28 research outputs found

    Process fault prediction and prognosis based on a hybrid technique

    Get PDF
    The present study introduces a novel hybrid methodology for fault detection and diagnosis (FDD) and fault prediction and prognosis (FPP). The hybrid methodology combines both data-driven and process knowledge driven techniques. The Hidden Markov Model (HMM) and the auxiliary codes detect and predict the abnormalities based on process history while the Bayesian Network (BN) diagnoses the root cause of the fault based on process knowledge. In the first step, the system performance is evaluated for fault detection and diagnosis and in the second step, prediction and prognosis are evaluated. In both cases, an HMM trained with Normal Operating Condition data is used to determine the log-likelihoods (LL) of each process history data string. It is then used to develop the Conditional Probability Tables of BN while the structure of BN is developed based on process knowledge. Abnormal behaviour of the system is identified through HMM. The time of detection of an abnormality, respective LL value, and the probabilities of being in the process condition at the time of detection are used to generate the likelihood evidence to BN. The updated BN is then used to diagnose the root cause by considering the respective changes of the probabilities. Performance of the new technique is validated with published data of Tennessee Eastman Process. Eight of the ten selected faults were successfully detected and diagnosed. The same set of faults were predicted and prognosed accurately at different levels of maximum added noise

    Design and Validation of Network-on-Chip Architectures for the Next Generation of Multi-synchronous, Reliable, and Reconfigurable Embedded Systems

    Get PDF
    NETWORK-ON-CHIP (NoC) design is today at a crossroad. On one hand, the design principles to efficiently implement interconnection networks in the resource-constrained on-chip setting have stabilized. On the other hand, the requirements on embedded system design are far from stabilizing. Embedded systems are composed by assembling together heterogeneous components featuring differentiated operating speeds and ad-hoc counter measures must be adopted to bridge frequency domains. Moreover, an unmistakable trend toward enhanced reconfigurability is clearly underway due to the increasing complexity of applications. At the same time, the technology effect is manyfold since it provides unprecedented levels of system integration but it also brings new severe constraints to the forefront: power budget restrictions, overheating concerns, circuit delay and power variability, permanent fault, increased probability of transient faults. Supporting different degrees of reconfigurability and flexibility in the parallel hardware platform cannot be however achieved with the incremental evolution of current design techniques, but requires a disruptive approach and a major increase in complexity. In addition, new reliability challenges cannot be solved by using traditional fault tolerance techniques alone but the reliability approach must be also part of the overall reconfiguration methodology. In this thesis we take on the challenge of engineering a NoC architectures for the next generation systems and we provide design methods able to overcome the conventional way of implementing multi-synchronous, reliable and reconfigurable NoC. Our analysis is not only limited to research novel approaches to the specific challenges of the NoC architecture but we also co-design the solutions in a single integrated framework. Interdependencies between different NoC features are detected ahead of time and we finally avoid the engineering of highly optimized solutions to specific problems that however coexist inefficiently together in the final NoC architecture. To conclude, a silicon implementation by means of a testchip tape-out and a prototype on a FPGA board validate the feasibility and effectivenes

    Advanced Process Monitoring for Industry 4.0

    Get PDF
    This book reports recent advances on Process Monitoring (PM) to cope with the many challenges raised by the new production systems, sensors and “extreme data” conditions that emerged with Industry 4.0. Concepts such as digital-twins and deep learning are brought to the PM arena, pushing forward the capabilities of existing methodologies to handle more complex scenarios. The evolution of classical paradigms such as Latent Variable modeling, Six Sigma and FMEA are also covered. Applications span a wide range of domains such as microelectronics, semiconductors, chemicals, materials, agriculture, as well as the monitoring of rotating equipment, combustion systems and membrane separation processes

    Run-time reconfigurable, fault-tolerant FPGA systems for space applications

    Get PDF
    Cozzi D. Run-time reconfigurable, fault-tolerant FPGA systems for space applications. Bielefeld: UniversitÀt Bielefeld; 2016.The aim of this thesis is to investigate the use of Dynamic Partial Reconfiguration (DPR) on Commercial Off-the-Shelf (COTS) FPGAs in space applications. Reconfigurable systems gained interest in a wide range of application fields, including aerospace, where electronic devices are exposed to a harsh working environment. COTS SRAM-based FPGA devices represent an interesting hardware platform for this kind of systems since they combine low cost with the possibility to utilize state-of-the-art processing power as well as the flexibility of reconfigurable hardware. FPGA architectures have high computational power and thanks to their ability to be reconfigured at run-time, they became interesting candidates for payload processing in space applications. The presented Dynamic Reconfigurable Processing Module (DRPM) has been developed to investigate the use of the DPR approach for satellite payload processing. This scalable platform combines dynamically reconfigurable FPGAs with the required avionic interfaces (e.g., SpaceWire, MIL-STD-1553B, and SpaceFibre). In particular, a novel communication interface has been developed, the Heterogeneous Multi Processor Communication Interface (HMPCI), which allows inter-process communication with small latency and low memory footprint. Current synthesis tools do not support fully the DPR capabilities of FPGAs. Therefore, this thesis introduces INDRA 2.0: an INtegrated Design flow for Reconfigurable Architectures. The key part of INDRA 2.0 is DHHarMa: a Design flow for Homogeneous Hard Macros, which generates homogeneous hard macros for Xilinx FPGAs starting from a high-level description (e.g., VHDL). In particular, the homogeneous DHHarMa router is explained in detail, providing novel terminologies and algorithms, which have enabled the generation of homogeneous routed designs. Results have been shown that Design flow for Homogeneous Hard Macros (DHHarMa) can route homogeneously a communication infrastructure utilizing just between 1% and 31% more resources than the Xilinx router, which cannot provide a homogeneous solution. Furthermore, the permanent faults that can occur on FPGAs have been investigated. This thesis presents OLT(RE)2: an on-line on-demand approach to testing permanent faults induced by radiation in reconfigurable systems used in space missions. The proposed approach relies on a test circuit and custom placer and router. OLT(RE)2 exploits DPR to place the test circuits at run-time. Its goal is to test unprogrammed areas of the FPGA before using them. Experimental results of OLT(RE)2 have shown that is possible to generate, place, and route the test circuits needed to detect on average more than 99 % of the physical wires and on average about 97 % of the programmable interconnection points of a large arbitrary region of the FPGA in a reasonable time. Moreover, the test can be run on the target device without interfering the functional behavior of the system

    Participative Urban Health and Healthy Aging in the Age of AI

    Get PDF
    This open access book constitutes the refereed proceedings of the 18th International Conference on String Processing and Information Retrieval, ICOST 2022, held in Paris, France, in June 2022. The 15 full papers and 10 short papers presented in this volume were carefully reviewed and selected from 33 submissions. They cover topics such as design, development, deployment, and evaluation of AI for health, smart urban environments, assistive technologies, chronic disease management, and coaching and health telematics systems

    Cyber-Physical Threat Intelligence for Critical Infrastructures Security

    Get PDF
    Modern critical infrastructures comprise of many interconnected cyber and physical assets, and as such are large scale cyber-physical systems. Hence, the conventional approach of securing these infrastructures by addressing cyber security and physical security separately is no longer effective. Rather more integrated approaches that address the security of cyber and physical assets at the same time are required. This book presents integrated (i.e. cyber and physical) security approaches and technologies for the critical infrastructures that underpin our societies. Specifically, it introduces advanced techniques for threat detection, risk assessment and security information sharing, based on leading edge technologies like machine learning, security knowledge modelling, IoT security and distributed ledger infrastructures. Likewise, it presets how established security technologies like Security Information and Event Management (SIEM), pen-testing, vulnerability assessment and security data analytics can be used in the context of integrated Critical Infrastructure Protection. The novel methods and techniques of the book are exemplified in case studies involving critical infrastructures in four industrial sectors, namely finance, healthcare, energy and communications. The peculiarities of critical infrastructure protection in each one of these sectors is discussed and addressed based on sector-specific solutions. The advent of the fourth industrial revolution (Industry 4.0) is expected to increase the cyber-physical nature of critical infrastructures as well as their interconnection in the scope of sectorial and cross-sector value chains. Therefore, the demand for solutions that foster the interplay between cyber and physical security, and enable Cyber-Physical Threat Intelligence is likely to explode. In this book, we have shed light on the structure of such integrated security systems, as well as on the technologies that will underpin their operation. We hope that Security and Critical Infrastructure Protection stakeholders will find the book useful when planning their future security strategies

    Efficient Decision Support Systems

    Get PDF
    This series is directed to diverse managerial professionals who are leading the transformation of individual domains by using expert information and domain knowledge to drive decision support systems (DSSs). The series offers a broad range of subjects addressed in specific areas such as health care, business management, banking, agriculture, environmental improvement, natural resource and spatial management, aviation administration, and hybrid applications of information technology aimed to interdisciplinary issues. This book series is composed of three volumes: Volume 1 consists of general concepts and methodology of DSSs; Volume 2 consists of applications of DSSs in the biomedical domain; Volume 3 consists of hybrid applications of DSSs in multidisciplinary domains. The book is shaped upon decision support strategies in the new infrastructure that assists the readers in full use of the creative technology to manipulate input data and to transform information into useful decisions for decision makers

    WOFEX 2021 : 19th annual workshop, Ostrava, 1th September 2021 : proceedings of papers

    Get PDF
    The workshop WOFEX 2021 (PhD workshop of Faculty of Electrical Engineer-ing and Computer Science) was held on September 1st September 2021 at the VSB – Technical University of Ostrava. The workshop offers an opportunity for students to meet and share their research experiences, to discover commonalities in research and studentship, and to foster a collaborative environment for joint problem solving. PhD students are encouraged to attend in order to ensure a broad, unconfined discussion. In that view, this workshop is intended for students and researchers of this faculty offering opportunities to meet new colleagues.Ostrav

    Adaptive Computing Systems for Aerospace

    Get PDF
    RÉSUMÉ En raison de leur complexitĂ© croissante, les systĂšmes informatiques modernes nĂ©cessitent de nouvelles mĂ©thodologies permettant d’automatiser leur conception et d’amĂ©liorer leurs performances. L’espace, en particulier, constitue un environnement trĂšs dĂ©favorable au maintien de la performance de ces systĂšmes : sans protection des rayonnements ionisants et des particules, l’électronique basĂ©e sur CMOS peut subir des erreurs transitoires, une dĂ©gradation des performances et une usure accĂ©lĂ©rĂ©e causant ultimement une dĂ©faillance du systĂšme. Les approches traditionnellement adoptees pour garantir la fiabilitĂ© du systĂšme et prolonger sa durĂ©e de vie sont basĂ©es sur la redondance, gĂ©nĂ©ralement Ă©tablie durant la conception. En revanche, ces solutions sont coĂ»teuses et parfois inefficaces, puisqu'elles augmentent la taille et la complexitĂ© du systĂšme, l'exposant Ă  des risques plus Ă©levĂ©s de surchauffe et d'erreurs. Les consĂ©quences de ces limites sont d'autant plus importantes lorsqu'elles s’appliquent aux systĂšmes critiques (e.g., contraintes par le temps ou dont l’accĂšs est limitĂ©) qui doivent ĂȘtre en mesure de prendre des dĂ©cisions sans intervention humaine. Sur la base de ces besoins et limites, le dĂ©veloppement en aĂ©rospatial de systĂšmes informatiques avec capacitĂ©s adaptatives peut ĂȘtre considĂ©rĂ© comme la solution la plus appropriĂ©e pour les dispositifs intĂ©grĂ©s Ă  haute performance. L’informatique auto-adaptative offre un potentiel sans Ă©gal pour assurer la crĂ©ation d’une gĂ©nĂ©ration d’ordinateurs plus intelligents et fiables. Qui plus est, elle rĂ©pond aux besoins modernes de concevoir et programmer des systĂšmes informatiques capables de rĂ©pondre Ă  des objectifs en conflit. En nous inspirant des domaines de l’intelligence artificielle et des systĂšmes reconfigurables, nous aspirons Ă  dĂ©velopper des systĂšmes informatiques auto-adaptatifs pour l’aĂ©rospatiale qui rĂ©pondent aux enjeux et besoins actuels. Notre objectif est d’amĂ©liorer l’efficacitĂ© de ces systĂšmes, leur tolerance aux pannes et leur capacitĂ© de calcul. Afin d’atteindre cet objectif, une analyse expĂ©rimentale et comparative des algorithmes les plus populaires pour l’exploration multi-objectifs de l’espace de conception est d’abord effectuĂ©e. Les algorithmes ont Ă©tĂ© recueillis suite Ă  une revue de la plus rĂ©cente littĂ©rature et comprennent des mĂ©thodes heuristiques, Ă©volutives et statistiques. L’analyse et la comparaison de ceux-ci permettent de cerner les forces et limites de chacun et d'ainsi dĂ©finir des lignes directrices favorisant un choix optimal d’algorithmes d’exploration. Pour la crĂ©ation d’un systĂšme d’optimisation autonome—permettant le compromis entre plusieurs objectifs—nous exploitons les capacitĂ©s des modĂšles graphiques probabilistes. Nous introduisons une mĂ©thodologie basĂ©e sur les modĂšles de Markov cachĂ©s dynamiques, laquelle permet d’équilibrer la disponibilitĂ© et la durĂ©e de vie d’un systĂšme multiprocesseur. Ceci est obtenu en estimant l'occurrence des erreurs permanentes parmi les erreurs transitoires et en migrant dynamiquement le calcul sur les ressources supplĂ©mentaires en cas de dĂ©faillance. La nature dynamique du modĂšle rend celui-ci adaptable Ă  diffĂ©rents profils de mission et taux d’erreur. Les rĂ©sultats montrent que nous sommes en mesure de prolonger la durĂ©e de vie du systĂšme tout en conservant une disponibilitĂ© proche du cas idĂ©al. En raison des contraintes de temps rigoureuses imposĂ©es par les systĂšmes aĂ©rospatiaux, nous Ă©tudions aussi l’optimisation de la tolĂ©rance aux pannes en prĂ©sence d'exigences d’exĂ©cution en temps rĂ©el. Nous proposons une mĂ©thodologie pour amĂ©liorer la fiabilitĂ© du calcul en prĂ©sence d’erreurs transitoires pour les tĂąches en temps rĂ©el d’un systĂšme multiprocesseur homogĂšne avec des capacitĂ©s de rĂ©glage de tension et de frĂ©quence. Dans ce cadre, nous dĂ©finissons un nouveau compromis probabiliste entre la consommation d’énergie et la tolĂ©rance aux erreurs. Comme nous reconnaissons que la rĂ©silience est une propriĂ©tĂ© d’intĂ©rĂȘt omniprĂ©sente (par exemple, pour la conception et l’analyse de systems complexes gĂ©nĂ©riques), nous adaptons une dĂ©finition formelle de celle-ci Ă  un cadre probabiliste dĂ©rivĂ© Ă  nouveau de modĂšles de Markov cachĂ©s. Ce cadre nous permet de modĂ©liser de façon rĂ©aliste l’évolution stochastique et l’observabilitĂ© partielle des phĂ©nomĂšnes du monde rĂ©el. Nous proposons un algorithme permettant le calcul exact efficace de l’étape essentielle d’infĂ©rence laquelle est requise pour vĂ©rifier des propriĂ©tĂ©s gĂ©nĂ©riques. Pour dĂ©montrer la flexibilitĂ© de cette approche, nous la validons, entre autres, dans le contexte d’un systĂšme informatisĂ© reconfigurable pour l’aĂ©rospatiale. Enfin, nous Ă©tendons la portĂ©e de nos recherches vers la robotique et les systĂšmes multi-agents, deux sujets dont la popularitĂ© est croissante en exploration spatiale. Nous abordons le problĂšme de l’évaluation et de l’entretien de la connectivitĂ© dans le context distribuĂ© et auto-adaptatif de la robotique en essaim. Nous examinons les limites des solutions existantes et proposons une nouvelle mĂ©thodologie pour crĂ©er des gĂ©omĂ©tries complexes connectĂ©es gĂ©rant plusieurs tĂąches simultanĂ©ment. Des contributions additionnelles dans plusieurs domaines sont rĂ©sumĂ©s dans les annexes, nommĂ©ment : (i) la conception de CubeSats, (ii) la modĂ©lisation des rayonnements spatiaux pour l’injection d’erreur dans FPGA et (iii) l’analyse temporelle probabiliste pour les systĂšmes en temps rĂ©el. À notre avis, cette recherche constitue un tremplin utile vers la crĂ©ation d’une nouvelle gĂ©nĂ©ration de systĂšmes informatiques qui exĂ©cutent leurs tĂąches d’une façon autonome et fiable, favorisant une exploration spatiale plus simple et moins coĂ»teuse.----------ABSTRACT Today's computer systems are growing more and more complex at a pace that requires the development of novel and more effective methodologies to automate their design. Space, in particular, represents a challenging environment: without protection from ionizing and particle radiation, CMOS-based electronics are subject to transients faults, performance degradation, accelerated wear, and, ultimately, system failure. Traditional approaches adopted to guarantee reliability and extended lifetime are based on redundancy that is established at design-time. These solutions are expensive and sometimes inefficient, as they increase the complexity and size of a system, exposing it to higher risks of overheating and incurring in radiation-induced errors. Moreover, critical systems---e.g., time-constrained ones and those where access is limited---must be able to cope with pivotal situations without relying on human intervention. Hence, the emerging interest in computer systems with adaptive capabilities as the most suitable solution for novel high-performance embedded devices for aerospace. Self-adaptive computing carries unmatched potential and great promises for the creation of a new generation of smart, more reliable computers, and it addresses the challenge of designing and programming modern and future computer systems that must meet conflicting goals. Drawing from the fields of artificial intelligence and reconfigurable systems, we aim at developing self-adaptive computer systems for aerospace. Our goal is to improve their efficiency, fault-tolerance, and computational capabilities. The first step in this research is the experimental analysis of the most popular multi-objective design-space exploration algorithms for high-level design. These algorithms were collected from the recent literature and include heuristic, evolutionary, and statistical methods. Their comparison provides insights that we use to define guidelines for the choice of the most appropriate optimization algorithms, given the features of the design space. For the creation of a self-managing optimization framework---enabling the adaptive trade-off of multiple objectives---we leverage the tools of probabilistic graphical models. We introduce a mechanism based on dynamic hidden Markov models that balances the availability and lifetime of multiprocessor systems. This is achieved by estimating the occurrence of permanent faults amid transient faults, and by dynamically migrating the computation on excess resources, when failure occurs. The dynamic nature of the model makes it adjustable to different mission profiles and fault rates. The results show that we are able to lead systems to extended lifetimes, while keeping their availability close to ideal. On account of the stringent timing constraints imposed by aerospace systems, we then investigate the optimization of fault-tolerance under real-time requirements. We propose a methodology to improve the reliability of computation in the presence of transient errors when considering the mapping of real-time tasks on a homogeneous multiprocessor system with voltage and frequency scaling capabilities. In this framework, we take advantage of probability theory to define a novel trade-off between power consumption and fault-tolerance. As we recognize that resilience is a pervasive property of interest (e.g., for the design and analysis of generic complex systems), we adapt a formal definition of it to one more probabilistic framework derived from hidden Markov models. This allows us to realistically model the stochastic evolution and partial observability of complex real-world environments. Within this framework, we propose an efficient algorithm for the exact computation of the essential inference step required to construct generic property checking. To demonstrate the flexibility of this approach, we validate it in the context, among others, of a self-aware, reconfigurable computing system for aerospace. Finally, we move the scope of our research towards robotics and multi-agent systems: a topic of thriving popularity for space exploration. We tackle the problem of connectivity assessment and maintenance in the distributed and self-adaptive context of swarm robotics. We review the limitations of existing solutions and propose a novel methodology to create connected complex geometries for multiple task coverage. Additional contributions in the areas of (i) CubeSat design, (ii) the modelling of space radiation for FPGA fault-injection, and (iii) probabilistic timing analysis for real-time systems are summarized in the appendices. In the author's opinion, this research provides a number of useful stepping stones for the creation of a new generation of computing systems that autonomously---and reliably---perform their tasks for longer periods of time, fostering simpler and cheaper space exploration
    corecore