3,550 research outputs found

    Automatic wheeze detection based on auditory modelling

    Get PDF
    Automatic wheeze detection has several potential benefits compared with reliance on human auscultation: it is experience independent, an automated historical record can easily be kept, and it allows quantification of wheeze severity. Previous attempts to detect wheezes automatically have had partial success but have not been reliable enough to become widely accepted as a useful tool. In this paper an improved algorithm for automatic wheeze detection based on auditory modelling is developed, called the frequency- and duration-dependent threshold algorithm. The mean frequency and duration of each wheeze component are obtained automatically. The detected wheezes are marked on a spectrogram. In the new algorithm, the concept of a frequency- and duration-dependent threshold for wheeze detection is introduced. Another departure from previous work is that the threshold is based not on global power but on power corresponding to a particular frequency range. The algorithm has been tested on 36 subjects, 11 of whom exhibited characteristics of wheeze. The results show a marked improvement in the accuracy of wheeze detection when compared with previous algorithms

    Doctor of Philosophy

    Get PDF
    dissertationPatients sometimes suffer apnea during sedation procedures or after general anesthesia. Apnea presents itself in two forms: respiratory depression (RD) and respiratory obstruction (RO). During RD the patients' airway is open but they lose the drive to breathe. During RO the patients' airway is occluded while they try to breathe. Patients' respiration is rarely monitored directly, but in a few cases is monitored with a capnometer. This dissertation explores the feasibility of monitoring respiration indirectly using an acoustic sensor. In addition to detecting apnea in general, this technique has the possibility of differentiating between RD and RO. Data were recorded on 24 subjects as they underwent sedation. During the sedation, subjects experienced RD or RO. The first part of this dissertation involved detecting periods of apnea from the recorded acoustic data. A method using a parameter estimation algorithm to determine the variance of the noise of the audio signal was developed, and the envelope of the audio data was used to determine when the subject had stopped breathing. Periods of apnea detected by the acoustic method were compared to the periods of apnea detected by the direct flow measurement. This succeeded with 91.8% sensitivity and 92.8% specificity in the training set and 100% sensitivity and 98% specificity in the testing set. The second part of this dissertation used the periods during which apnea was detected to determine if the subject was experiencing RD or RO. The classifications determined from the acoustic signal were compared to the classifications based on the flow measurement in conjunction with the chest and abdomen movements. This did not succeed with a 86.9% sensitivity and 52.6% specificity in the training set, and 100% sensitivity and 0% specificity in the testing set. The third part of this project developed a method to reduce the background sounds that were commonly recorded on the microphone. Additive noise was created to simulate noise generated in typical settings and the noise was removed via an adaptive filter. This succeeded in improving or maintaining apnea detection given the different types of sounds added to the breathing data

    Computerized respiratory sounds in paediatrics: a systematic review

    Get PDF
    Background Diagnosing and monitoring of children with respiratory disorders is often challenging. Respiratory sounds (RS) are simple, non-invasive and universally available measures that are directly related to movement of air, within the tracheobronchial tree. Thus, RS may be valuable indicators of respiratory health, their characteristics in the paediatric population are scattered in the literature and not systematized. Aim Systematically review the different acoustic RS properties in healthy children and in children with different respiratory disorders. Methods: MEDLINE, EMBASE, AMED and CINHAL databases were searched on Sept 2020. One author extracted data and two independently assessed the quality of the articles using the National Heart Lung and Blood Institute quality assessment tool. Results Twenty-eight studies were included with a total 2032 participants (44% with a respiratory condition, such as asthma, bronchiolitis, cystic fibrosis, presence of wheezing and non-specified low respiratory tract infections). A high heterogeneity in the procedures, outcomes and outcome measures used was found. Healthy participants showed lower values of F50 (from 194 ± 26 to 521 ± 18Hz) than those with asthma (from 140 ± 8 to 769 ± 85Hz) or bronchiolitis (from 100 to 80Hz). F50 tend to increase with provocation tests (136 ± 9 to 909 ± 81Hz) and decrease with treatments (128 ± 6 to 781 ± 57Hz). Wheeze rates ranged from 0 to 24.7 ± 25% on asthmatic participants. Crackles findings ranged from 6% on people with recurrent wheezing to 30.8% in middle lobe atelectasis. Conclusion RS show different acoustic properties in healthy children vs with different respiratory disorders and thus may be useful in the diagnostic and monitoring on paediatrics.publishe

    Protocol of the SOMNIA project : an observational study to create a neurophysiological database for advanced clinical sleep monitoring

    Get PDF
    Introduction Polysomnography (PSG) is the primary tool for sleep monitoring and the diagnosis of sleep disorders. Recent advances in signal analysis make it possible to reveal more information from this rich data source. Furthermore, many innovative sleep monitoring techniques are being developed that are less obtrusive, easier to use over long time periods and in the home situation. Here, we describe the methods of the Sleep and Obstructive Sleep Apnoea Monitoring with Non-Invasive Applications (SOMNIA) project, yielding a database combining clinical PSG with advanced unobtrusive sleep monitoring modalities in a large cohort of patients with various sleep disorders. The SOMNIA database will facilitate the validation and assessment of the diagnostic value of the new techniques, as well as the development of additional indices and biomarkers derived from new and/or traditional sleep monitoring methods. Methods and analysis We aim to include at least 2100 subjects (both adults and children) with a variety of sleep disorders who undergo a PSG as part of standard clinical care in a dedicated sleep centre. Full-video PSG will be performed according to the standards of the American Academy of Sleep Medicine. Each recording will be supplemented with one or more new monitoring systems, including wrist-worn photoplethysmography and actigraphy, pressure sensing mattresses, multimicrophone recording of respiratory sounds including snoring, suprasternal pressure monitoring and multielectrode electromyography of the diaphragm

    Fundamentals of Lung Auscultation

    Get PDF
    Chest auscultation has long been considered a useful part of the physical examination, going back to the time of Hippocrates. However, it did not become a widespread practice until the invention of the stethoscope by René Laënnec in 1816, which made the practice convenient and hygienic.1 During the second half of the 20th century, technological advances in ultrasonography, radiographic computed tomography (CT), and magnetic resonance imaging shifted interest from lung auscultation to imaging studies, which can detect lung disease with an accuracy never previously imagined. However, modern computer-assisted techniques have also allowed precise recording and analysis of lung sounds, prompting the correlation of acoustic indexes with measures of lung mechanics. This innovative, though still little used, approach has improved our knowledge of acoustic mechanisms and increased the clinical usefulness of auscultation. In this review, we present an overview of lung auscultation in the light of modern concepts of lung acoustics

    Partial endotracheal tube obstruction by a blood clot in 2 dogs

    Get PDF
    Case 1: A seven-year-old lurcher presented after an episode of severe respiratory distress and collapse, which had been treated by the referring veterinary surgeon with a tracheostomy tube placement. Laryngeal paralysis was diagnosed, and the dog was scheduled to undergo left-sided laryngoplasty. During anaesthesia, the dog developed marked hypercapnia and respiratory acidosis during spontaneous ventilation. Initiation of manual ventilation and endotracheal suctioning did not improve the ventilation. On extubation, a blood clot was discovered, occluding approximately two-third of the endotracheal tube (ETT) lumen. Case 2: A two-month-old Jack Russell terrier was presented for ligation of a patent ductus arteriosus. Intraoperatively, the dog developed sudden severe hypercapnia and hypoxaemia. Manual ventilation was initiated, and two attempts of recruiting the lung were made, which initially improved the ventilation. Postoperatively, before extubation, a second episode of severe hypercapnia and resistance to ventilation was noted. On extubation, a blood clot occluding 60 per cent of the ETT lumen was detected

    Multichannel analysis of normal and continuous adventitious respiratory sounds for the assessment of pulmonary function in respiratory diseases

    Get PDF
    Premi extraordinari doctorat UPC curs 2015-2016, àmbit d’Enginyeria IndustrialRespiratory sounds (RS) are produced by turbulent airflows through the airways and are inhomogeneously transmitted through different media to the chest surface, where they can be recorded in a non-invasive way. Due to their mechanical nature and airflow dependence, RS are affected by respiratory diseases that alter the mechanical properties of the respiratory system. Therefore, RS provide useful clinical information about the respiratory system structure and functioning. Recent advances in sensors and signal processing techniques have made RS analysis a more objective and sensitive tool for measuring pulmonary function. However, RS analysis is still rarely used in clinical practice. Lack of a standard methodology for recording and processing RS has led to several different approaches to RS analysis, with some methodological issues that could limit the potential of RS analysis in clinical practice (i.e., measurements with a low number of sensors, no controlled airflows, constant airflows, or forced expiratory manoeuvres, the lack of a co-analysis of different types of RS, or the use of inaccurate techniques for processing RS signals). In this thesis, we propose a novel integrated approach to RS analysis that includes a multichannel recording of RS using a maximum of five microphones placed over the trachea and the chest surface, which allows RS to be analysed at the most commonly reported lung regions, without requiring a large number of sensors. Our approach also includes a progressive respiratory manoeuvres with variable airflow, which allows RS to be analysed depending on airflow. Dual RS analyses of both normal RS and continuous adventitious sounds (CAS) are also proposed. Normal RS are analysed through the RS intensity–airflow curves, whereas CAS are analysed through a customised Hilbert spectrum (HS), adapted to RS signal characteristics. The proposed HS represents a step forward in the analysis of CAS. Using HS allows CAS to be fully characterised with regard to duration, mean frequency, and intensity. Further, the high temporal and frequency resolutions, and the high concentrations of energy of this improved version of HS, allow CAS to be more accurately characterised with our HS than by using spectrogram, which has been the most widely used technique for CAS analysis. Our approach to RS analysis was put into clinical practice by launching two studies in the Pulmonary Function Testing Laboratory of the Germans Trias i Pujol University Hospital for assessing pulmonary function in patients with unilateral phrenic paralysis (UPP), and bronchodilator response (BDR) in patients with asthma. RS and airflow signals were recorded in 10 patients with UPP, 50 patients with asthma, and 20 healthy participants. The analysis of RS intensity–airflow curves proved to be a successful method to detect UPP, since we found significant differences between these curves at the posterior base of the lungs in all patients whereas no differences were found in the healthy participants. To the best of our knowledge, this is the first study that uses a quantitative analysis of RS for assessing UPP. Regarding asthma, we found appreciable changes in the RS intensity–airflow curves and CAS features after bronchodilation in patients with negative BDR in spirometry. Therefore, we suggest that the combined analysis of RS intensity–airflow curves and CAS features—including number, duration, mean frequency, and intensity—seems to be a promising technique for assessing BDR and improving the stratification of BDR levels, particularly among patients with negative BDR in spirometry. The novel approach to RS analysis developed in this thesis provides a sensitive tool to obtain objective and complementary information about pulmonary function in a simple and non-invasive way. Together with spirometry, this approach to RS analysis could have a direct clinical application for improving the assessment of pulmonary function in patients with respiratory diseases.Los sonidos respiratorios (SR) se generan con el paso del flujo de aire a través de las vías respiratorias y se transmiten de forma no homogénea hasta la superficie torácica. Dada su naturaleza mecánica, los SR se ven afectados en gran medida por enfermedades que alteran las propiedades mecánicas del sistema respiratorio. Por lo tanto, los SR proporcionan información clínica relevante sobre la estructura y el funcionamiento del sistema respiratorio. La falta de una metodología estándar para el registro y procesado de los SR ha dado lugar a la aparición de diferentes estrategias de análisis de SR con ciertas limitaciones metodológicas que podrían haber restringido el potencial y el uso de esta técnica en la práctica clínica (medidas con pocos sensores, flujos no controlados o constantes y/o maniobras forzadas, análisis no combinado de distintos tipos de SR o uso de técnicas poco precisas para el procesado de los SR). En esta tesis proponemos un método innovador e integrado de análisis de SR que incluye el registro multicanal de SR mediante un máximo de cinco micrófonos colocados sobre la tráquea yla superficie torácica, los cuales permiten analizar los SR en las principales regiones pulmonares sin utilizar un número elevado de sensores . Nuestro método también incluye una maniobra respiratoria progresiva con flujo variable que permite analizar los SR en función del flujo respiratorio. También proponemos el análisis combinado de los SR normales y los sonidos adventicios continuos (SAC), mediante las curvas intensidad-flujo y un espectro de Hilbert (EH) adaptado a las características de los SR, respectivamente. El EH propuesto representa un avance importante en el análisis de los SAC, pues permite su completa caracterización en términos de duración, frecuencia media e intensidad. Además, la alta resolución temporal y frecuencial y la alta concentración de energía de esta versión mejorada del EH permiten caracterizar los SAC de forma más precisa que utilizando el espectrograma, el cual ha sido la técnica más utilizada para el análisis de SAC en estudios previos. Nuestro método de análisis de SR se trasladó a la práctica clínica a través de dos estudios que se iniciaron en el laboratorio de pruebas funcionales del hospital Germans Trias i Pujol, para la evaluación de la función pulmonar en pacientes con parálisis frénica unilateral (PFU) y la respuesta broncodilatadora (RBD) en pacientes con asma. Las señales de SR y flujo respiratorio se registraron en 10 pacientes con PFU, 50 pacientes con asma y 20 controles sanos. El análisis de las curvas intensidad-flujo resultó ser un método apropiado para detectar la PFU , pues encontramos diferencias significativas entre las curvas intensidad-flujo de las bases posteriores de los pulmones en todos los pacientes , mientras que en los controles sanos no encontramos diferencias significativas. Hasta donde sabemos, este es el primer estudio que utiliza el análisis cuantitativo de los SR para evaluar la PFU. En cuanto al asma, encontramos cambios relevantes en las curvas intensidad-flujo yen las características de los SAC tras la broncodilatación en pacientes con RBD negativa en la espirometría. Por lo tanto, sugerimos que el análisis combinado de las curvas intensidad-flujo y las características de los SAC, incluyendo número, duración, frecuencia media e intensidad, es una técnica prometedora para la evaluación de la RBD y la mejora en la estratificación de los distintos niveles de RBD, especialmente en pacientes con RBD negativa en la espirometría. El método innovador de análisis de SR que se propone en esta tesis proporciona una nueva herramienta con una alta sensibilidad para obtener información objetiva y complementaria sobre la función pulmonar de una forma sencilla y no invasiva. Junto con la espirometría, este método puede tener una aplicación clínica directa en la mejora de la evaluación de la función pulmonar en pacientes con enfermedades respiratoriasAward-winningPostprint (published version
    • …
    corecore