3,791 research outputs found

    Identifying the time profile of everyday activities in the home using smart meter data

    Get PDF
    Activities are a descriptive term for the common ways households spend their time. Examples include cooking, doing laundry, or socialising. Smart meter data can be used to generate time profiles of activities that are meaningful to householdsā€™ own lived experience. Activities are therefore a lens through which energy feedback to households can be made salient and understandable. This paper demonstrates a multi-step methodology for inferring hourly time profiles of ten household activities using smart meter data, supplemented by individual appliance plug monitors and environmental sensors. First, household interviews, video ethnography, and technology surveys are used to identify appliances and devices in the home, and their roles in specific activities. Second, ā€˜ontologiesā€™ are developed to map out the relationships between activities and technologies in the home. One or more technologies may indicate the occurrence of certain activities. Third, data from smart meters, plug monitors and sensor data are collected. Smart meter data measuring aggregate electricity use are disaggregated and processed together with the plug monitor and sensor data to identify when and for how long different activities are occurring. Sensor data are particularly useful for activities that are not always associated with an energy-using device. Fourth, the ontologies are applied to the disaggregated data to make inferences on hourly time profiles of ten everyday activities. These include washing, doing laundry, watching TV (reliably inferred), and cleaning, socialising, working (inferred with uncertainties). Fifth, activity time diaries and structured interviews are used to validate both the ontologies and the inferred activity time profiles. Two case study homes are used to illustrate the methodology using data collected as part of a UK trial of smart home technologies. The methodology is demonstrated to produce reliable time profiles of a range of domestic activities that are meaningful to households. The methodology also emphasises the value of integrating coded interview and video ethnography data into both the development of the activity inference process

    Fat, oil and grease reduction in commercial kitchen ductwork: a novel biological approach

    Get PDF
    Recent research has characterised emissions upon cooking a variety of foods in a commercial catering environment in terms of volume, particle size and composition. However, there has been limited focus on the deposition of solid grease in commercial kitchen ductwork, the sustainability of these systems and their implications on the heat recovery potential of kitchen ventilation extract air. This paper reviews the literature concerning grease, commonly referred to as Fat, Oils and Grease (FOG) abatement strategies and finds that many of these systems fall short of claimed performances. Furthermore these technologies often add to the energy cost of the operation and reduce the potential application of heat recovery in the ventilation ductwork. The aim of this study was to develop and evaluate a novel FOG removal system, with a focus on low environmental impact. The novel FOG removal system, utilises the biological activity of Bacillus subtilis and associated enzymes. The biological reagent is delivered via a misting system. The temperature, relative humidity and FOG deposit thickness were measured in the ductwork throughout a 3 month trial period. FOG deposit thickness was reduced by 47% within 7 weeks. The system was found to be effective at reducing the FOG deposit thickness with minimal energy cost and impact upon the kitchen and external environment. Internal ductwork operating temperature was measured with respect to future heat recovery potential and a reduction of 7 Ā°C was observed

    Unobtrusive Health Monitoring in Private Spaces: The Smart Home

    Get PDF
    With the advances in sensor technology, big data, and artificial intelligence, unobtrusive in-home health monitoring has been a research focus for decades. Following up our research on smart vehicles, within the framework of unobtrusive health monitoring in private spaces, this work attempts to provide a guide to current sensor technology for unobtrusive in-home monitoring by a literature review of the state of the art and to answer, in particular, the questions: (1) What types of sensors can be used for unobtrusive in-home health data acquisition? (2) Where should the sensors be placed? (3) What data can be monitored in a smart home? (4) How can the obtained data support the monitoring functions? We conducted a retrospective literature review and summarized the state-of-the-art research on leveraging sensor technology for unobtrusive in-home health monitoring. For structured analysis, we developed a four-category terminology (location, unobtrusive sensor, data, and monitoring functions). We acquired 912 unique articles from four relevant databases (ACM Digital Lib, IEEE Xplore, PubMed, and Scopus) and screened them for relevance, resulting in n=55 papers analyzed in a structured manner using the terminology. The results delivered 25 types of sensors (motion sensor, contact sensor, pressure sensor, electrical current sensor, etc.) that can be deployed within rooms, static facilities, or electric appliances in an ambient way. While behavioral data (e.g., presence (n=38), time spent on activities (n=18)) can be acquired effortlessly, physiological parameters (e.g., heart rate, respiratory rate) are measurable on a limited scale (n=5). Behavioral data contribute to functional monitoring. Emergency monitoring can be built up on behavioral and environmental data. Acquired physiological parameters allow reasonable monitoring of physiological functions to a limited extent. Environmental data and behavioral data also detect safety and security abnormalities. Social interaction monitoring relies mainly on direct monitoring of tools of communication (smartphone; computer). In summary, convincing proof of a clear effect of these monitoring functions on clinical outcome with a large sample size and long-term monitoring is still lacking

    Identifying the time profile of everyday activities in the home using smart meter data

    Get PDF
    Activities are a descriptive term for the common ways households spend their time. Examples include cooking, doing laundry, or socialising. Smart meter data can be used to generate time profiles of activities that are meaningful to householdsā€™ own lived experience. Activities are therefore a lens through which energy feedback to households can be made salient and understandable. This paper demonstrates a multi-step methodology for inferring hourly time profiles of ten household activities using smart meter data, supplemented by individual appliance plug monitors and environmental sensors. First, household interviews, video ethnography, and technology surveys are used to identify appliances and devices in the home, and their roles in specific activities. Second, ā€˜ontologiesā€™ are developed to map out the relationships between activities and technologies in the home. One or more technologies may indicate the occurrence of certain activities. Third, data from smart meters, plug monitors and sensor data are collected. Smart meter data measuring aggregate electricity use are disaggregated and processed together with the plug monitor and sensor data to identify when and for how long different activities are occurring. Sensor data are particularly useful for activities that are not always associated with an energy-using device. Fourth, the ontologies are applied to the disaggregated data to make inferences on hourly time profiles of ten everyday activities. These include washing, doing laundry, watching TV (reliably inferred), and cleaning, socialising, working (inferred with uncertainties). Fifth, activity time diaries and structured interviews are used to validate both the ontologies and the inferred activity time profiles. Two case study homes are used to illustrate the methodology using data collected as part of a UK trial of smart home technologies. The methodology is demonstrated to produce reliable time profiles of a range of domestic activities that are meaningful to households. The methodology also emphasises the value of integrating coded interview and video ethnography data into both the development of the activity inference process

    Sensor-based artificial intelligence to support people with cognitive and physical disorders

    Get PDF
    A substantial portion of the world's population deals with disability. Many disabled people do not have equal access to healthcare, education, and employment opportunities, do not receive specific disability-related services, and experience exclusion from everyday life activities. One way to face these issues is through the use of healthcare technologies. Unfortunately, there is a large amount of diverse and heterogeneous disabilities, which require ad-hoc and personalized solutions. Moreover, the design and implementation of effective and efficient technologies is a complex and expensive process involving challenging issues, including usability and acceptability. The work presented in this thesis aims to improve the current state of technologies available to support people with disorders affecting the mind or the motor system by proposing the use of sensors coupled with signal processing methods and artificial intelligence algorithms. The first part of the thesis focused on mental state monitoring. We investigated the application of a low-cost portable electroencephalography sensor and supervised learning methods to evaluate a person's attention. Indeed, the analysis of attention has several purposes, including the diagnosis and rehabilitation of children with attention-deficit/hyperactivity disorder. A novel dataset was collected from volunteers during an image annotation task, and used for the experimental evaluation using different machine learning techniques. Then, in the second part of the thesis, we focused on addressing limitations related to motor disability. We introduced the use of graph neural networks to process high-density electromyography data for upper limbs amputeesā€™ movement/grasping intention recognition for enabling the use of robotic prostheses. High-density electromyography sensors can simultaneously acquire electromyography signals from different parts of the muscle, providing a large amount of spatio-temporal information that needs to be properly exploited to improve recognition accuracy. The investigation of the approach was conducted using a recent real-world dataset consisting of electromyography signals collected from 20 volunteers while performing 65 different gestures. In the final part of the thesis, we developed a prototype of a versatile interactive system that can be useful to people with different types of disabilities. The system can maintain a food diary for frail people with nutrition problems, such as people with neurocognitive diseases or frail elderly people, which may have difficulties due to forgetfulness or physical issues. The novel architecture automatically recognizes the preparation of food at home, in a privacy-preserving and unobtrusive way, exploiting air quality data acquired from a commercial sensor, statistical features extraction, and a deep neural network. A robotic system prototype is used to simplify the interaction with the inhabitant. For this work, a large dataset of annotated sensor data acquired over a period of 8 months from different individuals in different homes was collected. Overall, the results achieved in the thesis are promising, and pave the way for several real-world implementations and future research directions

    Emission factors for open and domestic biomass burning for use in atmospheric models

    Get PDF
    Biomass burning (BB) is the second largest source of trace gases and the largest source of primary fine carbonaceous particles in the global troposphere. Many recent BB studies have provided new emission factor (EF) measurements. This is especially true for non-methane organic compounds (NMOC), which influence secondary organic aerosol (SOA) and ozone formation. New EF should improve regional to global BB emissions estimates and therefore, the input for atmospheric models. In this work we present an up-to-date, comprehensive tabulation of EF for known pyrogenic species based on measurements made in smoke that has cooled to ambient temperature, but not yet undergone significant photochemical processing. All EFs are converted to one standard form (g compound emitted per kg dry biomass burned) using the carbon mass balance method and they are categorized into 14 fuel or vegetation types. Biomass burning terminology is defined to promote consistency. We compile a large number of measurements of biomass consumption per unit area for important fire types and summarize several recent estimates of global biomass consumption by the major types of biomass burning. Post emission processes are discussed to provide a context for the emission factor concept within overall atmospheric chemistry and also highlight the potential for rapid changes relative to the scale of some models or remote sensing products. Recent work shows that individual biomass fires emit significantly more gas-phase NMOC than previously thought and that including additional NMOC can improve photochemical model performance. A detailed global estimate suggests that BB emits at least 400 Tg yr^(āˆ’1) of gas-phase NMOC, which is almost 3 times larger than most previous estimates. Selected recent results (e.g. measurements of HONO and the BB tracers HCN and CH_3CN) are highlighted and key areas requiring future research are briefly discussed

    Indoor Air Quality

    Get PDF
    This is a report from the Air Quality Expert Group to the Department for Environment, Food and Rural Affairs; Scottish Government; Welsh Government; and Department of Agriculture, Environment and Rural Affairs in Northern Ireland, on indoor air quality in the UK. The information contained within this report represents a review of the understanding and evidence available at the time of writing
    • ā€¦
    corecore