
UNIVERSITÉ DE MONTRÉAL

ADAPTIVE COMPUTING SYSTEMS FOR AEROSPACE

JACOPO PANERATI

DÉPARTEMENT DE GÉNIE INFORMATIQUE ET GÉNIE LOGICIEL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

THÈSE PRÉSENTÉE EN VUE DE L’OBTENTION

DU DIPLÔME DE PHILOSOPHIÆ DOCTOR

(GÉNIE INFORMATIQUE)

MAI 2017

c© Jacopo Panerati, 2017.

UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Cette thèse intitulée :

ADAPTIVE COMPUTING SYSTEMS FOR AEROSPACE

présentée par : PANERATI Jacopo

en vue de l’obtention du diplôme de : Philosophiæ Doctor

a été dûment acceptée par le jury d’examen constitué de :

Mme NICOLESCU Gabriela, Doctorat, présidente

M. BELTRAME Giovanni, Ph.D., membre et directeur de recherche

M. PAL Christopher J., Ph.D., membre

M. FIERRO Rafael, Ph.D., membre externe

iii

DEDICATION

To caffeine

and all the medications

that made this possible.

iv

ACKNOWLEDGMENTS

This work was only made possible by the continued support of the many people whose paths I

crossed over the course of recent years. I want to thank Giovanni Beltrame, Alain Fourmigue,

Emily Coffey, Chao Chen, Vedant, Carlo Pinciroli, Luca Giovanni Gianoli, and all those who

walked through Polytechnique’s MIST Lab for their guidance and expertise. I am grateful

to Inoue-sensei, Nicolas Schwind, Maxime Clement, Tony Ribeiro, Morgan Magnin, David

Mart́ınez Mart́ınez, Stefan Zeltner, and all the members of the Inoue Laboratory for what I

was taught in Tokyo. Parts of this research would have not existed without Étienne Bourbeau,

Gontran Sion, Marcello Valdatta, and the people of PolyOrbite and University of Bologna.

I also learned a lot from Elburz Sorkhabi, Daniele Paglialunga, Gary Martin, and the staff

and participants of ISU’s Space Studies Program 2015, in Athens, Ohio.

Besides knowledge, I received plenty of help from the humans of Montréal (Pauline Grasset,

Doris Adem, Zoé Arnaud, Nicolò Trambajolo, Nicola Cordoni, and Eddy Burgos), Tokyo

(Cristiano Pedersini, Ivano Rotondo, Hannah So, Jo Spencer, Elissa Villa, Saki Alex Mune-

hira, and Go Takei), Milan (Francesco Costa, Francesco Marconi, Riccardo Cattaneo, Matteo

Carminati, Roberto Mangano, Francesco De Liva, and Marco Domenico Santambrogio), the

Club d’Athlétisme de l’Université de Montréal (Florence Charbonneau-Dufresne, Éric Jan-

vier, Franco Di Battista, Pierre-Antoine Dupont, Christophe Seiichi Martin, Gabriele Gori,

and Clément Hely), my childhood (Marco Milanesi, Matteo Ottoboni, Alessio Elmi, Luca

Cardinale, Roberto Bottini, and Matteo Floccari), and my family (Elena, Fabio, Alice, Sel-

vio, Emilia, and Radio).

Thanks to the people who unwittingly led me into a PhD program—Alessandro Panella, Ales-

sandro Gnoli, and Victoria Meissner—and to Stefania—for all the pity and understanding.

Thanks to the CEPSUM, too. Ultimately, I am grateful to everyone who, through dialogue or

example, contributed to shape this work (and me) over the course of the 2012–2017 period.

Finally, a special recognition goes to Antoine Morin, Guillaume Boglioni-Beaulieu, and Jean-

Michel Tristan Robichaud for reviewing the résumé you will find on the next page.

v

RÉSUMÉ

En raison de leur complexité croissante, les systèmes informatiques modernes nécessitent de

nouvelles méthodologies permettant d’automatiser leur conception et d’améliorer leurs per-

formances. L’espace, en particulier, constitue un environnement très défavorable au maintien

de la performance de ces systèmes : sans protection des rayonnements ionisants et des par-

ticules, l’électronique basée sur CMOS peut subir des erreurs transitoires, une dégradation

des performances et une usure accélérée causant ultimement une défaillance du système. Les

approches traditionnellement adoptées pour garantir la fiabilité du système et prolonger sa

durée de vie sont basées sur la redondance, généralement établie durant la conception. En

revanche, ces solutions sont coûteuses et parfois inefficaces, puisqu’elles augmentent la taille

et la complexité du système, l’exposant à des risques plus élevés de surchauffe et d’erreurs.

Les conséquences de ces limites sont d’autant plus importantes lorsqu’elles s’appliquent aux

systèmes critiques (e.g., contraintes par le temps ou dont l’accès est limité) qui doivent être

en mesure de prendre des décisions sans intervention humaine. Sur la base de ces besoins et

limites, le développement en aérospatial de systèmes informatiques avec capacités adaptatives

peut être considéré comme la solution la plus appropriée pour les dispositifs intégrés à haute

performance.

L’informatique auto-adaptative offre un potentiel sans égal pour assurer la création d’une

génération d’ordinateurs plus intelligents et fiables. Qui plus est, elle répond aux besoins

modernes de concevoir et programmer des systèmes informatiques capables de répondre à des

objectifs en conflit. En nous inspirant des domaines de l’intelligence artificielle et des systèmes

reconfigurables, nous aspirons à développer des systèmes informatiques auto-adaptatifs pour

l’aérospatiale qui répondent aux enjeux et besoins actuels. Notre objectif est d’améliorer

l’efficacité de ces systèmes, leur tolérance aux pannes et leur capacité de calcul.

Afin d’atteindre cet objectif, une analyse expérimentale et comparative des algorithmes les

plus populaires pour l’exploration multi-objectifs de l’espace de conception est d’abord ef-

fectuée. Les algorithmes ont été recueillis suite à une revue de la plus récente littérature et

comprennent des méthodes heuristiques, évolutives et statistiques. L’analyse et la comparai-

son de ceux-ci permettent de cerner les forces et limites de chacun et d’ainsi définir des lignes

directrices favorisant un choix optimal d’algorithmes d’exploration.

Pour la création d’un système d’optimisation autonome—permettant le compromis entre

plusieurs objectifs—nous exploitons les capacités des modèles graphiques probabilistes. Nous

introduisons une méthodologie basée sur les modèles de Markov cachés dynamiques, laquelle

vi

permet d’équilibrer la disponibilité et la durée de vie d’un système multiprocesseur. Ceci est

obtenu en estimant l’occurrence des erreurs permanentes parmi les erreurs transitoires et en

migrant dynamiquement le calcul sur les ressources supplémentaires en cas de défaillance. La

nature dynamique du modèle rend celui-ci adaptable à différents profils de mission et taux

d’erreur. Les résultats montrent que nous sommes en mesure de prolonger la durée de vie du

système tout en conservant une disponibilité proche du cas idéal.

En raison des contraintes de temps rigoureuses imposées par les systèmes aérospatiaux, nous

étudions aussi l’optimisation de la tolérance aux pannes en présence d’exigences d’exécution

en temps réel. Nous proposons une méthodologie pour améliorer la fiabilité du calcul en

présence d’erreurs transitoires pour les tâches en temps réel d’un système multiprocesseur

homogène avec des capacités de réglage de tension et de fréquence. Dans ce cadre, nous défi-

nissons un nouveau compromis probabiliste entre la consommation d’énergie et la tolérance

aux erreurs.

Comme nous reconnaissons que la résilience est une propriété d’intérêt omniprésente (par

exemple, pour la conception et l’analyse de systèmes complexes génériques), nous adaptons

une définition formelle de celle-ci à un cadre probabiliste dérivé à nouveau de modèles de

Markov cachés. Ce cadre nous permet de modéliser de façon réaliste l’évolution stochastique

et l’observabilité partielle des phénomènes du monde réel. Nous proposons un algorithme

permettant le calcul exact efficace de l’étape essentielle d’inférence laquelle est requise pour

vérifier des propriétés génériques. Pour démontrer la flexibilité de cette approche, nous la

validons, entre autres, dans le contexte d’un système informatisé reconfigurable pour l’aéro-

spatiale.

Enfin, nous étendons la portée de nos recherches vers la robotique et les systèmes multi-

agents, deux sujets dont la popularité est croissante en exploration spatiale. Nous abordons

le problème de l’évaluation et de l’entretien de la connectivité dans le contexte distribué et

auto-adaptatif de la robotique en essaim. Nous examinons les limites des solutions existantes

et proposons une nouvelle méthodologie pour créer des géométries complexes connectées

gérant plusieurs tâches simultanément.

Des contributions additionnelles dans plusieurs domaines sont résumées dans les annexes,

nommément : (i) la conception de CubeSats, (ii) la modélisation des rayonnements spatiaux

pour l’injection d’erreur dans FPGA et (iii) l’analyse temporelle probabiliste pour les systèmes

en temps réel. À notre avis, cette recherche constitue un tremplin utile vers la création

d’une nouvelle génération de systèmes informatiques qui exécutent leurs tâches d’une façon

autonome et fiable, favorisant une exploration spatiale plus simple et moins coûteuse.

vii

ABSTRACT

Today’s computer systems are growing more and more complex at a pace that requires the

development of novel and more effective methodologies to automate their design. Space, in

particular, represents a challenging environment: without protection from ionizing and par-

ticle radiation, CMOS-based electronics are subject to transients faults, performance degra-

dation, accelerated wear, and, ultimately, system failure. Traditional approaches adopted

to guarantee reliability and extended lifetime are based on redundancy that is established

at design-time. These solutions are expensive and sometimes inefficient, as they increase

the complexity and size of a system, exposing it to higher risks of overheating and incur-

ring in radiation-induced errors. Moreover, critical systems—e.g., time-constrained ones and

those where access is limited—must be able to cope with pivotal situations without relying

on human intervention. Hence, the emerging interest in computer systems with adaptive

capabilities as the most suitable solution for novel high-performance embedded devices for

aerospace.

Self-adaptive computing carries unmatched potential and great promises for the creation

of a new generation of smart, more reliable computers, and it addresses the challenge of

designing and programming modern and future computer systems that must meet conflicting

goals. Drawing from the fields of artificial intelligence and reconfigurable systems, we aim

at developing self-adaptive computer systems for aerospace. Our goal is to improve their

efficiency, fault-tolerance, and computational capabilities.

The first step in this research is the experimental analysis of the most popular multi-objective

design-space exploration algorithms for high-level design. These algorithms were collected

from the recent literature and include heuristic, evolutionary, and statistical methods. Their

comparison provides insights that we use to define guidelines for the choice of the most

appropriate optimization algorithms, given the features of the design space.

For the creation of a self-managing optimization framework—enabling the adaptive trade-off

of multiple objectives—we leverage the tools of probabilistic graphical models. We introduce

a mechanism based on dynamic hidden Markov models that balances the availability and

lifetime of multiprocessor systems. This is achieved by estimating the occurrence of perma-

nent faults amid transient faults, and by dynamically migrating the computation on excess

resources, when failure occurs. The dynamic nature of the model makes it adjustable to

different mission profiles and fault rates. The results show that we are able to lead systems

to extended lifetimes, while keeping their availability close to ideal.

viii

On account of the stringent timing constraints imposed by aerospace systems, we then in-

vestigate the optimization of fault-tolerance under real-time requirements. We propose a

methodology to improve the reliability of computation in the presence of transient errors

when considering the mapping of real-time tasks on a homogeneous multiprocessor system

with voltage and frequency scaling capabilities. In this framework, we take advantage of prob-

ability theory to define a novel trade-off between power consumption and fault-tolerance.

As we recognize that resilience is a pervasive property of interest (e.g., for the design and

analysis of generic complex systems), we adapt a formal definition of it to one more proba-

bilistic framework derived from hidden Markov models. This allows us to realistically model

the stochastic evolution and partial observability of complex real-world environments. Within

this framework, we propose an efficient algorithm for the exact computation of the essential

inference step required to construct generic property checking. To demonstrate the flexibility

of this approach, we validate it in the context, among others, of a self-aware, reconfigurable

computing system for aerospace.

Finally, we move the scope of our research towards robotics and multi-agent systems: a

topic of thriving popularity for space exploration. We tackle the problem of connectivity

assessment and maintenance in the distributed and self-adaptive context of swarm robotics.

We review the limitations of existing solutions and propose a novel methodology to create

connected complex geometries for multiple task coverage.

Additional contributions in the areas of (i) CubeSat design, (ii) the modelling of space radi-

ation for FPGA fault-injection, and (iii) probabilistic timing analysis for real-time systems

are summarized in the appendices. In the author’s opinion, this research provides a num-

ber of useful stepping stones for the creation of a new generation of computing systems that

autonomously—and reliably—perform their tasks for longer periods of time, fostering simpler

and cheaper space exploration.

ix

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGMENTS . iv

RÉSUMÉ . v

ABSTRACT . vii

TABLE OF CONTENTS . ix

LIST OF TABLES . xiv

LIST OF FIGURES . xvi

LIST OF ABBREVIATIONS . xxi

LIST OF APPENDICES .xxiv

CHAPTER 1 INTRODUCTION . 1

1.1 Context and Motivation . 1

1.2 Problem Statement . 3

1.3 Research Objectives . 4

1.4 Novelty and Impact . 5

CHAPTER 2 LITERATURE REVIEW . 7

2.1 Hardware-software Co-design and Optimization 7

2.2 Adaptive Hardware and Software . 9

2.3 Resilience of Complex Systems . 10

2.4 Multi-agent Systems and Swarm Robotics . 11

CHAPTER 3 RESEARCH APPROACH AND THESIS ORGANIZATION 14

x

3.1 Bird’s-eye View . 14

3.2 Methodology . 16

3.2.1 Hardware Design Level . 16

3.2.2 Operating System Level . 17

3.2.3 Application Layer . 18

3.3 Document Structure . 19

CHAPTER 4 ARTICLE 1 – A COMPARATIVE EVALUATION OF MULTI-OBJECTIVE

EXPLORATION ALGORITHMS FOR HIGH-LEVEL DESIGN 21

4.1 Introduction . 22

4.2 Related Work . 23

4.3 Proposed Taxonomy . 26

4.4 Multi-Objective Algorithms For Design Space Exploration 29

4.4.1 Class 1 . 29

4.4.2 Class 2 . 31

4.4.3 Class 3 . 34

4.4.4 Class 4 . 34

4.5 Experimental Setup . 35

4.6 Experimental Results . 39

4.6.1 Dependence on Parameters and Initial Setup Effort 39

4.6.2 Estimation of the Number of Evaluations 41

4.6.3 Characteristics of the Resulting Approximate Pareto-set 42

4.6.4 Scalability . 42

4.7 Discussion . 47

4.8 Conclusions . 48

CHAPTER 5 ARTICLE 2 – BALANCING SYSTEM AVAILABILITY AND LIFE-

TIME WITH DYNAMIC HIDDEN MARKOV MODELS 50

5.1 Introduction . 51

5.2 Related Work . 52

xi

5.3 Theoretical Background . 53

5.3.1 Transient Faults Modeling . 53

5.3.2 Permanent Faults Modeling . 54

5.3.3 Hidden Markov Models . 56

5.4 Proposed Approach . 57

5.4.1 System Model . 57

5.4.2 Rule-based Failure Detection . 59

5.4.3 HMM-based Failure Detection . 59

5.4.4 Dynamic HMM-based Failure Detection 61

5.5 Experimental Setup . 61

5.5.1 Parameters . 62

5.5.2 Performance Metrics . 62

5.6 Discussion . 63

5.7 Conclusions . 66

CHAPTER 6 ARTICLE 3 – TRADING OFF POWER AND FAULT-TOLERANCE

IN REAL-TIME EMBEDDED SYSTEMS . 67

6.1 Introduction . 68

6.2 Related Work . 68

6.3 System Model . 70

6.3.1 Computing Architecture Model . 70

6.3.2 Real-time Application Model . 71

6.3.3 Transient Faults Model . 72

6.3.4 Power Consumption Model . 72

6.3.5 Wear Model . 73

6.4 Methodology . 76

6.4.1 Task Mapping and Real-time Constraints 76

6.4.2 Utilization Levels . 77

6.4.3 Particle Radiation and Transient Errors 78

xii

6.4.4 Fault-tolerance Optimization . 79

6.4.5 Power Consumption Optimization . 79

6.4.6 The Power and Fault-tolerance Trade-off 80

6.4.7 Lifetime Optimization . 80

6.5 Case Study . 82

6.6 Conclusions And Future Works . 83

CHAPTER 7 ARTICLE 4 – ASSESSING THE RESILIENCE OF STOCHASTIC DY-

NAMIC SYSTEMS UNDER PARTIAL OBSERVABILITY 85

7.1 Introduction . 86

7.2 Related Work . 87

7.3 Resilience and Resilient Properties in Probabilistic Models 88

7.4 Complexity of Efficient Exact Inference . 92

7.5 Complexity of Generic Property Checking . 94

7.6 Bounding the Probability of l-resistance . 95

7.7 Application Scenarios . 96

7.7.1 Disaster Management . 97

7.7.2 Macroeconomics . 98

7.7.3 Self-adaptive Computing . 99

7.7.4 Swarm Robotics . 103

7.8 Discussion . 105

7.9 Methods . 107

7.9.1 States, Observations, Costs, and Trajectories 108

7.9.2 From the Probability of Cost Trajectories to the Probability of Properties109

7.9.3 Efficient Inference . 111

CHAPTER 8 ARTICLE 5 – FROM SWARMS TO STARS – TASK COVERAGE IN

ROBOT SWARMS WITH CONNECTIVITY CONSTRAINTS 114

8.1 Introduction . 115

8.2 Literature Review . 116

xiii

8.2.1 On Task Scheduling, Mapping, and Coverage 116

8.2.2 On Swarm Connectivity . 117

8.3 Methodology . 123

8.3.1 General Overview . 123

8.3.2 Robot Navigation Controller . 125

8.3.3 Task Scheduling Controller . 132

8.3.4 Mathematical Modelling of the Optimal Task Scheduling Problem . . . 134

8.4 Experimental Set-up . 140

8.4.1 Robot Navigation Controller . 140

8.4.2 Task Scheduling Controller . 141

8.5 Experimental Results and Discussion . 142

8.5.1 Robot Navigation Controller . 142

8.5.2 Task Scheduling Controller . 143

8.6 Conclusions and Future Work . 148

CHAPTER 9 GENERAL DISCUSSION . 151

9.1 On Hardware-software Co-design and Optimization 151

9.2 On Adaptive Hardware and Software . 153

9.3 On the Resilience of Complex Systems . 155

9.4 On Multi-agent Systems and Swarm Robotics 157

CHAPTER 10 CONCLUSIONS . 160

10.1 Lessons Learned and Recommendations . 161

10.2 Open Questions . 162

10.3 Future Work . 162

10.3.1 Symbiotic Human and Multi-Robot Planetary Exploration 163

REFERENCES . 165

APPENDICES . 181

xiv

LIST OF TABLES

Table 2.1 Comparison with similar research work in the literature. For each one

of the main aspects of this research, a selection of comparable contribu-

tions is reported. A major differentiating feature is also listed besides

each contribution. 13

Table 4.1 Comparison of experimental settings in DSE literature. 25

Table 4.2 Comparison of design space size in DSE literature. 25

Table 4.3 Comparison of benchmark applications in DSE literature. 28

Table 4.4 The most relevant parameters used by the MOPSO algorithm. 30

Table 4.5 The most relevant parameters used by the MOSA, PSA and SMOSA

algorithms. 31

Table 4.6 The most relevant parameters used by the IMMOGLS, MOGLS and

PMA algorithms. 32

Table 4.7 The most relevant parameters used by the NSGA, NSGAII and SPEA

algorithms. 33

Table 4.8 The most relevant parameters used by the MDP algorithm. 35

Table 4.9 The three benchmark applications chosen to represent a significant

spectrum of workloads. 37

Table 4.10 The platform design space simulated using ReSP. 37

Table 4.11 A qualitative analysis of the chosen algorithms: setup effort, number

of evaluations for 1% ADRS, number of Pareto points found, scalability. 41

Table 5.1 HMM sensor model. 60

Table 5.2 HMM transition model. 60

Table 5.3 Dynamic HMM transition model. 61

Table 5.4 Lifetimes and normalized availabilities (see Equation 5.9) for the rule-

based, HMM-based, and dynamic HMM-based approaches with dif-

ferent thresholds, number of resources in the system, and levels of

SEUs/day, when the scrubbing period T = 1h. 65

xv

Table 6.1 WCETs (in seconds) for each one of the four tasks, in each of the three

operating points. 83

Table 6.2 Reliability and power consumption metrics for different design points,

ordered by the average utilization of the PEs. The period T is 10s, the

number of errors is over 10000 computations. 84

Table 7.1 Experimental results from the fourth application scenario, describing

a robot in the small or large swarm trying to assess the probability

of properties Λ and Θ using only local and the—possibly faulty—

observations of its neighborhood. 107

Table 8.1 Average ARGoS/Buzz prominence eruption times. 145

Table 8.2 Parameters for instance generation. 146

Table 8.3 Optimized duration values Λ. 146

Table 8.4 Computational times. 149

Table 8.5 Optimality gaps w.r.t. the best lower bound computed by the solver. . 149

Table 9.1 Summary of the dissertation’s main contributions. 159

xvi

LIST OF FIGURES

Figure 3.1 Overview of the main work packages in this research project, their logi-

cal (and chronological) ordering, and their position in the development

stack. 15

Figure 4.1 The simulated multi-core processor architecture and its parameters. . . 40

Figure 4.2 The percentage of points in the design space evaluated by each algo-

rithm for similar levels of accuracy (around 1%). 43

Figure 4.3 Accuracy (ADRS) reached by each algorithm at convergence. 43

Figure 4.4 The average number of points in the approximate Pareto set found by

each algorithm, normalized with the average for each benchmark. . . . 44

Figure 4.5 The non-uniformity of the distribution of the points found in the ap-

proximate Pareto set found by each algorithm. 44

Figure 4.6 The concentration of the points found in the approximate Pareto set

found by each algorithm. 45

Figure 4.7 3D representation of the algorithms performance showing % of the

design space explored in order to reach convergence, the number of

Pareto points (w.r.t the average number) and the ADRS error metric

(NSGA, PSA and SMOSA are omitted because of their large ADRS).

The number after each algorithm name indicates the its class. 46

Figure 4.8 Recommended algorithms for different design space size, simulation

time and desired ADRS, whether domain knowledge is available or

not. The number after each algorithm name indicates its class. 49

Figure 5.1 Probability of observing at least one SEU in scrubbing periods of dif-

ferent durations, as the average ratio of SEUs per day increases. 55

Figure 5.2 Probability density function, cumulative distribution function, and prob-

ability of failure in the last scrubbing period (see Equation 5.2, T = 1
day), for log-normal and exponential failure distributions withMTTF =
5 years. 56

Figure 5.3 Structure of a hidden Markov model. 57

Figure 5.4 Structure of an N-resource system. 58

xvii

Figure 5.5 Comparison of system lifetimes and normalized availabilities (see Equa-

tion 5.9) for the rule-based, HMM-based, and dynamic HMM-based

approaches with different thresholds, assuming N = 10 resources and

a scrubbing period T = 1h, when SEUs/day = 16.5. 64

Figure 5.6 Comparison of system lifetimes and normalized availabilities (see Equa-

tion 5.9) for the rule-based, HMM-based, and dynamic HMM-based

approaches with different thresholds, assuming N = 10 resources and

a scrubbing period T = 1h, when SEUs/day = 62. 64

Figure 5.7 Pareto curves obtained by the rule-based, HMM-based, and dynamic

HMM-based approaches with different thresholds, assuming N = 10
resources and a scrubbing period T = 10′, for two levels of SEUs/day. . 65

Figure 6.1 A two-dimensional grid architecture with identical PEs and ideal com-

munication links. 71

Figure 6.2 The DAG of an application with four tasks. Nodes includes their

WCETs at a reference frequency k. Arcs express precedence relations. . 72

Figure 6.3 Probability mass functions (only marks) and cumulative distribution

functions (solid lines) of Poisson distributions with different impact

rates λ. 73

Figure 6.4 The relation between operating frequencies and voltages of the Intel

Pentium M processor, and the resulting dissipated power, as reported

in [71]. 74

Figure 6.5 Probability mass functions (only marks) and cumulative distribution

functions (solid lines) of exponential distributions with different MTTF

parameters. 75

Figure 6.6 Comparison of a linear and and exponential relation between the uti-

lization of a PE and its MTTF. Manufacturer, like Intel, do not do not

always disclose failure rates of their CPUs. We assume to know the

MTTF of a fully utilized PE, MTTF100%. 76

Figure 6.7 Design space as an n-dimensional space of utilization levels, with ideal

reliability and power consumption design points. 83

Figure 7.1 Unrolling of the C-HMM framework over three time steps. 90

xviii

Figure 7.2 The example of a cost trajectory that is 50-resistant, 27-functional,

〈15, 50〉-recoverable, and 〈4, 40〉-resilient, according to the Definitions

1 to 4 and the Equations 7.8 to 7.10 provided in this work. 92

Figure 7.3 Theoretical complexity growth of the proposed inference algorithm with

respect to the time horizon T and the size of the state domain |S|.
In the legend, time and space stand for time-complexity and space-

complexity, respectively. 94

Figure 7.4 The four island archipelago modelled in the first application scenario.

For each island, the image shows its geographical distribution, the

evolving state, cost, and (partial) observation from the point of view

of the control room. (Figure created using TikZ/PGF v3.0.0, GIMP

2.8.14, and cliparts from http://openclipart.org.) 98

Figure 7.5 A visual representation of three of the possible “software task”-to-

“hardware resource” mappings in the state space of the 1U CubeSat’s

Arduino-based ASPPM from the third application scenario, as pre-

sented in Equation 7.18. 102

Figure 7.6 A robotic swarm, as described in the fourth application scenario. Each

robot possesses a position, velocity, state (the number of its neighbors),

and a partial observation (of its neighborhood) evolving over time. The

inference algorithm is executed locally to assess the probability of losing

connectivity with respect to the rest of the swarm at each time step. . 105

Figure 7.7 Experimental assessment of the time complexity and comparison of the

scalability of the computational time of different queries for property

Λ and property Θ through the algorithm proposed in this work versus

expanding the conditional join probability distribution, in the 4 robots

and 20 robots scenarios. 106

Figure 7.8 Probability distribution of the parametric resilient properties in a tem-

plate scenario where ∀s, c(s) ∈ [0, . . . , 4]. The discontinuities reveal

the potentially critical thresholds for different properties. 113

Figure 8.1 Robot swarms are often treated as graphs G = (V,E) (e.g. via Spectral

Graph Theory) for networking purposes. 119

http://openclipart.org

xix

Figure 8.2 Comparison of the performance of Spectral Graph Theory methods

for the computation of the second eigenvalue of the Laplacian matrix

λ2 under the assumptions of perfect communication packet drop with

probability p. 121

Figure 8.3 Superposition of flocking and leader forces in example scenarios with

four (a) and three tasks (b), the simulation shows that a successful

control strategy for one scenario does not necessarily generalize to others.122

Figure 8.4 Flowchart of the overall control architecture. 125

Figure 8.5 The Lennard-Jones potential (and the force derived from it) is used

in our RNC to regulate attraction and repulsion between neighbouring

robots. Typically, the exponents used in its computation are 12 and

6, in our implementation we use a smoother function with exponents 4

and 2. 128

Figure 8.6 Simulation of the proposed prominence eruption algorithm towards

three different tasks with 15 (a) and 60 (b) robots in an idealized model

without collisions nor packet drop on the neighbour-to-neighbour com-

munication channels. 132

Figure 8.7 The RNC (implemented with Buzz programming language and tested

in the ARGoS simulation environment) produces eruption of promi-

nences with the same number of robots different lengths in relation

to the value of δ—90 in (a), 240 in (b)—used to parameterized the

neighbour potentials. 144

Figure 8.8 The RNC (implemented with Buzz programming language and tested

in the ARGoS simulation environment) drives a swarm of 16 robots

towards three different task directions from the swarm centroid. 144

Figure 8.9 Example of TCTM solution (with 100 robots and 20 tasks) that only

uses deployment points (SCs) associated to two or three tasks (i.e. two

or three prominences). 147

Figure 8.10 Example of TSDM solution (with 100 robots and 20 tasks) that uses

deployment points (SCs) associated to two to four tasks (i.e. two to

four prominences). 147

Figure 8.11 Analysis of the improvement achieved by TDSM w.r.t. to TCTM in

terms of dislocation costs, i.e.,
∑
s∈S̄

(
ḡXs + ḡY s

)
. 148

xx

Figure 8.12 Analysis of the improvement achieved by TDSM w.r.t. to TCTM in

terms of arm costs, i.e.,
∑
s∈S,t∈T

(
Γ
Ωw

s
t

)
. 148

xxi

LIST OF ABBREVIATIONS

ADCS Attitude Determination and Control System

ADRS Average Distance from Reference Set

API Application Programming Interface

ANN Artificial Neural Network

APRS Adaptive Windows Pareto Random Search

ASPPM ArduSat Payload Processor Module

BMU Behaviour Management Unit

CBBA Consensus-Based Bundle Algorithm

CBS Constraint-based System

CDF Cumulative Distribution Function

CDR Critical Design Review

C&DH Command & Data-handling

CJPD Conditional Joint Probability Distribution

CMOS Complementary Metal-oxide-semiconductor

CSA Canadian Space Agency

CSDC Canadian Satellite Design Challenge

COTS Commercial Off-the-shelf

DBN Dynamic Bayesian Network

D-HMM Dynamic Hidden Markov Model

DoE Design of Experiments

DSE Design Space Exploration

DVFS Dynamic Voltage and Frequency Scaling

EA Evolutionary Algorithm

EAC European Astronaut Centre

ESA European Space Agency

FFT Fast Fourier Transform

FPGA Field-programmable Gate Array

GA Genetic Algorithm

HEO Highly Elliptical Orbit

HMM Hidden Markov Model

ILP Integer Linear Programming

IMMOGLS Ishibuchi-Murata Multiple Objective Genetic Local Search

IoT Internet of Things

xxii

JPD Joint Probability Distribution

LEO Low Earth Orbit

LP Linear Programming

MDP Markov Decision Process

MILP Mixed-Integer Linear Programming

MOGLS Multiple Objective Genetic Local Search

MOMDP Multi-objective Markov Decision Process

MOMSLS Multi-Objective Multiple Start Local Search

MOO Multi-objective Optimization

MOPSO Multi-Objective Particle Swarm Optimization

MOSA Multi-Objective Simulated Annealing

MPSoC Multi-processor System-on-chip

MRTA Multi-robot Task Allocation

MTTF Mean Time To Failure

NBTI Negative Bias Temperature Instability

NN Neural Network

NSGA Non-Dominated Sorting Genetic Algorithm

NSGAII Controlled Non-Dominated Sorting Genetic Algorithm

OBC On-board Computer

PE Processing Element

PGM Probabilistic Graphical Model

PI Power Iteration

PMA Pareto Memetic Algorithm

PMF Probability Mass Function

POMDP Partially Observable Markov Decision Process

PSA Pareto Simulated Annealing

PSO Particle Swarm Optimization

pWCET Probabilistic Worst-case Execution Time

RESPIR Response Surface Pareto Iterative Refinement

RFT Reconfigurable Fault Tolerance

RNC Robot Navigation Controller

RT Real-time

RSM Response Surface Modelling

SA Simulated Annealing

SC Swarm Centroid

SECS Star Eruption for Connected Swarms

xxiii

SEE Single Event Effect

SEU Single Event Upset

SGT Spectral Graph Theory

SMOSA Serafini’s Multi-Objective Simulated Annealing

SPEA Strength Pareto Evolutionary Algorithm

SPTA Static Probabilistic Timing Analysis

TCTM Total Completion Time Minimization

TDDB Time-dependent Dielectric Breakdown

TDSM Total Dislocation Space Minimization

TID Total Ionizing Dose

TMR Triple Modular Redundancy

TRL Technology Readiness Level

TSG Task Schedule Generator

VLSI Very-large-scale Integration

WCET Worst-case Execution Time

WP Work Package

xxiv

LIST OF APPENDICES

Appendix A POLYORBITE AND THE CANADIAN SATELLITE DESIGN CHAL-

LENGE . 181

Appendix B MODELLING OF THE ERRORS INDUCED BY SPACE RADIA-

TION FOR FAULT-INJECTION IN FPGAS 185

Appendix C ONLINE FAULT DETECTION AND PROBABILISTIC TIMING ANA-

LYSIS . 186

1

CHAPTER 1 INTRODUCTION

“Science must begin with myths, and with the criticism of myths.”
Sir Karl Raimund Popper, Conjectures and Refutations: The Growth of Scientific Knowledge, 1963

“Life can only be understood backwards; but it must be lived forwards.”
“Det er ganske sandt, hvad Philosophien siger, at Livet maa forstaaes baglænds.

Men derover glemmer man den anden Sætning, at det maa leves forlænds.”

Søren Kierkegaard, Journalen, 1843

This thesis has been written in partial fulfillment of the requirements for the degree of

Philosophiæ Doctor in computer engineering. It recollects research work that was conducted

within the MIST Laboratory of Polytechnique Montréal (Montréal, Québec, Canada) and the

Inoue Laboratory of the National Institute of Informatics (Tokyo, Japan) between September

2012 and January 2017. The structure of the document is that of a thesis by articles—five

published and submitted contributions are presented in the Chapters from 4 to 8.

1.1 Context and Motivation

Outside the protective cocoon of Earth’s atmosphere, sharp changes in temperature, vac-

uum conditions, and a high level of radiation create an extremely harsh environment for

digital electronics [63]. Without an atmosphere to protect from ionizing and particle radi-

ation, CMOS-based computing systems are subject to transients faults, generalized perfor-

mance degradation, accelerated wear, and, ultimately, system failure [100]. The design of

space-grade computing hardware—often referred to as hardened components—requires large

investments and it usually relies on government or military projects. The recent opening of

the space sector to private enterprises [61], however, is creating a growing interest around for

the use of low-cost, off-the-shelf components (COTS).

Adaptive and self-adaptive computing systems can reproduce the fault tolerance of hardened

components through smarter algorithms and design rather than special production and vali-

dation processes. They allow to re-use COTS as their essential building blocks, saving money

and time during the design and manufacturing phases. Enabling the use of COTS also opens

the door to a range of new computationally intensive applications (e.g., nano-satellite Earth

observation). Furthermore, a majority of the redundancy schemes currently used to improve

fault tolerance—e.g., triple modular redundancy (TRM)—is expensive, sometimes wasteful,

2

and impractical for adoption in the soaring small- and nano-satellites (e.g., CubeSats) sector.

These systems, in fact, often do not dispose of sufficient levels of replication and have to rely

solely on software redundancy instead.

Aerospace computing systems are also characterized by stringent real-time requirements—

similarly to all computing system whose correct functioning is life- or mission-critical [24].

Their software tasks have to execute (and terminate correctly) within fixed and predictable

delays to ensure the schedulability (on a given hardware, a task set is said to be schedulable if

an ordering of the tasks, such that all deadlines are met, exists) of the entire system. Failing

to meet a deadline, in a small satellite, could lead to the attitude determination and control

system (ADCS) neglecting to properly orient the solar panels, all energy being drained from

the batteries and the loss of the spacecraft; in a manned spacecraft, to loss of life.

The scheduling of real-time systems is a heavily researched area at the intersection of math-

ematics and computer engineering [35]. Schedulability tests—inequalities revealing whether

a certain set of tasks can execute before their deadlines—have been devised for a plethora of

computer architectures [92, 106]. However, these tests typically rely on timing estimates—

i.e., worst case executions times (WCETs)—that are extremely conservative, especially when

it come to faults [28]. The drawback of inaccurate timing estimates is that systems are

poorly exploited. This inefficiency leads to wasted computational power and more expensive

designs. The promise carried by adaptive methodologies is that of autonomously adjusting

the estimation of WCETs (in ways consistent to the changing fault rates of different mis-

sion profiles) to fully exploit the computational capabilities of a spacecraft. The growing

sensitivity of airborne and ground-based electronics to the effects of radiation [128] (due to

technology scaling) also entails that all fault mitigation strategies conceived for space critical

systems will be in great demand in the near future.

The development of adaptive computing also addresses the challenge of programming com-

puter systems that must meet conflicting goals, e.g., throughput, energy consumption, and

reliability [120, 162]. Adaptive computer systems, in fact, can self-manage their resources to

automatically find the best way to accomplish their goal, even under changing environmental

conditions [114, 122]. The ability to autonomously adapt to the surrounding environment

is a major asset for a computing system in space, where access to the hardware is limited

or impossible. An adaptive system capable to detect and work around failures can optimize

its behaviour and improve its performance accordingly. Nonetheless, adaptive computing’s

potential goes way beyond aerospace: results in this field can profit several other sectors,

from industrial automation to personalized computing (e.g., virtual assistants).

Abstracting and developing this idea of mutating systems and environments to the utter-

3

most, one can see what the ultimate objective of adaptive computing is the replications,

through engineering, of those natural properties that we often see expressed by resilient

ecosystems. These are complex ecological systems having the particular ability to adapt

to sudden, unpredictable changes [67, 169]. For example, a resilient computing system for

aerospace could re-plan its mission phases—or even its mission objectives, discarding the less

promising ones—once a major failure occurs. Resilient computing systems, however, are still

a largely unexplored research subject. Hitherto, the scientific community has not yet agreed

on formal definition of resilience.

Finally, a research work on adaptive computing system for aerospace cannot ignore the grow-

ing importance of robotics for space exploration. Robotic expeditions are the necessary first

steps paving the way of the human exploration of the Solar System. Even after 40 years

of robotic lander exploration (from Viking 1 to Philæ) the level of autonomous control on

these machines is far from perfect [82]. This entails that, the further they go, the more

inefficient they become (because of the round-trip delay necessary to provide human input).

More autonomy is the gateway to fewer down-times waiting for control and greater scientific

return. Besides probes and landers, autonomous control has the potential to increase safety

and performance of launch vehicles too. Public and private companies such as ATK and

SpaceX have plans to replace humans with algorithms in their flight termination systems.

Swarm robotics [21] has a strong appeal as an approach to implement the autonomous pursue

of complex tasks using simple devices—and leveraging their number. Nonetheless, swam

robotics is a very young discipline, confronting researcher with many new challenges. For

example, how to maintain network connectivity across multiple robots moving in unknown

environments where global positioning is not available (e.g., another planet) is still an open

problem.

1.2 Problem Statement

The research work in this dissertation focuses on the investigation, definition, and implemen-

tation of formal methodologies for the modelling and design of adaptive computing systems

for aerospace. In particular, its goal is the introduction of techniques to solve—or mitigate—

the following challenges:

— The uncertainty surrounding the choice of the most appropriate algorithms (among the

innumerable methodologies proposed in the literature) for the automated optimization

of an embedded system design.

— The inefficiencies—in terms of computing resources utilization, power consumption,

4

and fault tolerance—of traditional redundancy schemes used in aerospace.

— The inefficiencies induced by excessively conservative WCET estimates in real-time

computing systems for aerospace (especially those unaware of faults).

— The lack of a formal definition of what a resilient system is and what resilience entails.

— The lack of formal models and methodologies to assess or quantify resilience.

— The nonexistence of a distributed and resilient methodology to preserve network con-

nectivity in a multi-robot system exploring an unknown environment.

In the opinion of the author, addressing and resolving these problems has the potential to

substantially advance of the frontier of knowledge in the fields of computing systems for

aerospace and multi-robot system design.

1.3 Research Objectives

The challenges outlined in the previous section are addressed—through the research articles

presented in the Chapters from 4 to 8—by pursuing the following objectives:

1. Conceive a formal method to classify and compare the existing methodologies for the

design-space exploration of an embedded system.

2. Introduce rigorous and realistic tools to model those aspects of the space environment

that affect the operations of a computing system.

3. Using these tools, discover new, non-obvious relationships between performance metrics

such as energy consumption, real-time execution, and fault tolerance.

4. Model aerospace computing systems through an intelligent framework that allows to

answer (probabilistic) inference queries—in particular with regard to the system’s re-

silience.

5. Exploit this knowledge to: (i) implement adaptive fault tolerance and (ii) investigate

high-level properties of complex systems such as resilience and connectivity.

6. Implement an adaptive and distributed algorithm that enforces connectivity in a multi-

robot system.

Furthermore, Appendix A summarizes the efforts made towards the (less research- and more

engineering-oriented) objective of developing the on-board computing systems of the 3U

CubeSats of Polytechnique Montréal’s student society PolyOrbite.

5

1.4 Novelty and Impact

To the best of our knowledge, the major aspects of novelty of the research presented in this

dissertation are represented by the following contributions:

— A 4-class taxonomy of design-space exploration strategies for the optimization of em-

bedded computing systems—as well as their cross-class experimental comparison.

— A classification methodology—based on probabilistic graphical models—to distinguish

between transient and permanent faults induced in CMOS circuits by space radiation.

— A trade-off between energy consumption and fault-tolerance exploiting the utilization

levels and the dynamic voltage and frequency scaling capabilities of homogeneous mul-

tiprocessor systems for the scheduling of hard real-time task sets.

— A formal definition of resilience in the context of probabilistic graphical models; the

identification of an efficient algorithm to perform inference on partially-observed time

series; and the study of its complexity and implications on generic property checking.

— A partially distributed approach for the simultaneous spatial coverage of multiple tasks

by a swarm of robots that preserves, at the same time, the team connectivity.

The scientific significance and potential impact of the investigation include:

— A set of guidelines for the choice of a design-space exploration algorithm that will help

both the designers of computer hardware and the developers of the automation tools.

— Adaptive strategies able to improve how redundancy is exploited by fault-tolerant

aerospace computing systems and, overall, to make their design cheaper and faster.

— Better autonomous multi-robot systems that are especially suitable for deployment in

unknown and harsh environments, e.g., for disaster response and space exploration.

— Finally, the tangential—but not negligible—educational repercussions obtained in the

context of Polytechnique Montréal and Canada through PolyOrbite (Appendix A).

The relevance of these themes is current news and it can only be expected to grow. At the

time of the writing, for example, the hostile and high radiation environment of Fukushima

I’s damaged nuclear power plant—one of the consequences of 2011’s Tōhoku earthquake

and tsunami—is continuing to fatally challenge the robots that try to assess and contain

the radioactive leak 1. Multi-robot systems that are (i) autonomous, (ii) fault tolerant, (iii)

1. http://www.japantimes.co.jp/news/2017/02/17/national/fukushima-fuel-removal-quest-

leaves-trail-dead-robots/#.WL8Y_BIrKYV

http://www.japantimes.co.jp/news/2017/02/17/national/fukushima-fuel-removal-quest-
leaves-trail-dead-robots/#.WL8Y_BIrKYV

6

resilient to radiation and harsh environments, and (iv) self-organizing are a sine qua non for

the advancement of space exploration as well as crisis resolution here on Earth.

Focused on the space domain, this research has the potential of improving efficiency, fault

tolerance, and computational capabilities of aerospace computing and robotic systems—as

well as to benefit a plethora of tomorrow’s ground-based systems. In the author’s opinion, this

research set useful stepping stones for the creation of a new generation of computing systems

that are able to autonomously perform their tasks for longer periods of time, fostering simpler

and cheaper space exploration.

7

CHAPTER 2 LITERATURE REVIEW

“Every man takes the limits of his own field of vision for the limits of the world.”
“Jeder hält das Ende seines Gesichtskreises für das der Welt.”

Arthur Schopenhauer, Parerga and Paralipomena, Psychologische Bemerkungen, 1851

“Those who do not remember the past are condemned to repeat it.”
George Santayana, The Life of Reason, Vol. I, Reason in Common Sense, 1905

This chapter is dedicated to the revision of fundamental concepts and existing research con-

tributions in four different areas: hardware-software co-design and optimization; adaptive

hardware and software; the resilience of complex systems; and multi-agent systems and

swarm robotics. All of these themes are equally relevant for this research—ideally placed

at the centre of the 4-way intersection they create. Not to weigh down the discussion with

unnecessary repetition, cross references to the sections of each chapter that cover similar

topics are also provided. The recapitulatory Table 2.1 concludes the chapter.

2.1 Hardware-software Co-design and Optimization

The challenge of designing embedded computing systems, and MPSoC in particular, was

presented and studied in [99]. Complications primarily arise from the large number of pa-

rameters at play and the complex—sometimes unknown—relationships between components

and the several performance metrics under scrutiny. Therefore, multi-objective optimization

emerges as a framework with significant appeal for the automation of this design process.

Because of the profusion of methodologies in the area, however, it is not always easy to

choose the right tools for any given problem. Several surveys and comparative studies aim

at facilitating the decision making of researchers and designers. A survey of multi-objective

optimization algorithms—not specific to DSE—by Marler and Arora [98]—reviewed multiple

approaches, including genetic algorithms, to find that no single approach could be declared

superior to all others in the general case. The survey of Marler and Arora [98] distinguished

three types of multi-objective optimization algorithms: “methods with a priori articulation

of preferences, methods with a posteriori articulation of preferences, and methods with no

articulation of preferences”. Approaches in the last category are the most flexible and suitable

for automation (and popular in DSE), however, they add to the complexity of the problem.

Rather than a single answer, they output a set (usually called Pareto set/front) of candidate

8

solutions that meet the requirements of Pareto optimality [26]. As a consequence, best-effort

algorithms—that do not guarantee to return the set with all-and-only the Pareto optimal

solutions but only produce an approximate Pareto front—require additional methodologies

to assess the quality of their results. The work of Taghavi and Pimentel [161] is a compre-

hensive review of metrics and visualization techniques for the performance of multi-objective

evolutionary algorithms.

This additional layer of complexity is especially important—and usually unavoidable—in the

context of DSE. The design-space of an embedded computing systems is often unsearchably

large, making the use of approximate optimization a necessity. Consequently, evolutionary

and genetic algorithms—as well as other heuristic strategies—are extremely popular in the

field. Coello reviewed the performance of several approaches based on genetic algorithms

for multi-objective optimization in [30] and [31]. Fonseca and Fleming [48] and Zitzler et

al. [181, 180] reviewed and compared multi-objective evolutionary algorithms. They point

out, in particular, the importance of elitism—i.e., the mechanisms used to preserve the best

solutions in the population of a GA across evolutionary iterations. The work in [77] in-

cludes a comparative review of meta-heuristics for a two-objective set covering problem,

while multi-objective combinatorial optimization algorithms are surveyed in [166]. Not all

DSE approaches, however, are based on heuristics and pseudo-random searches. Hegedüs et

al. [62], for example, proposed a model-based DSE approach that uses dependency analysis

and the algebraic abstraction of transformation rules to generate the following solution to

evaluate. Orthogonally to all of these approaches, Shao et al. [151] recently demonstrated

that the performance of any design-space exploration strategy for hardware accelerators can

be greatly improved using a more accurate pre-RTL simulator.

The contribution of this dissertation provides for two significant deficiencies in the existing

research: (i) the fact that most comparative works limit their scope to only certain families

of algorithms; and (ii) the lack of a practical but generic protocol for the choice of a MOO

algorithm in a given DSE problem. Chapter 4, in fact, presents a quantitative comparison

of DSE algorithms from multiple and different theoretical backgrounds (including EAs and

GAs) as well as guidelines for their application. Since its publication in [116], it has already

contributed to help designers and researchers. Alouani et al. [5] and Mediouni et al. [101], for

example, based their approaches on the IMMOGLS algorithm because of the results in [116].

Additional information on DSE surveys and comparative research can be found in Section 4.2

while Section 4.4 summarizes 15 of the most popular design-space exploration strategies.

9

2.2 Adaptive Hardware and Software

Adaptive capabilities can benefit a wide range of applications—from search algorithms [85] to

mechatronics [1]. The hardware and software of aerospace systems require the ability to adapt

because of the harsh, dynamic environment they operate in. The presence of intense radiation

in space, in fact, is responsible for both hard failures and the onset of a wide range of soft errors

deriving from single event effects (and upsets) [128, 80]. Designing adaptive systems that can

work around these faults is a necessity for aerospace applications and, prospectively, for

ground-level safety-critical systems too: as pointed out by Alexandrescu et al. [4], shrinking

technology processes are making all types of circuits more and more sensitive to radiation.

The work in [4] proposes a fault injection framework for the assessment of this sensitivity.

Most of the literature in the area can be partitioned into two groups: (i) research that deals

with the detection and recovery from permanent failures; and (ii) research that deals with

the correction and mitigation of transient errors. The first category includes: [60], an efficient

detection method for hard faults that uses an adaptive scrubbing period and it was tested on

a 16-core multiprocessor; [156], a wear-out fault detector characterized by minimal hardware

overhead and infrequent periodic monitoring; [25], a software flow for both the detection

and correction of permanent faults arising in SRAM FPGAs—Cassano et al. also point out

the “need to include the soft error rate (SER) as another design parameter”; and [103], an

optimization method that protects redundant systems from permanent faults through the

cost-effective allocation of slack resources. The framework proposed by Jacobs et al. [75]

focusses, instead, on transient errors. It comprises “an adaptive hardware architecture” and

“an upset rate modeling tool that captures time-varying radiation effects for arbitrary satellite

orbits” (similarly to the work mentioned in Appendix B). However, permanent failures are

not accounted for. The work Chapter 5 distinguish itself as a more holistic approach in that

it assumes that both permanent and transient faults can occur and it offers a methodology

to tell them apart (see also Table 2.1).

The research work in Chapter 6 defines an adaptive trade-off between energy consumption

and fault tolerance for multiprocessor systems, taking into account the real-time require-

ments and peculiarities of the space environment. The computing systems under study are

characterized by identical PEs because, as observed by Davis and Burns [35], a majority

of the results on real-time scheduling for multicores has been derived on homogeneous ar-

chitectures. The most resembling research work in the literature is that of Bolchini et al.

in [19]—an operating system module for adaptive reliability against permanent and transient

faults in many-core systems—and [20]—a run-time approach for energy/performance trade-

off in many-core systems. However, it should be observed that, in [19], the fault model is

10

not space-specific nor formally grounded into statistics and the decision/inference layer is

rather scant. Furthermore, the approach in [20] was not intended for real-time applications.

Additional information on these subjects can be found in Sections 5.2 and 6.2.

Some of the most recent and significant contributions in the context of adaptive computing

systems also include: ReconOS [2], an operating system enabling reconfigurable computing

through a unified multithreaded programming model and OS services for those threads that

are mapped to reconfigurable hardware; and [29], an adaptive cache management strategy

for energy-efficient GPU computing that exploits both prediction and run-time detection of

contention. The work of [2], in particular, substantiates the choice of developing adaptivity

at the operating system level, as suggested in Chapter 5 and 6.

2.3 Resilience of Complex Systems

Holling [67] originally defined resilience as the characterizing property—opposed to stability—

of those ecological system that are capable of enduring great transformations while remaining

functional. More recently, these ideas were extended by the same Holling [68] and Walker et

al. [169] with the concepts of adaptability, transformability and sustainability of complex

systems—sustainability, in particular, was defined as “the capacity to create [...] and main-

tain adaptive capability”. Furthermore, the research in [68] and [169] highlighted that these

properties apply not only to ecology but also to social and economical systems (this disserta-

tion argues that computing and robotic systems should be added to the list). This shift—from

ecology to multiple sciences—was noticed by Folke [47]: “history was dominated by empirical

observations of ecosystem dynamics interpreted in mathematical models” that were used to

develop an “adaptive management approach for responding to ecosystem change”. Today, a

“serious attempts to integrate the social dimension is [...] taking place in resilience work”

and this is “reflected in the large numbers of sciences involved in explorative studies and

new discoveries of linked social-ecological systems”. For example, [47] points out the new

interests in multi-agent systems and “adaptive governance”. The interest in resilience has

become so widespread that now it involves the insurance sector and financial regulators [39]

who must develop metrics to assess, e.g., the resilience of specific industries to the occurrence

of natural disasters. Stress tests to evaluate portfolios’ risks, is found by [39], can bring “a

deeper understanding of the relationship between hazard, exposure and vulnerability” and

help assigning “a quantitative value on physical and operational resilience”.

In the field of artificial intelligence, Schwind et al. in [148] and [149] proposed a definition of

resilience comprising of three other sub-properties, namely: resistance, functionality, and re-

coverability. This definition was originally applied to dynamic and constraint-based systems.

11

The work in Chapter 7 builds upon [148] in two successive steps: (i) it points out the limits in

descriptive power of the approach in [149] and (ii) it enriches it with stochastic evolution and

partial observability. This is achieved exploiting the frameworks of probabilistic graphical

models and, in particular, dynamic Bayesian networks [86]. The great expressive power of

these models, however, comes at the cost of high computational complexity. This motivates

the identification of (i) specific queries that can be answered exactly and efficiently (Chap-

ter 7) and, in parallel, of (ii) techniques to improve the efficiency of approximate inference

in generalized models [70]. Additional information on resilience and artificial intelligence can

be found in Section 7.2.

2.4 Multi-agent Systems and Swarm Robotics

Swarm robotics is an emerging research area at the crossroad of mechanical engineering, biol-

ogy, and artificial intelligence. Brambilla et al. [21] and Bayındır [13] reviewed its engineering

challenges and potential applications (aggregation, flocking, foraging, path formation, collab-

orative manipulation task allocation, etc.). To address the swarm engineering problem from

a computer scientist’s perspective, Pinciroli et al. [132] introduced a set of development tools

comprising of a swarm-specific programming language (Buzz) and APIs (e.g., for message

passing and distributed consensus). Because a swarm of robots can be seen as a network

of mobile nodes, the study of this field is also strongly intertwined with those of sensor

networks and the IoT. The distributed assessment of a swarm’s topology and its properties—

connectivity in particular—is a prolific research area. Several publications deals with different

facets of this problem (see also Table 2.1): [18] is a decentralized method to estimate topol-

ogy changes (not necessarily global disconnections) exploiting the properties of synchronizing

chaotic oscillators; [126] uses a similar methodology to discover symmetries within networks;

[89] is a heuristic control strategy to maintain connectivity in a swarm of robots subject to

contrasting forces; [17] and [37] are distributed algorithms for the computation of the second

eigenvalue of the Laplacian matrix of a network—a gauge for connectivity—based on the

power iteration method; [175] adds to the previous two works with the ability to distribut-

edly estimate all eigenvalues and eigenvectors; [145] is an algorithm with the same objective

of the previous two but based on the wave-equation propagation. Section 8.2 includes a

review of the theoretical background of all these methodologies as well as a comparative

re-implementation of those based on the spectral graph theory (i.e., computing eigenvectors

and eigenvalues).

The approach outlined in Chapter 8 is a novel connectivity-aware distributed controller—

implemented in Buzz [132]. Unlike the methodologies mentioned above, it exploits Lennard-

12

Jones potential forces to drive robots into organized structures while also preserving (not just

assessing) their connectivity. The versatility of potential fields in the context of multi-robot

systems, e.g., for collision avoidance, was previously acknowledged by Cruz et al. in [32].

Additional information on swarm robotics research and connectivity are given in Section 8.2.

More recently, Zelazo et al. [178] proposed a decentralized strategy for maintaining the for-

mation rigidity of a multi-robot system (using range measurements) as its graph topology

changes—a related but different problem with respect to that of connectivity. Antonelli et

al. [6] introduced a distributed controller–observer model for the tracking and control of

the centroid of a multi-robot system. Soltero et al. [158] and Yazici et al. [173] presented,

respectively, a decentralized and an energy-aware methodology for path planning and task

coverage. Unlike the simultaneous task coverage solution detailed in Chapter 8, [158] and

[173] are inherently sequential approaches.

Advancements in hardware and software for autonomous robotics are essential to foster plan-

etary and space exploration [82]. The work of Bajracharya et al. [9] outlines the progression

in autonomous capabilities over three generations or NASA’s and JPL’s Mars landers: (i)

Pathfinder and Sojourner; (ii) Spirit and Opportunity (Mars Exploration Rover); and Cu-

riosity (Mars Science Laboratory). While the first generation of rovers was only provided

with basic abilities such as terrain navigation and resource management; MER robots can

perform “visual pose estimation” and “automatically detect science events”. With regard to

terrestrial applications and technology spin-outs, Apvrille et al. [7] also explained the im-

portance of autonomous robots for “assisting rescue services within the context of natural

disasters”, underlining the role that drones can play in life-saving information relay. Finally,

a growing interest is surrounding the study of resilience and resilient behaviours in the con-

text of multi-robot systems [55]. For example, the work of Saldaña et al. [146]—in which

resilience is described as the property of those robot networks that can reach consensus even

in presence of faulty or malicious devices—proposes a resilient formation building algorithm.

13

Table 2.1 Comparison with similar research work in the literature. For each one of the
main aspects of this research, a selection of comparable contributions is reported. A major
differentiating feature is also listed besides each contribution.

Feature Related Dissimilarities

A survey of multi-objective [30, 31] Genetic algorithms only.

optimization (MOO) algorithms [180, 182] Evolutionary algorithms only.

for DSE (Chapter 4). [48] Evolutionary algorithms only.

MOO taxonomy/guidelines(Ch.4). [98] Not specific to DSE. Non-Pareto MMO.

A model of the permanent [60] Transient error modelling is overlooked.

faults and wear-out induced [156] Transient error modelling is overlooked.

by TID (Chapter 5). [25] Transient error modelling is overlooked.

A model of the transient faults [75] Permanent faults are ignored.

due to space radiation (Ch.5). [80] Not an error mitigation approach.

A power/reliability trade-off [19] Not specific to space systems and faults.

for space RT systems (Chapter 6). [20] Not intended for real-time systems.

A formal definition of probabilistic [169] Informal definition of resilience.

resilience and the properties it [148] Non-probabilistic definition of resilience.

comprises (Chapter 7). [146] Applicable to networked systems only.

A distributed potential-based [89] Heuristic connectivity control.

robot controller to preserve [17, 37, 175] PI-based connectivity assessment.

the connectivity of a robot [18] Topology-, not connectivity-aware.

swarm (Chapter 8). [145] Wave eq.-based connectivity assessment.

Simultaneous task coverage for [158] Not energy-aware and sequential method.

swarm robotics (Chapter 8). [173] Sequential path planning method.

14

CHAPTER 3 RESEARCH APPROACH AND THESIS ORGANIZATION

“All human knowledge begins with intuitions,

proceeds from thence to concepts, and ends with ideas.”
“So fängt denn alle menschliche Erkenntnis mit Anschauungen an, geht von da zu Begriffen, und endigt mit Ideen.”

Immanuel Kant, Kritik der reinen Vernunft, 1781/1787

“Science may be described as the art of systematic over-simplification.”
Sir Karl Raimund Popper, The Open Universe: An Argument for Indeterminism, 1982

This chapter presents how to address the problematics and pursue the objectives outlined

in Chapter 1. The proposed methodology comprises five work packages (WPs) distributed

across a three-layer development stack. Section 3.1 provides a condensed but comprehensive

view of the approach. The subsequent section details the WPs in each layer. Finally, the

overall structure of the document is described.

3.1 Bird’s-eye View

Figure 3.1 offers an overview of the logical—and, for the most part, chronological—development

of the research project presented in this dissertation. The background colours of the image

frame the project’s activities with respect to a minimalist computer engineering development

stack comprising of three layers: the hardware level, the operating system (OS) level, and

the application level. The five circles represent the work packages that led to the generation

of this thesis’ main contributions. The ordering of the WPs follows a logical bottom-up 1

approach:

1. WP1 includes a comparative analysis of the literature on design-space exploration for

the optimization of embedded computing systems [116], i.e., the contribution presented

in Chapter 4.

2. WP2 assembles the efforts made to understand, capture, and represent the faults in-

duced by space radiation using probabilistic [115] and phenomenological models [167],

i.e., the contributions in Chapter 5 and Appendix B.

1. Typically, the “bottom” refers to the simpler elements that are integrated on the way “up”, towards
a more complex system. In Figure 3.1’s presentation, this vertical ordering is reversed to comply with the
Gutenberg Diagram’s design pattern [153].

15

3. The tools developed in WP2 were then used to investigate adaptive resource manage-

ment at the operating system level in WP3 [115, 117]. These are the contributions in

Chapter 5 and Chapter 6.

4. WP4 generalizes the concept of adaptiveness developed in WP3 using a similar frame-

work for the assessment of the resilience of a system (Chapter 7).

5. Finally, WP5 evaluates adaptiveness and artificially enforced resilience through a dis-

tributed application: a multi-robot system that can cover multiple spatially distributed

tasks without losing its connectivity (Chapter 8).

Design-time
Hardware

Optimization
[116]

1

Space Envi-
ronment and

Fault Modelling
[115, 167]

2

Adaptive
Resource

Management
[115, 117]

3

Modelling
and Assessing

Resilience
[118, 121]

4

Multi-agent
Applications in
Swarm Robotics

[119]

5

OS

Level

Application

Level

Hardware

Level

OS

Level

Application

Level

Hardware

Level

Figure 3.1 Overview of the main work packages in this research project, their logical (and
chronological) ordering, and their position in the development stack.

Additional co-authored research efforts, not included in the five work packages of Figure 3.1

are summarized in Appendices A and C. These endeavours include the static probabilistic

16

timing analysis (SPTA) of the methodology described in [115] with Chao et al. [27], educa-

tional outreach, and CubeSat design [46].

3.2 Methodology

The approaches and methodologies adopted throughout the different phases and work pack-

ages of this research are outlined in the following subsections. Their presentation follows the

three-layer paradigm of Figure 3.1—i.e., the hardware level is first, the operating system level

second, and the application level last.

3.2.1 Hardware Design Level

WP1 starts this research at the lowest level of the development stack, i.e., the hardware

design level. The reason of this bottom-up approach is the desire to mitigate the risk of

failing to understand the nuances related to the low-level functioning of a computing system.

The research output of WP1—a qualitatively and quantitatively comparative survey—was

published in the ACM Transactions on Design Automation of Electronic Systems [116].

The analysis in [116] (Chapter 4) compares several multi-objective optimization algorithms

for hardware design. Using the notion of Pareto optimality [26], it assesses the quality of the

solution set produced by each algorithm through multiple performance metrics (e.g., ADRS

and concentration) and a rigorous statistical study. The article also contains (i) a taxonomy

proposal, (ii) a qualitative/semi-quantitative analysis of the ease of use of the algorithms,

and (iii) suggested guidelines for their application.

Libraries and Algorithmic Implementations WP1 exploited the open source imple-

mentations of several search algorithms in the C++ Multiple Objective MetaHeuristics Li-

brary (MOMHLib++) of Jaszkiewicz and D ↪abrowski [78], the work of Zaccaria et al. [174],

Multicube Explorer (M3Explorer), and the original source code of the MDP and MOMDP

algorithms [15, 16].

RESP Simulation Environment and Benchmark Applications The performance

of the computing architectures (object of the optimization process) was estimated through

ReSP [14], an open-source simulation environment. The benchmark application set com-

prised: ffmpeg, a video transcoder; pigz, a parallel compression algorithm; and fft6, Bailey’s

6-step FFT algorithm.

17

3.2.2 Operating System Level

Having understood how one could pick the best components for an embedded computing

system [116], the investigation moved up in the development stack (down-right in Figure 3.1)

to work packages 2, 3, and 4. The operating system is the prime software layer for the

management of the hardware resources of a computing device. This level of the stack is,

perhaps, the most promising one for the development of adaptive behaviours [11].

The work authored and co-authored in this layer include the conference papers from WP3

[115, 117] (Chapters 5 and 6) and [27, 167] (see Appendices B and C). Their most relevant

methodological features are:

1. The combination of probability theory, phenomenological models, and reconfigurable

hardware [3] to model and simulate the effects of space radiation on a computing system.

2. The exploitation of timed probabilistic graphical models to describe the evolution of

aerospace computing systems; and their combination with non-memoryless probability

distributions to capture the cumulative effects of ionizing radiation.

3. The development of a quantitative model—inspired by the principles of VLSI design—

to relate (i) the power consumption of a real-time multiprocessor system and (ii) its

fault tolerance to transient errors via its utilization levels.

CREME96 Model The work in [167], [115], and [117] require knowledge of the average

transient fault rates experienced by a spacecraft. The CREME96 tool suite [164], developed

by NASA and Vanderbilt University, provides a web service 2 to satisfy this need. Once

fed with the appropriate input parameters—i.e., the orbital state vectors, the L-values, and

the parameters modelling an FPGA semiconductor material—CREME96 outputs a position-

specific single event effect (SEE) rate. The results of [167] were validated against the exper-

imental data recorded during MISSE-7 in a Virtex-4 device developed by NASA’s Goddard

Space Flight Center and deployed on the International Space Station [129].

Probabilistic Graphical Models The research presented in Chapters 5 and 7 heavily

relies on the formal frameworks of probabilistic graphical models (PGMs) and dynamic

Bayesian networks (DBNs) [86, 143]. As the (discrete) temporal extension of traditional

Bayesian networks [86], DBNs are fully described by two components: (i) the“time 0 Bayesian

network”, i.e., the joint probability distribution over N random variables at time 0; and (ii)

the “2-time-slice Bayesian network” (2-TBN), a conditional BN defined over the N variables

2. https://creme.isde.vanderbilt.edu/

https://creme.isde.vanderbilt.edu/

18

at time t and those at t + 1. The 2-TBN only contains arcs from the variables at time t to

the variables at time t+ 1 (inter-time step influences), and arcs among the variables at time

t+1 (intra-time step influences). Both the “time 0 Bayesian network” and the 2-TBN are BN

themselves—i.e., directed acyclic graph in which each node is a random variable described

by the conditional probability distribution with respect to all of the variables in its parent

nodes. Hidden Markov models (HMMs) [143], in particular, are a specialized PGM that lies

at the intersection of state-observation models and dynamic Bayesian networks.

A typical example of a stochastic system that can be efficiently described with a DBN is that

of a robot navigating through an unknown environment using noisy sensors. The “time 0

BN” would represent the ground belief of the robot—as it activates—and the 2-TBN would

be used to describe the evolution of the probability distribution of its sensor readings—as it

moves.

Defining and Assessing the Resilience of Complex Systems

The research work in WP4—on resilience and the algorithmic means of quantifying it—lies

at the crossroad between resource management (the OS level) and resource exploitation (the

application level). Resilience is a property derived from ecology [67] and it strongly appeals

to the designers of critical and aerospace systems because of the aura of unbreakability it

emanates.

A framework based on hidden Markov models (enriched with a cost function) is exploited in

Chapter 7 to formally describe resilience in the context of stochastic and partially-observable

environments. The additional theory provided in [121] (Chapter 7) includes four applica-

tion scenarios and the analytical and experimental complexity studies of an exact inference

algorithm. The algorithm’s MATLAB-compatible Octave implementation is available on

GitHub 3.

3.2.3 Application Layer

Finally, the study raises to the application layer with the intention of leveraging the ma-

tured understanding through a demonstration of adaptive and resilient technology. To reflect

the multifaceted research interest of MIST Laboratory in space and robotics, we chose to

investigate the implementation of autonomous multi-robot exploration.

The work performed within this layer is that of WP5 and it is summarized by the article under

review [119] in Chapter 8. The main methodological features of this study include (i) the

3. https://github.com/JacopoPan/probabilistic-resilience.git

https://github.com/JacopoPan/probabilistic-resilience.git

19

review of a large body of literature in the field of connectivity assessment (and maintenance)

for networked multi-robot systems, and (ii) the reproduction and critique of several results

published in the area. Furthermore, we propose a novel two-level controller that circumvents

the issues exposed by our review and leverages potential forces to enforce connectivity in the

presence of conflicting goals (tasks). To allow the reproduction of our results, the Python

Jupyter Notebook and MATLAB-compatible Octave implementations of this work are also

available on GitHub 4 5 6 7 8.

ARGoS Robotic Simulator The results presented in Chapter 8 were obtained using the

multi-physics robot simulator ARGoS [133]. ARGoS efficiently simulates large-scale swarms

of robots and complex real-life interactions such as collisions, inertia, and communication

failures (e.g., package drop).

BUZZ – A Programming Language for Swarm Robotics Albeit ARGoS supports

robot controllers written in C++, the experiments of Chapter 8 use Buzz, a swarm-specific

programming language [131] developed at MIST Laboratory. Buzz features built-in consensus

mechanisms (i.e., virtual stigmergy [132]) and APIs to create swarms within swarms.

3.3 Document Structure

The document follows the traditional layout for dissertations by articles, that is, the inclusion

of published or submitted contributions in the body of the work, each as a separate chapter.

— Chapter 1 is the introduction of the dissertation. It describes the research questions,

objectives, and aspects of novelty.

— Chapter 2 reviews the state of the art in four related areas: (i) hardware-software co-

design and optimization, (ii) adaptive hardware and software, (iii) fault-tolerance and

resilience, and (iv) multi-agent systems and swarm robotics.

— Chapter 3 is this chapter. It contains an overview of the research approach and of the

structure of the dissertation.

— Chapters from 4 to 8 are the published or submitted articles that compose the heart of

the thesis.

4. https://github.com/JacopoPan/ar-spectral-graph-theory-comparison.git

5. https://github.com/JacopoPan/ar-discrete-chaotic-oscillators.git

6. https://github.com/JacopoPan/ar-flocking-and-leader-forces.git

7. https://github.com/JacopoPan/ar-prominences-in-the-ideal-world.git

8. https://github.com/JacopoPan/ar-argos-buzz-simulations.git

https://github.com/JacopoPan/ar-spectral-graph-theory-comparison.git
https://github.com/JacopoPan/ar-discrete-chaotic-oscillators.git
https://github.com/JacopoPan/ar-flocking-and-leader-forces.git
https://github.com/JacopoPan/ar-prominences-in-the-ideal-world.git
https://github.com/JacopoPan/ar-argos-buzz-simulations.git

20

— Chapter 4, is a comparative survey of the literature (part of WP1) published in

the ACM Transactions on Design Automation of Electronic Systems in 2014 [116].

— Chapter 5 is a conference paper (part of WP2 and WP3) presented at the 2014

NASA/ESA Conference on Adaptive Hardware and Systems in Leicester, United

Kingdom [115].

— Chapter 6 is a conference paper (part of WP3) presented at the 2015 NASA/ESA

Conference on Adaptive Hardware and Systems in Montréal, Québec, Canada [117].

— Chapter 7 is a submitted journal article (part of WP4 and a research internship

at the National Institute of Informatics in Tokyo, Japan) under review for Science

Advances.

— Chapter 8 is a submitted journal article (part of WP5) currently under review for

Autonomous Robots’ Special Issue on Distributed Robotics: From Fundamentals

to Applications.

— Chapter 9 discusses the results presented in the previous five chapter going through the

same four areas of Chapter 2.

— Chapter 10 provides conclusions, lessons learned, unanswered questions and future work

directions.

— The appendices summarize a selection of side project and co-authored work.

— Appendix A reports on the engineering and educational efforts in CubeSat design

of technical society PolyOrbite.

— Appendix B recapitulates the contribution of a short paper (part of WP2) by

Vedant et al. [167] on the modelling—and injection into FPGAs—of errors induced

by space radiation.

— Appendix C rehashes the significance of a conference paper by Chao et al. [27]

on the static probabilistic timing analysis of a system equipped with the tools

presented in [115].

The attentive reader will have observed that each of the “non-article” Chapters 1, 2, 3, 9,

and 10 debuts with epigraphs from the work of famous thinkers and Western philosophers of

the 18th, 19th and 20th century. The purpose of these quotations is to set the tone of each

chapter as well as to reflect the ambiguous sense of humour of the author.

21

CHAPTER 4 ARTICLE 1 – A COMPARATIVE EVALUATION OF

MULTI-OBJECTIVE EXPLORATION ALGORITHMS FOR HIGH-LEVEL

DESIGN

Preface: The starting point of this research is the threatening growth in complexity

of aerospace on-board data-handling systems. A serious challenged posed by the design

of modern embedded computing systems is the fact that the number of choices they

entail—relative to their components and their parametrization—is so large that it is often

impossible to evaluate all of them. In the article presented in this chapter, we systematically

analyze the data that we collected experimenting with 15 search algorithms—gathered from

the existing literature—to automate the design process. Choosing the most suited algorithm

for this problem has the potential to improve a system’s performance and, at the same time,

to contain its design cost. Besides the raw comparisons in time to convergence and Pareto

optimality, our findings suggest that pseudo-random approaches can often suffice in small

search spaces but that the methodologies that perform best with difficult problems (i.e., large

or hard to simulate search spaces) are those that exploit probabilistic and statistical models.

These results are also the premise of a chapter in the “Handbook of Hardware/Software

Codesign” edited by Soonhoi Ha and Jürgen Teich (to appear). We use the discovery to

direct the rest of our research.

Full Citation: Jacopo Panerati and Giovanni Beltrame. 2014. A comparative evaluation

of multi-objective exploration algorithms for high-level design. ACM Transactions on Design

Automation of Electronic Systems 19, 2, Article 15 (March 2014), 22 pages.

DOI: http://dx.doi.org/10.1145/2566669

Copyright: c© 2014 Association for Computing Machinery, Inc. Reprinted by permission.

Abstract

This paper presents a detailed overview and the experimental comparison of 15 multi-

objective Design Space Exploration (DSE) algorithms for high-level design. These algorithms

are collected from recent literature and include heuristic, evolutionary and statistical meth-

ods. To provide a fair comparison, the algorithms are classified according to the approach

used and examined against a large set of metrics. In particular, the effectiveness of each

algorithm was evaluated for the optimization of a multi-processor platform, considering ini-

http://dx.doi.org/10.1145/2566669

22

tial setup effort, rate of convergence, scalability, and quality of the resulting optimization.

Our experiments are performed with statistical rigor, using a set of very diverse benchmark

applications (a video converter, a parallel compression algorithm, and a fast Fourier transfor-

mation algorithm) to take a large spectrum of realistic workloads into account. Our results

provide insights on the effort required to apply each algorithm to a target design space, the

number of simulations it requires, its accuracy, and its precision. These insights are used to

draw guidelines for the choice of DSE algorithms according to the type and size of design

space to be optimized.

4.1 Introduction

The continuous increase of transistor density on a single die is leading towards the production

of more and more complex systems on a single chip, with an increasing number of integrated

components and processing units. This trend brought to the introduction of the System-On-

Chip (SoC), that integrates on a single medium all the components of a full system. The

design and development of such systems [123] raises challenges [66] due to the large design

space, and tight constraints [99].

Parametrized embedded System-on-Chip (SoC) architectures must be optimally tuned, i.e.,

their configuration parameters must be appropriately chosen, to find the best trade-off in

terms of the selected figures of merit (e.g., energy, area, and delay) for a given class of

applications. This tuning process is called Design Space Exploration (DSE) [130]. Using

DSE, a designer can find the optimal configuration for a given system.

In general, this optimization problem involves the minimization (or maximization) of mul-

tiple objectives, making the definition of optimality not unique. The quality of a system

configuration according to the various objectives is usually expressed using a set of metrics

or objective functions. Solving multi-objective optimization problems consists of finding the

points of the Pareto curve [56], i.e., all the points which are better than all the others for at

least one metric or objective function.

However, a Pareto curve for a specific platform is available only when all the points in the

design space have been evaluated and characterized in terms of objective functions. This

full search approach is often unfeasible due to the high cardinality of the design space, and

to the high cost associated with the evaluation of the objective functions (e.g., long simu-

lation times). A viable, but less expressive, solution would consist in the use of scalarizing

functions [104]), which transform the problem into a single objective search.

Currently, Multi-Processor SoCs (MPSoCs) platforms are optimized using either by designer

23

experience or by applying several different algorithms. Examples are classical heuristic al-

gorithms (such as tabu search, simulated annealing, etc.) [113], or pruning techniques that

try to reduce the size of the design space [105]. These techniques rely on simulation (or

estimation) for the evaluation of the system-level metrics corresponding to a newly found

configuration.

Depending on the parameters of the design space (such as size and time needed for one

simulation), algorithms show different performance and accuracy of results. This work iden-

tifies and compares 15 algorithms among several of the most recent approaches proposed

in literature, for automated DSE with multiple performance metrics. These methods differ

from theoretical background, applicability conditions, and performance. Through a rigorous

analysis, we identify the advantages and drawbacks of each method, obtaining guidelines for

their use with different applications.

The main contributions of this work are: (a) a comprehensive overview, as we take into

account more and more diverse multi-objective optimization methodologies than previous

surveys in the field, (b) a quantitative analysis, as our results provide numbers and metrics

allowing a clear comparison of multi-objective optimization methodologies on the common

ground of DSE for MPSoCs, and (c) insights, as we give recommendations for the choice of

the most appropriate algorithm for a target design space.

The paper is structured as follows: Section 4.2 briefly reviews other comparative works in the

field of multi-objective optimization and DSE; Section 4.3 describes the landscape of multi-

objective optimization and DSE algorithms and proposes their partitioning into four classes;

Section 4.4 summarizes the theory behind each one of the 15 algorithms included in our

experimental comparison; Section 4.5 presents the experimental setup and the framework we

used to compare the algorithms, while results are presented in Section 4.6; Section 4.7 contains

the discussion of the results and the recommendations of the authors; finally, Section 4.8

concludes the paper.

4.2 Related Work

Several other works reviewing and comparing state-of-the-art algorithms for multi-objective

optimization exist in literature [30, 181, 166], with most of them providing algorithm de-

scriptions in the form of a survey. In general, these surveys do not attempt quantitative

comparisons and they do not provide any novel experimental evaluation.

Fonseca and Fleming [48] claim that evolutionary algorithms (EA), since their appearance,

quickly became one of the most popular ways to solve multi-objective problems. The paper

24

provides theoretical insights on how to assign fitness values 1 for multi-objective problems,

but doesn’t provide guidelines for the choice of EAs to be used on specific problems.

Coello [31] identifies three families of evolutionary approaches for multi-objective optimiza-

tion based on the way the algorithms compute the fitness of individuals/solutions: algo-

rithms using aggregating functions, algorithms using non-aggregating but non Pareto-based

approaches, and Pareto-based approaches, e.g., the NSGA algorithm included in our experi-

mental pool. Some experiments are reported, but the results are not systematically compared.

Marler and Arora [98] broadens the discussion on multi-objective optimization including

approaches other than evolutionary algorithms. Multi-objective optimization methodologies

are divided into: (a) algorithms with a priori specification of preferences (e.g., scalarizing and

utility functions), (b) algorithms with a posteriori specification of preferences, returning a set

of Pareto points, (c) algorithms with no specification of preferences, typically simplifications

of approaches from (a) with constant parameters, and (d) genetic algorithms (GA), e.g.,

the IMMOGLS algorithm also described in this work. The cost of programming and the

computational complexity of the algorithms are compared only in a qualitative way.

In terms of experimental groundwork, the closest works to this paper were published in [182],

[180] and [181]. Zitzler et al. compare seven evolutionary algorithms, including SPEA and

NSGA, detailed later in this paper, using one realistic (the synthesis of a multiprocessor) and

two artificial problems. As our results confirm, they discover that SPEA outperforms NSGA.

The main flaw of these publications is that their scope is limited to evolutionary algorithms,

while we consider algorithms exploiting very different methodologies.

Finally, it is worth mentioning Okabe et al. [109], which summarizes several metrics for the

evaluation of solutions to multi-objective optimization problems. Okabe et al. [109] suggests

that no single metric is sufficient to judge the quality of the Pareto set returned by a multi-

objective optimization algorithm. Similar claims, together with innovative visualization tools

for the Pareto sets discovered by multi-objective evolutionary algorithms, can be found in

[161]. In our work, we use four different metrics to evaluate the accuracy, distribution, and

cardinality of the Pareto sets found by the optimization algorithms. Moreover, we compare

the performance of 15 algorithms as the number of evaluations needed to converge to a Pareto

set.

25

Table 4.1 Comparison of experimental settings in DSE literature.

Ref. Class Approach
Optim. Metrics Adjustable Parameters
Delay Power Area Proc. Units Freq./Volt. Cache Ass./Size

[111] 1 Particle Swarm Optimization
√ √ √

[94] 1 MO Pseudo Boolean
√ √ √

[56] 1 Parameter Dependency Model
√ √ √ √

[113] 2 Genetic Algorithms
√ √ √

[49] 1 Sensitivity-Based
√ √ √

[152] 3 Design of Experiments
√ √ √ √

[96] 3 Correlation-Based
√ √ √ √

[112] 3 Response Surface-Based
√ √ √ √

[15] 4 Decision Theoretic
√ √ √ √ √

Table 4.2 Comparison of design space size in DSE literature.

Ref. Class Design Space Size

[111] 1 196608
[56] 1 > 1014

[49] 1 9216
[113] 2 5.97 · 1012

[152] 3 16384
[96] 3 217

[112] 3 217

[15] 4 8640

26

4.3 Proposed Taxonomy

The challenge of automated DSE can be divided in two sub-problems: (a) the identification

of candidate solutions (i.e., valid system configurations), (b) the evaluation of metrics of

interest for such solutions, and the selection of the optimal configurations.

Considering the context of embedded systems design, we identify four main classes of tech-

niques proposed in literature for the problem (a):

— Class 1: Heuristics and pseudo-random optimization approaches, that try

to reduce the design space and focus the exploration on regions of interest [56, 49].

These techniques normally rely on full search or pseudo-random algorithms to explore

the selected regions. Metaheuristics such as simulated annealing (SA) and multi-agent

optimization belong to this class.

— Class 2: Evolutionary algorithms. These techniques are the most common and

widely used, they rely on random changes of a starting set of configurations to iteratively

improve the system under analysis. In this category we find genetic algorithms [113].

— Class 3: Statistical approaches without domain knowledge. These techniques

extract a metamodel from the design space and use it to predict which new configura-

tions to consider [152, 94, 112, 96].

— Class 4: Statistical approaches with domain knowledge. These techniques use

pre-defined rules associated to the design space to find the most promising solutions [15].

Problem (b), i.e., the evaluation of candidate solutions, is usually addressed via two mecha-

nisms (or a combination): detailed simulation [15] or estimation using predictive models [76].

Class 1 features a vast range of algorithms that are currently used in various domains,

including: (a) multi-agent optimization such as particle swarm optimization (PSO) [111],

(b) simulated annealing, and (c) other operations research algorithms (such as tabu search).

In [56], the design space is divided into partitions, and exhaustive search is performed inside

each partition. Then the Pareto-optimal configurations of each partition are combined to

determine the global curve. A different technique, proposed by Fornaciari et al. [49], aims

at reducing the number of configurations from the product of the number of parameters to

their sum. Although complexity is highly reduced, the exploration results remain in many

cases sub-optimal.

Class 2 techniques are probably the most widely used. Genetic algorithms and exact methods

are combined in [94]: the design space exploration problem is formalized as a multi-objective

1. The metric used by evolutionary algorithms to evaluate the goodness of a solution and its probability
of being recombined.

27

0-1 Integer Linear Programming (ILP) problem. A pseudo-boolean solver is used to force the

genetic algorithm to stay in the feasible search space. These algorithms require a relatively

small effort to describe design space, and they do not require specific knowledge associated

to the domain or the metrics used for the exploration. However, they do not guarantee

optimality or convergence within certain accuracy or precision bounds, even though they

generally perform well when running a sufficient number of evaluations.

Class 3 methods rely on statistical analysis. A group of techniques, referred to as Design of

Experiments (DoE) [152, 112, 96] is often used to characterize the impact of the parameters

on the system. This means estimating the portion of the variance of the objective functions

associated to the variation of each parameter. Once sensitivity analysis is performed, heuris-

tics or metamodels are used to modify the parameters and determine the optimal system

configuration. Palermo et al. [112] use DoE to generate an initial set of experiments, cre-

ating a coarse view of the target design space. Response surface modeling (RSM) is then

used to refine the exploration; this process is iterated to cover the design space. The solid

statistical foundation of these algorithms allows to extract the maximum amount of infor-

mation from the initial training set, and the generated metamodels can be used to find new

candidate configurations or quickly evaluate potential solutions.

The algorithms in Class 4 use expert knowledge to set up a probabilistic framework to

determine the best candidate solutions. Beltrame et al. [15] introduce the use of decision

theory to exploit this expert knowledge. The idea is to move the design space exploration

complexity from simulation to probabilistic analysis of parameter transformations. Explo-

ration is modeled as a Markov decision process (MDP) [143, 79], and the solution to such

MDP corresponds to the sequence of parameter transformations to be applied to the platform

to maximize (or minimize) a desired value function. This approach requires to simulate the

system only in particular cases of uncertainty, massively reducing the simulation time needed

to perform the exploration of a system, while maintaining the near-optimality of the results.

In this work we collected algorithms from all the four classes and we compared their strengths

and weaknesses using a realistic benchmark scenario: a symmetric multi-processor platform.

The results provide guidelines in the use of multi-objective optimization algorithms for DSE.

To allow a fair and clear comparison with previous DSE works, Table 4.1 reports the opti-

mization metrics and parameters of previous publications, Table 4.2 contains information on

the size of the explored domain spaces, while Table 4.3 briefly lists the software applications

originally used as benchmarks.

28

Table 4.3 Comparison of benchmark applications in DSE literature.

Ref. Class Benchmark Applications

[111] 1 FIR (finite impulse filter), Gamma and
DCT (numeric algorithms), Gauss and
Quarcube (equations solvers).

[94] 1 ALC (adaptive light control), a large au-
tomotive design problem.

[56] 1 “JPEG”, a jpeg compression algorithm
using the on-chip DCT CODEC core to
perform the forward DCT transform.

[49] 1 MESA, a 3D graphics library close to
OpenGL, GSM06.10, European stan-
dard encoder and decoder.

[113] 2 Motorola PowerStone, a collection of
embedded and portable applications.

[152] 3 A set of EEMBC (Embedded Micro-
processor Benchmark Consortium) bench-
mark applications.

[96] 3 A set of benchmarks derived from the
Stanford Parallel Applications for Shared
Memory (SPLASH) suite.

[112] 3 MPEG2 decoder application.
[15] 4 ffmpeg, pigz and fft6 (see Table 4.9 for

additional details).

29

4.4 Multi-Objective Algorithms For Design Space Exploration

We include fifteen multi-objective algorithms for DSE in our experimental comparison.

4.4.1 Class 1

Adaptive Windows Pareto Random Search (APRS)

The APRS algorithm is one of the two novel algorithms implemented in the Multicube Ex-

plorer framework [174]. The algorithm starts with an initial set of candidate Pareto points

and then attempts to improve the Pareto set by picking randomly among the points inside

windows centered on the current points. The size of the windows is reduced over time (at

each iteration) and proportionally with the quality of the point associated to them.

Multi-Objective Multiple Start Local Search (MOMSLS)

Local search is a simple heuristic that iteratively refines an initial random solution by looking

for improvements in a neighbourhood of the current solution [143]. MOMSLS [78] simply

consists of a local search procedure using multiple solution points in its initial step. At each

step the algorithm looks for better solutions in the N neighbourhoods of all the current

solutions.

Multi-Objective Particle Swarm Optimization (MOPSO)

Particle Swarm Optimization (PSO) [83] is a heuristic search methodology that finds its

biological inspiration in the behaviour of flocks of birds. At each search iteration, the particles

in the swarm move towards an objective using a velocity vector that is the linear combination

of three components:

— the previous velocity vector (weighted by inertia, W)

— the direction towards the best (i.e., closest to the objective) position ever reached by

the swarm (weighted by a social learning factor, C1)

— the direction towards the best position ever reached by the specific particle (weighted

by a cognitive learning factor, C2)

In multi-objective particle swarm optimization (MOPSO) [111], PSO is applied to a multi-

objective domain by using N swarms, each of which having as an objective the product of

the multiple objectives combined with randomly chosen exponents.

30

In MOPSO, inertia and social learning factors are unused: in order to avoid local minima,

at each iteration, particles are forced to move with random velocity (a random walk) with a

fixed probability p.

Multi-Objective Simulated Annealing (MOSA)

Simulated annealing (SA) is a local search technique that uses a special technique to avoid

local minima: solutions that are worse than the current are rejected with a given proba-

bility p, computed using a Boltzmann distribution (parametrized by a coefficient T , called

temperature).

[165] propose two ways of applying simulated annealing to multi-objective problems:

1. probability scalarization, the computation of rejection probability for each performance

metric and their aggregation

2. criterion scalarization, the projection of the performance metrics into a single metric,

and the use of such metric to compute the rejection probability of the new solution.

The latter approach is the one implemented in MOSA [165], and tested in this paper using the

parameters in Table 4.5, while approach (1) is the one used by the other SA-based algorithms

presented below.

Pareto Simulated Annealing (PSA)

PSA [34] proposes two different criteria for the application of simulated annealing to multi-

objective problems:

1. rule C says the rejection probability p is proportional to the largest value among the

differences between the performance metrics of the current and the new solution;

2. rule SL states that p is a weighted linear combination of the differences between the

performance metrics of the current and the new solution.

Table 4.4 The most relevant parameters used by the MOPSO algorithm.

MOPSO [111] - Class 1

Param. Description Val.

W inertia weight unused
C1 social learning factor unused
C2 cognitive learning factor 1
p probability of taking a random walk 0.9, 0.5, 0.2

31

Table 4.5 The most relevant parameters used by the MOSA, PSA and SMOSA algorithms.

MOSA [165], PSA [34],
SMOSA [150] - Class 1

Param. Description Val.

Np generating population size 10
T0 initial temperature used to parametrize the Boltz-

mann distribution
2.50

Tf final temperature used to parametrize the Boltz-
mann distribution

0.1

γ weights change coefficient 0.1

Concerning rule SL, the weights used to multiply each metric are increased or reduced at each

iteration, depending whether the most recently introduced solution brought a deterioration

in that specific metric or not.

See Table 4.5 for the algorithm specific parameters used in our experiments.

Serafini’s Multiple Objective Simulated Annealing (SMOSA)

Serafini [150] proposes several rules for the combination of multiple performance metrics in

order to apply simulated annealing in the context of multi-objective optimization. Together

with reviewing the C and SL rules described in [34], a new composite rule is introduced. This

rule is the linear composition, with coefficients α and (1− α), of two simpler rules:

1. rule P, saying that the rejection probability p is proportional to the product of the

differences between the performance metrics of the current and the new solution;

2. and rule W, saying that p is proportional to the smallest value among the differences

between the performance metrics of the current and the new solution.

4.4.2 Class 2

Multiple Objective Genetic Local Search (MOGLS)

MOGLS [72] is an algorithm combining two well known methodologies, genetic algorithms and

local search. Algorithms combining multiple search methodologies are usually called hybrid

approaches. Genetic algorithms start from a set of possible solutions, called population,

and come up with new tentative solutions by combining couples of existing solutions X

picked with a probability p given by a fitness function f(X) [155]. At each iteration of

32

the MOGLS algorithm, (a) new solutions are generated using genetic operations and (b)

a local search is performed in the neighbourhoods of these new solutions. The algorithm-

specific parameters used in our experiments for MOGLS and the other genetic-local hybrid

approaches, IMMOGLS and PMA, are reported in Table 4.6.

Ishibuchi-Murata Multi-Objective Genetic Local Search (IMMOGLS)

IMMOGLS [73] is similar to MOGLS, being the combination of genetic algorithms and local

search. In a multi-objective minimization problem, a solution is said to be non-dominated

with respect to a set of solutions, if no other solution scores lower in all the metrics that

we want to minimize, the solution is dominated otherwise. At each iteration, IMMOGLS

performs both genetic operations and a local search with three characteristics:

1. the fitness function is a linear combination of the optimization metrics and the weights

are chosen randomly at each iteration;

2. the local search is limited to a number of k neighbours, where k is random;

3. at each iterations, the current population is purged of any dominated solutions (elitist

strategy).

Non-Dominated Sorting Genetic Algorithm (NSGA)

NSGA [159] is a straightforward application of the genetic approach to multi-objective op-

timization. At each iteration, NSGA assigns to the Pareto points in the current population

their fitness values on the basis of non-domination. All non-dominated solutions are as-

signed the same fitness value. See Table 4.7 for the algorithm specific parameters used in our

experiments.

Table 4.6 The most relevant parameters used by the IMMOGLS, MOGLS and PMA algo-
rithms.

IMMOGLS [73], MOGLS [72],
PMA [77] - Class 2

Param. Description Val.

Np population size 20
Ni number of iterations 7
f scalarizing function family linear

33

Controlled Non-Dominated Sorting Genetic Algorithm (NSGAII)

Deb and Goel [36] present NSGAII, an evolution of NSGA with two main differences:

1. NSGAII is an elite-preserving algorithm, i.e., non-dominated solutions cannot be re-

moved from the current population;

2. solutions are sorted based on non-domination to reduce computational complexity.

Pareto Memetic Algorithm (PMA)

PMA [77] belongs to the family of hybrid genetic-local search algorithms, together with

IMMOGLS and MOGLS. Its very own peculiarity resides in the way used to select the

couple of current solutions that are combined with genetic operations: these two solution are

not directly drawn from the current population. Instead, PMA samples with repetition a

new set of solutions T from the current population. Then, the best two solutions in T are

chosen for recombination.

Strength Pareto Evolutionary Algorithm (SPEA)

SPEA [182] belongs to the broad family of heuristic search methods called evolutionary

algorithms. Its peculiarities are:

1. all the non-dominated solutions are stored and preserved in a second external popula-

tion;

2. the fitness of a solution in the current population is determined only from the solutions

stored in the external non-dominated set [182];

3. a clustering step is applied to the non-dominated population in order to keep it small

while preserving its characteristics.

Table 4.7 The most relevant parameters used by the NSGA, NSGAII and SPEA algorithms.

NSGA [159], NSGAII [36],
SPEA [182] - Class 2

Param. Description Val.

Np generating population size 15
Ng number of generations 55
p mutation probability 0.2

34

4.4.3 Class 3

Response Surface Pareto Iterative Refinement (ReSPIR)

ReSPIR [112] is a DSE algorithm that uses statistical tools to create and keep an internal

representation of the relations between the configuration parameters and the performance

metrics in order to minimize the number of evaluations needed for successful optimization.

These statistical tools are:

1. Design of experiments (DoE), a methodology allowing to maximize the information

gained from a set of empirical trials;

2. response surface models (RSM), analytical representations of an objective trained with

the available data. Different models can be used: linear regression, Shepard-based

interpolation, artificial neural networks (ANN), etc.

The algorithm iteratively defines (using DoE) a set of experiments to be performed, trains

the RSMs with the information collected and then produces an intermediate Pareto set.

4.4.4 Class 4

Markov Decision Process Optimization (MDP)

The approach proposed by Beltrame et al. [15] is based on a framework for sequential

decision making called Markov decision process. Its components are states, actions, stochastic

transitions from state to state, and rewards. The framework allows to find the correct action

to perform in each state to collect the largest amount of rewards [143]. In [15], states are

parameters configurations with their associated performance metrics, actions are parameters

changes and rewards are improvements in the performance metrics. Stochastic transitions are

initially believed to have uniform distribution and their estimates are refined over execution.

It is worth noting that the algorithm requires built-in domain knowledge of the upper and

lower bounds of each performance metric as a function of the tuning parameters. For this

reason, MDP has a long set-up time and cannot be used without extensive domain knowledge

regarding the platform used by the system under design. Table 4.8 reports the algorithm-

specific parameters used in our experiments.

Multi-Objective Markov Decision Process (MOMDP)

MOMDP [16] is an improved version of MDP. The main difference with respect to MDP

is that MOMDP uses a different exploration strategy. MDP considers different objectives

using a parametric scalarizing function, and varies a parameter (called α) which represents

35

Table 4.8 The most relevant parameters used by the MDP algorithm.

MDP [15] - Class 4

Param. Description Val.

l event horizon, maximum length of a decision path 3
ε convergence margin, stopping criterion 10−6

λ accuracy factor, used to tune the discretization of
the domain space

0.3

|A| the number of α values, i.e., number of modifica-
tions that can be applied to a parameter

6

the weight(s) associated to each objective. By sweeping α values, it is possible to discover a

Pareto curve for a given number of separate objectives.

MOMDP uses a different approach: it maximizes (or minimizes) one of the objectives to

derive a starting point, and then builds the Pareto curve using a value function that selects

a point that is close to the starting point, but improving it in at least one of the objectives.

The process is repeated using the newly found point until a full Pareto front is discovered.

MOMDP also introduces a special action, called the leap of faith, that allows to avoid local

minima by searching in the direction of high rewards, however unlikely. This action is per-

formed when all actions fail to improve any of the metrics. The algorithm-specific parameters

used in the experiments are the same as the ones in Table 4.8, with the exception of the event

horizon, that was increased to 4.

4.5 Experimental Setup

We collected the implementation of the 15 multi-objective algorithms that we evaluated

and compared from different sources. Most class 1 and class 2 algorithms algorithms are

implemented in the Multiple Objective MetaHeuristics Library in C++ (MOMHLib++) by

Jaszkiewicz and Dbrowski [78]. We also draw from the work of Zaccaria et al. [174], Multicube

Explorer (M3Explorer), that implements standard and enhanced versions of several well-

known multi-objective optimization algorithms. Multicube Explorer provides some of the

DSE algorithms in classes 1 and 3. Concerning the algorithms in class 4, MDP and MOMDP,

we used the original source code. All of these libraries and research projects are open-source

and the authors provide open access to their implementations.

Our experiments aim at:

— determining the effort needed to apply each algorithm to a given design space, and

36

how the design space’s characteristics drive the choice of the most effective exploration

algorithm

— determining the number of evaluations required by each algorithm to obtain an approx-

imate Pareto-set of given quality

— quantifying the properties of the Pareto-set found by each algorithm.

A qualitative comparison of the 15 algorithms is presented in Table 4.11. Each algorithm

was applied to the same design space: a symmetric multi-processor platform running three

different applications, shown in Figure 4.1. The platform consists of a collection of ARM9

cores with private caches, and a shared memory, interconnected by a simple system-bus

model. Cache coherency is directory-based and using the MESI protocol. The ReSP [14]

open-source simulation environment was used to perform the simulations, providing a set

of configurable parameters, listed in Table 4.10. ReSP provides values for execution time

and power consumption, which were used as the performance metrics for all optimization

algorithms in our experiments.

The three applications used for testing are, more specifically, two large applications and a

small benchmark, for which exhaustive search was possible, as listed in Table 4.9. ffmpeg, a

video transcoder, was used to convert a small clip from MPEG-1 to MPEG-4, and pigz, a par-

allel compression algorithm, was used to compress a text file. The small benchmark consists

of an implementation of Bailey’s 6-step FFT algorithm (fft6). All applications are data-

parallel and are targeted towards a homogeneous shared-memory multi-processor platform

(N processors accessing a common memory via bus). ffmpeg and pigz are implemented using

pthreads, they create a set of working threads equal to the number of available processors and

dispatch independent data to each thread. fft6 uses OpenMP, with loop parallelization and

static scheduling. These applications were specifically chosen in order to guarantee the max-

imum variability in their behaviour, in fact all applications use a different synchronization

mechanism and require very different evaluation times.

The platform was explored using the parameters listed in Table 4.10 with a resulting design

space of 8640 points 2, comparable with similar works (e.g., 6144 points in [152]). and the

exhaustive exploration of any medium/large application would require an unfeasibly long

simulation time (e.g., roughly two months for ffmpeg). Even the full exploration of the

simple fft6 benchmark required six days of uninterrupted simulation. To gather sufficient

data for a statistical analysis, each of the 3 benchmark applications was optimized 10 times

with each exploration algorithm (N = 30 executions for each algorithm).

2. It is worth noting that bus and memory latency are not realistic parameters, but they enlarge the design
space to better test the proposed algorithm. The linear dependence with performance prevents any strong
biasing of the results.

37

Table 4.9 The three benchmark applications chosen to represent a significant spectrum of
workloads.

Application Version Source Model Synch. Sim. Time Description

pigz 2.1 C pthreads condition ∼2m a parallel imple-
mentation of gzip

fft6 2.0 C/Fortran77 OpenMP barrier ∼30s implementation of
Bailey’s 6-step fast
Fourier transforma-
tion algorithm

ffmpeg 49.0.2 C pthreads semaphore ∼30m a fast video and au-
dio converter

Table 4.10 The platform design space simulated using ReSP.

Parameter Name Domain

of PEs {1,2,3,4,8}
PE Frequency {100,200,250,300,400,500} MHz
L1 Cache Size {1,2,4,8,16,32} KByte(s)
Bus Latency {10,20,50,100} ns
Memory Latency {10,20,50,100} ns
L1 Cache Policy {LRU, LRR, RANDOM}

38

According to Taghavi and Pimentel [161], the quality of the result of a multi-objective op-

timization algorithm is two-fold: 1) solutions should be as close as possible to the actual

Pareto set, and 2) solutions should be as diverse as possible. Therefore, no single metric is

sufficient in assessing the quality of the discovered Pareto set.

We use the three metrics presented in [43] to compare the relative quality of the approximate

Pareto sets obtained by each algorithm:

— ADRS – The Average Distance from Reference Set is used to compare the approxi-

mated Pareto-sets with the best Pareto set found combining the results of all exper-

iments. This approximates the distance of a considered set from the Pareto-optimal

front, and should be minimized.

According to its definition in [174], the ADRS between an approximate Pareto set Λ
and a reference Pareto set Π is computed as:

ADRS(Π,Λ) = 1
|Π|

∑
a∈Π

(
min
b∈Λ
{δ(b,a)}

)
(4.1)

where the δ function stands for:

δ(b,a) = maxj=1,..,m

{
0, φj(a)− φj(b)

φj(b)

}
(4.2)

Parameter m is the number of objectives and φi(a) is the value of the i-th objective

metric measured in point a.

— Non-uniformity – We measure how solutions are distributed in the design space.

Lower non-uniformity means a more evenly-distributed approximate Pareto-set that

better estimates the optimal Pareto-set.

Given a normalized Pareto set Λ̄, where di is defined as the Euclidean distance between

to consecutive points (i = 1, .., |Λ̄| − 1), and d̂ is the average values of all the d’s,

non-uniformity [43] can be computed as:

|Λ̄|−1∑
i=1

|di − d̂|√
m(|Λ̄| − 1)

(4.3)

— Concentration – We measure the span of each Pareto-set with respect to the range

of the objectives. The lower the concentration, the higher the spread of the Pareto-set

and the better coverage of the range of objectives.

Given a normalized Pareto set Λ̄, where φmini is defined as min{φi(a) s.t. a ∈ Λ̄} and

39

φmaxi is defined as max{φi(a) s.t. a ∈ Λ̄}, concentration [43] can be computed as:

m∏
i=1

1
|φmaxi − φmini |

(4.4)

4.6 Experimental Results

4.6.1 Dependence on Parameters and Initial Setup Effort

All the examined algorithms differ in the way they converge to an approximate Pareto front,

and the quality of their results depends on a number of different parameters, making a fair

evaluation difficult to implement. There is no common rule for the choice of each algorithm’s

parameters: these range from four to twelve, and they can be anything from integers to

the choice of an interpolation function. The selection of the parameters that are optimal

to a specific optimization problem requires either expertise or it can be calculated by meta-

exploring (also known as parameter screening) the parameters on the target design space, i.e.,

running multiple explorations while changing the parameters to optimize the result. Either

way, finding the optimal parameters usually requires trial and error. The Effort column of

Table 4.11 qualitatively presents the tuning cost required by each algorithm.

Algorithms of classes 1 and 2 require few parameters (such as population size, mutation

factors, initial temperature, etc.), and are generally robust to parameter choice. This means

that small changes will not dramatically affect the outcomes of the exploration, although

there is no guarantee that a given parameter choice will lead to optimal results. Their

parameters have no direct link to any knowledge of the design space (e.g., initial temperature

for MOSA and NSGAII), and can be determined only by experience or guesswork, rendering

the best combination very difficult to obtain without screening and additional evaluations. In

this work, we determined the best parameters via screening, which required running several

thousand evaluations.

Algorithms like APRS do not require any special tuning, and rely on pre-determined heuris-

tics, making their setup effort minimal. It is worth noting that both class 1 and 2 algorithms

do not guarantee convergence to the optimal Pareto set and require that the user specify a

maximum number of iterations in addition to any other stopping condition (e.g., when the

results do not vary for more than two iterations).

Algorithms of class 3 demand a higher setup effort: the choice of a proper metamodel for a

design space requires some expertise and an initial screening (and therefore additional eval-

uations) to properly determine which parameters are the most significant. Each metamodel

40

𝑆 System Bus (latency)

PE _1
(frequency)

…

PE _2
(frequency)

PE _n
(frequency)

L1 Cache_n
(Size, Policy)

L1 Cache_2
(Size, Policy)

L1 Cache_1
(Size, Policy)

Memory (latency)

Figure 4.1 The simulated multi-core processor architecture and its parameters.

needs specific additional parameters that are loosely linked to the designer’s expertise of the

design space. For our experiments we relied on the results described in [112], and we chose

the Central Composite Design using a neural network (NN) interpolator. However, the NN

produced results with a very high variance, with ADRS ranging from 0% to 160%, making the

use of this interpolator impractical. We found the Shepard interpolation much more effective,

although it required to determine the value of a power parameter, which expresses how jagged

is the response surface of the design space. A low value of this power parameter will produce

a smooth interpolation, while a higher value could better follow a more jagged curve, but

could also introduce overfitting. We effectively replicated the results of [112] on our design

space using a power of 16, which was found by parameter screening (∼ 103 evaluations).

Finally, algorithms of class 4 require a bound to be associated to the effects of parameter

variations on the configuration’s metrics. These bounds are left to the designer’s experience,

or can be determined via statistical modelling. This means detailed analysis of each design

space, and large setup effort. The main difference between MDP and MOMDP is that the

former is fundamentally a single-objective optimization algorithm. To effectively discover a

Pareto-set, MDP“sweeps”the design space according to a set of scalarizing values that express

the desired trade-off between the different objective functions. To determine the size and

values of these scalarizing values for our design space, hundreds of additional evaluations were

necessary. MOMDP does not require this screening, and its only parameter (the accuracy λ)

is in fact the average simulation error, and can be chosen without effort.

41

Table 4.11 A qualitative analysis of the chosen algorithms: setup effort, number of evaluations
for 1% ADRS, number of Pareto points found, scalability.

Acronym Class Effort Evaluations Pareto Points Scalability

APRS [174] 1 F FFFFF FF F
MOMSLS [78] 1 F FFF F FFF
MOPSO [111] 1 FF FFFF FFF FFFF
MOSA [165] 1 FFF FFFF FFF FFFF

PSA [34] 1 FFF FFF F FFFF
SMOSA [150] 1 FFF F F FFFF

MOGLS [72] 2 FF FFF FFF FFFF
IMMOGLS [73] 2 FF FFF FF FFFF

NSGA [159] 2 FFF FFF F FFFF
NSGAII [36] 2 FFF FFFF F FFFF

PMA [77] 2 FF FFF FF FFFF
SPEA [182] 2 FF FFF FFF FFFF

ReSPIR [112] 3 FFFF FF FFFF FFF

MDP [15] 4 FFFFF F F FF
MOMDP [16] 4 FFFFF F FFF FFF

It is worth noting that designer experience can reduce or remove the need for parameter

discovery activities for all the aforementioned algorithms.

4.6.2 Estimation of the Number of Evaluations

In our experiments, we have tuned each algorithm parameters to obtain the best results

for design space described in this paper, and we do not include the evaluations needed for

screening and initial parameter estimation. Concerning ADRS, since exhaustive search is

not possible, we compare the Pareto set generated by each algorithm with the best Pareto

set found compounding all evaluations performed by all algorithms, which covers a sizable

portion of the entire design space (around 30%).

Figure 4.2 shows the percentage of the design space (i.e., the number of evaluations divided

by the number of points in the design space) explored by each algorithm in order to reach

an ADRS of approximately 1% on average. Note that it was not possible to have all the

algorithms converge to the exact same quality result, and some algorithms show high vari-

ability. In fact, SMOSA and NSGA do not often converge to acceptable solutions. The final

accuracy values obtained are shown in Figure 4.3. Please note that the histograms and the

error bars in Figures 4.2 to 4.6 show average values and standard deviations, respectively, for

42

each algorithm over 30 experiments. No negative percentage was actually registered during

the experiments

Figure 4.2 shows that the improvement can be worth the extra setup effort for class 3 and

4 algorithms: MDP, MOMDP and RESPIR have a factor 10 reduction in the number of

evaluations, and a much tighter convergence (i.e., smaller variance of the results). Concerning

class 2 algorithms, the performance is very similar, with IMMOGLS appearing to have the

best combination of accuracy, number of evaluations and variance. APRS still provides

excellent results given the zero-effort setup, although with at least twice as many evaluations

when compared to class 2 algorithms.

4.6.3 Characteristics of the Resulting Approximate Pareto-set

Figure 4.4 shows the number of Pareto points found by each algorithm, normalized by the

average found for each benchmark to allow for global comparison.

Most algorithms appear to not have any statistically significant difference, with the exception

of RESPIR, which finds 25% more points than all the other algorithms on average, but with

a slightly higher variance. Once again, SMOSA and NSGA display the poorest results. It

is worth noting that some of the points found by RESPIR are Pareto-covered by the points

found by the other algorithms: the number of points on the actual Pareto curve is smaller

than what found by RESPIR.

Concerning non-uniformity and concentration, all algorithms behave similarly, covering the

design space fully and without concentrating on specific areas. We could not report any

statistically significant difference between the algorithms, with the only exception of SMOSA

and NSGA, which show worse results coupled with high variance. Results are presented in

Figure 4.5 and Figure 4.6.

4.6.4 Scalability

The scalability column of Table 4.11 refers to how the needed effort scales with the size of the

design space: more scalable algorithms can be applied to more complex design spaces with

lower effort. To test the effective scalability of each algorithm, we progressively increased the

size of the design space, starting with three parameters and adding the remaining, three one

by one. Similarly, we started with three values of each parameter and then increased their

number progressively.

Most algorithms of classes 1 and 2 are very scalable: the number of parameters or the number

of values per parameter do not affect the overall result, even though the number of additional

43

M
D
P

M
O
M

D
P

R
ESP

IR

IM
M

O
G
LS

PM
A

SP
EA

N
SG

A
II

M
O
SA

M
O
PSO

A
PR

S
PSA

SM
O
SA

N
SG

A

M
O
M

SL
S

M
O
G
LS

0

10

20

30 RATE OF CONV ERGENCE
ex

p
lo

re
d

%
of

th
e

d
es

ig
n

sp
ac

e

Figure 4.2 The percentage of points in the design space evaluated by each algorithm for
similar levels of accuracy (around 1%).

M
D
P

M
O
M

D
P

R
ESP

IR

IM
M

O
G
LS

PM
A

SP
EA

N
SG

A
II

M
O
SA

M
O
PSO

A
PR

S
PSA

SM
O
SA

N
SG

A

M
O
M

SL
S

M
O
G
LS

0

2

4

6

8
ERROR

A
D

R
S

(%
)

Figure 4.3 Accuracy (ADRS) reached by each algorithm at convergence.

44

R
ESP

IR

M
O
SA

M
O
M

D
P

M
O
PSO

SP
EA

IM
M

O
G
LS

A
PR

S
PM

A

N
SG

A
II

M
D
P

PSA

SM
O
SA

N
SG

A

M
O
M

SL
S

M
O
G
LS

0

0.5

1

1.5
OF PARETO POINTS

ra
ti

o
to

av
g.

P
ar

et
o

p
oi

n
ts

Figure 4.4 The average number of points in the approximate Pareto set found by each algo-
rithm, normalized with the average for each benchmark.

IM
M

O
G
LS

M
D
P

M
O
G
LS

M
O
M

SL
S

M
O
SA

N
SG

A
II

PM
A

PSA

SP
EA

N
SG

A

SM
O
SA

M
O
M

D
P

M
O
PSO

A
PR

S

R
ESP

IR

0

1

2

3
NON − UNIFORMITY

n
on

-u
n
if

or
m

it
y

%

Figure 4.5 The non-uniformity of the distribution of the points found in the approximate
Pareto set found by each algorithm.

45

IM
M

O
G
LS

M
D
P

M
O
G
LS

M
O
M

SL
S

M
O
SA

N
SG

A
II

PM
A

PSA

SP
EA

N
SG

A

SM
O
SA

M
O
M

D
P

M
O
PSO

A
PR

S

R
ESP

IR

0

2

4

6
·10−7

CONCENTRATION

co
n
ce

n
tr

at
io

n
%

Figure 4.6 The concentration of the points found in the approximate Pareto set found by
each algorithm.

evaluations needed grows proportionally with the number of parameters (i.e., remains around

∼ 10− 15% of the design space).

Although APRS require little setup effort, its applicability to large design spaces cannot be

guaranteed. In fact, the already very high number of evaluations required increases exponen-

tially with the design space size, practically limiting its use to small design spaces with fast

evaluations.

RESPIR (class 3) scales well to design spaces with many parameters, but only if few values

per parameter are present. This is due to one of the main limitations of central composite

design: it can only consider three levels for each parameter, therefore reducing the accuracy

of the method in presence of many parameter values, especially if they lead to non-linear

behaviour. The number of evaluations for convergence remains ∼ 4% of the design space.

Finally, class 4 algorithms scale orthogonally with respect to class 3: they scale well with the

number of values per parameter, but not when the number of parameters increase. While

adding a parameter require defining new bounds, adding new values comes without effort, and

the number of evaluations needed increases less than linearly [15]. One drawback of MDP

when compared to MOMDP is that it requires the estimation of an additional parameter

(α, see [15]) when increasing the size of the design space, which might require additional

evaluations.

46

0 5 10 15 20 25 30 35
1

2

3
0.6

0.8

1
APRS (1)

IMMOGLS (2)

MDP (4)

MOGLS (2)MOMDP (4)

MOMSLS (1)

MOPSO (1)MOSA (1)

NSGAII (2)

PMA (2)

RESPIR (3)

SPEA (2)

explored design space (%)

ADRS (%)

ra
ti

o
to

av
g.

P
ar

et
o

p
oi

n
ts

Figure 4.7 3D representation of the algorithms performance showing % of the design space
explored in order to reach convergence, the number of Pareto points (w.r.t the average num-
ber) and the ADRS error metric (NSGA, PSA and SMOSA are omitted because of their large
ADRS). The number after each algorithm name indicates the its class.

47

4.7 Discussion

The selection of the best algorithm for a particular application is difficult, and requires

a trade-off between setup effort, scalability, expected number of simulations and expected

accuracy. Given the experiments shown in Section 4.6, one can draw some general guidelines

according to the cost of each evaluation (e.g., simulation time) and the size of the design

space.

Higher evaluation costs make algorithms requiring a low number of simulations more appeal-

ing, even in case of a high upfront setup cost. On the contrary, if each evaluation has a very

small cost, one might want to trade-off a higher number of evaluations with a no-effort setup.

Similarly, large design spaces favour scalable algorithms, while smaller spaces do not justify

the extra work to apply sophisticated algorithms.

In order to quantify the actual convergence time of an algorithm i we have to take into con-

sideration the design space size (|S| points), the time required by each simulation/evaluation

(Tsim seconds), the percentage of the design space explored before reaching convergence (νi)

and the set-up time SETUPi of the algorithm:

ACTUALi = (νi × |S| × Tsim) + SETUPi (4.5)

The values of νi’s are reported in Figure 4.2. Regarding the SETUPi values, we translated

the qualitative information in Table 4.11 into a 10’-to-30hrs range: we have observed during

our experiments that algorithms having one “effort star” can be set-up in a few minutes while

algorithms with five “effort stars” require more than a day of work.

Figure 4.8 presents four plots having the size of the design space on the x axis and the time

required by each simulation on the y axis. In each plot, areas are labelled with the name of

the more suitable algorithm according to Equation 4.5. Subplots (a) and (b) report the result

for algorithms able to obtain ADRS of about 1%, whether domain knowledge is available (a),

or not (b). Subplots (c) and (d) relax the ADRS requirement to about 5%.

Whether or not domain knowledge is available, Multi-Objective Multiple Start Local Search

(MOMSLS) and Adaptive Windows Pareto Random Search (APRS) are the most appealing

solutions for small to medium design spaces with non-expensive evaluations. As we explained

in section 4.6, the APRS algorithm is a heuristic-based one and it requires very little setup

effort, making it the ideal choice when simplicity is valued and there is no specific need for

more efficient but also more complex approaches. MOMSLS is considerably faster but also

more likely to produce a greater ADRS.

48

When domain knowledge is available, the Multi-Objective MDP algorithm (MOMDP) [16]

clearly shows better performance, both in term of fast convergence to a very small ADRS

and quality Pareto set, in large design spaces with high cost evaluations.

When one cannot obtain or exploit domain knowledge, the choice is split between the very

high-quality Response Surface Pareto Iterative Refinement (RESPIR) algorithm and the

Ishibuchi-Murata MO Genetic Local Search (IMMOGLS) algorithm. Both these algorithms

are suited for very large design spaces.

However, it is worth noting that the IMMOGLS algorithm usually requires a larger number

of evaluations, therefore is not recommended when dealing with high cost simulation. Pareto

Simulated Annealing (PSA) is a valid alternative to IMMOGLS when a larger ADRS is

acceptable.

What we can conclude from Figure 4.8 is that algorithms with small set-up times (i.e., the

ones in classes 1 and 2) are especially suitable for simple problems with relatively small design

spaces and/or short simulation times. On the other hand, complex algorithms in classes 3

and 4 always compensate for their longer configuration times when the exploration problem

is difficult enough.

These recommendation are qualitative, but do take into account all the parameters shown in

Section 4.6.

4.8 Conclusions

Concluding, this paper presented a classification and comparative analysis of fifteen of the

best recent multi-objective design exploration algorithms. The algorithms were applied to

the exploration of a multi-processor platform, and were compared for setup effort, number of

evaluations, quality of the resulting approximate Pareto set, and scalability. The results give

guidelines on the choice of the proper algorithm according to the properties of the design

space to be addressed. In particular, we have determined the most promising algorithms

when considering design space size and evaluation effort.

49

APRS (1)

IMMOGLS (2)

RESPIR (3)

MOMDP (4)

100 101 102 103 104 105 106 107
0

600

1,200

1,800

2,400

3,000

S
im

u
la

ti
on

T
im

e
-
T
si
m

(s
)

(a) - ADRS ∼ 1%, w/ Domain Knowledge

APRS (1)

IMMOGLS (2)

RESPIR (3)

100 101 102 103 104 105 106 107
0

600

1,200

1,800

2,400

3,000

(b) - ADRS ∼ 1%, w/o Domain Knowledge

MOMSLS (1)

PSA (1)

RESPIR (3)

MDP (4)

100 101 102 103 104 105 106 107
0

600

1,200

1,800

2,400

3,000

Design Space Size - |S| (# of points)

S
im

u
la

ti
on

T
im

e
-
T
si
m

(s
)

(c) - ADRS ∼ 5%, w/ Domain Knowledge

MOMSLS (1)

PSA (1)

RESPIR (3)

100 101 102 103 104 105 106 107
0

600

1,200

1,800

2,400

3,000

Design Space Size - |S| (# of points)

(d) - ADRS ∼ 5%, w/o Domain Knowledge

Figure 4.8 Recommended algorithms for different design space size, simulation time and de-
sired ADRS, whether domain knowledge is available or not. The number after each algorithm
name indicates its class.

50

CHAPTER 5 ARTICLE 2 – BALANCING SYSTEM AVAILABILITY AND

LIFETIME WITH DYNAMIC HIDDEN MARKOV MODELS

Preface: One of the problems that we chose to tackle early on with this research was

the intrinsic inefficiency of the methodologies traditionally used by the aerospace industry

to improve reliability—e.g., triple (or N) modular redundancy. Replicating a computing

resource N times involves a N-00% overhead in cost, area, and power consumption. This

expense can be misallocated if the mission profile only bears rare transient errors, while

the entire system is still potentially compromised after ceil(N/2) permanent failures. In

this chapter, we define and study the performance of a statistical model that combines

knowledge of the orbit-dependant transient error rate and the expected lifetime of a resource

to estimate whether a spacecraft’s on-board computer is affected by a particular kind

of error. Our results demonstrate that leveraging this knowledge (while using memory

scrubbing for error detection), always outperforms traditional strategies that declare the

death of a resource after a fixed number of errors. The lifetime improvement is potentially

N-fold when compared to that of a N-modular scheme.

Full Citation: J. Panerati, S. Abdi and G. Beltrame, “Balancing system availability and

lifetime with dynamic hidden Markov models,” 2014 NASA/ESA Conference on Adaptive

Hardware and Systems (AHS), Leicester, 2014, pp. 240-247.

DOI: https://doi.org/10.1109/AHS.2014.6880183

Copyright: c© 2014 IEEE. Reprinted, with permission from the authors.

Abstract: Electronic components in space applications are subject to high levels of ionizing

and particle radiation. Their lifetime is reduced by the former (especially at high levels of

utilization) and transient errors might be caused by the latter. Transient errors can be

detected and corrected using memory scrubbing. However, this causes an overhead that

reduces both the availability and the lifetime of the system. In this work, we present a

mechanism based on dynamic hidden Markov models (D-HMMs) that balances availability

and lifetime of a multi-resource system by estimating the occurrence of permanent faults

amid transient faults, and by dynamically migrating the computation on excess resources

when failure occurs. The dynamic nature of the model makes it adaptable to different mission

profiles and fault rates. Results show that our model is able to lead systems to their desired

ceil
https://doi.org/10.1109/AHS.2014.6880183

51

lifetime, while keeping availability within the 2% of its ideal value, and it outperforms static

rule-based and traditional hidden Markov models (HMMs) approaches.

5.1 Introduction

At high altitude or in space, without the protection of the earth’s magnetic field and atmo-

sphere, integrated circuits are exposed to high level of radiation and heavy ion impacts that

can disrupt the correct circuits’ behaviour.

In this work we provide a mathematical framework to establish an adaptive system capable

of managing both device aging (as accelerated by ionizing radiation) and single event upsets

(SEUs), or soft errors, usually caused by the transit of a single high-energy particle through

the circuit.

Detection of transient errors and protection against SEUs can be obtained in several ways [128],

but there are no clear guidelines on how to identify permanent faults. One way to do it is to

retry the same computation multiple times, and after a certain number of errors in a given

interval of time, declare the component as permanently faulty [60].

This sort of on-line testing requires additional resources and inherently reduces the availability

of the system. Moreover, the repetition of computation increases the strain on the electronics,

reducing their lifetime. In this work we propose a framework that provides a system with the

ability to decide, in case a fault is detected, if it is worthwhile to perform additional testing

or if the component should be classified as permanently damaged.

The framework we introduce is a failure detection mechanism based on dynamic hidden

Markov models . The main aspects of novelty of this work are:

— the extension of the static hidden Markov model framework with a dynamic transition

model. This allows for the correct application of HMMs to the modeling of more general,

non-memoryless failure processes;

— the D-HMM integration with a compact statistical modeling of transient and permanent

faults occurring in electronic components exposed to ionizing and particle radiation;

— the definition of the lifetime-availability trade-off faced by failure detection mechanisms;

— the comparison, through simulation performed with real-life parameters, of the pro-

posed D-HMM approach against traditional HMMs and rule-based systems.

The rest of the paper is structured as follows: we review relevant work in the field of fault

detection in Section 5.2; Section 5.3 presents the theoretical background needed to understand

our methodology, which is exposed, along two simpler alternatives, in Section 5.4;finally, the

52

setup used to evaluate the approach, the results discussion, and the conclusions are presented

in Section 5.5, Section 5.6, and Section 5.7, respectively.

5.2 Related Work

This section reviews some important research work in the field of fault detection, automated

classification and recovery. We also cover work dealing with the modeling of fault occurrences

and failure times.

The need for computing systems tolerant to both software and hardware faults is not a novel

one: reliability engineering provides us with a plethora of tools, mainly statistical ones, for

the definition and analysis of such systems.

Creating fault-tolerant systems for space applications, however, is particularly challenging

because of the several different types of faults that can arise when computers operate outside

the atmosphere. Smolens et al. [156] called the attention on the fact that “aggressive CMOS

scaling” results in an accelerated wear out of transistors and wires, and it inevitably leads to

“shorter and less predictable lifetimes for microprocessors”.

On the other hand, Karnik and Hazucha [80] studied how radiation particles interact with

silicon and how these interaction should influence the design of VLSI systems. Radiation,

in fact, can induce SEUs, impact system reliability, and it poses “a major challenge for the

design of memories and logic circuits [...] beyond 90nm”.

Cassano et al. [25] observed that SRAM-FPGAs represent a flexible and powerful resource

for the creation of adaptive systems. However, their application in the context of aerospace

creates the need for methodologies to detect (and cope) with both permanent and transient

faults. In [25], they presents “a software flow for the generation of hard macros for [...] the

diagnosing of permanent faults due to radiation”.

Analogous remarks regarding the use of SRAM-FPGAs in space applications were made by

Jacobs et al. [75]. In [75], we can find “a reconfigurable fault tolerance (RFT) framework

that enables system designers to dynamically adjust a system’s level of redundancy and fault

mitigation based on the varying radiation incurred at different orbital positions”. What is

most relevant to our work, however, is the introduction of an “upset rate modeling tool” used

to capture time-varying radiation effects in a given orbit.

The methodology we propose here is motivated by all of these works. Our transient fault

model is more naive than the one described in [75], even if our approach could be easily

extended to use it; on the other hand, unlike [75], our system is also capable of dealing with

permanent faults. With respect to [25], we observe that our approach, not only detects both

53

permanent and transient faults, but it does that while maximizing lifetime and availability.

5.3 Theoretical Background

In the context of dependable computing, a fault is defined as the hypothesized cause of an

error, which is itself defined as the deviation from the correct and desirable behaviour of a

service [8]. With regard to persistence, faults can be classified in two categories:

— transient faults, whose negative effects on the system are assumed to be limited in time;

— permanent faults, which are assumed to last forever since the moment they appear, and

may lead to the eventual halt failure of the system and the impossibility of providing a

service if redundant resources or reconfiguration capabilities are not available.

In space, computing systems are exposed to high levels of radiation that pose a serious hazard

to their proper functioning and survival. Ionizing and particle radiation, in fact, can be held

responsible for a variety of undesirable outcomes. In particular, we distinguish:

— single event upsets (SEUs), these are transient faults that cause changes in the content

of individual memory elements, i.e., bit flips ;

— long-term damages, caused by the total ionizing dose (TID), that can have disruptive

effects on current CMOS technologies and lead to performance degradation, permanent

faults, and system failure [25].

Data scrubbing is an error detection and correction technique that consists in periodically re-

reading and re-writing the content of a memory, using a “safe” copy known to be correct [54].

Exploiting data scrubbing, we are given the ability to detect faults, and, if they are not

permanent, to correct them, at constant time intervals of duration T (scrubbing period).

5.3.1 Transient Faults Modeling

We employ probability theory to model the occurrence of transient (SEUs) and permanent

(i.e., system failures given by TID) faults in space computing systems. The impacts of high-

energy particles that cause SEUs are known to be independent and they usually happen at

a constant average rate, given by the orbit or mission phase of the system.

We define the probability of observing at least one SEU in a scrubbing period of size T , given

a constant average rate of SEUr, as PSEU . The probability of observing a given number

of events that are known to occur at a constant average rate r is described by the Poisson

distribution of parameter r, Pois(r). Therefore, PSEU does not depend on the actual time

54

or history of the system and can be computed as:

PSEU = P (CSEU(T) ≥ 1 | CSEU(T) ∼ Pois(SEUr · T))

= 1− P (CSEU(T) = 0 | CSEU(T) ∼ Pois(SEUr · T))

= 1− pmfPois(SEUr·T)(0)

= 1− e−SEUr·T

(5.1)

where CSEU(T) is defined as the number of SEUs observed in a period T , and pmf is the

probability mass function. Figure 5.1 shows that this probability quickly increases with

SEUr, if T is large.

5.3.2 Permanent Faults Modeling

To model permanent faults we start by defining the probability of a permanent fault occurring

in a component by time t, i.e failure ≤ t, given that the component was still functional at

the end of the previous scrubbing period t− T , i.e failure > t− T , as Pfailure(t, T).

This probability can be computed, using the Kolmogorov definition, as:

Pfailure(t, T) = P (failure ≤ t | failure > t− T)

= P (failure ≤ t ∧ failure > t− T)
P (failure > t− T)

= CDFfailure(t)− CDFfailure(t− T)
1− CDFfailure(t− T)

(5.2)

where CDFfailure is the cumulative density function of the random variable failure describing

the time at which the failure happens.

In literature, several probability distributions are used to model failure times [42]. One of the

most frequently used, because of its simplicity and the convenient memorylessness property,

is the exponential distribution.

If we model the failure time using an exponential distribution with mean equal to expected

mean time to failure (MTTF) of the system, Equation 5.2 becomes:

Pfailure(t, T) = 1− e−t/MTTF − (1− e−(t−T)/MTTF)
1− (1− e−(t−T)/MTTF)

= 1− 1
eT/MTTF

(5.3)

Because the exponential distribution is memoryless, this value does not depend on current

55

0 20 40 60 80 100
0

0.2
0.4
0.6
0.8

1

average SEUs/day

P
S
E
U

T = 1h T = 30′ T = 10′

Figure 5.1 Probability of observing at least one SEU in scrubbing periods of different dura-
tions, as the average ratio of SEUs per day increases.

time t.

However, the exponential distribution representation is somewhat imprecise because it lacks

the ability to capture the increasing failure probability due to accumulated wear in the

component [42]. A common alternative used to overcome this limitation is a log-normal

failure distribution:

Pfailure(t, T) =
Φ
(

ln t−µ
σ

)
− Φ

(
ln(t−T)−µ

σ

)
1− Φ

(
ln(t−T)−µ

σ

) (5.4)

where Φ is the CDF of the normal distribution, and the log-normal parameters µ and σ can

be computed from the MTTF and the variance of the failure time as follows:

µ = ln
(

MTTF 2
√
varMTTF +MTTF 2

)

σ =
√

ln
(

1 + varMTTF

MTTF 2

)
We can observe that in Equation 5.4, Pfailure(t, T) is no longer independent of the actual

time t.

Figure 5.2 summarizes the comparison of exponentially and log-normally distributed failure

times with the same MTTF of 5 years. The rightmost chart, in particular, shows how a

memoryless and a non-memoryless distribution function differently describe the occurrence

56

0 2 4 6 8 10
0

0.2
0.4
0.6
0.8

1

Time (yrs.)

Probability density

Log-normal failure distribution Exponential failure distribution

0 2 4 6 8 10
0

0.2
0.4
0.6
0.8

1

Time (yrs.)

Cumulative distribution

0 2 4 6 8 10
0

0.01

0.01

0.01

0.02

Time (yrs.)

Pfailure(t, T)

Figure 5.2 Probability density function, cumulative distribution function, and probability
of failure in the last scrubbing period (see Equation 5.2, T = 1 day), for log-normal and
exponential failure distributions with MTTF = 5 years.

of a recent failure.

5.3.3 Hidden Markov Models

A hidden Markov model is a mathematical framework capable of describing the evolution over

time of a stochastic system that can only be indirectly observed through stochastic sensors.

An HMM can be considered as a special case of a Dynamic Bayesian Network (DBN) [143].

In an HMM, time is discrete and, at each time time step t, the state of the system is fully

described by a discrete probability distribution function over a single random variable St.

This variable cannot be observed, but its initial probability distribution P (S0) is known. At

each time step, one can observe evidences Ot that solely depend on the current probability

distribution over all the possible states P (St). Moreover, the process is 1-step Markovian,

meaning that P (St) only depends on P (St−1). Figure 5.3 shows the structure of an HMM

over 3 time steps.

In summary, HMMs can be formally described as:

— P (S0), an initial probability distribution over all the possible states;

— Tij = P (St = j | St−1 = i), a transition model, governing the evolution of the system;

— Eij = P (Ot = j | St = i), a sensor model, that links the current state and possible

observations.

57

State Prediction and Estimation using HMMs

HMMs can be used to predict the probability of the system being in a specific state at time t,

given all the evidence up to time t− 1, using the following equation (that can be recursively

applied, having its base case in the initial probability distribution P (S0)):

Pt(S = j | O1:t−1) =
∑
i

Pt−1(S = i | O1:t−1) · Tij (5.5)

Moreover, an HMM prediction can be refined after the observation of the current evidence

by applying:

Pt(S = i | Ot = j, O1:t−1) = α Pt(S = i | O1:t−1) · Eij (5.6)

where α is a normalization parameter.

5.4 Proposed Approach

In our approach, we use a multi-resource system model, and three methodologies to balance

its lifetime and availability: a simple rule-based approach, a standard HMM and the proposed

dynamic hidden Markov model formulation.

5.4.1 System Model

For our analysis, we introduce a simple computing system model, shown in Figure 5.4, with

the following assumptions:

— the system is composed by N identical resources Ri’s;

— each resource Ri is, alone, capable of providing the service required from the system;

St−1 St St+1

Ot−1 Ot Ot+1

P (St|St−1) P (St+1|St)

P (Ot−1|St−1) P (Ot|St) P (Ot+1|St+1)

Figure 5.3 Structure of a hidden Markov model.

58

— the system only uses one resource Ri at a time (to maximize system lifetime: in fact,

resource wear depends on the resource being turned on and not on its level of utiliza-

tion [64]);

— when a resource is active, it is subject to transient faults with constant average rate

SEUR;

— the failure time of each resource follows a log-normal probability distribution with mean

equal to one N-th of the mean time to failure of the entire system (MTTF), starting

from the time the resource is used for the first time. This means that the resource is

not subject to wear as long as it is inactive;

— the active resource performs data scrubbing with a constant period T ;

— whenever the scrubber detects the occurrence of and error, all the computation per-

formed in the last period is discarded;

— whenever the scrubber detects the occurrence of and error, a failure detection mecha-

nism is in charge of deciding whether to rollback the computation on the same resource

Ri or to declare the resource dead (in permanent fault mode) and migrate the compu-

tation on the following resource Ri+1;

— migration happens at a cost of a migration time Tmigr.;

— the decision of declaring the death of a resource is irrevocable;

— after the last resource RN is declared dead, the system is itself declared dead.

We can think of this model as a homogeneous multi-core system or any other N-times mod-

ular redundant computing system. It is clear from these premises that a failure detection

mechanism that hastily declares the failure of resources will negatively impact the total life-

time of the system. However, a mechanism lingering for too long on obvious decisions might

reduce the actual availability of the system.

R1deploy

. . .

RN failure

migrate migrate

rollback rollback

Figure 5.4 Structure of an N-resource system.

59

5.4.2 Rule-based Failure Detection

To decide whether a resource should be considered in a state of permanent fault, we can

employ different failure detection mechanisms. For this purpose, several previous research

works exploit rule-based systems of different complexity [60, 75].

The simplest rule-based approach, implemented in this work as a reference (Algorithm 1), is

based on the assumption that a resource failure will cause consecutive faults. If the number

of consecutive faults observed by the mechanism is larger than a predefined threshold, the

resource is assumed to have failed, and the computation is migrated to another resource, if

available. The threshold can be as little as 2, meaning that two consecutive faults are enough

to assume a permanent failure, or much larger. A threshold of 32, coupled with a scrub

period T of 1 hour means that we are willing to wait over a day before declaring the status

of permanent fault.

1 consecutive faults = 0;
2 available = 1;
3 while available do
4 wait(scrub time);
5 fault = observe_fault();
6 if fault then
7 consecutive faults ++;
8 if consecutive faults ≥ threshold then
9 available = 0 ;

10 else
11 consecutive faults = 0;
12 end

13 end

Algorithm 1: Rule-based Algorithm

5.4.3 HMM-based Failure Detection

Algorithm 2 describes the behaviour of an HMM-based failure detection mechanism. In this

case, the mechanism retains a belief state, i.e., a probability distribution over three possible

states of the resource: (1) available, (2) experiencing a SEU or (3) failed.

At each scrubbing period, this belief state is updated using the transition model given in

Table 5.2, and Equation 5.5. Then, after the result of the scrubbing operation, the belief

state is filtered using the sensor model in Table 5.1, and Equation 5.6. Finally, Equation 5.5

is used again to predict the future state of the resource.

60

Table 5.1 HMM sensor model.

P (Ot|St)
St Fault No Fault

Available 0 1
SEU 1 0

Failure 1 0

Table 5.2 HMM transition model.

P (St|St−1)
St−1 Available SEU Failure

Available 1− P (SEU ∨ Failure) PSEU 1− 1
eT/MT T F

SEU 1− P (SEU ∨ Failure) PSEU 1− 1
eT/MT T F

Failure 0 0 1

The decision of performing a migration is taken if the probability that the system will be in

permanent failure in the near future is greater than a predefined level of confidence.

Tables 5.2 and 5.1 show that we are assuming the sensor model to be perfect (only 0s and 1s

in Table 5.1), the environment to be static (constant values in Table 5.2), and that permanent

faults cannot be recovered (only 0s and a 1 in the last line of Table 5.2).

1 belief state = init_belief();
2 available = 1;
3 while available do
4 wait(scrub time);
5 fault = observe_fault();
6 if fault then
7 belief state = update_belief(transition model) ;
8 belief state = filter_belief(sensor model) ;
9 predict state = predict_belief(transition model) ;

10 if predict state.failure ≥ threshold then
11 available = 0 ;

12 else
13 belief state = update_belief(transition model);
14 belief state = filter_belief(sensor model);

15 end

16 end

Algorithm 2: HMM-based Algorithm

61

5.4.4 Dynamic HMM-based Failure Detection

A major limitation of the HMM-based mechanism is that the transition model is constant

over time. This means that the model could easily capture the behaviour of a resource

with an exponentially distributed failure time, but it would fail to represent the log-normal

distribution that we assumed in Subsection 5.4.1.

HMMs are meant to describe Markovian processes, i.e., processes that propagate one time

step at a time. However, nothing prevents us from changing their static nature and make the

transition model dynamic. We implemented the new transition model shown in Table 5.3:

the first two elements of the last column, representing the probability of encountering a

permanent failure in a single time step, are no longer constants, but rather a function of

the global time variable. This allows us to exploit Equation 5.4 and properly model the

log-normal failure time distribution.

It is worth noting that the algorithm implementing the modified dynamic HMM-based mech-

anism differs from Algorithm 2 only by an additional step used to re-evaluate the transition

model. The sensor model is still assumed to be perfect, as presented in Table 5.1. As for

the HMM-based mechanism, the decision of performing a migration is taken if the evidence

shows that the system will be in permanent failure in the near future with a certain level of

confidence.

Table 5.3 Dynamic HMM transition model.

P (St|St−1)
St−1 Available SEU Failure

Available 1− P (SEU ∨ Failure) PSEU Pfailure(t)
SEU 1− P (SEU ∨ Failure) PSEU Pfailure(t)

Failure 0 0 1

5.5 Experimental Setup

In order to perform the simulation and validation of our methodology we implemented the

algorithms and the system model described in Section 5.4 using the MATLAB-compatible,

GNU Octave programming language. Simulations where carried out on a quad-core Intel i7

desktop running at 3.2GHz with 32GB of RAM.

62

5.5.1 Parameters

The parameters that define the environment are those outside the control of the designer of

the failure detection mechanism. These parameters regulate the occurrence of faults and the

maximum lifetime of the system:

— SEUr - in our simulations, the average rate of single event upsets per day can take the

value of 16.5 or 62. These are the number of daily SEUs expected in a Virtex-4 FX60

in a low-Earth orbit (LEO) and in a highly-elliptical orbit (HEO), respectively [75];

— MTTF - we choose components so that the mean time to failure of the system is fixed

to 5 years, each resource of the system has a MTTF equal to one N-th of 5, depending

on the number of resources in the system;

— varMTTF - the variance of a resource lifetime is arbitrarily fixed to the 10% of the

MTTF;

— Tmigr. - the migration time is assumed constant and equal to 10 minutes.

Furthermore, we perform our simulations screening multiple values for the parameters that

can be chosen by the designer of the failure detection mechanism. These parameters affect

the actual lifetime of the system and its availability:

— N - the number of resources varies from 3 to 10;

— T - we consider 3 different scrub periods of 10, 30, and 60 minutes each;

— finally, we consider 5 different thresholds for each failure detection mechanism: 2, 4, 8,

16, 32 for the rule-based method, and 0.5, 0.75, 0.88, 0.94, 0.97 for HMM and D-HMM.

5.5.2 Performance Metrics

As mentioned in Subsection 5.4.1, a good failure detection mechanism does not shorten

the total system lifetime while maintaining an optimal system availability. Therefore, we

consider lifetime and availability as the two metrics needed to assess the performance of our

mechanisms.

The system lifetime L is equal to the time t when the mechanism declares the permanent

failure of the last (N -th) resource in the system. This can be compared to the expected

lifetime obtained by a clairvoyant mechanism given by equation:

Ecv[L] = N ·MTTF + (N − 1) · Tmigr. (5.7)

An optimistic mechanism would record longer lifetimes, postponing the declaration of failure

of computing resources as much as possible. This would happen at the price of a lower system

63

availability.

The total availability can be defined as the fraction of scrubbing periods in which no faults

are detected:

A = 1− |detected faults| · T
L

(5.8)

However, this metric is biased towards small scrubbing periods T , and does not allow for a

fair comparison of results obtained with varying SEU rates. Therefore, in this work, we use

a normalized measure of availability defined as:

Ã = A

Ecv[A] (5.9)

where the expected availability Ecv[A] is computed as:

Ecv[A] = 1− SEUr ·N ·MTTF + (N − 1) · Tmigr.
N ·MTTF + (N − 1) · Tmigr.

(5.10)

5.6 Discussion

Figures 5.5 and 5.6 show the results obtained with N = 10 resources and a scrubbing period

T = 1 hour, for a system operating in Low Earth Orbit (LEO, 16.5 SEUs per day) and a

Highly Elliptical Orbit (HEO, 62 SEUs per day), respectively.

One can notice that the rule-based approach fails to achieve the desired lifetime of 5 years

even at LEO, unless a very high threshold on the number of acceptable consecutive faults is

used. Moreover, small thresholds result in short and highly variable lifetimes for both the

rule-based and the HMM system. Regardless of the mechanism used, one can observe the

presence of a compromise between availability and lifetime.

We also remark that the D-HMM approach performs better than HMM, especially in terms of

lifetime. This can be explained by the fact that the D-HMM truly captures the accumulated

wear of electronic devices. The very small deviations from the ideal normalized availability

of 1.0 are justified by the observation that any failure detection mechanism can make an

impact on this metric only when a failure actually happens, and its significance is limited

by the number of resources N . We envision that much larger gains will be in reach in the

many-cores era, when system will have tens or hundreds of resources. Figure 5.7 presents

the lifetime-availability trade-offs obtained by the three failure detection mechanisms in the

form of Pareto curves for LEO and HEO. The number of resources is again N = 10, and

data scrubbing is performed with a period T = 10 minutes. To map the ideal situation

in the origin of the axes (0, 0) instead of (+ inf,+ inf), we plot using the reciprocals of the

64

Rule-based HMM D-HMM
2 8 32 0.50 0.88 0.97 0.50 0.88 0.97

3

4

5

.008 .5

L
if

et
im

e
(y

rs
.)

SEUs/day = 16.5

Lifetime (yrs.) Availability (%)

0.98

0.99

1.00

1.01

A
va

il
ab

il
it

y
(%

)

Figure 5.5 Comparison of system lifetimes and normalized availabilities (see Equation 5.9) for
the rule-based, HMM-based, and dynamic HMM-based approaches with different thresholds,
assuming N = 10 resources and a scrubbing period T = 1h, when SEUs/day = 16.5.

Rule-based HMM D-HMM
2 8 32 0.50 0.88 0.97 0.50 0.88 0.97

3

4

5

.003 .1 .2

L
if

et
im

e
(y

rs
.)

SEUs/day = 62

Lifetime (yrs.) Availability (%)

0.98

1.00

1.02

1.04

1.06

A
va

il
ab

il
it

y
(%

)

Figure 5.6 Comparison of system lifetimes and normalized availabilities (see Equation 5.9) for
the rule-based, HMM-based, and dynamic HMM-based approaches with different thresholds,
assuming N = 10 resources and a scrubbing period T = 1h, when SEUs/day = 62.

65

4.994 4.925 4.858 4.791

1.004

1.005

1.006

1.007

16 8

32

.97
.94

.88

.5
.75.88

.94
.97

1/Lifetime

1/
A

va
il
a
b
il
it

y
SEUs/day = 16.5

Rule-based HMM D-HMM

5.065 4.994 4.925

1.0001

1.0002

1.0003

1.0004
16
32

8

.75

.88, .94
.97

.75
.88.94

.97

1/Lifetime

SEUs/day = 62

Figure 5.7 Pareto curves obtained by the rule-based, HMM-based, and dynamic HMM-based
approaches with different thresholds, assuming N = 10 resources and a scrubbing period
T = 10′, for two levels of SEUs/day.

availability and lifetime metrics. Each point represents the performance of a mechanism

(with their associated threshold). In the LEO scenario the points on curve produced by the

the proposed D-HMM dominate all other solutions (HMM and rule-based).

Table 5.4 Lifetimes and normalized availabilities (see Equation 5.9) for the rule-based, HMM-
based, and dynamic HMM-based approaches with different thresholds, number of resources
in the system, and levels of SEUs/day, when the scrubbing period T = 1h.

N = 3 N = 5 N = 10
SEUs/day = 16.5 SEUs/day = 62 SEUs/day = 16.5 SEUs/day = 62 SEUs/day = 16.5 SEUs/day = 62

L Ã L Ã L Ã L Ã L Ã L Ã
thr (yrs) (%) (yrs) (%) (yrs) (%) (yrs) (%) (yrs) (%) (yrs) (%)

Rule-based

2 0.00 0.943 0.00 0.589 0.00 0.903 0.00 0.823 0.01 0.986 0.00 0.925
4 0.01 0.977 0.00 0.806 0.02 0.957 0.00 0.857 0.04 1.004 0.01 0.942
8 0.16 1.000 0.00 0.907 0.31 0.995 0.01 0.796 0.53 0.993 0.01 1.058

16 4.74 0.997 0.01 0.916 4.79 0.998 0.02 0.876 5.00 0.995 0.04 0.983
32 5.01 0.996 0.06 0.987 5.01 0.996 0.09 0.963 5.05 0.991 0.17 0.974

HMM

0.50 3.47 0.998 3.23 0.991 4.19 0.997 3.43 1.001 4.06 0.994 3.51 0.999
0.75 4.49 0.997 4.47 0.992 4.55 0.998 4.50 0.997 4.55 0.996 4.35 0.995
0.88 4.74 0.997 4.67 0.991 4.71 0.998 4.91 0.994 4.82 0.995 4.45 0.991
0.94 4.87 0.997 4.87 0.990 4.79 0.998 5.04 0.993 4.91 0.995 4.77 0.987
0.97 4.87 0.997 4.88 0.989 4.92 0.998 5.05 0.992 5.00 0.995 4.96 0.982

D-HMM

0.50 4.75 0.998 4.73 0.996 4.80 0.998 4.77 1.002 4.80 0.997 4.73 1.000
0.75 4.89 0.998 4.92 0.995 4.92 0.998 4.89 0.999 4.96 0.996 4.91 0.995
0.88 4.93 0.998 4.96 0.994 4.96 0.998 4.95 0.998 5.00 0.996 4.98 0.991
0.94 4.97 0.998 4.99 0.993 4.98 0.998 5.00 0.996 5.01 0.996 5.03 0.988
0.97 4.99 0.998 5.02 0.993 4.99 0.998 5.04 0.995 5.03 0.995 5.05 0.986

66

Finally, Table 5.4 summarizes the lifetimes and normalized availabilities (see Equation 5.9)

for the rule-based, HMM-based, and D-HMM-based approaches considering all five possible

thresholds, and with number of resources ranging from 3 to 10. Data are reported for both

the LEO and the HEO, with a scrubbing period T = 1 hour. Results show that D-HMM

consistently outperforms HMM and rule-based approaches in terms of availability, lifetime,

and stability of the results (i.e., lower variance).

5.7 Conclusions

In this paper we proposed a failure detection mechanism for electronic components used in

space applications that are exposed to both ionizing and particle radiation and, therefore,

may experience unpredictable transient faults (SEUs) and permanent faults due to wear

out. Our methodology is based on hidden Markov models, however, we extend the classical

framework through the use of a dynamic transition model in order to cope with failure time

probability distributions that are not memoryless.

We defined lifetime and a normalized availability measure as the two metrics that should

be maximized by a properly functioning failure detection mechanism, and we showed that

a trade-off between the two is inevitable. We simulated our approach using a simple yet

powerful model, performing error injection with realistic parameters, in order to assess its

validity. Moreover, we compared the performance of our approach against the performance of

a rule-based approach, showing improvements in both the goal metrics and reductions in their

variance, and a non-dynamic hidden Markov model approach, showing how the framework

benefits from our enhancements.

67

CHAPTER 6 ARTICLE 3 – TRADING OFF POWER AND

FAULT-TOLERANCE IN REAL-TIME EMBEDDED SYSTEMS

Preface: In this third research article, we extend the scope of the probabilistic mod-

elling of on-board data-handling computers with the introduction of real-time and energy

consumption requirements. Knowing that the electronics of a spacecraft are affected by

transient errors and permanent faults caused by space radiation [115], we now investigate

how to manipulate a traditional tuning knob of microprocessors—i.e., frequency and voltage

scaling—to improve their fault tolerance. The main insight of this research is that, in

multiprocessor systems, the probability distribution of non-masked transient errors depends

on both (i) the rate of occurrence of single event upsets and (ii) the utilization levels of

the processing elements. As utilization itself is a function of the operating frequency of

each core, we are able to discover a trade-off between reliability and power consumption

and exploit it to create adaptive fault tolerance in exchange for energy. These results have

implications for the design of all those systems with stringent timing and power demands

(utilization is an important metric to establish schedulability). In particular, spacecraft with

limited or varying power budgets can be designed in such a way that software tasks with

different criticality levels are allocated to the appropriate mission phases.

Full Citation: J. Panerati and G. Beltrame, “Trading off power and fault-tolerance in

real-time embedded systems,” 2015 NASA/ESA Conference on Adaptive Hardware and

Systems (AHS), Montreal, QC, 2015, pp. 1-8.

DOI: https://doi.org/10.1109/AHS.2015.7231175

Copyright: c© 2015 IEEE. Reprinted, with permission from the authors.

Abstract: Reliability and fault-tolerance are essential requirements of critical, autonomous

computing systems. In this paper, we propose a methodology to quantify, and maximize, the

reliability of computation in the presence of transient errors when considering the mapping

of real-time tasks on a homogeneous multiprocessor system with voltage and frequency scal-

ing capabilities. As the likelihood of transient errors due to radiation is environment- and

component-specific, we use machine learning to estimate the actual fault-rate of the system.

Furthermore, we leverage probability theory to define a trade-off between power consumption

and fault-tolerance. If a processing element fails, our methodology is able to re-map the ap-

https://doi.org/10.1109/AHS.2015.7231175

68

plication, establishing whether the real-time requirements will still be met, and how reliable

the new, impaired system will be. Results show that the proposed methodology is able to

adjust mapping and operating frequencies in order to maintain a fixed level of reliability for

different fault-rates.

6.1 Introduction

Reliability is an essential requirement of computing systems that need to operate autonomously

in critical situation, often under stringent time constraints. Together with availability and

maintainability, it is one of the properties of dependable system. In this work, we define re-

liability as the property measuring, in probabilistic terms, the ability of a system to perform

correctly. A reliable computing system is one that always, or almost always (e.g., with a

desired probability), outputs the correct result of its computation, even when faults occur.

This paper proposes a methodology to quantify and optimize the reliability of multiprocessor

embedded systems that are subject to transient faults with a constant (or slowly changing)

unknown rate. Transient faults are those errors that may, or may not, reappear if the same

computation is repeated on the same resources. Bit-flips and soft errors, i.e., incorrect data,

caused by the impact of particle radiation on CMOS-based memories and registers are exam-

ples of transient faults. Protecting electronics from this sort of faults is especially important

in the development of computing systems intended for the space and aerospace industry.

This is true for aircraft flying at high altitude through the South Atlantic anomaly [63], as

well as satellites or interplanetary missions that cannot benefit from the shielding of Earth’s

magnetosphere and atmosphere. However, the interest for robustness to transient faults is

not limited to aerospace. In fact, as the transistor sizes shrink, less and less energy is required

to cause bit-flips in commercial electronics.

6.2 Related Work

In this paper, we propose a methodology combining several research areas. Each one of these

areas is relevant enough to have its own niche of ongoing research. Therefore, we present the

related work in three large categories: research dealing with the mapping of real-time tasks

in multiprocessor systems; research dealing with the mitigation of faults, especially those

that are induced by radiation; and research dealing with reliability-aware task mapping,

scheduling and resource allocation.

While the problem of scheduling real-time tasks on uniprocessor systems is addressed by a

number of well established techniques, real-time multiprocessor systems are a lively research

69

topic. In fact, the optimal mapping—the preliminary phase of each partitioned approach—of

applications and tasks is known to be NP-complete [90]. However, Davis and Burns [35], in

their survey of real-time scheduling algorithms for multiprocessor systems, note that the use

of partitioned approaches allows to exploit a wealth of results on schedulability and optimal-

ity for uniprocessor systems. Raravi et al. [138], focus on the task-to-processor assignment

problem for a specific family of architectures: two-type multiprocessors. They provide three

different algorithms with polynomial complexity that can approximately solve of the task-

to-processor assignment problem. The algorithm proposed in [12] is based on a linear pro-

gramming relaxation of the integer linear programming formulation or the task-to-processor

assignment, and it guarantees to find a feasible task allocation if the load of each processors is

no greater than 50%. In this work, we consider the task mapping problem on multiprocessors

systems with distributed frequency scaling capabilities (sometimes treated as heterogeneous

systems). However, we only tackle it in the tractable case of a single, multi-tasked real-time

application.

Most fault-tolerant systems in the real world rely on simple techniques such as triple modular

redundancy and shielding. However, current research on fault-tolerant systems, and especially

on systems robust to the effects of radiation, includes approaches implemented at higher

design levels. The research of Dumitriu et al. [40] and that of Cassano et al. [25] make a case

for the use of reconfigurable FPGA systems in aerospace applications. Both works introduce

macros for the detection and recovery from transient and permanent faults due to radiation

effects. In [19] and [115], we find operating system-level approaches to fault-tolerance: the

first one based on a trade-off of reliability and performance; the latter on a trade-off of

availability and lifetime. Jacobs et al. [75] describe a complete framework for dynamically

reconfigurable fault-tolerant FPGA systems that also includes a state-of-the-art radiation

model, able to describe the time-varying effects of radiation that a spacecraft encounters in

a given orbit. The approach we propose in this paper is suitable both to FPGA and OS-level

implementations, and specifically targets tolerance to transient faults. Unlike most of the

works listed so far, we formalize a way to trade-off reliability not with resources, or weight,

or cost, or performance, but with power consumption.

Finally, we consider dependability-aware approaches to the problems of task mapping and

scheduling. Qin and Jiang [136] suggest the use of a heuristic approach for the scheduling of

real-time tasks on heterogeneous multiprocessor that could also significantly reduce reliability

costs. The methodology introduced by Meyer et al. [103], on the other hand, is able to find the

optimal task mapping and allocation of redundant resources in order to maximize the lifetime

of a system. In [20], we also find a task mapping methodology that is able to improve the

expected mean time to failure of a system at the cost of an energetic overhead. Self-adaptive

70

approaches to the task mapping problem based on reinforcement learning have also been

proposed [120] The aspect in which our proposal differs from these previous works is the

introduction of a probabilistic, quantitative measure of the tolerance to transient faults: we

do not just aim at maximizing the expected value of the mean time to failure of the system,

but we maximize the probability of the computation to yield the correct result.

6.3 System Model

In this section, we define the formalisms that we use to describe the interacting components

of our overall system model, i.e. the computing architecture, the software tasks, and the

occurrence of transient faults. We also define the power consumption model that we use to

estimate the efficiency of each task mapping.

6.3.1 Computing Architecture Model

The computing model we consider is that of a homogeneous multiprocessor embedded system

or system-on-chip, i.e., a multiprocessor with identical processing elements (PEs) and private

caches, as in Figure 6.1. We assume that the performance and power consumption of each

PE can be throttled through the use of dynamic voltage and frequency scaling (DVFS). To

ensure the best performance and energy savings, the use of voltage and frequency scaling

must be coordinated. Each PE will have a number of possible operating points, defined

at design time. An operating point consists of a fixed supply voltage and an appropriate

frequency step. For example, we could have an energy efficient, low voltage, low frequency

operating condition, and several more performing operating conditions, associated to higher

voltages and frequencies.

Formally, we will indicate the PEs in an n-core multiprocessors as PE1, PE2, .., PEn. The

operating condition of the i-th PE will be written as OP (PEi): a function that returns a pair

opj = (fj, Vj), meaning that PEi is working at the j-th operating point and fj and Vj are

its operating frequency and voltage. A system has a fixed, finite number (≤ k) of frequency

steps and supply voltages, and we indicate the baselines with f0 and V0, respectively.

Computer architectures with such characteristics can be found among commercially available

processors, e.g., those in the Intel Core family with Enhanced Intel SpeedStep Technology [71],

or could be implemented in a modern FPGA system supporting mixed frequency designs [147],

for example the Xilinx Virtex 5 family.

71

PE1,1 PE1,2

PE2,1 PE2,2

...

...

... ...

Figure 6.1 A two-dimensional grid architecture with identical PEs and ideal communication
links.

6.3.2 Real-time Application Model

For the purpose of this work we consider an application as a set of tasks τ1, τ2..., τm. Each task

has a worst-case execution time (WCET) associated with the slowest operating point of the

system OP (f0, V0), i.e., the one with the lowest frequency. Because we focus on homogeneous

multiprocessor architectures, the WCET is the same on each PE. However, when executing

a task on a PE whose operating point has a higher frequency than the baseline frequency f0,

we will consider a speed-up proportional to the frequency increase (in Sub-section 6.3.1 we

assumed private caches and no shared resources):

WCETOP (fi,−) = WCETOP (f0,−) ·
f0

fi
(6.1)

Tasks can also have precedence relationships that we express in the form of a directed acyclic

graph (DAG), as in the example in Figure 6.2. An application is executed periodically, with

period T that also represents the implicit deadline D by the time its real-time computation

has to be completed. However, we cannot determine whether the real-time constraints will

be met, or not, without mapping tasks to PEs and fixing the PEs operating points.

As an example, we could consider an application whose goal is to control the attitude of

a satellite in order to maximize the amount of energy its solar panels can harvest. The

tasks of this application would consist of: determining the satellite position, computing the

required adjustment, and actioning its reaction wheels. Because the position of the satellite

with respect to the sun might change over time, depending on the orbit, such an application

should be executed periodically and in a real-time fashion, i.e., with a bounded delay from

the start to the end of its computation.

72

A

W CETOPk
(A)=2

B

W CETOPk
(B)=4

C

W CETOPk
(C)=7

D

W CETOPk
(D)=5

A ≺ B
B ≺ D

C ≺ D

Figure 6.2 The DAG of an application with four tasks. Nodes includes their WCETs at a
reference frequency k. Arcs express precedence relations.

6.3.3 Transient Faults Model

Our analysis focuses on those faults that do not result from the permanent failure of com-

ponents but are, instead, transient, volatile in nature. Soft-errors and bit-flips are the most

common examples of this kind of faults. These faults are often caused by the impact of par-

ticle radiation, and they represent a serious hazard for aerospace applications. Because their

occurrence arise from the complex interaction of environmental and manufacturing param-

eters, we choose to model them through the average rate or particle radiation impacts that

cause a transient fault. State-of-the-art models of radiation effects, as the one described in

[75], in fact, output similar metrics. Our approach, however, is different because we estimate

this rate empirically instead of using a predefined physical model.

This rate λ can then be used to parametrize a Poisson probability distribution (Figure 6.3)

describing the likelihood of the number of transient faults that might occur.

P (error) = P (|impacts| ≥ 1 | |impacts| ∼ Pois(λ)) (6.2)

6.3.4 Power Consumption Model

Without considering static dissipation effects such as leakage currents, the switching power

dissipated by a CMOS chip is the product of its operating frequency f , the square of its supply

voltage V , its capacitance C, and a parameter α, called activity factor, that represents the

73

0 10 20 30 40 50
0

0.1

0.2

0.3

of impacts

p
m

f

0

0.2

0.4

0.6

0.8

1

C
D

F

λ = 2
λ = 8
λ = 32

Figure 6.3 Probability mass functions (only marks) and cumulative distribution functions
(solid lines) of Poisson distributions with different impact rates λ.

percentage of gates that actually switch:

P = α · C · V 2 · f (6.3)

In our multiprocessor model, the total dissipated power will be the sum of the power con-

sumptions associated to each PE. While f and V will change from PE to PE, depending

on the operating point (Figure 6.4), the capacitance and the activity factor will not, as we

assumed all the PEs to be identical. However, we need to observe that the same computa-

tion will take less time on a PE operating at a higher frequency than on a PE with a lower

frequency. As a consequence, the total energy consumed by a PE should be scaled by its

utilization:

E = P · U · T (6.4)

where T is the period and implicit deadline of the application described in Subsection 6.3.2,

and, by utilization U , we mean the fraction of this period in which the PE is actually per-

forming useful computation.

6.3.5 Wear Model

Finally, we tackle the problem of how to model the deterioration of our PEs over time. All

CMOS-based electronic devices are subject to aging and eventual wear-out through differ-

ent phenomena, the most significant of which are: hot carriers, negative bias temperature

instability (NBTI), time-dependent dielectric breakdown (TDDB), electromigration, and self-

heating [171].

74

600 800 1,000 1,200 1,400 1,600

5

10

15

20

25

30

frequency (Mhz)

D
y
n
am

ic
P

ow
er

(W
) Power

Voltage

0.8

1

1.2

1.4

1.6

1.8

V
ol

ta
ge

(V
)

Figure 6.4 The relation between operating frequencies and voltages of the Intel Pentium M
processor, and the resulting dissipated power, as reported in [71].

In reliability engineering, the wear-out of electronic components is often approximated using

their mean time to failure (MTTF) and a probability distribution. For this purpose, the most

commonly used ones are the Weibull, the log-normal, and the exponential distribution. In

the latter case, the probability of a failure to occur before time T is:

P (f < T) = 1− e
−T

MT T F (6.5)

Because exponential distributions are memoryless, the probability of a failure of a functioning

PE—in a time interval of fixed length t—does not depend on its uptime:

P (f < T + t|f > T) = P (f < t) (6.6)

Results on commercial avionics systems showed how failures can, in fact, be modeled through

and exponential probability distribution, parametrized by the MTTF, as in Figure 6.5.

The modeling of the aging of resources by only using the MTTF and a probability distribution,

however, is quite naive, and it lacks the expressive power needed to account for all the aging

effects we mentioned above. For example, we know from the Black’s equation that the MTTF

of a CMOS device has an exponential relation with its temperature [171]. Other causes of

aging, e.g., the NBTI, are related to the operating frequencies of the transistors.

Temperatures and voltages are themselves related to the utilization of a PE: a device that is

heavily used will reach higher temperatures than a device that is frequently turned off. We

modify the traditional probabilistic model of exponentially distributed failures to account for

75

0 10 20 30 40 50
0

0.1

0.2

0.3

years

p
m

f

0

0.2

0.4

0.6

0.8

1

C
D

F

MTTF = 1yrs

MTTF = 5yrs

MTTF = 10yrs

Figure 6.5 Probability mass functions (only marks) and cumulative distribution functions
(solid lines) of exponential distributions with different MTTF parameters.

the MTTF variations due to the load of a PE. If the relation between MTTF and utilization

was linear, any reduction in the use of a resource would equally impact its expected lifetime,

no matter its absolute level of utilization. However, we know that this is not true [103].

Ideally, a device that will never be turned on cannot be proven to have experienced fail-

ure. Therefore, in the following, we will assume the existence of an exponential relation the

expected lifetime of a PE and its computational load.

MTTFU ∝ (MTTF100%)U−1
(6.7)

Figure 6.6 shows the difference between a linear and an exponential decay of the MTTF

with respect to the utilization of a resource.

For PEs that experience variations in their level of utilization over time, we will consider an

equivalent utilization as their average utilization weighted by the amount of time spend at

each utilization level.

A similar model, despite its simplicity, improves on the traditional probabilistic modeling of

failures. With appropriately chosen parameters, such a model would be able to describe the

non-linear effects of electromigration on the aging of the PEs.

A notable limitation of this modeling approach is in the way we model the aging of a device

subject to a variable level of utilization. In fact, by using a weighted (by the time) average of

its utilization levels, we will conclude that a device that is frequently switched on and off will

age the same way of a device that is constantly, but mildly, used. We believe that further

research should be done on the characterization of the relation between the utilization of

76

0 20 40 60 80 100

MT T F100%

utilization %

M
T

T
F

linear
exponential

Figure 6.6 Comparison of a linear and and exponential relation between the utilization of a
PE and its MTTF. Manufacturer, like Intel, do not do not always disclose failure rates of
their CPUs. We assume to know the MTTF of a fully utilized PE, MTTF100%.

PE and its failure probability. More information should also be disclosed by manufacturers,

because an online estimation of this relation—as the one we propose for the occurrence of

transient faults later in this article—is not possible.

6.4 Methodology

The methodology we propose starts with an overview of the task mapping problem on a

homogeneous multiprocessor system with DVFS capabilities, it proceeds with a probabilistic

formulation of the occurrence of transient faults, and it concludes with the formulas allowing

us to compute how task mapping and frequency scaling impact the fault-tolerance and the

power consumption of the system.

6.4.1 Task Mapping and Real-time Constraints

Given a multiprocessor with n identical PEs and an application composed by m tasks, the

number of possible task mappings—a set of functions q’s returning the PE assigned to each

task, that we will indicate with Q—grows exponentially with the number of tasks:

|M | = nm (6.8)

However, it is important to observe that, under assumption of identical PEs, the number

of indistinguishable mappings is much smaller. In fact, the number of distinct partitionings

of a set of size m is known as the Bell number [141], and it can be recursively computed

77

as Bn = ∑n−1
k=0 Bk

(
n−1
k

)
. For example, if n = 3 and m = 6, 36 = 729 but B6 is only

203. Moreover, in most practical cases, n < m which implies that some of the partitionings

accounted by the Bell number would be unfeasible, and their actual number would be given,

instead, by the sum of the Stirling numbers of the second kind [168] up to the number of

PEs:

|M | =
n∑
i=1

S(m, i) (6.9)

Having found the number of distinct task mappings, we observe that, if each PE performs

DVFS independently, and we have k different operating points for each PE, the size of our

design space—a set S whose elements are couples (q,op) where q ∈ Q and op is a vector of

operating points, one for each PE—will also grow exponentially with k:

|S| = nk ·
n∑
i=1

S(m, i) (6.10)

In order to prune down this large search space, we need to focus on the relation between the

task mapping, the operating point of each PE, and the real-time constraints of the application.

To know whether an application will meet its deadline or not, we need to compute its overall

execution time. Because our application is expressed by a DAG of tasks, this execution time

corresponds to the longest path of the DAG—a linear complexity problem—where each arc

has a weight equal to the WCET of its antecedent task node.

An efficient way to explore our design space would consist of evaluating each task mapping

with all the PEs in their most performing operating point (in Section 6.3 we assumed speed-

ups proportional to the variations in frequency). If an application can be scheduled within

its deadline, then we can examine lower frequency operating points. However, as soon as the

deadline is not met, we will be able to discard all the points in the design space that assign

an equal or slower operating point to that PE.

6.4.2 Utilization Levels

Once the design space has been pruned of all the design points with indistinguishable map-

pings or whose vectors of operating points do not allow to meet the real-time constraints, we

can compute the utilization level of each PE. We will use Ui for the utilization of the i-th

PE. This value will be equal to the sum of the WCET of the tasks mapped to the i-th PE,

divided by period of the application T .

Ui =
∑
j|q(τj)=PEi

WCETj

T
(6.11)

78

A vector of utilization levels—one for each PE—can be unequivocally computed, given the

DAG of an application, its period, the task mapping, and the operating point of all PEs.

6.4.3 Particle Radiation and Transient Errors

We now tackle the problem of modeling the errors arising from transient faults due to the

impact of particle radiation on our multiprocessor system. We assume that these impacts—

and, therefore, the transient faults—occur at a constant but unknown rate r. In a preliminary

learning phase, all we can observe is the number of erroneous computations produced by a

training application whose task mapping, operating points, and utilizations are known. We

will indicate the fraction of erroneous results, out of all the learning computation, with o.

This value is not the same as r because not all transient faults result in errors, but they

might be masked if they arise in a PE while it is not performing useful computation.

First of all, we compute the number of particle impacts/transient faults on each of the n PEs

during the execution period T . Assuming that the chip is hit by radiation uniformly, this

number is (T · r)/n. However, the i-th PE is active only during a fraction of T , equal to its

utilization. Therefore, the number of transient faults, unmasked by inactivity, is:

λi = Ui ·
r · T
n

(6.12)

This value can be used to parametrize a Poisson probability distribution and compute the

probability observing an error in the i-th PE, i.e., the probability of one or more unmasked

transient faults UTF over the period T :

PPEi
(error) = P (UTF ≥ 1|UTF ∼ Pois(λi))

= 1− P (UTF = 0|UTF ∼ Pois(λi))

= 1− e−λi

(6.13)

At this point we can compute the probability of observing a system-wide error due to an un-

masked transient fault, as the probability of an error happening in at least one PE. Assuming

that errors happen in different PEs independently, this is Psystem(error) = 1−∏n
i=1 e

−λi , or,

simply:

Psystem(error) = 1− e
∑n

i=1−λi (6.14)

However, this probability is approximated by the value o that we computed in our preliminary

learning phase. Therefore, reversing Equation 6.14, we can finally compute an estimate of r,

79

the constant impact rate.

r = n · (1− ln(o))
T

·
n∑
i=1
−Ui (6.15)

6.4.4 Fault-tolerance Optimization

There is an important observation to make about Equation 6.14: in order to minimize the

probability of observing an unmasked transient fault resulting in a system-wide error, we need

to minimize
∑n
i=1−λi. However, from Equation 6.12, we know that λi’s are proportional to

system-wide parameters—r, T , and n—and the utilization of each PE. Therefore, the way to

minimize:
n∑
i=1
−λi = r · T

n
·
n∑
i=1

Ui (6.16)

is to find the operating points with the lowest average utilization level. This can be done

by choosing those operating points having the highest frequencies on each PE that is loaded

with at least one task. This is a fairly intuitive result: minimizing the time we spend on

computation will minimize the probability of being affected by transient errors occurring at a

constant rate. What is new here, is the formulation of a probability measure of the reliability

of the computation. In fact, by plugging r (computed after the learning phase through

Equation 6.15) and the utilizations (computed from the operating points assigned to each

PE) in Equation 6.14, we can compute the likelihood of getting an erroneous—or, viceversa,

correct—result. This estimate will still be slightly pessimistic, as, in complex applications,

errors might also be masked by the specific type of computation performed.

6.4.5 Power Consumption Optimization

Combining Equations 6.3 and 6.4, we can express the total energy consumption of the i-th

PE, working at the j-th operating point, over one execution period T as:

Ei = α · C · V 2
j · fj · Ui · T (6.17)

The activity factor α, the capacitance C, and the period T do not vary from one PE to

another. It is important to observe that the frequency factor fj and the utilization factor Ui

will cancel each other out, because of the speed-up assumed in Equation 6.1. Therefore, in

order to obtain energy savings, we will need to act on the supply voltage. Because of the

quadratic relation in Equation 6.17, a small tuning of the supply voltage would result in a

largely improved energy efficiency. These savings will be even higher if we consider that high

performance operating points also have higher leakage currents.

80

6.4.6 The Power and Fault-tolerance Trade-off

The work presented so far shows that by tuning the operating points of our system we can

influence both its fault-tolerance and its power consumption. Frequencies and supply voltages

are not independent—their specific relation depends on the operating points allowed by the

manufacturer—but, usually, move in the same direction.

However, while tuning voltages impacts the energy budget quadratically, tuning frequencies

impacts on utilizations linearly. Utilizations, in turn, reflect exponentially on the probability

of a system-wide error. Whereas the lower energy consumption the better, for reliability

purposes, we will only want the probability of an error to be below a certain threshold.

These considerations make the case for the quantitative evaluation of the trade-off between

fault-tolerance and power consumption. In Section 6.5, we show how this works out with

parameters from the real world.

6.4.7 Lifetime Optimization

We observe from Equation 6.14 that the probability of the occurrence of system-wide errors

due to the impact or particle radiation essentially depends on the average utilization of the

PEs. This means that, if we only look at the fault-tolerance of the system, we might find

design points with different task mappings and operating points but that are indistinguishable

from a reliability perspective.

However, in the model we described in Section 6.3, changing the computational load distribu-

tion of the system affects its performance and, in particular, its expected lifetime. Therefore,

we want to find, among the design point with the highest fault-tolerance, those whose com-

putational load distribution (i.e., the utilizations of their PEs) is such that their expected

lifetime is the longest.

One problem that we encounter is the definition of the utilization of a PE that is subject to

a variable load. In our model we made the assumption that the equivalent utilization Û of

this PE is its average utilization weighted by the amount of time spent at each utilization

level:

Û = 1∑l
i=1 ∆ti

l∑
i=1

∆ti · U(∆ti) (6.18)

In Equation 6.18, we discretized the time in l steps ∆t, and represented the utilization level

of a PE during the i-th step as U(∆ti). First, we establish the expected time of failure of the

first PE to fail. As we assumed an exponential relation (but it might be any other suitable

function, e.g., a fitted polynomial) between utilization and MTTF, and the initial utilization

81

level of each PE Ui(∆t0) are known, this value will be equal to:

MTTF1st = min
1≤i≤n

(MTTF100%)U
−1
i (6.19)

After the failure of the first resource, a new design point for the new n − 1 multiprocessor

will be chosen, keeping in mind fault-tolerance, power, and real-time requirements, according

to the same methodology we previously exposed. New utilization levels will be computed for

each PE, and the expected time of failure of the second resource to fail will be computed as:

MTTF2nd = min
1≤i≤n

(MTTF100%)
∆t1+∆t2

∆t1·U(∆t1)+∆t2·U(∆t2) (6.20)

Depending on the type of relation that we assumed between utilization and MTTF, this sec-

ond time of failure, might be have a closed form solution or not. In our case, the exponential

relation assumption, leads us to the solution of an equation having the form of xx = k, or

log x = 1
a·x+b . In other words, we want to find the first quadrant intersection of the loga-

rithm with base MTTF100% an the hyperbola having the weighted average utilization as the

denominator:

logMTTF100%
(MTTF2nd) = ∆t1 + ∆t2

∆t1 · U(∆t1) + ∆t2 · U(∆t2) (6.21)

where ∆t1 = MTTF1st and ∆t1 + ∆t2 = MTTF1st. This can be done iteratively using

several methods. As we know that the solution will be bounded to have an x between 0

and 1, we use a binary search and progressively refine the estimate of the solution. Another

possible approach (non exploited here, but that might converge more quickly to a solution)

is Newton’s method, that improves an initial guess x0 through the formula:

xn+1 = xn −
f(xn)
f ′(xn) (6.22)

Then, this approach can be reused to compute the expected failure time of each one of the

PEs of the system and, eventually, its death. One important consideration to make is that,

in most practical scenarios, the impossibility to meet real-time constraints will arise before

the complete death of the system. With the decrease of available PEs, tasks might not be

scheduled within their deadline. We have to distinguish, then, between the “total lifetime”

of a system, i.e., the time that will pass before the failure of its last PE, and the “functional

lifetime” of the system, i.e., the time that will pass before resources become to scarce to meet

the real-time constraints.

Whether any of this two metrics will be improved by a homogeneous distribution of the

82

computational load over the resources, or by an uneven utilization, it is strictly related to

the nature of the task set we are optimizing for, and the shape of relation that we assumed

between the utilization and the MTTF of the PEs. In the next section, we show how this

works out with parameters from the real world.

6.5 Case Study

For the sake of simplicity, we map an application with four tasks (m = 4) on a dual-core (n =
2) architecture with three operating points available on each PE: OP1 = (1.6GHz,1.484V),

OP2 = (1.2GHz,1.420V), OP3 = (600MHz,0.956V), i.e., a sub-set of the six operating points

of the Intel Pentium M processor[71]. Reported power consumptions are 25W, 13W, and

6W, respectively. The real-time application has a period T equal to its deadline D of 10
seconds and two precedence relations: A ≺ B and C ≺ D. The WCETs of the each task

in each operating point are reported in Table 6.1. The size of our case study is limited for

display purposes only. As we explained in Section 6.4, the only issue with the scalability

of our approach is in the number of operating points that yields an exponential—but easily

prunable—growth of the design space.

While nm = 16 and the Bell number of four is B4 = 15 , the sum of the Sterling numbers

S(4, 1) = 1 and S(4, 2) = 7 tells us that there are only 8 distinct partitionings. Multiplying

by kn = 9, we find 72 possible design points. After the pruning of all those points that do

not allow to meet the real-time constraints, we are left with 29 acceptable design points. We

observe that the magnitude of this pruning phase is really dependent on the strictness of T .

For T = 12, we would have as many as 51 acceptable points.

Now, we imagine our system to be deployed on a satellite that might find itself in a Low

Earth Orbit (LEO) or in a Highly Elliptical Orbit (HEO). In these conditions, we know

that the number of particle radiation impacts, per day, on a Virtex 4 board, is 16.5 and 62
respectively [75]. From Equation 6.14, we can evince that the probability of a system-wide

error is a function of its average utilization. Therefore, in Table 6.2, we report the seven

levels of average utilization that can be achieved in the 29 acceptable design points. For each

one of them, we report the lowest achievable power consumption (power consumption also

depends on the load distribution), and the system reliability in terms of number of error over

10000 computations—for a T of 10 seconds, it means slightly more than a day—both in LEO

and HEO. In Figure 6.7, we map the acceptable design points to an n-dimensional design

space, where each dimension represents the utilization level of a PE. Only 15 points appear

in Figure 6.7 because, due to the limited size of this particular case study, several of the

original 29 have identical utilizations.

83

0.2 0.4 0.6 0.8 1

0.4

0.6

0.8

1

UPE1

U
P
E

2

best reliability
best power eff.

Figure 6.7 Design space as an n-dimensional space of utilization levels, with ideal reliability
and power consumption design points.

As we expected, increasing the frequencies of the PEs and reducing their utilization allows

to mask errors. In our practical example, reducing the average utilization by 25% results in

∼ 25% less errors both in LEO and HEO, at the cost of increasing the power consumption

by 50%. However, it is important to note that the relation between the average utilization

and the number of errors is not linear (Equation 6.14) as it might seem from these numbers:

in environments with higher particle impact rates, we would need a larger reduction in the

average utilization to have similar gains in reliability.

6.6 Conclusions And Future Works

In this paper we proposed a methodology for the scheduling of real-time task in homoge-

neous multiprocessor systems that is both reliability- and energy-aware. Notably, we used

probability theory to quantify the reliability of the system to transient faults—occurring at a

Table 6.1 WCETs (in seconds) for each one of the four tasks, in each of the three operating
points.

Operating Point
OP1 OP2 OP3

f1 = 600MHz f2 = 1.2Ghz f3 = 1.6Ghz

Task

A 8.0 4.0 3.0
B 4.0 2.0 1.5
C 8.0 4.0 3.0
D 12.0 6.0 4.5

84

Table 6.2 Reliability and power consumption metrics for different design points, ordered by
the average utilization of the PEs. The period T is 10s, the number of errors is over 10000
computations.

Average Best Power System Errors
Utilization Consumption LEO HEO

0.600 30.00W 12 42
0.650 27.70W 13 45
0.675 26.55W 14 47
0.700 25.40W 15 49
0.725 24.25W 15 50
0.800 20.80W 16 56
0.850 27.30W 17 59

fixed, unknown rate—with respect to the task mapping and the PE utilization levels. We also

showed how to improve this probabilistic reliability measure at the cost of a higher energy

expense.

Our future research focus includes the development of this work in two directions: on one

hand, we aim at the implementation and physical testing of our approach on an FPGA

system; on the other hand, we want to extend the probabilistic framework described in this

work to include the effects of interconnects and permanent faults. In particular, we think

that, by taking into account the overheating and the wearing of PEs with high levels of

utilization, we could also improve the overall system lifetime.

85

CHAPTER 7 ARTICLE 4 – ASSESSING THE RESILIENCE OF

STOCHASTIC DYNAMIC SYSTEMS UNDER PARTIAL OBSERVABILITY

Preface: During a stay at the Inoue Laboratory of the National Institute of Informatics

in Tokyo, I broadened the scope of my research and started investigating a more general

category of adaptive systems. This chapter addresses the challenges posed by the definition,

modelling, and design of resilient ecosystems and environments. Resilience is recognized

as a property of interest for the analysis of many complex systems but a unique defini-

tion of it does not yet exist. Typically, a system is considered to be resilient if it can

adjust in response to shocks and still provide the services it was intended for. Starting

from a definition of resilience proposed in the context of constraint-based systems, we

identify an efficient exact algorithm that computes the essential inference steps required

to assess the resilience of stochastic systems that can only be observed through imperfect

measurements. To demonstrate the wide applicability of this research, we describe how

to use it to draw insights and improve decision making in two scenarios that are related

to computer engineering (self-aware computing and swarm robotics) and two that are

not (disaster management and macroeconomics). As the main author of the article, my

contributions included: proposing a HMM-based framework, identifying the inference

algorithm, studying its theoretical complexity, writing the code, detailing the example sce-

narios, performing the experiments and simulations, and writing a first draft of the document.

Authors: Jacopo Panerati, Nicolas Schwind, Stefan Zeltner, Katsumi Inoue, and Giovanni

Beltrame

Submitted To: Science Advances

Abstract: Resilience is a property of major interest for the design and analysis of generic

complex systems. A system is resilient if it can adjust in response to disruptive shocks, and

still provide the services it was designed for, without interruptions. In this work, we adapt

a formal definition of resilience for constraint-based systems to a probabilistic framework

derived from hidden Markov models. This allows us to more realistically model the stochastic

evolution and partial observability of many complex real-world environments. Within this

framework, we propose an efficient and exact algorithm for the inference queries required to

construct generic property checking. We show that the time complexity of this algorithm is

on par with other state-of-the-art inference queries for similar frameworks (that is, linear with

86

respect to the time horizon). We also provide considerations on the specific complexity of

the probabilistic checking of resilience and its connected properties, with particular focus on

resistance. To demonstrate the flexibility of our approach and to evaluate its performance, we

examine it in four qualitative and quantitative example scenarios: (1) disaster management

and damage assessment; (2) macroeconomics; (3) self-aware, reconfigurable computing for

aerospace applications; and (4) connectivity maintenance in robotic swarms.

7.1 Introduction

Originally coined in the context of environmental sciences and ecological systems, resilience

has become a property of great interest for the study of complex systems. Although resilience

is not easily defined, researchers agree that it is a fundamental characteristic of those ecosys-

tems that are able to absorb extreme spikes and survive, albeit transformed. The insect

populations of North-eastern American forests [67] are well-known examples of such resilient

systems.

The focus of the artificial intelligence community has been, so far, on narrowing down the

concept of resilience and formalizing it, for example in constraint-based and non-deterministic

dynamic systems [149]. These approaches are extremely general and able to describe a

plethora of real-world systems, but they have very limited predictive power. The transition

models in non-deterministic dynamic systems resemble those of Markov chains and decision

processes but, because they do not have probability distributions associated to transitions,

they do not tell whether a future world is more likely than the others.

Succeeding in the definition and implementation of resilience has the potential to enable the

creation of “resilient by design” systems. In computing engineering, for example, networks

and robotics systems provided with resilient properties will possess the ability to absorb

shocks and to transform in response to external attacks, while still providing their services.

By choosing to study resilience in the context of hidden Markov models, we extend the

existing artificial intelligence research to take into account the unpredictability of the real

world. This is essential to make our model consistent with the idea of a “random world”

proposed by Holling [67]. In fact, conditional probability distributions can be seen as the

stochastic extension of non-deterministic transition functions.

In this work, we also expand the previous discussion about resilience with the element of

partial observability, adding one more layer of complexity. In the end, the goal of our work

is to provide the formal and algorithmic tools to efficiently answer queries such as: “what is

the likelihood of requiring extra personnel in an emergency area over the next three days?”,

87

“what is the probability that a worker robot will soon become disconnected from its assigned

cluster?” or “with 99% confidence, what is the minimal number of neighbor links to maintain

connectivity in an extremely noisy network?”.

7.2 Related Work

In a seminal paper from 1973, Holling introduced the concept of “resilience of ecological

systems” [67]. In it, he draws a clear separation line between resilience and the more com-

monly used notion of stability. Resilient systems are not those systems that simply react

to imbalances by quickly returning to equilibria. Instead, when perturbed, they are able to

find new sustainable configurations. It is worth noting that Holling defines resilience in the

context of what he calls “the random world”: an environment that is intrinsically stochastic.

Developing these ideas, Walker et al. [169] define resilience as “the capacity of a system to

absorb disturbance and reorganize while undergoing change so as to still retain essentially

the same function, structure, identity, and feedbacks”.

Computer science has often looked at biology as a source of inspiration for the development

of search algorithms, coordination mechanisms, and complex frameworks. The first attempt

to develop a formal definition of resilience exploiting the tools of artificial intelligence was

provided by Överen, Willsky, and Antsaklis [110] and, successively, further developed by

Baral et al. [10] and Schwind et al. [149]. Our research is based on the formal description

of the System Resilience- (SR-)model introduced by Schwind et al. [149]. When compared

to the existing research [149, 10], the main distinctive trait of our work is in its integration

of the ideas of probability theory. Our analysis of resilience is based on the probabilistic

framework of hidden Markov models (HMMs). HMMs are often employed in applications

such as signal and natural language processing. Nonetheless, they have also proven to be

fruitful descriptive tools for many other complex dynamic systems [137].

Our methodology is closely connected to the sub-field of artificial intelligence that deals

with probabilistic graphical models, dynamic Bayesian networks in particular. The two most

common types of inference tasks for probabilistic graphical models—the larger family of

frameworks HMMs belong to— are marginal and maximum a posteriori estimation (i.e.,

the computation of the distribution of a single variable and the most likely assignment of all

variables, respectively). For these, efficient algorithms with convenient linear time-complexity

have been identified [143]. In the following and Methods sections, we show that these queries

are not sufficient to perform the kind of property checking demanded by our formal definition

of resilience. An ad hoc, efficient algorithm to answer the necessary queries is detailed in the

Methods section.

88

With regard to applications, resilience has been, in recent years, a topic of interest for re-

searchers in many different areas. Beyond ecology, these areas include economics, networking,

critical and real-time systems, and swarm robotics—a domain that lies at the prolific inter-

section of computer engineering and biology. Researchers have been developing ways to

formalize the robustness and resilience [179, 146] of networks of robots with respect to their

most common tasks, e.g., consensus, flocking, and formation. Our work shares some termi-

nology with this research and can also be used to address fundamental problems of swarm

robotics (e.g., the one of connectivity). However, it is worth noting that the formal definition

of resilience given here is not a domain-specific one and it could be used orthogonally with

that, for example, of Saldaña et al.[146] (see the Application Scenarios section).

7.3 Resilience and Resilient Properties in Probabilistic Models

This work re-interprets a formal definition of resilience (for dynamic systems) [149] using

the probabilistic framework of hidden Markov models and enriching it with a cost function.

In this section, we recall and combine together a number of definitions that are derived

from recent research work on formal resilience in dynamic non-deterministic constraint-based

models [149, 148] and timed probabilistic models [118].

The SR-model is a theoretical framework proposed by Schwind et al. [149] that combines

elements of constraint-based systems and non-deterministic dynamic systems. It gives us a

formal definition of resilience, as the unifying property arising from three simpler properties:

1) resistance, 2) functionality, and 3) recoverability. The SR-model consists of two separate

formal descriptions for the kinematics and the dynamics of a system: the first is represented

as sequences of pairs called “state trajectories” or SSTs:

SST = (CBS0, ς0), (CBS1, ς1), . . . , (CBSi, ςi), . . . (7.1)

The subscript index skims through the time steps. The symbol CBSi represents a constraint-

based system composed of a set of variables Xi and a cost function κi:

CBSi = 〈Xi = {X0
i , X

1
i , . . . , X

j
i , . . .}, κi : D(Xi)→ R+〉 (7.2)

The second element in each pair, ςi ∈ D(Xi), represents a complete assignment of the vari-

ables in Xi: ςi ∈ R|Xi|. Each SST corresponds unambiguously to a sequence of costs obtained

by plugging-in each ςi into its corresponding cost function κi: κ0(ς0), κ1(ς1), The envi-

89

ronment dynamics are described using non-deterministic Dynamic Systems (DSs):

DS = 〈CBS,A,m : CBS×A→ P(CBS)〉 (7.3)

where CBS represents the set of all possible constraint-based systems CBSi, A is the set

of actions available at each time step, and m is a non-deterministic transition function that,

given the current CBS and an action, returns the set of possible constraint-based systems for

the next time step.

The kinematic description of the SR-model (SSTs and sequences of costs) is central to the

formalization of resilience and it is preserved in our proposed methodology. However, we

prefer to discard the non-deterministic description of the dynamics in favor of a probabilistic

approach based on hidden Markov models. Hidden Markov models (HMMs) can be seen

as specific subset of both dynamic Bayesian networks (DBNs) and state-observation mod-

els [143]. HMMs have a single discrete state variable S and a single discrete observation

variable O. A HMM is fully specified by the probability distribution of S at time −1,

P (S−1), the conditional distribution of O given S at the same time step, P (Ot | St), and the

conditional distribution of S given S at the previous time step, P (St+1 | St) [86].

HMM = 〈P (S−1), P (Ot | St), P (St+1 | St)〉 (7.4)

HMMs are commonly used for the tasks of signal processing and speech recognition [86]

because efficient (i.e., with computational time complexity that is linear with respect to

the time horizon of the model) algorithms exist for: 1) the estimation of the probability

distribution of S, also called the “hidden” variable, taking only assignments of O as input

(filtering and smoothing algorithms); and 2) the identification of the most likely sequence of

assignments of S.

To formalize resilient properties in the probabilistic context of a “random world”, HMMs offer

the probabilistic reasoning of DBNs and the independence assumptions of state-observation

models. We chose HMMs above other frameworks such as Markov decision processes (MDPs)

and partially-observable Markov decision processes (POMDPs) because the additional com-

plexity of their decision layer was deemed unnecessary for the sole assessment of resilience.

The creation of a new framework to describe the resilience of stochastic, partially observable

systems, requires, however, certain additional steps. First, we re-define the domain of the

random variables S and O as the union of the domains of the set of variables of the constraint-

based systems in CBS:

Ω(O) ⊆ Ω(S) = ∪i D(Xi) (7.5)

90

Without loss of generality, we impose a static cost function: ∀i, κi = c : Ω(S) → R+ and

we introduce a sensor model that describes the imperfect observations of the set of variables:

P (Ot | St) : ∪i D(Xi) × ∪i D(Xi) → [0, 1]. Because we are not interested in formulating

a decision making problem, we drop the set of actions A from DS and we replace m with

the conditional probability distribution that describes the probability of a set of variables

evolving into another:

P (St+1 | St) : ∪i D(Xi)× ∪i D(Xi)→ [0, 1] (7.6)

Putting these elements together with an initial probability distribution P (S0) : ∪i D(Xi)→
[0, 1], our overall framework (shown in Figure 7.1) can be re-written as:

c-HMM = 〈P (S−1), P (Ot | St), P (St+1 | St), c : Ω(S)→ R+〉 (7.7)

In the SR-model, resilience is a boolean property of a state trajectories SST. It can be seen as

a unifying property, combining different desirable behaviours of a dynamic system and arising

from three simpler properties of state trajectories: resistance, functionality, and recoverability

(see Figure 7.2).

l-resistance The resistance property expresses the fact that a trajectory never incurs in a

cost that is larger than a fixed threshold. Therefore, this property is parameterized by this

maximum acceptable cost.

Definition 1. Given a state trajectory SST = (CBS0, ς0), (CBS1, ς1), . . . and a positive

threshold l ∈ R+, SST is said to be l-resistant if and only if each cost in its corresponding

St−1 St St+1

Ot−1 Ot Ot+1

c(St−1) c(St) c(St+1)

Figure 7.1 Unrolling of the C-HMM framework over three time steps.

91

cost sequence is less than or equal to the threshold l:

κi(ςi) ≤ l ∀κi(ςi) ∈ (κ0(ς0), κ1(ς1), . . . , κn(ςn), . . .) (7.8)

This property must be satisfied whenever we deal with periodic, fixed budgets.

f-functionality The functionality property tells us if the costs of a trajectory are, on

average, equal to or below a certain threshold. As in the case of resistance, this threshold

parameterizes the property.

Definition 2. Given a state trajectory SST = (CBS0, ς0), (CBS1, ς1), . . . and a positive

threshold f ∈ R+, SST is said to be f -functional if and only if the arithmetic average of the

costs in its corresponding cost sequence is less than or equal to the threshold f :

|SST |−1 ·
|SST |∑
i=0

κi(ςi) ≤ f (7.9)

This property is important when the operations we plan and our budget have different time

granularity.

〈p, q〉-recoverability The recoverability property concerns those systems in which costs

over a certain threshold can be accepted, but only as long as the system is able to return

within normal conditions before consuming a fixed, restorable, reserve.

Definition 3. Given a state trajectory SST = (CBS0, ς0), (CBS1, ς1), . . . , a positive thresh-

old p ∈ R+ and a positive budget q ∈ R+, SST is said to be 〈p, q〉-recoverable if and only if

every time the sequence of costs exceeds the threshold, it also returns below (or at) it before

the cumulative offset surpasses the reserve:

∀k s.t. κk(ςk) > p,∃j > k s.t. κj(ςj) ≤ p ∧
j−1∑
i=k

(κi(ςi)− p) ≤ q (7.10)

Systems with storage abilities—and that can use resources faster than they replenish them—

are affected by this property. An example of a recoverable system is the human muscle tissue:

it can perform at maximum intensity for a short time consuming a molecule called adenosine

triphosphate, or ATP [52], which is available in limited quantities in our body. Then, to

recover, the muscle needs to decrease the intensity of the effort, and allow other metabolic

pathways to replenish the initial ATP storage.

92

〈z, r〉-resilience Having explained the concepts of resistance, functionality, and recover-

ability, we can finally define the resilience of SSTs as a property-aggregating property.

Definition 4. Given a state trajectory SST = (CBS0, ς0), (CBS1, ς1), . . . , a natural number

z ∈ N∗, and a positive threshold r ∈ R+, SST is said to be 〈z, r〉-resilient if and only if all

its sub-trajectories of length z are r-functional.

As it was observed by Schwind et al. [148], using this definition, resilience is strongly inter-

connected with the three previous properties: by setting the parameter z to 1 or |SST |, re-

silience becomes equivalent to r-resistance or r-functionality, respectively. Moreover, Schwind

et al. [148] proved that “a finite SST is 〈p, q〉-recoverable if it is 〈z, (p + q/z)〉-resilient

∀z ∈ {1, . . . , |SST |}”.

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

f

l

p

r

i-th time step

co
n
fi
gu

ra
ti

on
co

st
,
c(
γ
i)

Figure 7.2 The example of a cost trajectory that is 50-resistant, 27-functional, 〈15, 50〉-
recoverable, and 〈4, 40〉-resilient, according to the Definitions 1 to 4 and the Equations 7.8
to 7.10 provided in this work.

7.4 Complexity of Efficient Exact Inference

In the Methods section, we describe how to use the c-HMM framework to define the random

variables associated to trajectories of states, observations, and costs, i.e., the probabilistic

analogues of SSTs. We then show that the probability of a trajectory of costs can be derived

from those of trajectories of states. However, a major assumption of our work is that only

trajectories of observations are available to study the partially observable stochastic system.

Because of this reason, we introduce an efficient algorithm to perform the exact inference

needed to find the probability of a trajectory of states from a trajectory of observations. The

93

algorithm is also detailed in the Methods sections. Here, we study its complexity starting from

the consideration that its last step requires the multiplication of three separate probability

values (factors) that we called Υ0, Υ1, Υ2.

We assume that querying the sensor and the transition models for any of their elements

involves a constant and negligible delay. The computation of Υ0 is the quickest: starting

with an initialization value of 1, we need to multiply it T times (the length of the time

horizon of the assessment or prediction of a property) by the correct entry of the sensor

model. Therefore, the time complexity of Υ0 is O(T). The factor Υ1 is obtained through

|Ω(S)| multiplications and |Ω(S)| − 1 sums— to find P (S0 = s0)—and T − 1 products by

entries of the transition model. Its time complexity is equal to O(|Ω(S)| + T). Finally, the

algorithm in [41] has a run time of O(|Ω(S)|2 · T), plus |Ω(S)| − 1 additions to compute

Υ2. Hence, the computation of Υ2 using the Forward algorithm is the slowest of the three.

Indeed, this is also the overall time complexity of the algorithm:

O(|Ω(S)|2 · T) (7.11)

We observe, in fact, that all the three factors Υ0, Υ1, and Υ2 are independent (from a

computational point of view, not with regard to probability) and they can be can be easily

computed in parallel, with the last one strictly dominating the others.

Most importantly, we remark that, if the time horizon is much larger than the number of

states (i.e., T � |Ω(S)|), the probabilistic inference algorithm has an overall time complexity

dominated by O(T). This result reveals that our algorithm—despite answering the different

kind of queries we are interested in—belongs to the same time complexity class of other well-

known inference algorithms for HMMs: the Forward-backward algorithm for the computation

of smoothed marginals distributions, and the Viterbi algorithm for the computation of the

most likely sequence of hidden variables [143].

The data structures necessary to represent the c-HMM framework have moderate memory

requirements: P (S0) has size of O(|S|), P (Ot | St) of O(|Ω(S)| · |Ω(O)|), P (St+1 | St) of

O(|Ω(S)|2), and c of O(|Ω(S)|). The input of our inference queries consists of two vectors,

a trajectory of states s0, . . . , sT and a trajectory of observations o0, . . . , oT , having size of

O(T) each. The computation of Υ0 requires to iteratively multiply the result of a previous

product and store a single floating point value, hence, its space complexity is O(1). Similarly,

the factor Υ1 can be computed by repeatedly storing the result of successive additions and

multiplications in the same memory cells and it has space complexity of O(1). Finally, the

execution of the algorithm to find Υ2 [41] demands memory of O(|Ω(S)|), again dominating

the other two factors.

94

As a result, the memory requirements for the computation of the probability of a trajectory

of states, given a trajectory of observations are:

1) model: O(|Ω(S)| · |Ω(O)|+ |Ω(S)|2); 2) input: O(T); 3) algorithm: O(|Ω(S)|) (7.12)

This also means that the space complexity of the inference algorithm itself do not depend on

the time horizon T . In most practical cases, in which T � |Ω(S)|, the memory bottleneck

will be represented by the memories dedicated to the storage of the input sequences s0, . . . , sT

and o0, . . . , oT . Figure 7.3 shows how time and space complexity evolves with respect to the

size of the inputs.

1 20 40 60 80 100
0

200

400

600

800

3x

x2
ex

10 · ln(x)

T

#
of

ar
it

h
m

et
ic

op
er

at
io

n
s

time(T)
time(|Ω(S)|)
space(T)
space(|Ω(S)|)

2 4 6 8 10
when: |Ω(S)| = |Ω(O)|

Figure 7.3 Theoretical complexity growth of the proposed inference algorithm with respect
to the time horizon T and the size of the state domain |S|. In the legend, time and space
stand for time-complexity and space-complexity, respectively.

7.5 Complexity of Generic Property Checking

The complexity analysis in the previous section was that of an algorithm capable of computing

the probability of a trajectory of states, given an assignment of the trajectory of observations.

We have shown that this can be done, rather inexpensively, in time O(T): a result that

makes our algorithm as good as the best state-of-the-art algorithms for exact inference in

HMMs. However, probabilistic property checking in c-HMMs requires an additional step:

the identification of those trajectory of states that actually enforce a certain property. The

complexity of this step is, in general, property-dependent.

95

The number of all possible assignments of a trajectory of states, is equal to |Ω(S)|T . Unless

a number of impossible (i.e., zero-valued) states or transitions appear in the HMM in either

P (S0) or P (St+1 | St), all these assignments will have non-null probabilities. However, it can

be noted that properties are functions of (i.e., only depend on) trajectories of costs.

Proposition 1. Given a finite time horizon T and a c-HMM 〈P (S0), P (Ot | St), P (St+1 |
St), c : Ω(S)→ R+〉, the number of possible assignments of the trajectory of costs is equal or

smaller than the cardinality of the set of trajectories of states.

Proof. This holds true as a consequence of the properties of the function c: ∀q ∈ {q | q =
c(s) ∧ s ∈ Ω(S)}, |c−1(q)| ≥ 1.

On the other hand, the number of trajectories of states that share the same trajectory

of costs is:
∏T
i=1 |c−1(ki)| (where ki is the cost of the state at the i-th time step). Let

K ⊂ R+ be the set of all the costs that are images of the possible assignments of S: K =
{k | k = c(s) ∧ s ∈ Ω(S)}, the largest maxk∈K |c−1(k)|, the smallest the size of the search

space of the trajectories of costs were the property checking actually happens. Contrarily, if

maxk∈K |c−1(k)| = 1, property checking over trajectories of costs is isomorphic to property

checking over the assignments of trajectories of states.

7.6 Bounding the Probability of l-resistance

The main challenge of dealing with long time horizons T is that, as the number of possible

trajectories grows exponentially with their length, the subset of trajectories that satisfy

a certain (resilient or not) property might grow as well. This is also true and especially

important for the resilient property of l-resistance.

Proposition 2. This additional layer of complexity cannot really be circumvented, i.e., in

general it is not possible to preclude the exponential growth of the number of probability values

that must be evaluated to assess the probability of l-resistance.

Proof. This derives from fact that P (S1 ≤ l ∧ S2 ≤ l|o1, o2) cannot be factorized into

P (S1 ≤ l|o1, o2) · P (S2 ≤ l|o1, o2) because P (S1 ≤ l|o1, o2) 6⊥⊥ P (S2 ≤ l|o1, o2), excluding

the application of the principles of induction through an iterative algorithm.

Instead, we can use the algorithm detailed in the Methods section to compute approximated

probability values of l-resistance that are strictly smaller—or larger—than the actual value,

i.e., plausible lower and upper bounds of P (S0 ≤ l ∧ · · · ∧ ST ≤ l|o0, . . . , oT). To compute a

96

pessimistic estimate of this probability, we must construct new pseudo- transition and sensor

models P̂ (St+1|St), P̂ (Ot|St). We aggregate all the states that have cost ≤ l or > l into two

macro-states s≤l, s>l so that:

P̂ (st+1 = s≤l|st = s≤l) = min
i s.t. c(si) ≤ l,
j s.t. c(sj) ≤ l

P (st+1 = si|st = sj)

P̂ (st+1 = s≤l|st = s>l) = min
i s.t. c(si) ≤ l,
j s.t. c(sj) > l

P (st+1 = si|st = sj)
(7.13)

P̂ (st+1 = s>l|st = s≤l) = max
i s.t. c(si) > l,
j s.t. c(sj) ≤ l

P (st+1 = si|st = sj)

P̂ (st+1 = s>l|st = s>l) = max
i s.t. c(si) > l,
j s.t. c(sj) > l

P (st+1 = si|st = sj)
(7.14)

and, ∀oj ∈ Ω(O), we have:

P̂ (ot = oj|st = s≤l) = min
i s.t. c(si)≤l

P (ot = oj|st = si)

P̂ (ot = oj|st = s>l) = max
i s.t. c(si)>l

P (ot = oj|st = si)
(7.15)

Plugging this new models in our algorithm, one can compute a lower bound, i.e., a value

smaller or equal, for the probability of the trajectory being l-resistant. Similarly, one can

compute an upper bound for the probability of resistance, using the pseudo- transition and

sensor models of s≤l obtained by swapping the min and max operators in the definitions

above. Therefore, the new model and our algorithm allow to compute, with time complexity

that is linear with the length of the trajectory, an interval [Plow, Pup] that certainly contains

the l-resistance probability P (S0 ≤ l ∧ · · · ∧ ST ≤ l|o0, . . . , oT).

7.7 Application Scenarios

To demonstrate the potential of the proposed methodology, we apply both its modelling and

probabilistic inference facets to four practical scenarios. These examples serve to demon-

strate that resilience and the resilient properties have a prominent role in several different

domains. Moreover, they show that, in the “random world” [67] we frequently encounter en-

vironments that have non-deterministic dynamics and are observed through noisy, imperfect,

or broken sensors (i.e., partial observability). The first two qualitative examples are inspired

by the domains of disaster management and macroeconomics. The third and fourth example

are drawn from the fields of self-adaptive computing for aerospace applications and swarm

97

robotics, respectively, and they are used to evaluate the quantitative aspects of the proposed

approach as well.

7.7.1 Disaster Management

When dangerous disruptive events occur, proper disaster management is crucial to protect hu-

man lives and minimize casualties [124]. Effective disaster management cannot be decoupled

from good modelling and decision making strategies [102]. In our first application scenario, we

model a four islands archipelago X0, X1, X2, X3 (see Figure 7.4) that can be affected by three

different level of alert D(Xi) = a0, a1, a2—from “no intervention needed” (a0) to “emergency”

(a2), passing by “some intervention needed” (a1). In this example, |Ω(S)| = 34 = 81. To

take into account the different speeds at which alerts escalate and get re-absorbed on each

islands, we define four transition models ∀i ∈ [0, 3], Pi({Xi}t+1|{Xi}t) and construct the

overall probabilistic dynamics as P (St+1|St) = P ({X0, X1, X2, X3}t+1|{X0, X1, X2, X3}t) =∏
i Pi(Xt+1|Xt) (this also implies that the alert status as independent from one another).

We assume that the observations domain is isomorphic to that of the states Ω(O) = Ω(S),
that an “emergency control centre” resides on the j-th island, and that the reliability of

an observation decays exponentially with the distance it has to travel (this is, for exam-

ple, the case of a multi-hop communication network with constant packet drop between any

two nodes but one could also choose to plug-in any of the more sophisticated probabilistic

models found in the literature [177]). Having defined the observation of the i-th island sta-

tus as OXi and its distance from the control centre as di, then Pi(OXi
t = ap|Xt = aq) =

e−di if ap = aq, and (1 − e−di)/(|Ω(O)| − 1) otherwise. The overall observation model is

defined as P (Ot|St) = P ({OX0 , OX1 , OX2 , OX3}t|{X0, X1, X2, X3}t) = ∏
i Pi(OXi

t |Xt). Func-

tions ci(Xi) : D(Xi) → N state how many resources, e.g., the number of search and rescue

teams, have to be sent to the i-th island, depending on its alert status. The cost function

c(S) : Ω(S)→ N4 = ∑
i ci reveals how many resources are required to cope with each situation

in the state domain.

The numerical values in the transition and the sensor model can be found or improved upon

used historical data and expert knowledge. The emergency control centre can use them to

look at the stream of information about the alert status (or their prediction through the

transition model P (St+1|St)). Performing inference on the system model allows to answer

different queries of interest. If a limited number of search and rescue teams are present on the

archipelago, computing the probability of the l-resistance property to hold true and making

sure that it is above a desirable threshold (e.g., p(φ(resistance, l)) ≥ 0.95), ensures that l is

the correct number of resources to deal with the potential emergencies—should the resistance

98

probability drop, more resources would be necessary. Furthermore, if the archipelago can

temporarily recall an additional q resources (e.g., from a national guard), the p parameter for

which the probability of 〈p, q + l〉-recoverability is above a safe limit will tell for how many

time steps (days or months) those extra resources should be mobilized (and therefore paid,

quartered, etc.).

C.R.

d2

d1

d3
. . . Xt−2

0 , Xt−1
0 , Xt

0 . . .

. . . c0(Xt−1
0), c0(Xt

0) . . .
. . . OX0

t−2, O
X0
t−1, O

X0
t . . .

(if l-resistance= ω)
` . . . pt(ω), pt+1(ω) . . . X0

. . . OX1
t−2, O

X1
t−1, O

X1
t . . .

. . . Xt−2
1 , Xt−1

1 , Xt
1 . . .

. . . c1(Xt−1
1), c1(Xt

1) . . .
X1

. . . OX2
t−2, O

X2
t−1, O

X2
t . . .

. . . Xt−2
2 , Xt−1

2 , Xt
2 . . .

. . . c2(Xt−1
2), c2(Xt

2) . . .

X2

. . . Xt−2
3 , Xt−1

3 , Xt
3 . . .

. . . c3(Xt−1
3), c3(Xt

3) . . .
. . . OX3

t−2, O
X3
t−1, O

X3
t . . .

X3

Figure 7.4 The four island archipelago modelled in the first application scenario. For each
island, the image shows its geographical distribution, the evolving state, cost, and (partial)
observation from the point of view of the control room. (Figure created using TikZ/PGF
v3.0.0, GIMP 2.8.14, and cliparts from http://openclipart.org.)

7.7.2 Macroeconomics

Probabilistic and statistical models are already widely exploited tools in the fields in eco-

nomics and finance—the latter especially. A notable example being the research on the

expected return and risk of efficient portfolios by Harry Markowitz [97]. The deterministic

modelling approach of traditional macroeconomics, on the other hand, has come to be ques-

tioned over the last decade by the crisis of 2008 and the growing prominence of experimental

and behavioural economics [44]. Reckoning the existence of yet many unknowns in modern

macroeconomics, probability theory only seems the natural development direction for models

that need to be able to account for the uncertainties of this domain and the irrationality of

human behaviours.

http://openclipart.org

99

Applying the proposed modelling to the context of macroeconomics gives us a tool to derive

valuable insights this world. Assessing the resilience of a macroeconomic system is important

for multiple reasons: smoothly running economics guarantee the development, stability, and

fairness of our societies. The 2008 housing market crisis proved that existing models are not

enough to protect us from rare, non-directly observable, and counterintuitively correlated

events [88]. The argument that macroeconomics should be revisited to deal with the uncer-

tainty of the real world is not new [154] and statistical model for certain phenomena have been

proposed [38]. Existing research can be leveraged by our approach by simply verifying that

the Markov property is enforced P (St+1|St). The general consensus on the yet incomplete

understanding of macroeconomics lends itself perfectly to a partially-observable modelling

approach P (Ot|St). As economists are well aware of the limitations of existing models, they

often rely on stress tests [45] to evaluate the resilience of financial institutions [50]. Stress

tests are experimental tools that go beyond statistical analysis but, for which, statistical

meta-analyses exist [127] and can be used to construct the observation model required by

our approach. Intuitively, the cost function of the c-HMM describing this scenario will tell

which amount of money (in cash, deposits, or bonds) a government would need to prevent

a default in a certain state. Governments, banks, and investment funds typically monitor

time horizons of 5, 10 (sometimes 15, 20) years. In this context, the f -functionality property

represents the amount of funding that has be made available, on average, across multiple

year budgets. The 〈p, q〉-recoverability property tells how far into debt a government would

have to go to recover from a crisis within a fixed timeframe.

7.7.3 Self-adaptive Computing

Self-adaptive computers possess ad hoc capabilities—e.g., sensors, actuators, and decision

making loops [120]—that allow them to express autonomous behaviours. Because they do

not require the supervision of a human operator, these systems are especially suitable for

critical, advanced applications such as space systems and robotic exploration. An autonomous

computer and a resilient ecological system share several properties, for example the ability to

self-protect and self-heal [84] and assessing the resilience of the first is of primary importance

both at design and run time. Previous research [115, 117, 95] proved that probabilistic models

have the potential to enable autonomous computing systems. We now demonstrate how they

can be exploited for the analysis of their resilience.

The ArduSat Payload Processor Module (ASPPM) carried by the 1U CubeSat[170] ArduSat-

1 consists of one supervisor processor and 16 processing elements (PEs), and it is the ideal

platform for a modular, redundant autonomous on-board computer (OBC). The resilience of

100

the OBC of a spacecraft is typically enforced through the software and/or hardware repli-

cation of its essential functionalities: (1) housekeeping (C&DH), i.e., all the software tasks

contributing to the monitoring of the satellites status and the correct execution of its rou-

tine functions; (2) the processing of the data collected by the payload of the satellite while

performing its mission (Mission), e.g., running a classification algorithm over the images

captured by a camera [46]; and (3) the attitude control algorithm (ADCS), responsible for

the proper orientation of the satellite with respect to Earth and its targets, through the

computation of the control signals of the satellite actuators (e.g., reaction wheels).

Because of the harsh toll posed by space weather (solar wind, cosmic rays) on electronics,

each of the processing elements ∀i ∈ [0, |PE| − 1], pei in the set PE can find itself in one of

three states: pei ∈ {w, t, p}, that is, correct operation w, experiencing a transient fault state

t, or permanent failure p. A stochastic transition model describes the ageing of a PE [115]

and it is parameterized by the impact rate of particle radiation r and the mean time to

failure MTTF of a PE. These parameters are responsible for transient and permanent faults,

respectively. r is strongly orbit-dependent and is computed with the aid of radiation models

such as Creme96 and SPENVIS [164, 65]. Assuming independence among the evolution of

the PEs and defining the state of the system as S = {pei s.t. i ∈ [0, |PE| − 1]}, we can

generalize the transition model [115] as follows (where W is the duration of a time step):

P (St+1|St) =
|PE|−1∏
i=0

P (pet+1|pet) =

=


if peit = (w||t): P (peit+1) = 〈 1−r

eW/MT T F ,
r

eW/MT T F , 1− 1
eW/MT T F 〉

if peit = p: P (peit+1) = 〈0, 0, 1〉

(7.16)

In the case of ArduSat-1, the observers of the resilient system are the ASPPM’s on board

supervisor ATmega2561 microcontroller and the external NanoMind A712C flight control

computer. Observations of each PE, however, are not perfect for two reasons: (1) errors

can slip into the observers too; and (2) transient and permanent faults are, a priori, indis-

tinguishable. Our approach seamlessly models these kinds of observations with a framework

that accounts for both “partial” (in modal logic, ¬�(Ω(S) = Ω(O))) and probabilistic observ-

ability. Having defined the observation of each PE as working or faulty, Opei ∈ {w, f}, and

the system observation as the set of observation of all PEs, O = {Opei
s.t. i ∈ [0, |PE| − 1]},

we can use any suitable memoryless probability distributions for the sensor model [115] (with

101

false positive and false negative rates of pfp, pfn):

P (Ot|St) =
|PE|−1∏
i=0

P (Opei

t |peit) =


if peit = w: P (Opei

t) = 〈1− pfp, pfp〉

if peit = (t||p): P (Opei

t) = 〈pfn, 1− pfn〉
(7.17)

The cost function expresses the utility [143] of a configuration, that is, the scientific data

throughput (e.g., in MBytes per orbit or per day) that a certain state configuration puts on

the downlink of the satellite’s telecommunication system. In general, this data throughput

is a function of the state of the ASPPM s ∈ S, the orbit of the satellite ξ ∈ Ξ, and num-

ber/position of ground stations ψ ∈ Ψ: ST (s, ξ, ψ) : S×Ξ×Ψ→ R+. For a given low-Earth

orbit ξ̄ with a 400km altitude and 51◦ inclination, and a single ground station ψ̄ in North

America, we write cξ̄,ψ̄(S) as the cost function of the ASPPM state as:

cξ̄,ψ̄(S) = ST (S, ξ̄, ψ̄) =

=



. . .

3.7MB/day if Si−1 = 〈∅;∅〉; map : 〈c& dh 7→ pe9,13:14;mission 7→ pe2:4,6:8; acds 7→ pe10:12,15:16〉

2.0MB/day if Si = 〈∅; 4〉; map : 〈c& dh 7→ pe9,13:14;mission 7→ pe2:3,6:7; acds 7→ pe10:12,15:16〉

1.3MB/day if Si+1 = 〈∅; 4, 12〉; map : 〈c& dh 7→ pe9,13;mission 7→ pe3,7; acds 7→ pe10:11,15〉

. . .

(7.18)

In Equation 7.18, the shortcut 〈∅; 4〉 is used to indicate a state in which no PE is experiencing

a transient fault, and pe4 is permanently faulty (all other PEs are assumed to work correctly);

map specifies how the software tasks are mapped to the PEs in any given state. Figure 7.5

offers a visual reference of the subset of these mappings, as in Equation 7.18.

To discover meaningful semantics associated to the resilient properties, we introduce a helper

(cost) function ĉ(S) = c̄ − c(S), where c̄ is the theoretical maximum throughput attainable

by the satellite. Using ĉ(S), computing the probability distributions of f -functionality and

l-resistance reveals the expected and worst-case data throughput sent to Earth, respectively.

The property of 〈p, q〉-recoverability can help quantify the loss of scientific data in the case

of drops in the throughput (due to faults or reconfiguration of the system). The advantage

of using the algorithm proposed in this work (see Methods) to assess these properties is the

ability to maintain the computation within reasonable time limits, even for relatively long

102

traces and complex models. In a search space of 316 states, 216 possible observations, and time

horizons of 10, 100, or 1000 steps, the proposed approach requires a number of arithmetic

operations in the order of 1013−15 to compute the probability of a state trajectory. The same

problem would simply be intractable by any other algorithm that requires to evaluate the 1075

entries in the conditional joint probability distribution (CJPD). Because of the exponential

growth of the CJPD, the savings are remarkable (order of 1059) even for properties that are

satisfied by a large (e.g., 30%) fraction of the possible state trajectories.

, ,.

Si−1 Si Si+1

cξ̄,ψ̄(Si−1) = ST (Si−1, ξ̄, ψ̄) =3.7MByte/day;
〈c&dh 7→ pe9,13:14;mission 7→ pe2:4,6:8; acds 7→ pe10:12,15:16〉

cξ̄,ψ̄(Si) = ST (Si, ξ̄, ψ̄) =2.0MByte/day;
〈c&dh 7→ pe9,13:14;mission 7→ pe2:3,6:7; acds 7→ pe10:12,15:16〉

cξ̄,ψ̄(Si+1) = ST (Si+1, ξ̄, ψ̄) =1.3MByte/day;
〈c & dh 7→ pe9,13;mission 7→ pe3,7; acds 7→ pe10:11,15〉

Figure 7.5 A visual representation of three of the possible “software task”-to-“hardware re-
source” mappings in the state space of the 1U CubeSat’s Arduino-based ASPPM from the
third application scenario, as presented in Equation 7.18.

The potential of self-aware computing is not limited to satellites. Studying the challenges

of Mars rover operations, Gaines et al. [51] outlined a model of seven factors impacting

productivity. Among non-human factors, they identified the reliability of the uplink/downlink

as a cause for “deferred” sols—i.e., Martian solar days in which the campaign objectives have

to be postponed to address unexpected issues. Indeed, they suggest “state-aware health

assessment” as one of the capabilities that shall be developed in future missions to mitigate

this problem.

For example, NASA and JPL’s most recent Mars rover, Curiosity, is able to perform ∼5h/sol

of tactical science activities [58]. This is due to the fact that direct-to-Earth communication

is limited—by power and orbital constraints—to a few hours/day at data rates of 0.5 to

32kb/s. Therefore, most transmissions are relayed by two sun-synchronous orbiters—Mars

Reconnaissance Orbiter, at up to 2Mb/s, and Odyssey, at 128 or 256kb/s. Each of the orbiters

passes over the rover, every sol, for a 8’-window while they can both transmit to Earth for

∼16h/day. Commands are uploaded to the rover every sol during an overnight orbiter pass

103

(or direct-from-Earth at local midmorning). Data that are necessary to plan the activities

of the following sol are then returned via an orbiter telecom pass in the midafternoon. Non-

essential information is stored and returned during the following overnight orbiter pass [58].

As a consequence, if the rover fails to send the required information during the correct orbiter

pass, the tactical team might not be able to plan the activities for the following sol. This

is an issue that will aggravate in the near future, as the current fleet of sun-synchronous

orbiters is replaced with non-sun-synchronous orbiters [51].

As originally planned, Curiosity’s primary mission spanned over 669 sols. Accounting for (i) a

commissioning phase of 90 sols, (ii) 30 sols of solar conjunction, (iii) 10 sols for maintenance

and updates, (iv) a 20% of “not commandable” sols due to Earth-Mars phasing, and (v)

a 25% of “non-productive” sols “due to unforeseen shortfalls in mission resources [...] or

communication problems” [58], the rover was left with ∼300 sols to explore the vicinity of

the Gale crater, traverse ∼18km, and collect ∼11 samples. With hindsight, the 25% estimate

of “non-productive” sols proved to be rather conservative: the study in [51] observes that

tactical activities were only deferred in 3 out of 19 (16%) sols during 2014’s Pahrump Hills

campaign and in 1 out of 24 (4%) sols during 2015’s Artist’s Drive. Yet, self-aware computing

might have the potential to further improve performance, e.g., with the implementation of

a decision support system (DSS) on top of the self-assessment framework described in this

work.

Having associated probability values to the data throughput of a computing system (through

a model as the one in Equations 7.16 to 7.18), a binary classification/decision system would

autonomously choose whether to use the overnight orbiter pass to (i) transmit the non-

essential information (the default behaviour) or (ii) re-transmit the data required for tactical

planning (when it believes that the previous transmission failed) and prevent unproductive

sols. The sensitivity and specificity of the classifier are affected by several factors (including

the noisiness of the on-board sensors and the time horizon of the assessment algorithm).

However, even assuming relatively weak performance (e.g., sensitivity and specificity of 0.8)

and the conservative “deferred sol” incidence of [51], this DSS could reduce the number of

unproductive sols by 3.2–12.8%. Over the course of the >1600 sols spent by Curiosity on

Mars, it means 50-to-200 extra sols of science activities, equivalent to 3-to-12 extra kilometres

and 2-to-7 additional samples.

7.7.4 Swarm Robotics

As many-robot systems, or robot swarms, become more and more pervasive, researchers must

devise new, efficient ways to control and coordinate them [22]. In the fourth practical scenario,

104

we test our framework in the context of the networked multi-robot system of Figure 7.6,

where robots move independently and have a limited communication range. We implemented

a simulator for the robots’ movement and communication model, the proposed algorithm,

and an alternative reference approach based on the computation of the conditional joint

probability distribution. We remark that computing the CJPD is already a more efficient

approach than blindly expanding the entire joint probability distribution of a c-HMM. We

analyze the scenario with two examples: a small one with 4 robots in a 20cm by 20cm arena

and a large example with 20 robots in a 40cm by 40cm area. In both examples, robots have a

diameter of 2cm (similarly to Kilobots [142]), move on independent random walks at a speed

of 2cm/s, and have a communication range of 10cm.

As a transition model, we use the conditional probability distribution that describes the way

in which the number of neighbors R of a robot evolves over a time step of 1s: P (Rt+1|Rt). To

empirically derive this model, in both examples, we performed 30 random-walk simulations

of 10′ each, with the positions of the robots randomly initialized. For the sensor model,

we assume that communication links between neighbors can be temporarily broken with

probability d = 0.1. As a consequence, the sensor model that describes the number of robots

V that are actually visible to a robot with R neighbors follows the binomial distribution:

P (Vt|Rt) = P (X = Vt) with X ∼ B(Rt, d). We want to assess the probability of the

following two properties:

— Λ (l-resistance), given a series of observations over a time horizon T varying from 4 to

6, property Λ guarantees that a robot always maintained more than l neighbors. The

l parameter is set to 2 in the small example and 10 in the large one.

— Θ: given a series of observations over a time horizon T varying from 4 to 6, property Θ
says that a robot lost connectivity (i.e., found itself in a position with zero neighbors)

precisely during the last timestep—and not before.

Table 7.1 reports the results of specific experiments, taking typical series of observations

as inputs. It is worth noting that, because the proposed one is an exact approach, the

obtained probability values are identical w.r.t. those extracted from the CJPD, while—from

the results of the experiments—it emerges that the computational time is reduced by a factor

ranging between 102 and 104. In the 4 robots/6 steps time horizon case, for example, the

computational time of the probability of property Λ is lowered from >1000s to ∼0.01-0.1s.

Figure 7.7 compares the time delay of the proposed approach and that required by the

computation of the CJPD. For large scenarios, the CJPD delay rapidly gets off the chart. The

proposed algorithm, instead, allows to deal with 20 robots with a comparable, but smaller,

delay than the one required by the computation of the CJPD in the 4 robots scenario. In

105

particular, we observe that the advantage of the proposed approach over the use of the

CJPD actually increases with the length of the time horizon and the number of robots in the

scenario. Being able to perform exact inference in only seconds in large scenarios, accounting

for tens of robots, this approach can effectively be implemented in several practical multi-

robot applications, such as target tracking, area coverage, or task allocation. Unlike previous

work on resilient robot formations and partially-observable robot swarms [146], the proposed

approach does not limit the movement of the robots into configurations whose resilience can

be established a priori but rather it allows the a posteriori assessment of resilience in a

distributed fashion.

0 5 10 15 200

5

10

15

20

. . . Rr2
t−2, R

r2
t−1, R

r2
t . . .

. . . V r1
t−2, V

r2
t−1, V

r2
t . . .

` . . . pr2
t−1(Θ), pr2

t (Θ) . . .

. . . Rr3
t−2, R

r3
t−1, R

r3
t . . .

. . . V r3
t−2, V

r3
t−1, V

r3
t . . .

` . . . pr3
t−1(Θ), pr3

t (Θ) . . .

. . . Rr4
t−2, R

r4
t−1, R

r4
t . . .

. . . V r4
t−2, V

r4
t−1, V

r4
t . . .

` . . . pr4
t−1(Θ), pr4

t (Θ) . . .

. . . Rr1
t−2, R

r1
t−1, R

r1
t . . .

. . . V r1
t−2, V

r1
t−1, V

r1
t . . .

` . . . pr1
t−1(Θ), pr1

t (Θ) . . .

ṙ0

ṙ1

ṙ2
ṙ3

ṙ4

r0

r1

r2 r3

r4

. . . Rr0
t−2, R

r0
t−1, R

r0
t . . .

. . . V r0
t−2, V

r0
t−1, V

r0
t . . .

`
. . . pr0

t−1(Θ), pr0
t (Θ) . . .

neighborhood of r0 packet drop
w/ prob. d

x (cm)

y
(c

m
)

Figure 7.6 A robotic swarm, as described in the fourth application scenario. Each robot
possesses a position, velocity, state (the number of its neighbors), and a partial observation
(of its neighborhood) evolving over time. The inference algorithm is executed locally to assess
the probability of losing connectivity with respect to the rest of the swarm at each time step.

7.8 Discussion

Summing up our work, we adapted the CBS/DS-based formalization of resilience given by

Schwind et al.[148] (composed of the resilient properties of resistance, functionality, and re-

coverability) to the timed probabilistic framework of hidden Markov models. To do so, we

defined the extended framework of c-HMMs. In the Methods section, we outline a state-of-

the-art inference algorithm able to answer the queries required for the probabilistic property

106

3 4 5 6
10−3

10−2

10−1

100

101

102

103

104

time horizon (steps)

T
(s

)

Λ (CJPD; 4)
Θ (CJPD; 4)
Λ (This work; 4)
Θ (This work; 4)
Λ (CJPD; 20)
Θ (CJPD; 20)
Λ (This work; 20)
Θ (This work; 20)

Figure 7.7 Experimental assessment of the time complexity and comparison of the scalability
of the computational time of different queries for property Λ and property Θ through the al-
gorithm proposed in this work versus expanding the conditional join probability distribution,
in the 4 robots and 20 robots scenarios.

checking of resilience over this model. Furthermore, we studied the space- and time- com-

plexity of this inference algorithm as well as those of property checking.

We demonstrated the practical applicability of our approach in four qualitative and quan-

titative scenarios of growing technical complexity. In our experimental evaluation, we im-

plemented the algorithm in the Matlab-compatible scripting language GNU Octave (see the

Additional Information for the supplementary materials) and tested it in the autonomous

multi-processor computing system of a nano-satellite and in a multi-robot scenario to an-

swer queries about the robots’ connectivity. The experimental results show that, even in

small domains, the proposed approach is approximately (1) four orders of magnitude faster

than expanding the full conditional joint probability distribution. Furthermore, the scenar-

ios revealed that the proposed approach is capable of (2) modelling partial observability in

a way that deterministic models cannot grasp and (3) leading to insights about resilience

that would be, otherwise, concealed—e.g., the link between the extra resources required to

probabilistically ensure 〈p, q〉-recoverability and the tightness of the associated deadline.

Looking forward, the opportunities for the further development of this work reside in the

possible extensions of both its framework and the inference methodology. To improve the

general applicability of our approach, the next step is an inference algorithm capable of

dealing with missing data in the trajectory of observations. Moreover, the c-HMM framework

has the potential to be enriched with the ability to perform learning, decision making, and

planning—insights can be drawn from the existing frameworks of machine learning, decision

107

Observation # of p of Computation time (s)
Trajectory TO Robots Λ CJPD Proposed

[2, 2, 1, 2] 4 0.77167 3.022 0.003
[10, 10, 8, 10] 20 0.40485 n/a 1.964
[2, 2, 2, 2, 1, 2] 4 0.77033 1027.0 0.018

[10, 10, 10, 10, 8, 10] 20 0.38312 n/a 271.51
Observation # of p of Computation time (s)

Trajectory TO Robots Θ CJPD Proposed

[2, 2, 1, 0] 4 0.52712 3.059 0.005
[2, 2, 1, 0] 20 0.54640 n/a 1.354

[2, 2, 2, 2, 1, 0] 4 0.52727 1025.5 0.063
[2, 2, 2, 2, 1, 0] 20 0.53958 n/a 698.14

Table 7.1 Experimental results from the fourth application scenario, describing a robot in the
small or large swarm trying to assess the probability of properties Λ and Θ using only local
and the—possibly faulty—observations of its neighborhood.

networks, and MDPs.

7.9 Methods

In the section on resilience, resilient properties, and probabilistic models we have explored

the concepts of l-resistance, f -functionality, 〈p, q〉-recoverability, 〈z, r〉-resilience, and hidden

Markov models. We explained that the traditional HMM framework requires to become a

c-HMM in order to support the formal definition of resilience given by Schwind et al. [149]:

c-HMM = 〈P (S0), P (Ot | St), P (St+1 | St), c : Ω(S)→ R+〉 (7.19)

c-HMMs extend the HMM framework with a static cost function c, defined over the domain

Ω of its (random) state variable S, and taking positive values in R. We use the single discrete

state variable S of a HMM as a way to represent, by enumeration, the state configuration.

This information, in the constraint-based systems CBSs, was encoded using the set of vari-

ables X, and assignment ς. On top of the c-HMM framework, we can define the random

variables associated to trajectory of states, TS, and trajectory of observations, TO, and

show how to compute their (conditioned and unconditioned) probability distributions. All

the concepts presented in this section are implemented and evaluated using the open-source

Matlab-compatible GNU Octave language.

108

7.9.1 States, Observations, Costs, and Trajectories

In the SR-model, the definition of the resilient properties was based on the concepts of

SSTs and their corresponding sequences of costs. In c-HMMs, we have similar constructs

for states and costs, as well as observations. The main difference is that these concepts are

now built on top of random variables [140] and, therefore, they also can be associated with

probability distributions. Given a c-HMM and a finite time horizon T , we define its trajectory

of states TS as the sequence of state variables Si ∀i ∈ {1, . . . , T}. This can be rewritten as:

TS := S0, S1, . . . , ST .

S is a random variable and, therefore, TS is also a random variable. The number of possible

assignments of TS grows exponentially with the time horizon: |Ω(TS)| = |Ω(S)|T . Because

the mapping provided by the cost function c is purely deterministic, each assignment of TS

is unambiguously associated with a trajectory of costs tc = c(s0), c(s1), . . . , c(sT) and TC is

a random variable with |Ω(TC)| ≤ |Ω(TS)| = |Ω(S)|T .

Similar considerations are also valid for trajectories of observations TO := O0, O1, . . . , OT

and their possible assignments to := o0, o1, . . . , oT . If neither the transition model nor the

sensor model contain probability values of 0, all possible sequences of states can potentially

occur and produce any one of the sequences of observations. Therefore, the number of all

possible configurations—i.e., entries in the joint probability distribution (JPD)—of a c-HMM

is:

(|Ω(S)| · |Ω(O)|)T (7.20)

This number, in principle, represents the maximum (worst-case) complexity of performing

inference on our model. However, as we explained in the section on complexity, when dealing

with real-world environments and the resilient properties, we are only interested in a very

specific type of inference queries. That is, those queries that can return one of the |S|T

probability values of the conditional probability distribution of TS with respect to a given

to:

P (TS | to) = P (S0, S1, . . . , ST | o0, o1, . . . , oT) (7.21)

This is due to the fact that: (1) the state variable S is also called the “hidden” variable as

it is, in practice, never directly observable (making the actual ts taken by TS unknown);

and (2) the values taken by the observation variable O are, in most cases, the one piece of

partial/imperfect information that we can always access.

109

7.9.2 From the Probability of Cost Trajectories to the Probability of Properties

We have seen that the resilient properties—once their parameters are fixed—can be consid-

ered as boolean attributes of sequences of costs associated to SSTs. In the context of the

c-HMM framework, we say that an assignment of the trajectory of states ts = s0, s1, . . . en-

forces the property φ if and only if its corresponding trajectory of costs tc = c(s0), c(s1), . . .
is satisfies the definition of that property, i.e., φ(c(s0), c(s1), . . .) = true. Computing the

probability distribution of parametric properties φ(k), such as resistance and functionality,

with respect to their parameters, can provide valuable insights, as shown in Figure 7.8: a

rapid drop in the probability distribution might suggest the existence of a threshold cost that

is unlikely to be overcome. The probability of a property P (φ) is equal to the sum of the

probabilities of all the distinct trajectories of costs in which φ holds:

P (φ) =
∑

∀i∈{i|φ(tci)=true}
P (tci) (7.22)

In turn, the probability of a fixed assignment of the trajectory of costs tc is equal to the

sum of the probabilities of all the distinct trajectories of states that are mapped to tc by the

cost function c. To simplify the notation, we will also use C(ts) to indicate the trajectory

tc = c(s0), c(s1), . . . resulting from the application of the cost function c to the assignment

ts.

P (tc) =
∑

∀i∈{i|C(tsi)=tc}
P (tsi) (7.23)

Plugging Equation 7.23 into Equation 7.22, one can compute the probability of a property

φ as a function of the probabilities of distinct assignments of the trajectory of states (Equa-

tion 7.24). We observe that all the possible assignments of TS are “distinct” by definition,

even if many of them could be mapped by c to identical trajectories of costs.

P (φ) =
∑

∀i∈{i|φ(tci)=true}

∑
∀j∈{j|C(tsj)=tci}

P (tsj) (7.24)

Having assumed to be able to observe the system by its trajectory of observations TO, we are

then interested in computing the conditional distribution of φ with respect to the assignment

to of TO. To do so, we start from Equation 7.24 and we re-write it with the addition of

conditioning on both sides by to:

P (φ | to) =
∑

∀i∈{i|φ(tci)=true}

∑
∀j∈{j|C(tsj)=tci}

P (tsj | to) (7.25)

110

Equation 7.25 shows that computing the probability of a property φ, given an assignment of

the trajectory of observations to, consists of two different subproblems: (1) identifying the

assignments of the trajectory of states TS that map to assignments of the trajectory of costs

TC that satisfy the property; (2) computing the conditional probability of these assignments

of TS with respect to the assignment of the trajectory of observations to. As we discussed

in the section on general property checking, the first problem strictly depends on the nature

of the property we are evaluating. The second problem, instead, can be efficiently tackled in

its general form by combining different inference methods for HMMs, as shown in the next

section.

Traditional HMM Inference

The most common algorithms for exact inference in HMMs are: the forward algorithm, the

forward-backward algorithm and the Viterbi algorithm [144]. The first two answer queries

about marginal probabilities while the third enables maximum a posteriori (MAP) infer-

ence [86]. More specifically, the forward algorithm can be used to compute the probability

distribution of the current (or the upcoming) hidden variable, given a sequence of observa-

tions. This operation is often referred to as filtering (or prediction):

P (ST | o1, . . . , oT)

P (ST+1 | o1, . . . , oT)
(7.26)

The forward-backward algorithm allows to refine the estimate (smoothing) of the probability

distribution of a hidden variable using subsequently collected information, that is, computing:

P (SN | o1, . . . , oT) (7.27)

when 1 ≤ N ≤ T . Finally, the Viterbi algorithm allows to discover the most likely sequence

of assignments of the hidden variable for a given sequence of observations:

argmax
s0,...,sT

P (s0, . . . , sT | o1, . . . , oT) (7.28)

All these algorithms have time-complexity that is linear with the length of the sequence of

observations they take as input: O(T) [144]. However, none of these algorithms directly

provides an answer to the family of queries that we are interest in for the scope of this work.

That is, the a posteriori probabilities of arbitrary sequences of assignments of the hidden

111

variable for a given sequence of observations, such as:

P (s0, . . . , sT | o1, . . . , oT) = P (ts|to) (7.29)

(Note that the output of the Viterbi algorithm is only one, specific sequence of assignments

and not a probability value.)

7.9.3 Efficient Inference

The easiest, but highly inefficient, way to find the probability value of P (ts|to) consists of

computing the complete joint probability distribution of the c-HMM over the time horizon

T . Because HMMs are Bayesian networks, their JPD is equal to the chain product of all the

conditional probability distributions (CPDs) in their nodes. Then, one can condition by the

evidence of to, and finally re-normalize the entire distribution so that it sums up to 1. This is

clearly an unsustainably expensive approach because computing the JPD requires time and

space complexity of O(Ω(S) · Ω(O))T .

Instead, we propose a much more efficient algorithm to compute the conditional probability

of a finite state trajectory assignment s0, . . . , sT with respect to the observation trajectory

assignment o0, . . . , oT . To do so, we start by re-writing the probability value of interest using

the Bayes’ theorem:

P (s0, . . . , sT | o1, . . . , oT) = [P (o0, . . . , oT | s0, . . . , sT)·P (s0, . . . , sT)]·P (o0, . . . , oT)−1 = Υ0·Υ1·Υ2

(7.30)

Equation 7.30 shows how to decompose the problem into the computation of three factors

that we call Υ0, Υ1, and Υ2 and can be tackled separately. Given an assignment of the state

variables, the conditional probability of a sequence of observations Υ0 can be computed as

the product of the appropriate entries of the sensor model.

Υ0 = P (o0, . . . , oT | s0, . . . , sT) =
T∏
i=1

P (Ot = oi | St = si) (7.31)

The probability of an assignment of the trajectory of states TS (notwithstanding the values

taken by the observations variables) Υ1, only depends on the transition model P (St+1 | St)
and the ground belief P (S−1): first, we need to compute the probability of S0 taking the

value of s0 as P (S0 = s0) = ∑
∀s∈Ω(S) P (St+1 = s0 | St = s)P (S−1 = s); then, the probability

of the entire trajectory can be computed multiplying the appropriate entries of the transition

112

model.

Υ1 = P (s0, . . . , sT) = P (S0 = s0) ·
T∏
i=1

P (St+1 = si | St = si−1) (7.32)

The computation of this latter factor, Υ2, is the trickiest: it can be performed efficiently using

a dynamic programming technique derived from the forward algorithm as explained in [41].

This algorithm iteratively computes the quantity P (o0, . . . , oT)—from now on re-written as

F (T, sT)—using the transition and sensor models. The initialization step of the Forward

algorithm is:

∀x ∈ Ω(S) F (1, x) = P (S0 = x) · P (O0 = o0 | S0 = x) (7.33)

The distribution of P (S0) can be computed just like we did for Equation 7.32. The iteration

step of the Forward algorithm is:

∀x ∈ Ω(S) F (t+ 1, x) =
∑

y∈Ω(S)
F (t, y) · P (St+1 = x | St = y) · P (Ot = o1 | St = x) (7.34)

Finally, having iterated the algorithm until T , the inverse of Υ2 is computed as the sum over

all possible values of ST :

1
Υ2

= P (o0, . . . , oT) =
∑

∀x∈Ω(S)
F (T, x) (7.35)

With the values of the three factors Υ0, Υ1, and Υ2, we can finally compute the conditional

probability of the assignment of a trajectory of states, given the assignment of a trajectory

of observations as:

P (s0, . . . , sT | o0, . . . , oT) = Υ0 ·Υ1 ·Υ2 (7.36)

The detailed analysis of the time- and space-complexity of the computation of all three factors

is given in the main body of this article: the most relevant result is the fact that the overall

time-complexity is linear w.r.t. the time horizon T .

113

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

l, f , p, r

P
(〈
x

;.
..
〉-

p
ro

p
er

ty
)

P(l-resist.)
P(f -funct.)
P(〈p; 5〉-recov.)
P(〈5; r〉-resil.)

Figure 7.8 Probability distribution of the parametric resilient properties in a template scenario
where ∀s, c(s) ∈ [0, . . . , 4]. The discontinuities reveal the potentially critical thresholds for
different properties.

114

CHAPTER 8 ARTICLE 5 – FROM SWARMS TO STARS – TASK

COVERAGE IN ROBOT SWARMS WITH CONNECTIVITY

CONSTRAINTS

Preface: Finally, this chapter summarizes the work conducted over the last year of my

doctoral program with the objective of rounding off my research with a practical application

in the context of autonomous robotics. In particular, we were interested in investigating ways

to autonomously and reliably maintain connectivity within a swarm of robots that can only

rely on local communication and do not have access to a global positioning system. These

are assumptions that we often encounter in the context of harsh environments and space

expeditions—making multi-robot planetary exploration the ideal use case of the developed

methodology. A significant discovery that we made while reviewing the literature—and

trying to replicate its results—was that a majority of the previously proposed approaches

were either lacking quick convergence or reliability. Because of this reason, we introduce

a distributed controller that uses local interactions to drive tens of robots towards their

targets—while in connected geometries—within minutes. As the main author of the

article, my contributions included: reviewing (and re-implementing) several works in the

literature on multi-robot connectivity, designing a new distributed control algorithm,

implementing it in Python and Buzz, validating it in multiple ARGoS simulations, analyzing

the data, preparing the figures, writing most of the document, and reviewing it in its entirety.

Authors: Jacopo Panerati, Luca Giovanni Gianoli, Carlo Pinciroli, Abdo Shabah, Gabriela

Niculescu, and Giovanni Beltrame

Submitted To: Autonomous Robots – Special Issue on Distributed Robots: From Funda-

mentals to Applications

Abstract: Swarm robotics carries the potential of solving complex tasks using simple de-

vices. To do so, however, one must be able to define a distributed control algorithm capa-

ble of producing globally coordinated behaviours. In this work, we propose and validate a

methodology to address the problem of the spatial coverage of multiple tasks with a swarm of

robots that must not lose global connectivity. Our methodology comprises two layers: at the

bottom, a distributed Robot Navigation Controller (RNC) is responsible for simultaneously

guaranteeing connectivity and pursuit of multiple tasks; on top, a global Task Schedule Gen-

erator approximates the optimal strategy for the RNC with minimal computational load. Our

115

contributions include: (i) a qualitative analysis of the literature on distributed multi-robot

connectivity maintenance, (ii) the implementation of the proposed methodology, (iii) simula-

tions performed in a multi-physics environment, and (iv) formal and experimental assessment

of the guarantees on connectivity, coverage optimality, and fault-tolerance.

8.1 Introduction

Declining costs and thriving popularity are making drones and small robots a recurring sight

in our daily lives. This trend, in turn, increases the appeal of multi-robots systems and swarm

robotics in particular. Swarm robotics carries the potential of solving complex tasks using

simple devices—and make the whole greater than the sum of its parts. One of the major

challenges on its way, however, is the definition and implementation of distributed control

algorithms capable of producing intelligent, coordinated behaviours, while relying on partial,

local, and possibly noisy information.

In general, swarm robotics uses controllers that make decisions using local information such

as the positions of a robot’s direct neighbours or of its visible tasks. Therefore, even more

than traditional multi-robot systems, robot swarms are capable of executing complex tasks in

a distributed fashion, with less reliance on hierarchies or centralization. This, in turn, shifts

the focus on the distributed control algorithms, running as identical—but separate—instances

on each of the swarm members.

Many practical application scenarios require a swarm to remain fully connected throughout

its entire operational life, e.g., when carrying a payload too heavy for a single or just a

few robots. The direct consequence, and desirable property, of global connectivity is that a

communication path always exists between any two swarm members. However, guaranteeing

the swarm’s connectivity through a distributed navigation algorithm is not at all a trivial

task. For example, when the swarm is influenced by multiple external forces, such as the

attractive potentials of two far-away task locations, boundary robots might move in opposite

directions and alter the swarm formation irremediably. The challenge lays in finding the right

way to combine possibly conflicting goals—using only distributed decision making and local

information. A distributed controller should be able to drive the swarm using both well-

known flocking/formation behaviours and task execution policies. A promising strategy is

represented by control algorithms that exploit both flocking and expansion virtual potential

functions associated to the position of the neighbouring robots, such as the Lennard-Jones

potential [21].

In this work, we propose a hybrid methodology to address the problem of the spatial cov-

116

erage of multiple tasks by a swarm of robots that never loses global connectivity. Typical

applications of this approach would be: (i) the autonomous exploration demanded by ex-

treme and hard-to-reach environments [82]; or (ii) the fast deployment of a communication

infrastructure or a GIS in an emergency area [7].

Our results—obtained from both mathematical modelling and multi-physics simulations—

demonstrate that the modular and distributed nature of these multi-robot systems, on one

hand, offers great potential for the development of autonomous and fault-tolerant mecha-

nisms, but on the other, can aggravate the challenges posed by problems that are often

practically intractable even in their centralized formulations (e.g., spatial coverage with the

minimal Steiner tree [53]). The methodology in this work comprises two layers: at the bot-

tom, a fully distributed Robot Navigation Controller (RNC) is responsible for simultaneously

guaranteeing connectivity and pursuit of multiple tasks; on top, a global planner (the Task

Schedule Generator) approximates an optimal strategy for the RNC with minimal computa-

tional load.

The rest of this article is organized as follows: Section 8.2 reviews works in the areas of task

scheduling, task mapping, and swarm connectivity (comprehensive of a quantitative com-

parison); Section 8.3 describes the two-layer proposed methodology and its mathematical

foundations; Section 8.4 and Section 8.5 present the settings, the results, and the discus-

sion of our experimental evaluations. Finally, Section 8.6 concludes the article and suggests

directions for the further development of the work.

8.2 Literature Review

The organization of this section mirrors the two-folded approach of Section 8.3. First, we re-

view previous works tackling the problems of task scheduling, mapping and coverage that are

addressed in the latter part of our methodology section. The second and larger part of this sec-

tion, is instead dedicated to the problem of distributed assessment and control/maintenance

of a swarm’s connectivity, and it includes a critical review of previous works (corroborated

by reimplementations and experimental comparisons).

8.2.1 On Task Scheduling, Mapping, and Coverage

Literature on the Multi-robot Task Allocation (MRTA) problem is exhaustively analyzed in

[108]. Among MRTA literature, great relevance is given to temporal and ordering constraints

for task execution [135], [91], [87], [107], [74], and [57]. Different objectives function have

been proposed, including robot path distance minimization, total duration minimization,

117

and utility maximization [108]. Mixed-Integer Linear Programming (MILP) formulations for

different variants of MRTA have been proposed in [57], [91], [87], [134]. In particular, [57],

[87] have based their approaches on the centralized heuristic resolution of the proposed MILP

formulation.

In [57], both geo-spatial and connectivity elements are ignored, while in [87] tasks have

physical locations that the robots must reach, but the authors still do not address inter-robot

communication. In [74], the robots communicate to determine the information available to

each and run instances of a distributed task scheduling algorithm. The Consensus-Based

Bundle Algorithm (CBBA) proposed in [135] aims at computing a task scheduling plan and

correcting the schedule by driving some robots to behave as relays. In [13], task allocation is

interpreted as a specific swarm behaviour. In a foraging scenario, probabilistic- and threshold-

based methods are used to determine, in a distributed fashion, whether a robot should rest or

should go out of the nest to collect objects. Connectivity constraints are not considered. To

the best of our knowledge, this work is the first to propose a task scheduling and assignment

problem for swarms of robots that jointly includes temporal, geospatial and connectivity

constraints and couples it with distributed lower lever controller.

8.2.2 On Swarm Connectivity

Given a swarm of robots that can only communicate with their neighbours (i.e., within a

limited range in a two-dimensional or three-dimensional space), we define (global) connectivity

as the boolean property that tells us whether a communication path can be established

within any two robots. This property is often desirable for its implications (e.g., the ability

to implement distributed agreement through average consensus [172] or to continuously rely

information from a specific robot to the entire swarm) and its distributed assessment and

enforcement have been the objective of several previous research works [17], [89]. Besides the

intrinsic challenges presented by distributed implementations, connectivity assessment and

control can be made even more difficult in time-varying topologies, that is with robots that

move or are affected by failures.

Eigenvector Centrality and Spectral Methods

The first category of research works that we examine is based on the formalisms of Spectral

Graph Theory (SGT)[33]. Approaches in this class describe generic multi-robot systems as

graphs G=(V,E) in which K=|V | robots are represented by nodes and the existing commu-

nication links with non-directional arcs e ∈ E (see Figure 8.1). This graphs, in turn, can be

represented with the aid of matrices, in particular the adjacency matrix A and the Laplacian

118

matrix L, tied by the following relationship:

LK×K := D − A =


d1 0 . . .

0 d2 . . .

. .
. . .

−


0 a12 . . .

a21 0 . . .

. . .
. . .

 (8.1)

where aij ∈ [0, 1] expresses whether two robots are neighbours, in other words if a link eij

exist between them and D is the degree matrix, di being the number of neighbours of i. The

spectral analysis of the Laplacian matrix (the calculation of its eigenvalues and eigenvectors)

reveals powerful insights about the underlying robot network. In particular, the second

eigenvalue λ2 of L represents an upper bound of the sparsest (i.e., with the fewest links and

separating the largest smaller partition) cut of the robot network, while the signs of the values

in the second eigenvector of L tell us on which side of this cut each robot would lie.

SGT can be used as a tool to discover how many link failures/disconnections a robot swarm

can sustain before losing connectivity. However, it is important to keep in mind that SGT

is not necessarily the be-all and end-all of swarm robotics connectivity: certain desirable but

connected geometries (e.g., a line of robots) present many sparse cut opportunities. In the

following, we review works that implemented spectral analysis in a distributed fashion (with

a few caveats).

Distributed Power Iteration Methods SGT methods based on power iteration (PI)

start from the observation that the repetition of the following update:

xi+1 = Mxi (8.2)

allows to compute the largest eigenvalue (and associated eigenvector) of a generic matrix M

from a random initialization of x0. Furthermore, the PI of L (and matrices directly derived

from it) can be computed in a distributed fashion in the form of:

xi+1
k = Lkk · xk −

∑
j|Lkj=−1

xij (8.3)

[17] and [37] suggest different ways to derive a matrix M from L for Equation 8.2 so that

each node in a network computes the second eigenvalue λ2 of L and its value of the associated

eigenvector. However, even these approaches are not perfectly distributed: using Equation 8.3

still requires non-local information to be share to perform periodical normalization steps and

avoid numerical instability. In [17] a beacon node is necessary to aggregate and broadcast

119

Neighbourhood
of R0

0

1

2

3
4

5

6

7

A =



0 1 1 1 0 0 0 0
1 0 1 1 0 0 0 0
1 1 0 1 0 0 0 0
1 1 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 1
0 0 0 0 0 1 0 1
0 0 0 0 0 1 1 0



L =



3 −1 −1 −1 0 0 0 0
−1 3 −1 −1 0 0 0 0
−1 −1 3 −1 0 0 0 0
−1 −1 −1 4 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 3 −1 −1
0 0 0 0 0 −1 2 −1
0 0 0 0 0 −1 −1 2


1st and 2nd

Sparsest Cuts

Figure 8.1 Robot swarms are often treated as graphs G = (V,E) (e.g. via Spectral Graph
Theory) for networking purposes.

the norm of the second eigenvector that is necessary to normalize the result of the PI step;

in [37] additional rounds of average consensus—potentially many times steps each—are used

for the same reason. Other works, such as [176] and [59] extend the SGT discussion with the

computation of multiple eigenvalues and topology changes, respectively, but are also limited

in their performance by need to periodically agree on certain estimates across the whole

swarm through, consensus.

Wave Propagation-based Methods Because of their frequent recourse to beacon nodes

and or rounds of consensus, PI methods can hardly be considered fully distributed. Wave

propagation-based methods resort to memory to circumvent the same issue. The method

described in [145] can potentially find all eigenvalues associated to the Laplacian matrix L

of a robot network from the Fast Fourier Transform (FFT) of the signal propagated by each

robot i using:

si(t) = 2 · si(t− 1)− si(t− 2) + k2 ∑
j|Lij=−1

sj(t− 1) (8.4)

where k is a constant. The major drawbacks of this approach, however, are the relatively high

requirements in terms of memory (each robot has to remember the history of u), possibly

computation (each node should implement a FTT), and the sensitivity to accurate peak

detection (in the FFT) that make it less suitable for the use with small robots, as it is often

the case in swarms robotics, and noisy environments.

120

Experimental Comparison of Spectral Methods

Based on the information found in [17], [145], and [37] we used the MATLAB-like scripting

language Octave (the same used in some of the original implementations [17]), to compare the

number of iterations that are necessary for these methods to converge to a precise estimate

of λ2. As error metric we chose the percent offset with respect to the actual value of λ2, i.e.,

e = |λ̇2−λ2|/(10−2λ2). Our implementations are available under the MIT license on GitHub 1.

Our results are presented in Figure 8.2. As we would expect, the approach that most often

requires consensus to normalize the results of its power iteration PI2 ([37]) is the one that

displays the slowest convergence. PI1 [17] and Wave [145] are remarkably (and comparably)

faster, with the first being more precise. To consider realistic applications, we then evaluated

these approaches under the assumption of random packet drop, with probability p, on each

of the inter-robot links. In this case, the results show that the slowest but more conservative

methodology P2 is the one most resilient to these errors (but only after ∼ 103 iterations).

Yet, all approaches are noticeably underperforming.

These results suggest that SGT—despite the appeal of its neat mathematical formulation—

might not be be ideal approach to preserve swarm connectivity for two major reasons: (i)

its slow convergence (hundreds of iterations even in small sized K = 10 swarms), and (ii) its

sensitivity to noise. As a third reason we could add the fact that per se SGT only provides

insights of the level of connectedness of a network, but this does not translate directly into a

control strategy to maintain it.

Biomimicry and Heuristics

Biomimicry behavioural and optimization algorithms (flocking, ant colony, PSO, etc.) are

unsurprisingly popular in the context of swarm robotics [163], [69]. Most of these method-

ologies fall in the heuristic category as they typically approximate optimal solutions but do

not provide any guarantees.

The approach presented in [89], in particular, superposes a collection of virtual forces (from

which the control of each robot is computed) to drive a swarm of robots towards diverging

leaders/tasks while also attempting to maintain the connectivity of the group. The primary

components of this control are (i) a three-fold flocking algorithm, and (ii) attraction to the

leader robots. As the authors discover from their experimental results, these components

do no always suffice to maintain connectivity. They then add contributions named (iii)

thickness, and (iv) density corrections. While the problem in [89] is very similar to that of

1. git@github.com:JacopoPan/ar-spectral-graph-theory-comparison.git

121

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

0

1

2

3

4

of steps

er
ro

r
(·1

00
)

PI1,K=10,p=0.0

PI1,K=10,p=0.01

PI1,K=10,p=0.05

PI1,K=10,p=0.1

PI2,K=10,p=0.0

PI2,K=10,p=0.01

PI2,K=10,p=0.05

PI2,K=10,p=0.1

Wave,K=10,p=0.0

Wave,K=10,p=0.01

Wave,K=10,p=0.05

Wave,K=10,p=0.1

Figure 8.2 Comparison of the performance of Spectral Graph Theory methods for the compu-
tation of the second eigenvalue of the Laplacian matrix λ2 under the assumptions of perfect
communication packet drop with probability p.

spatial coverage of multiple tasks with a connected swarm that we want to approach here

and it is based on a (partially) distributed control, it is not free of flaws: the number of

control contributions requires impractically expensive parameter-tuning and, yet, there is no

guarantee that the swarm will not eventually break down. In fact, even a controller finely

tuned for a certain scenario might not perform equally well in another geometry.

Flocking with Leader Forces For the sake of completeness, we experimentally evalu-

ated the combination of a three-pronged flocking algorithm, boundary tension, and leader

attraction inspired by [89]. A Python Jupyter Notebook implementation of this approach

is available under the MIT license on GitHub 2. What we discovered is that, the higher the

number of contributions to the control, the more parameter tuning is necessary. This might

render a controller suitable for a certain geometry, but ill-fit for another. Furthermore, when

leaders escape the swarm too quickly (or move too far), connectivity is eventually always

lost, as shown in Figure 8.3.

2. git@github.com:JacopoPan/ar-flocking-and-leader-forces.git

122

40 robots, 4 tasks

at time 0s

(a
)

40 robots, 4 tasks

at time 345s

40 robots, 4 tasks

at time 522s

60 robots, 3 tasks

at time 0s

(b
)

60 robots, 3 tasks

at time 222s

60 robots, 3 tasks

at time 522s

Figure 8.3 Superposition of flocking and leader forces in example scenarios with four (a) and
three tasks (b), the simulation shows that a successful control strategy for one scenario does
not necessarily generalize to others.

Chaotic Oscillators, Receding Horizon Control, Resilient Formation, Etcetera

The distributed estimation of global topology changes is a problem that partially resembles

that of distributed connectivity assessment. The approach in [18] exploits the fact that all

the robots in the swarm are provided with a chaotic oscillators [125] whose synchronization

properties in the context of graphs and networks have been studied by [126], [93]. The caveat

here is that not all topology changes imply changes in the connectivity of a swarm. An

Octave implementation of synchronizing discrete chaotic oscillators is available under the

MIT license on GitHub 3.

The work in [157] describes a multi-layered controller in which connectivity of a multi robot

system is enforced by middleware capable of refusing movements that would break an estab-

lished communication graph (small changes are allowed over time). Other works investigate

the incremental construction of networked multi-robot system that are resilient to the mali-

cious behaviour of certain nodes [146]. This, however, it is partially beyond the scope of our

research: in this work, when we address fault-tolerance, we refer to the ability to cope with

packet-drop and robot failures rather than adversary behaviours.

3. git@github.com:JacopoPan/ar-discrete-chaotic-oscillators.git

123

8.3 Methodology

In this section, we present the details—from idea to implementation—of our methodology, as

well as its formal and mathematical foundations. We start by providing a brief overview of

our goal, the overall control architecture, and the two layers that compose it. We continue,

in Subsection 8.3.2, with the description of three collective behaviours implemented by the

means of a distributed navigation controller. Finally, in Subsection 8.3.3, we introduce a

global planning layer what we use to prove how we could coordinate the distributed behaviours

towards pseudo-optimal solutions.

8.3.1 General Overview

Our goal is to drive a swarm of robots to cover multiple spatially distributed tasks without

losing global connectivity, i.e., avoiding situations such as the one presented in Figure 8.3(a).

For the sake of maintaining swarm connectivity, it is extremely useful to identify two classes

of swarm members, i.e., backbone robots and master robots. The former set’s main purpose is

to keep the swarm connected; backbone robots move according to potential functions based

on their neighbours positions or the indications of master robots. By contrast, master robots

can perform special tasks such as (i) influencing backbone robots to move towards specific

tasks and (ii) drive the whole swarm towards the locations of certain deployment points. [89]

proposed a distributed algorithm that drives backbone robots to create trees (sub-optimal

approximation of the ideal Steiner tree) whose leaves are represented by master robots. This

method resembles our in its objectives but it is fundamentally different in how it attempts

to reach them. In the approach of [89], a crucial issue is represented by the impossibility to

prevent the master robots from excessively stretching the swarm—and thus breaking it—as

they drive towards their assigned task locations.

These sorts of constraints are especially difficult to enforce in a distributed fashion, as each

robot has no perfect knowledge on the position of the tasks. We only assume that master

robots have approximate knowledge of the direction and distances of the tasks from each

deployment point. A backbone robot is not able to determine, using solely its local informa-

tion, whether it should stop to avoid the swarm disconnection or continue to move towards

the task location. Global position information is typically hardly available to all robots for

theoretical and practical reasons. Communication constraints arising from the use of tens

or even hundreds of robots—for example, propagation delay over multi-hop communication

paths, path explosion (for N robots, N2 −N communications channels may be activated at

the same time), and packet losses—may render impossible for a robot to communicate its

124

position to the others through multiple multi-hop ad-hoc wireless paths in a timely fashion.

In Figure 8.3, the fractures of the swarm were jointly caused by diverging motions and an

insufficient number of backbone robots. To prevent this, we chose to address the problem

from a new perspective: pushing robots from well-known deployment points rather than

pulling towards unknown tasks. We introduce a swarm task scheduling layer as one of the

entity responsible for swarm integrity. Then, we split the swarm control architecture into

two layers:

Task Scheduling Controller

m

Robot Navigation Controller

At the bottom, the distributed Robot Navigation Controller allows each swarm member

to keep a behaviour coherent with its role within the swarm, i.e., that of a master robot

or a backbone robot. The RNC leads each master robot to an assigned position, while

smartly adjusting the position of the backbone robots to build a reliable (w.r.t. communica-

tion failures) robot structure (network) connecting the master robot to the tasks locations.

The RNC is practically implemented through a distributed navigation algorithm that runs

independently—as identical instances—on each swarm member. The RNC offers to the up-

per layers a best effort connectivity service, i.e., it guarantees that it will do all that it can to

keep the swarm connected.

The TSC is responsible for selecting, at any given time instant, (i) which subset of tasks should

be executed by the swarm in a simultaneous fashion, (ii) which robot should be elected master

robot, and (iii) how many tasks should be sought from each deployment point. To complete

a task, backbone robots are demanded by the master robot to navigate towards the location

of the task itself (without necessarily knowing the distance they will have to travel). Swarm

connectivity is guaranteed by the TSC by the fact that it only considers task subsets that

the RNC shall be able to successfully support (i.e., connecting the task locations in a reliable

manner).

In this architecture (see Figure 8.4), the more efficient the RNC, the easier the task the TSC.

As, the capability of the RNC to cover a subset of task locations depends on (i) the number

of available backbone robots, (ii) the communication range of each robot, (iii) the position of

the tasks, and (iv) the efficiency of the RNC. The capabilities of the RNC are hard constraints

that have to be considered by the task scheduling optimization problem solved by the TSC.

125

TSG

TSC

BMU

flocking

RNC

eruption of
prominences

rendez-vous

Figure 8.4 Flowchart of the overall control architecture.

8.3.2 Robot Navigation Controller

The Robot Navigation Controller is the distributed navigation module that, by controlling

each robot independently, produces and coordinates different collective swarm behaviours.

We consider a RNC supporting the following three swarm behaviours:

— Flocking: the swarm travels toward a new destination while maintaining a compact

formation around a single master robot. Once there, the master robot is assigned to the

task called Swarm Centroid (SC). During the swarm displacement, potential functions

and consensus drive all the other swarm members, i.e., the backbone robots to pursue

the moving master robot while conserving the original formation. For flocking to be

successful in large swarms, homogeneous and compact disposition (as introduced by

the following behaviour) is a must.

— Rendez-vous: the swarm regains its compact formation around a single master robot

assigned to the SC task. This behaviour is used just before a flocking phase (and

just after). The fixed location of a master robot represents the center of the swarm

formation. This behaviour requires the swarm to be fully connected at the time of the

activation.

— Eruption of Prominences 4: this behaviour allows the backbone robots to reach

distant targets without losing connectivity with the SC. The swarm lays in a fixed for-

mation around the master robot assigned to the SC task. According to the indications

received by the TSC layer, the master robot pushes the backbone robots to travel to-

wards different tasks. Each backbone robot is assigned to a single task. The master

4. We derived our terminology from the loose resemblance that these structures have with the Solar surface
phenomena. Hence the title of this article.

126

robot assigned to the SC keeps its original function. Backbone robots automatically

adjust their position and speed with respect to neighbouring robots to maintain the

connectivity of the swarm.

Through the proposed implementation of the third behaviour, RNC enables the ability to

pursue multiple tasks (directions with respect to the SC) without relying on a global posi-

tioning system nor the need to run consensus steps (unlike, e.g., PI-based SGT methods).

Furthermore, we show that the link redundancy of the directional eruptions is indirectly

parametrized by the use of potential functions, making them tolerant to failure—any robot

can replace another one seamlessly because it implements the same controller that only re-

sponds to visible neighbours. Finally, during the eruption of prominences, connectivity is

implicitly but strongly enforced: because backbone robots are pushed from the center by

potentials—rather than being pulled from the tasks—their control does not contain compo-

nents that might drive them to disconnect.

Robot Model

All the behaviours implemented by the RNC are based on a robot model that makes very loose

assumptions. These are: (i) robots have identical communication and movement capabilities

(with a maximum speed vmax and constant mass mr); (ii) they have a limited communication

range r; (iii) no information on global positioning (GPS, GLONASS, Galileo, nor BeiDou);

and (iv) they can exploit the situated communication model [160]—that is, the ability to

assess distance and bearing of the other robots they speak to.

Lennard-Jones Potential

The Lennard-Jones potential (see Figure 8.5) is a model of inter-atomic interaction that finds

frequent use in the context of robotic interaction [21]. We briefly reintroduce it here as it

is exploited as a low-level component by all of our RNC behaviours. The Lennard-Jones

potential provides a smooth combination of attractive and repulsive forces that can be used

to homogeneously diffuse robots from random initial positions.

Its advantages are: (i) the simple and distributed math; and (ii) the stable, smooth and

predictable equilibrium. Its convergence can be very slow in certain implementations. The

127

potential (and derived force contribution) equations are as follows:

PLJ = ε

(δ
x

)a
− 2 ·

(
δ

x

)b (8.5)

FLJ = −ε
(a · δa

xa+1

)a
− 2 ·

(
b · δ
xb+1

)b (8.6)

The parameters ε and δ represent the depth of the minimum in the potential and its distance

from the origin, respectively. The exponents a and b are typically set to 12 and 6 but, in our

implementation, we used 4 and 2 for an easier control.

Flocking

The RNC implements the flocking behaviour to allows the swarm to collectively move from

one point of deployment (SC) to another. Distributed approaches to flocking are well estab-

lished in the literature. Based on the approach proposed in [139], we derived:

vt+1
i =

∑
j∈N

(
c · xtj + a · vtj − s · Γ(dtij < t) · dtij · xtij

)
(8.7)

where vt+1
i is the new velocity of robot i at time t + 1, N is the set of neighbours of i,

xtj and vtj are the position and velocity of robot j at time t, dtij is the distance between i

and j, t a threshold, Γ a function that evaluates to 1 if its input condition is met, and c,

a, s the cohesion, alignment, separation coefficients. Then we combine the contributions of

Equations 8.6 and 8.7 to create a distributed controller that lets all robots move together while

also spreading homogeneously at predictable inter-robot distances to improve connectivity.

Rendez-vous

The RNC resorts to the rendez-vous behaviour in the two following situations:

1. When the swarm re-group after a flocking phase and before erupting into prominences.

2. When the swarm re-group from an eruption phase and before flocking towards another

deployment point.

In practice, this behaviour is achieved through the broadcast—by the master robot—of two

messages, one containing a new, smaller δ parameter to use in Equation 8.6 and a second

message forcing all backbone robots to solely base their control on Equation 8.6. Backbone

robots that receive these messages, further relay the information so that robots not directly

128

0 100 200 300 400 500 600 700 800 900 1,000 1,100

−200

0

200

400

600

800 repulsion

attraction

equilibrium

δ

x (cm)

L
-J

P
ot

en
ti

al

〈12, 6〉-Potential 〈4, 2〉-Potential
〈12, 6〉-Force 〈4, 2〉-Force

0 100 200 300 400 500 600 700 800 900 1,000 1,100

−0.2

0

0.2

0.4

0.6

0.8

1

(δ,−ε)(δ,−ε)

−
L

-J
F

or
ce

Figure 8.5 The Lennard-Jones potential (and the force derived from it) is used in our RNC
to regulate attraction and repulsion between neighbouring robots. Typically, the exponents
used in its computation are 12 and 6, in our implementation we use a smoother function with
exponents 4 and 2.

129

in sight of the master robot are also affected. The smaller the value of δ, the more compact

the resulting swarm.

Eruption of Prominences

In [89], the expansion algorithm exploits multiple attraction and repulsion forces to lead

backbone robots to build a pseudo-Steiner tree connecting the diverging master robots trav-

eling toward their corresponding task locations. Although the ideal Steiner tree is the most

efficient way of connecting a desired set of points (i.e., the task assigned to the master robots)

while using the overall shortest set of segments (and, therefore, the minimum number of aux-

iliary the backbone robots, assuming uniform spacing), we noticed that the proposed tree

expansion algorithm is not necessarily optimal (that is, converging to the Steiner tree) and

very sensitive to a significant number of input parameters. This makes the algorithm unre-

liable, and thus unfit for general and widespread use in a priori unknown scenarios, such as

disaster relief.

In this paper, we propose a new expansion algorithm, the Star Eruption for Connected

Swarms (SECS), that, as the name suggests, leads the backbone robots to form star-like

formations that connect several tasks to a central robot, each with a dedicated arm. Given a

subset of tasks to be simultaneously accomplished, each backbone robot is randomly assigned

the arm of a specific task with a probability related to the distance between the location of

each task and the swarm center (known to the master robot).

Once assigned to a specific arm, each backbone robot is driven by potential functions and

angular correction suggestions broadcast by all robots to their neighbours, to find its position

within the arm.

Although a star-like formation is naturally less efficient than the optimal Steiner tree in terms

of total lengths of the segments number of auxiliary points (the backbone robots) required to

connect all the points (the tasks), SECS provides two major advantages. SECS provides: (i)

higher reliability with respect to faults because any robot takes part in providing connectivity

with at most one task (in a Steiner tree, instead, the loss of a single robot could imply the loss

of connectivity to multiple tasks); and (ii) SECS is only influenced by a few input parameters

that are not sensitive to the specific features of a scenario. The pseudo-code of SECS is

presented in Algorithm 3.

From a Distributed to a Shared Coordinate System The first challenge in creating

a coherent prominence (whose absolute direction is only known to the master robot) is the

fact that each robot in the swarm possesses its own—and constantly moving—coordinate

130

systems. A robot can infer the angular displacement of its neighbours using the situated

communication model but it does not know where they are pointing. In order to create

collective agreement on the direction of the prominence to built, all robots j that know the

direction of the prominence in their own coordinate space (initially only the master robot)

must propagate two messages: ∠Tj (broadcast) with the local prominence direction and ∠Mji

(sent from j to i) with the local direction of i, as seen by j. Then, each robot i can recompute

the direction of the prominence in its own coordinate system as:

∠ Ti ← ∠ Mji − ∠ Oij + ∠ Tj (8.8)

where ∠ Oij is the observation of the direction of j in the coordinate system of i.

Alignment Maneuver As soon as a backbone robot learns, from the master or another

robot, about the prominence direction ∠Ti, it should move towards it. However, this step

requires a careful trade-off in between two conflicting goals: (i) letting all robots pursue

the direction of the prominence on their shortest path and (ii) not overcrowding the neigh-

bourhood of the master robot. If (ii) happens, the resulting collisions and communication

interferences could degradate the performance of SECS or prevent the formation of the promi-

nence altogether. The way we choose to implement this alignment maneuver is by letting

each robot spiraling (towards ∠Ti) around the robot from which it lastly received information

about ∠Tj using a randomized parameter θ (to avoid robot collisions).

Combination with the LJ Potential As described in Algorithm 3, when a robot finally

aligns with the prominence, its control is taken over by the Lennard-Jones potentials of its

neighbours. The repulsive forces allow the prominence to erupt towards the desired direction,

while the attractive ones prevent the break-down of the swarm. If a robot loses its alignment

(e.g., because it was pushed by a neighbouring robot), its control goes back into the spiraling

step.

Real World Physics Shortcomings and Required Adjustments The first step in the

validation of SECS was its implementation in an idealized scenario devoid of troubles such as

collisions, inertia, or packet loss. A Jupyer Notebook version of the Python code is available

under the MIT license on GitHub 5. Its performance is demonstrated by the experiments

reported in Figure 8.6: two swarms of different sizes erupting into three prominences with

bearings −45◦, 45◦, and 90◦.

5. git@github.com:JacopoPan/ar-prominences-in-the-ideal-world.git

131

1 init_robot ;
2 while eruption = true do
3 if master = true then
4 read(tsc-plan);
5 broadcast(dir);

6 else
7 broadcast(local-dir);
8 if return-node() 6= nil then
9 aligned = offset(return-node());

10 if aligned then
11 lj-potential(delta);
12 else
13 spiral(return-node());
14 end

15 else
16 lj-potential(regroup-delta);
17 end

18 end
19 send(status,messages);
20 read(messages);

21 end

Algorithm 3: Pseudo-code of SECS

The real world, however, is a much more complex environment and, for the controller we

tested in the multi-physics simulator ARGoS, we extended the RNC with the following:

1. Memory, i.e., a knowledge base to store the most recent information about the observed

neighbours and possibly cope with sudden disconnects.

2. A gradient—propagated from the master robot—to dynamically estimate the distance

covered by a robot in the prominence and assess whether a neighbour is closer to the

center or the extremity of it.

This second feature, in particular, can be exploited at line 8 of Algorithm 3 and sensibly

improved the performance of ARGoS/Buzz simulations.

Connectivity and Reliability If not under exceptional circumstances (e.g., communica-

tion affected by packet drop with p > 0.9 or simultaneous robot failure), the proposed RNC

methodology preserves the global connectivity of the swarm. All swarm behaviours are, in

fact, implemented through contributions that never let robots move away from one another

further than the parameter δ allows. Furthermore, the link redundancy w of the swarm

(and its reliability to node failures) can be tuned through the communication range r and δ

132

15 robots, 3 tasks

at time 0s

(a
)

15 robots, 3 tasks

at time 222s

15 robots, 3 tasks

at time 522s

60 robots, 3 tasks

at time 0s

(b
)

60 robots, 3 tasks

at time 345s

60 robots, 3 tasks

at time 522s

Figure 8.6 Simulation of the proposed prominence eruption algorithm towards three different
tasks with 15 (a) and 60 (b) robots in an idealized model without collisions nor packet drop
on the neighbour-to-neighbour communication channels.

parameter exploiting the inequality w ≥ r/δ.

8.3.3 Task Scheduling Controller

The Task Scheduling Controller is responsible for two main operations: (i) computing the

subsets of simultaneous tasks that have to be executed in each specific time slot, (ii) managing

the transition between successive time slots (and thus different subsets of tasks). The TSC

can be logically represented by the two-layer architecture:

Task Schedule Generator

⇓

Behaviour Management Unit

At the lower level lays the Behaviour Management Unit (BMU). The BMU receives from

the Task Schedule Generator (TSG) a sequence of task subsets that have to be performed

in multiple time slots (one time slot per task subset). The duration of each time slot is low-

bounded by the execution time required by the longest task of the corresponding task subset.

133

Each task subset is uniquely defined by its tasks and the deployment point, the point that

must be reached in closed formation by the whole swarm (that is, the master robot assigned

to the SC task and the rest of the swarm flocking around it) before triggering the eruption

of prominences behaviour that will lead the backbone robots towards the tasks.

The BMU elaborates the received task sequence to generate the chain of swarm behaviours for

the underlying RNC. Let (T1, T2) be a sequence of two task subsets, let ∆1, ∆2 represent the

duration of the longest task for each subset and let Θ1, Θ2 be the corresponding deployment

points. Assuming that the swarm starts the operations with a compact formation around the

stationary master robot assigned to the SC task, the swarm behaviour sequence generated

by the BMU would be:

1. Flocking, to displace the swarm in compact formation from the starting point to

deployment point Θ1.

2. Eruption of Prominences, to drive the appropriate backbone robots toward the

corresponding task locations for T1.

3. Rendez-vous, after a time ∆1, to force the whole swarm to regain the original compact

formation around the master robot assigned to the SC task placed in Θ1.

4. Flocking, to dislocate the swarm in compact formation from the previous deployment

point Θ1 to the next deployment point Θ2.

5. Eruption of Prominences, to drive the appropriate backbone robots toward the

corresponding task location for T2.

6. Rendez-vous, after a time ∆2, to force the whole swarm to regain the original compact

formation around the master robot assigned to the SC task placed in Θ2.

7. And so forth, for all the time slots, until the completion of all tasks.

At the upper layer, the TSG takes as input the whole set of tasks requiring completion at

a given time and produce a sequence of task subsets for the BMU. The sequence generation

must be optimized to reduce the overall execution time and the total distance traveled by

the robots, while respecting the hard constraints on the swarm connectivity and reliability.

The swarm connectivity constraints must reflect the way in which the swarm is organized by

the expansion algorithm of the robot navigation controller. For instance, when the eruption

of prominences is implemented through the proposed algorithm, swarm connectivity is guar-

anteed if a star-like formation connecting each task to the swarm center through a dedicated

arm can be built reliably; the minimum number of robots that have to be assigned to each

arm unit of length should be adjusted to the desired level reliability to failures. This aspects

are explored thoroughly in Section 8.3.4.

134

In the following, we show how to formulate the mathematical model representing the optimal

task scheduling problem that is solved by the TSG every time it generates a new task subset

sequence. In particular, we discuss a mixed-integer linear programming (MILP) formulation

that, with commercial state-of-the-art solvers like IBM CPLEX or GUROBI, can be near-

optimally solved in the order of minutes even for large instances with up to 20 robots and

100 tasks.

8.3.4 Mathematical Modelling of the Optimal Task Scheduling Problem

The goal of the TSG is to find the optimal sequence of task subsets to pursue while also

guaranteeing that the underlying RNC will succeed in keeping the whole swarm connected

and resilient to robot failures. Let us consider a robot swarm operating in a convex region

R. The convexity of the region is crucial to efficiently model the connectivity structure built

by the algorithm of the RNC, e.g., the star constructed by SECS; a concave region would

require a dramatic complexity increase to manage region discontinuities. Let rXmax (rYmax)

and rXmin (rYmin) be the real parameters representing the maximum X (Y) coordinate and

the minimum X (Y) coordinate that delimit region R, respectively. The set of robots in

the swarm is denoted by N . The swarm is initially placed in compact formation around

the deployment point of coordinates
(
ΘX

0 ,ΘY
0

)
. Being C the set of robot capabilities, e.g.,

RGB-camera, infrared sensor, aerial, the binary parameter φcn is equal to 1 if robot

n ∈ N has capability c ∈ C. We also assume that all the robots are equipped with the

same communication technology, that guarantees robot-to-robot communication within a

maximum communication range of value Γ. Capability parameters φcn are elaborated to

define a set K of configuration classes, where each class contains all the robots with the same

set of capabilities, e.g., no special capability or RGB-camera plus infrared sensor.

At the moment of the optimization, the robot swarm is asked to accomplish the set of

tasks T . A task t ∈ T is characterized by the location coordinates, the list of required robot

capabilities, the number of demanded robots, the expected task duration. Real parameters σXt

and σYt represent the X-Y coordinates for the location of task t ∈ T . The binary parameter

υct is equal to 1 if task t ∈ T requires a robot with the capability c ∈ C. This parameter is

exploited to define the new binary parameter τtk, equal to 1 if a robot of configuration class

k is able to perform task t.

Finally, let βt be the number of robots required by task t ∈ T and let δt be the expected

completion time for task t ∈ T . A task priority scheme may also be enforced through

binary parameters µt1t2, which are equal to 1 if task t1 ∈ T has to be executed before task

t2 ∈ T \{t1}. We denote with S the ordered set of consecutive time-slots (the ordering of the

135

slots implies that time-slot s begins when time slot s− 1 ends and so forth). Note that the

integer parameter as is equal to the position of time slot s in the ordered set S. To guarantee

reliability to robot failures or temporary communication impairments, it can be desirable to

guarantee the existence of Ω robot-disjoint communication paths between each task and the

central robot.

Total Completion Time Minimization

We exploit the aforementioned notation to formalize a MILP formulation for the Total

Completion Time Minimization (TCTM) that guarantees SECS-based swarm connectivity

throughout the entire duration of the scenario. Let zs be the non-negative real variables

representing the duration of time-slot s ∈ S; note that zs is kept to 0 if a time-slot contains

no task. Furthermore, let xst be the binary variables equal to 1 if task t ∈ T is scheduled for

execution in time-slot s ∈ S. The time minimization objective function can be expressed as:

Λ = min
{∑
s∈S

zs
}
. (8.9)

The total duration zs of time-slot s ∈ S is bounded from below by the expected completion

time of the longest task scheduled for execution during that time-slot. This relation is

expressed by:

zs ≥ δtx
s
t , ∀s ∈ S, t ∈ T. (8.10)

Each task must be scheduled in exactly one time-slot:

∑
s∈S

xst = 1, ∀t ∈ T. (8.11)

We introduce the non-negative real variables yXst and yY st to account for the X-axis and

Y -axis distances between a task t ∈ T and the swarm deployment point chosen for time-slot

s ∈ S. Similarly, the X-Y coordinates of the swarm deployment point for time-slot s ∈ S
are represented through real variables gXs and gY s. The following groups of constraints are

136

included in the model to correctly compute the values of the distance variables y:

yXst ≥ σXt − gXs, ∀s ∈ S, t ∈ T, (8.12)

yXst ≥ −σXt + gXs, ∀s ∈ S, t ∈ T, (8.13)

yY st ≥ σYt − gY s, ∀s ∈ S, t ∈ T, (8.14)

yY st ≥ −σYt + gY s, ∀s ∈ S, t ∈ T. (8.15)

A task can be executed during a specific time-slot only if enough backbone robots are avail-

able to build an arm that connects the task and the master robot assigned to the SC task.

The distance between the backbone robots in an arm must be smaller than the communi-

cation range Γ, and Ω robot-disjoint paths should exist between the edge and the center.

To determine the maximum distance that can be covered by an arm, let us introduce the

non-negative integer variables wst representing the number of robots that will form the arm

of task t ∈ T during time-slot s ∈ S. Ideally, the distance constraint should be expressed by

a classic circle equation such as:

(
yXst

)2
+
(
yY st

)2
≤ (Γwst)

2 . (8.16)

However, such non-linearity should be avoided to not dramatically increase the problem

complexity. To this purpose, instead of bounding distance variables y with a circle of radius

Γwst , we approximate the positive quadrant of the circle through three linear pieces, i.e., the

vertical line passing at (Γwst , 0), the horizontal line passing at (0,Γwst) and the diagonal line

passing at

√Γwst
2 ,

√
Γwst

2

 with first derivative equal to −1. Note that more contributions

could be used to improve the approximation. The three contributions are modelled through

the three groups of constraints below. Note that a few additional modifications were added

to these constraints: (i) a reliability parameter Ω divides the communication range to enforce

the use of more robots and guarantee the presence of Ω robot-disjoint paths, (ii) a reliability

parameter Ω is also added to wst to account for the special case when no backbone robots are

required in the connectivity arm because the task location lays within the communication

range of the swarm center, (iii) a big M term that makes the constraints useless when the

137

task is not executed in the considered time slot. The constraints are expressed as follows:

yXst + yY st ≤
√

2Γ
Ω (wst + Ω) +M (1− xst) , ∀s ∈ S, t ∈ T, (8.17)

yXst ≤
Γ
Ω (wst + Ω) +M (1− xst) , ∀s ∈ S, t ∈ T, (8.18)

yY st ≤
Γ
Ω (wst + Ω) +M (1− xst) , ∀s ∈ S, t ∈ T. (8.19)

Let f skt be the non-negative integer variables representing the number of robots of configu-

ration class k ∈ K elected as master robots in charge of task t ∈ T during time slot s ∈ S.

The following constraints prevent a task from being assigned to a master robot belonging to

a configuration class without the required set of capabilities:

f skt ≤ αkτktx
s
t , ∀k ∈ K, s ∈ S, t ∈ T. (8.20)

Furthermore, the number of robots required by a task must be satisfied during the time slot

scheduled for the task completion. Note that a robot can be assigned to no more than one

task per time slot:

∑
k∈K

f skt = βtx
s
t , ∀s ∈ S, t ∈ T, (8.21)

∑
t∈T

f skt ≤ αk, ∀k ∈ K, s ∈ S. (8.22)

The total number of robots required to execute a subset of tasks scheduled during the same

time slot while keeping the connectivity, must not exceed the total number of swarm member

|N |:

∑
t∈T

(wst + βtx
s
t) ≤ |N | − 1, ∀s ∈ S. (8.23)

Note that the explicit use of the configuration classes instead of considering the single robot-

task assignment allows to significantly reduce the problem complexity (the number of config-

uration classes should be smaller than the number of robots). The following valid inequalities,

stating that backbone robots are assigned only to arms of active tasks, can be included to

reduce the solution space and speed up the solution computation:

wst ≤ (|N | − 1)xst , ∀s ∈ S, t ∈ T. (8.24)

138

Another group of constraints can be added to force the solution to use the first available time

slot, therefore restricting the solution space:

∑
t∈T

xst ≤ |T |
∑
t∈T

xs−1
t , ∀s ∈ S. (8.25)

Finally, a last group of constraints is included to respect the priorities defined by parameters

µ:

∑
s1∈S

as1µt1t2x
s1
t1 ≤

∑
s2∈S

as2xs2t2 − 1, ∀t1, t2 ∈ T. (8.26)

For sake of completeness, we also report the variables domains below:

zs, yXst , yY st ≥ 0, ∀s ∈ S, t ∈ T, (8.27)

gXs, gY s ∈ R, ∀s ∈ S, (8.28)

wst ∈ N , ∀s ∈ S, t ∈ T, (8.29)

ηsnt, x
s
t ∈ {0, 1} , ∀n ∈ N, s ∈ S, t ∈ T. (8.30)

Total Dislocation Space Minimization

Once the minimum completion time is minimized by the TCTM formulation (8.9- 8.30), we

propose to address a second optimization problem to minimize the overall robot dislocation

space while guaranteeing the optimal completion time previously computed. This kind of

sequential optimization strategy is usually referred to as lexicographic: the i-th objective

cannot be optimized at the expense of the (i−1)-th objective. Alternatively, while optimizing

the i-th objective, the values of the (i− j)-th objectives ∀j ∈ N≥1 are considered as problem

constraints. Let S̄ be the time slot ordered set that does not include the first time slot

and let S0 be the time slot set containing only the first slot. Furthermore, let ḡXs, ḡY s be

the non-negative real variables representing the X and Y distances, respectively, between

the deployment point of time slot s ∈ S and that of time slot s − 1; note that for s ∈ S0,

the distance is computed between the deployment point and the original starting point of

coordinates
(
ΘX

0 ,ΘY
0

)
The objective function of the Total Dislocation Space Minimization

(TDSM) problem is expressed by:

min

|N |∑
s∈S̄

(
ḡXs + ḡY s

)
+

∑
s∈S,t∈T

(
Γ
Ωw

s
t

) , (8.31)

139

where, the first term is the overall inter-deployment point dislocation distance, and the second

term approximates the length of each active arm. The first term is scaled by |N | because

all the robots travel together from two successive deployment points. To more realistically

account for the average distance covered by the backbone robots of each arm, the second term

could be scaled by
wst + 1

2 (note that
∑n
n=1 i = n (n+ 1)

2); however, this operation is ignored

to avoid the introduction of non-linearities. Eight new groups (four for the first time slot and

four for the remaining ones) of constraints are added to correctly compute the X-Y distance

between two successive deployment points:

ḡXs ≥ gXs −ΘX
0 , ∀s ∈ S0, (8.32)

ḡXs ≥ −gXs + ΘX
0 , ∀s ∈ S0, (8.33)

ḡY s ≥ gY s −ΘY
0 , ∀s ∈ S0, (8.34)

ḡY s ≥ −gY s + ΘY
0 , ∀s ∈ S0, (8.35)

ḡXs ≥ gXs − gXs−1, ∀s ∈ S̄, (8.36)

ḡXs ≥ −gXs + gXs−1, ∀s ∈ S̄, (8.37)

ḡY s ≥ gY s − gY s−1, ∀s ∈ S̄, (8.38)

ḡY s ≥ −gY s + gY s−1, ∀s ∈ S̄. (8.39)

The optimal completion time Λ computed by the TCTM formulation (8.9- 8.30) is protected

by the following constraint:

∑
s∈S

zs ≤ Λ. (8.40)

The domain of the new variables is expressed by:

ḡXs, ḡY s ∈ R, ∀s ∈ S̄. (8.41)

The remaining constraints are kept unchanged from the original TCTM formulation:

(8.10)− (8.30) (8.42)

Considerations on Decentralization Providing an exact MILP formulation for the new

swarm scheduling problem does not mean that the TSG must operate in a centralized fashion.

In fact, once the exact problem has been correctly defined in terms of constraints, decision

variables and objectives, it is up to each application manager to evaluate how to compute

nearly optimal solutions within the desired time-limit. For instance, it would be possible

140

to adopt a centralized approach where a formation leader [23] directly solves the MILP

model, as well as runs a centralized heuristic [87], to compute a TSG solution to be later

distributed to the other swarm members. On the other side, each swarm member could be

asked to heuristically compute a TSG solution and later leverage a consensus-based approach

to negotiate the global task schedule. The importance of formulating and solving the exact

MILP model for the TSG problem can be summarized in five main reasons:

1. Definition of the constraints and decision variables to be considered by heuristic ap-

proaches.

2. Computation of the lower bounds (optimal or sub-optimal depending of instance di-

mensions) to evaluate the performance of heuristic approaches.

3. Identification of the mathematical elements that can be leveraged to build more efficient

math-programming tools (e.g., column generation, bender decomposition, etc.).

4. Analysis of the system behaviour through the optimal solutions of instances solved

within the time-limit.

5. Development of approaches based on the MILP resolution for small- and mid-sized

instances.

8.4 Experimental Set-up

To validate the RNC and TSG presented in the previous section, we set up experiments and

simulations using the tools and parameters described in the following.

8.4.1 Robot Navigation Controller

The SECS algorithm exploited by the RNC was first implemented in an idealized scenario—

in which we assumed no robot collisions nor communication interferences—using Python and

Jupyter Notebook 6. The parameters that we used for these simulations were the number of

robots Np ∈ [10, 20, 30, 40, 60, 90], the number of tasks Tp ∈ [1, 3, 4], the size of the squared

arena in which the robot moves Dp = 8m, and the communication range between robots

rp = 1m.

After the initial results seemed to validate SECS, we moved to its implementation in a more

realistic scenario with the aid of the multi-physics robot simulator ARGoS [133]. ARGoS can

efficiently simulate large-scale swarms of robots of any kind and it model complex real-life

interactions, including collisions, inertia, robots obstructing the sight, movement, and com-

munication of other robots, etc. ARGoS supports robot controllers written in C++, however,

6. git@github.com:JacopoPan/ar-prominences-in-the-ideal-world.git

141

for our second implementation of SECS we chose to use Buzz, an internally developed and

swarm-specific programming language [131].

Using ARGoS and Buzz, we performed simulations in which the number tasks Ta was varied

between 1, 3, and 5. For the number of robots Na, we used swarms of size 3, 5, 10, 15,

20 and 25 (backbone robots, not including the master robot). The arena we used for the

simulations was Da = 30meters in length and width. The maximum linear speed of each

robot (∼ 10cm in diameter) was limited to 15cm/s. The communication range between

robots ra was set at 3meters. We observe that, despite Dp 6= Da and rp 6= ra, the ratios

Dp/rp and Da/ra are comparable, meaning that the robots have similar room to move in the

Python and ARGoS simulations. With regard to the Lennard-Jones potential parameters,

we used ε = 106, δ ∈ [90.0, 120.0, 240.0, 275.0], and exponents of 4 and 2 (see Figure 8.5). In

our discussion, we explore how the choice of the δ parameter affected the ability of SECS to

create prominences of different density (and how this echoed on their propagation time and

reliability/link redundancy). All these implementations are available under the MIT license

on GitHub 7.

8.4.2 Task Scheduling Controller

Both TCTM and TDSM were tested over 720 random instances of the problem. The exper-

iments were carried out on machines equipped with an Intel(R) Core(TM) i7-3770 and 32

GB of RAM. We relied on AMPL as modelling language, while we used CPLEX 12.7 with

threads = 8 and mipemphasis = 1 to solve the MILP formulations. For each instance, we

considered a time-limit of 3 hours and solved, sequentially, the TCTM and the TDSM prob-

lems. For TDSM we used the maximum duration Λ returned by TCTM. All instances were

characterized by a square arena of side L, where:

L = rXmax − rXmin = rYmax − rYmin. (8.43)

L was determined as in [132], according to the communication density value D and the robot

cardinality |N |:

L =
√
NπΓ2

D
(8.44)

In each instance, we considered a capability set C of cardinality 2. We used pRob and pTsk

in [0, 1] to determine the probability for a robot of having a capability and that for a task

of demanding a capability (same probability for each capability of the set). Furthermore, let

7. git@github.com:JacopoPan/ar-argos-buzz-simulations.git

142

βmax and δmax be the maximum number of robots that a task may require and the maximum

allowed task duration. During the generation, β and δ values were chosen according to a uni-

form distribution within the integer set delimited by 1 and the corresponding maximum value.

The location of each task (
(
σXt , σ

Y
t

)
), as well as the starting deployment point (

(
ΘX

0 ,ΘY
0

)
)

were chosen uniformly within the square arena. We considered no priority among the tasks

(µ parameters all equal to 0). Both communication range Γ and reliability value Ω were fixed

to 1.

We summarize in Table 8.2 the instance classes used for the test campaign. Note that for

each instance class (column ID), we generated inst instances for each of the following values

of communication density D, i.e., 0.005, 0.01, 0.05, 0.1, 0.2 and 0.5 (corresponding to a

decreasing arena width L), for a total of six times inst instances per class.

8.5 Experimental Results and Discussion

This section is dedicated the presentation of the results of our experimental evaluations for

the RNC and TSG.

8.5.1 Robot Navigation Controller

The results of the Jupyter Notebook implementation (see Figure 8.6) have already been

reviewed in Subsection 8.3.2 and persuaded us to move from that naive to a realistic multi-

physics implementation. Looking at the results of the simulations in Figure 8.6, the most

striking feature of SECS is how well it appears to scale from a mid-sized swarm scenario

(N = 15) to a large swarm scenario (N = 60).

We could not be sure, however, that these results would have propagated into the experi-

ments performed with ARGoS once the complex effects of robot collisions and communica-

tion interferences were added. These phenomena, in fact, can severely hinder the message-

passing process down the structure of each prominence. This, in turn, can have unpredictable

effects—e.g., on the calculation of the distance gradient or the potential contribution of a

robot eclipsed by a closer neighbour—and alter the decisions taken by the RNC.

The results of experiments such as the one presented in Figure 8.7 (N = 10, T = 1), show that

the algorithm is capable of overcoming these issues, as well as small collisions, and the loss of a

few messages does not prevent the eventual insurgence of the desired behaviour. Figure 8.7(a)

presents and example scenario in which δ = 90 as a Lennard-Jones parameter makes the

robot stick close together and create thicker prominences. These kind of prominences reach

less further but are more reliable to robot failures (higher link redundancy). Figure 8.7(b)

143

displays the same experiment but with a δ parameter if 240. This suffices for the creation of

much thinner prominences that can achieve tasks in more remote locations. In Figure 8.8,

we provide the results of an experiment that demonstrates how SECS can drive a mid-sized

swarm (N = 16) towards multiple tasks (T = 3) that are located at the same distance from

the swarm centroid and have angular separation of 120◦ from one another. The value of δ

used in this test is 240 and the time to reach fully deployment is in the order of a few minutes

(∼ 180′′).

Table 8.1 summarizes the averages of the results of the experiments we conducted with

Lennard-Jones potentials parametrized by δ = 120 δ = 240. The size of the swarm was

varied from 3 to 20 robots. As we would expect, there is visible correlation both (i) between

the number of robots in a prominence and the length of the prominence and (ii) between the

value of δ and the length of the prominence (i.e., linear trends down the columns and between

corresponding entries in the top and bottom part of the table). With regard to convergence

and latency, we observe that SECS still scales well: more robots do not slow-down (but

speed-up) the creation of short prominences, in the order of ∼ 101 seconds. The full stretch

of a prominence with ∼ 101 robots requires ∼ 102 seconds. With regard to fault tolerance,

we report the densities of the prominences (in robots/meter) to show that even the longest

prominences (> 20 meters have density > 0.66̄ that, with r = 3 means, on average, a double

path on every communication link.

Finally, it is worth mentioning that two of the most crucial steps in the algorithm of SECS,

i.e., the exchange of coordinate systems and the alignment maneuver, have already been

successfully tested in a real-world robot simulation using Kheperas (the robots shown in

Figure 8.1).

8.5.2 Task Scheduling Controller

We observe that TCTM and TDSM performance are correlated with the instance features.

First of all, the total duration values Λ reported in Table 8.3 show, as expected, that the

higher the robot density, the lower the optimal execution time: task locations get closer,

fewer robots are assigned to each arm, and more robots are available to complete additional

tasks in the same time slot. Note that except for instance class 5, all tasks have a unitary

completion time; thus, the total completion time is equal to the number of time slots used.

We do not differentiate among TCTM and TDSM solutions because they showed the same

Λ values. Solution examples are presented in Figure 8.9 and Figure 8.10. Although this

equivalence is guaranteed when TCTM returns the optimal solution (Λ cannot be further

improved), this is not the case for the instances that are solved by TCTM with an optimality

144

10 robots, δ=9010 robots, δ=90

at time 0sat time 0s

(a
)

10 robots, δ=9010 robots, δ=90

at time 90sat time 90s

10 robots, δ=9010 robots, δ=90

at time 360sat time 360s

10 robots, δ=24010 robots, δ=240

at time 0sat time 0s

(b
)

10 robots, δ=24010 robots, δ=240

at time 90sat time 90s

10 robots, δ=24010 robots, δ=240

at time 360sat time 360s

Figure 8.7 The RNC (implemented with Buzz programming language and tested in the AR-
GoS simulation environment) produces eruption of prominences with the same number of
robots different lengths in relation to the value of δ—90 in (a), 240 in (b)—used to parame-
terized the neighbour potentials.

16 robots, 3 tasks16 robots, 3 tasks

at time 0sat time 0s

16 robots, 3 tasks16 robots, 3 tasks

at time 30sat time 30s

16 robots, 3 tasks16 robots, 3 tasks

at time 60sat time 60s

16 robots, 3 tasks16 robots, 3 tasks

at time 180sat time 180s

Figure 8.8 The RNC (implemented with Buzz programming language and tested in the AR-
GoS simulation environment) drives a swarm of 16 robots towards three different task direc-
tions from the swarm centroid.

145

Table 8.1 Average ARGoS/Buzz prominence eruption times.

δ
Number Latency (s) and Density (robot/m)

of Robots → 2
√

2m → 3
√

2m → 10
√

2m → 15
√

2m

120

3 n/a n/a n/a [< 1.89m]
5 81.1, 1.77 n/a n/a [< 3.39m]
10 36.3, 3.54 69.8, 2.36 n/a [< 7.31m]
15 37.9, 5.30 56.4, 3.54 n/a [< 12.02m]
20 50.9, 7.07 63.2, 4.71 345.0, 1.41 [< 18.38m]

Number Latency (s) and Density (robot/m)

of Robots → 3
√

2m → 5
√

2m → 10
√

2m → 15
√

2m

240

3 69.8, 0.71 n/a n/a [< 4.95m]
5 63.7, 1.18 195.1, 0.71 n/a [< 7.78m]
10 57.6, 2.36 100.1, 1.41 n/a [< 11.31m]
15 41.9, 3.54 74.2, 2.12 327.4, 1.06 449.8, 0.71
20 43.3, 4.71 86.1, 2.83 237.2, 1.41 322.6, 0.94

gap greater than 0; in that situation, Constr. (8.40) would allow the TDSM formulation to

further reduce the global completion time Λ.

The computation times are reported in Table 8.4. The two main insights are: (i) the instances

get easier to be solved as the communication density D grows, (ii) the TDSM formulation

is computationally more expensive than the TCTM formulation. Higher D means less time

slots needed and many more equivalent solutions in terms of task scheduling; on the other

side, with a more sparse scenario, the solver requires additional time to evaluate all the

potential corner scheduling solutions that may further decrease the completion time. With

TDSM, this phenomenon is less conspicuous (see column 0.2 in Table 8.4) because other

solution components besides the task-time slot assignment, e.g., the specific deployment

points, concur to determine the optimal solutions. The complexity related to the location of

each deployment point and to the arm lengths is the factor that makes the TDSM formulation

more computational expensive. However, this additional computation is often well allocated,

as shown in Figure 8.11, TDSM optimal solutions drastically decrease the dislocation spaces

that all the element of the swarm must cover between successive time slots. The same

improvement is not observed in the case the arm costs (second term of Objective function

8.31) reported in Figure 8.12.

It is worth pointing out how the instance features may affect the computing times. It strongly

stands out that heterogeneous task durations δ (class 5) make both TCTM and TDSM more

computationally expensive, which results in the time-limit being reached in most of the

146

instances (the returned solutions have a gap from the best lower bound found at the moment

of the time-limit expiration); heterogeneous task durations make the implicit bin-packing

problem more complex (it is better to match together in the same time-slot all the longest

tasks) and make the Linear Programming (LP) relaxation used to search for integer solutions

and improve the lower bound significantly less efficient. As expected, computation times

deteriorate by increasing up to 30 the number of tasks (combinatorial explosion). In that

case, CPLEX reaches the time-limit for all the TDSM instances.

Finally, Table 8.5 report the gaps of CPLEX solutions from the best lower bound. Obviously,

all the solutions returned before the time-limit threshold are optimal and have a 0% gap. For

classes 1-2-3-4, the very small gaps observed for some values of D (in the order of 1%) are

due to one or two instances that reached the time-limit over the 30 in the instance set. In

the case of classes 5 and 6, gaps are instead remarkable; however it is worth pointing out

that a high gap may be both caused by a poor solution and a poor lower bound: in this

case we are confident that we are falling in the second case. In fact, by looking at the logs

of the instances solved at optimality, we remarked that quasi optimal solutions were found

very soon during the elaboration, while most of the time was spent by the solver to improve

the lower bound. Unfortunately, the lower bound improvement process is quite inefficient

because of the so-called big-M constraints (Eq. 8.17- 8.19) that deteriorate the quality of the

LP relaxation.

Table 8.2 Parameters for instance generation.

ID |N | |T | |S| βmax δmax pRob pTsk inst

1 100 20 20 1 1 1 1 30
2 100 20 20 1 1 0.5 0.5 30
3 100 20 20 5 1 1 1 30
4 100 20 20 5 1 0.5 0.5 30
5 100 20 20 1 10 1 1 15
6 100 30 30 1 1 1 1 15

Table 8.3 Optimized duration values Λ.

ID 0.005 0.01 0.05 0.1 0.2 0.5
1 7,47 5,87 3,90 3,07 2,93 2,00
2 7,33 5,93 3,97 3,00 2,93 2,00
3 7,67 6,17 4,00 3,20 3,00 2,17
4 7,73 6,20 4,00 3,00 3,00 2,17
5 49,93 41,71 27,87 23,60 19,13 15,33
6 9,47 7,93 5,07 4,27 3,13 3,00

147

−50 0 50 100 150 200 250 300
X coordinates - meters

−50

0

50

100

150

200

250

300

Y
 c

o
o
rd

in
a
te

s
-

m
e
te

rs

0

1

2
3

4

5

6
7

8

Figure 8.9 Example of TCTM solution (with 100 robots and 20 tasks) that only uses deploy-
ment points (SCs) associated to two or three tasks (i.e. two or three prominences).

−50 0 50 100 150 200 250 300
X coordinates - meters

−50

0

50

100

150

200

250

300

Y
 c

o
o
rd

in
a
te

s
-

m
e
te

rs

0

1

2
3

4

5

67
8

Figure 8.10 Example of TSDM solution (with 100 robots and 20 tasks) that uses deployment
points (SCs) associated to two to four tasks (i.e. two to four prominences).

148

Figure 8.11 Analysis of the improvement achieved by TDSM w.r.t. to TCTM in terms of
dislocation costs, i.e.,

∑
s∈S̄

(
ḡXs + ḡY s

)
.

Figure 8.12 Analysis of the improvement achieved by TDSM w.r.t. to TCTM in terms of

arm costs, i.e.,
∑
s∈S,t∈T

(
Γ
Ωw

s
t

)
.

8.6 Conclusions and Future Work

To summarize, in this work, we started from a critical analysis of the literature on the

subject of distributed multi-robot connectivity assessment and maintenance to motivate our

proposal of a hybrid methodology to address the problem of the spatial coverage of multiple

tasks using a swarm of robots that preserve their global connectivity. Our approach has

beed implemented via two layers: the fully distributed Robot Navigation Controller that

149

Table 8.4 Computational times.

TCTM
ID 0.005 0.01 0.05 0.1 0.2 0.5

1 908,1 206,4 15,3 7,0 4,9 0,8
2 210,7 62,8 3,8 3,6 2,8 0,7
3 1488,4 479,6 13,6 12,2 1,7 1,9
4 1362,1 202,2 27,9 44,8 2,1 3,3
5 8038,6 9626,5 6350,4 1006,1 134,1 9,0
6 8207,5 8530,3 9941,1 3340,6 2111,6 95,7

TDSM
ID 0.005 0.01 0.05 0.1 0.2 0.5

1 2455,4 1657,7 811,8 488,0 2254,3 44,3
2 1036,9 1111,5 530,8 174,2 2332,1 50,5
3 2817,4 1998,0 524,9 1338,8 772,1 1049,3
4 4890,9 2200,1 781,1 2149,4 1249,0 1453,8
5 10800,0 10800,0 10800,0 10094,7 5719,1 31,6
6 10800,0 10800,0 10800,0 10800,0 10800,0 10800,0

Table 8.5 Optimality gaps w.r.t. the best lower bound computed by the solver.

TCTM
ID 0.005 0.01 0.05 0.1 0.2 0.5

1 0,7% 0,0% 0,0% 0,0% 0,4% 0,0%
2 0,0% 0,0% 0,0% 0,0% 0,0% 0,0%
3 2,0% 0,0% 0,0% 0,0% 0,0% 0,0%
4 0,4% 0,0% 0,0% 0,0% 0,0% 0,0%
5 43,9% 31,3% 5,8% 0,0% 0,0% 0,0%
6 31,6% 33,6% 14,2% 12,3% 3,3% 0,0%

TDSM
ID 0.005 0.01 0.05 0.1 0.2 0.5

1 0,5% 1,7% 0,0% 0,0% 0,9% 0,0%
2 0,0% 0,0% 0,0% 0,0% 0,2% 0,0%
3 0,8% 0,0% 0,0% 2,1% 0,0% 1,6%
4 0,8% 0,6% 0,0% 0,4% 0,0% 2,6%
5 69,2% 77,8% 95,8% 83,6% 30,8% 0,0%
6 70,9% 71,2% 81,9% 76,2% 59,6% 43,1%

produces the collective behaviours—flocking, rendez-vous, and eruption of prominences—

and guarantees the connectivity of the swarm; and a global planner (the Task Schedule

Generator) that approximates the best strategy for the RNC (with minimal computational

load) for two possible optimization metrics—Total Completion Time Minimization and Total

Dislocation Space Minimization.

150

The entirety of the source code of our original designs and literature re-implementations is

being made available on GitHub. In the results section, we presented simulations of the RNC

performed in a multi-physics environment that shows how our distributed control strategy

can build long multi-robot structures, in multiple directions, without breaking the swarms

connectivity. The TSC experimental results also showed how it is possible to find near-

optimal coordination strategies for the RNC with affordable computational times. In the

future developments of this research we plan on extending the RNC with additional complex

behaviours (e.g., the ability to build slime mold and fractal-like formations) and to expand

the discussion on autonomous robot control with the introduction of a new interface layer for

human-robot coordination.

151

CHAPTER 9 GENERAL DISCUSSION

“To him who looks upon the world rationally,

the world in its turn presents a rational aspect. The relation is mutual.”
“Wer die Welt vernünftig ansieht, den sieht sie auch vernünftig an, beides ist in Wechselbestimmung.”

Georg Wilhelm Friedrich Hegel, Vorlesungen über die Philosophie der Geschichte, 1837

“Thoughts without content are empty, intuitions without concepts are blind.”
“Gedanken ohne Inhalt sind leer, Anschauungen ohne Begriffe sind blind.”

Immanuel Kant, Kritik der reinen Vernunft, 1781/1787

This chapter is dedicated to the discussion of the results brought by the research presented

in the previous Chapters from 4 to 8. The analysis is divided into four sections to cover the

same four areas—hardware design, adaptive systems, resilience, and swarm robotics—used to

split the review of the literature in Chapter 2. The aim is to recapitulate the main findings as

well as to underline inter-disciplinary connections, their impact, and their potential to alter

the landscape offered by the exiting literature. At the end of chapter, Table 9.1 summarizes

this analysis.

9.1 On Hardware-software Co-design and Optimization

The aerospace sector has a special interest in computing systems with ad hoc hardware designs

(and methodologies to create them): for example, to realize MPSoCs that meet the specific

real-time requirement of a satellite’s software architecture using only a subset of the available

components (e.g., those that are radiation hardened and/or have low-power consumption).

The results in this area came primarily from the work carried out in WP1 and, in part,

WP3. The heart of the research developed in WP1 was published in [116] and presented in

Chapter 4.

In Chapter 1, the problem statement highlighted the “uncertainty surrounding the choice of

the most appropriate algorithms [..] for the automated optimization of an embedded system

design” and the research objectives included the desire to “conceive a formal method to clas-

sify and compare the existing methodologies for the design-space exploration of an embedded

system.” Chapter 4 proposes a 4-class taxonomy for design-space exploration algorithms—(i)

heuristics and pseudo-random searches; (ii) genetic and evolutionary algorithms; (ii) statisti-

cal methods without domain knowledge; and (iv) statistical methods with domain knowledge.

152

The surveys in the literature, prior to this work, typically focussed on methodologies from

only one of these areas at a time. For example, [181] and [31] are reviews of evolutionary and

genetic algorithms for multi-objective optimization problems, respectively. The experimental

results in Chapter 4 point out that, for a few of the evaluation metrics (convergence, ADRS),

certain inter- and intra-class trends exist—a discovery that can improve how one selects a

strategy to automate the design of embedded systems. The core results in Section 4.6.3 show

that there is little variance in metrics such as “number of Pareto points”, “non-uniformity”,

or “concentration” across all the algorithms under test. However, there is clear disparity in:

(i) the rates of convergence—the methods in classes 3 and 4 require to evaluate fewer points;

and (ii) ADRS (error at convergence)—the methods in classes 2, 3, and 4 typically fare much

better than simpler heuristics. A few corollary results about DSE uncovered by Chapter 4

are: (i) the importance of choosing representative benchmark applications to obtain results

that generalize; and (ii) the challenges of choosing appropriate quality metrics for Pareto

sets [109] when multi-objective scalarizing functions [104] are not available.

The analysis in Section 4.7 suggests that the selection of the best DSE algorithm for the

optimization of a specific application is often a difficult task. In fact, no algorithm clearly

dominates all others. Using the results from Section 4.6, a set of guidelines is derived. These

indications map (i) the size of a design space and (ii) the cost of each evaluation into a short

list of recommended approaches. Higher evaluation costs (complex or difficult to emulate

systems) make algorithms that require a small number of simulations more appealing—even

if they have longer configuration times. Conversely, if evaluations are cheap, one would pre-

fer algorithms with effortless setup, even at the cost of a higher number of simulations. A

universally-agreed and formal method to quantify the setup effort of a DSE algorithm does

not yet exist. Chapter 4 introduces a qualitative-quantitative approach, taking into account

the user feedback and the number of parameters in each algorithm. A novel, maybe counter-

intuitive finding is that, when the problem is of moderate complexity (i.e., cheap evaluations

and mid-sized design-spaces), the best choice is to rely on non-evolutionary heuristics such

as Multi-Objective Multiple Start Local Search (MOMSLS) and Adaptive Windows Pareto

Random Search (APRS). For highly complicated design-spaces, methods that exploit domain

knowledge and/or statistical models are best. The hybrid Ishibuchi-Murata MO Genetic Lo-

cal Search (IMMOGLS) approach is the only heuristic/GA-based method with comparable

performance in this predicament (Alouani et al. [5] and Mediouni et al. [101] exploit this

dissertation’s result). The discovery that the performance of DSE optimization depends on

certain high-level aspects of the design-space implies that: (i) a designer can now efficiently

choose an appropriate exploration algorithm; and (ii) the developer of re-usable optimization

frameworks shall include multiple exploration strategies within their products, to cope with

153

different types of design spaces.

The results of Chapter 4 also form the bedrock of a chapter with title“Optimization Strategies

in Design Space Exploration” in the forthcoming“Handbook of Hardware/Software Codesign”

edited by Soonhoi Ha and Jürgen Teich. Additional findings on how to direct the design

phases of computer hardware also came from [115] and [117]: the work in Chapter 5 can

be used to define an appropriate (yet frugal) level of redundancy to meet a given lifetime

requirement; the work in Chapter 6 suggests the appropriate number of PEs in a real-time

multiprocessor to achieve a desired level of fault tolerance. Combined, these two results can

pave the way to cheaper aerospace on-board computers exploiting the most recent general-

purpose hardware while still meeting their more stringent requirements.

9.2 On Adaptive Hardware and Software

Criticality and limited-access are the two aspects of the space environment that make adap-

tiveness so important for its computing devices. An astronaut cannot shop for a new computer

if the performance of a life-critical instrument degrades or the computational requirements

of a scientific application suddenly change. The challenges exposed by Chapter 1 included

the“inefficiencies—in terms of computing resources utilization, power consumption, and fault

tolerance—of traditional redundancy schemes used in aerospace” and motivated the desire to

“discover new, non-obvious relationships between performance metrics such as energy con-

sumption, [and] real-time execution” in order to “implement adaptive fault tolerance”. The

results in this area were produced by WP2 and WP3. The work realized in WP2 and 3 was

presented in Chapters 5 [115] and 6 [117]. Additional material from WP2 is also recapitulated

in Appendix B [167].

In low Earth orbit or during interplanetary travel, the space environment can alter the per-

formance and fault rates of the computing systems that traverse it. The reason for this is

the high radiation comprising of solar wind, gamma, and cosmic rays. In CMOS circuits,

the consequences are premature failures—due to the cumulative effects of the total ionizing

dose—and transient errors—e.g., single event upsets [128]. As these environmental conditions

continuously change—even from one portion to another of a satellite’s orbit—adaptive hard-

ware and software become a necessity for the simplification of aerospace computing systems

and the containment their design and manufacturing costs.

Realizing adaptive hardware and software for aerospace applications requires two main steps:

(i) modelling the dynamic radiation environment of a spacecraft; and (ii) devising strategies

to adjust to it. The research in Chapter 5 [115] tackles the first problem with the aid of

154

probability theory. Yet, it has to be fed with minimal domain knowledge (i.e., the aver-

age frequency of particle impact strikes and the components’ MTTF) for parameterization.

The software framework from Appendix B [167]—exploiting the phenomenological model

from [164]—can be used to this end. The work in [167] also automates the process that—

from the two-line element set of a satellite—directly injects bit-flips into FPGA fabric, as if

the device was on-board the spacecraft. The joint use of probability theory, physical models,

and error injection can greatly accelerate the development of aerospace computing systems,

as it provides an efficient test bench for sensitivity analysis and experimental pre-flight vali-

dation. PolyOrbite’s CSA-backed nano-satellite ORU-S (see Appendix A) and an upcoming

MIST Lab’s project on the RISC-V architecture will be among the first users of these tools.

Chapters 5 and 6 [115, 117] both outline adaptive strategies for resource management. The

adaptiveness in [115] is based on the on-line estimation of “beliefs”—regarding the occurrence

of transient and permanents faults—to migrate computation from one resource to another

and to optimize the use and lifetime of a system. This approach (D-HMMs) breaks with

traditional methodologies that make decisions based on thresholds fixed at design time. Even

the previous mechanisms exploiting adaptive thresholds (e.g., exponential backoff) lack the

statistically grounded semantic of the proposed methodology. Figures 5.5 and 5.6 compare

the results of the proposed approach against a simpler probabilistic method and a rule-

based system. The scenarios are those of a 10-resource system operating in a low Earth

orbit and a highly elliptical orbit, respectively. While the rule-based system fails to achieve

the desired lifetime, D-HMMs outperform the other probabilistic methodology. This can be

explained by the better job, done by D-HMMs, capturing the cumulative effects of ionizing

radiation on electronic devices. The application of these results has the potential to better

exploit the high levels of redundancy in large spacecraft as well as to improve the lifetime

of small satellites: a drastic change with respect to current designs—expensive and based

on hardening. For example, NASA’s US$1B Juno mission—currently orbiting through the

intense radiation belts of Jupiter—only hosts a BAE Systems single board computer and 384

MBytes of memory within a 180 kilograms titanium vault.

Adaptiveness can also be implemented by analytically modelling hardware, software, and

fault occurrences to uncover their interdependencies. Once a formal relation between two (or

more) performance metrics is identified, one of these measures can be tuned via design or run-

time choices to make the whole system adjust. In [117], this is done by modelling the effects

of dynamic voltage and frequency scaling on both (i) the probability of unmasked transient

errors (i.e., probabilistic fault tolerance) and (ii) energy consumption in the context of a

real-time multiprocessor system. Figure 6.7 presents the feasible points in the utilization-

space of a dual-core system, revealing those that exhibit ideal fault tolerance or energy

155

consumption (while still meeting the real-time requirements). The methodology is especially

useful to determine the feasibility of integrating modern multiprocessor systems even on small

spacecraft with limited power budgets.

Chapters 7 includes an application scenario revolving around a nano-satellite’s multiprocessor

computing system (Section 7.7). The developed theory on resilience is used to assess the need

for dynamic software-to-hardware re-mapping so that the spacecraft can perform its mission

through changing operating and environmental conditions that were unknown a priori.

All of these advancements come at a pivotal time for the space industry. Private compa-

nies and commercial applications appear destined to supplant traditional government-backed

space programs. Between 2005 and 2012, private investments in space companies were esti-

mated by the Tauri Group at US$12B (a level support that is expected to grow as the new

industry develops) with venture capital and acquisitions accounting for the lion’s share. In

this expanding market, efficiency and profitability will be in high demand by new and old

players desiring to consolidate their shares. In turn, this need will create the ideal context for

the development and exploitation of adapting computing methodologies to cut costs while

preserving (or improving) reliability—as the contributions presented here.

9.3 On the Resilience of Complex Systems

Resilience is a property of great interest for the study of many complex structures—including

aerospace computing systems and autonomous multi-robot systems. In space, for example,

a multiprocessor computer should be able to continue operating after the failure of one of

its PEs and to adapt to still meet its real-time constraints. Similarly, an autonomous multi-

robot team should seamlessly re-organize to cope with the failure of individual robots. The

results presented in this area originated from the research conducted in WP4 (and, in part,

the modelling in WP2, 3 and 5). The body of the work on resilience from WP4 was detailed

in Chapter 7 and it is currently under review.

The problem definition in Chapter 1 identified the lacks of “a formal definition of what a

resilient system is and what resilience entails” and of “formal models and methodologies

to assess or quantify resilience”. The research effort produced in this field, and presented in

Chapter 7, aims at mitigating these inadequacies by modelling“aerospace computing systems

through an intelligent framework that allows to answer (probabilistic) inference queries—in

particular with regard to the system’s resilience”. Moreover, the contributions in Chapters 1,

5, and Appendix B are all devoted to the definition of “rigorous and realistic tools to model

those aspects of the space environment that affect the operations of a computing system”.

156

Resilience was initially introduced in the context of ecology [67] but it is now recognized as

a distinctive trait of many social and economical systems. In Chapter 7, a formal definition

of resilience—introduced originally in the context of constraint-based and dynamic systems

by Schwind et al. [148]—is adapted to the timed probabilistic framework of hidden Markov

models. To do so, HMMs are extended with cost functions into c-HMMs. Then, it is shown

that the elementary queries required to assess the probability of long-lasting properties in this

framework—including those comprised by resilience—can be answered by an exact algorithm

whose complexity is linear with respect to the time horizon.

The experimental results in Chapter 7 show that the proposed approach to compute the

probabilities of individual trajectories is, indeed, several orders of magnitude faster than

expanding the full conditional joint probability distribution (Figure 7.7). Furthermore, four

application scenarios (Section 7.7) demonstrate that the introduction of partial observability

in the model can lead to insights about resilience that would be, otherwise, concealed—e.g.,

the link between the q extra resources required to probabilistically ensure 〈p, q〉-recoverability

and the tightness of the deadline associated to the depletion of q.

Nonetheless, we underline that an additional computational challenge introduced by long-

lasting properties is the potential exponential growth of the number of state trajectories that

satisfy a certain (resilient or not) property. This extra-layer of complexity cannot really be

circumvented (but it could be mitigated by an approximate method). Without property-

specific considerations, it is not possible to know a priori the number of trajectories to

evaluate. For the “resistance” property (see Chapter 7), the proof of this claim is based on

the observation that the probability of a sequence of states meeting instantaneous conditions

each (e.g., P (S1 ≤ l ∧ S2 ≤ l|o1, o2)) cannot be factorized into a series of conditionally

independent factors (e.g., P (S1 ≤ l|o1, o2) · P (S2 ≤ l|o1, o2)).

The research presented in Chapters 5 [115] and 6 [117] (see also Appendices B and C with

regard to the work in [167, 27]) adds to the study of resilience with two aspects that are

peculiar to critical and aerospace computing systems: (i) the modelling of the natural envi-

ronment that induces errors into CMOS electronics; and (ii) design strategies to assess and

circumvent these errors. The work in [115] and [167] is an orthogonal contribution providing a

probabilistic model of the space radiation environment for the development of FPGA-based

computing systems (one of the first of its kind). The study in [27] is an investigation of

how the methods in [115] affect the probabilistic timing analysis of a real-time system. Yet,

resilience—a lot like intelligence or consciousness—is an elusive concept. Even in the narrow

field of swarm robotics, different formulations are been proposed [146]. As of today, the only

universally-agreed notion is that resilience is an inter-disciplinary subject. Understanding

157

and controlling resilience will benefit a myriad of different fields—from ecology to robotics,

passing by economics and networking. The hope of this research is to foster the conversation

around it and to contribute establishing it as a property of major interest for the designers

implementing the next generation of computer and robotic systems.

9.4 On Multi-agent Systems and Swarm Robotics

Partially autonomous robots already wander on the surface of Mars [9] and—thanks to the

recent advances in commercial space exploration and artificial intelligence—it is easy to imag-

ine that this lineup will only grow in number and autonomous capabilities over the next few

years (the upcoming NASA Jet Propulsion Laboratory’s lander, InSight, is scheduled for

launch in May 2018). On Mars, for example, a swarm of quad-rotors able to fly in thin air

could be used to quickly deploy a communication infrastructure connecting distant astro-

naut teams. In this dissertation, the investigation of multi-robot applications was conducted

through WP5. The results were collected into an article—presented in Chapter 8 and cur-

rently under review. Among the chapter’s contributions, there is the implementation of “an

adaptive and distributed algorithm that enforces connectivity in a multi-robot system” to

address the lack of “a distributed and resilient methodology to preserve network connectivity

in a multi-robot system exploring an unknown environment”, as identified in Chapter 1.

Section 8.2 reviews previous research works dealing with the detection of topology changes

and the assessment/control of network connectivity in swarm robotics. Most of them, how-

ever, were originally only validated through abstract models or in small scenarios with few

robots. The reimplementation of these approaches allows to highlight the weaknesses, if any,

that can curb their performance in real-world applications (Figures 8.2 and 8.3). In partic-

ular, the findings in Chapter 8 are as follows: (i) for the assessment of connectivity using

spectral graph theory, power-iteration methods [17, 37] yield convergence times that are often

too slow for practical usage; (ii) for the same goal, the performance of wave equation-based

methods [145] degrades severely with noisy communication (the lesson here is that collisions

and packet drop should not be overlooked); (iii) for the control of connectivity, methodolo-

gies based on mimicry and heuristics [89] can be vulnerable to overfitting; (iv) finally, one

should observe that the detection of topology changes [18] is a useful clue for the assess-

ment of connectivity but it can return a large number of false positives in rapidly moving

swarms. The main engineering insight of these findings is that most theoretical frameworks

(e.g., spectral graph theory) that provide solid foundations to the study of connectivity still

require tweaking for practical usability.

The fundamental intuition behind the work in Chapter 8 is that—to pursue multiple objec-

158

tives whose positions are initially unknown—a swarm that wants to maintain connectivity

should expand from its center towards the tasks, rather than being pulled from its extrem-

ities. As the information from the boundaries of the swam propagates more slowly, in fact,

approaches such as [89] entail a higher risk of disconnection. The proposed approach, in-

stead, does not stretch beyond its connectivity limits because it only propels the robots into

elongated prominences using contributions from Lennard-Jones potentials that progressively

nullify (with the growing distance from the origin, see Figure 8.7). A gradient is also run

along the prominences to allow individual robots to learn about their estimated distance

from the origin and improve the convergence time of the methodology. However, there is no

pre-established ordering for the robots in a prominence, nor any fixed ordering is determined

at runtime. This design choice can partially deteriorate the convergence time but greatly

increases the resilience and fault tolerance of the swarm. In fact, if a robot fails, the team

seamlessly re-organize without the need for any specific diagnostic and recovery routine.

Figure 8.8 demonstrates that the proposed methodology can drive a 16-robot swarm towards

three targets (each five meters apart from the swarm’s deployment point) in less than three

minutes. The experimental results also highlight the correlation between (i) the number of

robots in a prominence and the length of the prominence and (ii) the value of δ 1 and the length

of the prominence. Table 8.1 shows that the approach scales extremely well, a valuable quality

for swarm robotics. Adding more robots does not slow-down the creation of prominences and

the full stretch of a prominence with ∼ 101 robots requires ∼ 102 seconds. With regard

to the performance of the overall task scheduling policy, Table 8.3 shows, as expected, that

the higher the robot density, the lower the optimal execution time. Table 8.4 provides two

main insights: (i) the task scheduling problem becomes easier as the communication density

grows and (ii) the TDSM formulation is computationally more expensive than the TCTM

formulation.

Furthermore, the inference framework in Chapter 7 can be used orthogonally to assess a

posteriori the performance of the resilient/robust methodologies proposed in Chapter 8, by

Saldaña et al. [146], or Soleymani et al. [157]. The developed methodology has numerous

applications but two, in particular, carry the greatest potential impact: (i) the reuse of this

technology for more effective disaster response and (ii) the realization of better autonomous

robotic exploration systems (for space or Earth). Fitly, the first two partners for which

will develop applications based on this approach are: (a) HumanITas Solutions—a Canadian

start-up providing technology services for humanitarian response and disaster relief—and (b)

the European Space Agency.

1. One of the four parameters in the Lennard-Jones potential function (see Equation 8.5).

159

Table 9.1 Summary of the dissertation’s main contributions.

Ch. Ref. WP Contribution Significance/Potential Impact

4 [116] 1

A survey of the most popular DSE
algorithms for multi-objective op-
timization of embedded systems.

Providing researchers and design-
ers with an updated and compre-
hensive overview of the field.

A novel four-class taxonomy to
partition the existing research on
DSE algorithms.

Helping to understand and predict
the performance of a newly intro-
duced DSE algorithm.

Quantitative comparison and qual-
itative guidelines for the choice of
the best DSE algorithms.

Facilitating/accelerating the DSE
choices of designers. That is, bet-
ter and/or cheaper final products.

5 [115] 2, 3

The joint modelling of the tran-
sient and permanent errors due to
space radiation.

Unveiling design pitfalls in systems
that accounted separately for these
correlated phenomena.

A strategy to efficiently use the
slack/excess resources on redun-
dant space computing system.

Improving the lifetime of space
computing systems (alternatively,
reducing their cost and size).

6 [117] 3
A fault tolerance/power consump-
tion trade-off for homogeneous
real-time multiprocessor systems.

Enabling the use of modern
multiprocessors on-board critical
aerospace computing systems.

7 – 4

A formal definition of probabilistic
resilience in a timed and partially
observable framework.

Enabling the creation of “resilient
by design” computing and robotic
systems.

The study of the complexity of the
exact inference steps required to
probabilistically check resilience.

Allowing the implementation of
the above designs in the context of
critical, real-time applications.

8 – 5

A distributed controller based on
potential forces to maintain the
connectivity of a robot swarm.

Leveraging many (but cheap)
robots to autonomously and reli-
ably explore new environments.

A formal definition of the task cov-
erage problem for robot swarms
and 2 metrics for its optimization.

Evaluating and comparing the per-
formance of different exploration
strategies for robot swarms.

160

CHAPTER 10 CONCLUSIONS

“The more we learn about the world, and the deeper our learning, the more conscious,

specific, and articulate will be our knowledge of what we do not know, our knowledge

of our ignorance. For this, indeed, is the main source of our ignorance—the fact that

our knowledge can be only finite, while our ignorance must necessarily be infinite.”
Sir Karl Raimund Popper, Conjectures and Refutations: The Growth of Scientific Knowledge, 1963

“Perfecting oneself is as much unlearning as it is learning.”
Edsger Wybe Dijkstra, Introducing a Course on Mathematical Methodology, 1986

This research started with the aim to study adaptive computing system for aerospace and

to define formal methodologies for their design and implementation. The six research objec-

tives identified in Chapter 1 were accomplished through the five work packages presented in

Chapter 3 and the research articles included in the body of this dissertation (Chapters 4 to 8,

see also Figure 3.1). In particular, objective 1—discovering the best automated approaches

for hardware optimization—was addressed in WP1 (Chapter 4); objective 2—modelling the

effects of space radiation—in WP 2 (Chapter 5); objective 3—discovering novel performance

trade-offs—in WP3 (Chapter 6); objective 4—developing an ad hoc framework for probabilis-

tic inference—in WP3 and WP4 (Chapters 5 and 7); objective 5—use the same framework

to study fault tolerance, resilience, and connectivity—in WP3 and WP4 (Chapters 5, 7, and

8); and finally, objective 6—implement an adaptive application in swarm robotics—in WP5

(Chapter 8).

The previous chapter discussed the impact of these results in the fields of hardware opti-

mization, adaptive computing, probabilistic resilience, and swarm robotics. The scientific

and engineering relevance of these contributions includes: 1. a set of guidelines to help com-

puter hardware designers in the choice of the best automation tools; 2. a methodology to

enhance reliability and resource utilization in small spacecraft designs; 3. a formal definition

of resilience—applicable to multiple domains—and a framework for its assessment; and 4. an

autonomous robotic framework to simplify disaster response and advance space exploration.

This final chapter summarizes a few of the lessons that were learned throughout this doctoral

research and the recommendations that the author has for anyone who might be interest in

implementing, reproducing, or further extend the investigation of adaptive computing systems

for aerospace. Furthermore, Sections 10.2 and 10.3 list some of the questions that remain

161

open for investigation, and the prospective future work, respectively.

10.1 Lessons Learned and Recommendations

The research work presented in this dissertation developed over approximately five years and

two continents. Of course, besides the bare numerical results, it came with a number of

valuable lesson learned. These include:

1. Probability theory is a powerful tool to cope with the unknowns—e.g., defective sensors

and unpredictable errors—as demonstrated by [115, 121].

2. “Fear the overfitting”, as any machine learning practitioner would say. Overloading

a model with excessive detail can revamp your results but make them impossible to

reproduce, as it happened to [89] in [119].

3. Correlation does not imply causation nor causation implies correlation. Correlation

only captures linear trends. Two random variables could be one function of the other

and still show a null correlation if the function is symmetric with respect to the y-axis.

4. Problems that look simple on the surface and can (apparently) be described in just a

few words might reveal themselves as extremely hard, even to formally define.

— It was somehow counterintuitive to discover in [121] that the assessment of an in-

stantaneous property—i.e., resistance—incurs, in the general case, in an unavoid-

able exponential growth in complexity with respect to considered time horizon.

— Assessing network connectivity [17], preserving it, maintaining it while performing

other spatial tasks [119], and detecting topology changes [18] are interconnected

but all fundamentally different problems in swarm robotics.

The researcher who is interested in capitalizing on, replicating, or further developing the

methodologies presented in this thesis, might also be interested in reading the following

general recommendations:

1. Always formalize the research problem through a synthetic framework first. Introduce

a novel one, if necessary. Then, investigate the theoretical and algorithmic complexity

of finding the optimal solution within this framework.

2. Start the design process having in mind the desired properties that a system should

manifest (e.g., resilience) and the constraints that it should meet (e.g., connectivity).

3. Any modern fault-tolerant scheme should reflect—and adjust to—all the available

knowledge about the incidence of errors in the system under study.

4. In a multi-layer navigation controller, the connectivity of a robot swarm should be

implemented at its lowest level and never overridden.

162

5. Welcome side projects: they often offer new angles and perspectives on your research

as well as opportunities to sharpen your less mature skills.

10.2 Open Questions

As a research advances and the understanding deepens, one often discovers that the number

of new questions that surface is just as large as that of those that get answered. This,

after all, should not discourage us: new questions are per se new bits of knowledge. Two

questions that appeared—but have not yet been answered—in the most recent phases of the

investigation in this dissertation are as follows:

1. The concise but generic definition of resilience presented in [121] applies to a large

family of stochastic models. Yet, we certainly do not have the arrogance to claim of

having extinguished the debate: when or whether the scientific community will agree

on how to quantify this property is hard to tell.

2. The minimum Steiner tree (for graphs) is the graph connecting a given set of vertices

(and an arbitrary number of additional ones) whose set of arcs has the shortest overall

length. Its decision problem is NP-complete [81] but it is often reasonably approximated

by centralized approaches. When it comes to distributed approaches, however, is there

a suitable heuristic to approximate a solution for this problem? Furthermore, would it

be outperformed by another heuristic that does not seek the same optimality guarantees

of a Steiner tree but can be more efficiently distributed?

10.3 Future Work

With regard to future work, the natural next steps of this research are the amelioration and

further development of the contributions currently under review, that is, those presented in

Chapters 7 and 8.

The work submitted in [121] mainly focussed on the theoretical aspects of resilience, that is,

its formal definition and the algorithmic complexity of its probabilistic inference. A purely

experimental extension of the work—to validate its everyday usability—would certainly help

to clarify its potential impact. The work submitted in [119] culminated with the validation

of the proposed methodology in a realistic but simulated multi-robot environment. The

implementation on physical devices (e.g., K-team’s Khepera IV robots or DJI’s Matrice

100 drones) is an engineering effort that would immediately boost the marketability of the

research. Promisingly, Buzz implementations have been transferred into real-world controller

163

before and with only modest adjustments.

10.3.1 Symbiotic Human and Multi-Robot Planetary Exploration

Furthermore, a proposal—loosely inspired by the work presented in Chapter 8 and [119]—

has been preliminarily approved in the context of the European Space Agency’s Network-

ing/Partnering Initiative 1 The project enriches the research conducted so far with two new

crucial facets: (i) the introduction of humans in the control loop; and (ii) the validation in

the extreme environment represented by natural caves.

The project aims at developing the software infrastructure needed for one or more humans and

a swarm of robots to collaborate in the exploration and mapping of planetary environments

such as caves or lava tubes. As the robots explore, they shall dispose themselves so that

network connectivity is guaranteed across the whole swarm—including the human(s). The

overall goal is to increase the performance as well as the safety of the humans involved in the

exploration. The specific objectives of the project are:

1. To further advance the development of algorithms for the self-organization of multi-

robot system targeted towards (i) network maintenance and (ii) mapping of hazardous,

unfamiliar environments.

2. To define new collaboration protocols between humans and robots for the exploration

of unknown environments.

3. To create a low cognitive load interface for the control of a multi-robot system.

To do so, several incremental contributions are required: (i) the study of the existing robot

and communication hardware (e.g., the XBee Pro) to determine the impacts of topology

changes on the communication and networking role of each robot; (ii) the implementation of

a prototype control interface to identify the requirements to make humans part of a robot

swarm; (iii) the development of—simulated and real-world—case studies to evaluate the

methodology; finally, (iv) experiments at the EAC Evolvable Lunar Analogue facility or in

the context of ESA’s CAVES activity to establish the ease of use and the efficiency of the

platform. Completing all of these steps will be an important achievement for the realization

of collaborative human and robotic exploration of the solar system—a priority of ESA.

The project can also contribute to the advancement of the internet-of-things (IoT) and the

development of embedded systems and robotics for the service industry. For example, it would

greatly benefit humanitarian companies developing interoperable IoT for disaster areas. The

1. http://www.esa.int/Our_Activities/Space_Engineering_Technology/Networking_Partnering_

Initiative

http://www.esa.int/Our_Activities/Space_Engineering_Technology/Networking_Partnering_Initiative
http://www.esa.int/Our_Activities/Space_Engineering_Technology/Networking_Partnering_Initiative

164

ability to optimize the number of robots and their communication links, in fact, allows to

reduce deployment costs and to mitigate the logistic challenges of these applications.

Nonetheless, the project is, above all, one of great interest for space exploration: it has the

potential to make planetary exploration more effective—and safer—for humans. It fits within

the framework of SpaceShip EAC 2. It is a research effort based on terrestrial technology that

will be adapted to space exploration and it will develop low-TRL technologies. These will

have vast applicability for space missions such as:

1. The exploration of lava tubes on the Moon. Exploiting the lunar analogue facility at

EAC and the caves used by ESA for astronaut training, this project can increase the

safety and the productivity of future lunar explorers travelling to the Moon Village.

2. The exploration of Mars surface. The proposed software infrastructure is meant for

both indoor and outdoor environments. Connectivity-preserving quad-rotors, on Mars,

can support long distance information relays to be used by multiple exploration parties.

2. http://www.esa.int/spaceinvideos/Videos/2016/02/SpaceShip_EAC_heading_for_the_Moon

http://www.esa.int/spaceinvideos/Videos/2016/02/SpaceShip_EAC_heading_for_the_Moon

165

REFERENCES

[1] ACHICHE, S., SHLECHTINGEN, M., RAISON, M., BARON, L. and SANTOS, I. F.

(2015). Adaptive neuro-fuzzy inference system models for force prediction of a mecha-

tronic flexible structure. Journal of Integrated Design and Process Science, 19, 77–94.

[2] AGNE, A., HAPPE, M., KELLER, A., LÜBBERS, E., PLATTNER, B., PLATZNER,

M. and PLESSL, C. (2014). Reconos: An operating system approach for reconfigurable

computing. IEEE Micro, 34, 60–71.

[3] ALDERIGHI, M., CASINI, F., D’ANGELO, S., MANCINI, M., CODINACHS, D.,

PASTORE, S., SORRENTI, G., STERPONE, L., WEIGAND, R. and VIOLANTE,

M. (2008). Robustness analysis of soft error accumulation in sram-fpgas using flipper

and star/rora. Radiation and Its Effects on Components and Systems (RADECS), 2008

European Conference on. 157–161.

[4] ALEXANDRESCU, D., STERPONE, L. and LÓPEZ-ONGIL, C. (2014). Fault injec-

tion and fault tolerance methodologies for assessing device robustness and mitigating

against ionizing radiation. 2014 19th IEEE European Test Symposium (ETS). 1–6.

[5] ALOUANI, I., MEDIOUNI, B. L. and NIAR, S. (2015). A multi-objective approach for

software/hardware partitioning in a multi-target tracking system. 2015 International

Symposium on Rapid System Prototyping (RSP). 119–125.

[6] ANTONELLI, G., ARRICHIELLO, F., CACCAVALE, F. and MARINO, A. (2014).

Decentralized time-varying formation control for multi-robot systems. The Interna-

tional Journal of Robotics Research, 33, 1029–1043.

[7] APVRILLE, L., TANZI, T. and DUGELAY, J. L. (2014). Autonomous drones for

assisting rescue services within the context of natural disasters. 2014 XXXIth URSI

General Assembly and Scientific Symposium (URSI GASS). 1–4.

[8] AVIZIENIS, A., LAPRIE, J.-C., RANDELL, B. and LANDWEHR, C. (2004). Basic

concepts and taxonomy of dependable and secure computing. Dependable and Secure

Computing, IEEE Transactions on, 1, 11–33.

[9] BAJRACHARYA, M., MAIMONE, M. W. and HELMICK, D. (2008). Autonomy for

mars rovers: Past, present, and future. Computer, 41, 44–50.

[10] BARAL, C., EITER, T., BJÄRELAND, M. and NAKAMURA, M. (2008). Mainte-

nance goals of agents in a dynamic environment: Formulation and policy construction.

Artificial Intelligence, 172, 1429 – 1469.

166

[11] BARTOLINI, D. B., CARMINATI, M., CATTANEO, R., PANERATI, J., SIRONI, F.

and SCIUTO, D. (2012). Acos: an autonomic management layer enhancing commod-

ity operating systems. 2nd International Workshop on Computing in Heterogeneous,

Autonomous ’N’ Goal-oriented Environments.

[12] BARUAH, S. (2004). Task partitioning upon heterogeneous multiprocessor platforms.

Real-Time and Embedded Technology and Applications Symposium, 2004. Proceedings.

RTAS 2004. 10th IEEE. 536–543.

[13] BAYINDIR, L. (2016). A review of swarm robotics tasks. Neurocomputing, 172, 292–

321.

[14] BELTRAME, G., FOSSATI, L. and SCIUTO, D. (2009). ReSP: a nonintrusive

Transaction-Level reflective MPSoC simulation platform for design space exploration.

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, 28,

1857–1869.

[15] BELTRAME, G., FOSSATI, L. and SCIUTO, D. (2010). Decision-theoretic design

space exploration of multiprocessor platforms. Computer-Aided Design of Integrated

Circuits and Systems, IEEE Transactions on, 29, 1083–1095.

[16] BELTRAME, G. and NICOLESCU, G. (2011). A multi-objective decision-theoretic

exploration algorithm for platform-based design. Proc. of Design, Automation and

Test in Europe (DATE). In press.

[17] BERTRAND, A. and MOONEN, M. (2013). Distributed computation of the fiedler

vector with application to topology inference in ad hoc networks. Signal Processing,

93, 1106 – 1117.

[18] BEZZO, N., SORRENTINO, F. and FIERRO, R. (2013). Decentralized estimation

of topology changes in wireless robotic networks. 2013 American Control Conference.

5899–5904.

[19] BOLCHINI, C., CARMINATI, M. and MIELE, A. (2013). Self-adaptive fault tolerance

in multi-/many-core systems. Journal of Electronic Testing, 29, 159–175.

[20] BOLCHINI, C., CARMINATI, M., MIELE, A., DAS, A., KUMAR, A. and VEER-

AVALLI, B. (2013). Run-time mapping for reliable many-cores based on en-

ergy/performance trade-offs. Defect and Fault Tolerance in VLSI and Nanotechnology

Systems (DFT), 2013 IEEE International Symposium on. 58–64.

[21] BRAMBILLA, M., FERRANTE, E., BIRATTARI, M. and DORIGO, M. (2013).

Swarm robotics: a review from the swarm engineering perspective. Swarm Intelligence,

7, 1–41.

167

[22] BRAMBILLA, M., FERRANTE, E., BIRATTARI, M. and DORIGO, M. (2013).

Swarm robotics: a review from the swarm engineering perspective. Swarm Intelligence,

7, 1–41.

[23] BRUST, M. R. and STRIMBU, B. M. (2015). A networked swarm model for uav de-

ployment in the assessment of forest environments. 2015 IEEE Tenth International

Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISS-

NIP). 1–6.

[24] BURNS, A. and DAVIS, R. (2013). Mixed criticality systems - a review. Technical

report, University of York.

[25] CASSANO, L., COZZI, D., KORF, S., HAGEMEYER, J., PORRMANN, M. and

STERPONE, L. (2013). On-line testing of permanent radiation effects in reconfigurable

systems. Design, Automation Test in Europe Conference Exhibition (DATE), 2013.

717–720.

[26] CENSOR, Y. (1977). Pareto optimality in multiobjective problems. Applied Mathe-

matics and Optimization, 4, 41–59.

[27] CHEN, C., PANERATI, J. and BELTRAME, G. (2016). Effects of online fault detection

mechanisms on probabilistic timing analysis. 2016 IEEE International Symposium on

Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT). 41–46.

[28] CHEN, C., SANTINELLI, L., HUGUES, J. and BELTRAME, G. (2016). Static proba-

bilistic timing analysis in presence of faults. 2016 11th IEEE Symposium on Industrial

Embedded Systems (SIES). 1–10.

[29] CHEN, X., CHANG, L.-W., RODRIGUES, C. I., LV, J., WANG, Z. and HWU, W.-M.

(2014). Adaptive cache management for energy-efficient gpu computing. Proceedings

of the 47th Annual IEEE/ACM International Symposium on Microarchitecture. IEEE

Computer Society, Washington, DC, USA, MICRO-47, 343–355.

[30] COELLO, C. A. (1998). A comprehensive survey of evolutionary-based multiobjective

optimization techniques. Knowledge and Information Systems, 1, 269–308.

[31] COELLO, C. A. (2000). An updated survey of ga-based multiobjective optimization

techniques. ACM Comput. Surv., 32, 109–143.

[32] CRUZ, P., FIERRO, R. and ABDALLAH, C. (2016). Cooperative learning for ro-

bust connectivity in multirobot heterogeneous networks. Control of Complex Systems:

Theory and Applications, 451–474.

[33] CVETKOVIC, D. and ROWLINSON, P. (2004). Spectral graph theory. Topics in

algebraic graph theory, 88–112.

168

[34] CZYZŻAK, P. and JASZKIEWICZ, A. (1998). Pareto simulated annealing—a meta-

heuristic technique for multiple-objective combinatorial optimization. Journal of Multi-

Criteria Decision Analysis, 7, 34–47.

[35] DAVIS, R. I. and BURNS, A. (2011). A survey of hard real-time scheduling for multi-

processor systems. ACM Comput. Surv., 43, 35:1–35:44.

[36] DEB, K. and GOEL, T. (2001). Controlled elitist non-dominated sorting genetic al-

gorithms for better convergence. E. Zitzler, L. Thiele, K. Deb, C. Coello Coello and

D. Corne, editors, Evolutionary Multi-Criterion Optimization, Springer Berlin Heidel-

berg, vol. 1993 of Lecture Notes in Computer Science. 67–81.

[37] DI LORENZO, P. and BARBAROSSA, S. (2014). Distributed estimation and control

of algebraic connectivity over random graphs. IEEE Transactions on Signal Processing,

62, 5615–5628.

[38] DIEBOLD, F. X., PIAZZESI, M. and RUDEBUSCH, G. (2005). Modeling bond yields

in finance and macroeconomics. Working Paper 11089, National Bureau of Economic

Research.

[39] DOUGLAS, R. (2014). Insuring Resilience - Employing Approaches from the

Re/insurance Sector to Encourage Sustainable Design and Operations against Natural

Hazards. AGU Fall Meeting Abstracts.

[40] DUMITRIU, V., KIRISCHIAN, L. and KIRISCHIAN, V. (2014). Decentralized run-

time recovery mechanism for transient and permanent hardware faults for space-

borne fpga-based computing systems. Adaptive Hardware and Systems (AHS), 2014

NASA/ESA Conference on. 47–54.

[41] DURAND, D. and HOBERMAN, R. (2011). Computational genomics and molecular

biology, hmm lecture notes. Technical report, Carnegie Mellon University.

[42] ELSAYED, E. A. (2012). Reliability Engineering. Wiley Publishing, second edition.

[43] ERBAS, C. (2006). System-level Modelling and Design Space Exploration for Multipro-

cessor Embedded System-on-chip Architectures. Amsterdam University Press.

[44] FEHR, E. (2002). Behavioural science: The economics of impatience. Nature, 415,

269–272.

[45] FENDER, I., GIBSON, M. S. and MOSSER, P. C. (2001). An international survey to

stress tests. Current Issues in Economics and Finance, 10, 1–6.

[46] FODÉ, C., PANERATI, J., DESROCHES, P., VALDATTA, M. and BELTRAME,

G. (2015). Monitoring glaciers from space using a cubesat. IEEE Communications

Magazine, 53, 208–210.

169

[47] FOLKE, C. (2006). Resilience: The emergence of a perspective for social–ecological

systems analyses. Global Environmental Change, 16, 253 – 267. Resilience, Vulnerabil-

ity, and Adaptation: A Cross-Cutting Theme of the International Human Dimensions

Programme on Global Environmental ChangeResilience, Vulnerability, and Adapta-

tion: A Cross-Cutting Theme of the International Human Dimensions Programme on

Global Environmental Change.

[48] FONSECA, C. M. and FLEMING, P. J. (1995). An overview of evolutionary algorithms

in multiobjective optimization. Evol. Comput., 3, 1–16.

[49] FORNACIARI, W., SCIUTO, D., SILVANO, C. and ZACCARIA, V. (2002). A

Sensitivity-Based design space exploration methodology for embedded systems. De-

sign Automation for Embedded Systems, 7, 7–33.

[50] FROYLAND, E. and LARSEN, K. (2002). How vulnerable are financial institutions to

macroeconomic changes? an analysis based on stress testing. Norges Bank.Economic

Bulletin, 3, 92–98.

[51] GAINES, D., ANDERSON, R., DORAN, G., HUFFMAN, W., JUSTICE, H.,

MACKEY, R., RABIDEAU, G., VASAVADA, A., VERMA, V., ESTLIN, T., FESQ,

L., INGHAM, M., MAIMONE, M. and NESNAS, I. (2016). Productivity challenges

for mars rover operations. The 26th International Conference on Automated Planning

and Scheduling.

[52] GAITANOS, G. C., WILLIAMS, C., BOOBIS, L. H. and BROOKS, S. (1993). Human

muscle metabolism during intermittent maximal exercise. Journal of Applied Physiol-

ogy, 75, 712–719.

[53] GAREY, M. R., GRAHAM, R. L. and JOHNSON, D. S. (1977). The complexity of

computing steiner minimal trees. SIAM journal on applied mathematics, 32, 835–859.

[54] GARVIE, M. and THOMPSON, A. (2004). Scrubbing away transients and jiggling

around the permanent: long survival of fpga systems through evolutionary self-repair.

On-Line Testing Symposium, 2004. IOLTS 2004. Proceedings. 10th IEEE International.

155–160.

[55] GHEDINI, C., RIBEIRO, C. H. C. and SABATTINI, L. (2016). A decentralized control

strategy for resilient connectivity maintenance in multi-robot systems subject to fail-

ures. Proceedings of the International Symposium on Distributed Autonomous Robotic

Systems (DARS). London, UK.

[56] GIVARGIS, T., VAHID, F. and HENKEL, J. (2001). System-level exploration for

pareto-optimal configurations in parameterized systems-on-a-chip. Computer Aided

Design, 2001. ICCAD 2001. IEEE/ACM International Conference on. 25–30.

170

[57] GOMBOLAY, M., WILCOX, R. and SHAH, J. (2013). Fast Scheduling of Multi-Robot

Teams with Temporospatial Constraints. Robotics: Science and Systems.

[58] GROTZINGER, J. P., CRISP, J., VASAVADA, A. R., ANDERSON, R. C., BAKER,

C. J., BARRY, R., BLAKE, D. F., CONRAD, P., EDGETT, K. S., FERDOWSKI, B.,

GELLERT, R., GILBERT, J. B., GOLOMBEK, M., GÓMEZ-ELVIRA, J., HASSLER,

D. M., JANDURA, L., LITVAK, M., MAHAFFY, P., MAKI, J., MEYER, M., MALIN,

M. C., MITROFANOV, I., SIMMONDS, J. J., VANIMAN, D., WELCH, R. V. and

WIENS, R. C. (2012). Mars science laboratory mission and science investigation. Space

Science Reviews, 170, 5–56.

[59] GRUHN, H. and PERSSON, P. (2014). Towards a robust algorithm for distributed

monitoring of network topology changes. 2014 13th Annual Mediterranean Ad Hoc

Networking Workshop (MED-HOC-NET). 1–7.

[60] GUPTA, S., ANSARI, A., FENG, S. and MAHLKE, S. (2009). Adaptive online testing

for efficient hard fault detection. 2009 IEEE Int. Conf. Comput. Des. IEEE, 343–349.

[61] HAY, J., GUTHRIE, P., MULLINS, C., GRESHAM, E. and CHRISTENSEN, C.

(2009). Global Space Industry: Refining the Definition of “New Space”, American In-

stitute of Aeronautics and Astronautics.

[62] HEGEDÜS, Á., HORVÁTH, Á. and VARRÓ, D. (2015). A model-driven framework

for guided design space exploration. Automated Software Engineering, 22, 399–436.

[63] HEIRTZLER, J. (2002). The future of the south atlantic anomaly and implications for

radiation damage in space. Journal of Atmospheric and Solar-Terrestrial Physics, 64,

1701 – 1708. Space Weather Effects on Technological Systems.

[64] HENKEL, J., EBI, T., AMROUCH, H. and KHDR, H. (2013). Thermal management

for dependable on-chip systems. Design Automation Conference (ASP-DAC), 2013

18th Asia and South Pacific. 113–118.

[65] HEYNDERICKX, D., QUAGHEBEUR, B., SPEELMAN, E. and DALY, E. (2000).

Esa’s space environment information system (spenvis): a www interface to models of

the space environment and its effects. Proc. AIAA, 371.

[66] HILL, M. and MARTY, M. (2008). Amdahl’s law in the multicore era. Computer, 41,

33–38.

[67] HOLLING, C. S. (1973). Resilience and stability of ecological systems. Ann. Rev. of

Ecology and Systematics, 4, 1–23.

[68] HOLLING, C. S. (2001). Understanding the complexity of economic, ecological, and

social systems. Ecosystems, 4, 390–405.

171

[69] HSIEH, M. A., HALÁSZ, Á., BERMAN, S. and KUMAR, V. (2008). Biologically

inspired redistribution of a swarm of robots among multiple sites. Swarm Intelligence,

2, 121–141.

[70] IBRAHIM, M.-H., PAL, C. and PESANT, G. (2017). Improving probabilistic inference

in graphical models with determinism and cycles. Machine Learning, 106, 1–54.

[71] INTEL (2004). White paper: Enhanced intel speedstep technology for the intel pentium

m processor. ftp://download.intel.com/design/network/papers/30117401.pdf.

[72] ISHIBUCHI, H. and MURATA, T. (1996). Multi-objective genetic local search algo-

rithm. Evolutionary Computation, 1996., Proceedings of IEEE International Confer-

ence on. 119–124.

[73] ISHIBUCHI, H. and MURATA, T. (1998). A multi-objective genetic local search al-

gorithm and its application to flowshop scheduling. Systems, Man, and Cybernetics,

Part C: Applications and Reviews, IEEE Transactions on, 28, 392 –403.

[74] JACKSON, J., FAIED, M., KABAMBA, P. and GIRARD, A. (2013). Distributed con-

strained minimum-time schedules in networks of arbitrary topology. IEEE Transactions

on Robotics, 29, 554–563.

[75] JACOBS, A., CIESLEWSKI, G., GEORGE, A. D., GORDON-ROSS, A. and LAM,

H. (2012). Reconfigurable fault tolerance: A comprehensive framework for reliable and

adaptive fpga-based space computing. ACM Trans. Reconfigurable Technol. Syst., 5,

21:1–21:30.

[76] JADDOE, S. and PIMENTEL, A. D. (2008). Signature-Based calibration of analyti-

cal System-Level performance models. Proceedings of the 8th international workshop

on Embedded Computer Systems: Architectures, Modeling, and Simulation. Springer-

Verlag, Berlin, Heidelberg, SAMOS ’08, 268–278.

[77] JASZKIEWICZ, A. (2004). A comparative study of multiple-objective metaheuristics

on the bi-objective set covering problem and the pareto memetic algorithm. Annals of

Operations Research, 131, 135–158.

[78] JASZKIEWICZ, A. and D ↪ABROWSKI, G. (2005). MOMH: Multiple Objective Meta

Heuristics. available at the web site http://home.gna.org/momh/.

[79] KAELBLING, L. P., LITTMAN, M. L. and MOORE, A. P. (1996). Reinforcement

learning: A survey. Journal of Artificial Intelligence Research, 4, 237–285.

[80] KARNIK, T. and HAZUCHA, P. (2004). Characterization of soft errors caused by single

event upsets in cmos processes. Dependable and Secure Computing, IEEE Transactions

on, 1, 128–143.

ftp://download.intel.com/design/network/papers/30117401.pdf

172

[81] KARP, R. M. (1972). Reducibility among Combinatorial Problems, Springer US,

Boston, MA. 85–103.

[82] KATZ, D. S. and SOME, R. R. (2003). Nasa advances robotic space exploration.

Computer, 36, 52–61.

[83] KENNEDY, J. and EBERHART, R. (1995). Particle swarm optimization. Neural

Networks, 1995. Proceedings., IEEE International Conference on. vol. 4, 1942–1948

vol.4.

[84] KEPHART, J. O. and CHESS, D. M. (2003). The vision of autonomic computing.

Computer, 36, 41–50.

[85] KOLLAT, J. B. and REED, P. M. (2005). The Value of Online Adaptive Search: A Per-

formance Comparison of NSGAII, ε-NSGAII and εMOEA, Springer Berlin Heidelberg,

Berlin, Heidelberg. 386–398.

[86] KOLLER, D. and FRIEDMAN, N. (2009). Probabilistic Graphical Models: Principles

and Techniques - Adaptive Computation and Machine Learning. The MIT Press.

[87] KORSAH, G., KANNAN, B., BROWNING, B., STENTZ, A. and DIAS, M. (2012).

xBots: An approach to generating and executing optimal multi-robot plans with cross-

schedule dependencies. Proceedings - IEEE International Conference on Robotics and

Automation, 115–122.

[88] KRUGMAN, P. (2009). How did economists get it so wrong? New York Times, 2.

[89] KRUPKE, D., ERNESTUS, M., HEMMER, M. and FEKETE, S. P. (2015). Dis-

tributed cohesive control for robot swarms: Maintaining good connectivity in the pres-

ence of exterior forces. 2015 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS). 413–420.

[90] KWOK, Y.-K. and AHMAD, I. (1999). Static scheduling algorithms for allocating

directed task graphs to multiprocessors. ACM Comput. Surv., 31, 406–471.

[91] L. LUO, CHAKRABORTY, N. and SYCARA, K. (2011). Multi-robot assignment al-

gorithm for tasks with set precedence constraints. 2011 IEEE International Conference

on Robotics and Automation. IEEE, 2526–2533.

[92] LIU, C. L. and LAYLAND, J. W. (1973). Scheduling algorithms for multiprogramming

in a hard-real-time environment. J. ACM, 20, 46–61.

[93] LO IUDICE, F., GAROFALO, F. and SORRENTINO, F. (2015). Structural perme-

ability of complex networks to control signals. Nature Communications, 6, 8349 EP

–.

173

[94] LUKASIEWYCZ, M., GLAY, M., HAUBELT, C. and TEICH, J. (2008). Efficient

symbolic multi-objective design space exploration. ASP-DAC ’08: Proceedings of the

2008 Asia and South Pacific Design Automation Conference. IEEE Computer Society

Press, Seoul, Korea, 691–696.

[95] MAGGIO, M., HOFFMANN, H., PAPADOPOULOS, A. V., PANERATI, J., SAN-

TAMBROGIO, M. D., AGARWAL, A. and LEVA, A. (2012). Comparison of decision-

making strategies for self-optimization in autonomic computing systems. ACM Trans.

Auton. Adapt. Syst., 7, 36:1–36:32.

[96] MARIANI, G., BRANKOVIC, A., PALERMO, G., JOVIC, J., ZACCARIA, V. and

SILVANO, C. (2010). A correlation-based design space exploration methodology for

multi-processor systems-on-chip. Design Automation Conference (DAC), 2010 47th

ACM/IEEE. 120–125.

[97] MARKOWITZ, H. (1952). Portfolio selection*. The Journal of Finance, 7, 77–91.

[98] MARLER, R. and ARORA, J. (2004). Survey of multi-objective optimization methods

for engineering. Structural and Multidisciplinary Optimization, 26, 369–395.

[99] MARTIN, G. (2006). Overview of the MPSoC design challenge. Design Automation

Conference, 2006 43rd ACM/IEEE. 274–279.

[100] MAURER, R. H., FRAEMAN, M. E., MARTIN, M. N. and ROTH, D. R. (2008). Harsh

environments: Space radiation environment, effects, and mitigation. Johns Hopkins

APL Technical Digest, 28, 17–29.

[101] MEDIOUNI, B. L., NIAR, S., BENMANSOUR, R., BENATCHBA, K. and KOUDIL,

M. (2015). A bi-objective heuristic for heterogeneous mpsoc design space exploration.

2015 10th International Design Test Symposium (IDT). 90–95.

[102] METE, H. O. and ZABINSKY, Z. B. (2010). Stochastic optimization of medical supply

location and distribution in disaster management. International Journal of Production

Economics, 126, 76 – 84. Improving Disaster Supply Chain Management – Key supply

chain factors for humanitarian relief.

[103] MEYER, B., HARTMAN, A. and THOMAS, D. (2010). Cost-effective slack allocation

for lifetime improvement in noc-based mpsocs. Design, Automation Test in Europe

Conference Exhibition (DATE), 2010. 1596–1601.

[104] MIETTINEN, K. and MÄKELÄ, M. M. (2002). On scalarizing functions in multiob-

jective optimization. OR Spectrum, 24, 193–213.

[105] MOHANTY, S., PRASANNA, V. K., NEEMA, S. and DAVIS, J. (2002). Rapid design

space exploration of heterogeneous embedded systems using symbolic search and multi-

granular simulation. SIGPLAN Not., 37, 18–27.

174

[106] NIEMEIER, M., WIESE, A. and BARUAH, S. (2011). Partitioned real-time scheduling

on heterogeneous shared-memory multiprocessors. Real-Time Systems (ECRTS), 2011

23rd Euromicro Conference on. 115–124.

[107] NUNES, E. and GINI, M. (2015). Multi-Robot Auctions for Allocation of Tasks with

Temporal Constraints. AAAI, 2110–2116.

[108] NUNES, E., MANNER, M., MITICHE, H. and M.GINI (2016). A taxonomy for task

allocation problems with temporal and ordering constraints. Robotics and Autonomous

Systems, 1–45.

[109] OKABE, T., JIN, Y. and SENDHOFF, B. (2003). A critical survey of performance

indices for multi-objective optimisation. Evolutionary Computation, 2003. CEC ’03.

The 2003 Congress on. vol. 2, 878–885 Vol.2.

[110] ÖZVEREN, C. M., WILLSKY, A. S. and ANTSAKLIS, P. J. (1991). Stability and

stabilizability of discrete event dynamic systems. J. ACM, 38, 729–751.

[111] PALERMO, G., SILVANO, C. and ZACCARIA, V. (2008). Discrete particle swarm

optimization for multi-objective design space exploration. Digital System Design Ar-

chitectures, Methods and Tools, 2008. DSD ’08. 11th EUROMICRO Conference on.

641–644.

[112] PALERMO, G., SILVANO, C. and ZACCARIA, V. (2009). ReSPIR: a response

Surface-Based pareto iterative refinement for Application-Specific design space explo-

ration. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions

on, 28, 1816–1829.

[113] PALESI, M. and GIVARGIS, T. (2002). Multi-objective design space exploration using

genetic algorithms. CODES ’02: Proceedings of the tenth international symposium on

Hardware/software codesign. ACM, Estes Park, Colorado, 67–72.

[114] PANERATI, J. (2012). Enhancing Self-Adaptive Computing Systems via Artificial In-

telligence Techniques and Active Learning. Master’s thesis, University of Illinois at

Chicago.

[115] PANERATI, J., ABDI, S. and BELTRAME, G. (2014). Balancing system availability

and lifetime with dynamic hidden markov models. Adaptive Hardware and Systems

(AHS), 2014 NASA/ESA Conference on. 240–247.

[116] PANERATI, J. and BELTRAME, G. (2014). A comparative evaluation of multi-

objective exploration algorithms for high-level design. ACM Trans. Des. Autom. Elec-

tron. Syst., 19, 15:1–15:22.

175

[117] PANERATI, J. and BELTRAME, G. (2015). Trading off power and fault-tolerance in

real-time embedded systems. 2015 NASA/ESA Conference on Adaptive Hardware and

Systems (AHS). 1–8.

[118] PANERATI, J., BELTRAME, G., SCHWIND, N., ZELTNER, S. and INOUE, K.

(2016). Probabilistic resilience in hidden markov models. IOP Conference Series:

Materials Science and Engineering, 131, 012007.

[119] PANERATI, J., GIANOLI, L. G., PINCIROLI, C., SHABAH, A., NICOLESCU, G.

and BELTRAME, G. (2017). From swarms to stars – task coverage in robot swarms

with connectivity constraints [under review]. Autonomous Robots.

[120] PANERATI, J., MAGGIO, M., CARMINATI, M., SIRONI, F., TRIVERIO, M. and

SANTAMBROGIO, M. D. (2014). Coordination of independent loops in self-adaptive

systems. ACM Trans. Reconfigurable Technol. Syst., 7, 12:1–12:16.

[121] PANERATI, J., SCHWIND, N., ZELTNER, S., INOUE, K. and BELTRAME, G.

(2017). Assessing the resilience of stochastic dynamic systems under partial observabil-

ity [under review]. Science Advances.

[122] PANERATI, J., SIRONI, F., CARMINATI, M., MAGGIO, M., BELTRAME, G.,

GMYTRASIEWICZ, P. J., SCIUTO, D. and SANTAMBROGIO, M. D. (2013). On

self-adaptive resource allocation through reinforcement learning. 2013 NASA/ESA

Conference on Adaptive Hardware and Systems (AHS-2013). 23–30.

[123] PAULIN, P. and KNIGHT, J. (1989). Algorithms for high-level synthesis. Design &

Test of Computers, IEEE, 6, 18–31.

[124] PEARCE, L. (2003). Disaster management and community planning, and public partic-

ipation: How to achieve sustainable hazard mitigation. Natural Hazards, 28, 211–228.

[125] PECORA, L. M. and CARROLL, T. L. (1998). Master stability functions for synchro-

nized coupled systems. Phys. Rev. Lett., 80, 2109–2112.

[126] PECORA, L. M., SORRENTINO, F., HAGERSTROM, A. M., MURPHY, T. E. and

ROY, R. (2014). Cluster synchronization and isolated desynchronization in complex

networks with symmetries. Nature Communications, 5, 4079 EP –.

[127] PERISTIANI, S., MORGAN, D. P. and SAVINO, V. (2010). The information value of

the stress test and bank opacity. FRB of New York Staff Report.

[128] PETERSEN, E. (2011). Single event effects in aerospace. Wiley-IEEE Press.

[129] PETRICK, D., ESPINOSA, D., RIPLEY, R., CRUM, G., GEIST, A. and FLATLEY,

T. (2014). Adapting the reconfigurable spacecube processing system for multiple mis-

sion applications. 2014 IEEE Aerospace Conference. 1–20.

176

[130] PIMENTEL, A., ERBAS, C. and POLSTRA, S. (2006). A systematic approach to

exploring embedded system architectures at multiple abstraction levels. Computers,

IEEE Transactions on, 55, 99–112.

[131] PINCIROLI, C. and BELTRAME, G. (2016). Buzz: An extensible programming lan-

guage for heterogeneous swarm robotics. Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS 2016). IEEE Computer Society

Press, Los Alamitos, CA. In press.

[132] PINCIROLI, C., LEE-BROWN, A. and BELTRAME, G. (2016). A tuple space for

data sharing in robot swarms. proceedings of the 9th EAI International Conference on

Bio-inspired Information and Communications Technologies (formerly BIONETICS).

ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications

Engineering), 287–294.

[133] PINCIROLI, C., TRIANNI, V., O’GRADY, R., PINI, G., BRUTSCHY, A., BRAM-

BILLA, M., MATHEWS, N., FERRANTE, E., DI CARO, G., DUCATELLE, F., BI-

RATTARI, M., GAMBARDELLA, L. M. and DORIGO, M. (2012). Argos: a modular,

parallel, multi-engine simulator for multi-robot systems. Swarm Intelligence, 6, 271–

295.

[134] PONDA, S., JOHNSON, L., KOPEIKIN, A., CHOI, H. and HOW, J. (2012). Dis-

tributed planning strategies to ensure network connectivity for dynamic heterogeneous

teams. IEEE Journal on Selected Areas in Communications, 30, 861–869.

[135] PONDA, S., REDDING, J., HAN-LIM, C., HOW, J., VAVRINA, M. and VIAN, J.

(2010). Decentralized planning for complex missions with dynamic communication

constraints. Proceedings of the 2010 American Control Conference. IEEE, 3998–4003.

[136] QIN, X. and JIANG, H. (2005). A dynamic and reliability-driven scheduling algorithm

for parallel real-time jobs executing on heterogeneous clusters. Journal of Parallel and

Distributed Computing, 65, 885 – 900.

[137] RABINER, L. (1989). A tutorial on hidden markov models and selected applications

in speech recognition. Proceedings of the IEEE, 77, 257–286.

[138] RARAVI, G., ANDERSSON, B., BLETSAS, K. and NELIS, V. (2012). Outstanding

paper award: Task assignment algorithms for two-type heterogeneous multiprocessors.

Real-Time Systems (ECRTS), 2012 24th Euromicro Conference on. 34–43.

[139] REYNOLDS, C. W. (1999). Steering behaviors for autonomous characters.

[140] ROSS, S. M. (2006). Introduction to Probability Models, Ninth Edition. Academic

Press, Inc., Orlando, FL, USA.

177

[141] ROTA, G.-C. (1964). The number of partitions of a set. American Mathematical

Monthly, 498–504.

[142] RUBENSTEIN, M., CORNEJO, A. and NAGPAL, R. (2014). Programmable self-

assembly in a thousand-robot swarm. Science, 345, 795–799.

[143] RUSSELL, S. and NORVIG, P. (2009). Artificial Intelligence: A Modern Approach.

Prentice Hall, third edition.

[144] RUSSELL, S. J. and NORVIG, P. (2003). Artificial Intelligence: A Modern Approach.

Pearson Education, second edition.

[145] SAHAI, T., SPERANZON, A. and BANASZUK, A. (2012). Hearing the clusters of a

graph: A distributed algorithm. Automatica, 48, 15–24.

[146] SALDAÑA, D., PROROK, A., CAMPOS, M. F. and KUMAR, V. (2016). Trian-

gular networks for resilient formations. 13th International Symposium on Distributed

Autonomous Robotic Systems (DARS).

[147] SCHUCK, C., HAETZER, B. and BECKER, J. (2011). Reconfiguration techniques for

self-x power and performance management on xilinx virtex-ii/virtex-ii-pro fpgas. Int.

J. Reconfig. Comput., 2011, 1:1–1:12.

[148] SCHWIND, N., MAGNIN, M., INOUE, K., OKIMOTO, T., SATO, T., MINAMI, K.

and MARUYAMA, H. (2016). Formalization of resilience for constraint-based dynamic

systems. Journal of Reliable Intelligent Environments, 2, 17–35.

[149] SCHWIND, N., OKIMOTO, T., INOUE, K., CHAN, H., RIBEIRO, T., MINAMI, K.

and MARUYAMA, H. (2013). Systems resilience: A challenge problem for dynamic

constraint-based agent systems. Proceedings of the 2013 International Conference on

Autonomous Agents and Multi-agent Systems. AAMAS ’13, 785–788.

[150] SERAFINI, P. (1994). Simulated annealing for multi objective optimization problems.

G. Tzeng, H. Wang, U. Wen and P. Yu, editors, Multiple Criteria Decision Making,

Springer New York. 283–292.

[151] SHAO, Y. S., REAGEN, B., WEI, G. Y. and BROOKS, D. (2014). Aladdin: A pre-rtl,

power-performance accelerator simulator enabling large design space exploration of cus-

tomized architectures. 2014 ACM/IEEE 41st International Symposium on Computer

Architecture (ISCA). 97–108.

[152] SHELDON, D., VAHID, F. and LONARDI, S. (2007). Soft-core processor customiza-

tion using the design of experiments paradigm. DATE Conference, 2007. 1–6.

[153] SIDES, C. H. (1999). How to write and present technical information. Cambridge

University Press.

178

[154] SIMS, C. A. (1980). Macroeconomics and reality. Econometrica, 48, 1–48.

[155] SIVANANDAM, S. N. and DEEPA, S. N. (2007). Introduction to Genetic Algorithms.

Springer Publishing Company, Incorporated, first edition.

[156] SMOLENS, J. C., GOLD, B. T., HOE, J. C., FALSAFI, B. and MAI, K. (2007).

Detecting emerging wearout faults. In Proceedings of the IEEE Workshop on Silicon

Errors in Logic - System Effects.

[157] SOLEYMANI, T., GARONE, E. and DORIGO, M. (2015). Distributed constrained

connectivity control for proximity networks based on a receding horizon scheme. 2015

American Control Conference (ACC). 1369–1374.

[158] SOLTERO, D. E., SCHWAGER, M. and RUS, D. (2014). Decentralized path planning

for coverage tasks using gradient descent adaptive control. The International Journal

of Robotics Research, 33, 401–425.

[159] SRINIVAS, N. and DEB, K. (1994). Muiltiobjective optimization using nondominated

sorting in genetic algorithms. Evol. Comput., 2, 221–248.

[160] STØY, K. (2001). Using situated communication in distributed autonomous mobile

robotics. Proceedings of the Seventh Scandinavian Conference on Artificial Intelligence.

IOS Press, Amsterdam, The Netherlands, The Netherlands, SCAI ’01, 44–52.

[161] TAGHAVI, T. and PIMENTEL, A. D. (2011). Design metrics and visualization tech-

niques for analyzing the performance of moeas in dse. ICSAMOS. 67–76.

[162] TAN, Y., LIU, W. and QIU, Q. (2009). Adaptive Power Management Using Reinforce-

ment Learning. Proceedings of the 2009 International Conference on Computer-Aided

Design. 461–467.

[163] TRIANNI, V. and DORIGO, M. (2006). Self-organisation and communication in groups

of simulated and physical robots. Biological Cybernetics, 95, 213–231.

[164] TYLKA, A. J., ADAMS, J. H., BOBERG, P. R., BROWNSTEIN, B., DIETRICH,

W. F., FLUECKIGER, E. O., PETERSEN, E. L., SHEA, M. A., SMART, D. F. and

SMITH, E. C. (1997). Creme96: A revision of the cosmic ray effects on micro-electronics

code. IEEE Transactions on Nuclear Science, 44, 2150–2160.

[165] ULUNGU, E., TEGHEM, J., FORTEMPS, P. and TUYTTENS, D. (1999). Mosa

method: a tool for solving multiobjective combinatorial optimization problems. Journal

of Multi-Criteria Decision Analysis, 8, 221–236.

[166] ULUNGU, E. L. and TEGHEM, J. (1994). Multi-objective combinatorial optimization

problems: A survey. Journal of Multi-Criteria Decision Analysis, 3, 83–104.

179

[167] VEDANT, PANERATI, J. and BELTRAME, G. (2014). An orbit-specific fault-injector

to assess fault-mitigation strategies in space fpgas. SEFUW: SpacE FPGA Users Work-

shop, 2nd Edition. ESTEC.

[168] WACHS, M. and WHITE, D. (1991). p, q-stirling numbers and set partition statistics.

Journal of Combinatorial Theory, Series A, 56, 27 – 46.

[169] WALKER, B., HOLLING, C. S., CARPENTER, S. R. and KINZIG, A. (2004). Re-

silience, adaptability and transformability in social-ecological systems. Ecology and

Society, 9.

[170] WAYDO, S., HENRY, D. and CAMPBELL, M. (2002). Cubesat design for leo-based

earth science missions. Proceedings, IEEE Aerospace Conference. vol. 1, 1–435–1–445

vol.1.

[171] WESTE, N. and HARRIS, D. (2010). CMOS VLSI Design: A Circuits and Systems

Perspective. Addison-Wesley Publishing Company, USA, fourth edition.

[172] XIAO, L., BOYD, S. and KIM, S.-J. (2007). Distributed average consensus with least-

mean-square deviation. Journal of Parallel and Distributed Computing, 67, 33 – 46.

[173] YAZICI, A., KIRLIK, G., PARLAKTUNA, O. and SIPAHIOGLU, A. (2014). A dy-

namic path planning approach for multirobot sensor-based coverage considering energy

constraints. IEEE Transactions on Cybernetics, 44, 305–314.

[174] ZACCARIA, V., PALERMO, G., CASTRO, F., SILVANO, C. and MARIANI, G.

(2010). Multicube explorer: An open source framework for design space exploration

of chip multi-processors. 2PARMA: Proceedings of the Workshop on Parallel Program-

ming and Run-time Management Techniques for Many-core Architectures. Hannover,

Germany.

[175] ZAREH, M., SABATTINI, L. and SECCHI, C. (2016). Distributed laplacian eigenvalue

and eigenvector estimation in multi-robot systems. Proceedings of the International

Symposium on Distributed Autonomous Robotic Systems (DARS). London, UK.

[176] ZAREH, M., SABATTINI, L. and SECCHI, C. (2016). Enforcing biconnectivity in

multi-robot systems. CoRR, abs/1608.02286.

[177] ZEESHAN, M., ALI, A., NAVEED, A., LIU, A. X., WANG, A. and QURESHI, H. K.

(2016). Modeling packet loss probability and busy time in multi-hop wireless networks.

EURASIP Journal on Wireless Communications and Networking, 2016, 168.

[178] ZELAZO, D., FRANCHI, A., BÜLTHOFF, H. H. and GIORDANO, P. R. (2015).

Decentralized rigidity maintenance control with range measurements for multi-robot

systems. The International Journal of Robotics Research, 34, 105–128.

180

[179] ZHANG, H. and SUNDARAM, S. (2012). Robustness of complex networks with im-

plications for consensus and contagion. 2012 IEEE 51st IEEE Conference on Decision

and Control (CDC). 3426–3432.

[180] ZITZLER, E., DEB, K. and THIELE, L. (1999). Comparison of Multiobjective Evolu-

tionary Algorithms: Empirical Results (Revised Version). TIK Report 70, Computer

Engineering and Networks Laboratory (TIK), ETH Zurich.

[181] ZITZLER, E., DEB, K. and THIELE, L. (1999). Comparison of Multiobjective Evo-

lutionary Algorithms on Test Functions of Different Difficulty. Genetic and Evolution-

ary Computation Conference (GECCO 1999): Bird-of-a-feather Workshop on Multi-

criterion Optimization.

[182] ZITZLER, E. and THIELE, L. (1999). Multiobjective evolutionary algorithms: a com-

parative case study and the strength pareto approach. Evolutionary Computation,

IEEE Transactions on, 3, 257 –271.

181

APPENDIX A POLYORBITE AND THE CANADIAN SATELLITE

DESIGN CHALLENGE

This appendix outlines the research, engineering, and educational, efforts made in the context

of Polytechnique Montréal’s technical society (société technique) PolyOrbite. Two of the most

relevant papers I co-authored within PolyOrbite are briefly recapitulated. At the end of the

appendix, the reader can find a short summary of the history of the society.

The paper summarized below was written during my initial year in the MIST Laboratory. As

the only graduate student contributing to the study, my responsibilities included: (i) writing

the abstract that was originally accepted for presentation; (ii) reviewing and writing about

the state of the art; and (iii) reviewing and editing the final document.

Title: 3U CubeSat for the Canadian Satellite Design Challenge: A Polytechnique Montréal

and University Of Bologna Cooperation

Summary: PolyOrbite was founded at the end of 2012 and established collaborations with

Université de Montréal and University of Bologna in early 2013. This conference paper,

presented by Mark Smyth at the 64th IAC in September 2013 was the first bit of research

released by the technical society. The document reports on the scientific relevance of two

payloads developed for a 3U CubeSat and it introduces the technical details of their imple-

mentations. The first payload, created by the team located in Bologna, is an autonomous

de-orbiting system consisting of a drag-sail. The sail is realized using a shape-memory poly-

mer and the payload, as a whole, is conceived as a plug-and-play device. This technology

has the potential to simplify the quick de-orbiting of small satellites, thus, contributing to

mitigate the problem represented by low Earth orbit debris. The second payload is an imag-

ing system meant to monitor the Canadian Arctic and investigate changes in its biodiversity.

The organizational, educational, and outreach aspects of the project are also presented.

Presented At: The 64th International Astronautical Congress (IAC), 23-27 September

2013, Beijing, China.

URL: https://iafastro.directory/iac/archive/browse/IAC-13/E2/3-V.4/18640/

Authors: Mark Smyth, Étienne Bourbeau, Jacopo Panerati, Niccolò Bellini, Alexandra

Labbé, Anthony Buffet, Alexandre Guay, Alfredo Locarini, Stefano Naldi, Davide Rastelli,

and Marcello Valdatta

https://iafastro.directory/iac/archive/browse/IAC-13/E2/3-V.4/18640/

182

The second contribution published by PolyOrbite and worth mentioning here is a short paper

regarding the team’s experience in the Canadian Satellite Design Challenge (CSDC) over the

2012–2014 period. The article appeared in the IEEE Communication Magazine in 2015.

Once again, I was the sole graduate student contributing to the article and I took respon-

sibility for: (i) structuring the document; (ii) summarizing content from multiple sources,

previous publications, and other written material; (iii) reviewing and editing the overall doc-

ument; and (iv) interacting with the editorial staff.

Title: Monitoring Glaciers from Space Using a Cubesat

Summary: One of the most striking aspects of PolyOrbite is its success in the advance-

ment of technically challenging projects despite its spontaneously shaped—and constantly

liquid—student-led organization. During the 2012–2014 CSDC campaign, in particular, many

practical adversities had to be overcome, e.g., the limited size and experience of the team

and the uncertainties associated with the intercontinental collaboration with University of

Bologna. Eventually, PolyOrbite reached the vibration testing stage of the CSDC (at the

Canadian Space Agency’s David Florida Laboratory, in Ottawa). When the results were re-

vealed, PolyOrbite obtained the lowest step on the podium of the competition—a remarkable

achievement for a first attempt. The accomplishment led us to this invited contribution in the

IEEE Communication Magazine. The article, intended for a lay audience, reviews the main

features of PolyOrbite and its history: the foundation at the hand of a group of students from

Polytechnique Montréal willing to participate in the second edition of the Canadian Satellite

Design Challenge, the contribution of University of Bologna, the satellite’s payloads, and the

educational impact.

Published In: IEEE Communications Magazine, vol. 53, no. 5, pp. 208-210, May 2015.

DOI: https://doi.org/10.1109/MCOM.2015.7105665

Authors: Constance Fodé, Jacopo Panerati, Prescilia Desroches, Marcello Valdatta, and

Giovanni Beltrame

https://doi.org/10.1109/MCOM.2015.7105665

183

PolyOrbite’s CSDC Participations and Designs

To conclude the appendix, PolyOrbite’s history is recapitulated in this section. PolyOrbite

is a technical society composed—and led—by students of Polytechnique Montréal. In late

2012, the original team was born from the spontaneous association of a handful of students

willing to participate in the 2012–2014 Canadian Satellite Design Challenge. The CSDC is

an inter-university competition for student teams having as objective the development of a

3U CubeSat. From the time of its foundation, until the end of 2016, I was the leader of the

team developing the on-board computers of PolyOrbite’s satellites. The following subsections

are dedicated to the three two-year periods corresponding to the second, third, and fourth

iteration of the Canadian Satellite Design Challenge, respectively.

2012–2014 Canadian Satellite Design Challenge: Eleonora and Collaboration

with University of Bologna

PolyOrbite’s experience in the CSDC started with the second iteration of the competition.

The first CSDC launched in January 2011 to conclude in 2012 with the victory of the satellite

design proposed by team Space Concordia from Concordia University. After this success,

one of the students that had led the endeavour, Nick Sweet, presented the CSDC and his

experience in a talk at Polytechnique Montréal. Inspired by the episode, a small group

of undergraduate students—and the author of this thesis—decided to organize a team to

represent Polytechnique Montréal in the second, upcoming, CSDC.

2013 was stocked with many significant events for PolyOrbite. First, the team officially

became one of the 17 sociétés techniques of Polytechnique Montréal. Then, it established

short- and long-range collaborations with Université de Montréal ’s Geocryolab and University

of Bologna, respectively. These partnerships proved to be of crucial importance for the

definition and implementation of the two payloads that PolyOrbite incorporated in its 3U

CubeSat. Geocryolab provided the scientific rationale for the imaging system of the satellite

as an instrument to monitor changes in the Canadian Arctic. University of Bologna designed

a compact de-orbiting system for which PolyOrbite received plenty of praise.

The design of the command and data handling system included two computing boards: one

acquired from Pumpkin Inc. and hosting a PIC24 micro-controller; and one, internally de-

veloped, supporting three different FPGA fabrics. After the final hurdle of the CSDC, i.e.,

vibration testing, PolyOrbite’s satellite Eleonora obtained the third place overall, behind

University of Victoria and Concordia University.

184

2014–2016 Canadian Satellite Design Challenge: Hathor and 2016 Intercollegiate

Rocket Engineering Competition

The third iteration of the CSDC—PolyOrbite’s second participation—was marked by the

end of the collaboration with University of Bologna and the forfeiture of its drag-sail. The

introduction of a mandatory de-orbiting system as a requirement of the CSDC led the team

to select a four-thruster ion propeller as the new primary payload (IonDrop). A second

payload, consisting of an autonomous greenhouse (SpaceBean), was also included in the

design of PolyOrbite’s second 3U CubeSat, Hathor.

For the command and data handling system, we decided to re-use Eleonora’s Pumpkin Inc.

PIC24 design, paired with distributed computing resources in selected sub-systems (e.g.

ADCS). Like its predecessor, Hathor went through vibration testing successfully and fin-

ished third overall. PolyOrbite also won CSDC’s Educational Outreach prize.

Additionally, in 2016, PolyOrbite collaborated with rocket-building technical society Oronos.

The common objective was the development of a scientific mission for the SDL Payload

Challenge of the 2016 Intercollegiate Rocket Engineering Competition in Utah. The selected

experiment was the study of the deformation of Eleonora’s 3U structure during launch on a

sounding rocket. The payload integrated a Raspberry Pi 2 B computer with SenseHat, an

analog-to-digital converter, and a CAN bus interface. Unfortunately, the rocket experienced

rapid unscheduled disassembly on the day of the competition.

2016–2018 Canadian Satellite Design Challenge: ORU-S and Collaboration with

the Canadian Space Agency

The ongoing iteration of the CSDC started with PolyOrbite choosing to retain its electric

propulsion system, IonDrop, as one of two payloads (and de-orbiting device). SpaceBean’s

greenhouse was initially set aside, and new proposals were evaluated.

However, as the opportunity for a collaboration that involved PolyOrbite, the Canadian Space

Agency, and Polytechnique Montréal appeared, SpaceBean was reintegrated as a secondary

payload and a third objective was added to the project. The third mission of the 3U CubeSat,

christened ORU-S, consists in the validation of a self-adaptive on-board computer, loosely

inspired by the FPGA-based computing board of the 2012–2014 design.

185

APPENDIX B MODELLING OF THE ERRORS INDUCED BY SPACE

RADIATION FOR FAULT-INJECTION IN FPGAS

This appendix reports on the development of a comprehensive software framework called

MORFIN (Mistlab ORbit-specific Fault INjector). MORFIN is a tool that can model the

space radiation environment and inject errors into a field-programmable gate array (FPGA)

so that they are consistent with a user-specified mission profile.

This research was conducted in the MIST Laboratory of Polytechnique Montréal in 2014. The

main author, designer, and developer of the project is Vedant. My co-author responsibilities

included: (i) writing parts of the paper; (ii) preparing the illustration; and (iii) reviewing

and editing. The work was presented by professor Giovanni Beltrame at ESTEC, Noordwijk,

Netherlands, in September 2014.

Title: An Orbit-specific Fault-injector to Assess Fault-mitigation Strategies in FPGA-based

Computing Systems for Aerospace

Summary: As it was mentioned numerous times, the space environment is especially de-

manding for electronics due to the presence of particle and ionizing radiation. Reconfigurable

FPGAs are the ideal test-bench—and a likely implementation platform—for the adaptive

methodologies we proposed in [115, 117]. Therefore, the capability of injecting into an FPGA

errors (e.g., bit-flips) that are representative of a specific orbit, mission profile, or portion

of space becomes an essential prerequisite for pre-flight validation. Various models of the

space radiation environment have been developed in the literature and a few of them are

publicly available as web services, e.g., SPENVIS [65] and CREME96 [164]. The engineer-

ing challenge, here, resides in automating the process that—from the two-line element set

of a satellite—injects errors into an FPGA as if it was on-board the spacecraft. The paper

presents the detail of how this is achieved. This framework (one of the firsts of its kind,

inspired by the work in [75]) offers a ready-to-use and realistic simulated environment for the

validation of adaptive and fault-tolerant technologies for aerospace.

Presented At: SEFUW: SpacE FPGA Users Workshop, 2nd Edition, ESTEC, Noordwijk,

Netherlands.

URL: https://indico.esa.int/indico/event/59/session/5/contribution/17

Authors: Vedant, Jacopo Panerati, and Giovanni Beltrame

https://indico.esa.int/indico/event/59/session/5/contribution/17

186

APPENDIX C ONLINE FAULT DETECTION AND PROBABILISTIC

TIMING ANALYSIS

This last appendix acknowledge the work conducted on the static probabilistic timing analysis

(SPTA) of computing systems using the fault detection mechanisms introduced in [115]. This

research was carried out in the MIST Laboratory of Polytechnique Montréal between the end

of 2015 and the beginning of 2017. The main author and architect of the investigation is

Chao Chen.

My co-author responsibilities included: (i) an advisory role on probabilistic modelling and

the fault-detection techniques; (ii) preparing some of the figures; and (iii) reviewing and edit-

ing the paper. An extended version of this work, with title “Probabilistic Timing Analysis of

Random Caches with Fault Detection Mechanisms”, has been submitted to the ACM Trans-

actions on Emerging Topics in Computing (TETC) and it is currently under review.

Title: Static Probabilistic Timing Analysis with a Permanent Fault Detection Mechanism

Summary: In real-time systems, the estimation of the worst case execution time (WCET)

of a software task is primordial for the assessment of its schedulability. However, WCET

estimates are often overly pessimistic and hinder ideal performance. Random cache memories

and probabilistic timing analysis offer a way to circumvent this issue. By randomizing the

use of cache blocks and computing the probability distribution of executions times, one can

estimate a probabilistic WCET (pWCET), i.e. an execution time that is guaranteed not

to be exceeded with a certain probability p. In this paper, the problematic is extended

with the introduction of transient and permanent faults (often caused by the effects of space

radiation [115, 117]). We equip the system under study with the fault detection mechanisms

from [115]—to detect and disable those cache blocks that are permanently damaged—and we

conduct our SPTA on the overall system to assess its performance. The experimental results

support the claim of superior performance provided by dynamic hidden Markov models.

Published In: Proceedings of the 2016 IEEE International Symposium on Defect and

Fault Tolerance in VLSI and Nanotechnology Systems (DFT).

DOI: https://doi.org/10.1109/DFT.2016.7684067

Authors: Chao Chen, Jacopo Panerati, and Giovanni Beltrame

https://doi.org/10.1109/DFT.2016.7684067

	DEDICATION
	ACKNOWLEDGMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	LIST OF APPENDICES
	1 INTRODUCTION
	1.1 Context and Motivation
	1.2 Problem Statement
	1.3 Research Objectives
	1.4 Novelty and Impact

	2 LITERATURE REVIEW
	2.1 Hardware-software Co-design and Optimization
	2.2 Adaptive Hardware and Software
	2.3 Resilience of Complex Systems
	2.4 Multi-agent Systems and Swarm Robotics

	3 RESEARCH APPROACH AND THESIS ORGANIZATION
	3.1 Bird's-eye View
	3.2 Methodology
	3.2.1 Hardware Design Level
	3.2.2 Operating System Level
	3.2.3 Application Layer

	3.3 Document Structure

	4 ARTICLE 1 – A COMPARATIVE EVALUATION OF MULTI-OBJECTIVE EXPLORATION ALGORITHMS FOR HIGH-LEVEL DESIGN
	4.1 Introduction
	4.2 Related Work
	4.3 Proposed Taxonomy
	4.4 Multi-Objective Algorithms For Design Space Exploration
	4.4.1 Class 1
	4.4.2 Class 2
	4.4.3 Class 3
	4.4.4 Class 4

	4.5 Experimental Setup
	4.6 Experimental Results
	4.6.1 Dependence on Parameters and Initial Setup Effort
	4.6.2 Estimation of the Number of Evaluations
	4.6.3 Characteristics of the Resulting Approximate Pareto-set
	4.6.4 Scalability

	4.7 Discussion
	4.8 Conclusions

	5 ARTICLE 2 – BALANCING SYSTEM AVAILABILITY AND LIFETIME WITH DYNAMIC HIDDEN MARKOV MODELS
	5.1 Introduction
	5.2 Related Work
	5.3 Theoretical Background
	5.3.1 Transient Faults Modeling
	5.3.2 Permanent Faults Modeling
	5.3.3 Hidden Markov Models

	5.4 Proposed Approach
	5.4.1 System Model
	5.4.2 Rule-based Failure Detection
	5.4.3 HMM-based Failure Detection
	5.4.4 Dynamic HMM-based Failure Detection

	5.5 Experimental Setup
	5.5.1 Parameters
	5.5.2 Performance Metrics

	5.6 Discussion
	5.7 Conclusions

	6 ARTICLE 3 – TRADING OFF POWER AND FAULT-TOLERANCE IN REAL-TIME EMBEDDED SYSTEMS
	6.1 Introduction
	6.2 Related Work
	6.3 System Model
	6.3.1 Computing Architecture Model
	6.3.2 Real-time Application Model
	6.3.3 Transient Faults Model
	6.3.4 Power Consumption Model
	6.3.5 Wear Model

	6.4 Methodology
	6.4.1 Task Mapping and Real-time Constraints
	6.4.2 Utilization Levels
	6.4.3 Particle Radiation and Transient Errors
	6.4.4 Fault-tolerance Optimization
	6.4.5 Power Consumption Optimization
	6.4.6 The Power and Fault-tolerance Trade-off
	6.4.7 Lifetime Optimization

	6.5 Case Study
	6.6 Conclusions And Future Works

	7 ARTICLE 4 – ASSESSING THE RESILIENCE OF STOCHASTIC DYNAMIC SYSTEMS UNDER PARTIAL OBSERVABILITY
	7.1 Introduction
	7.2 Related Work
	7.3 Resilience and Resilient Properties in Probabilistic Models
	7.4 Complexity of Efficient Exact Inference
	7.5 Complexity of Generic Property Checking
	7.6 Bounding the Probability of l-resistance
	7.7 Application Scenarios
	7.7.1 Disaster Management
	7.7.2 Macroeconomics
	7.7.3 Self-adaptive Computing
	7.7.4 Swarm Robotics

	7.8 Discussion
	7.9 Methods
	7.9.1 States, Observations, Costs, and Trajectories
	7.9.2 From the Probability of Cost Trajectories to the Probability of Properties
	7.9.3 Efficient Inference

	8 ARTICLE 5 – FROM SWARMS TO STARS – TASK COVERAGE IN ROBOT SWARMS WITH CONNECTIVITY CONSTRAINTS
	8.1 Introduction
	8.2 Literature Review
	8.2.1 On Task Scheduling, Mapping, and Coverage
	8.2.2 On Swarm Connectivity

	8.3 Methodology
	8.3.1 General Overview
	8.3.2 Robot Navigation Controller
	8.3.3 Task Scheduling Controller
	8.3.4 Mathematical Modelling of the Optimal Task Scheduling Problem

	8.4 Experimental Set-up
	8.4.1 Robot Navigation Controller
	8.4.2 Task Scheduling Controller

	8.5 Experimental Results and Discussion
	8.5.1 Robot Navigation Controller
	8.5.2 Task Scheduling Controller

	8.6 Conclusions and Future Work

	9 GENERAL DISCUSSION
	9.1 On Hardware-software Co-design and Optimization
	9.2 On Adaptive Hardware and Software
	9.3 On the Resilience of Complex Systems
	9.4 On Multi-agent Systems and Swarm Robotics

	10 CONCLUSIONS
	10.1 Lessons Learned and Recommendations
	10.2 Open Questions
	10.3 Future Work
	10.3.1 Symbiotic Human and Multi-Robot Planetary Exploration

	REFERENCES
	APPENDICES

