1,011 research outputs found

    A Lightweight Deep Learning Model for The Early Detection of Epilepsy

    Get PDF
    Epilepsy is a neurological disorder and non communicable disease which affects patient's health, During this seizure occurrence normal brain function activity will be interrupted. It may happen anywhere and anytime so it leads to very dangerous problems like sudden unexpected death. Worldwide seizure affected people are around 65% million. So it must be considered as serious problem for the early prediction.  A number of different types of screening tests will be conducted to assess the severity of the symptoms such as EEG,MRI, ECG, and ECG. There are several reasons why EEG signals are used, including their affordability, portability, and ability to display. The proposed model used bench-marked CHB-MIT EEG datasets for the implementation of early prediction of epilepsy ensures its seriousness and leads to perfect diagnosis. Researchers proposed Various ML /DL methods to  try for the early prediction of epilepsy but still it has some challenges in terms of efficiency and precision Seizure detection techniques typically employ the use of convolutional neural networks (CNN) and a bidirectional short- and long-term memory (Bi-LSTM) model in the realm of deep learning. This method leverages the strengths of both models to effectively analyze electroencephalogram (EEG) data and detect seizure patterns. These light weight models have been found to be effective in automatically detecting seizures in deep learning techniques with an accuracy rate of up to 96.87%. Hence, this system has the potential to be utilized for categorizing other types of physiological signals too, but additional research is required to confirm this

    Towards developing a reliable medical device for automated epileptic seizure detection in the ICU

    Get PDF
    Abstract. Epilepsy is a prevalent neurological disorder that affects millions of people globally, and its diagnosis typically involves laborious manual inspection of electroencephalography (EEG) data. Automated detection of epileptic seizures in EEG signals could potentially improve diagnostic accuracy and reduce diagnosis time, but there should be special attention to the number of false alarms to reduce unnecessary treatments and costs. This research presents a study on the use of machine learning techniques for EEG seizure detection with the aim of investigating the effectiveness of different algorithms in terms of high sensitivity and low false alarm rates for feature extraction, selection, pre-processing, classification, and post-processing in designing a medical device for detecting seizure activity in EEG data. The current state-of-the-art methods which are validated clinically using large amounts of data are introduced. The study focuses on finding potential machine learning methods, considering KNN, SVM, decision trees and, Random forests, and compares their performance on the task of seizure detection using features introduced in the literature. Also using ensemble methods namely, bootstrapping and majority voting techniques we achieved a sensitivity of 0.80 and FAR/h of 2.10, accuracy of 97.1% and specificity of 98.2%. Overall, the findings of this study can be useful for developing more accurate and efficient algorithms for EEG seizure detection medical device, which can contribute to the early diagnosis and treatment of epilepsy in the intensive care unit for critically ill patients

    Epileptic Seizure Detection And Prediction From Electroencephalogram Using Neuro-Fuzzy Algorithms

    Get PDF
    This dissertation presents innovative approaches based on fuzzy logic in epileptic seizure detection and prediction from Electroencephalogram (EEG). The fuzzy rule-based algorithms were developed with the aim to improve quality of life of epilepsy patients by utilizing intelligent methods. An adaptive fuzzy logic system was developed to detect seizure onset in a patient specific way. Fuzzy if-then rules were developed to mimic the human reasoning and taking advantage of the combination in spatial-temporal domain. Fuzzy c-means clustering technique was utilized for optimizing the membership functions for varying patterns in the feature domain. In addition, application of the adaptive neuro-fuzzy inference system (ANFIS) is presented for efficient classification of several commonly arising artifacts from EEG. Finally, we present a neuro-fuzzy approach of seizure prediction by applying the ANFIS. Patient specific ANFIS classifier was constructed to forecast a seizure followed by postprocessing methods. Three nonlinear seizure predictive features were used to characterize changes prior to seizure. The nonlinear features used in this study were similarity index, phase synchronization, and nonlinear interdependence. The ANFIS classifier was constructed based on these features as inputs. Fuzzy if-then rules were generated by the ANFIS classifier using the complex relationship of feature space provided during training. In this dissertation, the application of the neuro-fuzzy algorithms in epilepsy diagnosis and treatment was demonstrated by applying the methods on different datasets. Several performance measures such as detection delay, sensitivity and specificity were calculated and compared with results reported in literature. The proposed algorithms have potentials to be used in diagnostics and therapeutic applications as they can be implemented in an implantable medical device to detect a seizure, forecast a seizure, and initiate neurostimulation therapy for the purpose of seizure prevention or abortion

    Deep learning approach for epileptic seizure detection

    Get PDF
    Abstract. Epilepsy is the most common brain disorder that affects approximately fifty million people worldwide, according to the World Health Organization. The diagnosis of epilepsy relies on manual inspection of EEG, which is error-prone and time-consuming. Automated epileptic seizure detection of EEG signal can reduce the diagnosis time and facilitate targeting of treatment for patients. Current detection approaches mainly rely on the features that are designed manually by domain experts. The features are inflexible for the detection of a variety of complex patterns in a large amount of EEG data. Moreover, the EEG is non-stationary signal and seizure patterns vary across patients and recording sessions. EEG data always contain numerous noise types that negatively affect the detection accuracy of epileptic seizures. To address these challenges deep learning approaches are examined in this paper. Deep learning methods were applied to a large publicly available dataset, the Children’s Hospital of Boston-Massachusetts Institute of Technology dataset (CHB-MIT). The present study includes three experimental groups that are grouped based on the pre-processing steps. The experimental groups contain 3–4 experiments that differ between their objectives. The time-series EEG data is first pre-processed by certain filters and normalization techniques, and then the pre-processed signal was segmented into a sequence of non-overlapping epochs. Second, time series data were transformed into different representations of input signals. In this study time-series EEG signal, magnitude spectrograms, 1D-FFT, 2D-FFT, 2D-FFT magnitude spectrum and 2D-FFT phase spectrum were investigated and compared with each other. Third, time-domain or frequency-domain signals were used separately as a representation of input data of VGG or DenseNet 1D. The best result was achieved with magnitude spectrograms used as representation of input data in VGG model: accuracy of 0.98, sensitivity of 0.71 and specificity of 0.998 with subject dependent data. VGG along with magnitude spectrograms produced promising results for building personalized epileptic seizure detector. There was not enough data for VGG and DenseNet 1D to build subject-dependent classifier.Epileptisten kohtausten havaitseminen syväoppimisella lähestymistavalla. Tiivistelmä. Epilepsia on yleisin aivosairaus, joka Maailman terveysjärjestön mukaan vaikuttaa noin viiteenkymmeneen miljoonaan ihmiseen maailmanlaajuisesti. Epilepsian diagnosointi perustuu EEG:n manuaaliseen tarkastamiseen, mikä on virhealtista ja aikaa vievää. Automaattinen epileptisten kohtausten havaitseminen EEG-signaalista voi potentiaalisesti vähentää diagnoosiaikaa ja helpottaa potilaan hoidon kohdentamista. Nykyiset tunnistusmenetelmät tukeutuvat pääasiassa piirteisiin, jotka asiantuntijat ovat määritelleet manuaalisesti, mutta ne ovat joustamattomia monimutkaisten ilmiöiden havaitsemiseksi suuresta määrästä EEG-dataa. Lisäksi, EEG on epästationäärinen signaali ja kohtauspiirteet vaihtelevat potilaiden ja tallennusten välillä ja EEG-data sisältää aina useita kohinatyyppejä, jotka huonontavat epilepsiakohtauksen havaitsemisen tarkkuutta. Näihin haasteisiin vastaamiseksi tässä diplomityössä tarkastellaan soveltuvatko syväoppivat menetelmät epilepsian havaitsemiseen EEG-tallenteista. Aineistona käytettiin suurta julkisesti saatavilla olevaa Bostonin Massachusetts Institute of Technology lastenklinikan tietoaineistoa (CHB-MIT). Tämän työn tutkimus sisältää kolme koeryhmää, jotka eroavat toisistaan esikäsittelyvaiheiden osalta: aikasarja-EEG-data esikäsiteltiin perinteisten suodattimien ja normalisointitekniikoiden avulla, ja näin esikäsitelty signaali segmentoitiin epookkeihin. Kukin koeryhmä sisältää 3–4 koetta, jotka eroavat menetelmiltään ja tavoitteiltaan. Kussakin niistä epookkeihin jaettu aikasarjadata muutettiin syötesignaalien erilaisiksi esitysmuodoiksi. Tässä tutkimuksessa tutkittiin ja verrattiin keskenään EEG-signaalia sellaisenaan, EEG-signaalin amplitudi-spektrogrammeja, 1D-FFT-, 2D-FFT-, 2D-FFT-amplitudi- ja 2D-FFT -vaihespektriä. Näin saatuja aika- ja taajuusalueen signaaleja käytettiin erikseen VGG- tai DenseNet 1D -mallien syötetietoina. Paras tulos saatiin VGG-mallilla kun syötetietona oli amplitudi-spektrogrammi ja tällöin tarkkuus oli 0,98, herkkyys 0,71 ja spesifisyys 0,99 henkilöstä riippuvaisella EEG-datalla. VGG yhdessä amplitudi-spektrogrammien kanssa tuottivat lupaavia tuloksia henkilökohtaisen epilepsiakohtausdetektorin rakentamiselle. VGG- ja DenseNet 1D -malleille ei ollut tarpeeksi EEG-dataa henkilöstä riippumattoman luokittelijan opettamiseksi

    EEG-Biofeedback and epilepsy: concept, methodology and tools for (neuro)therapy planning and objective evaluation

    Get PDF
    EEG-Biofeedback and Epilepsy: Concept, Methodology and Tools for (Neuro)therapy Planning and Objective Evaluation ABSTRACT Objective diagnosis and therapy evaluation are still challenging tasks for many neurological disorders. This is highly related to the diversity of cases and the variety of treatment modalities available. Especially in the case of epilepsy, which is a complex disorder not well-explained at the biochemical and physiological levels, there is the need for investigations for novel features, which can be extracted and quantified from electrophysiological signals in clinical practice. Neurotherapy is a complementary treatment applied in various disorders of the central nervous system, including epilepsy. The method is subsumed under behavioral medicine and is considered an operant conditioning in psychological terms. Although the application areas of this promising unconventional approach are rapidly increasing, the method is strongly debated, since the neurophysiological underpinnings of the process are not yet well understood. Therefore, verification of the efficacy of the treatment is one of the core issues in this field of research. Considering the diversity in epilepsy and its various treatment modalities, a concept and a methodology were developed in this work for increasing objectivity in diagnosis and therapy evaluation. The approach can also fulfill the requirement of patient-specific neurotherapy planning. Neuroprofile is introduced as a tool for defining a structured set of quantifiable measures which can be extracted from electrophysiological signals. A set of novel quantitative features (i.e., percentage epileptic pattern occurrence, contingent negative variation level difference measure, direct current recovery index, heart rate recovery ratio, and hyperventilation heart rate index) were defined, and the methods were introduced for extracting them. A software concept and the corresponding tools (i.e., the neuroprofile extraction module and a database) were developed as a basis for automation to support the methodology. The features introduced were investigated through real data, which were acquired both in laboratory studies with voluntary control subjects and in clinical applications with epilepsy patients. The results indicate the usefulness of the introduced measures and possible benefits of integrating the indices obtained from electroencephalogram (EEG) and electrocardiogram for diagnosis and therapy evaluation. The applicability of the methodology was demonstrated on sample cases for therapy evaluation. Based on the insights gained through the work, synergetics was proposed as a theoretical framework for comprehending neurotherapy as a complex process of learning. Furthermore, direct current (DC)-level in EEG was hypothesized to be an order parameter of the brain complex open system. For future research in this field, investigation of the interactions between higher cognitive functions and the autonomous nervous system was proposed. Keywords: EEG-biofeedback, epilepsy, neurotherapy, slow cortical potentials, objective diagnosis, therapy evaluation, epileptic pattern quantification, fractal dimension, contingent negative variation, hyperventilation, DC-shifts, instantaneous heart rate, neuroprofile, database system, synergetics.Die Epilepsie ist eine komplexe neurologische Erkrankung, die auf biochemischer und physiologischer Ebene nicht ausreichend geklärt ist. Die Vielfalt der epileptischen Krankheitsbilder und der Behandlungsmodalitäten verursacht ein Defizit an quantitativen Kenngrößen auf elektrophysiologischer Basis, die die Objektivität und die Effizienz der Diagnose und der Therapieevaluierung signifikant erhöhen können. Die Neurotherapie (bzw. EEG-Biofeedback) ist eine komplementäre Behandlung, die bei Erkrankungen, welche in Zusammenhang mit Regulationsproblemen des Zentralnervensystems stehen, angewandt wird. Obwohl sich die Applikationen dieser unkonventionellen Methode erweitern, wird sie nach wie vor stark diskutiert, da deren neuro- und psychophysiologischen Mechanismen wenig erforscht sind. Aus diesem Grund ist die Ermittlung von Kenngrößen als elektrophysiologische Korrelaten der ablaufenden Prozesse zur objektiven Einstellung und Therapievalidierung eines der Kernprobleme des Forschungsgebietes und auch der vorliegenden Arbeit. Unter Berücksichtigung der aktuellen neurologischen Erkenntnisse und der durch Untersuchungen an Probanden, sowie an Epilepsie-Patienten gewonnenen Ergebnisse, wurden ein Konzept und eine Methodologie entwickelt, um die Objektivität in der Diagnose und Therapieevaluierung zu erhöhen. Die Methodologie basiert auf einem Neuroprofil, welches als ein signalanalytisches mehrdimensionales Modell eingeführt wurde. Es beschreibt einen strukturierten Satz quantifizierbarer Kenngrößen, die aus dem Elektroenzephalogramm (EEG), den ereignisbezogenen Potentialen und dem Elektrokardiogramm extrahiert werden können. Als Komponenten des Neuroprofils wurden neuartige quantitative Kenngrößen (percentage epileptic pattern occurrence, contingent negative variation level difference measure, direct current recovery index, heart rate recovery ratio, hyperventilation heart rate index) definiert und die Methoden zu deren Berechnung algorithmisiert. Die Anwendbarkeit der Methodologie wurde beispielhaft für die Evaluierung von Neurotherapien an Epilepsie-Patienten demonstriert. Als Basis für eine zukünftige Automatisierung wurden ein Softwarekonzept und entsprechende Tools (neuroprofile extraction module und die Datenbank ?NeuroBase?) entwickelt. Der Ansatz erfüllt auch die Anforderungen der patientenspezifischen Therapieplanung und kann auf andere Krankheitsbilder übertragen werden. Durch die neu gewonnenen Erkenntnisse wurde die Synergetik als ein theoretischer Rahmen für die Analyse der Neurotherapie als komplexer Lernprozess vorgeschlagen. Es wurde die Hypothese aufgestellt, dass das Gleichspannungsniveau im EEG ein Ordnungsparameter des Gehirn ist, wobei das Gehirn als ein komplexes offenes System betrachtet wird. Für zukünftige Forschungen auf dem Gebiet wird empfohlen, die Wechselwirkungen zwischen den höheren kognitiven Funktionen und dem autonomen Nervensystem in diesem Kontext zu untersuchen

    A new algorithm for epilepsy seizure onset detection and spread estimation from EEG signals

    Get PDF
    Appropriate diagnosis and treatment of epilepsy is a main public health issue. Patients suffering from this disease often exhibit different physical characterizations, which result from the synchronous and excessive discharge of a group of neurons in the cerebral cortex. Extracting this information using EEG signals is an important problem in biomedical signal processing. In this work we propose a new algorithm for seizure onset detection and spread estimation in epilepsy patients. The algorithm is based on a multilevel 1-D wavelet decomposition that captures the physiological brain frequency signals coupled with a generalized gaussian model. Preliminary experiments with signals from 30 epilepsy crisis and 11 subjects, suggest that the proposed methodology is a powerful tool for detecting the onset of epilepsy seizures with his spread across the brain.Fil: Antonio Quintero, Rincón. Instituto Tecnológico de Buenos Aires; ArgentinaFil: Pereyra, Marcelo Fabián. University of Bristol; Reino UnidoFil: D'Giano, Carlos. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; ArgentinaFil: Batatia, Hadj. Instituto Polytechnique de Toulouse; Francia. University of Toulouse; FranciaFil: Risk, Marcelo. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
    corecore