayol and Murray, who

use a shoulder-mounted camera to recognize manipulations of objects by an individual’s hands. This

work, however, is constrained to a static workspace view and manipulations are described as actions

carried out by the subject’s hands. In fact, to first determine the center of focus, they use the center of

mass of a detected skin region, where these skin regions are assumed to be either one or both hands.

More recent works began to use less constrained experimental setups, where the camera is in fact

mobile. Sundaram et al. [33] use a shoulder-mounted camera on a moving subject. They however,

like their predecessors, also attempt to detect the hands and represent activities as manipulations by

hands. They divide their system into two parts; the first, where the vision is relied on to recognize

the manipulation motions and the second, where a Dynamic Bayesian Network (DBN) is used to

infer objects and activities from the motions of the first part. An accuracy of 60.99% is obtained for

the manipulation motions that include making a cup of coffee, making a cup of tea, washing a dish

etc.

Fathi et al. [16] also use manipulations by the hand to classify fine-grained activities and simi-

larly focus on food preparation tasks such as making a hotdog, a sandwich, or coffee. They propose

a framework for describing an activity as a combination of numerous actions. For example, actions

of the coffee making activity include opening coffee jar, pouring water in coffee maker, and so on.

They attempt to assign action labels to each segmented image interval and an object, hand, or back-

ground label to each super-pixel in each frame. The action models are learned using Adaboost [50]

and a set of features that include information such as object frequency, object optical flow, hand

optical flow, and so on. The action verbs are estimated first, then the object classes are inferred

with a probabilistic model. The final steps involve refining decisions from previous stages based

on the final decisions of activities, using a conditional random field. This work is evaluated on the
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GeorgiaTech egocentric activity dataset, which includes video from a head-mounted camera. Frame

based action recognition accuracy is 45%, whereas activity classification accuracy is 32.4%. They

further demonstrate that object recognition is in fact improved based on action classification results.

In [15], Fathi et al. demonstrate improved results on the same GeorgiaTech dataset by modeling ac-

tions through the state changes that are caused on an object or materials. This is in contrast to their

initial work that uses information from all frames. To detect changed regions the authors sample

frames from the beginning and end of an action sequence. Change is measured in terms of the color

difference of matched pixels. An SVM is trained to detect regions that correspond to specific ac-

tions. Using state change detection, 39.7% accuracy is achieved over 61 classes on the GeorgiaTech

egocentric activity dataset. The activity segmentation results in 42% accuracy.

As accuracies in object detection works began to improve, others began to use these more spe-

cific object detection models for activity classification. Pirsiavash and Ramanan [30] use fully

supervised learning with dense labels to train deformable parts-based object detectors. With the

additional label information, this enables more complex understanding of multiple objects interact-

ing in a single scene. They also recognize that changes in the objects occur throughout an action

sequence and develop a notion of active versus passive objects and create separate detectors for

objects in each state. To evaluate their system, they created and annotated a 1 million-frame dataset,

and obtain results of around 30% frame classification accuracy. However, with an assumed ideal ob-

ject detector, they demonstrate that this method would obtain a 60% frame classification accuracy.

The created dataset is from a chest-mounted Go-Pro camera and contains label information about

activities such as brushing teeth, combing hair, making coffee, and so on. Numerous works lever-

age this dataset to evaluate their approaches including [29, 17, 31]. Mccandless and Grauman [29]

propose to learn the spatio-temporal discriminative partitions for egocentric videos and apply object

detection to obtain a strong classifier for recognition of 18 activities, achieving an overall 38.7% F

score.

Matsuo et al. [17] further extend the work in [30], through visual attention and saliency, ac-

counting for cases where a hand may not be involved in the interaction. The groundwork for using

visual attention and saliency can be linked to other works, including [51], [34] and [52]. Matsuo et

al. [17] propose a method for quantifying visual saliency, not only through the static saliency of an
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Table 2.2: Papers classified by activity type(Global Body Motion or Local Interaction) Using A Hybrid Set
of Sensors

Global Body Motion Activities
Activity Type References

Sitting [53, 54, 18, 55, 56, 57, 58, 59, 60, 61, 23, 62, 63, 64, 65, 66, 67, 68]
Standing [54, 18, 55, 57, 58, 69, 59, 60, 61, 23, 62, 63, 70, 64, 65, 66, 67, 71]
Walking [72, 53, 54, 18, 55, 57, 58, 69, 59, 73, 60, 74, 61, 62, 63, 70, 64, 75, 65, 67, 76, 77, 68, 71]
Running [54, 18, 55, 57, 58, 59, 74, 61, 23, 63, 64, 75, 68, 71, 78]
Jumping [54, 55, 79, 75]

Lying [53, 55, 56, 57, 58, 73, 60, 61, 23, 63, 66, 80, 76, 68]
Stairs [53, 18, 57, 58, 69, 61, 79, 63, 70, 64, 75, 67, 77, 71]
Other [57, 58, 69, 59, 73, 60, 74, 79, 70, 64, 75, 65, 76, 68, 71, 81]

Local Interaction Activities
Activity Type References

Hygeine Activity [72, 53, 54, 55, 82, 59, 74, 67, 80, 71, 78]
House Cleaning [72, 53, 54, 55, 82, 58, 59, 74, 79, 63, 75, 65, 77, 78]

Eating [82, 59, 63, 67, 76, 68]
Construction Activities [72, 12]

Food Preparation [53, 63]
Office Activities [82, 58, 67, 76, 77, 68, 71, 78]

Other [72, 54, 55, 75, 83, 78, 84]

image, but through the ego-motions of the first person viewer. The results are based on the same

dataset used in [30]. The results improve the average recognition accuracy, over all activities, from

36.9% to 43.3% and decrease variance in accuracy over numerous subjects from 9.8% to 7.1%.

2.2 Recent work using hybrid sensor modalities

With the advances in single sensors, and the size of the sensors becoming smaller, cheaper and more

commercialized, there has been many research efforts that now look at not only a single modality

sensors but rather a hybrid combination of multiple types of sensors. Table 2.2 presents the activity types of hybrid sensors

These custom applications are not as easily separated as the classification of global body and local

interaction type activities, and a single work in this area can possibly address activities in both cate-

gories. It is observed that hybrid sensing systems, usually employ supervised learning methods. In

the next subsection, we will discuss some different combinations of sensor modalities with camera.
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2.2.1 Works using hybrid sensor modalities with cameras

There are also multiple hybrid systems that include vision-based sensors in addition to other sensor

types [72], [53], [18]. While Nam et al. [18] simply fuse information from a camera and accelerom-

eter to increase the accuracy of classification for ambulatory activities, Doherty et al. [72] and Hsien

et al. [53] use the context provided by cameras to identify the specific class of activity once an ac-

celerometer has identified the level of activity being undertaken.

Numerous of these works favor a camera and orientation-based sensor combination. Spriggs

et al. [85] focus on temporal segmentation of an activity in order to recognize different temporal

parts. The authors explore the usage of GMMs, HMMs, and K-Nearest Neighbors for segmenting

and classifying various actions involved in the cooking of different meals. The results demonstrate

that using both IMU and camera data improves results over single modality sensing. Additionally,

the best results were obtained using a K-nearest neighbor approach, whose success was largely

attributed to the fact that the feature vectors being used had high dimensionality. Li et al. [86]

utilize gyroscope to obtain candidate boundary between different daily activities, and extract visual

features from images for better video segmentation.

More recently, a common proposal, for these camera and orientation-based sensors has been

an eyeglass-mounted system [9], [87], [66], [67]. Windau and Itti [9] use the inertial sensing from

a gyroscope and accelerometer to normalize the coordinate system for different head orientations.

For the inertial sensors, energy consumption and movement intensity, and the mean and variance of

the sensor readings are extracted. As for the camera-based features, a single GIST vector per frame

is calculated. The video data is also used to classify an indoor versus outdoor environment using

the GIST vectors. The activities classified include lying down, walking, jogging, biking, washing

dishes, brushing teeth, etc. The results show an 81.5% classification accuracy on 20 different ac-

tivities. Zhan et al. [67] also design an eye glasses-like system with a first person view camera and

accelerometer. This work shows that while accelerometer-only classification has proven effective

for dynamic activities, the camera is more suitable for static activities. The extracted accelerometer

features include both frequency and time domain information. The extracted video features include

optical flow vectors. The authors compare classification results for different sensors using Log-

itBoost and SVM with numerous different kernels. Combining the classifiers through structured
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prediction using a Conditional Random Field (CRF) with Tree Re-Weighted Belief Propagation,

they obtain an overall accuracy of 84.45% on 12 activities. Hernandez et al. [66] propose a real-

time human activity recognition for sitting, standing and supine with glasses-based system with

onboard processing.

Ishimaru et al. [87] additionally make use of an Infrared (IR) proximity sensor on a glasses-

based system. The IR proximity sensor is used to measure the distance between the eyes and the

eyewear in order to perform blink detection. Moreover, the average variance of 3D-accelerometer is

calculated to construct a head motion model. They try to distinguish between the activities of watch-

ing, reading, solving, sawing and talking. An overall accuracy of 82% is achieved on an 8-person

dataset for these five activities. Other works have used IR, orientation, and camera systems. Fleury

et al. [80] use a webcam, a 3D-accelerometer, a 3D-magnetometer, an IR sensor, and a microphone.

They apply Principal Component Analysis (PCA) on extracted features to get ten dominant fea-

tures that are fed through a multi-SVM for 35 activities, reaching 86% accuracy. Punangpakisiri et

al. [76] deploy senseCam with a 3D accelerometer, a light sensor, and a passive IR sensor to classify

ten activities.

With advances in gaming systems, such as the Kinect, Red, Green, Blue, and Depth (RGB-D)

sensors have also become popular the last few years. Bahle et al. [77], Damen et al. [12], and

Moghimi et al. [69] explore the use of RGB-D sensors that provide both a regular imaging and

depth information. Bahle et al. [77] reach 92% overall accuracy by using camera and depth-based

information with a Dynamic Time Warping technique when classifying walking, writing, using

stairs, and using the dishwasher. A helmet-mounted RGB-D camera is employed in [69]. The

features used include GIST and a skin segmentation algorithm. To classify the activities, learning

based methods such as bag of SIFT words, Convolutional Neural Networks (CNNs), and SVMs

were explored. They conclude that CNN-based features provide the best representation for finer-

grained activity recognition or tasks that involve manipulations of objects by hands. These works

however are still relatively new and have explored limited activity sets compared to other hybrid

approaches with around three to six activities classified in each of these works.

We have covered a wide range of wearable sensor approaches by also discussing the progres-

sion of how methods using different sensor modalities approach various different problems. Initial
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Table 2.3: Papers classified according to activity and sensor type and processing location

Activity Type Sensor Type Processing Location Reference

Global Body
Camera

Onboard [27, 37]
Remote [13, 39, 25, 40, 22, 41, 24, 21, 14, 26]

Hybrid
Onboard [81, 88, 65, 89, 90]
Remote [68, 9, 67, 91]

Local Interaction
Camera

Onboard [14, 12]
Remote [13, 41, 32, 16, 36, 42, 44, 46, 45, 48, 49, 92, 47, 29, 38, 31, 43, 35, 33, 30, 17, 51, 34, 52]

Hybrid
Onboard [93, 94, 54, 55, 87, 79]
Remote [85, 9, 67, 72]

A:Accelerometer G:Gyroscope M:Magenetometer

orientation-based sensing approaches started with stable sensors at the waist and classified a limited

set of activities. As orientation-based sensors and processing power advanced, other works explored

orientation-based sensors on the extremities. With this advancement to the extremities, the number

of classes that an approach was able to distinguish increased. These approaches additionally saw

improvements and can be distinguished from one another in terms of the increasing feature sets

used. Moving these orientation sensors to the extremities also enabled the ability to approach new

activity types that involve more localized motions such as brushing teeth, vacuuming, and so on.

However, orientation-based sensors are limited by the information they provide, and with improve-

ments in the camera technology, others have been able to show that cameras can provide details

that these other orientation sensors cannot. That is, images and videos can provide more detailed

information and context for a specific action sequence, and not only be able to distinguish between

making food, but also making specific types of food. Yet, despite the additional activities these

camera only systems can tackle, the accuracies of these systems, often below 60%, are far lower

than other works discussed. Hence, more recent hybrid works have provided the ability to classify

both global and local activities, while maintaining higher accuracies of above 80%. However, it

can be argued that these single-sensor based approaches have established the groundwork for more

advanced hybrid approaches. These hybrid approaches have also tended to be more extensive in

their experimentation, often using more realistic experimentation approaches with more subjects.

With community datasets sparse in all but the camera-based only works, the experimentation is of-

ten specific to each work. Hence, a potential contribution to activity classification using wearable

sensors would be the creation of a standard dataset. Table 2.3 reflects that there is still progress

to be accomplished until the systems perform processing fully onboard and real-time compared to

majority of works where analysis is remotely processed.
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CHAPTER 3

AUTOMATIC FALL DETECTION AND

ACTIVITY CLASSIFICATION BY A

WEARABLE EMBEDDED SMART

CAMERA

3.1 Introduction

A nation’s progress is determined by the quality of life of its’ citizens. Elderly healthcare plays an

integral part in this progress. According to the U.S. Census Bureau [95], the old-age dependency

ratio (the number of people 65 and over relative to those between 15 and 64) is projected to increase

from a current value of 22% in 2010 to 37% by 2050. This is also the projected trend worldwide.

This percentage increase would have an exponential effect on the costs involved in social security

and healthcare. Therefore, with technological advancement, increasing research effort is expended

in the field of elderly healthcare.

In recent years, one of the key aspects of the elderly care has been intensive activity monitor-

ing, and it is imperative that any such activity monitoring be also autonomous. Activity monitoring
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can focus on short-term, event-based activities, such as falling, sitting and lying down. It can also

cover longer-term posture and motion analysis in behavioral assessment for chronic diseases such

as arthritis, cardiovascular or neurodegenerative diseases. According to Kang et al. [96], activities

of elderly can be classified into four states: (1) resting state such as sitting, lying and standing;

(2) locomotion state such as walking and running; (3) emergency state such as fall, and (4) transi-

tion state such as stand to sit, stand to lying down and so on. Thus, an ideal autonomous activity

monitoring system should be able to classify activities into critical events, such as falling, and non-

critical events, such as sitting and lying down. Furthermore, the system should be able to smartly

expend its’ resources for providing quick and accurate real-time response to critical events versus

performing computationally intensive operations for non-critical events. The objective of this report

is to contribute towards the development of such an autonomous system. While the general focus is

to provide an innovative solution to address the critical fall event, we show means of extending this

methodology to non-critical events as well.

Activity monitoring systems have been introduced as part of elderly care in recent years, espe-

cially for elderly people living independently. Fall detection is a crucial part of elderly activity mon-

itoring systems, since falls are considered to be the eighth leading cause of death in the U.S. [97],

and falls lead to severe complications [98, 99]. It has been reported that 10% of the falls cause

fractures and 20% of injuries due to falls need rapid medical attention [100]. In the literature, it has

been reported that timely treatment to fall related injuries reduces the morbidity-mortality rate quite

substantially [101, 102]. Even though several user-activated commercial devices are available in

the market (e.g. that require pressing of a button), they provide limited benefits since they assume

that the user is conscious after the fall. Autonomous fall detection systems have been introduced in

response to growing needs. They can reduce the impact and recovery times, due to injuries caused

by falls, by informing others quickly and reducing the time people remain on the floor. However,

to find acceptance and widespread use, these systems should be robust and precise, and provide

real-time fall detection with tolerable, ideally zero, false positive rate.

Many fall detection algorithms have been proposed relying only on accelerometer data [103,

104, 105]. Koshmak et al. [103] test their method on actual falls of ice-skaters. Yet, since every

fall has different acceleration characteristics and the magnitude of acceleration has high variation
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among various body types, it is challenging to detect different types of falls for different people. Cao

et al. [104] employ adaptive thresholds for motion sensors. Accelerometers have also been used in

the classification of sports activities [105] to capture training statistics. As discussed in [105], since

the placement of the phone differs from person to person, using just the accelerometer might not

be sufficient for activity classification. In such cases, use of camera sensors in tandem with the

accelerometer can help resolving such issues. Wu et al. [106] also discuss the limitations of using

just the accelerometer. Accelerometer-based systems, although simple and cost-effective, can still

create false positive alarms even with multiple sensors, especially in environments such as high

speed trains and elevators, where people are exposed to acceleration.

Even though several user-activated commercial devices are available, they have limited ben-

efits, especially in situations where the user loses consciousness. In response to growing needs,

researchers have been working on autonomous fall detection via dedicated signal processing de-

vices. Noury et al. [107] and Mubashir et al. [108] have provided well-organized surveys on the

principles and approaches involved in fall detection. Classification of falls is quite important as

well. Falls can be either from standing, sitting or lying down positions. They can also be forward,

backward or lateral falls. According to Noury et al. [107], though there are some common charac-

teristics among these falls, different scenarios must be considered for different kinds of falls. For

example, falls from a standing position are much easier to detect as compared to falls from sitting

or lying down positions. An autonomous system should provide a real-time detection of falls free

from false positives.

Vision-based systems have been introduced as an alternative to approaches using non-vision

sensors. In most of the existing vision-based systems, one or more cameras are installed at fixed

locations to monitor a subject. Similar to the approaches using acoustic and vibrational sensors,

using cameras installed at fixed static locations confines the monitoring environment only to those

regions. In many systems, videos captured by the cameras are transferred to a central location

for processing, which requires extensive communication. In addition, subjects, continuously being

monitored by these cameras, often raise privacy concerns [109].

Classification of other non-critical activities such as walking, sitting and lying down are useful

in the study of chronic diseases and functional ability monitoring [96, 110]. These activities, though
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not time-critical, are more complex and computationally more expensive to classify. Thus, develop-

ing a system that can handle both critical and non-critical activities is challenging, since the system

needs to address both real-time and computationally expensive problems. The issue is even more

elevated when we want to implement this on an embedded and wearable platform.

Compared to accelerometers and other non-vision sensors, cameras provide a much richer set

of data including contextual information about the environment, which allows the analysis of a va-

riety of activities including falls. In this chapter, we present an autonomous fall detection algorithm

employing images from a wearable camera. In the proposed system, we take a completely dif-

ferent view compared to existing vision-based activity monitoring systems, by applying a reverse

approach. In our system, in contrast to static sensors installed at fixed locations, the camera is body-

worn, and thus, monitoring is not limited only to areas where the sensors are located, and extends

to wherever the subject may travel including indoors and outdoors. Moreover, since the captured

images are the images of the surrounding environment and not of the subject, the privacy concerns

are alleviated, if not eliminated, compared to the static cameras capturing the videos of the subject.

Furthermore, the images are not saved or transmitted to a central processor, but processed onboard

locally. In a recent study, no concerns have been reported by bystanders about somebody carry-

ing a wearable camera [111]. Based on the current trends, wearable cameras are expected to find

increasing use to understand lifestyle behaviors for health purposes [72].

3.2 State of the Art

There are detailed surveys available on various approaches used for fall detection [112, 113]. In

general, the fall detection and activity monitoring systems can be classified into two main categories:

a) systems using non-vision sensors, and b) systems using vision-based sensors. Acoustic, vibra-

tional and other ambience sensor-based methods use the characteristic vibration patterns to detect

different events. However, with these systems, the monitoring is limited to only those areas, where

the sensors are installed. Moreover, it is usually assumed that there is only one subject performing

the activities. Accelerometer-based fall detection systems [103, 104, 114, 115] employ wearable

devices containing an accelerometer, and are simple and cost effective. Yet, even with multiple
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sensors, these systems are prone to creating false positives, especially when people are exposed to

acceleration due to e.g. being in an elevator or high-speed car or train. The limitations of using

just the accelerometer are also discussed by Wu et al. [116]. Thus, due to shortcomings of systems

that only rely on acceleration and gyroscope data, more robust methods are needed to differentiate

between falls and other regular daily activities.

There has been a lot of research work in the area of autonomous activity monitoring for the el-

derly in the last two decades. There are multiple methods being employed differing primarily based

on the type of sensor being employed. In the literature, these methods are being classified into

three broad categories: (1) Accelerometer-based approaches, (2) vision (static camera)-based ap-

proaches, (3) acoustic, vibrational and other ambience sensor-based approaches [117][108]. Below,

we provide an overview of the systems using vision-based and non-vision sensors.

3.2.1 Systems using non-vision sensors

Accelerometer-based systems use wearable devices containing an accelerometer, the output of which

is used to detect a fall [118]. Using accelerometers has been one of the most popular approaches.

Initial prototypes were designed for detecting falls in the elderly and were based on autonomous

belt devices which detected impact of shock on the ground along with mercury tilt switches to de-

tect a person lying on the floor [119][120]. Since then, a lot of work has been done in the area

of accelerometry [107][121][122],tri-axial accelerometry [123][124][110], posture based [125] and

many other techniques based on the fusion of the above systems [126]. A number of approaches

have been proposed for minimizing the false-alarm rate, including watching for no-movement

[127, 128] and statistical models [129].

Accelerometer-based systems are simple and cost effective. However, robustness and accuracy

of such a system demand multiple sensors being placed at strategic positions on the body which can

be inconvenient. Even with multiple sensors, these methods can still create false positive alarms,

especially in environments such as high speed trains and elevators. Also, they may not always

perform activity classification.

Acoustic, vibrational and other ambience sensor-based methods record major events such as

walking or falling based on their characteristic vibration patterns. Alwan et al. [130] designed a
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floor-vibration based fall detector. Zhuang et al. [131] proposed a method using Gaussian mixture

models on audio signals from a microphone. One of the limitations of these kinds of sensors is

that the monitoring environment is confined to where the sensors are installed. In addition, these

methods assume that the subject of interest is the only one performing these events.

3.2.2 Systems using vision-based sensors

Recent advances in camera technology together with efficient image processing algorithms have en-

abled researchers to consider vision-based systems as a viable option in activity monitoring. Vision-

based methods involve processing images from one or more cameras monitoring a subject [132].

Most approaches use raw video data, while others address the concerns of privacy [133] by using

infrared or contrast-detection cameras [134, 135]. Stereoscopic vision and 3D scene reconstruction

are other variations that aim to increase system accuracy [136, 137].

Wu [124] showed that during a fall, vertical and horizontal speeds were three times higher than

any other activity. Along the same lines, Rougier et al. [138] tracked head movements and change in

human shape and applied appropriate thresholds to detect falls. Yu et al. [132] achieved 97.08% de-

tection rate with their method where they detect foreground human body by background subtraction

and classify different projection histogram-based postures using Support Vector Machines (SVM).

Belbachir et al. [139][140] presented an event-driven, stereo vision-based system for ambient mon-

itoring. Other works include systems based on spatiotemporal feature analysis [141], shape change

analysis [142], posture analysis [125] and 3D head position analysis [143].

There have also been implementations of static camera-based algorithms on embedded plat-

forms. Belbachir et al. [144] recently presented a Dynamic Visual Sensor (DVS)-based system

consisting of two optical sensors with 304×240 event-driven pixels and an FPGA for the process-

ing. Fleck et al. [145] presented a distribute camera network for assisted living using FPGA and

PowerPC based smart cameras.

In all the aforementioned methods, cameras are static at fixed locations, thus introducing the

issue of confining the monitoring environment to the region where the cameras are installed. The

images acquired from the cameras are usually offloaded to a dedicated central processor. Also, 3D

model-based techniques require initializations and are not always robust. Another major practical
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issue is that the subjects being monitored often raise privacy concerns [133] as they feel they are

being watched all the time.

3.2.3 Differences of the proposed method

In this chapter, we present a novel and efficient method to detect falls, and classify events of sitting

and lying down by using a wearable smart camera, which is a new approach. With this system,

wherein the camera is worn by the subject, we address the issues discussed above. First, since the

camera is on the subject, contrary to other static sensor-based approaches, the monitoring is not

limited to a confined area, and can cover wherever the subject may travel. Second, since the images

captured will not be of the subject, as opposed to static cameras watching the subject, the privacy

issue is alleviated. Moreover, the frames are not transmitted to anywhere, but processed onboard

by the microprocessor. Only when a fall occurs, an appropriate message can be sent wirelessly to

the emergency response personnel, optionally including an image from the subject’s camera. This

image of the surroundings can aid in locating the subject. Third, the captured images carry a lot of

information about the surroundings that the other type of sensors cannot provide.

The proposed approach is based on the oriented image gradients, and there are major differences

from the Histogram of Oriented Gradients (HOG) introduced by Dalal and Triggs [146]. First,

we build separate histograms for gradient orientations and gradient strengths, and then find the

correlation between them. Another difference is that we do not use a constant number of cells

in a block. We adaptively determine the cells that do not contribute to overall edge information,

and remove them autonomously. As will be shown by experimental results, the proposed method

is more robust compared to using fixed number of cells in detecting falls. We implemented this

algorithm on a wearable embedded smart camera, which is a small, stand-alone, battery-operated

unit. In addition to detecting falls, the proposed algorithm provides the ability to classify events of

sitting and lying down using optical flow.

The initial steps and an earlier version of this work was presented in a conference paper [147],

wherein the focus is only on fall detection, and non-fall activities are not classified. In this chapter,

we extend this work significantly by (i) incorporating activity classification by optical flow, (ii)

diagnosing the problematic case of camera occlusions and avoiding creating false positives, (iii)
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improving the fall detection algorithm, and (iv) conducting more extensive experiments with more

subjects for different scenarios.

The rest of this chapter is organized as follows: The proposed method is described in detail in

Section 3.3. The experimental results are presented in Section 5.4, and the chapter is concluded in

Section 3.5.

3.3 Proposed Method

The proposed method is composed of two stages. The first stage involves detection of an event.

In our case, an event can be one of the following: falling, sitting or lying down. Once an event is

detected, the next stage is the classification of this event.

Histograms of oriented gradients (HOG) [146] are used as image feature descriptors in the

proposed algorithm. According to the HOG algorithm [146], the image is divided into blocks and

then each block is divided into n cells. The magnitude and orientation of the gradient for each pixel

are calculated for generating histograms of strength and orientation. Different from the original

HOG algorithm, for every cell, two separate m-bin histograms are built for the edge strength and

orientation. The combination of n histograms forms the HOG descriptor, with the size of m × n

entries. As will be described in Section 3.3.1, these descriptors are used to detect the occurrence of

an event.

Once an event is detected, it is checked whether it is a fall event. If it is determined that it is not a

fall event, an optical flow-based approach is used to classify this event as sitting or lying down. The

complete algorithm is presented in Algorithm 1, and the details of event detection and classification

are described in detail in Sections 3.3.1 and 3.3.4, respectively.

3.3.1 Event Detection

As stated above, and shown in Algorithm 1, the first step in our algorithm is to detect the occurrence

of an event. To detect an event, separate histograms of edge orientation (EO) and edge strength (ES)

are used. During a fall, edge orientations change significantly, which is reflected in the gradient

orientation histograms. Also, since falls are relatively fast events, the edges in images get blurred
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as seen in Fig. 3.1(a) versus (b). This is captured by the change in the gradient strength histograms.

The edge strength values corresponding to the frames given in Fig. 3.1(a) and 3.1(b) are shown in

Fig. 3.2(a) and Fig. 3.2(b), respectively. As can be seen, during the fall the edge strength values

decrease significantly.

(a) (b)

Fig. 3.1: Example frames captured by the camera during a fall.

(a)

(b)

Fig. 3.2: Edge strength values corresponding to frames in
(a) Fig. 2.1(a), and (b) Fig. 2.2(b).

We have seen in our experiments that using original HOG can create false positives while walk-

ing. In addition, we do not use a fixed number of cells in each block. Rather, we adaptively deter-

mine the cells that do not contribute to overall edge information, and remove them autonomously.
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We have determined that for the detection of abrupt changes, a reduced number of blocks is

sufficient. In order to lighten the processing load of the embedded camera, our implementation only

uses one block that is initially divided into 16 cells, as including larger number of blocks would

unnecessarily compromise the efficiency. We also adaptively change the number of cells in the

block so that the cells that do not contribute to overall edge information are autonomously removed.

The details will be described in Section 3.3.3.

To build the histograms, horizontal (dx) and vertical (dy) gradients are computed first for every

pixel within a cell. Then, these values are used to calculate the gradient orientation (tan−1(dy/dx))

and the gradient strength (
√
dx2 + dy2) at each pixel.
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Fig. 3.3: (a) False ‘fall’ alarms are generated during lying down and sitting events when using (a)
the original HOG; (b) proposed approach with fixed number of cells; (c) proposed approach with
adaptive number of cells.

In the original HOG algorithm, the orientation values are placed in a 9-bin histogram (with range

0◦ to 180◦) using a voting mechanism based on the gradient strength. This causes false alarms in

some cases. An example is shown in Fig. 3.3(a), where ‘lying down’ and ‘sitting’ were classified

as a fall with the original HOG. Another example is seen in Fig. 3.4, where the fall occurs between

frames 50 and 60, yet walking triggers a false ‘fall’ alarm a little after frame 30.

In the proposed method, we also use 9 bins for our EO histogram as in [146]. On the other

hand, we use 18 bins for the ES histograms, which makes them more descriptive. This is important

especially when we consider the fact that a fall event involves changes in edge strengths. The

histograms from all the kept cells are concatenated to form a multi-dimensional vector. Thus, the

descriptor for a frame consists of two vectors: one containing the concatenated histograms for edge

orientations (EO) and another containing the concatenated histograms for edge strengths (ES).
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3.3.2 Dissimilarity Distance

Once the extracted feature histograms EO and ES are normalized, the dissimilarity distance between

two histograms (r and s) is calculated using:

D = 1−

N−1∑
i=0

(ri − r̄)(si − s̄)√√√√√√
[
N−1∑
i=0

(ri − r̄)2
N−1∑
i=0

(si − s̄)2
] ,

r̄ =
1

N

N−1∑
i=0

(ri) , s̄ =
1

N

N−1∑
i=0

(si)

(3.1)

Dissimilarity distance values for ES (DES) and EO (DEO) are cross-correlated, which atten-

uates the noise in the signal and emphasizes the peaks. To increase the robustness, the attenuated

signal is autocorrelated (d = (DESDEO)2). The result of this operation is shown in Fig. 3.3 and

Fig. 3.4.

Once DES and DEO are cross-correlated, followed by autocorrelation of the resulting signal,

the gradual motion of the subject (i.e. walking, lying, sitting) is significantly attenuated, which

provides a clear peak corresponding to actual events.

To detect an event, we compute these distance values, and buffer them in an array of B4 for

the last 4 frames such that B4 holds 4-many dtt−4 values, where 4 is an integer, and dtt−4 is

computed between the current frame t and the frame t−4. If the maximum computed distance in

the buffer B4 is larger than the empirically determined threshold ρ, this indicates the occurrence

of an event. Searching over a one-second window first and using4, rather than directly comparing

current and previous frames, eliminates potential false positives that could be caused by sudden

changes between consecutive frames as a result of sudden illumination changes, camera occlusion

etc. Hence, an event is detected first, before declaring a fall.
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3.3.3 Adaptive Number of Cells

We also propose a mechanism that adaptively controls the number of cells to be used for the feature

descriptor according to their content. The motivation is that cells containing no edges or edges with

low strength do not contribute to the scene information, and increase the similarity score between

concatenated histograms. Figure 3.5 illustrates a scenario for a fall event, wherein the camera points

to a table. As can be seen, cells 1, 2, 5, 6, 9, 10, 13, and 14 add minimal or no useful information to

detect the fall or differentiate it from walking. Including the histograms for these cells in the feature

descriptor would result in lower dissimilarity scores.
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Fig. 3.4: False ‘fall’ alarm when using the original HOG.

Fig. 3.5: Cells before and after a fall event.

Figures 3.6a and 3.6b are the histograms of edge orientations before and after a fall, respectively,

obtained by using a fixed number of cells. The adjusted histograms obtained by removing the least

contributing cells with the proposed method are shown in Fig. 3.6c and 3.6d. The dissimilarity

distance between the histograms in Fig. 3.6a and 3.6b is 0.866. On the other hand, if we remove

the histograms of cells with the least contribution (circled in Fig 3.6a) from the feature vector, the

dissimilarity distance increases to 1.024.

Another supporting example can be seen by comparing Fig. 3.3b and 3.3c. The amplitude

of the peak for dissimilarity in a falling event is higher when using an adaptive number of cells
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(Fig. 3.3c). Having a higher dissimilarity distance between falling and previous states contributes

to the robustness of the system to reliably detect fall events. Consequently, the system is less prone

to false negatives, i.e. missing ‘fall’ events. More results comparing adaptive number of cells with

fixed number of cells are presented in Sec. 5.4.

To determine which cells to remove, the maximum amplitude among the bins within a cell is

found first. Then, we calculate the mean value and the standard deviation of the vector of maximums

from the n cells in a frame. Finally, the algorithm removes the cells whose maximum value are α

standard deviation away from the computed mean. Thus, not only the number of removed cells is

adaptive, but also the threshold is adapted according to the cell content within current frame at time

t. To avoid possible introduction of false positives by discarding too many cells, the algorithm is

designed to remove a maximum of 8 cells (half of the total number of cells).

(a) (b)

(c) (d)

Fig. 3.6: Histogram of Edge Orientations using a fixed number of cells (a) before falling and (b)
after falling. Employing adaptive number of cells (c) before falling and (d) after falling.
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3.3.4 Event Classification

As described above and seen in Algorithm 1, for every frame, it is checked whether there is an

event or not. When there is an event occurring, the algorithm first checks whether the fall condition

is satisfied. If the event is not a fall, it performs optical flow calculations to classify the event as

sitting or lying down. Fall detection part is more critical and has higher priority when compared to

classification of sitting and lying down.

3.3.5 Fall detection using modified HOG

To detect a fall, the dissimilarity dtt−1is calculated between current and previous frames. If it is

greater than the threshold τ , a fall event is detected, and fall alarm is created. Figure 3.7 shows

plots of different distances for a typical falling event. Looking at the maximum of dissimilarity

distances over 4 frames (solid red plot) helps detecting events when they are in progress. After

the occurrence of an event is detected, the ‘fall’ is recognized by using the dissimilarity distance

between the current and the previous frames (solid blue plot). Whenever the distance is greater than

the threshold τ that is shown in the graph, it is declared as a fall.
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Fig. 3.7: Plots of different distances for a typical falling down.

As described above, we build two separate histograms, and thus build descriptors in a different

way compared to the original HOG algorithm [146]. The advantage of this approach over the

original HOG can also be seen in Fig. 3.7, where the dissimilarity distances, between the current

and previous frames, obtained with the original HOG (dashed plot) and the separate EO and ES

histograms (solid blue plot) are plotted. As can be seen, the original HOG creates a false positive
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(declaring a fall event when there is not an actual fall) between frames 50 and 60.

3.3.6 Event classification using Optical Flow

According to Horn and Schunck [148], optical flow is the distribution of apparent velocities of

movement of brightness patterns in an image, and it can arise from relative motion of objects and the

camera. Four general scenarios determine the relative motion between an object and a camera [149]:

(a) relative object at a distance, (b) relative object motion towards the camera, (c) relative object

rotation at a distance, (d) relative object rotation about its’ axis. All other relative motions can be

derived from these. Figure 3.8 gives a pictorial description of the four different motions. Since

the motion is relative, the same principle applies if the objects in the background are still and the

camera moves in and around the scene. Our general methodology for event classification in this

chapter is based on this concept. Any horizontal, vertical or rotatory motion of the camera would

generate significant respective velocity vector components. By splitting these vector components

into horizontal and vertical velocities and by studying their characteristic behavior, certain decisions

can be made on the event that the subject is performing with the camera attached to her/his waist.

Fig. 3.8: (a) Relative object motion at a distance, (b) relative object motion towards the camera,
(c) relative object rotation at a distance, (d) relative object rotation about its’ axis.

When the detected event is not a fall event, the algorithm computes the average optical flow

over γ consecutive frames, for vertical and horizontal directions, using the method introduced in

[150]. Optical flow vectors help us differentiate the events of sitting and lying down. As seen

in Fig. 3.9 and 3.10, taking the average of vertical and horizontal velocities over γ frames gives

us distinctive features of events. For a typical sitting event, the event starts and continues with

vertical direction. As it can be observed in Fig. 3.9, sitting down event is detected when the vertical
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mean of optical vectors is greater than the horizontal mean. Similarly, if the horizontal mean of

optical vectors is greater than the vertical mean, it will be detected as a lying down event. When

the vertical mean is greater, the difference between the vertical and horizontal values is added to

the variable vrblSit. Similarly, when the horizontal mean is greater, the difference is added to the

variable vrblLay. Since a typical lying down event usually starts with sitting down, it is expected

the horizontal average vector to become greater than the vertical one during the course of an event.

This cross-over of the velocities is described with the variable crossOver when the horizontal

flow becomes greater than the vertical flow and vice versa. Therefore, if crossOver condition is

satisfied, and the horizontal mean is significantly bigger than the vertical one for a predetermined

duration of κ frames, and vrblLay is greater than ϕ, the event is classified as a lying down as seen in

Fig. 3.10. If the crossOver condition is not satisfied, the algorithm compares the variables vrblSit

and vrblLay to distinguish sitting and lying down events. The algorithm decides that it is a sitting

or lying down event according to vrblSit and vrblLay, whichever is larger respectively.

Furthermore, although it is not included in the algorithm, instead of taking the absolute values,

if we use the direction of the vertical flow vectors, we can also decide whether it is a transition from

sitting to standing or vice versa.

For optical flow computation, the entire image is used instead of using the cells that contain

significant edge information. The reason is that it is more in alignment with the algorithm proposed

in [150] in terms of computational performance.
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Fig. 3.9: Horizontal and vertical mean values for a sitting down event.
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Fig. 3.10: Horizontal and vertical mean values for a lying down event.

3.4 Experimental Results

In order to verify the robustness of the algorithm, various experiments have been performed, which

include: (i) trials wherein camera is mounted on a broom stick to imitate an actual free fall, (ii)

experiments wherein videos are captured with a camera attached at the waist of different subjects,

and then later processed on a PC, (iii) embedded smart camera experiments wherein images are

captured and then locally processed in real-time on the microprocessor of the CITRIC [4] camera

board.

3.4.1 Sensitivity and Specificity Comparison

For the evaluation of the experiments, sensitivity and specificity measures described by Noury et al.

[107] are employed. Sensitivity is the portion of the falls that are detected as falls with the proposed

algorithm. Specificity is the portion of the non-fall events (sitting and lying down) that does not

create any false alarms according to the algorithm. Sensitivity and Specificity are given by:

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP
,

(3.2)

where True Positive (TP) is the system detecting a fall when it occurred, False Positive (FP) is the

system detecting a fall when it did not occur, True Negative (TN) is system not detecting a fall when

fall does not occur, and False Negative (FN) is system not detecting a fall when it occurs.
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3.4.2 Experiments with free fall of a broomstick

It is very difficult to recreate free falls with stunt actors since cautiousness and fear of subjects

interfere with the falls. Therefore, to test the proposed algorithm with actual free falls, the camera

was attached to a broomstick. It was held vertically, and then released to hit the ground in a free fall.

In order to simulate the free fall a human, the broomstick was chosen so that its’ length is similar to

the average human height.

15 free fall trials were performed in total, and the fall detection rate is 100%, which proves

the robustness of the developed method to detect free falls. As shown in Fig. 3.11, free fall of a

broomstick creates a fall alarm between frames 35 and 45. A free fall event has more acceleration

when compared to falls acted by subjects. For this reason, maximum dissimilarity distance over

δ frames is higher with a free fall when compared with the distance obtained during acted falls

(Fig. 3.7). Example captured frames obtained during free falls are shown in Fig. 3.12. Due to the

acceleration gained during a free fall, a significant change in edge strengths is observed, caused by

the blurriness of the images captured during movement.
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Fig. 3.11: Free fall of a broomstick is detected.
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(a) (b)

(c) (d)

Fig. 3.12: Example frames captured during a free fall.

3.4.3 Experiments with people

Table 3.1: Falls from standing position : Sensitivity and Specificity using different methods

Proposed Method Fixed-cell Modified Histogram Original HOG [146]
Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

Subject 1 100 % 95.24 % 100 % 95.24 % 100% 61.84 %
Subject 2 100 % 90.48 % 90.91 % 100 % 100% 66.66%
Subject 3 100 % 76.19 % 100 % 76.19 % 100 % 38.1 %
Subject 4 90.91 % 80.95 % 72.73 % 90.48 % 100% 50%
Subject 5 90 % 100 % 70 % 100 % 100% 40%
Subject 6 81.82 % 85 % 63.64 % 90 % 100% 5%
Subject 7 80 % 100 % 70 % 100 % 100% 72.73 %
Subject 8 60 % 85 % 50 % 95 % 100% 50%

All the experiments were performed with the camera attached to the belt around the waist. The

cameras were positioned to be at the center of the waist facing front. It should be noted that, in these

experiments, the subjects are imitating or acting the events. Thus, it is very difficult to recreate a free
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fall. The cautiousness and fear of subjects can sometimes interfere with imitating a fall event. Even

with soft cushions and other safety precautions in place, we found that sometimes subjects are too

afraid to ‘actually fall’. In addition, since the experiments were repetitive at times, the performance

and attention of the subjects could degrade over time.

The first set of experiments was performed with pre-recorded videos captured with eight dif-

ferent subjects. Video sequences were captured with a Microsoft® LifeCam™ camera that has a

CMOS sensor, and captures image frames at 30 fps. The captured image size is 320× 240 pixels.

To decrease processing time, we only processed the even-numbered frames. In order not to increase

the computation load unnecessarily, we have used only one block and 16 cells in our implemen-

tation. The parameters of the algorithm are selected to be 4 = 17, κ = 2, ρ = 0.2, τ = 0.37,

ϕ = 0.2, and ξ = 0.9. The same values have been used in all the experiments. 4 value is selected

to be 17 to cover information from approximately last one second of the movement. κ is selected

to be 2 to have reliable classification without being effected from sudden changes of the observed

parameters. ϕ and ξ are determined experimentally to effectively detect lying and sitting down,

respectively. ρ and τ are empirically determined correlation distance thresholds.

3.4.4 Fall Experiments

8 different subjects performed 10 fall events from standing up position and 10 fall events from

sitting position. Thus, a total of 80 falls from standing position and 80 falls from sitting positions

were performed. Table 3.1 summarizes the sensitivity and specificity values for falls from standing

position with (i) the proposed method with adaptive number of cells, (ii) when using fixed number of

cells, (iii) when using original HOG [146]. As can be seen, the proposed method with the adaptive

number of cells provides the best sensitivity-specificity combinations among all methods.

Table 3.2 shows the Sensitivity and Specificity values for falls from sitting position. Falling

from sitting position is more challenging when compared to falling from standing position. Amount

of motion and distance traveled to hit to the floor is less when falling from sitting position. Hence,

for some subjects falling from sitting position does not create dissimilarity distance that is high

enough to be classified as falling down. Therefore, the detection rate occurred to be less than the

sensitivity of falling from standing position. In table 3.2, specificity rates are calculated with sitting
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and lying down experiments.

Table 3.2: Falls from Sitting Position: Sensitivity and Specificity

Falling From Sitting
Sensitivity Specificity

Subject 1 100 % 95.24 %
Subject 2 100 % 90.48 %
Subject 3 80 % 76.19 %
Subject 4 70 % 80.95 %
Subject 5 44.44 % 100 %
Subject 6 50 % 85 %
Subject 7 27.27 % 100 %

3.4.5 Sitting and Lying down Classification Experiments

Classification experiments were performed on 5 subjects with 10 trials of sitting and 10 trials of

lying down. Classification results for lying down and sitting events are given in Table 3.3. As it

can be seen from the table, we achieved classification rates of 82.7% and 86.8% for lying down and

sitting, respectively.

Table 3.3: Classification rate on 105 event trials

Correct Wrong True
Classification Classification Positive

Lying Down 43 9 82.7 %
Sitting Down 46 7 86.8 %

The average processing time for the fall detection part of the algorithm is less than 0.1 sec on

a computer with Intel® Core™ i7-3630QM at 2.4 GHz and 6 GB of RAM. When there is an event

detected, and it is not a fall event, it requires 0.7 sec on the average to process a frame including

optical flow computation. As will be presented below, we also implemented the fall detection part

of the algorithm on the microprocessor of an embedded smart camera, specifically a CITRIC mote.

Example of captured frames for a sitting down event is given in Fig. 3.13. The given frames

are not consecutive, but they summarize the movement by showing some key frames of the whole

event. As it can be observed, sitting is an activity consisting of vertical movement of the camera

with respect to the scene.
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(a) (b) (c) (d)

Fig. 3.13: Example frames captured during a sitting down event.

Some of the key frames, which are not successive, corresponding to a lying down event are

given in Fig. 3.14. As it can be observed, the lying down event starts with sitting down first. It

should be noted that the algorithm is also capable of detecting a lying down event for the person

who is already in a sitting position. We can detect sitting to lying transition that can also be observed

from the given frames.

(a) (b) (c) (d)

Fig. 3.14: Example frames captured during a lying down event.

Example frames captured during fall events are given in Fig. 3.15 and 3.16. As it can be seen,

falling causes a sudden change in the view, which may introduce blurriness for the captured frames.

As a result of the sudden change in the edge orientation and strengths, we are able to achieve very

high fall detection rates.

(a) (b) (c) (d)

Fig. 3.15: Example frames captured during a fall from sitting.
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(a) (b) (c) (d)

Fig. 3.16: Example frames captured during a fall from standing.

3.4.6 Outdoor experiments

Proposed system was tested outdoors as well. As it can be seen in Fig. 3.17 (showing frames in time

order), when a fall occurs, the scene observed by the camera changes significantly making it possible

for the algorithm to detect falls. If the subject is lying on his back towards the end of the fall, the

dissimilarity distance becomes very high as compared to a typical fall in indoor environments. One

of the main reasons is that the camera is facing towards the bright sky at the end, which creates

considerably higher dissimilarity distance. Dissimilarity distances during a fall event are shown in

Fig. 3.18. As it can be seen, the correlation distance between the current frame and the previous one

(blue plot) reaches 1, which does not usually happen for a typical fall in indoor environments.

(a) (b) (c) (d)

Fig. 3.17: Example frames captured during a fall in outdoor scene.

3.4.7 Embedded camera experiments with CITRIC motes

Fall detection part of the algorithm was implemented on CITRIC embedded camera platform [4],

which features a 624-MHz fixed-point microprocessor, 64 MB SDRAM, and 16 MB NOR FLASH.

The wireless transmission of data is performed by a Crossbow TelosB mote. The images are pro-

cessed locally onboard, and then dropped, thus are not transferred anywhere. When a fall is detected

as a result of the processing on CITRIC, only the corresponding fall alarm and some of the captured
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Fig. 3.18: Outdoor scene dissimilarity distances of the proposed method and original HOG.

frames during the fall event may be sent wirelessly to emergency response personnel to locate the

subject more easily according to images of the environment.

Figure 3.19(a) and (b) show the CITRIC camera and the camera attached at the belt, respectively.

All of the subjects wore the camera at the waist level. With the camera facing forward at the waist,

captured images provide effective information about the environment. Also, the location of the

camera does not interfere with the movements of the subjects.

The results of the experiments are presented in Table 3.4. Experimental trials have been per-

formed with three different subjects, and include 50 falling down, 15 sitting down along with getting

up and 15 lying down events. The detection rate of fall trials was 84-86%. False positives (wrongly

created ‘fall’ alarms) caused by sitting down and standing up, and lying down are shown in the

corresponding columns. Number of false positives caused by lying down events is higher when

compared to sitting down. Since sitting consists of straight motion of going down and up, it is less

prone to create significant distance between frames when compared to lying down. False positive

rates due to lying down did not exceed the rate of 2/15 in the experiments. With the implementation

on the CITRIC embedded platform, the proposed algorithm gives promising results.

The program running on the embedded platform includes event detection, fall detection and

camera occlusion detection. Since optical flow calculations are computationally more expensive,

event classification part is not implemented on the embedded platform yet.

Due to the design of CITRIC camera, exposure adjustment is done only once before the program
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(a) (b)

Fig. 3.19: (a) CITRIC platform, (b) which is connected around the waist.

Table 3.4: Sensitivity and False Positive with sitting and lying down on CITRIC platform

Falling Down Sitting Down Lying Down
Standing Up

Sensitivity False False False
Positive Positive Positive

Subject 1 43/50 1/50 2/30 2/15
Subject 2 45/50 5/50 1/30 1/15
Subject 3 42/50 0/50 0/30 2/15

starts. Since exposure adjustment is not performed periodically, the algorithm performs well when

the lighting intensity is similar during the trial. However, when the person, who is wearing the

camera, changes room or opens a door, it may create a false alarm due to a sudden change in

lighting.

3.5 Conclusion

We have presented a novel algorithm to detect fall events and classify significant activities like

sitting and lying down by a wearable camera. Fall detection employs histograms of edge orientations

and strengths, and an optical flow-based method is used for activity classification.

Since the camera is worn by the subject, the monitoring can continue wherever the subject

may travel including outdoors. Wearable camera alleviates the privacy concerns, since the captured

images are not of the subject, and these images are neither stored nor transmitted. Only if a fall

occurs, an alarm signal may be sent to the emergency response personnel with the option to send
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the image frames during and after a fall. The images of surroundings may help the emergency

personnel to locate the subject.

We have also implemented the fall detection part of the algorithm on an actual smart camera.

Over 320 trials, performed with eight different subjects, demonstrate the effectiveness of the algo-

rithm in detecting falls and classifying activities of sitting and lying down. Additionally, 50 falls

and 30 non-fall trials were performed with subjects wearing actual embedded smart cameras, and

15 trials were performed to imitate free falls.

For the falls starting from a standing up position, an average detection rate of 87.84% has been

achieved with pre-recorded videos. With the embedded camera implementation, the fall detection

rate is 86.66%. Moreover, the correct classification rates for the events of sitting and lying down are

86.8% and 82.7%, respectively.

The idea of applying optical flow can also be extended to classify other types of human activi-

ties.
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Algorithm 1 Fall detection and Activity Classification
for For all frames do

if It is the first frame then
Initialize histogram and cell vectors

else
if average intensity ≤ 30 then

Camera occlusion detected.
else

if max(B4) ≥ ρ then
Event Detected
if dtt−1 ≥ τ then

Fall Detected
else

Over 10 frames:
→ Find average vertical flow= α
→ Find average horizontal flow= β
if crossOver ≥ κ then

if vrbl_Lay > ϕ then
Lying down detected

else if vrbl_Sit > ξ then
Sitting down detected

end if
else

if vrbl_Sit ≥ vrbl_Lay then
Sitting down detected

else if vrbl_Lay ≥ vrbl_Sit then
Lying down detected

end if
end if

end if
end if

end if
if α > β then

vrbl_Sit+ = (α− β)
else

vrbl_Lay+ = (β − α)
end if

end if
end for
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CHAPTER 4

WEARABLE CAMERA- AND

ACCELEROMETER-BASED FALL

DETECTION ON PORTABLE DEVICES

4.1 Introduction

Images captured by a camera sensor provide abundance of data including contextual information

about the surroundings. In this chapter, we propose a system that employs a novel approach of

using both accelerometer and camera modalities to detect falls by differentiating them from other

daily activities including walking, sitting, lying down and going up and down stairs. This is one of

the first works that uses data from a wearable camera to overcome shortcomings of accelerometer-

only systems.

Wearable cameras alleviate, if not eliminate, privacy concerns of users since the captured im-

ages are not of the subjects but the surroundings. Also, with smart phone implementation, images

are processed locally on the device, and they are not saved or transmitted anywhere. Also, a study

about privacy behaviors of lifeloggers using wearable cameras, discusses privacy of bystanders and

ways to mitigate concerns [111]. It is also expected that wearable cameras will be employed more

to understand lifestyle behaviors for health purposes [72].
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For the camera-based part, the proposed method employs histograms of edge orientations to-

gether with the gradient local binary patterns (GLBP), which use image features that have more

descriptive power [151]. GLBPs have been used for human detection applications, and were de-

rived from an operator named local binary pattern [152]. We show that the novel camera-based

fall detection method proposed in this chapter is more robust, and outperforms our previous work

that uses only histograms of edge strengths and edge orientations [27]. Moreover, we present an

accelerometer-based fall detection algorithm and a fusion approach to combine results from these

two sensors. We first present the significant improvement provided by the proposed camera-based

algorithm on recorded videos. We also show results on actual smart phones with a simpler version

of the camera-based algorithm for real-time performance. The fusion of camera-based results with

accelerometer data provides significant decrease in the number of false positives compared to using

only accelerometer data.

4.2 Proposed Method

4.2.1 Summary of HOG and Modified HOG

In the original HOG-based algorithm, proposed for human detection, an image is divided into blocks

and then each block is divided into n cells. For each cell, an m-bin histogram is built, wherein each

bin corresponds to a gradient orientation span. The concatenation of n histograms forms the HOG

descriptor for a block, with m × n bins. For each pixel in a cell, the intensity gradient magnitude

and orientations are calculated. Each gradient has a vote in its’ bin, which is its’ magnitude. Then,

block-based normalization is applied.

In [27], we proposed a modified HOG algorithm for fall detection, wherein, different from orig-

inal HOG, separate histograms are constructed for edge strength (ES) and edge orientations (EO).

The edge orientation range is between 0 and 180 degrees and it is equally divided into nine bins.

The edge strength histogram contains 18 bins. Moreover, the cells that do not contain significant

edge information are excluded from the descriptor in this modified HOG algorithm.
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4.2.2 Gradient Local Binary Pattern Features

The computation flow of GLBP is illustrated in Fig. 5.1. For each center pixel, its’ eight neighboring

pixels are checked. A value of ‘1’ or ‘0’ is assigned to a neighboring pixel if its’ intensity value

is greater or less than the center pixel, respectively. This results in an 8-bit binary number. Only

the sequences that have a maximum of 2 transitions (from 0 to 1 or 1 to 0) are kept, and the others,

including all 0 and all 1 sequences, are considered as noise. In accordance with [152], we employ

58 uniform patterns out of 256 possible patterns. Then, we analyze the 8-bit sequence to find the

length of longest consecutive sequence of 1s and the angle of the edge, as illustrated in Fig. 5.1.

Then, these values provide the index of the entry of the 7 × 8 matrix, which is incremented by the

edge strength value. This matrix is filled by visiting each pixel in a cell, and then normalized. This

results in a 56-dimensional GLBP feature that is used in our algorithm. We use one block divided

into 16 cells, therefore our concatenated GLBP vector for one frame is of length 16 × 56. After

calculating the GLBP feature for each cell, L2 normalization is applied before concatenation.

Fig. 4.1: GLBP histogram generation steps.
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4.2.3 Camera-based Detection

The proposed camera-based fall detection algorithm consists of two stages. The first stage detects a

significant event, which could be caused by sitting down, lying down or falling down etc. Once an

event is detected, the second stage of the algorithm is employed to detect whether it is a fall or not.

We employ a combination of edge orientation (EO) histograms and GLBP features. To compute

EO histograms and GLBP features, we use one block divided into 16 cells. This not only decreases

the computational load, but also is sufficient to detect abrupt changes. Moreover, the cells that do

not contain significant edge information are removed autonomously and adaptively. To determine

which cells to remove, the maximum amplitude among the bins within a cell is found first. Then,

we calculate the mean and the standard deviation of the vector of maximums from the n cells in a

frame. The algorithm removes the cells whose maximum value are α standard deviation away from

the computed mean.

To build the EO histogram, horizontal (dx) and vertical (dy) intensity gradients are computed for

every pixel within a cell. Then, these values are used to compute the gradient strength (
√
dx2 + dy2)

and orientation (tan−1(dy/dx)). We use 9 bins for each of the 16 cells, and then concatenate 16-

many 9-bin histograms to obtain a 9 × 16-dimensional vector. We obtain the GLBP descriptor as

described in Section 4.2.2. After the feature descriptors (EO and GLBP) are normalized, the dis-

similarity distance is used to compute DEO and DGLBP between two frames. The dissimilarity

distance between two N-dimensional vectors (r and s) is calculated using:

D = 1−

N−1∑
i=0

(ri − r̄)(si − s̄)√√√√√√
[
N−1∑
i=0

(ri − r̄)2
N−1∑
i=0

(si − s̄)2
] ,

r̄ =
1

N

N−1∑
i=0

(ri) , s̄ =
1

N

N−1∑
i=0

(si)

(4.1)

Dissimilarity distance values for EO (DEO) and GLBP (DGLBP ) are multiplied (d =

DEO × DGLBP ) in order to attenuate the noise in the signal while emphasizing the peaks
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for the detection.

Detecting an event

We store the distance values dtt−4 (values of DEO ×DGLBP from time t−4 to time t) in

an array of B4 for the last4 frames. Therefore, the B4 saves4-many dtt−4 values, which

is computed between the current frame t and the frame t − 4, such that 4 is an integer

value. If the maximum distance value in the buffer array B4 is larger than a threshold ρ,

which has been chosen empirically, it implies the occurrence of an event.

4.2.4 Detecting a fall

Once an event is detected, the second stage of the algorithm is employed to detect whether

it is a fall or not. The dissimilarity distances DEO and DGLBP are computed between the

current and previous frames. If the multiplied value (DEO × DGLBP ) is greater than the

threshold τc, a fall is detected based on camera sensor information. Dissimilarity distance

values for a typical fall event are plotted in Fig. 5.3 for different features, namely when

using original HOG, (DEO ×DES)2 and the proposed DEO ×DGLBP (solid red plot). In

this video, the fall is taking place between frames 40 and 55. As can be seen, the proposed

method (employing DEO ×DGLBP ) gives a higher dissimilarity distance value during the

fall, compared to using (DEO ×DES)2 [27], and thus better discriminates the fall from the

rest, and has better detection capability. Moreover, the proposed method results in less false

positives compared to the original HOG. As seen in Fig. 5.3, the original HOG approach

(light blue plot) has high values before and after the fall. The detailed rates are provided in

Tables 4.1, showing the increase in sensitivity and specificity.

4.2.5 Accelerometer-based Detection

We observe the magnitude of linear acceleration with the gravity component extracted from

the corresponding direction. Whenever the magnitude of 3-axis vector is greater than γ (an



53

Fig. 4.2: Plots of different distance measures for a typical fall.

empirically-determined threshold), it is declared as a fall by the accelerometer-based part.

4.2.6 Camera Data Fused with Accelerometer Data

We normalize the accelerometer data by the maximum value of the accelerometer sensor

of the smart phone. The fusion method is inspired by the sum rule of two normalized

classifiers, since it gives the least detection error rate [153]. The only requirement is that

classifiers need to be conditionally independent, which is assumed to be true since camera

and accelerometer are independent sensors. Other compared methods include product,

minimum, maximum and median of different classifiers. Whenever the sum value of the

DEO × DES and the accelerometer data is greater than τf = 0.7, fallDetected alarm is

triggered, and the result is displayed on the screen of the phone. The fusion of different

sensor modalities also helps to eliminate false positives caused by using only camera or

only accelerometer as fall detection sensor.
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4.3 Experimental Results

4.3.1 Camera-based Detection on Recorded Videos

We first compared the proposed camera-based detection part of the algorithm (incorporat-

ing GLBP features) with original and modified HOG by using 10 different subjects in the

experiments. Each subject performed 10 falls from standing up and 10 falls from sitting

down positions as well as 10 sitting and 10 lying down activities. Fall experiments were

used to compute the sensitivity of the algorithm while the rest were used for specificity.

Sensitivity and specificity are defined as:

Sensitivity =
TP

TP + FN
,Specificity =

TN

TN + FP
(4.2)

where TP, FP, TN and FN denote the true positive, false positive, true negative and false

negative, respectively.

For convenience of subjects, and for repeatability purposes (so that different approaches

can be compared on the same videos), the experiments were performed on pre-recorded

videos from ten different subjects. Videos were captured with a Microsoft® LifeCam™

camera with image size of 320× 240 pixels. All the experiments were performed with the

camera attached to the belt around the waist facing front.

An example set of captured frames for falling from standing up position is presented

in Fig. 5.6. The parameters of the camera-based algorithm are 4 = 10, ρ = 0.2, and

τc = 0.375. The same values have been used in all the experiments. 4 value is selected to

be 10 to cover information from approximately last one second of the movement. ρ and τc

are empirically-determined dissimilarity distance thresholds.

Average sensitivity and specificity values for 10 different subjects are presented in Ta-

ble 4.1 for all the falls from standing up position. The proposed method outperforms using

modified HOG with separate EO and ES histograms [27]. More specifically, the sensitiv-
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Fig. 4.3: Example frames captured during a fall from standing up position.

ity is increased from 87.84% to 96.36%, and the specificity is increased from 89.11% to

92.45%. Moreover, when compared to using original HOG, the proposed method provides

a very high specificity rate. The specificity rate of using original HOG is 48.04%, which is

unacceptably low, since it is highly prone to creating many false positives.

Average sensitivity and specificity rates for falling from sitting down position are also

presented in Table 4.1. This is a more challenging scenario compared to falls from standing

up positions. The sensitivity rate has been increased from 67.39% to 90.91%, and the

specificity is increased from 89.69% to 92.45% compared to using modified HOG [27].

Table 4.1: Sensitivity and Specificity Comparison

Falls from Standing Falls from Sitting
Sensitivity Specificity Sensitivity Specificity

Proposed Meth. 96.36 % 92.45 % 90.91 % 92.45%
Mod. HOG [27] 87.84 % 89.11 % 67.39 % 89.69 %
Org. HOG [146] 100 % 48.04 % 97.98% 66.04%

4.3.2 Detection with Fusion on Actual Smart Phones

We have also performed experiments with people carrying a Samsung Galaxy S®4 phone

with Android™ OS. The experimental setup can be seen in Fig. 4.4. The subjects, 1 female

and 9 male, are between the ages of 24 and 30. Their heights and weights range from 165

cm to 183 cm and from 50 kg to 103 kg, respectively. They tried to act as if they were

actually falling down. It should be noted that, due to fear or cautiousness of subjects, it is

difficult to recreate a free fall or collapse. It was observed that sometimes the falls were

almost like in ‘slow motion’. Thus, the performed set of experiments proved to be even
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more challenging than an actual free fall.

Fig. 4.4: An Android™ smart phone attached to the waist.

For real-time computation on the phone, without loss of generality, we have used a

simplified version, with EO and ES histograms, for the camera-based detection on the

Samsung Galaxy S®4 phone. The algorithm runs at 15 fps on the smart phone. In the

first set of experiments, we compared sensitivity values and the number of false positives

for three different cases: i) Accelerometer only, ii) Camera only, iii) Camera fused with

accelerometer. The results are summarized in Table 4.2. The performed non-fall activities

include 15 of sitting down and then standing up, walking and 15 of lying down and then

standing up. Some of the lying down experiments include lying on the floor, which is a

very complicated scenario to differentiate from actual falls. As can be seen, the proposed

method provides the highest detection rate. When GLBP features are incorporated into the

phone implementation, sensitivity and specificity values are expected to increase even more

as demonstrated in Section 5.4.1.

It should be noted that, for the above set of experiments, the non-fall activities (walking,

sitting and lying down) are not very fast and complicated in nature to cause false positives.

Thus, in the third set of experiments, the goal was to demonstrate the effectiveness of fusing

camera data with accelerometer data in decreasing the number of false positives created

during a variety of daily activities, when only a single modality is used. For a duration of
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Table 4.2: Sensitivity and Specificity values for fall detection

Accelerometer Camera Camera+
only only Accelerometer

Sens. FP Sens. FP Sens. FP
S1 24/30 0/30 19/30 1/30 27/30 0/30
S2 20/30 0/30 20/30 5/30 26/30 1/30
S3 10/30 0/30 28/30 1/30 28/30 0/30
S4 24/30 0/30 21/30 4/30 30/30 0/30
S5 16/30 0/30 16/30 3/30 22/30 0/30
S6 28/30 0/30 22/30 14/30 30/30 1/30
S7 21/30 0/30 25/30 10/30 27/30 1/30
S8 19/30 0/30 24/30 4/30 29/30 0/30
S9 22/30 0/30 25/30 6/30 27/30 3/30

S10 13/30 0/30 23/30 11/30 27/30 2/30
Perc. 65.66% 0% 74.33% 0.16% 91% 0.026%

about 30 min., ten subjects performed various activities including going up and down the

stairs, running, jumping, changing rooms, opening doors and changing directions. For the

proposed fusion-based algorithm, fallDetected alarm is triggered when the summation

of features from different modalities is greater than τf = 0.7. When this happens, an

alert is displayed on the phone’s screen. The number of false positives, when we use (i)

accelerometer only, (ii) camera only, and (iii) camera fused with accelerometer (proposed

method) are summarized in Table 4.3. As seen, using camera-based features and fusing the

results with the accelerometer data decreases the number of false positives.

4.3.3 Battery Consumption

The current consumption of the running algorithm is measured with a Monsoon Power

Analyzer. With 2600 mAh battery capacity, the smart phone is running on 80 mA with

estimated battery life of 32 hours. With the proposed algorithm continuously running on

the device, it draws 542 mA of current with an estimated battery life of 4.76 hours.
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Table 4.3: False Positives generated for 30-min. videos

Acc. Camera Camera + Acc.
Subject 1 1 11 0
Subject 2 11 6 5
Subject 3 5 90 2
Subject 4 17 21 9
Subject 5 8 11 3
Subject 6 4 10 4
Subject 7 8 10 5
Subject 8 0 26 0
Subject 9 4 9 2

Subject 10 5 11 4

4.4 Conclusion

First, a robust and reliable algorithm for fall detection with a wearable camera has been

proposed. By combining GLBP features with edge orientation histograms, this camera-

based method provides higher sensitivity and specificity rates compared to using original

HOG and its’ modified version. A simplified version of this camera-based algorithm has

been implemented on a Samsung Galaxy S®4 smart phone. The features computed from

camera modality have been fused with accelerometer data. In addition, longer-duration

experiments have been performed to analyze the false alarms. It has been shown that it

is neither reliable nor robust to rely only on the accelerometer or only on the camera by

itself, and fusing these two modalities provides much higher sensitivity, and a significant

decrease in the number of false positives.
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CHAPTER 5

AUTONOMOUS FALL DETECTION

WITH WEARABLE CAMERAS BY USING

RELATIVE ENTROPY DISTANCE

MEASURE

5.1 Introduction

In this chapter, we present a fall detection algorithm that is different and improved com-

pared to our previous work in Chapters 3 and 4 in multiple ways. First, we employ EO his-

tograms together with gradient local binary patterns (GLBP), which are more descriptive

and discriminative than Histograms of Oriented Gradients (HOG), Histograms of Template

(HOT) and Semantic Local Binary Patterns (S-LBP) [151]. Secondly, we autonomously

compute an optimal threshold for fall detection, from the training data, by employing the

relative entropy approach from the class of Ali-Silvey distance measures. In previous Chap-

ters 3 and 4, we had used an empirically-determined threshold. Thirdly, we compare the

performance of the proposed method with three other approaches by presenting the ROC
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curves. Fourthly, experiments have been performed in both indoor and outdoor environ-

ments with 10 different subjects, and the results show that the proposed method is more

robust and outperforms our previous work. More specifically, the method proposed in this

chapter provides 93.78% and 89.8% detection rates for falling in indoor and outdoor envi-

ronments, respectively.

5.2 Problem Definition and Challenges

A fall detection system should be robust and highly reliable for real-life applications.

Therefore, it should have high sensitivity and specificity. In many previously proposed

systems, certain performance levels for fall detection can be reached during controlled ex-

periments. However, when applied to a real-world scenario, the detection rate significantly

decreases [112]. Also, in most cases, falls and other daily activities of younger people

are often used due to a lack of standardized procedures or real databases. There are very

limited studies that incorporate data from older people [154, 155, 156, 157, 158], and their

participation is limited to a set of simulated daily activities for a few minutes to hours.

Elderly people need to wear the devices for longer periods so that a more complete dataset

could be used for validation of proposed systems, and there are some studies in this direc-

tion [154, 159]. However, proposed systems create significant number of false positives,

among other concerns.

Comparative evaluation of different fall detection algorithms is challenging since differ-

ent researchers collect data in different ways and employ different datasets. The position of

the sensor, sampling frequency, extracted features, types of activities simulated along with

falls are all different depending on the employed algorithm or device. Therefore, it is hard

to compare performances of different algorithms due to the lack of common datasets. In

addition, it is quite difficult to build a large dataset of actual falls of elderly people. Most of

the existing work involves experiments with younger people performing daily activities and
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imitating falls. Even though it is desirable to collect and conduct performance evaluation

based on elderly data, our study is also based on data collected using younger subjects.

Furthermore, there is no published wearable camera dataset for fall events and, there-

fore, we have prepared our own dataset for testing purposes. It should also be noted that,

due to cautiousness of subjects, it is very hard to actually recreate a free fall by imitating.

Even with safety precautions in place, we observed that sometimes subjects are too afraid

to fall, and the captured event looks like a slow-motion fall. This actually makes the videos

used in our experiments more challenging than most of the real free fall scenarios.

In our proposed system, the wearable camera is attached around the waist facing for-

ward. It has been verified that the waist is the optimal camera location for fall detec-

tion [109]. The camera at the waist is close to the body’s center of gravity, providing

trustworthy information regarding the movement of the body [160]. The captured images

are not of the subject but of her/his surroundings. In addition, these images are not saved

or transmitted anywhere.

5.3 Proposed Fall Detection Algorithm with Autonomous

Threshold Computation

Similar to our previous work [81], the camera-based method proposed in this chapter em-

ploys EO histograms together with the GLBP as the image descriptive features. The pro-

posed algorithm consists of two main stages: (i) detecting an event, such as sitting down,

lying down or falling down, and (ii) deciding whether the detected event is a fall event or

not. Different from our previous work, we also introduce a relative entropy-based method

to autonomously compute a threshold, for the detection of fall events, from the training

data.

In Section 5.4, we will compare our proposed method with the original HOG [146], the

modified HOG, which we introduced in [27], and the GLBP-based approach. In modified
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HOG method, different from the original HOG [146], ES and EO histograms are built

separately. Moreover, the cells that do not contain significant edges are discarded when

building the histograms, as described in more detail in [27].

Next, in Section 5.3.1, we describe the proposed method incorporating edge orienta-

tions and GLBP features. We then introduce the relative-entropy based threshold selection

in Section 5.3.2.

5.3.1 Fall Detection

It has been shown that, with the same training set, the GLBP features are more descriptive

and discriminative than HOG, histograms of template (HOT) and Semantic Local Binary

Patterns (S-LBP) [151].

An overview of the GLBP feature generation is provided in Fig. 5.1. Since angle values

are divided into eight equal intervals and the width of the LBP is characterized by seven

different lengths, one GLBP feature for a cell is of length 56. In our method we use 16

cells, which results in a concatenated GLBP vector of length 16 × 56 for one frame. We

apply L2 normalization before concatenation [81].

As seen in Fig. 5.1, a neighboring pixel is assigned the value of ‘1’ or ‘0’, if its’ intensity

value is greater or less than the center pixel, respectively. In the resulting 8-bit binary se-

quence, the length of the longest consecutive sequence of 1s is determined, which happens

to be 4 in Fig. 5.1. Also, the edge angle is found, which is 4 in our example. These numbers

(4, 4) are used as the entry index of an 7 × 8 matrix, and this entry is incremented by the

value of the edge strength. Filling and normalizing this matrix, results in an 56-dimensional

GLBP feature. More details can be found in [152, 81].

The advantages of using GLBP features compared to only using HOG features are

threefold: (i) with GLBP all eight neighbors are used to acquire a pattern, whereas HOG

relies only on the four neighboring pixels to calculate the edge orientation and edge strength

values (Fig. 5.2); (ii) the GLBP approach uses only uniform patterns [152]. Consequently,
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Fig. 5.1: The steps showing the generation of 56-dimensional GLBP feature for a cell.

non-uniform patterns are considered as noise and they are not included in the overall LBP

descriptor. On the other hand, every pixel is included in HOG, and noisy pixels can affect

the histogram; (iii) with GLBP, the gradient strength has significant effect on the pattern

that is assigned to a pixel.

Fig. 5.2: Advantages of local binary pattern (LBP) methods; (a) HOG, (b) GLBP.

Our proposed camera-based fall detection algorithm has two main stages: (i) detecting

an event, such as sitting down, lying down or falling down, and (ii) deciding whether the

detected event is a fall event or not.

In this algorithm, EO histograms are employed together with the GLBP features. The

EO histogram is constructed by computing the gradient orientation for every pixel within a

cell. To decrease the computational load, one block is divided into 16 cells. Furthermore,

the cells that do not contain significant edges are discarded autonomously, and not included
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in the EO histograms as described in [27].

The GLBP descriptor is obtained as described above. After the EO and GLBP feature

descriptors are normalized, the dissimilarity distance values DEO (for EO) and DGLBP

(for GLBP) are computed between two frames, by using Eq. (5.1), wherein r and s are

N-dimensional feature vectors [81]. In our case, the vector for EO is of size 9 × k, where

k is the number of cells that are kept. The size of the GLBP feature vector is 16× 56.

D = 1−

N−1∑
i=0

(ri − r̄)(si − s̄)
√√√√√√
[
N−1∑
i=0

(ri − r̄)2
N−1∑
i=0

(si − s̄)2
] ,

r̄ =
1

N

N−1∑
i=0

(ri) , s̄ =
1

N

N−1∑
i=0

(si).

(5.1)

DEO and DGLBP are multiplied (d = DEO ×DGLBP ) to attenuate the noise in the signal,

and emphasize the peaks for the detection.

Detecting an event

To detect the occurrence of an event, the distance values dtt−4 (value of DEO × DGLBP

computed between frame t and t−4) are stored in an array A4 for the last4 frames. In

other words,A4 contains4-many dtt−4 values. If the maximum value inA4 is greater than

an empirical threshold ρ, an event is detected, and the next part of the proposed algorithm

is used to decide whether or not this event is a fall.

Detecting a fall

To detect a fall event, in the second stage of the algorithm, the dissimilarity distances DEO

and DGLBP are computed between consecutive frames. If the product (DEO ×DGLBP ) is

greater than the threshold τc, a fall is detected based on camera sensor information (as will
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be described in Section 5.3.2, this threshold value is determined autonomously by using

the class of Ali-Silvey distance measures).

As an example, plots of different dissimilarity distance measures for a fall event are

displayed in Fig. 5.3 when using original HOG, modified HOG employing (DEO ×DES)2

and the proposed method employingDEO×DGLBP (solid red plot). In the video employed

for this illustration, the person is walking first and the fall takes place between frames 40

and 55. The proposed method (employing DEO × DGLBP ) better distinguishes fall from

the walking part compared to using (DEO × DES)2 [27]. Moreover, original-HOG (cyan

plot) is more prone to creating false positives, and has high distance values not only during

a fall, but also before and after. Modified-HOG, on the other hand, is more prone to missing

a fall event based on the distance values. The detailed ROC curves are provided in Fig. 5.8.

In addition, Fig. 5.9 shows the higher sensitivity and specificity values for the proposed

method for varying thresholds.

The pseudo code for the proposed camera-based algorithm is presented in Algorithm 2.
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Algorithm 2 Fall Detection Algorithm
for All Frames do

if t == 1 (first image frame) then
Initialize feature vectors

else
if Average Intensity ≤ 30 then

Occlusion detected.
else

if max(A4) ≥ ρ then
eventDetected = true
if (DEO × DGLBP )(t) ≥ τc then

fallDetected = true
end if

end if
end if

end if
end for

5.3.2 Autonomous Threshold Computation for Fall Detection

Ali-Silvey Distance Measures

As described above, we employ a threshold τc to differentiate falls from other daily activ-

ities such as walking, lying down and sitting. We employ the class of Ali-Silvey distance

measures [161] between probability distributions to select the optimal threshold for the

proposed fall detection method, which employs the dissimilarity distance DEO ×DGLBP .

We use Ali-Silvey distance measures for separating two classes, namely fall and non-fall

activities.

A threshold τc separates the dissimilarity distances into two classes, f0 and f1 ∈ F, for

fall and non-fall activities, respectively, such that:

(DEO ×DGLBP )(t) ε


f0 if (DEO ×DGLBP )(t) ≥ τc

f1 if (DEO ×DGLBP )(t) < τc

, (5.2)

where (DEO ×DGLBP)(t) is the dissimilarity distance computed between frames t and

t− 1 as described above.
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In order to build a probability density function of transitions, we need to obtain a co-

occurrence matrix to represent the jumps in dissimilarity distance values between consec-

utive image frames. Since falls from standing up position are different from falls from

sitting down position, we need to compute different optimal thresholds for different types

of falls. Based on Eq. (5.1), the maximum dissimilarity distance value for falls starting

from a standing up position has been observed to be 1 whereas the maximum value for

falls starting from a sitting position has been observed to be 0.9005. In general, the dis-

tance traveled when someone is falling from standing up position is higher. Moreover, for

outdoor scenarios the maximum value for falling from standing up positions has been ob-

served to be 1.2272. In most outdoor scenarios, when a fall occurs, the view changes from

buildings, other surrounding structures and trees etc. to wide open skies with barely any

edge information. Thus, falls result in higher dissimilarity distances.

In the next step, we build histograms of the dissimilarity distances. We have exper-

imented with different number of bins (7, 8, 10, 15, . . . , 40) for ranges starting from 0 to

various maximum values 1. As expected, when the number of bins is too large (≥ 10 in

turn), the population in certain bins becomes very low compared to other bins, which in

turn affects the accuracy of the overall distribution. Fig. 5.4 shows two histograms, ob-

tained from all the fall experiments, when using 20 bins versus 8 bins. When 8 bins are

used, a more distinct gap is observed between the 3th and 4th bins of the histogram as

seen in Fig. 5.4(b). In our algorithm, we used 8 bins, resulting in a step size of 0.125. For

selecting the optimal threshold τc for fall detection, we employed relative entropy-based

thresholding from the class of Ali-Silvey distance measures as described in the next sec-

tion.

Relative Entropy-based Distance Measure

Among various Ali-Silvey distance measures, the relative entropy-based method provided

the most discriminative threshold for differentiating falls from other daily activities. We
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Fig. 5.4: Dissimilarity distance histograms when using (a) 20 and (b) 8 bins.

employed a co-occurrence (or transition) matrix, since we only compute a dissimilarity

distance from two consecutive images. To differentiate falls from other activities, we are

more interested in the change of dissimilarity distances over time and this information can

be captured in a co-occurrence matrix that contains jumps between different distance levels.

Therefore, the dissimilarity distance values calculated between consecutive image frames

is represented as a co-occurrence matrix. Since the distance value is divided into l bins,

the co-occurrence matrix is l × l, wherein, pij , the entry (i, j) represents the transition

probability from the ith distance level to the jth distance level as shown in (5.3) [161],

whereN represents the duration of a fall event, andM is the total number of fall experiment

for that fall type (fall from sitting position or fall from standing position).

pij =
tij

l−1∑
i=0

l−1∑
j=0

(tij)

,

(5.3)

where
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tij =
M∑

m=0

N∑
n=0

δm(n),
(5.4)

and

δm(n) =


1 if f(n) = i, f(n+ 1) = j,

0 otherwise.
(5.5)

Diagonal elements of the co-occurrence matrix include the distance points where the

previous distance value falls into the same distance interval as the current distance. Since

they do not provide significant information for fall detection, the diagonal elements of the

matrix are assigned the value of zero in the proposed method. Another motivation and

supporting argument for this is the following: for walking and other routine daily activi-

ties, there is a significantly large accumulation in the first several diagonal entries of the

co-occurrence matrix that dominates and significantly affects the probability distribution

calculated among the entries of the co-occurrence matrix. Relative entropy-based method

to compute the threshold becomes more effective for differentiating fall and non-fall activ-

ities by setting the diagonal elements of the matrix to zero. Since the goal is to detect the

abrupt changes, we are not interested in the same dissimilarity distance level occurrences

over the course of an event. The co-occurrence matrix is then divided into intra-class and

inter-class transitions. The threshold t, selected between 0 and l − 1, partitions the matrix

into quadrants. The quadrant probabilities are defined as [161, 162]:

PA =
t∑

i=0

t∑
j=0

pij, PB =
t∑

i=0

l−1∑
j=t+1

pij, (5.6)

PC =
l−1∑

i=t+1

l−1∑
j=t+1

pij, PD =
l−1∑

i=t+1

t∑
j=0

pij, (5.7)
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Quadrant A and quadrant C represent the intra-class transition probabilities, whereas

quadrant B and quadrant D represent inter-class transition probabilities. PA, PB, PC and

PD sum up to 1.

After the quadrant probabilities are calculated, the probabilities assigned to the diagonal

elements are also zero. Then, the transition probabilities qA(t), qB(t), qC(t), and qD(t) are

calculated by Eq. (5.8) through (5.10) [161]. The transition probabilities are modified ver-

sions of the ones proposed in [162], since they provide higher values for a given threshold

t and contain more information regarding the spatial relationships of the distance levels.

qk(t) = rk(t) · sij, k = A,B,C,D, (5.8)

where

rk(t) = Pk(t)/nkt, (5.9)

with

nA =
t∑

i=0

t∑
j=0

sij, nB =
t∑

i=0

l−1∑
j=t+1

sij,

nC =
l−1∑

i=t+1

l−1∑
j=t+1

sij, nD =
l−1∑

i=t+1

t∑
j=0

sij,

sij =


1 if pij 6= 0,

0 if pij = 0.

(5.10)

Then, we calculate I ′(t) by using
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I ′(t) = PA(t) ln qA(t) + PB(t) ln qB(t)+

PC(t) ln qC(t) + PD(t) ln qD(t). (5.11)

We compute the optimal threshold bin, t∗, by finding the value of t that maximizes

(5.11). Thus,

t∗ = arg max
0≤t≤l−1

(I ′(t)).
(5.12)

After selecting the optimal bin number via (5.12), t∗ is multiplied with the bin step-size

in order to obtain the threshold τc for the corresponding scenario (falling from standing up

or falling from sitting down).

Among different Ali-Silvey distance measures, such as relative entropy, J-divergence,

Bhattacharyya distance, Chernoff distance, and Matsuista distance, the relative entropy-

based approach provided the best overall results for selecting the optimal threshold for fall

detection. In other words, the relative entropy-based distance threshold gave the highest

sensitivity and specificity rates compared to other Ali-Silvey distance measures. For indoor

experiments, the step size value is selected to be 0.125 (corresponding to 8 bins) for all

types of fall events.

5.4 Experimental Results

Experiments have been performed indoors and outdoors to compare the performance of

the proposed camera-based fall detection algorithm with the original and modified HOG-

based algorithms, and using only the GLBP features. Each of the 10 subjects participating

the experiments performed a total of 20 falls (10 from a sitting positions and 10 from a

standing position) in addition to 10 sitting and 10 lying down activities. The ages, heights
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(a) (b)

Fig. 5.5: (a) Microsoft® LifeCam™, (b) which is attached to a belt around the waist.

and weights of the subjects range from 24 to 30, 165cm to 183 cm, and 50 kg to 103 kg,

respectively. The subjects imitated the fall events and, as mentioned above, even with the

safety precautions, sometimes subjects were too afraid to fall, resulting in slow-motion falls

and creating a much more challenging dataset for us than having actual free fall events.

To be able to compare different approaches on the same videos, we first performed

the experiments on recorded videos, which were captured with a Microsoft® LifeCam™

camera (Fig. 5.5(a)) attached to a subject’s belt facing front. In order not to increase the

computational complexity, image size is kept at 320× 240. Also, we only processed even-

numbered frames to acquire a sequence with a gap between consecutive images. This

allowed us to show the portability of the proposed method to a mobile platform (like a

smart phone), wherein the processing time and thus the distance between processed frames

is expected to be larger. The parameters of the algorithm are 4 = 10, α = 0.5, and

ρ = 0.2. 4 value is set to 10 to cover and extract information from approximately the

last one second. The value of l, determining the size of the co-occurrence matrix (l × l) is

selected to be (8 × 8). τc is the dissimilarity distance threshold that has been determined

based on relative entropy-based threshold selection. The same values have been used in all

the experiments.
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(a) (b)

(c) (d)

Fig. 5.6: Example images captured from the body-worn camera during a fall from standing
up position in an indoor environment.

5.4.1 Indoor Experiments

An example sequence of images captured indoors with the body-worn camera is shown in

Fig. 5.6. As can be seen, the captured images get blurry during a fall, when the movement

is fast.

An example of a fall event together with the plot of calculated dissimilarity distances

can be seen in Fig. 5.7. A falling down event occurs between frames 35 and 50. As seen

from the solid red plot in Fig. 5.7(c), the proposed method has more discriminative power

than our previous work in [27]. Moreover, it is less prone to creating false positives than

using the original HOG.

In order to evaluate the performances and compare different methods, we obtained the

Receiver Operating Characteristic (ROC) curves for indoor and outdoor experiments for

varying threshold values. As mentioned above, the datasets consist of videos of falls from

sitting and standing up positions and non-fall activities (lying down and sitting).
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We compared the proposed method with original HOG [146], modified HOG [27], and

using only the GLBP features. To perform this comparison, we divided one block into

16 cells for all the approaches. As can be seen in Fig. 5.8, the proposed method operates

closest to the upper left-hand corner, and provides a better performance compared to other

approaches. We also marked the operating point, which was obtained by setting τc = 0.375

on Fig. 5.8. This is the threshold value obtained by the autonomous threshold computation

described in Section 5.3.2. The operating point corresponds to the location (0.0755, 0.9378)

in Fig. 5.8.

We have also obtained the sensitivity/specificity curves, for the indoor dataset and vary-

ing threshold values, which are shown in Fig. 5.9. Sensitivity is defined as the ratio of the

number of True Positives (TP) to the summation of TP and False Negatives (FN). Speci-

ficity, on the other hand, is defined as the ratio of True Negatives (TN) to the summation of

TN and False Positives (FP). As can be seen in Fig. 5.9, the proposed method outperforms

the others, and operates closest to the upper right-hand corner. The proposed method, with

the autonomously computed threshold value, operates at the point of (0.938, 0.876).

In general, detecting falls from sitting down position is relatively harder than detecting

falls from standing up position. In order to compare the performance of the proposed

method with that of modified-HOG [27], when detecting falls from sitting and standing

up positions with varying thresholds, we performed experiments by setting the value of τc

between 0.2 and 0.5 in increments of 0.02. The sensitivity values for varying thresholds for

falls from standing up and sitting positions are shown in Figures 5.10 and 5.11, respectively.

As can be seen, the proposed method provides higher sensitivity than the modified HOG

for different threshold values for both type of falls. In addition, although the sensitivity

values for the modified-HOG drops significantly for falls from sitting down position, the

proposed method still provides high sensitivity rates as seen in Fig. 5.11.

We performed another set of experiments to observe the effect of content and the size

of the training data on the computation of the threshold τc, and thus on the detection perfor-
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mance. The threshold is computed from a set of video data that include a certain number of

subjects performing fall and non-fall activities. We wanted to investigate how the algorithm

with this threshold will perform on a different set of people. In general, it is more practical

to autonomously obtain the threshold from a certain training dataset and then apply it to

any test dataset without requiring per user training. Thus, for all the fall experiments, we

performed a five-fold cross validation. When the derived threshold is tested on the test

datasets, which is one-fifth of the entire dataset, we observed that the average sensitivity is

93.77% and the average specificity is 92.44% as seen in Table 5.1. The standard deviation

of sensitivity was 3.24%.

Table 5.1: Mean and Standard Deviation of Sensitivity-Specificity

(dEOxdGLBP) Mean STD
Sensitivity 93.77% 3.24%
Specificity 92.44% 4.03%

5.4.2 Outdoor Experiments

As mentioned above, wearable sensors allow the monitoring of people wherever they may

travel including indoors and outdoors. We also tested the proposed method on outdoor

scenarios. Example frames captured by the body-worn camera during the course of a fall

event can be seen in Fig. 5.12, which also shows the significant change in the scene, going

from building and trees to wide open skies. The threshold calculated from the training

set is τc = 0.4602. For outdoor scenarios, the change in scenery is usually much more

significant compared to indoor scenarios resulting in higher dissimilarity distances between

frames. The proposed approach for autonomous threshold computation is able to capture

this resulting in a higher threshold value of 0.4602. Similar to indoor experiments, we

obtained the ROC curves for the proposed method as well as three other approaches as seen

in Fig. 13. The operating point corresponding to the autonomously computed threshold

value is (0.0755, 0.898).
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5.5 Conclusion

We have presented a new approach to detect falls by employing a wearable camera. We em-

ployed a modified version of the histograms of oriented gradients (HOG) approach together

with the gradient local binary patterns (GLBP). Moreover, we have proposed an approach

to autonomously compute the threshold, for the detection of fall events, from the training

data by using the relative entropy approach from the class of Ali-Silvey distance measures.

Different sets of experiments were performed on data obtained from 10 different people to

show the performance of the proposed approach under varying threshold values and with

different training sets varying in terms of their size and content. The proposed method pro-

vides 93.78% and 89.8% accuracy for detecting falls in indoor and outdoor experiments,

respectively, while providing low false positive rates. We have also compared the proposed

method with three other approaches using ROC curves, and showed that the proposed ap-

proach outperforms the original HOG, modified HOG and GLBP-based methods.
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Fig. 5.7: (a) and (b) Example images, captured by the body-worn camera, while a fall
occurs ; (c) The dissimilarity distances obtained for this video.
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Fig. 5.8: Receiver Operating Characteristic (ROC) curves, for varying threshold values, obtained
from the indoor dataset containing falls and non-fall activities.

Fig. 5.9: Sensitivity-Specificity curves, for varying threshold values, obtained from the indoor
experiment dataset containing falls and non-fall activities.
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Fig. 5.10: Sensitivity values for falls from standing up position with varying thresholds.

Fig. 5.11: Sensitivity values for falls from sitting down position with varying thresholds.
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(a) (b)

(c) (d)

Fig. 5.12: Example images captured from the body-worn camera during a fall from stand-
ing up position in an outdoor environment.

Fig. 5.13: Receiver Operating Characteristic (ROC) curve, for varying threshold values, obtained
from the outdoor dataset.
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Fig. 5.14: Sensitivity-Specificity curves, for varying threshold values, obtained from the outdoor
dataset.
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CHAPTER 6

ROBUST AND RELIABLE STEP

COUNTING BY MOBILE PHONE

CAMERAS

6.1 Introduction

Wearable devices, such as smart watches, smart bands and activity trackers, are efficient

gadgets to track human activity. On the other hand, smart phones equipped with accelerom-

eters and gyroscopes also provide users with similar functionalities as wearable devices.

In U.S., only 1-2% of people own a wearable device while 65% of people own a smart

phone [163]. It has also been shown that wearable gadgets can have higher error rates com-

pared to smart phone applications during step counting experiments [163]. Therefore, with

their lower error rates, higher accessibility and widespread use, smart phones are feasible

and preferable platforms for step counting. Moreover, current smart phones and tablets,

equipped with powerful processors and a wide variety of sensors, have also become ideal

platforms for activity monitoring. Zhang et al. [20] describe a hierarchical method of activ-

ity classification based on a smart phone, equipped with an embedded 3D-accelerometer,



83

worn on the belt.

Accelerometer-based step counters are commonly available, especially after being inte-

grated as applications into smart phones and smart watches. Moreover, accelerometer data

is also used to measure step length and frequency for indoor positioning systems. There

has been significant amount of research on algorithms using the accelerometer data from

smart phones. Park et al. [164] presented an accelerometer-based activity tracker on smart

phones to provide high accuracy in location estimation for indoor environments. Pan and

Lin [165] proposed an accelerometer-based step counting algorithm for smart phone users,

which does not require the user to have the smart phone attached to the body while walking.

Another smart phone application uses accelerometer data to analyze walking patterns and

compute distance traveled for clinical purposes when the phone is attached on top of a belt

around the waist [166]. Brajdic and Harle [167] tested accelerometer-based step-counter

algorithms while trying different locations for the smart phone. They have found that cer-

tain locations such as back pocket of trousers degrade the performance of the algorithms

significantly.

In general, accelerometer-based applications on smart watches or smart phones are

prone to overcounting, since they are sensitive to even smallest motions, and count other

routine movements as steps. People tend to move their smart phones quite often while us-

ing them, and these moves are counted as steps most of the time with accelerometer-based

approaches. For instance, using the smart phone for browsing the web, text messaging

or taking a video can easily increase the number of counted steps. Moreover, when peo-

ple are exposed to acceleration, e.g. inside a vehicle or an elevator, accelerometer-based

step counters usually keep counting. When we tested an accelerometer-based step counter

application running on Apple™ iPhone 6, it was observed that the application increments

the number of steps when the user is traveling in a car, taking the elevator, or moving the

smart phone up and down in the air. Also, it has been observed that when users walk re-

ally slowly, or when they stop and start walking again, the accelerometer-based counting



84

becomes unreliable. Since accurate step detection is very important for indoor positioning

systems, reliable and more precise alternatives are needed for step detection and counting.

Different from the aforementioned work, Aubeck et al. [168] use data from a camera

sensor to detect steps as an extension to an indoor positioning system. They use template

matching to count steps based on the appearance and disappearance of the forward section

of the feet. It is stated that the method does not perform well for fast movements since

moving objects are often fuzzy and template matching and generation become problematic.

A camera sensor provides abundance of information, and it is expected that wearable

cameras will be employed more to understand lifestyle behaviors for health purposes [72].

In this chapter, we propose a robust system using smart phone to detect and count steps

during walking. This is one of the few works that use data from a mobile smart phone cam-

era to overcome shortcomings of the accelerometer-based step counting systems. Actual

smart phones have been used to collect the video data. As seen in Fig. 6.1, subjects hold

the phone as they normally would when they use the phone to read e-mails, use different

applications or check different pages on the web. Since the rear-facing camera points to the

floor, captured videos contain the feet and also legs of the subjects. The proposed method

does not rely on templates, and does not make any assumptions about the duration of a step

or the distance between steps. The system performs reliably across different users, such

as tall versus shorter people. We have performed experiments with subjects carrying five

devices simultaneously, namely four smart phones and a smart watch, while they are walk-

ing so that we can compare the step-counting results. Three of the smart phones and the

smart watch have accelerometer-based applications for step counting. The watch used in

the experiments is a Samsung™ Gear 2 Neo smart watch. Three smart phones were carried

in a backpack, in front pocket and in back pocket of trousers. The fourth smart phone was

held by hand to capture video data for the proposed method. Experimental results show the

high sensitivity of the accelerometer-based algorithms to the location of the device. More-

over, a large variance is observed across different users with the accelerometer-based step
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counting compared to our proposed method. These numbers will be discussed in detail in

Section 6.5. Although not implemented in its’ entirety on the smart phone yet, the proposed

algorithm has been designed so that it can be ported to, and run on the smart phone.

6.2 Proposed Method

We propose a vision-based algorithm to reliably detect and count steps using mobile phone

or tablet cameras. As seen in Fig. 6.1, subjects hold the phone as they normally would

when they use the phone to read e-mails, use different applications or check different pages

on the web. Since the rear-facing camera points to the floor, captured videos contain the

feet and also legs of the subjects. Example images captured during a walk are shown in

Fig. 6.6 as the user is walking across different surfaces.

(a)
(b)

Fig. 6.1: (a) A top view of a user holding the smart phone, (b) Experimental setup showing
a user simultaneously carrying five devices: A smart phone is held at one hand, a smart
watch is worn on the other wrist, while three other smart phones are put in the front pocket
and back pocket of trousers and inside a backpack.

The flow diagram of the proposed method is provided in Fig. 6.8. First, Canny edge

detection [169] algorithm is applied to detect the edges in the image. Then, the lines in

the image are detected and removed by using the Hough transform [170]. The resulting

images after the edge detection and line removal can be seen in Fig. 6.7(b) and 6.7(c), re-
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(a) (b) (c)

(d) (e) (f)

Fig. 6.2: Example frames captured during a walk.

Fig. 6.3: Flow chart of the proposed camera-based algorithm.
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spectively. Then, the FAST features [171] are detected in the image. Since the proposed

algorithm has been designed to be ported to actual smart phones, FAST feature point ex-

traction has been chosen due to its’ computational efficiency. The detected feature points

are marked as red points in Fig. 6.7(d). In order to avoid potential leg points corrupting

the cluster center for foot points, 50% of the feature points with the highest x-coordinates

are removed (images come from the camera in the orientation seen in Fig. 6.7, and the

highest x-coordinate corresponds to the right edge of the image). Then, the cluster center

of the remaining detected feature points is calculated with K-means clustering as described

in [172]. The cluster center is shown as a green point in Fig. 6.7(e). Removing the points

with the highest x-coordinates also allows the algorithm to handle situations when both feet

are visible without increasing computational complexity. Since we are in the process of im-

plementing the proposed method in its’ entirety on the smart phone, processing efficiency

is very important.

The change in the x-coordinate of the cluster center over time is used for step counting.

A plot of the x-coordinate values over time is shown in Fig. 6.9(a). In order to reduce the

noise in the signal, we apply a low-pass Savitzky-Golay smoothing filter described in [173].

The resulting signal obtained after applying the filter is shown in Fig. 6.9(b). As it can be

observed, the filtering removes most of the high frequency noise while preserving the peaks

and valleys in the signal. We have compared Savitzky-Golay smoothing filter with other

filters as well. It has been observed that Savitzky-Golay smoothing filter preserved more

peaks and valleys compared to moving average or local regression-based smoothing filters.

After filtering, we employ a peak detection algorithm by N. Yoder [174]. We have cho-

sen this algorithm, instead of more complex peak detection algorithms, for computational

efficiency. This peak detection algorithm [174] requires a percentage of the difference

between the maximum and minimum values of the input data as a parameter. In all our

experiments, we set this parameter to 20% to differentiate peaks (valleys) from their sur-

rounding data points. The detected valleys can be seen in Fig. 6.9(c). A flow diagram of the
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proposed method, and a pseudo code for the algorithm are provided in Fig. 6.8 and Alg.3,

respectively.

Algorithm 3 Step-Counter Algorithm

stepCounter = 0

for all frames do

Extract edges with Canny Edge detector
Detect and eliminate lines with Hough Transform
Compute features with Fast Features to Track
Calculate the cluster center of feature points with K-means
Save x-coordinate of the cluster center

end for

Apply smoothing with Savitzky-Golay low pass filter
stepCounter = total number of local minimums (valley)

6.3 Experimental Results

We have performed experiments with 10 different subjects walking in an indoor environ-

ment with various floor types including carpet and tiled surfaces with light and dark colors.

Each subject walked for five minutes while carrying four smart phones and a smart watch

simultaneously. Three of the smart phones and the smart watch have accelerometer-based

applications for step counting. The watch used in the experiments is a Samsung™ Gear

2 Neo smart watch seen on the wrist of the users in Fig. 6.1(a) and 6.1(b). Three smart

phones were carried in a backpack, in front pocket and in back pocket of trousers. The

fourth smart phone was held by hand, as seen in Fig. 6.1(b), to capture video data for the

proposed method. The captured image size is 320 × 240 pixels. QVGA image size has

been selected in order not to increase the computation requirements. It has also proven to

be enough for detecting and counting the steps. Subjects counted the steps they were taking
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to provide the ground truth values.

These experiments with five devices allowed us to compare the performance of the

proposed method with the accelerometer-based counters. In addition, results show the high

sensitivity of the accelerometer-based algorithms to the location of the device. Moreover, a

large variance is observed across different users with the accelerometer-based step counting

compared to our proposed method.

The results of these experiments are presented in Table 6.1 and Table 3.2. As seen

from the tables, the proposed method provides the lowest average error (3.064%) for the

ten different subjects, and the standard deviation of the error across the subjects is lowest

(2.98%) for the proposed method. The standard deviation of the error for the accelerometer-

based counters are much higher, and range between 5.45% and 112%. Thus, there is a

significant variation in the results of accelerometer-based counters across different users.

Moreover, the results show the high sensitivity of the accelerometer-based algorithms

to the location of the device. As seen from Table 6.3, for the same subject, carrying the

phone in the front pocket versus back pocket of the trousers makes a significant difference,

and this is the case for nine out of the 10 subjects. For instance, for Subject 3, the error

rates when carrying the phone in the front pocket and back pocket are 0.7% and 22.5%,

respectively. For Subject 8, the rates are 1.15% and 8.3%.

Another point that needs to be emphasized is the following: In all these experiments,

the users themselves were not exposed to any acceleration (e.g. being on an elevator, or

transportaion vehicle). In those situations, accelerometer-based counters tend to signifi-

cantly overcount. Even without those scenarios, the proposed method provides the lowest

average error, and thus is more robust across different users.
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Table 6.1: Comparison of step counting results and their error rates for different sensors
and device locations

Subjects
Ground Proposed Smart phone app Smart phone app Smart phone app Smart watch app
Truth Method Backpack Front pocket Back pocket on wrist
Steps Counted Error Counted Error Counted Error Counted Error Counted Error

Subject 1 400 397 0.75% 1925 381% 372 7% 447 11.75% 438 9.5%
Subject 2 383 402 1.05% 356 7% 439 14.6% 356 7% 441 15.1%
Subject 3 408 416 1.96% 553 35.5% 405 0.7% 500 22.5% 394 3.4%
Subject 4 380 376 1.05% 392 3.2% 354 6.8% 392 3.2% 348 8.4%
Subject 5 529 484 8.51% 526 0.6% 317 40.1% 635 20% 620 17.2%
Subject 6 474 464 2.11% 509 7.38% 458 3.38% 476 0.42% 503 6.12%
Subject 7 527 478 9.3% 557 5.7% 315 39.9% 550 4.4% 524 0.57%
Subject 8 520 511 1.73% 504 3.1% 514 1.15% 563 8.3% 502 3.5%
Subject 9 478 465 2.72% 484 1.3% 459 4% 499 4.4% 465 2.7%
Subject 10 417 436 1.46% 462 10.8% 378 9.4% 471 13% 422 1.2%

Avg. Err: Avg. Err: Avg. Err: Avg. Err: Avg. Err:
3.064% 45.558% 12.703% 9.497% 6.769%

Table 6.2: Comparison of minimum, maximum, and standard deviation of error rates

Methods Min. Error Max. Error Std. Dev.
Proposed Method 0.75% 9.3% 2.9768%
Smart phone App. 0.6% 381% 112.2232%
Backpack
Smart phone App. 0.7% 40.1% 14.1857%
Front Pocket
Smart phone App. 0.42% 22.5% 6.9167%
Back Pocket
Smart Watch App. 0.57% 17.2% 5.4478%
on Wrist

6.4 Proposed Method with Kalman Tracking

We propose an autonomous method to track and count footsteps by using the camera data

from mobile phones or tablets. Users hold the phone as they normally would when they

use their phone to check different web pages, read e-mails or run different applications. An

image of a subject using the phone can be seen in Fig. 6.1. Since the rear-facing camera

points to the floor, captured videos contain the feet and also legs of the subjects. Example

images captured during a walk are shown in Figures 6.6 and 6.7 as the user is walking

across different surfaces.

The flow diagram of the proposed method is provided in Fig. 6.8. The edges in the im-

age are detected first by using the Canny edge detection [169] algorithm. Then, the FAST
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(a) (b) (c)

(d) (e)

Fig. 6.4: Images showing the stages of processing: (a) Original input image, (b) edge
detection output, (c) result after lines are removed, (d) detected FAST features, (e) kept
FAST features and the cluster center.
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Savitzky−Golay Filtering
Peak Detections

(c)

Fig. 6.5: Movement of the cluster center in the horizontal direction over time: (a) before
smoothing, (b) after Savitzky-Golay smoothing. The detected valleys are shown in (c).
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(a) (b)

(c) (d)

Fig. 6.6: Example frames captured during a walk.

features [171] are detected on the resulting image. The images showing the detected edges

and the FAST features can be seen in Fig. 6.7(b) and (c). The detected FAST feature points

are shown as green ‘+’ marks in Fig. 6.7(c). In order to avoid potential leg points corrupting

the cluster center for foot points, 50% of the feature points with the highest x-coordinates

are removed (images come from the camera in the orientation seen in Fig. 6.7(d), and the

highest x-coordinate corresponds to the right edge of the image). Removing the points

with the highest x-coordinates also allows the algorithm to handle situations when both

feet are visible without increasing computational complexity. Then, the cluster center of

the remaining detected feature points is calculated with K-means clustering [172]. How-

ever, it is not very robust to only rely on the cluster center of these feature points. Since

the algorithm is employing the FAST features, textured surfaces and the points detected

on them can degrade the performance by causing the cluster center to drift away. Thus, in

order to increase robustness and accuracy, the cluster center is tracked with Kalman filter
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tracking [175]. The color histogram of the bounding box, around the kept FAST features,

is computed. The color histograms from the two consecutive frames are compared by us-

ing the Bhattacharyya distance [176]. If the histograms are similar enough (Bhattacharyya

distance is greater than the empirically set threshold), the current cluster center is set as

the new observation point. Otherwise, the tracker is not corrupted, and it depends on the

previous observation point to predict the current location of the cluster center. The detected

cluster center is shown as a red plus sign, and the tracked center location is marked with

a magenta plus sign in Fig 6.7(e). As will be discussed more in Section 6.5, the tracking

provides improved results and better accuracy compared to our previous work [177].

(a) (b) (c)

(d) (e)

Fig. 6.7: Images showing the stages of processing: (a) Original input image, (b) edge
detection output, (c) detected FAST features, (d) kept FAST features and the cluster center,
(e) actual cluster center, tracked cluster center and bounding box for the foot region.

In order to count the footsteps, the change in the x-coordinate of the tracked cluster cen-

ter over time is used. A plot of the x-coordinate values over time is shown in Fig. 6.9(a).

In order to reduce the noise in the signal, we apply a low-pass Savitzky-Golay smoothing

filter described in [173]. The resulting signal obtained after applying the filter is shown

in Fig. 6.9(b). We compared Savitzky-Golay smoothing filter with other filters, and ob-

served that Savitzky-Golay smoothing filter preserved more peaks and valleys compared
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Fig. 6.8: Flow chart of the proposed camera-based algorithm.

to moving average or local regression-based smoothing filters. After filtering, we employ

a peak detection algorithm by N. Yoder [174]. We have chosen this algorithm, instead of

more complex peak detection algorithms, for computational efficiency. The detected val-

leys can be seen in Fig. 6.9(b). The number of steps taken is the total number of valleys in

x-coordinate movement of the tracked center.

Example frames captured during the course of experiment are given in Fig. 6.6 and

6.7. The FAST feature points are marked with green plus signs. Actual cluster center of

these points is marked with red plus sign while the estimated point location based on the

previous observations is marked with the magenta sign. Also, the bounding box is drawn

around the kept feature points, which are the lower 50% of all the detected points based on

their x-coordinate value.
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Fig. 6.9: Movement of the cluster center tracked with Kalman filter in the horizontal di-
rection over time: (a) before smoothing, (b) after Savitzky-Golay smoothing. The detected
valleys are also shown in (b).

6.5 Experimental Results with Kalman Tracking

We have performed experiments with 10 different subjects walking in an indoor environ-

ment with various floor types including carpet and tiled surfaces with light and dark colors.

Each subject walked for five minutes while carrying four smart phones and a smart watch

simultaneously. Three of the smart phones and the smart watch have accelerometer-based

applications for step counting. The watch used in the experiments is a Samsung™ Gear

2 Neo smart watch seen on the wrist of the users in Fig. 6.1(a) and 6.1(b). Three smart

phones were carried in a backpack, in front pocket and in back pocket of trousers. The
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fourth smart phone was held by hand, as seen in Fig. 6.1(b), to capture video data for the

proposed method. The captured image size is 320× 240 pixels. Subjects counted the steps

while they were capturing video to provide the ground truth values. Also, the ground truth

values have been verified by watching the captured videos to count the actual number of

steps taken.

These experiments with five devices allowed us to compare the performance of the

proposed method with the accelerometer-based counters. In addition, results show the high

sensitivity of the accelerometer-based algorithms to the location of the device. Moreover, a

large variance is observed across different users with the accelerometer-based step counting

compared to our proposed method.

In addition, these videos allowed us to compare the step tracking and counting method

we propose here with our previous work [177]. The results of these experiments are sum-

marized in Tables 6.3 and 3.4. The proposed method provides the lowest average error

(2.68%) for the ten different subjects, and the standard deviation of the error across the

subjects is lowest (2.39%) for the proposed method. Incorporating the tracking of the clus-

ter center in the proposed method reduced the average error from 3.064% to 2.68% and the

standard deviation of the error from 2.98% to 2.39% compared to our previous work [177].

The standard deviation of the error for the accelerometer-based counters are much higher,

and range between 5.45% and 112%. Thus, there is a significant variation in the results of

accelerometer-based counters across different users.

Moreover, the results show the high sensitivity of the accelerometer-based algorithms

to the location of the device. As seen from Table 6.3, for the same subject, carrying the

phone in the front pocket versus back pocket of the trousers makes a significant difference,

and this is the case for nine out of the 10 subjects. For instance, for Subject 3, the error

rates when carrying the phone in the front pocket and back pocket are 0.7% and 22.5%,

respectively. For Subject 8, the rates are 1.15% and 8.3%.

It should be noted that, in all these experiments, the users themselves were not exposed
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Table 6.3: Comparison of step counting results and their error rates for different sensors
and device locations

Subjects
Ground Proposed Previous Smart phone app Smart phone app Smart phone app Smart watch app
Truth Method Work [177] Backpack Front pocket Back pocket on wrist
Steps Counted Error Counted Error Counted Error Counted Error Counted Error Counted Error

Subject 1 400 401 0.25% 397 0.75% 1925 381% 372 7% 447 11.75% 438 9.5%
Subject 2 383 382 0.26% 402 1.05% 356 7% 439 14.6% 356 7% 441 15.1%
Subject 3 408 407 0.25% 416 1.96% 553 35.5% 405 0.7% 500 22.5% 394 3.4%
Subject 4 380 381 0.26% 376 1.05% 392 3.2% 354 6.8% 392 3.2% 348 8.4%
Subject 5 529 508 3.97% 484 8.51% 526 0.6% 317 40.1% 635 20% 620 17.2%
Subject 6 474 442 6.75% 464 2.11% 509 7.38% 458 3.38% 476 0.42% 503 6.12%
Subject 7 527 516 2.09% 478 9.3% 557 5.7% 315 39.9% 550 4.4% 524 0.57%
Subject 8 520 487 6.35% 511 1.73% 504 3.1% 514 1.15% 563 8.3% 502 3.5%
Subject 9 478 459 3.97% 465 2.72% 484 1.3% 459 4% 499 4.4% 465 2.7%
Subject 10 417 406 2.64% 436 1.46% 462 10.8% 378 9.4% 471 13% 422 1.2%

Avg. Err: Avg. Err: Avg. Err: Avg. Err: Avg. Err: Avg. Err:
2.68% 3.064% 45.558% 12.703% 9.497% 6.769%

to any acceleration (e.g. being on an elevator, or being inside a traveling vehicle). In those

situations, accelerometer-based counters tend to overcount. Even without those scenarios,

the proposed method provides the lowest average error, and thus is more robust across

different users.

Table 6.4: Comparison of minimum, maximum, and standard deviation of error rates

Methods Min. Error Max. Error Std. Dev.
Proposed Method 0.25% 6.75% 2.39%
Prev. Work [177] 0.75% 9.3% 2.9768%
Smart phone App. 0.6% 381% 112.2232%
Backpack
Smart phone App. 0.7% 40.1% 14.1857%
Front Pocket
Smart phone App. 0.42% 22.5% 6.9167%
Back Pocket
Smart Watch App. 0.57% 17.2% 5.4478%
on Wrist

6.6 Conclusion

An autonomous method has been proposed to track and count footsteps by using the cam-

era data from mobile phones or tablets. The proposed method incorporates Kalman filter

tracking, which provides a more robust step counting mechanism even for challenging

floor and ground surfaces with detailed textures. This method does not rely on templates,
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and does not make any assumptions about the duration of a step or the distance between

steps. The system performs reliably across different users, such as tall versus shorter peo-

ple. The performance of the proposed method was compared with our previous work as

well as accelerometer-based step counting applications running on smart phones and smart

watches. It was shown that the proposed method provides the lowest average error rate

(2.68%) for the 10 subjects, and the standard deviation of the error across the subjects is

lowest (2.39%) for the proposed method. It has been observed that there is a significant

variation in the results of accelerometer-based counters across different users. The stan-

dard deviation of the error for the accelerometer-based counters range between 5.45% and

112%.
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CHAPTER 7

DOORWAY DETECTION FOR

AUTONOMOUS INDOOR NAVIGATION

OF UNMANNED VEHICLES

7.1 Introduction

Unmanned ground vehicles (UGVs) and unmanned aerial vehicles (UAVs) have important

and wide-ranging application areas including military tasks, search and rescue missions,

robotics, surveillance, journalism, inspection of buildings and bridges, and monitoring of

wildlife habitats. With their ever decreasing costs, UAVs are becoming increasingly avail-

able, and are already being used by many hobbyists.

Camera or vision-based solutions have also been proposed to address the indoor nav-

igation problem. It was shown in the literature that a UAV with an onboard camera can

navigate by itself in simple structures like corridors or stairs using different techniques

including optical flow [178], image perspective cues [179]. In [178], the focus is on avoid-

ance of collision with walls by using depth map and optical flow. The UAV is navigated

through corridors by measuring the distance to the walls on each side and to ground. In
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[178] and [179], they do not focus on leaving or entering a room/corridor through door(s).

In this chapter, we present a more general approach for navigation and environment

understanding for reliable detection of open doors. Without loss of generality, we focus on

doorway or open door detection. However, the approach can be applied to recognizing win-

dows, some architectural structures and obstacle types. We employ a door detector, trained

with Aggregate Channel Features (ACF) [2], on the candidate region(s) of RGB images

acquired at the same time with the point cloud data. This trained detector is computa-

tionally efficient for real-time applications while achieving comparable accuracy in object

detection tasks as it was shown for the pedestrian detection problem in [2]. In addition,

since the detection is only performed on the candidate regions obtained from the 3D point

cloud data, the computational efficiency is even higher and the issue of false positives is

alleviated if not eliminated. This step is used for verification and to determine whether it is

safe to approach and go through the doorway. Thus, different from [180], we also employ

image data and a trained detector to verify whether the detected gaps are indeed doors or

not. We do not require the use of predetermined door sizes.

7.2 Proposed Method

The proposed method for doorway detection has two main parts: (i) detecting candidate

door openings from the 3D point cloud data, and (ii) using a pre-trained detector on corre-

sponding RGB image regions to verify if these candidate openings are indeed doors.

First, dominant planes are detected in the scene by using a RANSAC-based plane es-

timation algorithm. Then, we search for empty region(s) on the detected plane(s) as the

candidate door openings. This step allows us to find openings on dominant planes or detect

depth differences, but does not guarantee that the detected opening is a door. Windows,

some architectural structures and mirrors can also be detected as openings on dominant

planes. Therefore, a verification step is needed to decide whether these are actual open
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doors. To accomplish this goal, we employ a detector trained with ACF [2]. It runs with

a sliding window approach on the RGB image regions corresponding to detected candi-

date openings. These RGB images are acquired simultaneously with the point clouds by

the Google Project Tango™ platform. This trained detector is computationally efficient for

real-time applications while achieving comparable accuracy in object detection tasks as it

was shown for the pedestrian detection problem in [2]. If a door is detected on this RGB

image region, then the door is marked both in the point cloud and the RGB image.

7.2.1 Door Detection on RGB Images for Verification

A candidate opening detected from the point cloud does not necessarily correspond to an

open door. In fact, scenarios in which no IR reflection is measured can also cause these

openings. Examples include windows, mirrors, very shiny wall surfaces under bright sun-

light and closely spaced large building columns. Therefore, in addition to the 3D point

cloud, we use the RGB images for verification. We trained our ACF-based door detector

with sampled door images from databases, such as the one in [181], and search engines

results for door images.

After the candidate region is detected, its’ corresponding bounding box is obtained in

the RGB image, and is padded around all four sides to guarantee that the door frames are

visible. The candidate region and the enlarged bounding box are shown in blue and red,

respectively, in Figures 7.1 and 7.2. The door detection is performed in the red bounding

box only. If a door is detected in this region of the RGB image, then it is verified that the

candidate opening is a doorway.

As seen in Fig. 7.1, the ACF-based detector detects the green boxes as doors with high

detection scores. Fig. 7.2 shows two scenarios in which the detected openings from the 3D

point cloud do not correspond to actual doorways. Our trained door detector applied on

the RGB images does not detect a door in these candidate regions. Hence, thanks to this

verification step, our ultimate decision is more reliable compared to using only the depth
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data.

(a) ACF detection score: 10.36

(b) ACF detection score: 25.38

Fig. 7.1: Two doorway detection examples. Blue, red and green boxes represent the candidate
region, its’ padded version and the detected door, respectively.

(a) Window scene

(b) Mirror scene

Fig. 7.2: Candidate regions that are correctly declared as not being doors (no green box).

7.3 Experimental Results

In our experiments, we analyzed false positive ratio of ACF detector when we do not give

any prior candidate region to it. We run ACF detector on a non-door image set. Over 242
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images ACF detector gave 1075 false positives. This means that using only ACF results in

4.44 false positive per image on the average. In addition, we analyzed the false positive rate

of the ACF detector when it is run on entire RGB images, i.e. when depth data is not used

to present the ACF detector with candidate regions. Over 242 non-door images, it detected

1075 false door regions. Table 7.1 summarizes the performance of the ACF-based door

detection, more specifically it lists the number of true positives (TP), true negatives (TN),

false positives (FP) and false negatives (FN), after it is presented with candidate regions. As

can be seen, the false positive rate is decreased significantly, which shows the importance

of incorporating the depth data and getting candidate regions.

Table 7.1: ACF detector performance

Type Count ACF (door detected) ACF (no door)
Open Doors 50 43 (TP) 7 (FN)

Other (mirror, window etc.) 40 3 (FP) 37 (TN)

We also compared the processing times of applying the door detection across entire

RGB images versus just applying it in the candidate regions. Over 457 images, the average

processing times per frame are 0.0258s and 0.0133s, respectively. Thus, detecting the

candidate door openings from 3D point clouds and using these regions provide 48% savings

in the processing time of ACF-based door detection.

7.4 Conclusion

We have proposed a novel approach to autonomously detect doorways/open doors for in-

door navigation of unmanned vehicles. We employ a Project TangoTM tablet by Google™ as

our onboard system to be installed on unmanned vehicles. We first detect the candidate door

regions or openings from the 3D point cloud, and then use a pre-trained detector, based on

ACF, on corresponding RGB image regions to verify whether the detected gaps/openings

are indeed doors or not. ACF-based detection is computationally efficient for real-time
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applications. In addition, since the detection is only performed on the candidate regions

obtained from the point cloud, the issue of false positives is alleviated if not eliminated.
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CHAPTER 8

REAL-TIME TRAFFIC SIGN DETECTION

FOR LOW QUALITY MOBILE CAMERAS

WITH IMPROVED AGGREGATE

CHANNEL FEATURES

8.1 Introduction

Accurate traffic sign detection is a challenging task, especially with lower quality videos

captured by vehicle-mounted, mobile cameras. With the vast availability and ever-decreasing

cost of mobile cameras and smart phones, it has now become less expensive and more fea-

sible to mount them on vehicles for applications including collusion prevention systems,

traffic sign detection for driver assistance and warning, autonomous driving etc. Most

vision-based algorithms developed so far are not optimized for naturalistic real-world set-

tings. They suffer from varying lighting conditions, noisy images as well as varying shad-

ows in naturalistic scenarios. Therefore, in this chapter, we focus on naturalistic videos

captured from vehicle-mounted mobile cameras.
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Aggressive and distractive driving along with sudden driver maneuvers are the most

probable causes of traffic collisions. Therefore, an analysis of driver behaviors under natu-

ralistic real-world scenarios is needed for evaluating dangerous traffic incidents. With such

motivation, Strategic Highway Research Program (SHRP-2) has been established. SHRP-

2 has created a Naturalistic Driver Study (NDS) database that includes very deep level of

detail on driver performance, behavior, and environment related with critical incidents and

almost-accidents for 2360 drivers during a period of one year [182].

Mathias et al. [183] investigated solutions to traffic sign recognition for datasets cap-

tured in Belgium [184] and Germany [185]. They used four different datasets for evalua-

tion, and obtained accuracy rates between 95% and 99%. However, the type of traffic signs

used in the U.S. are different from the ones in Europe. Previously evaluated datasets in-

clude signs varying in shape, orientation, and type. However, they do not include examples

and data covering varying weather conditions, and daytime as well as nighttime scenar-

ios. They also employ higher resolution images in general, having very limited number

of blurry traffic signs. In this chapter, different from previous works, our concentration is

on lower quality videos captured under naturalistic scenarios covering various lighting and

weather conditions.

Convolutional Neural Networks (CNNs) have received a lot of attention recently, es-

pecially after achieving a very good performance in the ImageNet challenge [186]. Later,

Girshick et al. [1] combined region proposals with CNNs, and introduced Region-based

Convolutional Neural Networks (R-CNN), regions with CNN features, for object detec-

tion. Then, Fast R-CNN [187] was proposed, which is one of the most recent works that

provides state-of-the-art performance in object detection. These methods are computation-

ally more expensive, and often require a GPU for faster training and processing times.

Dollar et al. [2] introduced the Aggregate Channel Features (ACF). ACF-based detec-

tors can be trained and tested much faster than R-CNN based detectors. However, as will

be seen in Section 8.3, for true positive values greater than 0.9, they tend to result in higher
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false positive rates compared to R-CNN detectors.

In this chapter, we present a new method, which incorporates ACF-based detection and

chain code histograms (CCH), with the goals of (i) providing much faster training and test-

ing, and comparable or better performance, when compared to R-CNN based detectors,

and (ii) not requiring specialized processors. We compare the performance of the proposed

method with two other detectors, namely a pure ACF-based detector and an R-CNN-based

detector, both in terms of accuracy, through receiver operating characteristic (ROC) curves,

and processing time. As mentioned previously, we focus on naturalistic videos. We have

trained the detectors on the same datasets composed of images from the publicly avail-

able LISA dataset [188] as well as images from lower resolution videos, in the SHRP-2

dataset [182], captured from moving vehicles. Training dataset was selected according to

the need of having naturalistic traffic signs captured in real-life settings and were annotated

for experiments. The detectors were then tested on 37 test videos covering a range of dif-

ferent scenarios including daytime and nighttime videos, and varying weather conditions

such as cloudy and sunny days.

The experimental results show the promise of the proposed method, which provided the

highest true positive rate for lower false positive values, and a faster performance compared

to the R-CNN-based detector.

8.2 Proposed Method

For the purpose of accurately detecting traffic signs from lower quality videos, captured

by mobile cameras, we propose a new method that combines an ACF-based detector with

the chain code histograms (CCHs) as the shape descriptor. CCHs, proposed by Iivarinen

and Visa [3], provide a scale and translation invariant shape descriptor for the contours of

objects in binary images. It has been shown that printed letters can be differentiated and

grouped based on their CCHs.
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Aggregate channel features include channels of gradient, HOG and LUV colors [2]. We

first train an ACF-based detector, and build the CCHs for four different shapes correspond-

ing to triangle, diamond, rectangle and octagon as seen in the last row of Fig. 8.1. These

histograms are built using eight directions, and thus are composed of eight bins. They are

normalized to make the shape descriptor scale invariant.

During the testing stage, the ACF-based detector provides the candidate regions with

corresponding detection scores. In order to increase the robustness of the traffic sign detec-

tor, and decrease the number of false positives, a shape descriptor is used to compare the

shape of these candidate regions against the four traffic sign shapes mentioned above. The

CCHs are used as the shape descriptors and the CCH obtained from the candidate region

is compared to the four CCHs, corresponding to triangle, diamond, rectangle and octagon

shapes.

Fig. 8.1: First two rows: Examples images used for training; third row: Four traffic sign shapes
used as templates to match the chain code histograms.
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8.2.1 Training Stage

In this work, we use a decision tree of depth 3. Total number of training stages are 5

and the final stage has 4096 trees. The number of training images, used for training the

detectors, range from 30 to 130 depending on the traffic sign. While the annotated traffic

sign regions are used as the positive training samples, the rest of the image is sampled

to obtain the negative windows. During training, 500 negative samples were extracted

from each image, and the total number of negative samples was limited to 40K. Also, the

maximum accumulated negative samples across stages of training has been set to 80K.

Since a high number of negative samples is used for better classification, the depth of the

decision tree is selected to be 3 for better detection performance. Some example images,

used for training the detectors, are displayed in the first two rows of Fig.8.1.

8.2.2 Testing Stage

Steps of the proposed algorithm, during testing stage, are provided in Algorithm 4. First,

the ACF-based detector is applied resulting in candidate regions on an image with cor-

responding detection scores. In order to increase the robustness of the traffic sign detec-

tor, and decrease the number of false positives, a shape descriptor is used to compare the

shape of these candidate regions against the four traffic sign shapes mentioned above. Ev-

ery proposed candidate region is converted into a binary image using Otsu’s thresholding

method [189]. Then, the longest boundary is extracted by using the method described

in [190]. Extracted boundaries are shown in green color in Fig. 8.1. Based on the pixel

locations of the object boundary, chain codes are computed using 8 different directions

starting from the bottom left corner. When a continuous chain code is calculated, we build

an 8-bin histogram of the chain codes based on the frequency of occurrence of each direc-

tion. The CCH is used as the shape descriptor of the corresponding object proposal.

There are four different traffic sign shapes in our dataset, namely triangle, diamond,

rectangle and octagon as seen in the last row of Fig. 8.1. The extracted boundary of each
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Algorithm 4 Traffic Sign Detection Algorithm
for All Frames in V ideos do

Detect candidate regions using ACF-based detector
Convert detected regions into grayscale
Apply Otsu’s thresholding to obtain binary image [189]
Extract the longest boundary [190]
Calculate the CCH [3]
if Diss. dist. to any of the four template CCHs ≤ 0.1 then

Save detected bounding box and its’ score
else

Assign detection score as zero.
end if

end for

shape, marked as a green contour, and its’ corresponding CCH are saved as templates for

comparison with the detected candidate regions. In the final stage of Algorithm 4, we

compare the CCH of the detected candidate region with all of the four template CCHs.

For comparing the similarity of the CCHs, we employ the dissimilarity distance in Eq. 8.1,

wherein r and s are N-dimensional histogram vectors. As can be seen 0 corresponds to

identical histograms, whereas 1 represents high dissimilarity. If the dissimilarity score to

any of the four templates is less than 0.1, we keep the candidate region together with its’

ACF-based detection score. However, when the dissimilarity score to all four templates is

higher than 0.1, the detection score is set to be 0 so that false positive regions with high

detection scores are eliminated. For instance, with the ACF-based detector, cars might be

detected as traffic signs as it can be observed in the first column of Fig. 8.3. Comparing

the CCHs with template shape descriptors allows us to successfully suppress possible false

positives, that might have relatively high detection scores, as seen in the second column of

Fig. 8.3.

D = 1−

N−1∑
i=0

(ri − r̄)(si − s̄)√√√√√√
[
N−1∑
i=0

(ri − r̄)2
N−1∑
i=0

(si − s̄)2
] , r̄ =

1

N

N−1∑
i=0

(ri), s̄ =
1

N

N−1∑
i=0

(si). (8.1)

To evaluate the traffic sign detection performance on videos, we used the intersection
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over union criteria similar to the Pascal Visual Object Classes (VOC) [191] challenge.

Whenever the intersection over union (IoU) is greater than 0.5, we count these detections

as true positives. When IoU criteria is smaller than 0.5, it is considered as a false positive.

This evaluation criteria is given in Eq. (8.2), where Bd and Bgt represent the bounding

boxes of the detected region and the ground truth, for the objects, respectively. To test the

videos for detection performance, we used intersection over union criteria for evaluation

similar to the Pascal Visual Object Classes (VOC) [191] challenge as given in Eq. 8.2.

Bp represents the bounding box of the proposed detection region while Bgt represents the

bounding box of the ground truth for the objects. when the proposed detection Bd is not

overlapping with the ground truth bounding box of Bgt,

IoU =
area(Bd ∩Bgt)

area(Bd ∪Bgt)
(8.2)

8.2.3 Model Training employing Fast-RCNN

In this section, we provide a summary of the Fast-RCNN based detector, with which we

compare our proposed method. The training method for RCNN involves three main tasks:

object localization, feature extraction and classification. It begins with localization by gen-

erating class-independent region proposals with an algorithm called Selective Search [192]

and it is preferred over Region Proposal Network(RPN) [193] due to its’ performance on

low resolution images. Then, it extracts Deep Convolutional Neural Network (DCNN) fea-

ture descriptors on the proposed regions after warping them to a fixed square size (256 x

256). Finally, each proposed region is counted as a detection with a bounding box and

corresponding score.

8.2.4 Object Localization with Selective Search

There are two main traditional approaches for object localization in images: segmentation

and exhaustive search. Segmentation tries to break a single partitioning of an image into
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its’ unique objects before any recognition. This is sometimes extremely hard if there are

disparate hierarchy of information in the image. Other researchers resort to localize objects

through recognition by performing an exhaustive search within the image by using mostly

sliding window approaches. Exhaustive search however fails to detect objects with low-

level cues.

Uijlings et al. [192] developed the Selective Search, an approach which combines the

best of both worlds: segmentation and exhaustive search. It exploits the hierarchical struc-

ture of the image (segmentation) with the aim of generating all possible object locations

(exhaustive search). The algorithm uses hierarchical grouping to deal with all possible ob-

ject scales. Then, the color space of the image is used to deal with different invariance

properties. Finally, region-based similarity functions are used to deal with the diverse na-

ture of objects. The final algorithm is fast and accurate, more specifically within 4 seconds

it can generate 2,134 boxes with an Average Best Pascal Overlap score of 0.804. The reader

is referred to [192] for a more detailed description of selective search.

Feature Extraction and Classification

After obtaining candidate region proposals with selective search, each region is fed through

a DCNN for classification. The key algorithms of DCNN can be traced back to the late

1980s [194]. DCNNs saw heavy use in the 1990s. Interest in DCNNs was rekindled

again in 2012 by when Krizhevsky ey al. [195] showed that substantially higher image

classification accuracy could be achieved in the ImageNet dataset with DCNNs. Since

then, profound improvements in the accuracy of object detection in complex scenes have

been achieved. In this work, a DCNN classifier is built to support key algorithms for traffic

scene understanding in SHRP2 video data.

After obtaining candidate region proposals with selective search, each region is fed

through a DCNN for classification. DCNN models are computationally expensive, which

could be a problem for practical applications. The recent interest in DCNNs could be at-
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tributed to the rise of efficient GPU implementations such as cuda-convnet [195], Torch [196]

and Caffe [197]. In this work, a GeForce GTX Titan X GPU is used for model training and

processing of SHRP2 videos. Model training involves two main steps: Supervised pre-

training and Domain-specific fine-tuning.

(a) Supervised pre-training: We adopt a similar approach by pre-training our CNN model

on a large auxiliary dataset (ILSVRC2012) using image-level annotations. The resulting

output is a rich feature detector which will later be fine-tuned to suit our purposes. Open

source Caffe CNN library was used for the pre-training model on 100 classes at a learning

rate of 0.01.

DCNN models usually consists of thousands of parameters and millions of learned

weights. This means that a very large training dataset (more than a million) will be required

to avoid over-fitting the model. However, it has been proved [198] that when labeled data

is scarce, supervised pre-training for an auxiliary task with large training data followed by

domain-specific fine-tuning could yield significant boost in performance.

(b) Domain-specific fine-tuning: To adapt the pre-trained model to the proposed task

(detecting the traffic signs in SHPR2 data), the CNN model parameters are fine-tuned.

First, the 100-way classification layer of the pre-trained model is replaced with 11 classes.

We start Stochastic Gradient Descent (SGD) at a learning rate of 0.001, which allows fine-

tuning to make progress while not clobbering the initialization. In each SGD iteration,

we uniformly sample 20 positive windows for all classes and 70 background windows to

construct a mini-batch of size 90. DCNN is used to extract a 4096 dimensional feature

vector using Caffe implementation of CNN by Krizhesky [197]. Each mean subtracted

candidate region proposal is forward propagated through a network with five convolutional

layers and two fully connected layers. The modeling architecture is explained as follows:

(1) Each class-independent region proposal from the previous step is warped to a 256 x 256

image; (2) the input warped image is filtered with 96 kernels of size 11X11, with a stride

of 4 pixels. This is followed by max pooling in 3x3 grid; (3) two subsequent convolutions
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with 384 kernels are carried out without pooling; (4) output of fourth layer is convolved

with 256 kernel, then spatial max pooling is applied in 3x3 pixel grid; (5) last 2 layers:

Fully connected layer of 4096 dimensions from the last layer.

1. Each class-independent region proposal from the previous step is warped to a

256 x 256 image.

2. The input warped image is filtered with 96 kernels of size 11X11, with a stride of 4

pixels. This is followed by max pooling in 3x3 grid.

3. Two subsequent convolutions with 384 kernels are carried out without pooling

4. Convolve output of fourth layer with 256 kernel, then apply spatial max pooling in

3x3 pixel grid.

5. Last 2 Layers: Fully connected layer of 4096 dimensions from the last layer.

8.3 Experimental Results

We compared the performance of the proposed method with two other detectors both in

terms of detection accuracy as well as processing speed. Henceforth, we will refer to our

proposed method, incorporating a shape descriptor, as Shape-ACF. The other two detectors

will be referred to as ACF and Fast-RCNN based detectors. A total of 37 videos have been

used for testing and comparing the performances. Test videos cover a range of scenarios,

including weather conditions varying from sunny to cloudy, and different times of the day

such as daytime and nighttime. Some example images with detections and false positives

from the test videos can be seen in Figures 8.3 and 8.4.

We have obtained the ROC curves for all detectors to provide a comparison of the true

positive and false positive rates. ROC curves are very commonly used to compare the

performance of different detectors. A graph of true positive vs. false positive(FP) rates
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provides a comprehensive comparison on a single plot. To obtain the ROC curves, we have

used all of the 37 test videos. The ROC curves for the Shape-ACF-based, ACF-based and

Fast RCNN-based detectors are presented in Fig. 8.2. The ideal operating point here is the

upper left-hand corner corresponding to a true positive rate of 1 and false positive rate of

0. As can be seen, overall, the proposed method (shown in solid red plot) operates closer

to the upper left-hand corner. For FPs less than 0.15, the proposed method (Shape-ACF)

provides the highest true positive rate among the three detectors. For FPs smaller than 0.13,

both Shape-ACF, and ACF provide higher true positive rates than Fast-RCNN.

As mentioned above, true positives corresponds to detections that satisfy the intersec-

tion over union criteria, provided in Eq. (8.2) with respect to the annotated ground truths.

The detections that do not satisfy Eq. (8.2) are counted as false positives.
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Fig. 8.2: ROC curves comparing the proposed detector (Shape-ACF) with two other detectors.

The processing times on a CPU for the Shape-ACF, ACF and Fast-RCNN-based de-

tectors are 0.15s, 0.09s, and 12s, respectively, as presented in Table 8.1. These are the

times that it requires for each detector to process a single image of size 458x356. As can

be seen, the proposed method (Shape-ACF) performs much faster than Fast RCNN on a

CPU providing 80× speed up. This makes the proposed method more suitable for CPU

and/or embedded platform implementations. Compared to ACF, the processing time does

not increase significantly. The improvement in the performance provided by the proposed

method (shown in Fig. 8.2) justifies the slight increase in the processing time compared to
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ACF.

Table 8.1: Comparison of computation efficiency on CPU

Method Processing Time on CPU
Shape ACF 0.15s

ACF 0.09s
Fast-RCNN 12 s

We used performance tables reporting true positives and false positives for evaluating

the performance on the test videos. Also, corresponding processing times on CPU are re-

ported for both Fast-RCNN and ACF results in Table 8.1. The detector using ACF has

advantage for processing on CPU compared to the detector trained with Fast-RCNN [187].

On the other hand, the detector with Fast-RCNN is optimized for processing on GPU and

can reach up to 25-30 fps. The results on Table 8.1 presents the corresponding time it

requires for each detector to process a single a image of resolution 458 × 356. For pro-

cessing on CPU, the detector trained ACF, which is based on sliding window approach on

multiple scales to search for suitable candidate regions, is much more suitable for CPU

implementations.

We present detection performances of two detectors for our traffic sign detection for

low quality videos captured. In the experimental results section, the receiver operating

characteristics gives a convenient comparison between true positives and false positives for

proposed detectors. Also, example images showing the detections of proposed detectors

are also presented for qualitative evaluation.

For consecutive occurrence of ground truth bounding boxes, at least a single correct de-

tection of the bounding box is good enough for classifying the corresponding traffic sign as

detected. In other words, we are not counting the bounding boxes as false positives even if

they do not satisfy the intersection over union criteria Eq. 8.2 but they are overlapping with

the correct bounding box. For the detectors proposed, we are presenting the overall detec-

tor performances in Fig. 8.2. Traffic sign detector trained with Fast-RCNN[187] reached
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higher accuracy. On the other hand, the detector trained with ACF [2] provides higher true

positive rate for false positives rates up to 0.15.

(a) Outp. of ACF-detector (b) Proposed Detector

Fig. 8.3: Example detection results of the ACF-based detector and the proposed detector (Shape-
ACF).

Figures 8.3 and 8.4 show example detection results for different detectors. As seen

in the second column of Fig. 8.3, the proposed method (Shape-ACF) eliminates the FPs

created by the ACF-based detector (first column of the figure) by incorporating a shape

descriptor based on CCHs.
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(a) Stop Sign (b) Warning (Night) (c) Ped. Crossing

(d) (e) (f)

Fig. 8.4: (a,b,c) Example detections results of the detector trained with Fast-RCNN, (d,e,f)
and false positives.

8.4 Conclusion

In this chapter, we have focused on naturalistic videos of U.S. traffic signs, proposed a new,

robust and efficient detector, incorporating ACF-based detection with a shape descriptor,

and compared its’ performance with two state-of-the-art detectors, namely Fast-RCNN and

ACF-based detectors, on lower resolution videos. The videos used for testing include a

range of different scenarios including daytime/nighttime videos, and varying weather con-

ditions such as cloudy, sunny, and bright days. We have provided ROC curves for all the

detectors as well as example visual detections on test videos. The proposed method pro-

vided the highest true positive rate for lower FP values while performing much faster than

Fast-RCNN on CPU. We have built a brand new dataset for training the detectors, which

contains traffic signs in lower resolution videos captured with vehicle-mounted, mobile

cameras. As a future direction, we are in the process of implementing Shape-ACF detector

to be employed on smart phones that are simply attached dashboards.
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CHAPTER 9

CONCLUSION AND FUTURE WORK

Mobile cameras provide wide-ranging and beneficial applications for the society. In this

dissertation, we have reported on our algorithms and methodologies on different mobile

camera applications. We covered various applications of mobile cameras with possible ad-

dition of motion sensors, such as accelerometers, and infrared depth cameras for improved

detection and classification capabilities. Proposed applications include fall detection, ac-

tivity classification and footstep counting using cameras of mobile devices, doorway ver-

ification for UAVs, and traffic sign detection from lower-resolution videos. The proposed

algorithms and solutions presented in this dissertation can be utilized in healthcare, activity

monitoring, driving assistance, and autonomous driving of unmanned aerial and ground

vehicles.

The proposed algorithms were designed to be implemented on mobile platforms, and

the fall detection algorithm described in Chapter 4, incorporating camera and accelerom-

eter data, was implemented in its’ entirety on an actual smartphone. Other applications

presented in the remaining chapters can also be efficiently implemented to run on mobile

devices. Some applications as presented in Chapters 5 and 7 require higher processing ca-

pabilities for real-time implementation purposes for now. As computation capabilities of

mobile platforms increase, presented algorithms along with many other computer vision

algorithms can be implemented to run on mobile devices.
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9.1 Future Work

Activity classification work can be extended to detect and classify other types of daily

activities of people. Unsupervised machine learning algorithms can be employed to classify

types of activities such as walking, running, sitting or laying down, using the stairs, taking

the elevator etc. Also, mobile camera and depth sensor may be combined to guide people

with disabilities in their daily living. For instance, camera may provide real-time contextual

information regarding surroundings of a person, and a depth sensor can provide distance

towards the objects and walking direction estimation for blind people to find their way

within their living environments.

Traffic sign detection work may be extended to classify the type of the traffic sign

based on the content of the detection. An example classification result is provided below

in Fig. 9.1. Moreover, we want to be able to detect and classify every type of object that

is visible within the view of mobile camera installed in a vehicle. These cameras can also

provide real-time information about the road conditions. Especially the effect of weather

conditions on the road might be useful for state authorities to concentrate on the road re-

gions that need the most urgent snow removal, salting etc.

Fig. 9.1: Example stop sign that is detected and classified with its’ type.
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Motion and Eye Blink Frequency for Activity Recognition with Google Glass,”

Proc.,5th Augmented Human Intl. Conf., 2014.



133

[88] Andrea Mannini and Angelo Maria Sabatini, “On-line classification of human ac-

tivity and estimation of walk-run speed from acceleration data using support vector

machines,” Proc. of the Int’l Conf. of the IEEE Engineering in Medicine and Biology

Society, pp. 3302–3305, 2011.

[89] Richard Ribon Fletcher, Sharon Tam, Olufemi Omojola, Richard Redemske, and

Joyce Kwan, “Wearable sensor platform and mobile application for use in cognitive

behavioral therapy for drug addiction and PTSD,” Annual Int’l Conf. of the IEEE

Eng. in Medicine and Biology Soc., pp. 1802–1805, 2011.

[90] S. Keskar, R. Banerjee, and R. Reddy, “A dual-psoc based reconfigurable wearable

computing framework for ecg monitoring,” in Computing in Cardiology, Sept 2012,

pp. 85–88.

[91] Michael B Del Rosario, Kejia Wang, Jingjing Wang, Ying Liu, Matthew Brodie,

Kim Delbaere, Nigel H Lovell, Stephen R Lord, and Stephen J Redmond, “A com-

parison of activity classification in younger and older cohorts using a smartphone,”

Physiological Measurement, vol. 35, no. 11, pp. 2269, 2014.

[92] Bo Xiong and Kristen Grauman, “Detecting Snap Points in Egocentric Video with

a Web Photo Prior,” Computer Vision, ECCV, 2014.

[93] Davide Curone, Gian Mario Bertolotti, Andrea Cristiani, Emanuele Lindo Secco,

and Giovanni Magenes, “A real-time and self-calibrating algorithm based on triaxial

accelerometer signals for the detection of human posture and activity,” IEEE Trans.

on Information Technology in Biomedicine, vol. 14, no. 4, pp. 1098–1105, 2010.

[94] David Naranjo-Hernández, Laura M. Roa, Javier Reina-Tosina, and Miguel Ángel

Estudillo-Valderrama, “SoM: A smart sensor for human activity monitoring and

assisted healthy ageing,” IEEE Trans. on Biomed. Eng., vol. 59, no. 12 PART2, pp.

3177–3184, 2012.



134

[95] Grayson K. Vincent and Victoria A. Velkoff, “The next four decades, the older

population in the united states: 2010 to 2050,” 2010.

[96] Dong Won Kang, Jin Seung Choi, Jeong Whan Lee, Soon Cheol Chung, Soo Jun

Park, and Gye Rae Tack, “Real-time elderly activity monitoring system based on a

tri-axial accelerometer,” 2010, pp. 247–253, PMID: 20302417.

[97] Melonie Heron, “Deaths: Leading causes 2007,” August 2011, number 8, pp. 17,

21–22.

[98] Janet Shelfer, David Zapala, and Larry Lundy, “Fall risk, vestibular schwannoma,

and anticoagulation therapy,” United States, McLean, 2008, pp. 237–45, American

Academy of Audiology.

[99] R. C. O. Voshaar, S. Banerjee, M. Horan, R. Baldwin, N. Pendleton, R. Proctor,

N. Tarrier, Y. Woodward, and A. Burns, “Predictors of incident depression after hip

fracture surgery,” The American Journal of Geriatric Psychiatry, vol. 15, no. 9, pp.

807 – 814, 2007.

[100] LD Gillespie, WJ Gillespie, MC Robertson, SE Lamb, RG Cumming, and BH Rowe,

“Interventions for preventing falls in elderly people,” 2003, pp. 692 – 693.

[101] S. Cagnoni, G. Matrella, M. Mordonini, F. Sassi, and L. Ascari, “Sensor fusion-

oriented fall detection for assistive technologies applications,” in Intelligent Systems

Design and Applications, 2009. ISDA ’09. Ninth International Conference on, Nov

2009, pp. 673–678.

[102] Miao Yu, A. Rhuma, S.M. Naqvi, Liang Wang, and J. Chambers, “A posture

recognition-based fall detection system for monitoring an elderly person in a smart

home environment,” Information Technology in Biomedicine, IEEE Transactions

on, vol. 16, no. 6, pp. 1274–1286, Nov 2012.



135

[103] G.A. Koshmak, M. Linden, and A. Loutfi, “Evaluation of the android-based fall

detection system with physiological data monitoring,” in Engineering in Medicine

and Biology Society, 35th Annual Int’l Conf. of the IEEE, July 2013, pp. 1164–1168.

[104] Yabo Cao, Yujiu Yang, and Wenhuang Liu, “E-falld: A fall detection system using

android-based smartphone,” in Fuzzy Systems and Knowledge Discovery (FSKD),

2012 9th Int’l Conf. on, May 2012, pp. 1509–1513.

[105] Ken Taylor, Umran A. Abdulla, Richard J.N. Helmer, Jungoo Lee, and Ian Blan-

chonette, “Activity classification with smart phones for sports activities,” Procedia

Engineering, vol. 13, pp. 428 – 433, 2011.

[106] Wanmin Wu, Sanjoy Dasgupta, E. Ernesto Ramirez, Carlyn Peterson, and J. Gregory

Norman, “Classification accuracies of physical activities using smartphone motion

sensors,” J Med Internet Res, vol. 14, no. 5, pp. e130, Oct 2012.

[107] N. Noury, T. Herve, V. Rialle, G. Virone, E. Mercier, G. Morey, A. Moro, and

T. Porcheron, “Monitoring behavior in home using a smart fall sensor and position

sensors,” in Microtechnologies in Medicine and Biology, 1st Annual International,

Conference On. 2000, 2000, pp. 607 –610.

[108] Muhammad Mubashir, Ling Shao, and Luke Seed, “A survey on fall detection: Prin-

ciples and approaches,” 2013, pp. 144 – 152, <ce:title>Special issue: Behaviours in

video</ce:title>.

[109] R. Igual, C. Medrano, and I. Plaza, “Challenges, issues and trends in fall detection

systems,” BioMedical Engineering OnLine, vol. 12, no. 1, pp. 1–24, 2013.

[110] D.M. Karantonis, M.R. Narayanan, M. Mathie, N.H. Lovell, and B.G. Celler, “Im-

plementation of a real-time human movement classifier using a triaxial accelerome-

ter for ambulatory monitoring,” jan. 2006, pp. 156 –167.



136

[111] Roberto Hoyle, Robert Templeman, Steven Armes, Denise Anthony, David Cran-

dall, and Apu Kapadia, “Privacy behaviors of lifeloggers using wearable cameras,”

in Proc. of the 2014 ACM Int’l Joint Conf. on Pervasive and Ubiquitous Computing,

2014, pp. 571–582.

[112] N. Noury, A Fleury, P. Rumeau, AK. Bourke, G.O. Laighin, V. Rialle, and J. E.

Lundy, “Fall detection - principles and methods,” in Engineering in Medicine and

Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the

IEEE, Aug 2007, pp. 1663–1666.

[113] Muhammad Mubashir, Ling Shao, and Luke Seed, “A survey on fall detection:

Principles and approaches,” Neurocomputing, vol. 100, no. 0, pp. 144 – 152, 2013,

Special issue: Behaviours in video.

[114] Shih-Hau Fang, Yi-Chung Liang, and Kuan-Ming Chiu, “Developing a mobile

phone-based fall detection system on android platform,” in Computing, Commu-

nications and Applications Conf. (ComComAp), Jan 2012, pp. 143–146.

[115] Jiangpeng Dai, Xiaole Bai, Zhimin Yang, Zhaohui Shen, and Dong Xuan, “Perfalld:

A pervasive fall detection system using mobile phones,” in Pervasive Computing

and Communications Workshops, IEEE Int’l Conf. on, March 2010, pp. 292–297.

[116] Wanmin Wu, Sanjoy Dasgupta, E. Ernesto Ramirez, Carlyn Peterson, and J. Gregory

Norman, “Classification accuracies of physical activities using smartphone motion

sensors,” J Med Internet Res, vol. 14, no. 5, pp. e130, Oct 2012.

[117] F. Hijaz, N. Afzal, T. Ahmad, and O. Hasan, “Survey of fall detection and daily ac-

tivity monitoring techniques,” in Information and Emerging Technologies (ICIET),

2010 International Conference on, june 2010, pp. 1 –6.



137

[118] T. Tamura, “Wearable accelerometer in clinical use,” in Proc. 27th Annual Int.

Conf. of the Engineering in Medicine and Biology Society IEEE-EMBS 2005, 2005,

pp. 7165–7166.

[119] C.J. Lord and D.P. Colvin, “Falls in the elderly: Detection and assessment,” in

Engineering in Medicine and Biology Society, 1991. Vol.13: 1991., Proceedings of

the Annual International Conference of the IEEE, oct-3 nov 1991, pp. 1938 –1939.

[120] G. Williams, K. Doughty, K. Cameron, and D.A. Bradley, “A smart fall and activity

monitor for telecare applications,” in Engineering in Medicine and Biology Society,

1998. Proceedings of the 20th Annual International Conference of the IEEE, oct-1

nov 1998, pp. 1151 –1154 vol.3.

[121] J. Chen, Karric Kwong, D. Chang, J. Luk, and R. Bajcsy, “Wearable sensors for

reliable fall detection,” in Engineering in Medicine and Biology Society, 2005. IEEE-

EMBS 2005. 27th Annual International Conference of the, jan. 2005, pp. 3551 –

3554.

[122] Chia-Chi Wang, Chin-Yen Chiang, Po-Yen Lin, Yi-Chieh Chou, I-Ting Kuo, Chih-

Ning Huang, and Chia-Tai Chan, “Development of a fall detecting system for the

elderly residents,” in Bioinformatics and Biomedical Engineering, 2008. ICBBE

2008. The 2nd International Conference on, may 2008, pp. 1359 –1362.

[123] M.R. Narayanan, S.R. Lord, M.M. Budge, B.G. Celler, and N.H. Lovell, “Falls man-

agement: Detection and prevention, using a waist-mounted triaxial accelerometer,”

in Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual

International Conference of the IEEE, aug. 2007, pp. 4037 –4040.

[124] G. Wu, “Distinguishing fall activities from normal activities by velocity character-

istics,” 2000, pp. 1497 – 1500.



138

[125] Miao Yu, A. Rhuma, S.M. Naqvi, Liang Wang, and J. Chambers, “A posture

recognition-based fall detection system for monitoring an elderly person in a smart

home environment,” nov. 2012, pp. 1274 –1286.

[126] A.K. Bourke, J.V. O Brien, and G.M . Lyons, “Evaluation of a threshold-based

tri-axial accelerometer fall detection algorithm,” 2007, pp. 194 – 199.

[127] Jiewen Zheng, Guang Zhang, and Taihu Wu, “Design of automatic fall detector for

elderly based on triaxial accelerometer,” in Proc. 3rd Int. Conf. Bioinformatics and

Biomedical Engineering ICBBE 2009, 2009, pp. 1–4.

[128] T. Degen, H. Jaeckel, M. Rufer, and S. Wyss, “SPEEDY: a fall detector in a wrist

watch,” in Proc. Seventh IEEE Int Wearable Computers Symp, 2003, pp. 184–187.

[129] Xiuxin Yang, Anh Dinh, and Li Chen, “A wearable real-time fall detector based

on naive bayes classifier,” in Proc. 23rd Canadian Conf. Electrical and Computer

Engineering (CCECE), 2010, pp. 1–4.

[130] M. Alwan, P.J. Rajendran, S. Kell, D. Mack, S. Dalal, M. Wolfe, and R. Felder, “A

smart and passive floor-vibration based fall detector for elderly,” in Information and

Communication Technologies, 2006. ICTTA ’06. 2nd, 0-0 2006, pp. 1003 –1007.

[131] Xiaodan Zhuang, Jing Huang, G. Potamianos, and M. Hasegawa-Johnson, “Acoustic

fall detection using gaussian mixture models and gmm supervectors,” in Acoustics,

Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference

on, april 2009, pp. 69 –72.

[132] M. Yu, A. Rhuma, S. M. Naqvi, L. Wang, and J. Chambers, “A posture recognition-

based fall detection system for monitoring an elderly person in a smart home envi-

ronment,” nov. 2012, pp. 1274 –1286.



139

[133] N. Noury, A. Galay, J. Pasquier, and M. Ballussaud, “Preliminary investigation

into the use of autonomous fall detectors,” in Engineering in Medicine and Biology

Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE, aug.

2008, pp. 2828 –2831.

[134] Zhengming Fu, T. Delbruck, P. Lichtsteiner, and E. Culurciello, “An address-event

fall detector for assisted living applications,” 2008, pp. 88–96.

[135] A. Sixsmith and N. Johnson, “A smart sensor to detect the falls of the elderly,” 2004,

pp. 42–47.

[136] S. Zambanini, J. Machajdik, and M. Kampel, “Detecting falls at homes using a

network of low-resolution cameras,” in Proc. 10th IEEE Int Information Technology

and Applications in Biomedicine (ITAB) Conf, 2010, pp. 1–4.

[137] P. Siciliano, A. Leone, G. Diraco, C. Distante, M. Malfatti, L. Gonzo, M. Grassi,

A. Lombardi, G. Rescio, and P. Malcovati, “A networked multisensor system for

ambient assisted living application,” in Proc. 3rd Int. Workshop Advances in sensors

and Interfaces IWASI 2009, 2009, pp. 139–143.

[138] C. Rougier, J. Meunier, A. St-Arnaud, and J. Rousseau, “Fall detection from hu-

man shape and motion history using video surveillance,” in Advanced Information

Networking and Applications Workshops, 2007, AINAW ’07. 21st International Con-

ference on, may 2007, pp. 875 –880.

[139] A.N. Belbachir, S. Schraml, and A. Nowakowska, “Event-driven stereo vision for

fall detection,” in Computer Vision and Pattern Recognition Workshops (CVPRW),

2011 IEEE Computer Society Conference on, june 2011, pp. 78 –83.

[140] A.N. Belbachir, A. Nowakowska, S. Schraml, G. Wiesmann, and R. Sablatnig,

“Event-driven feature analysis in a 4d spatiotemporal representation for ambient



140

assisted living,” in Computer Vision Workshops (ICCV Workshops), 2011 IEEE

International Conference on, nov. 2011, pp. 1570 –1577.

[141] H. Foroughi, A. Naseri, A. Saberi, and H.S. Yazdi, “An eigenspace-based approach

for human fall detection using integrated time motion image and neural network,”

in Signal Processing, 2008. ICSP 2008. 9th International Conference on, oct. 2008,

pp. 1499 –1503.

[142] Shaou-Gang Miaou, Pei-Hsu Sung, and Chia-Yuan Huang, “A customized human

fall detection system using omni-camera images and personal information,” in Dis-

tributed Diagnosis and Home Healthcare, 2006. D2H2. 1st Transdisciplinary Con-

ference on, april 2006, pp. 39 –42.

[143] Bart Jansen and Rudi Deklerck, “Context aware inactivity recognition for visual fall

detection,” in Pervasive Health Conference and Workshops, 2006, 29 2006-dec. 1

2006, pp. 1 –4.

[144] A.N. Belbachir, M. Litzenberger, S. Schraml, M. Hofstatter, D. Bauer, P. Schon,

M. Humenberger, C. Sulzbachner, T. Lunden, and M. Merne, “Care: A dynamic

stereo vision sensor system for fall detection,” in Circuits and Systems (ISCAS),

2012 IEEE International Symposium on, may 2012, pp. 731 –734.

[145] S. Fleck, R. Loy, C. Vollrath, F. Walter, and W. Strasser, “Smartclassysurv - a

smart camera network for distributed tracking and activity recognition and its ap-

plication to assisted living,” in Distributed Smart Cameras, 2007. ICDSC ’07. First

ACM/IEEE International Conference on, sept. 2007, pp. 211 –218.

[146] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,”

in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer

Society Conference on, june 2005, pp. 886 –893 vol. 1.



141

[147] Mauricio Casares, Koray Ozcan, Akhan Almagambetov, and Senem Velipasalar,

“Automatic fall detection by a wearable embedded smart camera,” in Distributed

Smart Cameras (ICDSC), 2012 Sixth International Conference on, 2012, pp. 1–6.

[148] Berthold K.P. Horn and Brian G. Schunck, “Determining optical flow,” 1981, pp.

185 – 203.

[149] AA Shafie, F. Hafiz, and MH Ali, “Motion detection techniques using optical flow,”

2009, pp. 559–561, Citeseer.

[150] Deqing Sun, S. Roth, and M.J. Black, “Secrets of optical flow estimation and their

principles,” in Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Con-

ference on, june 2010, pp. 2432 –2439.

[151] N. Jiang, J. Xu, W. Yu, and S. Goto, “Gradient local binary patterns for human

detection,” in Circuits and Systems (ISCAS), 2013 IEEE International Symposium

on, 2013, pp. 978–981.

[152] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale and rota-

tion invariant texture classification with local binary patterns,” Pattern Analysis and

Machine Intelligence, IEEE Transactions on, vol. 24, no. 7, pp. 971–987, 2002.

[153] J. Kittler, M. Hatef, R.P.W. Duin, and J. Matas, “On combining classifiers,” Pattern

Analysis and Machine Intelligence, IEEE Transactions on, vol. 20, no. 3, pp. 226–

239, Mar 1998.

[154] Simon Brownsell and Mark S. Hawley, “Automatic fall detectors and the fear of

falling,” Journal of Telemedicine and Telecare, vol. 10, no. 5, pp. 262–266, 2004.

[155] U. Lindemann, A. Hock, M. Stuber, W. Keck, and C. Becker, “Evaluation of a fall

detector based on accelerometers: A pilot study,” Medical and Biological Engineer-

ing and Computing, vol. 43, no. 5, pp. 548–551, 2005.



142

[156] AK. Bourke, P. van de Ven, M. Gamble, R. O’Connor, K. Murphy, E. Bogan, E. Mc-

Quade, P. Finucane, G. OLaighin, and J. Nelson, “Assessment of waist-worn tri-

axial accelerometer based fall-detection algorithms using continuous unsupervised

activities,” in Engineering in Medicine and Biology Society (EMBC), 2010 Annual

International Conference of the IEEE, Aug 2010, pp. 2782–2785.
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