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Abstract—Automatic wheeze detection has several potential benefits compared to reliance 

on human auscultation: it is experience-independent, an automated historical record can easily 

be kept and it allows quantification of wheeze severity. Previous attempts to detect wheezes 

automatically have had partial success, but have not been reliable enough to become widely 

accepted as a useful tool. In this paper an improved algorithm for automatic wheeze detection 

based on auditory modelling is developed, called the frequency and duration dependent 

threshold or fddt algorithm. Parameters of mean frequency and duration of each wheeze 

component are obtained automatically. The detected wheezes are marked on a spectrogram.  

In the new algorithm, the concept of a frequency and duration dependent threshold for wheeze 

detection is introduced. Another departure from previous work is that the threshold is based not 

on global power, but on power corresponding to a particular frequency range. The algorithm has 

been tested on 36 subjects, 11 of whom exhibited characteristics of wheeze. The results show a 

marked improvement in the accuracy of wheeze detection when compared with previous 

algorithms. 
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1 Introduction 

Auscultation by stethoscope is a quick non-invasive method widely used to assess pulmonary 

conditions. However, there are a few drawbacks. It lacks a method of recording, offers no 

quantitative description, and is experience-dependent. A computer-aided breath sound 

recording and analysis system has the potential to overcome these shortcomings.  

 



Wheeze is a type of abnormal breath sound, which is a continuous adventitious sound having a 

musical character. Acoustically, wheezes are characterised by periodic waveforms with a 

dominant frequency (usually over 100Hz) and with a duration greater than around 100ms [1, 2]. 

In this study, wheeze is defined as an audible tonal signal in the frequency range 100-4000Hz 

of duration longer than 30ms. In this new definition,” audible”  and “ tonal”  clarify the 

meaning of “ musical character”  used in earlier definitions.  The lower frequency limit of 

100Hz agrees with the literature definition, whereas the 4000Hz is limited by the sampling rate 

of 8000Hz. Since 10ms is the shortest span for tonal sound to be audible [3], the historical 

duration of 100 ms is too long to detect all audible wheezes. Though the limitation of the 

algorithm used in this work prevents the detection of signals with 10ms duration, it does allow 

durations of 30ms to be detected. This is therefore an improvement over earlier work.  Wheezes 

are clinical signs of obstructive airway diseases if they are heard during spontaneous respiration 

or during induced airway narrowing. Previous research [4-7] has shown that, although the 

presence of wheeze is an insensitive sign for severity of airway obstruction, the occupation of 

wheeze in a breath cycle is a sensitive sign and therefore wheeze characteristics can be used 

to evaluate the severity of airway obstruction. Improving the accuracy of computerised detection 

will improve the ability to assess the severity. 

 

It has been reported that, for the same set of recorded breath sounds, different specialists 

listening to the recordings may draw different conclusions and the same specialist may draw 

inconsistent conclusions under different conditions [8]. Computer analysis of breath sounds can 

remove this subjectivity from the data interpretation and a computerised system can be superior 

to the human ear, not only in its repeatability, but also in its ability to quantify the sounds in 

terms of frequencies and durations.  

 



Previous automatic wheeze detection methods have shown that parameters relating to wheeze, 

such as frequency, duration and number of wheezes [4,6-11] and a description of how the 

wheeze evolves [11-13], can be extracted from breath sounds. As there is a lack of standard 

validation of wheeze detection methods, some of these published results were compared with a 

respiratory specialist’s opinion of the wheezes present. From these comparisons, clinical 

examination, based on a combination of auscultation and visual examination of an expanded 

waveform of the breath sounds, was found to be superior to the wheeze detection algorithms in 

correctly identifying the wheeze content of wheezy breath sounds. Difficulties arise if the 

computerised system detects inaudible wheezes but, currently, there is no practical method of 

validating their presence. 

 

Previous wheeze detection algorithms were based on a definition of a threshold above which 

wheeze signals, detected as peaks in the frequency domain, were distinguishable from a 

normal breath sound. These thresholds were specified in various ways. Fenton and associates’  

algorithm [5] used the criteria that a peak that was 15 times greater than the average power was 

a wheeze. Baughman and Loudon’s algorithm [4,9] defined a wheeze as a peak with more than 

3 times the baseline power. Homs-Cobera and co-workers [11,12] used a set of rules and a 

scoring system based on a set of empirical parameters, a development of Shabtai-Musih’s work 

which proposed a less sophisticated set of rules [10]. What these studies have in common is a 

reliance on constant thresholds based on measures of global power to detect wheeze. 

 

In this paper, a new wheeze detection method: the fddt (frequency and duration dependent 

threshold) algorithm is proposed. This differs from previous work in that the thresholds are 

defined based on auditory modelling. Instead of defining a constant threshold, the threshold in 

this new algorithm is frequency dependent. Also, rather than using global power, in this 

algorithm the threshold is based on energy of only part of a frequency range and is the energy 

within the selected auditory filter bandwidth. The choice of energy rather than power here is a 

result of previous work [3] which showed that the use of an energy threshold is more 

appropriate for detecting short duration sounds (less than 200ms). 

 



2 Theoretical Basis of fddt Algorithm 

2.1 Auditory modelling 

The human’s peripheral auditory system can be modelled as a bank of band-pass filters 

(auditory filters) with overlapping pass-bands [14]. A tonal sound is audible when its sound 

pressure level (SPL) is above the absolute hearing threshold and persists for more than 10ms 

[15]. When a listener is trying to detect a tonal sound that is masked by a noisy background, he 

is assumed to use a filter with a centre frequency close to that tonal signal. As the noise has a 

masking effect, it increases the SPL threshold at which the sound becomes audible, but only the 

frequency components in the noise within the auditory filter bandwidth have a masking effect.  

 

The bandwidth of such an auditory filter is frequency dependent. A practical equivalent 

rectangular bandwidth (ERB) of such an auditory filter can be calculated as [14] 

 24.7(4.37 1)fERB f= +  Hz (1) 

where f is the centre frequency in kHz. 

 

2.2 Short-Time Fourier Transformation (STFT) 

If the frequency content of a signal changes over time, then the standard Fourier transform 

cannot reflect the signal’s time-varying nature. An easy way to overcome this issue is to 

compare the signal with elementary functions located in time and frequency simultaneously, that 

is [16], 

 τττω τ dethstSTFT jw∫
∞

∞−
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where s  is the signal, h  is a window function,  h∗ is the complex conjugate of the window 

function, t  is shift in time, and ω  is angular frequency.  The window function, h , has short time 

duration. The Fourier transform of the signal s  windowed with h  shifted by t is calculated, thus 

the signal’s local frequency characteristics can be characterised.             

 



3 Procedures for Automatic Wheeze Detection 

3.1 Sample data 

All recordings of breath sounds were taken at the trachea. For convenience, mobile phones 

were used for remote monitoring of the subjects’ breath sounds. Previous research has 

demonstrated that recordings by mobile phones were of similar quality to those recorded by 

microphones in the laboratory [ref lancet paper]. One data set was recorded from 20 subjects 

using the same mobile phone (Nokia model 5110) [17.]. Another data set was recorded from 16 

subjects using the subjects’ own mobile phones. To record a breath sound signal, the subject 

holds the mouthpiece of the mobile phone contacting the trachea and breathes normally for at 

least five full breath cycles. By dialling a number provided by a voicemail service, the acoustic 

signal captured by the mobile phone is sent to an e-mail address as an attached file. The 

attachment is a wave file in GSM 06.10 format (13 bit sampling at 8000Hz) with a time stamp. 

The wave files are then converted to 16 bit PCM format at 8000Hz. The mobile phone is not a 

recording device designed for tonal signals; adaptive signal processing is optimised for speech 

inputs. However, the non-speech performance appendix of GSM06.10 [18] states that sine 

waves in a frequency range of 100-2000Hz, with sufficient signal-to-noise ratios, will pass the 

encoding and decoding procedure. This is consistent with the results of recordings in this and 

the previous study [16]. 

 

3.2 The fddt Algorithm 

Wheezes contain frequency components within the frequency range of normal breath sounds. 

Considering wheezes as additive tonal signals to a normal breath sound, and considering the 

normal breath sound as a masker, then the detection of wheezes is a task of detecting a signal 

in a masker. The tonal signal is therefore detectable when its energy is above the threshold of 

the masking signal. 

 

The overall aim of the new fddt algorithm is to detect wheezes automatically. In this work an 

audible wheeze is identified as a peak in the frequency domain above the specified threshold.  

 



The threshold is specified based on the experimental results of Reed & Bilger [3]. Their results 

have shown that the masking threshold is frequency and noise level dependant. To take 

account of the frequency dependency, the intensity of the signal energy must exceed that of the 

noise spectrum level (the average noise power per Hz) by amounts varying from 8dB at 250Hz 

to 14dB at 4kHz. The effect of noise level is less, making the above threshold values change by 

only around 1dB. 

 

The baseline threshold level is given by 

   9.5 3.48log10( ) -10log( )fth f ERB= +  (3) 

 

For a duration of around 100ms, if the ratio of signal energy to noise energy, ES/EN expressed in 

dB, is greater than or equal to th , then the signal is detectable. In this work the STFT resolution 

(∆t) is 32ms, so 96ms, or 3∆t, is used as the baseline duration. Two more threshold levels are 

defined: 3th + , corresponding to 64ms, or 2∆t, and 4.8th + , corresponding to 32ms, or ∆t.  

Table 1 summarises this information. 

 

Table 1 Threshold 

Duration (ms) 10logES-10logEN (dB) 
96   9.5 3.48log10( ) -10log( )fth f ERB= +
64 3th +  
32 4.8th +  

 

The procedure is illustrated in figure 1 and a more detailed explanation is given below. 

1. Construct a time-frequency matrix A, which contains the power spectral density, by 

calculating the STFT with the following parameters: 512 samples, using a Hanning window 

of the same length with 50% overlap. Each cell of the matrix contains the power spectrum 

value (
2STFT ) at a certain time interval [ ],− ∆ + ∆t t t t  and frequency band 

[ ],ω − ∆ω ω+ ∆ω . Initialise all elements of a binary matrix B to zero (the same size as the 

matrix A). The matrix B is used as a way of tagging the identified peaks. 



2. Find peaks along columns of A, along the time axis. The peaks may either belong to a 

wheeze (signal) or noise. For the jth column of matrix A, if A(i,j)>A(i+1,j) and A(i,j)>A(i-1,j), 

then A(i,j) is a peak. 

3. Regarding a peak as corresponding to a signal component, calculate the energy of the 

signal, and the energy of the noise that passes through the auditory filter that centres on the 

signal. The filter bandwidth is calculated according to equation (1). If the signal-to-noise 

ratio is above the threshold, th , set the corresponding element of the B matrix to unity. 

4. Label B using the connected component labelling (CCL) algorithm [19]. As a result, the 

same wheeze components have the same label. The CCL is used as follows: 

Search the matrix B column by column and assign a value greater than 1 (a label) to each 

non-zero cell. The value is decided by the labels of the three neighbours (shown in figure 2). 

As a result of step 3, a maximum of only one of the three neighbours can be non-zero.  

• If all the neighbours of B (i,j) are 0, this means a new wheeze has been detected and 

B(i,j) is assigned a new unused label. 

• If any one of the neighbours has a non-zero label, this means the cell B(i,j) corresponds 

to the same wheeze as the previous non-zero neighbour, so the same label is assigned. 

 
5. Referring to the length (duration) of signals with the same label, identify signals of less than 

96ms duration and use the threshold levels of table 1 to remove the tags in the B matrix 

corresponding to shorter signals which do not exceed the higher threshold levels. 

6. Breath sounds have a strong relationship with flow rate [20-23] . That is, all frequency 

components of spectral power are changed with flow rate: the higher the flow rate, the 

higher the spectral power. So, the wheezes and the noise can be considered as co-

modulated by the flow. The co-modulation masking release phenomenon has the effect of 

decreasing the masking threshold [13]. This effect may mean that separately identified 

wheezes in step 5 are actually two components of the same wheeze. To compensate for 

this, detected peaks from step 2 which are neighbours of a wheezing component are 

relabelled so that they each have the same label, thereby connecting two wheeze signals. 

The neighbour definition is the same as in step 4. 



7. Produce a spectrogram with wheezes marked. Calculate the average wheezing frequency 

(a wheeze usually has a frequency change from beginning to the end), standard deviation 

of wheezing frequency, duration of each wheeze, and percentage occupation of wheeze in 

each respiratory phase. Only average wheezing frequency and occupation in each phase 

are displayed to keep the results display compact, and these values can be saved in a 

database. 

 

3.3 Implementing the fddt Algorithm 

The algorithm is implemented in Matlab. A graphical user interface (GUI) has been developed to 

facilitate the following operations: load files, expand/restore parts of the graphs that are of 

interest, detect wheezes and play sounds. The GUI is shown in figure 3, and displays time 

domain plots, power spectrum plots and spectrograms corresponding to one cycle of a breath 

sound. Figures 3 and 4 show the GUI display of a normal and wheezy breath sound 

respectively. If wheezes are detected, they are marked with black pixels in the spectrogram, 

thus tracing the frequency evolution with time. A pop-up window shows the mean wheeze 

frequency and wheeze percentage occupation in each respiration phase as shown in figure 5. If 

the user wants to save the results, the results are exported to a Microsoft™ Access database 

file. If no wheezes are detected, the pop-up window shows ‘no wheeze’. 

  

4 Application of fddt Algorithm to Measured Breath Sounds 
An example of the results of using the fddt algorithm is shown in figure 6, which displays 

contours of wheezes extracted from the breath sounds of a wheezy subject. The success of this 

algorithm is compared with three previously published algorithms for automatic wheeze 

detection. The three algorithms are applied to the same breath sound data as figure 6 and the 

results are shown in figures 7-9. 

 

The length of sample data affects the frequency resolution, which can be seen from figures 6-9. 

The length of the minimum segments in the contours indicates the time resolution. Baughman’s 

algorithm clearly has the lowest resolution, of 250ms. The window function can affect the 



frequency accuracy too. According to Baraniuk and Jones [24], when the signal components 

resemble the window, excellent time-frequency representation of STFT can be achieved. A 

cosine window is used to calculate STFT in the fddt algorithm, which means that the frequency 

accuracy is good. 

 
 
In the 20 subject data set, where recordings were from the same mobile phone, seven subjects 

had wheezes detectable by medical experts. Six patients had all wheeze components correctly 

identified by the fddt algorithm. A judgement that the wheeze components have been correctly 

identified is based on a combination of listening to the breath sounds, to estimate duration and 

pitch and to distinguish monophonic and polyphonic sounds, and interpreting the spectrograms 

to identify the visual wheeze lines in the time-frequency plane. Although this is not foolproof for 

real breath sounds, a similar procedure of comparison has been used for simulated breath 

sounds with known additive tonal signals representing wheezes, which has been successful in 

extracting the original wheeze signals using this algorithm [25]. This has leant confidence to the 

analysis of real subjects’ breath sounds. The recordings from the seventh wheezy subject were 

of poor quality, and the fddt algorithm only detected some of the wheeze components. In the 16 

subject data set, where subjects used their own mobile phones, four had wheezes which were 

correctly identified by the fddt algorithm.  

 

The other three algorithms were applied to the same two data sets, for comparison. The 

resulting contours are therefore compared using different algorithms based on different criteria. 

However, the common criterion is the specialist’s opinion, which has been a key component of 

the validation of all the published automatic wheeze detection algorithms. The other three 

algorithms were not as successful as the fddt algorithm. They managed to detect some of the 

wheeze components, but had more false detections of wheezes and failed to detect some true 

wheezes. In figures 7-9 the wheezes do not match the results in figure 6 and do not compare 

well with each other, mainly due to the specification of different constant thresholds in each of 

the algorithms. The higher thresholds missed the weak wheezes (as in figure 7), whereas the 

lower thresholds led to false detections (as in figure 8). 



 

The comparison of results from the developed fddt algorithm with the results from others shows 

that the fddt algorithm is better. This is due to the benefits of the auditory model. The reliance 

on constant thresholds in the previously published algorithms is a fundamental problem. 

However, since the constant thresholds are data dependent, some improvements in wheeze 

detection from the data sets in this work may be achievable by making some adjustments to the 

constant thresholds used in these algorithms.  

 
 

5 Conclusions 
As wheezes (signals) are embedded in normal breath sounds (noise), for the automatic wheeze 

detection algorithms two key problems should be resolved: how to detect a wheeze and how to 

distinguish a wheeze. In the frequency domain, the answer to the first problem is to find a peak 

in the spectrum. The answer to the second problem is to define a threshold that ensures the 

peak is a signal peak.  

 

The threshold definition in this work is different to previous threshold definitions in two aspects. 

One is that the threshold in this new algorithm is not a constant, but frequency dependent. This 

is reflected in the fERB  calculation in table 1. Also, thresholds were previously based on global 

power in the calculated frequency range, while in this algorithm the threshold is based on 

energy of only part of frequency range, that is, the energy within the auditory filter bandwidth. 

 

This algorithm provides an automatic wheeze detection tool, which has been shown to be more 

reliable than previous algorithms for data recorded from the trachea. The computer based 

system enables easy storage of historical data and results. The visual display facilitates reliable 

and easy detection of wheezes and the numerical presentation also facilitates quantification of 

wheeze severity, enabling easy management and comparison of historical records. 
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Figure 1 Schematic representation of fddt algorithm 
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Figure 2 Neighbours definition in labelling algorithm 
 
 
 

 

 

 

Figure 3 A normal tracheal breath sound of one cycle 
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Figure 4 A wheezing tracheal breath sound of one cycle. 

 

 

 

 

Figure 5 Pop-up window showing analysis results. 
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Figure 6 Contour of wheezes detected using fddt algorithm. 

 
 

 

 

Figure 7 Contour of wheezes detected using Fenton’s algorithm. 



 
 
 

 
 
 

Figure 8 Contour of wheezes detected using Baughman’s algorithm. 
 
 
 

 
 

 

Figure 9 Contour of wheezes detected using Homs-Corbera’s algorithm 
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