23 research outputs found

    Ranking and significance of variable-length similarity-based time series motifs

    Get PDF
    The detection of very similar patterns in a time series, commonly called motifs, has received continuous and increasing attention from diverse scientific communities. In particular, recent approaches for discovering similar motifs of different lengths have been proposed. In this work, we show that such variable-length similarity-based motifs cannot be directly compared, and hence ranked, by their normalized dissimilarities. Specifically, we find that length-normalized motif dissimilarities still have intrinsic dependencies on the motif length, and that lowest dissimilarities are particularly affected by this dependency. Moreover, we find that such dependencies are generally non-linear and change with the considered data set and dissimilarity measure. Based on these findings, we propose a solution to rank those motifs and measure their significance. This solution relies on a compact but accurate model of the dissimilarity space, using a beta distribution with three parameters that depend on the motif length in a non-linear way. We believe the incomparability of variable-length dissimilarities could go beyond the field of time series, and that similar modeling strategies as the one used here could be of help in a more broad context.Comment: 20 pages, 10 figure

    Efficiency Optimisation of a Forestry Crane by Implement Hydraulics with Energy Recovery

    Get PDF
    Forwarders are an essential part in fully mechanised timber harvesting chains. Due to a suboptimal energy usage at the implement hydraulics, caused by unused energy recovery, there is a great potential for an optimisation of the machines to increase its sustainability and environmental compatibility. Hence, innovative solutions for this challenge are designed within the project ‘Forwarder2020’ at the Karlsruhe Institute of Technology (KIT), embedded in and sponsored by the European program ‘Horizon 2020’, managed by the project leader HSM Hohenloher Spezial-Maschinenbau GmbH & Co. KG. The focus in this treatise is on the energy efficiency of a forestry crane, for example mounted on a forwarder. On current machines there is no built-in system to recover energy. An energy recuperation and regeneration system is therefore developed for forestry cranes. To compare the efficiency of different machines or system architectures and to evaluate the energy recovery potential of loading processes, reference loading cycles have been established based on field measurements of real logging processes. These standardized reference cycles represent recurrent loading cycles in a working environment

    NATSA: A Near-Data Processing Accelerator for Time Series Analysis

    Get PDF
    Time series analysis is a key technique for extracting and predicting events in domains as diverse as epidemiology, genomics, neuroscience, environmental sciences, economics, and more. Matrix profile, the state-of-the-art algorithm to perform time series analysis, computes the most similar subsequence for a given query subsequence within a sliced time series. Matrix profile has low arithmetic intensity, but it typically operates on large amounts of time series data. In current computing systems, this data needs to be moved between the off-chip memory units and the on-chip computation units for performing matrix profile. This causes a major performance bottleneck as data movement is extremely costly in terms of both execution time and energy. In this work, we present NATSA, the first Near-Data Processing accelerator for time series analysis. The key idea is to exploit modern 3D-stacked High Bandwidth Memory (HBM) to enable efficient and fast specialized matrix profile computation near memory, where time series data resides. NATSA provides three key benefits: 1) quickly computing the matrix profile for a wide range of applications by building specialized energy-efficient floating-point arithmetic processing units close to HBM, 2) improving the energy efficiency and execution time by reducing the need for data movement over slow and energy-hungry buses between the computation units and the memory units, and 3) analyzing time series data at scale by exploiting low-latency, high-bandwidth, and energy-efficient memory access provided by HBM. Our experimental evaluation shows that NATSA improves performance by up to 14.2x (9.9x on average) and reduces energy by up to 27.2x (19.4x on average), over the state-of-the-art multi-core implementation. NATSA also improves performance by 6.3x and reduces energy by 10.2x over a general-purpose NDP platform with 64 in-order cores.Comment: To appear in the 38th IEEE International Conference on Computer Design (ICCD 2020
    corecore