
Exzellenzcluster
Cognitive Interaction Technology

Kognitronik und Sensorik
Prof. Dr.-Ing. U. Rückert

Run-time reconfigurable,
fault-tolerant FPGA systems

for space applications

zur Erlangung des akademischen Grades eines

DOKTOR-INGENIEUR (Dr.-Ing.)

der Technischen Fakultät
der Universität Bielefeld

genehmigte Dissertation

von

M.Sc. Dario Cozzi
Referent: Prof. Dr.-Ing. Ulrich Rückert
Korreferent: Prof. Cinzia Bernardeschi

Acknowledgment

This is a fantastic and important achievement of my career. I have to thank a huge
number of people for all the tips, experience, and support that they have provided
me during this path.

I should primarily thank the people that have followed me during all my PhD
path. I thank Prof. Dr.-Ing. Ulrich Rückert and Dr. Ing. Mario Porrmann that have
supported me and they have provided me a huge amount of experiences. I thank
Jens Hagemeyer for the great and unlimited support for the problems (challenge)
that I have encountered in my path. I thank Sebastian Korf, for his friendship,
collaboration, and support in all the work that we have made together.

I thank Prof. Cinzia Bernarderschi, who accepted to review my thesis and for
the collaboration that we have had in all these years. I thank the member of the
examination commission JProf. Dr. Elisabetta Chicca and Dr. rer. nat. Robert
Haschke.

I thank all the KS group, all my colleagues. It has been extremely motivating to
work with you all. We have shared funny moments and you contributed to expand
my career knowledge. In particular, I thank Dirk Jungewelter, Martin Kaiser, and
René Griessl. Special thanks to my colleague/friend Luca Cassano that has deeply
contributed to my academic career.

I thank all the students that I have supervised, which have been fundamental
for my research: Dominik Kleibrink, Timo Schlüssler, Martin Vorfeld, Domenico
Sorrenti, Luca Santangelo, and Filippo Mascolo.

I want to thank all the little-Italy community of Bielefeld. I have shared with
you a lot of fully moments. I just mention one name for everyone: Giorgio Ferrari.
Of course, I thank Paderborn and all its people because it is there where all the
story started.

At this point of my career, I extremely feel how all the educators, professors,
and teachers have contributed in a unique way on my knowledge and preparation.
Thanks to all of you.

I extremely thank my parents Enrico and Serenella, for the support, critics, and
motivation in all my life. I am really grateful to you both.

Any effort has no sense without love! I thank my fantastic wife Natalia and my
little princess Eleonora. You have been always by my side. This achievement is for
you.

Dario Cozzi
Bielefeld, Germany

Abstract

The aim of this thesis is to investigate the use of Dynamic Partial Reconfiguration
(DPR) on Commercial Off-the-Shelf (COTS) FPGAs in space applications.

Reconfigurable systems gained interest in a wide range of application fields,
including aerospace, where electronic devices are exposed to a harsh working
environment. COTS SRAM-based FPGA devices represent an interesting hardware
platform for this kind of systems since they combine low cost with the possibility to
utilize state-of-the-art processing power as well as the flexibility of reconfigurable
hardware. FPGA architectures have high computational power and thanks to
their ability to be reconfigured at run-time, they became interesting candidates for
payload processing in space applications.

The presented Dynamic Reconfigurable Processing Module (DRPM) has been
developed to investigate the use of the DPR approach for satellite payload pro-
cessing. This scalable platform combines dynamically reconfigurable FPGAs with
the required avionic interfaces (e.g., SpaceWire, MIL-STD-1553B, and SpaceFi-
bre). In particular, a novel communication interface has been developed, the
Heterogeneous Multi Processor Communication Interface (HMPCI), which allows
inter-process communication with small latency and low memory footprint.

Current synthesis tools do not support fully the DPR capabilities of FPGAs.
Therefore, this thesis introduces INDRA 2.0: an INtegrated Design flow for Recon-
figurable Architectures. The key part of INDRA 2.0 is DHHarMa: a Design flow
for Homogeneous Hard Macros, which generates homogeneous hard macros for
Xilinx FPGAs starting from a high-level description (e.g., VHDL). In particular,
the homogeneous DHHarMa router is explained in detail, providing novel ter-
minologies and algorithms, which have enabled the generation of homogeneous
routed designs. Results have been shown that Design flow for Homogeneous Hard
Macros (DHHarMa) can route homogeneously a communication infrastructure
utilizing just between 1% and 31% more resources than the Xilinx router, which
cannot provide a homogeneous solution.

Furthermore, the permanent faults that can occur on FPGAs have been investi-
gated. This thesis presents OLT(RE)2: an on-line on-demand approach to testing
permanent faults induced by radiation in reconfigurable systems used in space
missions. The proposed approach relies on a test circuit and custom placer and
router. OLT(RE)2 exploits DPR to place the test circuits at run-time. Its goal is to
test unprogrammed areas of the FPGA before using them. Experimental results of
OLT(RE)2 have shown that is possible to generate, place, and route the test circuits
needed to detect on average more than 99 % of the physical wires and on average
about 97 % of the programmable interconnection points of a large arbitrary region
of the FPGA in a reasonable time. Moreover, the test can be run on the target
device without interfering the functional behavior of the system.

Contents

1 Introduction 1
1.1 Dynamic Reconfigurable Processing Module 2
1.2 INtegrated Design flow for Reconfigurable Architectures 2.0 2
1.3 On-Line Testing of Permanent Radiation Effects in Reconfigurable

System . 3
1.4 Organization . 4

2 Background 7
2.1 SRAM-based FPGA Architecture . 8

2.1.1 Terminology . 10
2.1.2 Clock Regions . 11
2.1.3 Programmable Interconnection Points (PIPs) 11
2.1.4 Configuration Memory (Bitstream) 12
2.1.5 Routing Physical Wires . 14
2.1.6 Xilinx FPGA families . 16
2.1.7 Space-Grade devices . 22

2.2 Dynamic Partial Reconfiguration . 24
2.2.1 Benefits . 25
2.2.2 FPGA partitioning . 26
2.2.3 Communication Infrastructure in a PR system 27
2.2.4 Embedded Macros . 30

2.3 Xilinx Design Flow . 31
2.3.1 ISE . 31
2.3.2 FPGA Editor . 33
2.3.3 XDL tool . 34
2.3.4 Vivado . 36

2.4 Radiation Effects . 37
2.4.1 Single Event Effects . 38
2.4.2 Total Ionizing Dose . 39
2.4.3 Radiation Sensitiveness on SRAM-based FPGAs 40
2.4.4 Permanent Faults in Routing Resources 42

3 State of the Art 47
3.1 XDL-based databases and APIs . 47

3.1.1 ReCoBus and GoAhead . 48

vii

3.1.2 RapidSmith . 48
3.1.3 Torc . 49
3.1.4 Tincr . 49
3.1.5 Comparison . 50

3.2 Dynamic Partial Reconfiguration Tools 51
3.2.1 Xilinx ISE Dynamic Partial Reconfiguration (DPR) 52
3.2.2 INDRA . 54
3.2.3 ReCoBus and GoAhead . 55
3.2.4 OpenPR . 55
3.2.5 Dreams . 56
3.2.6 Comparison . 57

3.3 Reconfiguration in Space Applications 58
3.3.1 DPR research platforms . 59
3.3.2 In-flight reconfigurable space-missions 60
3.3.3 Commercial FPGAs in Space 62
3.3.4 Comparison . 63

3.4 Testing of Routing Resources . 64
3.4.1 Fault Detection mechanism 65
3.4.2 Off-line application-independent testing 66
3.4.3 On-line application-independent testing 67
3.4.4 Motivation . 68

3.5 Summary . 69

4 Dynamically Reconfigurable Processing Module 71
4.1 System Architecture . 71

4.1.1 RAPTOR-X64 . 73
4.1.2 DB-SPACE . 74
4.1.3 DB-V4 . 76
4.1.4 Memory Resources . 76

4.2 Dynamic Reconfigurable Processing Module (DRPM) Software . . 77
4.2.1 Software Structure . 78

4.3 Heterogeneous Multi Processor Communication Interface (HMPCI) 79
4.3.1 Related Works . 80
4.3.2 Inter-Processor Communication Interface 81
4.3.3 HMPCI Interactions . 82
4.3.4 Inter-Processor Communication Protocol Details 84
4.3.5 Using the Inter-Processor Communication Interface 86
4.3.6 HMPCI on the DRPM . 87
4.3.7 Experiment Results . 90
4.3.8 Summary . 91

4.4 DRPM Evaluation and Validation Environment 92
4.4.1 Avionic Interfaces Testing . 92

viii

4.4.2 DRPM GUI . 94
4.5 Summary . 96

5 INDRA 2.0 97
5.1 Flow Description . 97

5.1.1 FPGA partitioning . 98
5.1.2 Communication Macro Generation (DHHarMa) 98
5.1.3 Static PAR and PSRerouter 100
5.1.4 Dynamic Modules Implementation 100
5.1.5 Bitstream Generation . 101

5.2 Design flow for Homogeneous Hard Macros 101
5.2.1 Datastructure for Xilinx FPGAs (DXF) 102
5.2.2 Xilinx-based front-end . 103
5.2.3 DHHarMa back-end . 104
5.2.4 Output XDL File . 105

5.3 PSRerouter . 106
5.3.1 Problem definition . 108
5.3.2 Implementation Idea . 109
5.3.3 Physical Wire Info . 110
5.3.4 Database Creation Flow . 112
5.3.5 Benchmark . 118
5.3.6 Post-Synthesis Rerouter (PSRerouter) flow 119

5.4 Summary . 123

6 DHHarMa Router 125
6.1 General Purpose Routing Analysis 126

6.1.1 Virtex-4 . 126
6.1.2 Virtex-5 . 128
6.1.3 Virtex-6 and Spartan-6 . 129
6.1.4 7 Series and Zynq . 132

6.2 Homogeneous Routing Base Concepts 133
6.2.1 Standard Routing Algorithms 133
6.2.2 Iterative Deepening Depth-First Search algorithm (IDDFS) . 133
6.2.3 Routing Direction and Wrong Direction 134
6.2.4 Nets Terminology . 135
6.2.5 Net Initialization . 137
6.2.6 Master and Slave Regions . 138

6.3 DHHarMa Homogeneous Router Flow 138
6.3.1 Initialization Phase . 139
6.3.2 Edge Routing Phase . 141
6.3.3 Intra-Routing Phase . 143

ix

6.4 DHHarMa Results . 146
6.4.1 Routing Experiment Flow . 146
6.4.2 Routing comparison . 147
6.4.3 DRPM communication infrastructure 150
6.4.4 Further Applications of the Homogeneous Router 151

6.5 Summary . 154

7 OLT(RE)2 155
7.1 Flow Structure . 156

7.1.1 The On-Line Testing of Permanent Radiation Effects in Re-
configurable System (OLT(RE)2) CAD Flow 157

7.1.2 Design-time Test Generation Sub-flow 158
7.1.3 Run-time Test Execution Sub-flow 159

7.2 Circuits for Testing of Permanent Faults 159
7.2.1 The 8-NUT Hard-Macro . 160
7.2.2 Routing Faults Test Principles 161

7.3 Graph Model of FPGA . 163
7.3.1 Stuck-at Coverage . 164
7.3.2 Stuck-off Coverage . 165
7.3.3 Stuck-on Coverage . 165

7.4 Routing Resources Analyzer . 167
7.4.1 Testability of the Routing Resources 167
7.4.2 Routing Resources Analyzer Flow 170
7.4.3 Testing Circuit Independent (TCI) Analysis 170
7.4.4 Testing Circuit Dependent (TCD) Analysis 174
7.4.5 Result Output . 175

7.5 The U-TURN Place-and-Route Algorithm 179
7.5.1 The TPG & ORA Placer . 179
7.5.2 The Net Under Tests (N-UTs) Router 181

7.6 Results . 182
7.6.1 Test Circuit Validation . 182
7.6.2 Design-time Performance Analysis 184
7.6.3 Run-time Performance Analysis 188

7.7 Summary . 190

8 Conclusion and Outlook 191
8.1 Outlook . 192

List of Figures 195

List of Tables 199

x

Acronyms 201

Bibliography 207

Advised Thesis 223

Author’s Publications 225

xi

1 Introduction

Reconfigurable architectures have become key implementation platforms for digi-
tal circuits in many application areas. Although Field Programmable Gate Arrays
(FPGAs) progressively changed from homogeneous architectures containing iden-
tical logic cells to heterogeneous architectures containing different types of cells
(e.g., Configurable Logic Block (CLB), Block Random Access Memory (Block RAM),
Digital Signal Processor (DSP)), the structure itself is still regular and homoge-
neous.

The regularity of resources within an FPGAs is a remarkable feature, which is
utilized in timing critical application domains; an example is a time-to-digital con-
verter where the regularity of the routing structure is exploited to time difference
measurement between two pulses. Dynamic Partial Reconfiguration (DPR) is an-
other application domain, where the regularity of the FPGA resources is exploited;
a hardware module that is placed in a specific area can be relocated in a different
one, which has the same resources of the starting area. Thus, the regularity of the
partially reconfigurable region increases the flexibility of the hardware modules
placement.

Reconfigurable hardware has also gained a steadily growing interest in the
domain of space applications. The reconfiguration of the hardware at run-time com-
bined with the high computational power of modern FPGAs turn these devices
interesting candidate for data processing in space applications. The DPR of FPGAs
allows flexibility and can increase performance, improve energy efficiency, and en-
hance fault tolerance. The utilization of DPR on Commercial Off-the-Shelf (COTS)
Xilinx FPGAs in space application is investigated in this thesis. A prototyping
platform, novel tools, and fault mitigation mechanisms are provided.

The main parts of the thesis are: Dynamic Reconfigurable Processing Module
(DRPM) platform that gives the possibility to exploit DPR in space applications;
INtegrated Design flow for Reconfigurable Architectures 2.0 (INDRA 2.0) frame-
work that enables the creation of DPR scenarios, which support the relocation of
hardware module; On-Line Testing of Permanent Radiation Effects in Reconfig-
urable System (OLT(RE)2) tool that generates testing circuits, which can detect
on-line permanent faults on an FPGA.

1

1 Introduction

1.1 Dynamic Reconfigurable Processing Module

Dynamic Reconfigurable Processing Module (DRPM) is a demonstrator that aims
to exploit run-time adaptability and high-performance of payload processing
systems, which is capable of exploiting DPR on SRAM-based FPGAs in space
mission scenarios. The platform also embeds advanced tools and methods that
mitigate radiation effects (e.g., Single Event Upset (SEU) and Total Ionizing Dose
(TID)).

Thanks to DPR, blind and readback scrubbing are supported; the scrubbing rate
can be adapted individually to different parts of the design. The demonstrator
is based on the RAPTOR-X64 prototyping environment, developed by the Cog-
nitronics and Sensor Systems at Bielefeld University. DRPM combines dynamically
reconfigurable FPGAs with avionic interfaces (e.g., SpaceWire, MIL-STD-1553B,
and SpaceFibre).

The thesis provides information regarding the software infrastructure of the
DRPM. Moreover, this work introduces a novel general-purpose multiprocessor
communication protocol, which allows a fast and reliable communication among
different processors of the system: the Heterogeneous Multi Processor Commu-
nication Interface (HMPCI). Furthermore, the DRPM proves the presented CAD
tools INDRA 2.0 and OLT(RE)2. The DRPM is a European Space Agency (ESA)
funded TRP project (22424/ 09/ NL/ LvH) [37] and has been developed by the
Cognitronics and Sensor Systems at Bielefeld University in collaboration with Swiss
Space Technology, TWT GmbH Science & Innovation, and Politecnico di Torino.

1.2 INtegrated Design flow for Reconfigurable
Architectures 2.0

Commercial FPGA tools do not allow exploiting all the DPR capabilities. For
example, they are unable to create DPR systems that support the relocation of
Partial Reconfigurable Modules (PR Modules). Therefore, this thesis introduces a
new DPR flow: INtegrated Design flow for Reconfigurable Architectures 2.0 (INDRA
2.0). This flow provides novel functionalities that enable the creation of a custom
and advanced DPR scenarios in modern FPGAs. The key parts of this novel flow
are the Design flow for Homogeneous Hard Macros (DHHarMa) and the Post-Synthesis
Rerouter (PSRerouter).

DHHarMa automatically generates homogeneous hard macros for Xilinx FPGAs
starting from a high-level description, such as Very High Speed Integrated Circuit
Hardware Description Language (VHDL) or Verilog HDL. Starting from HDL
gives the designer the ability to quickly create and modify designs, which require
being homogeneously placed and routed. The core components of DHHarMa are

2

1.3 On-Line Testing of Permanent Radiation Effects in Reconfigurable System

a homogeneous packer, placer, and router, which generate a regular structured
design, based on a user-defined FPGA partitioning. This thesis presents the
homogeneous routing phase.

PSRerouter is a tool of INDRA 2.0. It can reroute nets of a design after the
synthesis process. This operation is needed because vendor’s Place and Route
(PAR) tools do not permit inserting specific constraints on the routing policy.
Therefore, PSRerouter enables to reroute specific nets of a design, allowing the
creation of DPR systems that ensure Partial Reconfigurable Module (PR Module)
relocation.

DHHarMa and PSRerouter rely on a custom database containing the complete
description of the resources of a given FPGA: Datastructure for Xilinx FPGAs (DXF).
It has been created from the Xilinx XDLRC report and FPGA-Edline scripting
language. This database allows having a deep interaction with the Xilinx commer-
cial tools (e.g., Integrated Software Environment (ISE) and FPGA Editor). These
tools are suitable for a wide number of Xilinx FPGAs: Virtex-4, Virtex-5, Virtex-6,
Spartan-6, 7 Series (i.e., Artix-7, Kintex-7, and Virtex-7), and Zynq.

1.3 On-Line Testing of Permanent Radiation Effects
in Reconfigurable System

OLT(RE)2 is a software flow for the generation of hard macros for on-line testing
and diagnosing of permanent faults due to radiation in SRAM-based FPGAs
used in space missions. Radiations in the atmosphere may damage electronic
devices employed in space systems. In particular, radiations may induce both
instantaneous and long-term damages. Instantaneous damages are typically SEUs
(i.e., modifications of the content of memory elements in the device) and Single
Event Transition (SET) (i.e., transient undesired electrical impulses). Differently, the
long-term damages induced by radiations are caused by TID, i.e., the accumulation
of charge trapped in the oxide layer of transistors in CMOS circuits.

In the last decade, many works focused SEUs, which are soft errors that can
occur in space missions. Nevertheless, permanent faults (e.g., caused by TIDs)
need to be considered in present/future reconfigurable systems designed for space
missions. OLT(RE)2 connects ideas and background from different inventors that
aimed mitigation and detection of SEU effects to detect permanent faults caused by
TID as well. The test approach of OLT(RE)2 exploits the DPR mechanism provided
by modern SRAM-based FPGAs.

The testing technique is meant to be applied on-line and on-demand to detect
permanent faults in reconfigurable systems. On the one hand, it can help designers
in making use of high-performance unreliable COTS FPGAs viable for space
applications; on the other hand, it can help the increase of low-cost application

3

1 Introduction

scenarios systems where high-end radiation-hardened devices are not affordable.
The presented approach is compatible with a wide number of Xilinx FPGAs:

Virtex-4, Virtex-5, Virtex-6, and Spartan-6. Moreover, the flow has been validated
on the DRPM platform. OLT(RE)2 has been partially funded by European Space
Agency (ESA) and developed by the Cognitronics and Sensor Systems Group at Bielefeld
University, in collaboration with Pisa University and Politecnico di Torino.

1.4 Organization

Chapter 2 provides the needed background concepts of the presented thesis work.
The Xilinx FPGA architecture is introduced, by providing terminology and details
of the different FPGA families. A description of the DPR mechanism is given,
which is a concept strongly used in all the aspects of this thesis. Successively,
the radiation effects on FPGAs are presented, giving information regarding the
possible errors that can be induced in the routing structure. Finally, since the thesis
provides new tools that can be utilized with the vendor ones, the Xilinx tools are
presented, focusing on their properties and integration methods.

Chapter 3 presents the state of the art of this thesis. First, it is explained why
the Xilinx tools do not allow exploiting DPR capability of the FPGAs completely;
then, related works are investigated as well. Moreover, the DRPM motivations
are presented, highlighting the novel features that this new platform introduces
compared to the current reconfigurable platforms. Finally, testing of FPGAs
background is provided, focusing on the leak of on-line testing of FPGAs in space
applications.

Chapter 4 describes the DRPM platform, focusing on its hardware and software
properties. The base platform (RAPTOR-X64) and the modular boards (DB-V4
and DB-SPACE) are presented. Moreover, a deep description of its inter-processors
communication protocol called Heterogeneous Multi Processor Communication In-
terface (HMPCI) is provided. Finally, the DRPM GUI is presented, which allows
configuring and validating the overall platform.

Chapter 5 presents INDRA 2.0. This flow allows exploiting the full capability
of DPR into modern Xilinx FPGAs. The flow supports the integration with the
official Xilinx tools. Specifically, INDRA 2.0 enables to create scenarios in which
reconfigurable modules can be relocated; the flow relies on a custom Datastructure
for Xilinx FPGAs (DXF) created with the XDL-reports, which contains the structure
information of the FPGAs. A special Rerouter tool has been implemented, which
allows unrouting/routing specific design nets to enable module relocation.

Chapter 6 provides a detailed description of DHHarMa. Its key parts (i.e., Homo-
geneous Packer, Homogeneous Placer and Homogeneous Router) are presented.
It gives an extensive explanation of the Homogeneous Router parts, considering
the novel concepts that allow generating a homogeneous routed design. Moreover,

4

1.4 Organization

it provides an analysis of the routing structure of different Xilinx FPGA families.
Finally, case studies and results are discussed.

Chapter 7 presents OLT(RE)2. First, the flow and its innovation in on-line
testing are discussed. Then, a dedicated testing circuit is explained, which permits
performing the on-board test on an FPGA device. The chapter also introduces
new concepts and solutions to categorize the different FPGA’s routing resources.
Furthermore, a detailed explanation of the PAR algorithm (U-TURN) is provided.
Finally, the performance and the test coverage of the testing approach on different
devices is considered.

5

2 Background

Field-Programmable Gate Arrays (FPGAs) are prefabricated silicon devices that
can be electrically programmed to become almost any kind of digital circuit or
system [15; 91]. Initially, these devices provided simple logic functions. Nowadays,
FPGAs can implement complex systems in one chip; hence, they are used in a
growing number of applications [38]. The biggest available FPGA, the Xilinx Virtex
UltraScale VU440, integrates 5.5 M logic blocks and 2,880 DSP blocks [140].

In contrast to Application Specific Integrated Circuits (ASICs), which are de-
signed for specific applications, FPGAs are configured after their fabrication. Fur-
thermore, they can be reconfigured multiple times. The configuration is done
starting from a hardware description language (HDL) of a certain digital circuit,
which is compiled to a bitstream and downloaded to the FPGA.

One of the main advantages of using FPGAs is the decreasing time-to-market
required for an application. FPGAs allow designers to concentrate on the de-
velopment of applications, without focusing on the device fabrication problems.
Moreover, the target device of an application is already available since the begin-
ning of the development phase.

On the contrary, when the target implementation is an ASIC, the device is
available just at the end of the fabrication process. For these reasons, ASIC im-
plementation is usually advantageous when a large scale production is planned.
Therefore, FPGAs can be a much cheaper and faster solution, when a specific and
small-scale task is required.

SRAM-based FPGAs allow designers to reuse and reconfigure a device several
times; hence, reconfigurability gives different remarkable advantages, such as:

• Testing: FPGAs can be utilized as prototype platforms [59], allowing a
deeper and faster validation of an application (compared to the simulation
software).

• Application Update: the use of a reprogrammable device can extend the
lifetime of a product. Nowadays, algorithms and standards are chaining fast
(e.g., video decoding algorithms, communication protocols); updating an
algorithm can allow using a product longer and more efficiently.

• Time-share Applications: to reduce cost and space of a device, different
tasks can be programmed into a single device, at various instance of time.

7

2 Background

• Partial-Reconfiguration: some SRAM-based devices offer the property to
reconfigure just parts of an FPGA. In particular, during a partial reconfigura-
tion, the non-reconfigured part can still operate without being interrupted.

FPGAs are utilized in space missions as well. In this field, the final application
has specific targets and a limited number of exemplars; the cost of implementing
an ASIC for each new satellite can turn in a higher final cost. Thereby, FPGAs
are extraordinary increasing in space market; furthermore, they can offer all the
advantages of device reprogrammability (as describe above).

However, due to the harsh-environment they operate in, FPGAs have to respect
special requirements and be fault tolerant to radiations. Differently from a ground
application, a critical fault on space applications cannot be solved by analyzing the
components with a typical repairing process (e.g., unmount the device, exchange a
broken part, execute off-line tests).

In the following, the organization of the chapter is presented. Section 2.1 pro-
vides the FPGA’s background information to understand the implementation part
of this thesis (i.e., FPGA architecture, different Xilinx devices, Dynamic Partial
Reconfiguration). Section 2.2 focuses on DPR, introducing important concepts,
such as FPGA partitioning and communication infrastructures for reconfigurable
systems. Section 2.4 introduces the space harsh-environment, analyzing temporary
and permanent faults effects that radiations can cause. Then, the radiation effects
on SRAM-based FPGAs are considered, focusing on the routing resources effects
of a fault (e.g., antenna, open). Finally, Section 2.3 presents the Xilinx ISE software
design flow, highlighting the parts that are mostly used in this thesis.

2.1 SRAM-based FPGA Architecture

FPGAs are mainly divided into three categories: the first, antifuse FPGAs, consists
of electronically programmable configuration memories that can be programmed
only once; the second, flash-based FPGAs, consist of devices which are configured
with flash configuration memory; the third, SRAM-based FPGAs, comprises de-
vices that are based on a Static Random Access Memory (SRAM) configuration
memory, which controls the FPGA configuration. Hence, SRAM-based FPGAs
can be programmed multiple times [5]. When FPGAs were introduced in the
80s, antifuse devices were preferred, thanks to their greater stability compared to
the first SRAM-based models. However, in the next years, the SRAM memories
became more stable, allowing a fast spreading of SRAM-based FPGAs.

Antifuse, SRAM-based, and flash-based FPGAs have the same high-level archi-
tecture, which consists mainly of three components: Logic Blocks, Interconnection
matrices (INTs) and Input Output Blocks (IOBs). Figure 2.1 shows how these
components are interconnected.

8

2.1 SRAM-based FPGA Architecture

In the following, the FPGA’s components are presented:

• Logic Blocks: are the main logical resources that implement sequential and
combinatorial circuits; Xilinx calls them Configurable Logic Blocks (CLBs).
The structure of a CLB is hierarchically divided into logical cells (called slices)
that contain Look Up Tables (LUTs). In FPGAs of different manufacturers,
the number of logical cells within a Logic Block can differ; in current Xilinx
FPGAs, the number of slices can be either 2 or 4 according to the FPGA
family.

• Input Output Blocks (IOBs): provide outside connections of the FPGA. These
blocks are generally placed at the borders of the FPGA, and they are used to
getting the signals into and outwards the FPGA.

• Interconnection matrices (INTs): all the FPGA logic blocks are connected among
them with a complex general routing structure. With an INT, also called
switch matrix, it is possible to drive signals within the FPGA (e.g., con-
nect two different CLB blocks). The routing is provided activating the
Programmable Interconnection Points (PIPs), which are located within the
switch matrix. All INTs are connected among them utilizing a complex struc-
ture of fixed connections, which is presented in detailed in Section 2.1.5 and
Section 6.1.

Switch
Matrix

CLB
I
O
B

Switch
Matrix

IOB

Logic
Block

Switch
Matrix

Logic
Block

I
O
B

Switch
Matrix

Switch
Matrix

CLB
I
O
B

Switch
Matrix

Logic
Block

Switch
Matrix

Logic
Block

I
O
B

Switch
Matrix

Switch
Matrix

CLB
I
O
B

Switch
Matrix

Logic
Block

Switch
Matrix

Logic
Block

I
O
B

Switch
Matrix

Switch
Matrix

CLB
I
O
B

Switch
Matrix

Logic
Block

Switch
Matrix

Logic
Block

I
O
B

Switch
Matrix

IOB IOB IOB

IOBIOBIOBIOB

Figure 2.1: The general architecture of a Xilinx FPGA.

9

2 Background

Out PIP

Slice

Switch
Matrix

Switch
Matrix

Physical
Wire, Node

OutPin

InPin

Local lines

Long linesCLB

In PIP

Figure 2.2: A summary of the FPGA resources terminology. A screenshot of FPGA
Editor [128] has been utilized.

2.1.1 Terminology

This thesis focuses on the low-level architecture of the FPGA. In the following,
basic terminologies and concepts are provided, which are extensively used in
the rest of the thesis. It is worth to mention that these terminologies are strongly
related to Xilinx FPGAs, which are the target devices for this work.

Figure 2.2 shows a screenshot of a Xilinx FPGA taken from the FPGA Editor tool
(presented in Section 2.3.2). The screenshot shows a portion of an FPGA, highlight-
ing the main components considered in this works; according to the depicted in
Figure 2.1, this picture shows a CLB, two INTs, and physical connections lines.

This supports the following terminology:

• Slice: the basic logic building block of an FPGA. A slice includes the con-
figurable resources for the implementation of Boolean functions, as well as
flip-flops and carry propagation logic.

• Physical wire (PW): a hard-wired non-configurable interconnection between
either two switch matrices or a CLB and a switch matrix.

• Pin: a connection point between a slice and a physical wire (PW). In case
the direction of the signal goes into the slice, the Pin is called inPin; outPin
otherwise.

10

2.1 SRAM-based FPGA Architecture

Table 2.1: Clock Region (CR) properties of Xilinx FPGAs.

Virtex-4 Virtex-5 Spartan-6 Virtex-6 7 Series,
Zynq

[145] [148] [138] [150] [122]

Number of CRs 8-24 6-24 8-24 6-18 4-24
Height of a CR 16 CLB 20 CLB 16 CLB 40 CLB 50 CLB

Clocks within a CR 8 10 16 12 12

• Wire: a connection point between a PW and a switch matrix. In case the signal
direction goes into the INT, the Wire is called inWire; outWire otherwise.

• Programmable Interconnection Point (PIP): a configurable connection between
two wires belonging to the same INT. It is worth noting that multiple PIPs
are connected to the same inWire as well as multiple PIPs are attached to the
same outWire. PIPs are discussed in Section 2.1.3.

2.1.2 Clock Regions

For clocking distribution purpose, Xilinx FPGAs are partitioned into clock regions.
Clock regions are the fundamental parts of an FPGA, which allow low clock
skew (i.e., unsynchronized distribution of the clock cycles) across the device. The
number of clock regions varies from device to device. However, all the considered
Xilinx FPGAs are partitioned in a matrix of clock regions, which always have two
columns (a clock region spans in all the cases half of the die). Moreover, for each
FPGAs family, a clock region has always fix high.

Table 2.1 shows how the number and dimension of a clock region change ac-
cording to a certain device. The height of a clock region goes from 16 CLB in the
Virtex-4 to 50 CLB in the 7 Series and Zynq (these two families have the same FPGA
architecture). The different Xilinx FPGA families are presented in Section 2.1.6. On
the contrary, the number of clock regions is almost the same in newer devices. It is
worth to mention that a column of a clock region is called frame. A frame is the
smallest addressable element of the Xilinx FPGA bitstream (see Section 2.1.4).

2.1.3 Programmable Interconnection Points (PIPs)

The PIPs are programmable CMOS transistors that allow a certain signal to be
routed into the device (Figure 2.3) [64]. The logic blocks inside an FPGA com-
municate among them utilizing a complex structure of fixed connections (see
Section 6.1). It is possible to route a signal over this routing network activating
PIPs.

11

2 Background

Configuration
Control

Static RAM Cell

Source
PhysicalWire

Destination
PhysicalWire

PIP

Write

Read

Figure 2.3: Programmable Interconnection Point (PIP) representation.

More in detail, the SRAM technology has five transistors that form the SRAM
cell and a pass transistor that creates the contacts [32; 64]. Thereby, PIP transmits a
signal depending on the value in its configuration memory cell. The PIP concept
is extensively utilized within all the presented work, considering their utilization
and testing. The number of PIPs can vary according to the device dimension and
Virtex FPGAs.

2.1.4 Configuration Memory (Bitstream)

The configuration memory is the part that controls the overall configuration of an
SRAM-based FPGA. The information stored in the configuration memory is called
bitstream. The FPGA families considered in this work have a slightly different
organization of their configuration bitstreams; however, the general structure is
the same.

The bitstream is composed of a set of frames. A frame corresponds to an FPGA
clock region column, and it spans vertically from the top to the bottom of the
configuration memory. Moreover, a frame is the atomic part of the bitstream that
can be configured. When a frame is transferred into the device, a final state machine
takes care of transferring the data in the correct position of the configuration
memory.

For every FPGA family, Xilinx provides guides regarding its configuration
memory [123; 139; 142; 147; 151]. The documents give details and information
regarding the configuration interfaces (i.e., Serial, SelectMap, Master Serial Pe-
ripheral Interface (SPI), Master Byte-wide Peripheral Interface (BPI) and Joint Test
Action Group (JTAG) configuration interface), dynamic reconfiguration ports and
bitstream generation.

However, Xilinx does not provide the information of how a certain bit of the
configuration frame can control a specific hardware function of the FPGAs. These
kinds of details are provided for older FPGAs families only [143]. Nevertheless,
in the last decade, a lot of works and projects reverse-engineered the bitstream
structure of Xilinx FPGAs, allowing manipulation of the bitstream for custom
applications (e.g., Replica [58] and Torc [109]).

12

2.1 SRAM-based FPGA Architecture

Bitstream
header

Frame
address

CLB Frames
configuration

BRAM Frames
configuration

CLB Frames
configuration

DSP Frames
configuration

Frame
address

CLB Frames
configuration

BRAM Frames
configuration

CLB Frames
configuration

DSP Frames
configuration

Frame
address

CLB Frames
configuration

BRAM Frames
configuration

CLB Frames
configuration

DSP Frames
configuration

End of
Configuration

Bitstream content

1st clock
domain

2nd clock
domain

BRAM
data

Figure 2.4: Bitstream structure.

Figure 2.4 depicts the bitstream structure. The bitstream is composed of (1) a
bitstream header, then (2) n Logic Frames Configuration according to the dimension of
the device, (3) BRAMs frames and finally (4) the end of configuration.

As shown in Figure 2.4, every frame starts with one Frame Address Register
(FAR), which allows determining the position of the frame inside the configura-
tion memory. Even if it seems an overhead for a full bitstream, this property is
remarkable when just some frames need to be configured. This is the case of a
small design where unutilized frames do not need to be configured. Also, when
DPR is performed, typically just some frames are reconfigured.

[125] provides all the information to create a bitstream, either full or partial.
Table 2.2 in Section 2.1.6 shows the dimension of a full bitstream for each FPGA
family.

The process of configuring an FPGA can be modeled in 4 sequential steps [142]:

1. Setup: consists in power up the device and clear the previous configuration
memory.

2. Device initialization: initializes the state machine that loads the bitstream.

3. Bitstream Loading: is the process of writing all the frames in the correct
position of the configuration memory. This process is controlled by the state
machine.

4. Startup: is the phase where the loaded configuration is electronically imple-
mented into the device. Hence, it can start to operate.

13

2 Background

2.1.5 Routing Physical Wires

INTs are connected among them using general purpose routing connections, which
are called physical wires (PWs). In the following, these connections are classified,
giving a better overview of the FPGA routing.

In all the Xilinx families considered in this work (Virtex-4, Virtex-5, Virtex-6,
Spartan-6, 7 Series and Zynq), the PWs are divided into two main groups: local
PWs and long PWs. The first type provides mostly connections with adjacent tiles.
Instead, the long PWs are connections that span an extended portion of the FPGA,
allowing direct connection among distant INTs.

The direction of these PWs is another aspect that differs in these two categories;
the local PWs are unidirectional connection while the global PWs are bidirectional.

Local Physical Wires

As explained in Section 2.1.1, the connection point between a PW and an INT is
called wire. In the specific, a wire is an inWire if the signal goes from the INT to the
PW; in the opposite case, a wire is called outWire. According to this classification,
it is possible to have two different PIPs: inPIPs and outPIP. In inPIPs the signal
pass first through the PIP and then to the wire; in the opposite case a PIP is called
outPIP.

In Figure 2.2 the outPIPs and inPIPs are depicted in purple and yellow respec-
tively, according to the representation in FPGA Editor [128]. It is important to
clarify that every PIP can be at the same time inPIP and outPIP; the classification
is given with respect to the wire that is considered. Every PIP connects one inWire
and one outWire, hence, considering the inWire the PIP is presented as an inPIPs;
in the other case, respect to the outWire the same PIP is classified as an outPIP.

Figure 2.5 shows the different types of local PWs, which are:

• Normal Unidirectional PW: this type covers most of the FPGAs connections.
These PWs are composed by one outWire connected to one or more inWires
(Figure 2.5a). To the outWire of this PW type, only outPIPs are connected.

• Bounce Unidirectional PW: these PWs (see Figure 2.5c) are similar to the
Normal Directional PW, except for the PIPs connected to the outWire; these
are either of the outPIP or inPIP type. In this way, the wire can be used like a
bounce PW (next PW type). So the signal it is not routed through the PW but
the wire is just used to "bounce" the signal.

• Bounce PW: this PW (see Figure 2.5b) is composed by one outWire, where
inPIPs and outPIP are connected to it. Therefore, these PWs can be used
only like a bounce PW; passing through this wire is possible to reach another
outWire of the same INT.

14

2.1 SRAM-based FPGA Architecture

(a) Normal unidirectional PW. (b) Bounce PW.

(c) Bounce unidirectional PW.

outWire
inWire

inPIP

outPIP

Figure 2.5: Xilinx FPGA PWs types. The light-blue boxes represent SMs, and the
red lines represent the PWs.

Long Physical Wires

This PWs span a wider number of INTs. For example, in Virtex-4 long PWs span
24 INTs and in Virtex-6 they span 12 INTs. Their direction is either vertical or
horizontal. In addition, they can route signal in both directions, differently from
local PWs.

Often, long PWs create problems in a DPR system; the possible issues are:

• Reliability: in DPR systems, the FPGA is partitioned into static and recon-
figurable areas. In this scenario, one of the main topic considered is the
fault-tolerance of the system. Many works have investigated how a fault
occurred in one area can affect another one. One of the ways to propagate
errors is an unexpected configuration of a PIP. Therefore, in this case, if a
PIP related to a long PW is activated, the error can be propagated to more
reconfigurable areas, due to the intrinsic length property of long PWs.

• Inhomogeneity of DPR systems: as Section 3.2.1 presents , when a module is
placed and routed (P&R) within a certain reconfigurable area, the tools verify
that the resources are not utilized by other circuits. In most of the cases, the
static design is configured, then reconfigurable modules are considered. In
this kind of scenario, a PAR tool just needs to verify that the FPGA resources
are not occupied by other circuits. A possible problem can occur in the case
of module relocation. The bidirectional property of the long PWs gives to

15

2 Background

ASMBL Architecture

FPGA A
FPGA A

Logic

Memory

DSP

H Speed I/O

FPGA A
FPGA B

FPGA A
FPGA C

Column-base
Blocks

Figure 2.6: Application Specific Modular Block (ASMBL) architecture.

the P&R other condition to consider; whenever a PR Module needs to be
synthesized in an area of a particular type, for example type A, the PAR needs
to verify in all the area of type A if no PWs are in conflict with the design.
Therefore, a possible solution to avoid issues is to exclude the use of long
PWs in the routing of a PR Module.

2.1.6 Xilinx FPGA families

In this work, the Xilinx FPGAs are the target devices. These SRAM-based FPGAs
offer advanced functionalities and allow the implementation of a single application
on a single chip. Furthermore, these devices are partial homogeneous across
different families and devices. In this thesis, all devices starting from the Virtex-4
family [144] are considered and studied. These devices, even if they are more than
a decade old, are still used in many kinds of applications.

For example, the new Solar Orbiter satellite (presented in Section 3.3.2), has on
board a radiation tolerant Virtex-4 device; it will be launched in 2018, and it will
have a mission duration of 10 years. This gives the idea of how supported and
valuable are these devices, even after more than a decade since their introduction
in the market.

Xilinx started to utilize a new production method for their devices from the
Virtex-4 family: the Application Specific Modular Block (ASMBLTM) [84]. This
kind of modular approach allowed Xilinx to produce multiple kinds of devices,
which embed in some cases different dedicated hardware (e.g., PowerPC®, DSP).

16

2.1 SRAM-based FPGA Architecture

ASMBLTM supports the concept of multiple domain-specific platforms through
the use of a column-based architecture approach (presented in Figure 2.6). Each
column represents a silicon sub-system with a specific capability (e.g., CLBs,
BRAMs, IOBs, DSPs).

This has allowed having different kinds of devices in term of space and function-
alities, enabling deployment of multiple domain-specific FPGAs to target different
customers and different applications [84] (i.e., the customer can select a specific
device with specific functionalities, avoiding buying an expensive device). The
ASMBLTM production method is still used for the latest Xilinx FPGAs produced.

Table 2.2 summarizes the main features and difference among the Xilinx FPGAs
considered in this work: Virtex-4, Virtex-5, Spartan-6, Virtex-6, and 7 Series. In total,
the devices considered are 207.

Within seven years, the maximum number of logic cells available in the device
is ten times bigger, going from 200 k in Virtex-4 to 1,954 k in Virtex-7. Moreover, in
newer families, Xilinx introduced fast I/O connections, i.e., high-speed transceiver
and PCIe interfaces. This motivates the growing interest and used applications
of these kinds of devices. In the following, properties of each FPGA family are
presented.

Virtex-4

Virtex-4 devices [144], introduced in 2004, are produced on a 90 nm copper process.
This family provides three different platform subfamilies of devices: LX, SX,
and FX. The LX sub-family is oriented to applications that require high logic
functionality; SX devices are oriented to high-performance solutions for DSP
applications; FX FPGAs provide high-performance, full-featured for embedded
platform applications. Virtex-4 FX FPGAs have on board 1 or 2 IBM PowerPC
processors, RocketIO transceiver blocks.

As mention above, these devices have been the first produced with the ASMBLTM

method. This has allowed providing 29 different FPGAs of the Virtex-4 family Ta-
ble 2.2.

Virtex-5

In 2006, the Virtex-5 family was introduced [146]. These devices are built with
a 65 nm CMOS technology using the second generation of ASMBLTM . Like the
Virtex-4 family, these devices are divided into subfamilies, according to their
performance and dedicated embedded features.

Five subfamilies are available: LX, LXT, SXT, TXT, and FXT. LX subfamily is
oriented to high-performance general logic applications. The letter T within the
family name indicates the presence of Integrated Endpoint blocks for PCIe (x1,
x4 or x8 supported) and Tri-mode 10/100/1000 Mb/s Ethernet MACs. LXT and

17

2
Background

Table 2.2: Comparison of Xilinx FPGAs.

Virtex-4 Virtex-5 Spartan-6 Virtex-6
7 Series

Artix-7 Kintex-7 Virtex-7 Zynq-7000

Date 2004 2006 2009 2009 2011 2011 2011 2011
Number of devices 29 41 45 28 27 18 20 17
CMOS technology 90 nm 65 nm 45 nm 40 nm 28 nm 28 nm 28 nm 28 nm

Logic-Cells 12 - 200 k Max 330 k 3 - 147 k 74 - 758 k 16 - 215 k 65 - 477 k 326 - 1954 k 28 - 444 k
Max Block RAM 1 Mb 18 Mb 4.71 Mb 37.4 Mb 13 Mb 34 Mb 68 Mb 26.5 Mb
Max DSP blocks 512 1,056 180 2,016 740 1,920 3,600 2,020

Transceiver Blocks 0 - 24 0 - 24 0 - 8 0 - 72 4 - 16 8 - 32 28 - 72 0 - 4
Max transc. Speed 6.5 Gb/s 6.5 Gb/s 3.2 Gb/s 11 Gb/s 6.6 Gb/s 12.5 Gb/s 28 Gb/s 12.5 Gb/s

PCIe Interface x1 Gen1 x8 Gen1 x1 Gen1 x8 Gen2 x4 Gen2 x8 Gen2 x8 Gen3 x8 Gen2
Bitstream size (MB) 0.6 - 6.1 MB 0.8 - 9.9 MB 0.3 - 4.0 MB 3.1 - 18.7 MB 2.1 - 9.3 MB 2.9 - 17.9 MB 13.3 - 45.9 MB 2.0 - 16.6 MB

18

2.1 SRAM-based FPGA Architecture

SXT devices have RocketIO GTP transceivers (design to run from 100 Mb/s to 3.75
Gb/s). The subfamilies TXT and FXT have on board from 8 to 48 RocketIO GTX
transceivers, which run from 150 Mb/s to 6.6 Gb/s. Finally, the FXT sub-family is
the only one that mounts 1 or 2 PowerPC 440.

With respect to the previous family, Virtex-5 introduced a new general purpose
routing structure (presented in Section 6.1). The modification consists of the
introduction of a more dense routing structure, which allows having a diagonal
connection to the INTs as well as horizontal and vertical. This permits the reduction
of the Nets’ latency, improving the overall performance of the system.

Spartan-6

Introduced in 2009, the Spartan-6 [137] targets applications with a low-power
footprint, low-cost and high-volume availability. This family is built on a 45 nm
process technology. This family provides a small form-factor packaging and a
different number of supported I/O protocols. The logic cell density ranges from
3,840 to 147,443.

Two sub-families are available: LX and LXT. LX is oriented to applications that
require mostly logic components; LXT version provides integrated Endpoint block
for PCIe design and high-speed GTP transceivers (bandwidth up to 3.2 Gb/s).

Virtex-6

Introduced in 2009 (in parallel with the Spartan-6 family), Virtex-6 [149] is built
with the third-generation of ASMBLTM column-based architecture. It is based on
a 40 nm copper CMOS process. Starting from Virtex-6, no device is provided with
embedded processors anymore; Soft IP-CORE microprocessors are available and
can be programmed on the device.

28 different devices are produced, where logic cell capability varies from 74,496
to 758,784; the BRAM capability varies from 5.621 kb to 38.304 kb. All the devices
provide up to 4 PCIe blocks, up to 4 Ethernet MACs connections and up to 48 GTX
transceivers.

Virtex-6 is divided into three sub-families: LXT, SXT, and HXT. LXT provides
high-performance logic with advanced serial connectivity; SXT targets signal
processing capability with advanced serial connectivity; HXT mounts up to 25
GTH transceivers with a bandwidth up to (6.6 GB/s).

7 Series

In 2011, 7 Series FPGAs [124] was introduced, which is built on a 28 nm high-k
metal gate (HKMG) process technology. This family provides SelectIO technology
with support for DDR3 interfaces up to 1,866 Mb/s. 7 Series unifies all the different

19

2 Background

subfamilies of devices, under a main series (differently from the Spartan-6 and
Virtex-6 family).

This has allowed having:

• Xilinx IP cores reused across all the 7 Series devices.

• Unified tools optimized for this kind of family; the new CAD flow Vi-
vado [153] is introduced (provided in parallel to the ISE design flow, Sec-
tion 2.3.1).

The series is divided into three families: Artix-7, Kintex-7, and Virtex-7. Artix-7
family can be seen as the updated version of the Spartan-6. Therefore, it targets the
lowest cost and power consumption with small form-factor packaging. Kintex-7 is
the mid-class family providing transceivers with a speed up to 12.5 Gb/s and logic
cells up to 478 k. The Virtex-7 family provides the highest system performances
(as the previous Virtex devices) and can have up to 1,955 k cells, up to 68 Mb of
Block RAM, and transceivers with a speed up to 28.05 Gb/s.

Zynq-7000

Introduced in 2011, the Zynq-7000 family [163; 164] is based on the Xilinx All
Programmable SoC architecture. These products integrate a Dual-Core ARM
Cortex-A9 based processing system and a 28 nm Xilinx programmable FPGA in
a single device (corresponding to the 7 Series architecture). The ARM Cortex-
A9 CPUs include on-chip memory, external memory interfaces, and peripheral
connectivity interfaces.

The Zynq-7000 family offers flexibility and scalability of an FPGA while provid-
ing performance, power, and ease of use device. These devices allow designers to
target cost-sensitive as well as high-performance applications.

UltraScale

Introduced in 2013, the UltraScale family is the successor of the 7 Series family [140;
157; 158]. It provides up to 5.5 Logic Cells at 20nm. Similarly to the 7 Series family,
they are divided into two sub-families:

• Kintex UltraScale: these devices focus on price/performance. They embed
a high number of DSPs, block RAM, and transceivers. They provide an
optimal tradeoff between capability and cost.

• Virtex UltraScale: these devices target the industry. The highest system
capacity, bandwidth, and performance. Compared to the Kintex UltraScale,
these devices provide higher system logic blocks, up to 5,541 (see Table 2.3),
and up to 30.5 Gb/s transceivers.

20

2.1 SRAM-based FPGA Architecture

Table 2.3: Comparison of UltraScale and UltraScale+ families FPGAs [162,
pp. 1,26][141, pp. 18,19][141, pp. 878,879].

UltraScale UltraScale+

Kintex
UltraScale

Virtex
UltraScale

Kintex
UltraScale+

Virtex
UltraScale+

Zynq
UltraScale+

MPSoC

Date 2013 2013 2015 2015 2015
Number of devices 25 24 17 22 55
CMOS technology 20 20 16 16 16

Logic-Cells 318 - 1451 k 783 - 5541 k 356 - 1,143 k 862 - 3780 k 103 - 1143 k
Max Block RAM 75.9 Mb 132.9 Mb 34.6 Mb 94.5 Mb 34.6 Mb
Max DSP blocks 768 - 5520 600 - 2880 1368 - 3528 2280 - 12288 240 - 3528

Transceiver Blocks 12 - 64 36 - 120 16 - 76 40 - 128 0 - 72
Max transc. Speed 16.3 Gb/s 30.5 Gb/s 32.75 Gb/s 32.75 Gb/s 32.75 Gb/s

PCIe Interface x8 Gen3 x8 Gen3 x8 Gen4 x8 Gen4 x8 Gen4
Bitstream size 15,3 - 46,0 23,9 - 123,0 14,7 - 34,7 25,5 - 76,4 5,3 - 34,7

UltraScale+

Introduced in 2015, the UltraScale+ FPGAs based on 16Fin FET+ technologies [159].
Moreover, these devices provide UltraRAM blocks and PCie x8 Gen4 [140]. This
family is divided into two FPGAs sub-families:

• Kintex UltraScale+: these devices have increased performance memory,
providing the ideal mix of high-performance peripherals and cost-effective
system implementation.

• Virtex UltraScale+: these devices have the highest transceiver bandwidth,
highest DSP count, and highest on-chip memory available in the industry
for the ultimate in system performance [140].

Another subfamily of the UltraScale+ family is the Zynq UltraScale+ MPSoC,
which is explained in the following.

Zynq UltraScale+ MPSoC

Introduced in 2015, the Zynq UltraScale+ MPSoC is an all programmable SoC,
successor of the Zynq-7000 [140; 159; 162]. This family integrates a 64-bit Qual-Core
or Dual-Core ARM Cortex-A53 and Dual-Core ARM Cortex-R5 based processing
system and Xilinx programmable logic UltraScale architecture in a single device.

21

2 Background

They also include an on-chip memory, multiport external memory interfaces, and
a rich set of peripheral connectivity interfaces.

This family is divided into three subfamilies [161]:

• CG devices: they are featured with a Dual-Core Cortex-A53 (Application
Processor) and a Dual-Core Cortex-R5 real-time processing unit. These
devices target industrial sensor fusion, motor control, and Internet of things
(IoT) applications.

• EG devices: they feature a Qual-Core ARM Cortex-A53 platform running up
to 1.5GHz (Application Processor) and with Dual-Core Cortex-R5 real-time
processors, a Mali-400 MP2 graphics processing unit. These devices have
specialized processing elements that can target 5G wireless infrastructure,
cloud computing, and aerospace applications.

• EV devices: they are based on the EG devices presented above; in addition,
they integrate H.264 / H.265 video codec capability that allows simultane-
ous encode and decode up to 4Kx2K (60fps). These devices are ideal for
automotive ADAS, multimedia, and embedded vision applications.

2.1.7 Space-Grade devices

Space is one of the target applications of FPGAs. Nowadays, the antifuse FPGAs
are strongly utilized in space missions. Nevertheless, SRAM-based FPGAs are
getting more and more utilized, as well as COTS FPGAs, in particular for missions
with shorter lifetime and less critical constraints.

Reconfigurable space-grade products can be divided into two categories:

• Radiation-Tolerant: these SRAM-based FPGAs provide immunity to certain
radiation effect and specific mitigation for others.

• Radiation-Hard: these SRAM-based FPGAs thanks to radiation-hardened
process and radiation-hardened design, they are immune to the effects of
radiations.

Xilinx provides qualified devices for space: the Virtex-4QV (Radiation-Tolerant)
and the Virtex-5QV (Radiation-Hard). The main difference from the COTS devices
is the production and qualification phase. They are fabricated on a thin epitaxial
wafer and high-reliability ceramic flip-chip packaging technology. The resistance
to radiations is validated using in-beam testing (equivalent of millions of device
years in space radiation environment).

Nevertheless, it is important to mention that in space-grade devices, configu-
ration memory and the high-level architecture is the same of COTS devices; this

22

2.1 SRAM-based FPGA Architecture

allows a direct porting from commercial to space-grade devices. Moreover, the
Xilinx design flows (e.g., ISE, EDK) are compatible with this space-grade devices.

These FPGAs offer the latest solution for addressing the needs of critical space
missions where design changes can be accommodated late in the program or
through reprogrammability, even after launch [135]. In the following, a description
of the two Xilinx space-grade devices is given: Virtex-4QV and Virtex-5QV.

Virtex-4QV

Virtex-4QV family [136] was introduced in 2007. These devices provide immu-
nity to Single-Event Latch-up (SEL) and high tolerance against SEU and TID.
They fall in the category of space-grade radiation-tolerant devices. Xilinx pro-
vides four different FPGAs: the XQR4VSX55, XQR4VFX60, XQR4VFX140 and
XQR4VLX200 [136]. As mentioned above, these devices correspond to a specific
commercial device, sharing the same modular architecture and pin packaging (i.e.,
XC4VSX55, XC4VFX60, XC4VFX140 and XC4VLX200 [144]).

It is worth to mention that the configuration memory and configuration con-
troller of FPGAs do not have specific mitigation techniques in the fabric phase.
Hence, SEUs are mitigated thanks to specific mitigation techniques at application-
level (e.g., Triple Modular Redundancy (TMR)).

Virtex-5QV

Virtex-5QV [135] is a rad-hard by design (RHBD) device. It is total immune to SEL
and provides 1 Mrad(Si) [26, p. 227] TID performance. Introduced in 2010, this
family consists of a unique device, the XQR5VFX130. This device provides all
the new features introduced with the Virtex-5 family combined with a rad-had
design technology. This device embeds Error Detection and Correction (EDAC)
and autonomous write-back for high-performance block memory SEU mitigation.

The Virtex-5QV design utilizes dual-nodes latches that control write operations
to memory cells. Writes occur only when both latches are enabled synchronously.
This implementation offers 1,000 times the hardness to SEUs compared to the
commercial FPGA version.

According to [156], SEU immunity in the configuration memory and control logic
is defined regarding deployment in a GEO environment about a space platform
that travels 36,00 km/day. Based on 35 Mbits of configuration memory that could
be subject to SEUs, the FPGA suffers 3.8x10−10 error per bit per day.

RT Zynq UltraScale+ MPSoC

In 2016, Xilinx announced a family of radiation-tolerant devices, called RT Zynq
UltraScale+ MPSoC [50]. Currently, a unique device is expected to be avail-

23

2 Background

able in 2018: the RT ZU19EG [50]. This device corresponds to the commercial
ZU19EG [140].

Differently from the previous Xilinx space-grade devices, this device is an all
programmable SoC. The RT ZU19EG integrates a programmable logic part (PL)
with 1143 k Logic cells (10 times more than the Virtex-5QV device) and a processing
system (PS). The PS consists of an application processing unit based on a Qual-
Core ARM Cortex-A53, a Real-Time Processor Unit based on a Dual-Core ARM
Cortex-5, and a Mali-400 MP2 graphics Processing Unit.

2.2 Dynamic Partial Reconfiguration

As mentioned in Section 2.1, in the last two decades, the utilization of SRAM-based
FPGAs increased in a wide range of applications, providing the possibility to re-
configure hardware circuits multiple times. Later, the requirements of the market
increased, therefore, developers and researchers started to investigate the pos-
sibility to reconfigure just a portion of an FPGAs (e.g., change just a specific
functionality of a circuit), without the need to reconfigure the rest of the system.

Then, dynamic partial reconfiguration has been introduced, which has allowed
reconfiguring just a portion of the FPGAs having the rest of the device still operat-
ing; this property of FPGA is called Dynamic Partial Reconfiguration (also known as
Run-Time Reconfiguration). It was introduced in the Xilinx devices in the late 90s,
on the Xilinx XC6200 series [21].

DPR can be performed in two different approaches [63]:

• Module-based: it is performed partitioning the FPGAs in a certain number of
portions (tiles or slots). In this way, a certain hardware component (called
module), can be placed in one slots/tiles dynamically.

• Difference-based: this approach does not require any partitioning of the system;
as the name indicates, it compares two different configurations, a based- and
a target-bitstream. As results, just a bitstream that contains the differences
from the base-bitstream to the target-bitstream is generated. This method is
suitable when the differences between two configurations are small, allowing
a reconfiguration just in specific parts of the FPGAs.

The first approach executes a reconfiguration in a certain portion of the FPGA
area, without considering the previous configuration. On the contrary, when a
DPR is provided with the difference-based method, the new partial bitstream
depends on the previous configuration of the device.

After that researchers have started to evaluate and investigate this property [17;
27], Xilinx provided the first support for DPR in 2006; the Early Access Partial

24

2.2 Dynamic Partial Reconfiguration

Reconfiguration (EAPR) plug-in [127], based on the ISE design flow. This module-
based approach allowed running DPR on the Virtex-2 and Virtex-4 devices.

With the wide integration and utilization of the EAPR flow, Xilinx provided from
the version ISE 12.1 (2010) [34; 131] a direct integration of DPR in ISE/PlanAhead,
presenting new methodologies and support for a wider range of FPGAs (Virtex-4,
Virtex-5, Virtex-6, Artix-7, Kintex-7, and Virtex-7). This new approach is called
Xilinx PR (see Section 3.2.1).

2.2.1 Benefits

Dynamic Partial Reconfiguration (DPR) is a remarkable feature of FPGAs [34]; it
gives the designer the ability to reconfigure a certain part of the FPGA at run-time
without influence the other ones.

Utilizing DPR, a system can have the following benefits:

• Reduce cost: the device can be time-scheduled, configuring a specific func-
tionality only when is required. This allows the adaptation of a smaller
device, rather than have a bigger one with all the functionalities imple-
mented.

• Change a design on the field: DPR increases the flexibility of the device,
allowing updates to a certain functionality without changing the overall
system.

• Reduce power consumption: power is always an important aspect to con-
sider in electronic devices. The power consumption of an FPGA is usually
divided in I/O power, dynamic power and static power [160]. On the one hand,
dynamic power can be reduced, since that, just a needed application can be
configured when is needed; this avoids having unused circuits powered-on
on the device. On the other hand, static power can be reduced as well, uti-
lizing a smaller device. Moreover, considering the overall power consumed
by FPGA, the impact of static power consumption is increasing, as CMOS
technology shrinks [Kuon; 132].

• Increase reliability (fault-tolerance): SRAM-based FPGAs can be affected
by radiations, which can change the configuration of a circuit (radiation effect
on FPGA is discussed in Section 2.4). Thanks to the DPR, when a soft error
occurs, it can be easily corrected overwriting it (i.e., blind-scrubbing [18]).

• Reduce memory requirement: if the FPGAs needs to be multiple time recon-
figured, one of the problems can be the space required for the bitstream; as
discussed in Section 2.1.4, a bitstream can occupy up to 46 MB. DPR allows
having just a set of partial bitstreams, which can be reconfigured according
to a specific use scenario.

25

2 Background

Moreover, a DPR scenario can bring benefits in the final design complexity. Even
if the development of a DPR communication infrastructure needs a higher cost for
the design implementation, on the contrary, the final design can be less complex
than a static one. More details about the comparison between static and DPR
designs are provided in [98].

2.2.2 FPGA partitioning

In the following, it is described how a DPR system can be partitioned. This
section summarizes the work presented in [61]. As presented at the beginning of
this section, DPR can be applied in two different approaches: module-based and
difference-based.

Difference-based is utilized for small changes on a design. However, the module-
base approach offers more features and capabilities. A system that adopts DPR is
called Partial Reconfigurable System (PR System). Xilinx provides an extensive
guide, which explains how module-based DPR can be created and utilized [131].

Figure 2.7 represents a heterogeneous FPGAs, which contains different logic
blocks; in addition, it shows how a PR System can be created. A PR System design
requires a partitioning of the FPGA to reconfigure only specific areas. In particular,
two different regions are created: base region and dynamic region (also called Partial
Reconfigurable Region (PR Region)). In Figure 2.7 they are indicated in dark-gray
and light-gray respectively.

Figure 2.7: FPGA Partitioning using Partial Reconfigurable Regions (PR Regions)
with Reconfigurable Tile [61].

26

2.2 Dynamic Partial Reconfiguration

The base region contains components that are not reconfigured. Therefore, the
configuration of this region is made once in the initialization of the system, and it
is not changed at run-time. On the contrary, the reconfigurable region is used for
run-time reconfiguration; all the dynamic system components are located in this
region.

To fully exploit the DPR capabilities, another partitioning of PR Region is re-
quired. A PR Region is divided in Reconfigurable Tiles (PR Tiles), which are the
smallest partial reconfigurable units in the system. According to the heterogeneity
of the FPGAs, a PR Region may contain different types of PR Tiles, which contain
different resources (e.g., CLBs, Block RAMs and DSPs). For example, in Figure 2.7,
the PR Region is divided in PR Tiles of two different types.

The dynamic logic components are represented by the PR Modules, which can
be placed and removed at run-time. The placement is done by reconfiguring
suitable contiguous PR Tile. According to the PR Tile types, the PR Module can be
placed in different position, using an equivalent configuration; this mechanism is
called bitstream.

In this kind of scenario, the communication infrastructure is one of the key
components, which allow communication among static regions and all the PR
Tiles. Section 2.2.3 discusses in detail how a communication infrastructure, which
allows relocation of PR Modules, can be created.

2.2.3 Communication Infrastructure in a PR system

Communication infrastructure is a key part of a DPR design; it allows the in-
terconnection of all the different areas of the system. Different communication
infrastructures can affect the reconfigurable property of the system (e.g., homo-
geneity, interrupt free reconfiguration, dedicated signal). This section summarizes
the communication infrastructure presented in [61].

In 2006, with the EAPR flow [127], Xilinx provided the first approach to establish-
ing communication between different areas (static or dynamic): the bus-macro [63].
Bus-macros are instances of the FPGA logic and routing resources. They are in-
tended to lock the routing between different regions, making possible to connect
the pins of either the static part or a PR Module. In this way, whenever a PAR
is executed, the resources occupied by a bus-macro are reserved. Hence, in the
EAPR plug-in, the bus-macros were the only communication channels crossing
the reconfigurable regions.

Although the term bus-macro seems to indicate a macro for implementing bus
structures, its use does not go in this direction. On the contrary, this connection is
commonly used in single-module PR Regions for the communication link between
a PR Module and the base region; this type of connections are referred as link
macros.

27

2 Background

In addition to bus-macro, Xilinx provides the possibility to create any function-
ality that can lock logic and routing resources: hard macros. They are pre-P&R
design blocks, which can be created once for a certain family of FPGAs, without be
related to a certain location of a device. Therefore, all logic and routing resources
of a hard macro can be moved together to maintain the same "shape".

Hard macros permitted investigating different communications infrastructures,
overcoming the limitation of the Xilinx bus-macros. In the following, different
communication approaches are presented. In particular, it is highlighted the
capability of a communication infrastructure to keep the PR System homogeneous.
The term "homogeneous" indicates that the communication infrastructure utilizes
the same logic and routing resources in the same relative position; this allows to a
PR Module to be relocated to a different location.

Link Macros Between Tiles (LMBT)

As presented in [61], in this communication infrastructure, link macros are used to
interconnect neighboring tiles. Moreover, this communication infrastructure can
realize 1-D as well as for 2-D PR Tiles partitioning (as shown in Figure 2.8a).

The disadvantage of this approach is that link macros are only used to establish
the connection from one PR Tile to another. Therefore, the bandwidth suffers from
a large delay across multiple PR Tiles.

In addition, the connection of the link macros within a PR Tile. Then, the
communication infrastructure is module-dependent; this means that the routing
can be interrupted and can change during the reconfiguration process of a PR Tile.

Consequently, the implementation of the communication for PR Tile depends
on the communication infrastructure of the surrounding PR Tiles. Each new PR
Module placement requires changes to all other modules that are involved in its
communication, causing additional reconfiguration overhead.

Link Macros combined with Communication Channels (LMCC)

LMCC communication infrastructure ensures that each PR Tile can be directly
connected to the base region (differently from the LMBT approach); this is achieved
combining link macros with communication channels [61]. An example of this
communication infrastructure is illustrated in Figure 2.8b. The communication
channels are part of the base region, and the link macros are placed between this
region and the partially reconfigurable region.

The partitioning shows that the PR Region is split into multiple PR Regions
segments since that the area of the communication channels can be only used
for communication and static logic. Then, the maximum size of a PR Module is
limited to the size of a segment since that the communication channel separates
the PR Region segments.

28

2.2 Dynamic Partial Reconfiguration

(a) Link Macros Between Tiles
(LMBT).

(b) Link Macro and Generic Rout-
ing.

(c) Wormhole Routing Scenario.

Figure 2.8: Typical Communication Infrastructures in a PR Region scenario [61].

Hence, comparing this communication infrastructure with Link Macros Between
Tiles (LMBT), the number of PR Tile are less (having the same PR Region, as
depicted in Figure 2.8). However, this kind of approach can handle modules
relocation and DPR.

Wormhole Routing

Wormhole routing [74] is a method to realize a communication infrastructure that
circumvents the limitations of LMBT and LMCC. With wormhole infrastructures,
communication channels span over one or more PR Tiles; more distant is the

29

2 Background

PR Tile from the static region, higher is the number of PR Tiles crossed by its
communication channel [61].

Whenever the reconfigurable area comprises many PR Tiles, this approach
consumes a considerable amount of routing resources, as can be seen in Figure 2.8c.
Therefore, the routing resources that are available for PR Modules linearly decrease
from right to left. Since only point-to-point connections between a PR Tile and the
base region are used, every Partial Reconfiguration (PR) requires an exclusive set
of communication lines.

The disadvantage of this approach is the lack of homogeneity in the system; the
communication channels routing within a PR Tile differs according to the PR Tile
column (as it shown in Figure 2.8c). Moreover, PR Module relocation cannot be
performed.

2.2.4 Embedded Macros

Embedded macros, introduced in [61], provide a method to create a communi-
cation infrastructure that is embedded into the PR region. Therefore, part of the
communication infrastructure is included in the PR Module as well.

The embedded macro is not a point-to-point connection; instead of using multi-
ple instances of simple link macros, one monolithic macro is created, as shown in
Figure 2.9. The macro connects all PR Tiles with the base region homogeneously;
it combines the advantages of the three link macro variants described, without
sharing their drawbacks.

The main property of this communication infrastructure are:

• Homogeneity: the communication infrastructure uses the same resources in
the same way in the PR Tiles. Therefore, is possible to place a PR Module in
difference positions. Wormhole Routing does not support this feature.

Figure 2.9: Communication Infrastructure using Embedded Macros [61].

30

2.3 Xilinx Design Flow

• Interrupt free reconfiguration: the communication infrastructure is imple-
mented to operate even during the reconfiguration phase. This property is
not supported in LMBT; the communication channels pass through the PR
Module interrupting the signal during the reconfiguration process.

• Dedicated signal: embedded macros utilize this kind of connection that are not
presented in LMBT communication macro, which reduces communication
latency.

2.3 Xilinx Design Flow

FPGAs allow the implementation of complex circuits in hardware. The circuits are
translated to a bitstream and then configured on the devices. Xilinx provides tools
and instruments that enable users to implement their applications, for example
starting from an HDL representation. Moreover, Xilinx provides tools and lan-
guages to interact with custom solutions and implementation of the synthesis flow,
allowing the possibility to researchers of enhancing their functionalities; one of
this is the ISE design flow (Figure 2.10). ISE comprises the following steps: design
entry, design synthesis, design implementation and device programming.

2.3.1 ISE

ISE design tool flow gives the overall context and framework for the development
cycle of FPGAs. It provides all the steps to bring a certain design from the high-
level representation to a configurable bitstream.

This thesis focuses on the PAR, which is part of the design implementation
phase. This phase gets in input a synthesized design and then is mapped and
placed within the logic blocks of the design; then, it is routed through the general
purpose routing matrix. At the end of this step, the design is then P&R.

Figure 2.11 presents the ISE PAR phase and its intermediate files:

• The Translate process merges all input net-lists design constraints and gener-
ates a Xilinx Native Generic Database (NGD) file, which describes the logical
design in the Xilinx primitives format.

Design Entry Design Synthesis
Design

Implementation
Xilinx Device
Programming

Figure 2.10: Xilinx ISE Design Flow.

31

2 Background

Synthesis

(XST)

Design Implementation

Design High Level
Representation
(HDL, Verilog)

NGC MappingNGD
Translate

(NGDBuild)

Place And

Route
NCD NCD BitGen

Bitstream (bit)

Figure 2.11: Xilinx ISE Design Implementation.

• Mapping process maps the logic defined by an NGD file into FPGA elements,
such as CLBs and IOBs; the output is a Netlist Circuit Description (NCD) file.

• Place and Route process takes a mapped NCD file, places and routes the
design, and it produces another NCD file.

• Bitgen process produces a bitstream for Xilinx device configuration (a *.bit
file); at this point, the target FPGA can be configured.

In all these steps, the P&R design is represented in a Xilinx property language
(NCD), which is unusable by external tools. Nevertheless, Xilinx has instructed
an intermediate language: the Xilinx Desing Language (XDL). XDL describes a
design using a human-readable syntax. Moreover, Xilinx has provided a dedicated
tool, FPGA Editor, which allows the user to operate custom modification on an
implemented design (e.g., modify the placement of one component or the routing
of one net).

ISE, and their sub-programs (i.e., FPGA Editor and XDL), supports all the
FPGAs presented in Section 2.1.6: Virtex-4, Virtex-5, Virtex-6, Spartan-6, 7 Series
and Zynq-7000. Then, Xilinx decided to utilize a new program starting from the
7 Series FPGAs: Vivado.

This new tool replaced the ISE design flow starting from the UltraScale series (in
the 7 Series, both flows are kept). Then, the tools of the presented thesis need to be
adapted to the new Vivado flows to be compatible with the latest Xilinx FPGAs.

However, this thesis targets the space harsh-environment, which consists in a
longer life-time utilization of the considered devices, and therefore, to their design
tools. One example is the reconfigurable Virtex-4QV mounted on the Solar Orbiter
(see Section 3.3.2); this satellite will be launched in 2018 and its planned operation
time is ten years.

32

2.3 Xilinx Design Flow

2.3.2 FPGA Editor

FPGA Editor [128] is a graphical editing tool for physical designs implemented
in Xilinx FPGAs; it is a subpart of the ISE design flow. The FPGA Editor requires
either an NCD or an NMC file. These files contain the logic of a design mapped to
components (such as CLBs and IOBs).

FPGA Editor allows the user to perform different modifications on a imple-
mented design, either if the design is just mapped, placed or routed. Moreover, it
is able to apply just one of the mentioned operations for a single or small set of
components. Some possible operations are:

• Place and route components (before running the PAR default tool) and Finalizing
placement and routing (if the routing program does not completely route your
design). In this way, the user can partially control the PAR of a design. If a
manual placement can be performed easily in FPGA Editor, on the contrary,
this is not the case of manual routing; a manual route requires extensive
knowledge about the FPGA routing structure. Moreover, to route a certain
net, all the resources need to be selected in right order, starting from the
outpin and going to the inpin [129].

• Add probes to your design to examine the signal states of the targeted de-
vice [129]. Probes are used to route the value of internal nets to an IOB for
analysis during the debugging phase.

• Integrated Timing Analyzer to cross-probe a design [129].

Thanks to these advanced features, FPGA Editor is extensively used in the
DHHarMa tool of INtegrated Design flow for Reconfigurable Architectures 2.0
(INDRA 2.0) and in the OLT(RE)2 flow.

FPGA-Edline

One utility of FPGA Editor is FPGA-Edline, which is a command-line style version
of FPGA Editor. The main advantage of FPGA-Edline is that commands can be
executed directed in FPGA Editor.

So, despite the XDL language, when a certain script uses FPGA-Edline com-
mands, the design does not need to be converted in XDL and then back to NCD.
As presented in Section 2.3.3, the conversion in XDL has some drawbacks, and in
some cases, it cannot be performed for a full design.

FPGA-Edline is utilized in the PSRerouter of INDRA 2.0 flow to extract FPGA
routing information (not included in XDL) and to reroute single nets of complex
designs. Furthermore, it is utilized in OLT(RE)2 to highlight routing resources of
an FPGAs, giving graphical information regarding their testability. [128] gives
more details about the FPGA-Edline commands.

33

2 Background

2.3.3 XDL tool

Xilinx provides the users of ISE with two powerful tools to describe an FPGA: The
first tool, FPGA Editor, is presented in Section 2.3.2. The second one is a command
line tool, named XDL; it provides the mechanism for gaining external access to
design data. XDL generates a human-readable file (in XDL format) to describe
either an FPGA architecture or a design textually.

Xilinx documents neither the XDL language nor the XDL tool. A detailed
explanation of the syntax and semantic of an XDL can be found in [8; 41; 44; 184].

The tool XDL offers three different running modes:

1. ncd2xdl: conversion of an NCD to an XDL-file.

2. xdl2ncd: conversion of an XDL to an NCD-file.

3. report: description of an FPGA architecture.

The first two modes give the designer the opportunity to textually modify
a build design file (NCD) or a hard macro file (NMC). Differently, the report
running modes is oriented to provide information of the FPGA architecture; it
generates an XDL-report file (the so-called XDLRC format). The XDL-report
contains information about the whole FPGA in an ASCII-formatted text file.

Since its introduction, the intermediate language XDL has been used by many
researchers to deploy new functionalities on FPGAs. The XDL language is used
as an intermediate language in the RecoBus-Builder [60], GoAhead [9], Rapid-
Smith [66] and Torc [109] (see Section 3.1) as well as in DHHarMa and OLT(RE)2

tools, which are presented in this thesis. More detailed about XDL are presented
in [25].

Macro Hardware XDL

In the following, the syntax of an XDL design is presented. Figure 2.12 shows part
of an XDL file, generated from an NCD file.

As presented in [184], the XDL can be divided into three parts:

• Properties and Ports: this contains the main properties of the design, e.g.,
name of the design and target FPGA. Moreover, it contains a list of all the
ports of the design.

• Instances: it lists all used blocks (e.g., slices, IOBs, Block RAMs) of the design.
These blocks are called primitive instances (inst). The example in Figure 2.12
shows one primitive instance, which represents one slice of a Virtex-6 CLB
(one CLB hosts two slices in Virtex-6 FPGAs). One slice consists of four parts,
where each consists of two LUTs, two registers, and a carry chain.

34

2.3 Xilinx Design Flow

In
st

an
ce

s
N

et
s

P
ro

p
er

ti
es

an

d
 P

o
rt

s

design "bm_top" xc6vcx75tff484-2 v3.2 ,

#All Port
port "CLK_int" "Base0_[11]_(Slice_2/3)" "CLK";

#All instances (SLICE, IOB, DSP, BRAM ...)
inst "Rec0_a_[0]_(Slice_1/2)" "SLICEL",placed CLBLM_X12Y118 SLICE_X19Y118 ,
 cfg "
A5FFINIT::#OFF A5FFMUX::#OFF A5FFSR::#OFF A5LUT::#OFF A6LUT:Rec0_a/
inst_g[0].base_element_1/LUT2_4.A6LUT:#LUT:O6=(A5*A6) ACY0::#OFF AFF::#OFF
AFFINIT::#OFF AFFMUX::#OFF AFFSR::#OFF AOUTMUX::#OFF AUSED::0
 B5FFINIT::#OFF B5FFMUX::#OFF B5FFSR::#OFF B5LUT::#OFF B6LUT:Rec0_a/
inst_g[0].base_element_1/LUT2_1.B6LUT:#LUT:O6=(A5*A6) BCY0::#OFF BFF:Rec0_a/
inst_g[0].base_element_1/FD_2.BFF:#FF BFFINIT::INIT1 BFFMUX::O6 BFFSR::SRLOW
BOUTMUX::#OFF BUSED::0
 C5FFINIT::#OFF C5FFMUX::#OFF C5FFSR::#OFF C5LUT::#OFF C6LUT:Rec0_a/
inst_g[0].base_element_1/LUT2_2.C6LUT:#LUT:O6=(A5*A6) CCY0::#OFF CFF:Rec0_a/
inst_g[0].base_element_1/FD_3.CFF:#FF CFFINIT::INIT1 CFFMUX::O6 CFFSR::SRLOW
COUTMUX::#OFF CUSED::0
 D5FFINIT::#OFF D5FFMUX::#OFF D5FFSR::#OFF D5LUT::#OFF D6LUT:Rec0_a
inst_g[0].base_element_1/LUT2_3.D6LUT:#LUT:O6=(A5+A6) DCY0::#OFF
DFF:Rec0_a/inst_g[0].base_element_1/FD_1.DFF:#FF DFFINIT::INIT1 DFFMUX::O6
DFFSR::SRLOW DOUTMUX::#OFF DUSED::#OFF
 CLKINV::CLK COUTUSED::#OFF PRECYINIT::#OFF SYNC_ATTR::ASYNC "
 ;
inst "Rec1_b_[0]_(Slice_2/4)" "SLICEL",placed CLBLM_X12Y119 SLICE_X19Y119 ,

#All nets connecting the instances
net "static_right_out<7>" ,
 outpin "Rec0_a_[0]_(Slice_1/2)" BQ ,
 inpin "Base0_[0]_(Slice_1/10)" AX ,
 inpin "Rec1_b_[0]_(Slice_2/4)" B6 ,
 inpin "Rec0_a_[0]_(Slice_1/2)" D5 ,
 pip CLBLM_X12Y118 CLBLM_L_BQ -> CLBLM_LOGIC_OUTS2 ,
 pip INT_X12Y118 LOGIC_OUTS2 -> IMUX_B20 ,
 pip CLBLM_X13Y117 CLBLM_IMUX_B20 -> CLBLM_L_B6 ,
 ...
 ;
net "static_right_out<8>" ,

Figure 2.12: An example of an XDL-file of a design for a Xilinx Virtex-6 FPGA [184].

35

2 Background

• Nets: it contains the information about the instances’ connections of the
design. A net consists of a set of pins, where the first pin in the list defines
the output pin (outPin) and the other define the input pins (inPins). Each
pin is linked to one previously defined instance. If the net is routed, the net
section contains the PIPs that are utilized.

XDL Report

The report is the only standalone Xilinx file that describes a whole Xilinx FPGA
with all components and their connections. Section 3.1 presents works that have
created proprietary and open-source databases, which embed this information,
targeting different kinds of Xilinx FPGA families.

It is possible to create three different depths of detail for each FPGA, depending
on the parameters passed to the Xilinx XDL tool. The installed FPGAs can be
determined with another Xilinx tool, called PARTGen. It can be launched from a
command prompt: partgen -arch <FPGA-family> (e.g., partgen− archvirtex6 lists
all Virtex-6 FPGAs).

In the following the possible parameters of the Xilinx report are presented:

1. -report: activates the creation of a coarse overview of the FPGA.

2. -pips : adds wires and PIPs information.

3. -all_conns: adds all connections of wire.

For example, about the three functionalities, a full representation of the FPGAs,
including Tiles, Primitive Sites, Pinwires Wires, Connections, and PIPs, can be created
with this command:

xdl −repor t <designName> − pips −a l l _ c o n n e c t s

2.3.4 Vivado

Xilinx decided to introduce a new design flow, starting with the 7 Series families:
Vivado [153]. This decision has been made to meet the newer requirements and
functionalities that the market needs. As mentioned in Section 2.3.1, ISE is the
standard flow till the Virtex-6 family, and it provides the XDL. This intermedi-
ate language has been utilized by researchers to add new functionalities to the
standard ISE flow.

The new Vivado tools do not embed the XDL tool and language anymore.
In substitution, Xilinx provides to the user the FPGA architecture details and
low design information through a Tcl scripting language [154]. Tcl is a standard
language in the semiconductor industry for application programming interfaces.

36

2.4 Radiation Effects

It performs interactive queries to design tools in addition to executing automated
scripts, as well as provides the ability to query questions interactively of design
databases. Moreover, it provides functionalities to get information about tools,
design settings and state. This tool is not considered in this thesis.

2.4 Radiation Effects

This section provides a categorization of the radiation faults and effects that may
occur in the space environment, focusing on the permanent ones. Failures caused
by radiations in space is one of the most challenging issues on modern complex
electronics systems [97].

Radiations origin either from the sun (i.e., solar flares, coronal mass ejections,
solar wind) or from outside the solar system (i.e., galactic cosmic rays) [36]. Radia-
tions are set of particles that can interact with the electronic systems, exchanging
energy; these particles can easily move in the vacuum of the space environment.

The earth atmosphere acts as a shield for these kinds of particles; the molecules
that the atmosphere is composed of, reduce the energy of these particles, protecting
the terrestrial surface. Therefore, electronic circuits used in terrestrial applications
are consequently safer than the ones used in space.

For these reasons, space is considered a harsh-environment for electronics sys-
tems [36]. Many efforts have been spent in the last decades to measure, model, and
mitigate radiation effects; the problem has been faced with different techniques at
various abstraction levels.

From the electronic system point of view, faults induced by the radiations can
be categorized into two classes: Single Event Effects (SEEs) and TID. The different
kinds of errors are represented in Figure 2.13.

Radiation Effects

Total
Ionizing

Dose (TID)

Single
Event

Effects (SEEs)

Soft SEE

Single
Event Upset

(SEU)

Single
Event Functional
Interrupt (SEFI)

Single
Event Transient

(SET)

Hard SEE

Single
Event

Latchup (SEL)

Figure 2.13: Radiation Effects classification [121].

37

2 Background

SEEs may cause both instantaneous and long-term damages in electronic sys-
tems. Instantaneous damages are the well-studied SEUs and SETs [7]; long-term
damages are usually caused by the TID, i.e., the accumulation of charge trapped in
the oxide layer of transistors in CMOS circuits [110]. TID first causes degradation
of the performance of the system, and ultimately it may cause failures [5].

Other effects of radiations can be displacement damages; these kinds of effect are
not investigated in this work, since that are not targeting FPGAs (i.e., displacement
damage effect concern electro-optic, sensors, diodes, opt-couplers, solar cells,
wide-base bipolar transistors) [36].

2.4.1 Single Event Effects

SEEs are caused by the passage of a single high energy proton or heavy ion through
a device or a certain sensitive region of a microcircuit. Depending on the strike
location, the electric fields and the energy of the incident particle, the passage can
produce different functional behavior [121].

SEEs can be temporary faults, Soft SEEs, if the error induced is reversible. On the
contrary, if the fault is permanent (damaging the device), it is called Hard SEEs. In
the following, the different SEEs are presented: SET, SEU, Single Event Functional
Interrupt (SEFI), SEL [5; 36].

SET

These faults occur when high-energy particles impact a combinatorial path of a
device and induce a voltage or a current spike. If the pulse-width of the spike is
enough, it can propagate a fault through the circuit. This kind of fault affects the
device for a certain period (usually until a power cycle is performed). In some
cases, a SET can result in an SEU.

SEU

It is a soft error that causes the state change of a bistable element. This effect occurs
because of the change deposit by ions and protons. SEU is the most common effect
on SRAM-based FPGAs.

SEUs are not usually permanent faults because the correct value can be restored
overwriting the wrong value on the affected memory element. However, there are
some cases where the memory element could not be written again; this changes
the SEU effect into a permanent one until a reset or power cycle is performed.

One typical example of SEU is a bit-flip, which can occur in the configuration
memory of the device; assuming that a bit-flip occurs in a memory location that
controls a switch matrix, this can lead to a faulty-route of the device. It is possible
to recover from this kind of error overwriting the affected memory location.

38

2.4 Radiation Effects

SEFI

This kind of effect can appear in complex microcircuits. It is similar to a memory
SEU, however, an SEFI leads to a temporary non-functionality of the affected
device; SEFI may be not recoverable unless a global reset is performed.

For example, an SEFI can be a fault in the program counter or in the status
register of a processor that brings the processor in a faulty state; the correct state
can be restored just with a global reset. In the same way, faults in the reconfigura-
tion control logic of FPGAs may interrupt the reprogramming functionality, thus
requiring a global reset to restore the correct state of the device.

[4] provides a categorization of failures that SEFI can induce in FPGAs. In
general, SEFI is not accompanied by a high current consuming condition, despite
the SEL effect.

SEL

Differently from the others SEEs, SEL is a permanent error that generates an
increase of current. SEL is the results of a parasitic PNPN thyristor within a
CMOS [36]. In some cases, the latch-up can be clearable with a power cycling.

2.4.2 Total Ionizing Dose

Differently from the SEEs, TID is the effect of the accumulation of the charge
injected by radiation in the oxide layer of transistors in CMOS circuits. TIDs
in space and avionic applications are mainly due to the effects of protons and
electrons and the consequent secondary particles generated by the interaction of
the former with the device [5].
TID effects are usually measured in Radiation Absorbed Dose (rad); a rad is
equivalent to 0.01 Gy (Gy = J

kg = m2

s2)[100].
The amount of accumulated charge depends on the exposure time, the flux of

the particles and their Linear Energy Transfer (LET), i.e., the amount of energy that
ionizing particles transfer to the material traversed per unit area [5]. TID induces
charge accumulation and displacement damages that, together, lead to different
malfunctions.

First, a global worsening of the device performance is registered, decreasing
the performance and increasing power consumption. In memory circuits, TIDs
affect the sensitivity of the logic states of memory cells asymmetrically, causing
an imbalance. This effect is due to mobility and transistors threshold changes
resulting from ionizing radiation.

The second effect of TID is the change in the SEE sensitiveness; specifically, the
accumulated charge within the crystal lattice of the device can make the device
more sensitive to SEEs. One consequence is that SEUs can cause "stuck-bits", which

39

2 Background

are memory cells whose value is modified by an SEU, however, because of the
ionizing dose, their correct value cannot be restored.

In general, TID effects can be annealed by heating the device, to provide enough
energy to the crystalline lattice; in this way atomic locations can be restored and
trapped charges can be released. Of course, it is hard to apply this kind of method
safely in space missions.

In conclusion, TIDs turn in these effects on a device: performance degradation,
power consumption increase, and programmability loss. The first effect leads to
having slower devices, whose maximum operating frequency is reduced. The
second effect is caused by the leakage currents in a transistor, which increase
power consumption. Finally, TIDs can lead to losing reprogrammability in the
FPGA configuration memory, turning in a permanent fault [5].

2.4.3 Radiation Sensitiveness on SRAM-based FPGAs

First in the 1950s, it was documented that radiations can have adverse effects
on electronic circuits. In the next years, the errors were so rare that the study of
SEUs was just an academic research. Later, circuit dimensions got smaller, hence,
voltages were reduced with process shrinks, the stored charge at a node became
smaller and smaller, and the error rate became more significant. Moreover, with
the advent of the modern ICs, the possibility of a radiation-induced error grew;
this of the case of the FPGAs devices [53].

From the introduction of the first FPGA devices, Xilinx considered their sensi-
tiveness to radiation. Therefore, in 2002 Xilinx and the Jet Propulsion Laboratory
founded the Xilinx Radiation Test Consortium (XRTC), which aims to investigate
and assess radiation-induces effects and studies methodology to mitigate them.

Xilinx provides studies and mitigation techniques for both commercial and
space-grade devices; Table 2.4 shows a summarized result of SEU and TID effects.
The TIDs, as explained in Section 2.4.2, are represented in rad. Instead, SEUs are
represented in FIT/MB (FIT, Failure in time per million hours) [126].

COTS devices

In the last 15 years, the XRTC started a set of experiments targeting different
FPGA devices, constantly sharing the updated results [126]. All the Xilinx FPGAs
(commercial, industrial, and military) are qualified for their resistance to radiations.
This is possible performing extensive testing in accelerated neutron beams (at the
Los Alamos Neutron Science Center (LANSCE)).

In 2005 the results of the Xilinx Rosetta experiment [70; 71] were first published.
Rosetta relies on continuous tests on FPGA devices, placed in 10 different world
locations, at various altitude (from -490 to 3800 meters). Moreover, for each Xilinx
FPGA family, around 300 devices are under test.

40

2.4 Radiation Effects

Table 2.4: Sensitiveness of Xilinx FPGAs to SEUs and TIDs.

Tech SEU
Device Node Conf. Memory TID

COTS

Virtex-4 90nm 263 Fit/MB [126] 300 Krad(Si) [43]
Virtex-5 65nm 165 Fit/MB [126] 340 Krad(Si) [43]

Spartan-6 45nm 179 Fit/MB [126] 380 Krad(Si) [43]
Virtex-6 40nm 105 Fit/MB[126] 380 Krad(Si) [43]
7 Series 28nm 85 Fit/MB [126] 500 Krad(Si) [68]

Space-grade
Virtex-4QV 90nm 263 Fit/MB [126] 300 Krad(Si) [136]
Virtex-5QV 65nm Immune [135] 1 Mrad(Si) [135]

The main goal of the experiment is to investigate the real effects of atmospheric
SEUs on FPGAs, which were previously just estimated [167]. Of courses, the SEU
rates change and vary according to the environment is operating in; however, this
test gives homogeneous results about the sensitiveness of the COTS FPGA devices
to radiations. The results of this experiment are summarized in Table 2.4.

As presented in Table 2.4, it is possible to see how modern devices are less
tolerant to radiation effects (from 263 to 85 FIT/Mb); these results directly depend
on the CMOS process technology. Moreover, with the shrinking of the CMOS,
also the TID effects decreased, going from 300 Krad to 380 Krad. Thanks to their
decreasing sensitiveness to radiations, these commercial devices are becoming
more attracting and valuable to be applied in harsh-environments.

Space-grade devices

Space-grade devices are specially designed for harsh environments. They are
immune to SELs and in some cases immune to SEUs as well. These devices were
the first SRAM-based FPGAs utilized in space applications.

It is worth to notice that, compared to the commercial ones, space-grade devices
require longer design and verification processes. For example, the first Virtex-4
space-grade devices came three years after the COTS Virtex-4; about Virtex-5, the
space-grade device has been produced after four years. This decision can be moti-
vated by the high-production-cost, the increasing demand of computational power,
and the increasing reliability of COTS devices. In 2016, it has been announced the
introduction of a new space-grade device, the RT Zynq UltraScale+ MPSoC.

As mentioned in Section 2.1.7, Virtex-4QV devices are radiation tolerance, there-
fore, they are immune just to certain types of radiation effects. In the specific,
these devices are sensible to SEU effects. Therefore, Virtex-4QV FPGAs need extra
mitigation techniques, such as TMR and memory scrubbing.

41

2 Background

(a) stuck-at-0 (wires). (b) stuck-at-1 (wires).

(c) stuck-off (PIP). (d) stuck-on (PIP).

Figure 2.14: Permanent fault effect cases.

2.4.4 Permanent Faults in Routing Resources

Radiations in space can cause both instantaneous (SEUs and SETs) and long-term
(TID) damages in electronic devices. In FPGAs, the routing resources represent up
to 90% of the whole chip area [10]. When an SEU or a permanent fault occurs in an
FPGA device, the fault may affect either the routing resource itself, i.e., the fault
directly damages Physical wires (PWs), or the configuration logic associated with
routing resources, i.e., the fault affects PIPs.

In the following, four categories of possible faults are presented (see Figure 2.14):
stuck-at-0, stuck-at-1, stuck-off, and stuck-on. The presented routing resource fault
model is based on the works described in [86; 111; 112].

First, the faults are grouped according to which routing resource is affected,
either wire faults or PIP faults:

• Wires fault stuck-at-0 and stuck-at-1: a PW that connects two or more switch
matrices (SMs) is stuck-at-0 (Figure 2.14a) or stuck-at-1 (Figure 2.14b). It can
be caused by a permanent fault that affects the routing resources of the SM.

• PIP faults stuck-off and stuck-on: when a permanent fault affects a bit of
the configuration memory, this can turn into a permanent fault of a PIP
(Figure 2.14c and Figure 2.14d).

42

2.4 Radiation Effects

These concepts are extensively used in the presented OLT(RE)2 flow (Chapter 7).
Its target is to verify the correct behavior of PWs and PIPs of FPGAs, proving that
the resources are free of stuck-at faults. In the following, it is presented how these
faults can affect a design.

Faults Effects on Design

A routing resource fault can have different effects in an FPGA design. The most of
the configuration memory bits are related to the SMs, which control the routing
resources. Each net of a circuit is realized by connections of logic modules through
PIPs.

An SEU (or permanent fault) in the configuration bit that controls a PIP can alter
or interrupt the propagation of one or more signals. The schematic representation
of the effect scenarios can be described considering the original interconnection
condition, illustrated in Figure 2.15, that provides the implementation of two differ-
ent routing nets net1B and net4D using the two PIPs 1→B and 4→D respectively.
All the possible effects of a fault are then shown in Figure 2.16.

In the following the different cases are considered:

• Open: the PIP corresponding to the net4D is not programmed anymore.
Therefore, 4 and D are not connected. There are two cases of open errors.
The first case is illustrated in Figure 2.16a where the net4D is deleted. The
second case is illustrated in Figure 2.16b; the net4D is deleted and a new net

Switch Matrix A

B

C

D

1 2 3 4

Inputs

O
u

tp
ut

s

Figure 2.15: Routing condition without error. The figure represents a simplified
version of an SM with four inWires and four outwires [5].

43

2 Background

Switch Matrix A

B

C

D

1 2 3 4

Inputs

O
u

tp
ut

s

(a) Open effect, first case.

Switch Matrix A

B

C

D

1 2 3 4

Inputs

O
u

tp
ut

s

(b) Open effect, second
case.

Switch Matrix A

B

C

D

1 2 3 4

Inputs

O
u

tp
ut

s

(c) Conflict effect.

Switch Matrix A

B

C

D

1 2 3 4

Inputs

O
u

tp
ut

s

(d) Input Antenna effect.

Switch Matrix A

B

C

D

1 2 3 4

Inputs

O
u

tp
ut

s

(e) Output Antenna effect.

Switch Matrix A

B

C

D

1 2 3 4

Inputs

O
u

tp
ut

s

(f) Bridge effect.

Figure 2.16: Permanent fault effect cases [5].

(net2D) connects an unused input wire to the previously used output; the
signal net2D has a logic value that is not identifiable.

• Conflict: a new PIP, corresponding to the net4B, is added between an input
wire and an output wire, both previously used. Figure 2.16c shows this case.
The new PIP creates a conflict on the output wire B.

• Input Antenna: a new PIP, corresponding to the net3B is added between an
unused input wire and an active output wire, as illustrated in Figure 2.16d.
The new PIP can influence the behavior of the output wire depending on the
logic output value assumed by the wires.

• Output Antenna: a new PIP, corresponding to the net1C is added between an
active input wire and an unused output wire (as illustrated in Figure 2.16e).
The new PIP does not influence the behavior of the implemented circuits.

• Bridge: The PIP corresponding to the net4D is disabled while a new PIP,

44

2.4 Radiation Effects

corresponding to the net2E, is instantiated between an active input wire and
the output wires of the previously used net4D, as depicted in Figure 2.16f.
The circuit behavior is modified.

If a fault modifies the routing of the FPGA, without affecting the design of the
system, this effect can be categorized in:

• Tolerant: an activated PIP that is not connected to a net. Consequently, the
modification of the bit in the configuration memory has no impact on the
behavior of the design.

• Unrouted: the modification of the PIP cannot be classified in any of the
considered classes.

More details about the effects of permanent faults can be found in [5]. Table 2.5
shows how a specific fault on a routing resource can turn in one or more effects
presented above. OLT(RE)2, presented in Chapter 7, considers these effects in
order to detect possible permanent faults on routing resources.

Table 2.5: The relation between a permanent fault and its effect [5].

Permanent Fault Permanent Fault Effect

Stuck-at-1 (Wire) Open
Stuck-at-0 (Wire) Open
Stuck-off (PIP) Open
Stuck-on (PIP) Conflict, Antenna, Bridge

45

3 State of the Art

This chapter gives an extensive comparison of the thesis with the state of the art.
This thesis provides platforms and tools that help the integration of Dynamic
Partial Reconfiguration (DPR) in space-applications; moreover, it covers different
aspects of the DPR, considering the missing instruments and tools in the state
of the art. As main goal, the presented novel approaches always target the easy
integration with existing platform/tools.

Section 3.1 gives the motivation for the need of a new and novel general purpose
database for Xilinx FPGAs, which is based on the XDL and FPGA-Edline language:
the Datastructure for Xilinx FPGAs (DXF). In the last decade, different research
groups provided proprietary and open source databases that allow manipulating
Xilinx designs.

Section 3.2 presents the tools that enable the creation of DPR systems. The
analysis spans the history of the Xilinx support of DPR; in addition, it is provided
a description of how other works tried to create different DPR systems. Moreover,
a strong motivation for the need of a new and novel DPR flow (INDRA 2.0) and an
HDL-based communication macro generator (DHHarMa), is given.

Section 3.3 presents how the space-community started to adopt DPR on their
systems and that are the current target applications. In order to help the integration
of DPR in space-systems, this thesis presents the novel Dynamic Reconfigurable
Processing Module (DRPM) platform, which allows investigating the use of run-time
reconfiguration in real space-mission scenarios.

Section 3.4 focuses on permanent faults that can affect FPGAs. In particular, it
provides information regarding currents on-line and off-line test of FPGA resources.
Finally, the motivations for introducing a new testing tool, On-Line Testing of
Permanent Radiation Effects in Reconfigurable System (OLT(RE)2), are given.

3.1 XDL-based databases and APIs

As explained in Section 2.3, Xilinx provides proper tools to synthesize and config-
ure a certain application on an SRAM-based FPGA. In addition, Xilinx created an
intermediate language, the XDL, which can be utilized to integrate custom features
in the official ISE tool flow. Therefore, researchers started to create a database from
the XDLRC report (presented in Section 2.3.3).

47

3 State of the Art

XDL representation is provided in an ASCII-text style. Therefore, the first effort
of researchers was to parse these text files and provide Application Programming
Interfaces (APIs) to produce a user-friendly mechanism to modify XDL-based
designs.

The presented DXF database provides functions and APIs to modify the XDL-
based design as well. This thesis focuses on the creation of the PW database of
DXF Section 5.3.4. Furthermore, DXF is able to directly modify the design in NCD
format, utilizing the FPGA-Edline language. More information about DXF are
provided in Section 5.2.1; implementation details are provided in [98].

In the following, the related works are presented, highlighting the advantages
and disadvantages compared to DXF database.

3.1.1 ReCoBus and GoAhead

ReCoBus tool [60] was released in 2008; its successor is GoAhead, which is available
since 2012. ReCoBus is one of the first works that is XDL-based. In fact, the
supported FPGAs are the outdated Virtex-2, Virtex-2 Pro, and Spartan-3. For each
of these devices, a file in a proprietary format has been created: a *.binFPGA file.

The functionalities of ReCoBus are presented in Section 3.2.3. About the parsing
of the XDLRC FPGA representation and XDL designs, no information are provided.
These tools have integrated APIs to modify XDL designs, placing components and
changing placing and routing information.

GoAhead [9] is also operating with a proprietary representation of the FPGA
structure (*.binFPGA format) and it is able to provide modifications of XDL designs,
exactly like ReCoBus. Differently, this tool supports the Virtex-5, Virtex-6 and
Spartan-6 FPGAs. No specific information on the FPGA data structure is available.

3.1.2 RapidSmith

RapidSmith [65; 67] framework consists of a set of tools written in Java that aims
to provide researchers with an easy-to-use platform to try out experimental ideas
and algorithms on Xilinx FPGAs. Released in 2011, it is the first work that provides
general-purpose APIs for modifying an XDL design. RapidSmith is an XDL-based
tool and it allows importing XDL files, manipulate, place, route, and export designs
among a variety of design transformations.

Moreover, it also contains functionalities that can parse/export bitstreams at the
packet level; in the specific, the manipulation of the bitstream is done according to
the official Xilinx documentation, which provides just information about the header
of bitstream packets (bitstream structure is presented in Section 2.1.4). Therefore,
RapidSmith is unable to manipulate the configuration bitstream, changing routing
resources or logic configuration; manipulation of the bitstream just refers to the
frame addresses.

48

3.1 XDL-based databases and APIs

According to its documentation [67], RapidSmith supports all the Virtex, Spartan,
and 7 Series FPGAs families. For all these devices, APIs allow modifying the
placement of a certain design. On the contrary, the routing APIs support just
Virtex-4 and Virtex-5 families.

Finally, RapidSmith provides a Graphical User Interface (GUI) that allows brows-
ing an FPGA design graphically; this GUI is comparable to the FPGA Editor and
PlanAhead. RapidSmith APIs are used in the Dreams tool (presented in Sec-
tion 3.2.5).

3.1.3 Torc

Tools for Open Reconfigurable Computing (TORC) [29; 109] is a C++ open-
source framework that allows reading, write and manipulating XDL-based design
and provides wire and logic information of Xilinx FPGAs, creating easy-to-read
databases based on the XDLRC reports (presented in Section 2.3.3).

Published in 2011, this tool relies on previous tools, which target just outdated
FPGAs: TORC database is based on the ADB project (Alternative wire device
DataBase for Xilinx FPGA) [108]. Moreover, TORC integrates and enhances the
functionality of JBits; a Java-based software, which provides APIs to access Xilinx
FPGAs bitstream, modifying the logic and routing structure of a design.

For each step of the design implementation, TORC provides specific classes as
routines. Furthermore, Torc integrates functionalities to build an own CAD tool for
specific target systems; for example, the project OpenPR (presented in Section 3.2.4)
relies on this tool. TORC can support a wider range of devices: Virtex, Virtex-E,
Virtex-2, Virtex-2 Pro, Virtex-4, Virtex-5, Virtex-6, Spartan-3, and Spartan-6.

3.1.4 Tincr

As discussed in Section 2.3.4, Vivado replaced the standard design flow ISE, start-
ing from the 7 Series (just for this series, ISE is provided as well). In Vivado, XDL
is not supported anymore. However, the meta-information of a design can be
extracted with the Tcl scripting language.

Tincr [120], introduced in 2014, is a suite of Tcl libraries written for Xilinx Vivado
IDE. The goal of Tincr is to enable users and researchers to build their own CAD
tools on top of Vivado, similarly to the XDL language for the ISE flow. Hence,
Tincr supports 7 Series devices and Zynq.

Tincr provides two different libraries: TincrCAD and TincrIO. TincrCAD is a
Tcl-based API built on top of native Vivado Tcl commands. It consists of a set of
APIs that are common in the development of custom CAD tools; this provides
the user higher levels of abstraction, performance gains, and a greater wealth
of information. TincrIO comprises a set of APIs for getting design and device
architecture data out of the Vivado tool. TincrIO enables the users to generate

49

3 State of the Art

Table 3.1: Comparison of CAD tools based on Xilinx intermediate languages.

ISE Vivado
published

in
XDL-
based

FPGA
Edline

FPGAs support

ReCoBus [60] 2008 4 8 8 V-II, V-II Pro, S3
GoAhead [9] 2012 4 8 8 V5, V6

RapidSmith [66] 2011 4 8 8 From V-2 to 7s, Zynq
Torc [109] 2011 4 8 8 From V-2 to V6

Tincr [120] 2014 8 8 4 7 Series, Zynq

DXF 2011 4 4 8 V4, V5, V6, S6, 7S

XDLRC device descriptions and export designs out of Vivado into an XDL format
style.

The developers of Tincr have utilized the TincrIO libraries to create an equivalent
XDLRC representation of the 7 Series FPGAs. Investigating the possibility to
convert the information extracted with Tcl in XDLRC can give the possibility
to use the XDL-based tools for the FPGA devices that are supported just with
Vivado [140].

3.1.5 Comparison

In this thesis, an open-source database of the Xilinx devices is utilized: Datastruc-
ture for Xilinx FPGAs (DXF). Table 3.1 presents a comparison among DXF with the
existing tools/flows discussed in this section.

The table shows that:

• XDL-based integration: in ISE tool flow, XDL provides the main mechanism
for gaining external access to design data. Therefore, most of the presented
tools are based on this intermediate language (except for Tincr that operates
with Vivado).

• FPGA-Edline-based APIs: this functionality is missing in all the existing
tools. This new capability inserted with DXF allows modifying designs
directly in the native NCD format; this is required when a full design needs to
be modified, and the XDL file cannot be created. As described in Section 2.3,
XDL conversion is suitable for small designs/hard macros. On the contrary,
for full designs, in the conversion NCD-XDL-NCD some information are lost
(e.g., IOBs and Digital Clock Managers (DCMs) settings).

50

3.2 Dynamic Partial Reconfiguration Tools

• FPGAs support of different Xilinx families: DXF provides support for differ-
ent kind of FPGAs. Apart for the compatibility with the out-dated Virtex-2
FPGAs, DXF supports a wide range of families, providing full functionality
for all of them. On the contrary, as discussed for RapidSmith in Section 3.1.2,
even if all the FPGAs from Virtex-2 are considered, the routing functionalities
are supported just in Virtex-5 and Virtex-6.

• Vivado-integration: Tincr is the only tool that provides with integration for
Vivado. As an advantage, this APIs can be easily adapt to support the future
devices. On the contrary, Tincr can not be used with older devices, which are
supported just by ISE.

DXF database provides an extensive set of APIs and functionalities for modifying
Xilinx full designs and hard macros. It supports five families of Xilinx FPGAs,
which corresponds to 208 different devices in total. In this thesis, DXF is utilized
for the creation of homogeneous communication infrastructures (Chapter 6), the
re-router part of INDRA 2.0 (PSRerouter, Chapter 5) and for the generation of
testing circuits that detect permanent faults (Chapter 7).

3.2 Dynamic Partial Reconfiguration Tools

Section 3.1 has discussed how researchers created databases and APIs to enable
more flexibility in design changes. Of course, this gives the capability of providing
features that are not embedded in the official Xilinx design flow.

As explained in Section 2.3, Xilinx developed an advanced design flow that
follows users from the hardware high-level representation to the bitstream configu-
ration. Nevertheless, researchers started to investigate the remarkable advantages
of using FPGAs in a DPR environment.

DPR in the past years has been slowly integrated into the ISE flow. Therefore,
different groups of researchers started to create tools aiming to add support for
this functionality; INDRA 2.0, is one of them. In the specific, the Design flow for
Homogeneous Hard Macros (DHHarMa), which is part of the INDRA 2.0 flow,
aims to generate homogeneous hard macro for tile-based DPR systems, giving the
possibility to create it starting from an HDL description.

Communication infrastructures are a key part of a DPR system. Different im-
plementations can affect the property of reconfigurable systems (e.g., run-time
reconfiguration and module relocation). In the following, related works that
provide CAD tools oriented to DPR systems are presented.

51

3 State of the Art

3.2.1 Xilinx ISE DPR

In the following, it is presented how, in the last decade, Xilinx has modified its
default design flow to integrate DPR. This topic is also discussed in Section 2.2.
Xilinx introduced the first support of DPR in 2006, with ISE 9.2i; in the specific,
the Early Access Partial Reconfiguration (EAPR) was introduced [127]. This Xilinx
toolkit, even if was not directly integrated into the ISE design flow, provided the
first official instruments to create DPR systems on Xilinx FPGAs.

EAPR provided a methodology to generate a slot-based Partial Reconfigurable
Region (PR Region), which can be reconfigured with one or more Partial Recon-
figurable Module (PR Module). At that time, the communication infrastructure
among the static region and PR Region was created thanks to bus-macros; pre-P&R
components containing two terminals, which are placed in a fix position. Two
different types of bus-macros were available: narrow and wide. Narrow bus-macros
had just a width of 2 CLBs; the wide ones had a width of 4 CLBs.

One of the advantage to utilize bus-macros was the possibility to create DPR sys-
tems that allow relocation of PR Modules. However, this way to utilize bus-macros
introduces high logic utilization and delay overhead.

Since 2011, bus-macros communication mechanism and EAPR plug-in are not
supported by Xilinx anymore. With the introduction of ISE 12.1 [34; 131], Xilinx
embedded the DPR functionality directly in the official design flow; the new
method is called Xilinx PR. Moreover, to overcome the limits of bus-macros, a new
way of creating the communication infrastructure was introduced. Bus-macro
were replaced by Proxy Logic (also called Proxy LUTs).

Proxy Logic is a single LUT1 element, belonging to the static area, which is placed
in a fixed position of the reconfigurable area. The routing between Proxy Logic and
the static region is maintained constant for both static and dynamic implementation
design. An advantage of this new mechanism is to avoid of creating/placing the
bus-macros before that the actual static design and modules are synthesized. The
user just needs to define the connection points of the communication between
static and reconfigurable regions.

In contrast, the ISE does not prevent the routing of Proxy Logic to be the same in
the area of the same type; in addition, ISE allows static nets the cross reconfigurable
areas. For these reasons, this new approach does not support PR Module relocation
(i.e., bitstream relocation).

Furthermore, with the new Xilinx PR flow, static design and PR Modules are
designed at the same time. If on the one hand, this can allow an optimal result
for the considered design, on the other hand, it prohibits the creation of new PR
Modules at a later time.

52

3.2 Dynamic Partial Reconfiguration Tools

PARTITIONING

HDL / Netlists,

Schedule

LAYOUT /

FLOORPLANNING

Architectural Partitioning,

Communication Macro

COMMUNICATION

MACRO GENERATION

IMPLEMENTATION OF

STATIC HW

IMPLEMENTATION OF

DYNAMIC HW

Initial Design,
Template for

dynamic Components

BITSTREAM GENERATION

Initial / Partial

Bitstreams

Partial Designs

Top

Level

Stat.

Komp.
Mod.

A

Stat.

Komp.
Mod.

B

stat.

Comp.

X-CMG

dyn.
Comp.

A

dyn.
Comp.

B

SARA

MiDesires
(make_module)

MiDesires
(make_bitstream)

MiDesires
(make_bitstream)

Schedule

MiDesires
(make_initial)

ArchGen

Top

Level

PR

Region

Base Region

Figure 3.1: INDRA flow overview [45].

53

3 State of the Art

3.2.2 INDRA

INDRA [45] is an INtegrated Design flow for Reconfigurable Architectures, which
offers the possibility to utilize DPR. This flow has been introduced to overcome the
limits of Xilinx EAPR. Figure 3.1 shows an overview of the flow; INDRA takes in
input the FPGA partitioning and the HDL of static design and PR Modules. After
that the components are synthesized, according to the PR Tile, a suitable commu-
nication infrastructure that preserve homogeneity and run-time configuration is
generated.

XDL-based Communication Macro Generator (X-CMG) [44] is used to generate
this kind of communication macro. In the following, its features and limitations
are presented. In this thesis, an updated version of INDRA is presented: INDRA
2.0. It is worth to mention that, DHHarMa has been first designed to overcome the
limits of the X-CMG tool.

XDL-based Communication Macro Generator (X-CMG)

X-CMG [44] is an XDL-based Communication Macro Generator that allows generat-
ing a homogeneous communication infrastructure, utilizing the logic presented in
Section 2.2.4. X-CMG utilizes multi-level, primitive-based communication macro
generation approach.

In order to build a homogeneous communication infrastructure, this application
used primitives that are combined together. According to the embedded macro
communication infrastructure, the primitives can be used to implement dedicated
signals and shared signals.

can be used in NCD (Native Circuit Description) mode,
since it is not necessary to declare external macro pins nor
reference components for a tile primitive.

Tile and pin description file: The tile and pin description
file adds information about the external macro pins and about
the tile itself, e. g., the required information for decoding
dedicated signals or the hierarchy level in the macro.

Monolithic macro: The monolithic macro is constructed
based on the tile primitives and the pin description. X-CMG
uses its internal capabilities described below to build the ma-
cro. Physical macros are stored in files with the extension
NMC.

VHDL template: To insert the embedded communication
macro in the design, the NMC is usually instantiated as a
component in VHDL. The VHDL template can be used for
easy interfacing with the macro.

Monolithic NMC macro: When converting the monolithic
XDL-macro to an NMC-macro, some information about ex-
ternal pins defined in XDL are lost. An additional tool of the
X-CMG suite, pin-anno, generates an FPGA-Edline1 script
that adds the lost macro pins again in an automated post-
processing step.

As shown above, the complete macro is composed of a
set of primitives. X-CMG includes all capabilities needed
for an automatic generation of a monolithic macro from a
set of primitives. X-CMG has the following features:
• X-CMG comprises a parser for XDL-files that converts

the complete XDL description to the internal data struc-
ture of X-CMG. Thus, a complete and precise control
over placement and routing is possible. XDL-objects can
be merged or moved vertically and horizontally across the
FPGA. X-CMG guarantees the correct handling of spe-
cial purpose elements (e. g. BRAMs). It is possible to

connect_tristates()

tile 1 tile 2 tile 3

Fig. 7. Example of X-CMG routing capabilities for tristate
based routing.

1FPGA-Edline is a command-line style version of FPGA-Editor

insert hierarchy-levels in the XDL-object. This is espe-
cially useful for large XDL-objects.

• X-CMG supports the techniques for the realization of ho-
mogeneous routing of dedicated signals as presented in
Section 3. E. g., it is possible to set the initial register
values automatically.

• For tristate-based communication structures, a mechanism
for the automatic connection of the primitive tristate-lines
to a bus was implemented. This mechanism is illustrated
in Figure 7. The implemented algorithm calculates an
identification number for every tristate-line in the current
XDL-object. If two tristate-lines have the same identifica-
tion number, they can be connected to form a bus signal.
Afterwards, lines with the same ID are merged into one
net.

• For generic, single source routing, as it is used for slice-
based communication structures, another routing mech-
anism is needed. The solution implemented in X-CMG
is shown in Figure 8. To enable automatic routing for
slice-based communication infrastructures, the primitive-
based approach of X-CMG is extended to the use of rout-
ing primitives, which define the routing for a given case.
The routing algorithm automatically determines how to
apply the routing to a given primitive topology. This is
done by searching for the maximum overlap between the

add_routing_left()

slice
primitive

routing
primitive

virtual
pin

(a) Add routing to slice primitives using routing
prmitives.

move() + add_xdl()

(b) Connecting the primitives including virtual pins to a ho-
mogeneous communication infrastructure.

Fig. 8. Example of X-CMG routing capabilities for slice
based routing.

(a) Routing Primitive of X-CMG routing.

can be used in NCD (Native Circuit Description) mode,
since it is not necessary to declare external macro pins nor
reference components for a tile primitive.

Tile and pin description file: The tile and pin description
file adds information about the external macro pins and about
the tile itself, e. g., the required information for decoding
dedicated signals or the hierarchy level in the macro.

Monolithic macro: The monolithic macro is constructed
based on the tile primitives and the pin description. X-CMG
uses its internal capabilities described below to build the ma-
cro. Physical macros are stored in files with the extension
NMC.

VHDL template: To insert the embedded communication
macro in the design, the NMC is usually instantiated as a
component in VHDL. The VHDL template can be used for
easy interfacing with the macro.

Monolithic NMC macro: When converting the monolithic
XDL-macro to an NMC-macro, some information about ex-
ternal pins defined in XDL are lost. An additional tool of the
X-CMG suite, pin-anno, generates an FPGA-Edline1 script
that adds the lost macro pins again in an automated post-
processing step.

As shown above, the complete macro is composed of a
set of primitives. X-CMG includes all capabilities needed
for an automatic generation of a monolithic macro from a
set of primitives. X-CMG has the following features:
• X-CMG comprises a parser for XDL-files that converts

the complete XDL description to the internal data struc-
ture of X-CMG. Thus, a complete and precise control
over placement and routing is possible. XDL-objects can
be merged or moved vertically and horizontally across the
FPGA. X-CMG guarantees the correct handling of spe-
cial purpose elements (e. g. BRAMs). It is possible to

connect_tristates()

tile 1 tile 2 tile 3

Fig. 7. Example of X-CMG routing capabilities for tristate
based routing.

1FPGA-Edline is a command-line style version of FPGA-Editor

insert hierarchy-levels in the XDL-object. This is espe-
cially useful for large XDL-objects.

• X-CMG supports the techniques for the realization of ho-
mogeneous routing of dedicated signals as presented in
Section 3. E. g., it is possible to set the initial register
values automatically.

• For tristate-based communication structures, a mechanism
for the automatic connection of the primitive tristate-lines
to a bus was implemented. This mechanism is illustrated
in Figure 7. The implemented algorithm calculates an
identification number for every tristate-line in the current
XDL-object. If two tristate-lines have the same identifica-
tion number, they can be connected to form a bus signal.
Afterwards, lines with the same ID are merged into one
net.

• For generic, single source routing, as it is used for slice-
based communication structures, another routing mech-
anism is needed. The solution implemented in X-CMG
is shown in Figure 8. To enable automatic routing for
slice-based communication infrastructures, the primitive-
based approach of X-CMG is extended to the use of rout-
ing primitives, which define the routing for a given case.
The routing algorithm automatically determines how to
apply the routing to a given primitive topology. This is
done by searching for the maximum overlap between the

add_routing_left()

slice
primitive

routing
primitive

virtual
pin

(a) Add routing to slice primitives using routing
prmitives.

move() + add_xdl()

(b) Connecting the primitives including virtual pins to a ho-
mogeneous communication infrastructure.

Fig. 8. Example of X-CMG routing capabilities for slice
based routing.

(b) Connecting the primitives in a homo-
geneous communication infrastruc-
ture.

Figure 3.2: X-CMG routing capabilities for slice based routing [44].

54

3.2 Dynamic Partial Reconfiguration Tools

The Figure 3.2 shows how it is possible to create a communication channel
combining routing primitive; in Figure 3.2a are depicted the primitive utilized by
the router, while the Figure 3.2b explains how the single primitive can be connected
to create a routing channel.

This kind of solution utilizes a high amount of resources; along the communica-
tion channel, most of the slices are used in order connect the routing primitives
among them (as depicted in Figure 3.2b). On the contrary, in DHHarMa com-
munication hard macros, the utilized slices are only the ones involved in the
communication logic. In fact, the connection among PR Tile is made creating a
dedicated routing for every case, taking in account the homogeneity property of
the system.

3.2.3 ReCoBus and GoAhead

The proprietary XDL-based databases of these tools are presented in Section 3.1.1.
As mentioned, GoAhead [9] is the successor of ReCoBus [60]; moreover, the two
tools provides the same functionalities. The difference is in the targeted FPGAs:
ReCoBus targets Virtex-2, Virtex-2 Pro, and Spartan-3; instead, GoAhead supports
Virtex-5 and Virtex-6 FPGAs.

ReCoBus and GoAhead allow building complex monolithic communication
macros for easily implementing run-time reconfigurable systems on Xilinx FPGAs.
They integrate into Xilinx ISE and support the physical implementation of initial
static systems as well as the implementation of the PR Modules. On the one hand,
the generated communication infrastructure respects homogeneity constraints
given by the reconfigurable areas; on the other hand, it is impossible to create a
custom communication infrastructure starting from an HDL code.

Regarding the routing phase, these tools just route the nets utilizing a specific
portion of the communication channel infrastructures (i.e., defined macro blocks).
In this way, the routing is not custom generated for each connection; instead, a
certain communication channel is created combining blocks of routing resources.
This kind of solution turns in a higher utilization of logical resources and longer
delay of the communication channels. DHHarMa gives the possibility to have a
homogeneous communication infrastructure (as ReCoBus and GoAhead), com-
bined with the advantage of starting from HDL language; this allows optimization
in all the computational steps: mapping, placing, and routing.

3.2.4 OpenPR

OpenPR [104] toolkit was introduced in 2011. This open-source work is strongly
related to the Xilinx EAPR tool and provides similar functionalities. Its main goal
is to provide EAPR functionalities in a more automatic way, overcoming some
limitation of it.

55

3 State of the Art

OpenPR is an XDL-based toolkit, written in C/C++, that allows the creation of
DPR systems on Virtex-4 and Virtex-5 devices. It relies on the Torc APIs (described
in Section 3.1.3) for editing Xilinx XDL designs.

This work provides two remarkable functionalities:

• Automatic bus-macro placement: the designer can define the area and the
number of the communication channel, then, OpenPR takes care about the
bus-macros placement.

• Avoid crossing of static nets through the reconfigurable area: as explained in
Section 3.2.1, this problem was already present in the EAPR tool, and it also
remained in its successor: the Xilinx PR of ISE 12.1. OpenPR solves this
issue utilizing a Router Blocker Macro. This kind of macro is placed in the PR
Region, before that the PAR of the static design is executed. In this way, the
macro occupies all the routing resources within the PR Region; therefore, the
nets of the static design can not utilize any resources within the PR Region.

During the publication of this work Xilinx decided to replace the EAPR flow
with the Xilinx PR, which does not support bus-macros. For this reason, the tool
has not been adapted to newer FPGAs families.

3.2.5 Dreams

Dreams is a Tool for the design of Dynamically Reconfigurable Embedded and
Modular Systems [83]. This tool was published in 2012. It is based on the Rapid-
Smith libraries, describe in Section 3.1.2. Therefore, the tool is XDL-based as
well.

The tool flow provides some extra steps and partitioning compared to the stan-
dard Xilinx PR. In the specific, Dreams is the only work that embeds a routing
algorithm of the nets that realize DPR systems, which support PR Module reloca-
tion.Dreams takes in input a P&R static and dynamic design, an XML file where
the property of the DPR system are given. The XML file allows having at the end
an automatized flow.

As output, Dreams provides the bitstreams of the DPR design (static and re-
configurable) that supports the relocation of the modules. In addition, another
important feature is the possibility to introduce a new PR Module at a later time.

As mentioned in Section 3.1.2, RapidSmith provides just routing APIs for the
Virtex-4 and Virtex-5 families. Moreover, this kind of DPR systems supports just
an LMBT communication infrastructure.

56

3.2 Dynamic Partial Reconfiguration Tools

Table 3.2: Comparison of DPR tools.

Communication
Infrastructure

Module
Reloc.

Supported
FPGAs

Special Feature

Xilinx PR [34]
proxy logic

based 8 from V4 to 7S official flow

ReCoBus [60] macro-blocks 4
V-II, V-II Pro,
S3 GUI

GoAhead [9] macro-blocks 4 V5, V6 GUI
OpenPR [104] macro-blocks 4 V4, V5 Router Blocker Macro

Dreams [83] LMBT 4 Virtex-5 custom Router
INDRA [45] macro-blocks 4 Virtex-2 embedded macros
INDRA 2.0 HDL-based 4 V4, V5, V6, S6 DHHarMa, PSRerouter

3.2.6 Comparison

In the following, a comparison of the DPR flows is provided. Table 3.2 shows
the main features of them. As mentioned in the introduction, the main leak of
the official Xilinx PR is the possibility of creating DPR systems that are capable of
supporting PR Module relocation. For this reason, researchers put the main efforts
to introduce this remarkable feature on a reconfigurable system.

All the tools rely on the XDL-based databases and APIs presented in Section 3.1.
Different approaches and different communication infrastructures are proposed.
Table 3.2 shows that most of the works exploit the concatenation of macro-blocks
to preserve homogeneity of the reconfigurable regions.

Dreams is the only work that has a dedicated router, which takes care of es-
tablishing the homogeneity in a certain DPR scenario. Nevertheless, this flow is
oriented just on LMBT communication infrastructure.

To overcome the limitations of these tools, a new flow INtegrated Design flow
for Reconfigurable Architectures 2.0 (INDRA 2.0) is presented in this thesis. The
work has been made in collaboration with [98]. INDRA 2.0 approach unifies the
features of the mentioned tools, within one single flow:

• HDL-based Communication Infrastructure Generation: despite all the ex-
isting approaches, DHHarMa can create a homogeneous communication
infrastructure, starting from a user-define HDL representation. This gives
the possibility to use the tools in different scenarios, avoiding being related
to a single communication infrastructure methodology.

• Support of PR Module Relocation: DHHarMa guarantees that in reconfig-
urable regions of the same type, the communication infrastructure utilizes

57

3 State of the Art

the logical and routing resources in the same relative position. It provides
dedicated packing, placing, and routing mechanism.

• Reroute of static nets directly in NCD format: XDL tool allows converting
an NCD in a human readable format (XDL), ad vice-versa. In some designs,
the conversion NCD-XDL-NCD is not possible because some design infor-
mation are lost (as mentioned in Section 2.3.3). For this reason, INDRA 2.0
provides the unique feature to allow rerouting of specific nets, utilizing the
FPGA-Edline scripting language, modifying the net directly on the NCD
format; this step is provided by the PSRerouter.

• A Wide range of FPGAs supported: INDRA 2.0 is the only flow that tar-
gets the widest range of currently used Xilinx FPGAs. Compared to the
Xilinx PR just the 7 Series family is not supported. This allows the user for
utilizing the approach considering which FPGA family suites better the final
requirements.

3.3 Reconfiguration in Space Applications

FPGAs are nowadays extensively used in space missions. Space applications are
never mass products, therefore, in most of the cases, the use of ASICs is not the
best solution in term of price and availability. Thanks to their general purpose
structure, FPGAs target well the need of space: a device that can be configured as
required and provides high performances [40; 80].

The first FPGAs utilized in space missions were antifuse. These kinds of devices
can be just configured once through a hard configuration; therefore, they are
more tolerant to radiations. The current antifuse FPGAs utilized in space are the
RTAX devices from Microsemi [100]. On the contrary, SRAM-based FPGAs, they
are more sensible to SEEs and TIDs; their most critical part is the configuration
memory.

Differently from the antifuse FPGAs, the SRAM-based ones have the remark-
able property to allow multiple reconfigurations. This feature is interesting in
space missions and can be performed in both on-ground and in-flight scenarios;
in the first case the SRAM-based FPGA can be configured at later phases of the
development of space system; in the second case, the SRAM-based FPGA can be
reconfigured after the launch. In addition, the SRAM-based FPGA can be recon-
figured with a different application once is needed. Furthermore, the system can
embed self-healing mechanisms, which can recover the SRAM-based functionality
once a SEE or a permanent fault occurs.

For these reasons, space is considered a challenging environment. On the one
hand, the electronics systems need special mechanisms to mitigate radiations that
can compromise the platform (i.e., there is the need of a high reliable system); on

58

3.3 Reconfiguration in Space Applications

the other hand, a space mission needs a strong planning phase, which permits
utilizing a system for a long period (i.e., need reconfigure the system).

In the last decade, manufacture, and researchers tried to cut this trade-off al-
lowing to have a reliable and safe use of SRAM-based FPGAs in space missions.
However, SRAM-based FPGAs are not used in critical parts of space missions due
to their sensitiveness to radiation effects; instead, they are extensively used in
non-critical parts, e.g., payload processing.

This thesis presents a novel prototyping platform for space applications: the
Dynamic Reconfigurable Processing Module (DRPM). The system can emulate
real space mission scenarios, which relies on the DPR.

This section presents the related works that utilize reconfigurable FPGAs in
space missions. Moreover, it presents how the COTS devices are becoming more
and more utilized in space applications. Finally, the summary gives a comparison
between the DRPM system and the related works.

3.3.1 DPR research platforms

The utilization of SRAM-based FPGAs in space applications require specific tests
and validation steps to be utilized safely; in addition, the FPGA memory is
high sensible to SEEs and TIDs. For these reasons, different research platforms
and approaches have been developed in the last decades, which allow porting
SRAM-based FPGAs into real space missions: the DRPM is one of them. In the fol-
lowing, the related works are presented, and their main features are summarized
in Table 3.3.

Braunschweig DRPM

As the DRPM system presented in this thesis, the Braunschweig DRPM [78] has
been developed in collaboration with the European Space Agency (ESA). Both
systems share the same starting project requirements, i.e., the creation of a recon-
figurable FPGAs-based platform that allows performing payload processing.

The Braunschweig DRPM demonstrator comprises one or more modules; each
module is composed of a radiation-hardened reconfiguration controller and two
Virtex-4 devices.

The reconfiguration controller, depicted on the left-hand side, is implemented
on a reliable antifuse FPGA. It comprises a SoC with an LEON3 CPU and several
peripherals, such as memory controllers. The Virtex-4 FPGAs are divided into
reconfigurable partitions that are interconnected via a SoCWire routing switch.

59

3 State of the Art

A Reliable Reconfigurable Real-Time Operating System (R3TOS)

A Reliable Reconfigurable Real-Time Operating System (R3TOS) was introduced
in 2010 [56] and its main target is to provide a reliable reconfigurable real-time
operating system. R3TOS [56] presents an infrastructure for executing dedicated
hardware tasks on a single reconfigurable FPGA device, achieving flexibility for
both gaining system performance and tolerating the occurring faults at run-time.

The real-time operating system offers the possibility to consider a hardware
functionality as a task. R3TOS provides the user a set of software routines, which
allow abstracting the FPGAs reconfigurable mechanism in a software-based ap-
proach, enabling an easy to use DPR. Finally, R3TOS has been tested on a Virtex-4
LX200.

SCARS

The Scalable Self-Configurable Architecture for Reusable Space Systems (SCARS)
is a Virtex-5-based DPR system, introduced in 2008 [105]. It is composed of five
Virtex-5 FPGAs, each including a MicroBlaze IPcore that is responsible for fault
mitigation and detection.

The Virtex-5 FPGAs are interconnected to a master node utilizing a wireless
network. The PR FPGAs are partitioned together with redundant copies; the
partition is slot-based and provides connection to the MicroBlaze.

Once a fault is detected in a specific slot, the MicroBlaze performs a scrub-
bing through the ICAP interface; in the case the error persists, the PR Module is
relocated either in a different slot of the FPGA or in another FPGA of the system.

3.3.2 In-flight reconfigurable space-missions

The possibility to reconfigure a device can bring different benefits to space systems.
An application can be updated introducing new functionalities or correcting bugs
not detected in the test phase; moreover, the system can automatically reconfigure
itself once a fault occurs in the system, providing a fast correction and avoiding
catastrophic propagation effects.

The Gravity Recovery And Climate Experiment (GRACE) [117] was the first
space mission that had on board a reconfigurable Xilinx FPGA: the radiation-
hardened (rad-hard) XQR4036XL [134]. Unfortunately, the system was unable
neither providing in-flight reconfigurability nor proving SEU mitigation tech-
niques.

The FedSat [94] was the first space mission that introduced in-flight reconfigura-
tion of FPGAs. It was launched in 2002 carrying a rad-hard Xilinx XQR4036XL [134].
The system has also an embedded SEU detector based on a readback controller.

60

3.3 Reconfiguration in Space Applications

Progressively, these devices were introduced in many other applications. The
Mars Exploration Rover Mission (MER) [82] is a robotic space mission that brought
two rovers (Spirit and Opportunity) to Mars (launched in 2003). Reconfigurable
FPGAs have been extensively used in both landers and rovers [155]. FPGAs has
been utilized in landers for pyrotechnics, retrorockets, parachute deployment (in
the specific Xilinx XQR4062XL [134]); on the Rovers, Xilinx XQVR1000 [133] has
been used in all wheel motor controllers.

In 2005, the Mars Reconnaissance Orbiter (MRO) [76] was launched in orbit.
Its camera (named HiRISE camera) is connected CCD Processing, and Memory
Module (CPMM), which relies on a rad-hard Xilinx Virtex 300E FPGA [152]. The
CPMM performs control, signal processing, and data compression. The system
provided readback for SEU detection and scrubbing for SEU correction. In 2011,
The Mars Science Laboratory (MSL) and its rover Curiosity were launched. The
rover MAHLI uses Xilinx rad-hard Virtex-II FPGAs for image processing.

Apart from these brief overview of the use of reconfigurable SRAM-based FP-
GAs, in the following two interesting novel applications are presented: the Solar
Orbiter and the FOBS satellite. Both systems utilize reconfigurable FPGAs for
payload processing, giving the possibility of in-flight reconfiguration.

Solar Orbiter (PHI DPU)

The Solar Orbiter [35] is a mission that intends to explore the sun surface. Its
launch is planned for 2018, and it will operate till 2028. The system embeds the
Polarimetric and Helioseismic Imager Data Processing Unit (PHI DPU) [20], which
contains two 2048x2048 cameras that will provide high image data stream (3.2
Gbit/set). The telemetry link with the earth is just 100 Mbits/set. Therefore, to
reduce the data from 3.2 Gbit/set to 100 Mbits/set, the space system process
internally the raw data, utilizing a Data Processing Unit (DPU).

DPU system has been developed by the University of Braunschweig, adapting
its DRPM platform presented in Section 3.3.1. The DPU is based on two rad-
hard Xilinx Virtex-4 XQR4VSX55 and can provide Image Stabilization Systems
(ISS), data acquisition, data preprocessing, and Radiative Transfer Equation (RTE)
inversion. The system implements different kinds of SEU mitigation providing
fine-grain scrubbing as well. In addition, the system can be reconfigured according
to the needed tasks.

Two running modes are performed: Data Acquisition Mode and Processing Mode.
In the first case, the two FPGAs are configured with functionalities that provide
ISS controlling and data acquisitions; in the second case, the FPGAs provides data
preprocessing and RTE inversion functionalities. Therefore, the functionalities
are time partitioned in the reconfigurable area. Moreover, the algorithms can be
updated during the lifetime of the satellite.

This system is not proving DPR functionalities, since that switching from one

61

3 State of the Art

operation mode to another, the whole FPGA is reconfigured. Differently, the
presented DRPM system developed in Bielefeld University allows DPR and PR
Module relocation.

Fraunhofer On-Board Processor (FOBP)

In 2020 is planned the launch of the Heinrich Hertz Satellite (H2Sat), which will op-
erate in the Geosynchronous Equatorial Orbit. Its expected lifetime is 15 years. The
target of the H2Sat is to investigate new software and communication technologies
in-orbit, adapting to the new telecommunication standard requirements.

The space system embeds the Fraunhofer On-Board Processor (FOBS) [87],
which relies on two SRAM-based Xilinx Virtex-5QV: one master and one slave.
The presented FOBS is composed of four hardware modules: a radio frequency
card, a power supply unit, and two DSP cards. Each DSP card has an analog to
digital converter and a Xilinx Virtex-5QV FPGA.

The system will give the possibility to operate DPR in space. For example,
when a new telecommunication standard is released, the on-board processor can
be updated with an in-flight DPR. Once the system is powered-up, an external
processor configures both FPGAs with an initial bitstream. The master FPGAs is
configured with a DPR scenario; the static area contains a SOC controlled by an
LEON3-FT. At this point, the master FPGA is capable of performing DPR of itself
and full reconfiguration of the slave FPGA. The master FPGA is also in charge of
scrub the configuration memory of the slave FPGA against SEUs.

The system can communicate with the earth with two different links: a high
reliable virtual telemetry/telecommand (vTM/TC) link with 2 Mbps (gross bit
rate) and 1 Mbps (net bit rate); this link utilized for sending new bitstream from
earth. The second one is an experimental link that is able to achieve 306 Mbps
(gross bit rate).

3.3.3 Commercial FPGAs in Space

As discussed in Section 2.1.7, Xilinx provides dedicated space-grade FPGAs, which
allow having either higher fault-tolerance or higher fault-resistance to SEE. At the
same time, COTS FPGAs became more resistant to radiation effects for two more
reasons: first, the shrinking of the CMOS reduces the sensitiveness of the device
to faults; second, many kinds of fault mechanisms were developed, which allow
reaching high-fault tolerance. Therefore, thanks to their high-availability, higher
performance compared to space-grade devices and their lower cost, COTS FPGAs
started to be utilized in space applications.

One example is the Advanced Responsive Tactically Effective Military Imag-
ing Spectrometer (ARTEMIS) [118] reconfigurable payload processor that is on
board of the TacSat-3 satellite, which was launched in 2009 and completed its

62

3.3 Reconfiguration in Space Applications

operation in 2012. The ARTEMIS contained a so-called Responsive Avionics Re-
configurable Computer (RA-RCC) that relies on three COTS Virtex-4 LX160. The
system supported in-flight reconfiguration.

SpaceCube

SpaceCube [39] consists of reconfigurable platforms that are based on COTS Xilinx
FPGAs. The goal of the SpaceCube program is to provide improvements in on-
board computing power while lowering power consumption and cost.

The system is Radiation Hardened By Software (RHBS), which provides protec-
tion to radiation’s effects. SpaceCube project started in 2006 and is still ongoing;
four different types of systems were developed (SpaceCube v.1.0, v.1.5, v2.0-EM
and v2.0-FLT).

In total, nine systems were produced and flew in space, utilizing 22 Xilinx COTS
FPGAs. The SpaceCube were utilized in many applications: e.g., The SpaceCube
v.1.0 was payload processing real-time image tracking and data compression on
the Hubble Space Telescope (HST); the mission MISSE-7 intended to investigate
radiation effect on Xilinx commercial FPGAs; finally, in the mission STP-H4 a
SpaceCube 2.0-EM operated on the International Space Station (ISS), providing
process and stream of HD images in real-time.

The first version of the SpaceCube embedded two Xilinx Virtex-4 XC4VFX60. It
was launched in 2009 and it utilized for the first time COTS Xilinx Virtex-4 FPGAs.
The system mitigated SEEs with a voting system; the FPGAs were connected to
a voter implemented in a rad-hard Aeroflex UT6325 FPGA, which compares the
outputs of four processing nodes implemented in the two Virtex-4 FPGAs that run
in parallel. From the version v1.5, the COTS Xilinx Virtex-5 has been utilized (i.e.,
XC5VFX130T).

3.3.4 Comparison

This section has presented how the use of reconfigurable FPGAs in space increased
in the last decades: rad-hard as well as COTS FPGAs are utilized. Moreover, the
possibility to provide in-flight configuration allowed stepping forward in proving
computational power into space missions. These works motivate how, on the one
hand, the use of this technology is becoming almost legacy in space missions; on
the other hand, DPR capabilities are not yet fully exploited.

In Table 3.3 the presented DPR platforms are summarized. Just few systems
embed the possibility of DPR, and just one of them supports the relocation of
PR Modules (the R3TOS). However, the R3TOS platform has a fixed architecture
based on a single FPGA, which does not allow a full integration in a space scenario.
On the contrary, the DRPM system comes with different avionic interfaces (e.g.,

63

3 State of the Art

Table 3.3: Comparison of DPR platforms for space applications.

N. FPGAs FPGA model DPR Module Reloc.

DRPM Br [78] 2 - 6 XC4VSX55 8 8

SCARS [105] 5 XC5VLX50 4 8

R3TOS 1 XC4VLX200 4 4

PHI DPU [20] 2 XQR4VSX55 8 8

FOBP [97] 2 XQR5VFX130 4 8

SC 1.0 [39] 2 XC4VFX60 4 8

SC 1.5/2.0 [39] 2 XC5VFX130T 4 8

DRPM 1 - 5 XC4VFX100 4 4

CAN, SpaceWire, SpaceFibre), which allows advanced prototyping of real space
scenarios.

3.4 Testing of Routing Resources

Fault detection in FPGAs devices is a challenged topic, which is present in many
phases of the device lifetime. On the one hand, a test is needed after the manufac-
turing phase (off-line test); on the other hand, the device needs to be monitored
during its lifetime with on-line tests.

In the area of fault detection in FPGA devices, much work has been done in the
last two decades, addressing hardware structural defects due to the manufacturing
process [1; 48; 85; 102]. On the contrary, the problem of detecting faults induced in
FPGA devices by the long-term exposure to radiations has not yet exhaustively
been explored. The approaches to FPGA testing can be classified into two families:
application-dependent and application-independent ones (see Figure 3.3).

Application-dependent methods, such as [11; 24; 114], focus only on those
resources of the FPGA used by a given system. For this reason, these techniques are
meant to be applied by the end-user of the FPGA device, either off-line or on-line,
after the system design has been defined. The rationale behind these techniques is
that an FPGA-based system occupies only a subset of the resources provided by
the FPGA device. Therefore, it is enough to demonstrate that the resources used
by the implemented system are fault-free to guarantee the correct operation of the
system itself. Application-dependent methods have been proposed for in-service
testing of both structural defects [24; 114] and SEUs [11]. These kinds of tests suit
well non-reconfigurable FPGA systems.

Application-independent methods, such as [1; 48; 85; 102], are meant to detect
structural defects due to the manufacturing process of the chip. These approaches

64

3.4 Testing of Routing Resources

FPGA Testing Techniques

application-
dependent

application-
independent

on-line off-line

Figure 3.3: FPGA Testing Tech-
niques.

Application-Independent
Testing Techniques

comparison-based parity-based

single parity cross-coupled
parity

Figure 3.4: Application-Independent Testing
Techniques.

are intended to be performed off-line, by the FPGA manufacturer, and they target
every possible fault in the architecture without any consideration of which parts
of it are used for a given design. These techniques generally employ multiple test
configurations and the associated generated test patterns. Each test configuration
is intended to test a subset of the possible faults of the chip. This approach is
interesting especially for DPR systems.

In this way, a user can make sure that certain FPGAs resources are free of faults
before that a specific application is configured in the system. In this section, the
existing approaches are presented, highlighting the differences with the OLT(RE)2

approach.

3.4.1 Fault Detection mechanism

Application-independent techniques exploit multiple configurations of the FPGA,
each one intended to test a subset of the resources available in the device. These
test configurations are generally composed of a Test Pattern Generator (TPG), which
provides input stimuli to the set of resources under test and of an Output Response
Analyzer (ORA), which observes the output of the resources under test and deter-
mines whether they are faulty or not. These techniques can additionally be divided
into two sub-categories: comparison-based and parity-based [111] (see Figure 3.4).

In the comparison-based techniques, such as the ones presented in [1; 96], the
ORA knows both the expected output (associated with the input stimuli generated
by the TPG) and the actual output produced by the resources under test; by
comparing them, it can determine whether a fault occurred in the system. The
main drawback of these techniques is that they are unable to detect faults in the
TPG and those faults that do not interfere with the output of the resources under
test, i.e., equivalent faults.

To overcome these limitations, parity-based testing techniques, such as [113;
165], have been introduced; here the TPG additionally calculates a parity bit

65

3 State of the Art

on its outputs, while the ORA calculates the parity bit on the received signals.
Comparing these two parity bits the ORA can to detect the occurrence of a fault
in the resources under test. Then, the ORA does not need to know the expected
output, but it only relies on the parity bit generated by the TPG, therefore, also
faults affecting the TPG and the equivalent faults may be detected.

Parity-based testing approaches may be additionally classified in two families:
single parity [113] and cross-coupled parity [165]. In the single parity-based technique,
the TPG is an n-bit counter, producing n+ 1 output bits; the last bit is the parity
bit calculated on the previous n-bit. The ORA receives n+ 1 input bits, calculates
the parity on the first n bits and compares it with the received parity bit. The
drawback of single parity-based techniques is that some faults in the TPG and
some equivalent faults may still not be detected by the ORA; moreover, it is
important that the parity bit is sent on a fault-free wire.

In cross-coupled parity-based techniques the TPG is composed of two inde-
pendent n-bit counters, let us call them TPG_a and TPG_b; each TPG produces n
output bits plus one parity bit. Similarly, the ORA is duplicated: ORA_a receives
the n input bits from TPG_a and the parity bit from TPG_b; conversely, ORA_b
receives the n input bits from TPG_b and the parity from TPG_a. In this way, all
the faults occurring in the TPGs and all the equivalent faults may also be detected.
OLT(RE)2 utilizes a cross-coupled parity-based testing techniques to ensure that
all the possible faults are considered.

3.4.2 Off-line application-independent testing

Many works have been presented, which perform a test on FPGA devices just after
the fabrication. Apart from the published works, manufactures execute extensive
test on their FPGA devices to ensure that are permanent fault free; unfortunately,
no information are provided.

Therefore, three different works provided a built-in self-test (BIST) approach to
test modern FPGAs. In all the cases, the tests rely on specific testing circuits that
are configured off-line on the device. In 2006, [33] presented a BIST approach to
test logic resources of Virtex-4 FPGAs. The fault detection mechanism utilized is
comparison based. The work shows that all the CLBs of Virtex-4 FPGAs can be
tested with just 24 BIST configurations. In 2008, [166] presented a similar approach
to testing Virtex-1 FPGAs. It is worth to mention that both works did not consider
routing resources test.

The off-line test that targets routing resources is [165](published in 2009), which
provides an extensive BIST approach able to test routing resources on Virtex-4
FPGAs. A cross-coupled parity-based approach has been adopted. It can test the
global routing resources of an LX Virtex-4 with 51 BIST configurations; according
to other Virtex-4 subfamilies, the required BIST configurations can be up to 81.

66

3.4 Testing of Routing Resources

3.4.3 On-line application-independent testing

Permanent faults caused by TIDs have not yet been extensively addressed by
testing techniques. In the last years, the ongoing shrinking of the feature size of
the CMOS technology made SEUs the predominant radiation effect in electronic
devices. Thus, researchers focused much more on the detection of SEU effects
than on TIDs. Nevertheless, the significant voltage scaling and the dramatic
increase in the number of transistors make TID again significant in modern space
electronics [88].

It is worth noting that manufacturing defects and radiation-induced permanent
faults have similar effects from a functional point of view; in both cases, open
and short faults may be observed during the functioning of the system. Therefore,
many ideas belonging to application-independent testing may be borrowed and
reused by approaches aiming at detecting permanent effects to radiations.

The Roving STARs

Introduced in 1999, the Roving STARs [1] was an integrated approach for on-line
testing, diagnosis, and fault tolerance for FPGAs. The flow partitioned the FPGA
in reconfigurable areas; utilizing DPR, the test placed a testing block in each of the
reconfigurable regions. During the test of a particular region, the rest of the system
was available for other operations. Furthermore, this kind of approach allowed
testing both routing and logic resources. Roving STARs was applied to the ORCA
FPGAs from Lattice Semiconductor [1]. Many of Roving STARs concepts has been
utilized in the works presented in Section 3.4.2.

The OLT(RE)2 approach is based on many concepts of the Roving STARs as
well. It utilizes DPR to permit a fine-grain test of the FPGA, allowing the rest of
the system to still operating. Despite Roving STARs, OLT(RE)2 supports modern
Xilinx FPGAs, facing with further architectural constraints and a heterogeneous
architecture (differently from the old ORCA FPGAs).

OTERA

The only work addressing the problem of detecting faults induced in modern
FPGA devices by the long-term exposure to radiation is Online Test Strategies
for Reliable Reconfigurable Architectures (OTERA) [6]. This work focuses on the
architecture used for testing the reconfigurable areas inside an FPGA device and
on the scheduling of the test activities; in the work presentation, just a Virtex-5
is considered as a target device. Little information about how the test circuits
and associated test patterns are generated is given. Moreover, the presented test
architecture addresses any possible faults in those resources of the FPGA device
actually used by the implemented design, leaving out the remaining resources.

67

3 State of the Art

Table 3.4: Testing approaches comparison.

Year Testing
Method

Testing
Target FPGA

Logic Routing

Dhingra [33] 2006 off-line 4 8 Virtex-4
Zhang2008 [166] 2008 off-line 4 8 Virtex-1

Yao [165] 2009 off-line 8 4 Virtex-4
Roving Star [1] 1999 on-line 4 4 ORCA

OTERA [6] 2012 on-line 4 8 Virtex-5
OLT(RE)2 2015 on-line 8 4 V4, V5, V6, S6

On the contrary, OLT(RE)2 focuses on the FPGAs routing resources, which
represent up to 90% of the whole chip area in modern FPGAs [10].

3.4.4 Motivation

This section has provided all the motivation for the OLT(RE)2 flow. Table 3.4
summarizes all the presented testing approaches. The Roving STARs provides
a test that has the same final goal of OLT(RE)2: an on-line test, utilizing DPR,
which can detect logic and routing faults. Unfortunately, Roving STARs targets
just ORCA FPGAs.

Considering Roving STARs as a milestone for on-line FPGA testing, many
researchers tried to adapt the same concept to the modern and more complex
Xilinx FPGAs architectures. They had to face to specific architectural constraint
and with the increasing number of different devices produced. For these reasons,
researchers decided then to spit the problem of testing FPGAs resources.

Hence, the works presented in [33; 166], they adapted Roving STARs approach
to test Virtex FPGAs (Virtex-4 and Virtex-1 respectively). Nevertheless, they do not
provide an on-line test using DPR. They rely on a certain amount of bitstreams that
can be configured as requested; therefore, during a test the whole chip is utilized.

[165] is the only work that targets testing of routing resources with an application-
independent approach. Unfortunately, it does not allow to have an on-line test;
additionally, just the Virtex-4 family is considered. The only work that considers
an application-independent on-line test is OTERA; its limit is the fact that just
local resources are tested, and it targets just Virtex-5 FPGAs. Differently from
these approaches, OLT(RE)2 provides an application-independent on-line test for
routing resources, which is unrelated to a specific Virtex family architecture.

68

3.5 Summary

3.5 Summary

This chapter has provided details about the related works of this thesis. In particu-
lar, it presented the current DPR tools that are utilized in modern Xilinx FPGAs,
providing a comparison with the presented DXF database and the INDRA 2.0 flow.

Moreover, it presented how FPGAs, and DPR in particular, are becoming more
and more utilized in space applications. Prototyping platforms, as well as real
space applications that embed the DPR, are presented comparing them with the
novel DRPM platform.

Finally, the chapter has motivated the need for a new flow, which investigates
the permanent faults that can occur on FPGA due to radiation OLT(RE)2. Current
testing methods were analyzed, and their limits were discussed.

69

4 Dynamically Reconfigurable
Processing Module

As presented in Section 3.3, reconfigurable hardware has gained hey interest in
the domain of space applications. Nowadays, FPGA architectures have high
computational power and thanks to their ability to be reconfigured at run-time,
they became interesting candidates for payload processing in space applications.

DPR of FPGAs enables maximum flexibility and can be utilized for performance
increase, improve energy efficiency, and enhance fault tolerance. To prove the
effectiveness of this novel approach for satellite payload processing a prototyping
environment has been developed, which combines dynamically reconfigurable
FPGAs with different avionic interfaces such as CAN, SpaceWire, MIL-STD-1553B,
and SpaceFibre.

The presented DRPM is an ESA funded TRP project (22424/ 09/ NL/ LvH) [37]
and has been developed by the Cognitronics and Sensor Systems at Bielefeld Univer-
sity in close cooperation with different partners [180]. DRPM consists in a high-
performance embedded system characterized by heterogeneous general-purpose
processors and dedicated hardware accelerators working together. Communi-
cation among these processors and interfaces is one of the main aspects of this
platform.

Therefore, this thesis introduces a novel communication interface for heteroge-
neous embedded multiprocessor systems (Heterogeneous Multi Processor Com-
munication Interface (HMPCI)). This interface is intended to be used for data-flow
synchronization among the processing elements of the system; it has been designed
with the aim of finding a trade-off between performance, flexibility, and usability.

HMPCI has been developed for managing the communication of the DRPM.
However, it is designed to be adopted in different heterogeneous multi-processors
systems.

4.1 System Architecture

The architecture of the DRPM platform is based on the modular rapid prototyping
system RAPTOR-X64 (presented in Section 4.1.1): up to six different modules can
be connected to it. The DRPM platform is composed of two different kinds of mod-
ules: a communication module (called DB-SPACE, presented in Section 4.1.2) and

71

4 Dynamically Reconfigurable Processing Module

Figure 4.1: RAPTOR-X64 baseboard with one DB-SPACE and two DB-V4 modules
placed [180].

a processing module (called DB-V4, presented in Section 4.1.3). All the modules
implement their own processor subsystem. Therefore, every module can operate
autonomously: this allows a high flexibility and scalability of the platform.

All modules are connected to the LocalBus of the RAPTOR-X64, providing
extensive debugging and monitoring capabilities. The Point to point connections
of adjacent modules enables high- speed parallel communication between the
different modules.

The communication module is designed explicitly for the DRPM demonstrator
and consists of two parts: the DB-SPACE daughterboard that can be connected as a
module of the RAPTOR-X64 and the external DB-SPACE Frontpanel that provides
easy access to the interfaces of the DB-SPACE. The processing modules of the
system are the so-called DB-V4 daughterboards; they are equipped with a Xilinx
Virtex-4 FX100 FPGA and a DDR2-Modules with up to 4 GByte.

In the common configuration of the DRPM one communication module and two
processing modules are placed. The DB-SPACE communication module embeds
a SpaceWire-RTC processor, which is in charged to control the overall DRPM
systems. Figure 4.1 shows the RAPTOR-X64 with one DB-SPACE daughterboard
in the middle and two DB-V4 daughterboards surrounding.

Local software routines are implemented to execute a specific operation within
a module. However, if a placed processor in certain module needs to execute
an operation on another module, a special remote procedure called approach is
utilized.

72

4.1 System Architecture

PR FPGA
(Virtex-4)

SpaceWire-RTC

Ext. Comm.
FPGA

Config. CPLD

External
Reconfiguration

Controller

SRAM

Working
Memory

ADC/DAC
CTRL

FPU
LEON2-

FT
MEM I/F

FIFO
I/F

Space
Wire (4x)

Wizard
Link

MIL-STD-
1553B I/F

GPIO
AXI

Local
Bus

Flash

Config.
Memory

Inter
FPGADDR2-RAM

Working
Memory

Processing
Module

PLB

Local
Bus

Communication
Module

DB-V4 DB-SPACE

CAN Timer
RS232/

422
DebugGPIO

Space
Wire
(2x)

Memory Controller

XCL
Local
Link

PLB
Local
Link

XCL

Dynamic
Processing

Control Unit

Micro
Blaze

XCL

Partially
Reconfigurable Region

P
R

 R
eg

io
n

 C
om

m
. I

n
fr

a
st

ru
ct

u
re

Tile Tile Tile Tile

Tile Tile Tile Tile

Tile Tile Tile Tile

Tile Tile Tile Tile

Local
Link

PLB

Config. I/F

Self-Hosting
Reconfiguration

Controller

Frame
ECC

ICAP

PLB
Local
Link

CDMA

BRAM

Internal Comm.
FPGA

CDMA
FIFO

Bridge
MEM
Bridge

Config.
CTRL

Bridge

PLB Micro
Blaze

Micro
Blaze

Inter
FPGA

Inter
FPGA

Figure 4.2: Block diagram of the DRPM, highlight the structure of one processing
module and one communication module [180].

4.1.1 RAPTOR-X64

The rapid prototyping system RAPTOR-X64, the successor of RAPTOR2000 [59],
integrates all key components to realize circuit and system designs with a com-
plexity of up to 200 million transistors [16]. Together with rapid prototyping, the
system can be used to accelerate computationally intensive applications and to
perform DPR of Xilinx FPGAs. Therefore, this board has been chosen as a base
board of the DRPM system.

RAPTOR-X64 is designed as a modular rapid-prototyping system: the base
system offers communication and management facilities, which are used by a
variety of extension modules, realizing application-specific functionalities. For
hardware emulation, FPGA modules are equipped with Xilinx FPGAs and dedi-
cated memories.

The prototype of complex SoCs is achieved by additional modules proving
different communication interfaces, e.g., (Ethernet, USB, FireWire) as well as
analog and digital I/O. The Localbus and the broadcast bus, both embedded in
the baseboard architecture, add up to a powerful communication infrastructure
that guarantees high-speed communication with the host system and between
individual modules. Furthermore, direct links between neighboring modules can
be used to exchange data with a bandwidth of more than 20 Gbit/s.

For communication with the host system (HostPC), either a PCI-X interface
or a USB-2.0 interface can be used. Both interfaces are directly connected to the
Localbus, thus creating a closely coupled, high-speed PCI-X-based communication,
or a loosely coupled, USB-based communication.

73

4 Dynamically Reconfigurable Processing Module

Configuration and application data can either be supplied directly from the host
system or stored on a compact flash card. In addition to these features, RAPTOR-
X64 offers several diagnostic functions: besides monitoring of the digital system
environment (e.g., status of the communication system), relevant environmental
information like voltages and temperatures.

4.1.2 DB-SPACE

The daughterboard DB-SPACE has been specially designed for space related tar-
get applications; it is the central unit of the DRPM system. Its physical view
is presented in Figure 4.3a. It hosts a SpaceWire Remote Terminal Controller (SP-
WRTC) [3], several interfaces, and a configuration device to allow controlling
reconfiguration of other FPGA-based daughterboards (i.e., the DB-V4 presented
in Section 4.1.3). Moreover, the board is based on two Spartan-6 FPGAs: the so-
called EXT-COMM (XC6SLX150) and INT-COMM FPGAs (XC6SLX100). A block
diagram of the DB-SPACE is depicted in Figure 4.2.

SPWRTC is based on a PR-FPGAs processor and several interfaces (ADC/-
DAC, CAN, RS422, SpaceWire, General Purpose Input Output (GPIO), and debug
interfaces). The EXT-COMM FPGA implements additional interfaces, such as Wiz-
ardLink, SpaceWire, and GPIOs. The configuration controller is implemented on a
Complex Programmable Logic Device (CPLD), providing basic reconfiguration
features, such as DPR and blind scrubbing. Interconnection of the DB-SPACE
components is realized via the INT-COMM FPGA.

INT-
COMM

EXT-
COMM

CPLD

RTC

PROM
SRAM

Front Panel Socket

Front Panel Socket

(a) DB-SPACE daughterboard.

LED
Matrix

MIL-STD-
1553B

nominal / redundant

SpaceFibre
WizardLink

Spacewire
FPGA

Spacewire
RTC

RTC
ADC / DAC RTC

CAN

RTC
UART

FPGA Debug Button

FPGA GPIO RTC GPIO

(b) DB-SPACE front panel.

Figure 4.3: DB-SPACE communication module components [180].

74

4.1 System Architecture

The DB-SPACE Front Panel board is an extension board for DB-SPACE (pre-
sented in Figure 4.3b). The Front Panel offers physical interconnects for the inter-
face components of DB-SPACE. Therefore, the DB-SPACE communication module
supports the following standards: 6x SpaceWire, WizardLink/SpaceFibre, ADC/-
DAC, CAN, Debug interfaces (i.e., JTAG, TRACE, and UART), Timer signals and
GPIO pins. In the following, the two EXT-COMM and INT-COMM FPGAs are
described in details.

EXT-COMM FPGA

The EXT-COMM FPGA is mainly used to connect all data source interfaces to
the rest of the system. Consequently, it also handles the communication streams
between the different communication and processing modules. The EXT-COMM
FPGA can be considered as a reconfigurable extension of the SPWRTC.

The different IP-Cores of the EXT-COMM FPGA are connected using the Ad-
vanced Microcontroller Bus Architecture (AMBA) AXI4 communication infrastruc-
ture. This allows multiple parallel communication streams between different bus
subscribers, as the AXI4 is implemented as a crossbar.

Two basic Direct Memory Access (DMA) mechanisms have been integrated into
the system architecture. One is the CDMA engine, which supports DMA transfers
for every AXI4-Slave in the system. Furthermore, two cores have a dedicated DMA
by using the DMA engines. These DMA engines transform the data read from the
AXI bus into an AXI stream, which can be utilized directly by the target device,
or vice versa. This allows higher throughput compared to a CDMA solution,
especially when combined with larger burst transactions.

A MicroBlaze processor has been integrated with the necessary debug envi-
ronment. This processor is used for testing purposes and is not supposed to be
utilized in the final system, as the EXT-COMM FPGA is controlled directly by the
SPWRTC.

INT-COMM FPGA

The aim of the INT-COMM FPGA is to interconnect all FPGAs of the DRPM system
using the inter-FPGA interface and to connect them to the host PC via Localbus
bridge. Both interfaces are configured by a set of registers accessible through either
the Localbus or the inter-FPGA connection.

Additionally, the INT-COMM FPGA provides the startup, clock, and reset man-
agement for the SPWRTC. To handle fast data streams to and from inter-FPGA, a
central DMA core is integrated. A MicroBlaze IP Core is utilized for debugging
purposes.

75

4 Dynamically Reconfigurable Processing Module

4.1.3 DB-V4

The DB-V4 is an FPGA-based module for the RAPTOR-X64 board, which hosts a
Xilinx Virtex-4 FX100 FPGA and 4 GByte DDR2 RAM (as depicted in Figure 4.1,
where two DB-V4 are connected to the RAPTOR-X64 base board).

The FPGA includes two embedded PowerPC processors and 20 serial high-
speed transceivers, each capable of transceiving 6.5 Gbit/s in full duplex. Utilizing
these transceivers, four copper-based data links with a throughput of up to 32.5
GBit/s each are realized on the DB-V4 module [55].

PR-FPGA

The PR-FPGAs of the DRPM are the payload processing parts of the system. These
FPGAs can be dynamically reconfigured allowing environment situation changes.
Static processing components integrate a memory controller, connected to a DDR2-
RAM, and all communication bridges (between internal and external cores) to the
Processor Local Bus (PLB) main bus.

The bridges to the external cores are connected to the INT-COMM FPGA and the
Localbus. The Localbus is the bus on the RAPTOR board that is connected to the
PCI-bus, thus to the host PC. Internally, a bridge is needed for communication with
the Reconfigurable Tile (PR Tile), which build the Partial Reconfigurable Region
(PR Region). The communication infrastructure of the DPR system is generated
with DHHarMa (presented in Chapter 6).

Apart from the memory management and ECC/EDAC functions of the multi-
port memory controller, the Error Correcting Code (ECC) core has been extended
to record more information on single and double bit errors. Self-hosting reconfigu-
ration components comprise the Self Hosting Reconfiguration Controller (SHRC)
and a dynamic processing control unit (DPCU) based on a MicroBlaze processor.

The Self Hosting Reconfiguration Controller (SHRC) is capable of providing DPR
through the Internal Configuration Access Port (ICAP) with readback-scrubbing
capability. The SHRC takes an important role in the on-line tests performed by
OLT(RE)2 (see Chapter 7).

4.1.4 Memory Resources

The memory structure of the DRPM communication (DB-SPACE) and processing
modules (DB-V4) is presented in Table 4.1. The software of the DRPM (presented
in Section 4.2) needs to face with limited available working memory. In the specific,
the SPWRTC has just 8 MByte of working memory, and the MicroBlaze processor
placed into the PR-FPGA has just 128 KByte.

The next section presents the overall software structure of the DRPM. On the
one hand, it provides extensive functionalities, e.g., APIs and test routines; on

76

4.2 DRPM Software

Table 4.1: Memory resources of the DRPM system.

Module Resource Size

DB-SPACE

SPWRTC working memory (async. SRAM) 8 MByte
Configuration Memory (Flash) 128 MByte

Data Buffer - EXT_COMM (BRAM) 2 x 64 KByte
Data Buffer - INT_COMM (BRAM) 2 x 64 KByte

DB-V4
Data Buffer - PR_FPGA (BRAM) 2 x 64 KByte

DPCU working memory - PR_FPGA (BRAM) 128 KByte
PR_FPGA working memory (DDR2-SDRAM) 1 GByte

the other hand, its modular structure allows the running software to fit into the
available working memory.

4.2 DRPM Software

As presented in Section 4.1, the DRPM system is a heterogeneous multi-processor
platform. This section explains how APIs and drivers are utilized by the different
processors.

The DRPM system is controlled by the PR-FPGAs processor, which is embedded
into the SPWRTC of the DB-SPACE daughterboard.

More in general, the PR-FPGAs provides three main tasks:

• Handle avionic interfaces and appropriate services (e.g., PUS standard [28]).

• Handle integrated source data interfaces; the data need to be forwarded to the
reconfigurable core.

• Handle global components of Fault Tolerance and Error Correction Management
Unit (FTECMU) and Resource and Reconfiguration Management Unit (RRMU),
which respectively especially gathers statistics data and controls reconfigura-
tion for several reconfigurable cores.

These tasks need to be executed concurrently in a time critical environment. There-
fore, a real-time operating system is required. Apart from the SPWRTC, the Dy-
namic Processing Control Unit (DPCU) of the PR-FPGA hosts a softcore processor,
which have to handle the following main local functionalities:

• Routing of source data interfaces to appropriate PR Modules.

• Handle the software routines of the local RRMU and the FTECMU.

77

4 Dynamically Reconfigurable Processing Module

DRPM Shared Libraries (memory initialization routines, math functions, ...) (drpm_shared_code)

DRPM Services (inter-FPGA Communication protocol, ...) (drpm_shared_code)

EXT-COMM Drivers (ext_comm_shared_code)
(folders API, test, menu)

RTEMS 4.6.5
Standalone

(debug purpose) Xilkernel 5.01

MicroBlaze shared code (inter-fpga, ...) (microblaze_shared_code)

Leon2-FT
(SPWRTC)

MicroBlaze
(EXTCOMM)

MicroBlaze
(INTCOMM)

MicroBlaze
(PRFPGA)Processors

Shared
Code

Operating
System

spwrtc_os ext_comm_sw dpcu_xilkernelint_comm_sw
C Project

SPWconfig_file.h EXTconfig_file.h INTconfig_file.h PRconfig_file.h

Figure 4.4: Software architecture of the DRPM [30].

• Provide services to make local RRMU and local FTECMU accessible by the
master processor of the DRPM system: the PR-FPGAs. For this task, the
HMPCI communication interface is used (see Section 4.3).

The DRPM platform relies on the Real-Time Operating System for Multiproces-
sor Systems (RTEMS) [93], which is a fully featured RTOS that supports a variety
of open API and interface standards. In the specific, RTEMS 4.6.5 for Sparc V8 is
operating on the SPWRTC; it provides functionalities like memory management
and task scheduling for the PUS services [28].

4.2.1 Software Structure

As mentioned in Section 4.1, the DRPM is a heterogeneous multi-processor sys-
tem, which embeds two different kinds of processors: the PR-FPGAs and the
MicroBlaze.

The DRPM code structure is presented in Figure 4.4. Four different proces-
sors are utilized in the systems: PR-FPGAs and MicroBlazes on the INT-COMM,
EXT-COMM, and PR-FPGA. Two different operating systems are running on

78

4.3 Heterogeneous Multi Processor Communication Interface (HMPCI)

the DRPM. The mentioned RTEMS on the PR-FPGAs and Xilkernel 5.0 on the
PR-FPGAs MicroBlazes. The MicroBlazes of the INT-COMM and EXT-COMM
FPGAs are used just for debugging purposes, therefore, no operating system is
utilized.

For every target processor, a C project has been created (using ECLIPSE IDE). It
is possible to configure the project utilizing specific preprocessor directives, which
are located in the files named "*config_file.h". These allow the final executable to fit
on the device memory [30].

The processors of the DRPM can work autonomously, therefore, they can run
the operations and routines. For example, the interface APIs of the EXT-COMM
device can be used by MicroBlaze and PR-FPGAs processor. Therefore, the code is
organized in shared libraries, which are included in every C project. The shared
code is divided in EXT-COMM drivers, MicroBlaze shared code, DRPM services
and DRPM shared libraries.

4.3 Heterogeneous Multi Processor Communication
Interface (HMPCI)

Modern embedded applications are demanding of computational power. There-
fore, the number of processors deployed in such applications is becoming larger
and larger [180; 49]. Such embedded multiprocessor systems can be character-
ized by heterogeneity of the employed microprocessors and microcontrollers (e.g.,
LEON, Nios II or MicroBlaze), which can cooperate with DSP- or FPGA-based
dedicated hardware accelerators [23].

Besides the hardware accelerators, also many modern I/O systems are designed
to support high data rates and require a powerful interconnect within the system.
In such data-flow-centric computing systems, the processors distributed across the
system are mainly used for control tasks, ensuring the data is transferred to the
right component at the right time, while the hardware accelerators are used for the
actual processing of the data streams.

[57] discusses the hardware design aspects of heterogeneous embedded multi-
processor systems during the last years, while the problem of developing efficient
software for this kind of platforms has not yet been extensively faced. One of the
crucial aspects of the design of a heterogeneous embedded multiprocessor systems
is the communication among the various processors [99].

This section introduces a novel communication interface for heterogeneous em-
bedded multiprocessor systems (HMPCI). It is inspired by the Remote Procedure
Call (RPC) paradigm and allows any processor in the system to invoke functionali-
ties (passing the appropriate parameters) implemented by other processors and
receive back the results. In other words, it is intended to be used to synchronize

79

4 Dynamically Reconfigurable Processing Module

the data-flow between hardware accelerators and high-speed I/O interfaces.
The interface has been designed with the aim of finding a trade-off between

performance, flexibility, and usability. To assess its performance and usability, the
interface has been implemented and applied to a heterogeneous multiprocessor
architecture used for payload processing: the DRPM. The presented section has
been extracted from the previous work [174].

4.3.1 Related Works

Works addressing the communication among the processors of a heterogeneous
embedded multiprocessor system can be found in the literature. These works are
based on two different paradigms: Message Passing Interface (MPI) and the RPC.

The works MMPI [42], MSG Libraries [52], SoC-MPI [73] and MCAPI [75] focus
on the MPI paradigm; on the contrary, the works presented in [47; 72] are RPC-
based communication interfaces. Some of these works are focused on the hardware
infrastructure needed to allow inter-processor communication [62], while other
are more focused on the software interfaces and middlewares [42; 46; 79].

The works similar to the presented HMPCI interface are those presented in [47;
72; 81]; in both works, RPC-like communication interfaces are proposed. Neverthe-
less, the interface proposed in [47] is specifically focused on dual-core processors.
Moreover, the interface proposed in [72] allows only one process in the software
architecture to invoke functionalities, while all the others processes are meant to
be providers of functionalities. [81] focuses on grid computing systems, which
are different from embedded systems. Therefore, the presented communication
interface is the first that uses the RPC paradigm in heterogeneous embedded
multiprocessor systems.

Remote Procedure Call (RPC) and Message Passing Interface (MPI)

RPC paradigm has been chosen for the presented HMPCI because it is more easy-
to-use than MPI, as it has been discussed in [101]. However, RPC requires more
effort by the designers and programmers of the communication interface.

Thus, RPC enables to design a communication interface that could be easily
employed by the final application programmer. Moreover, with the RPC paradigm,
users call remote functions like local functions [101]. On the contrary, MPI is easy
to implement from the interface designer point of view, but it requires more effort
for application developers to manage function invocations and marshalling/un-
marshalling of the data.

80

4.3 Heterogeneous Multi Processor Communication Interface (HMPCI)

4.3.2 Inter-Processor Communication Interface

The proposed HMPCI communication interface is intended to allow applications
executed on one particular processor in the system to easily invoke functions (and
pass the corresponding parameters) to another application executed on a different
processor of the system. The interface allows exchanging control information and
data among any application running on any of the heterogeneous processors of a
multi-processor system, e.g., applications running on a LEON processor, as well as
on a MicroBlaze or a Nios microcontroller.

Figure 4.5 represents the overall software structure of a processor running the
proposed communication interface. The top level is occupied by the applications
defined by the user and executed by the processor. The core of the proposed
interface is represented by the physical layer-independent API (PHY-IND), which im-
plements the higher level of the communication interface. In particular, PHY-IND
is composed of a set of functions that are used by the applications to communicate
among each other.

PHY-IND relies on lower-level functions that allow the high-level communica-
tion functions to access the physical communication infrastructure. These lower-
level functions may be provided by an operating system or by a specific designed
physical layer-dependent API (PHY-DEP), in case the processor does not run an
operating system or the operating system does not support the particular commu-
nication infrastructure. Finally, the lowest level of the communication interface
is represented by the communication infrastructure itself, i.e., the physical layer
(PHY).

Node i

Microprocessor

Physical Layer
Driver

Operating System
Dependent API

Physical Layer
Dependent API

Physical Layer

Physical Layer and OS Independent API

Thread 1 Thread 2 Thread n...

Operating System

Figure 4.5: HMPCI structure on a generic node [174].

81

4 Dynamically Reconfigurable Processing Module

4.3.3 HMPCI Interactions

The core of the proposed communication interface is composed by a set of functions
that implement the RPC-based communication mechanism. These functions are
called by the applications threads executed on the processors. Client nodes are
defined as those nodes that invoke functionalities implemented by other nodes.
Similarly, server nodes are defined as those nodes that provide functionalities that
can be invoked by client nodes.

Client nodes send parameters to server nodes and server nodes send results
to client nodes according to the invoked functionality. It is worth noting that a
node that acts as a server in a given interaction can serve as a client in a different
interaction. Three interaction modes (represented in Figure 4.6) have been defined:
just-once, periodic and jumbo.

Just-once

Just-once procedure calls (represented in Figure 4.6a) comprise functions that are
invoked by the client and are executed by the server only once. These interactions
can be both synchronous and asynchronous.

An example of just-once interaction is a client that asks to a server running on
a hardware accelerator to calculate the Fast Fourier Transform of a given set of
samples. The client sends the samples as parameters of the function, the server
calculates the transformation and sends back the result.

About the DRPM platform, one example can be a request of performs DPR on
the PR-FPGA device. The client (PR-FPGAs) sends the bitstream to be configured
to the server (MicroBlaze), which performs the reconfiguration and sends back an
acknowledgment to the client.

Periodic

Periodic procedure calls (represented in Figure 4.6b) involve those functions that
are invoked by the client, are executed by the server and have results to be sent
periodically. These interactions are always asynchronous.

An example of periodic interaction could be a client that asks to a server running
on an SRAM-based FPGA to maintain statistics about the occurrence of single
event upsets in the configuration memory of the device, and to report to the client
the number of occurred faults every N hours. The client sends N to the server,
which starts monitoring the configuration memory, sending periodic reports to the
client.

82

4.3 Heterogeneous Multi Processor Communication Interface (HMPCI)

CLIENT

Send
(header + data)

Send
(header)

Message
Creation

RPC i
close

RPC i
execution

RPC i
creation

Service i
registration

Message
Creation

SERVER

(a) Just-once Interaction.

Message
Creation

CLIENT

Send
(header + data)

RPC i
execution

Send
(header + data)

Send
(header + data)

Service i
registration

Send
(header + data)

.

.

.

Message
Creation

RPC i
execution

RPC i
execution

RPC i
creation

Message
Creation

Message
Creation

SERVER

(b) Periodic Interaction.

CLIENT SERVER

Send
(ack)

Send
(Jumbo Address and

Jumbo length)

Send
(Header + Data)

RPC i
creation

Message
Creation

Reading Data

Message
Creation

RPC i
execution

Message
Creation

RPC i
close

Data copy to
Memory

Service i
registration

(c) Jumbo Interaction.

Figure 4.6: Examples of just-once, periodic and jumbo interactions.

83

4 Dynamically Reconfigurable Processing Module

Jumbo

Jumbo procedure calls (represented in Figure 4.6c) involve those functions whose
execution needs (or produces) a large amount of data. In this interaction type, the
function parameters or results (jumbo data) are copied into the destination memory
space exploiting DMA capabilities. After this, two messages, one containing
the memory address (jumbo address) where data have been copied and the other
containing the length (jumbo length) of the data, are sent to the destination node.
After reading the data, the destination node sends an acknowledgment, which
informs the source that the memory space has been freed.

Exploiting the jumbo mechanism, a node can send a large data block fast exploit-
ing DMA. It is worth noting that if the system architecture does not provide DMA
capabilities, the jumbo mechanism of the proposed interface cannot be exploited.

An example of jumbo interaction could be a client that asks a server running on
a hardware accelerator to perform a motion estimation on a large set of images.
The client copies the set of frames to be analyzed in the server’s memory space
through DMA and sends the memory address and the data length to the server.
The server reads the data and sends back an acknowledgment to inform the client,
and finally, it performs its computation and sends back the result of the estimation.

4.3.4 Inter-Processor Communication Protocol Details

The proposed HMPCI implements a point-to-point half-duplex communication.
The communication is structured into flows, where client nodes send request mes-
sages to server nodes to invoke functionalities and send parameters, and server
nodes send response messages to client nodes to send back the results.

Each flow is composed of a request message and one or more response messages.
Each flow is identified by three data fields: the ID of the client, the ID of the server
nodes, and the flow ID. In this way, the same flow ID can be utilized by a client to
communicate with different servers.

Each message (either request or response) is composed of packets. The struc-
ture of a packet is depicted in Figure 4.7. Every message consists of one header
packet and zero, one or more data packets (messages carrying no data packets are
acknowledged packets); each packet carries 32 bits.

The header packet is used to specify the functionality that has to be executed
(in request messages) or that has been executed (in response messages) and the
number of incoming data packets. Data packets can be either of normal or jumbo
type. Normal packets carry parameters for a function invocation or results from
an executed function. Jumbo packets are always sent in pairs and carry the jumbo
address and the jumbo length.

In the following, it is presented a description of the different data fields of a
packet:

84

4.3 Heterogeneous Multi Processor Communication Interface (HMPCI)

SRC DST Sequence PR PT (00) OP-ID Data lengthRR

SRC DST Sequence PR PT (01)RR Data

SRC DST Sequence PR PT (10)RR Jumbo Address

SRC DST Sequence PR PT (11)RR Jumbo length

0 - 3 4 - 7 8 - 11 12 13 14 16 - 23 24 - 31

Figure 4.7: Structure of the packets transmitted using the proposed communication
interface [174].

• SRC (4 bits): ID of the packet source node.

• DST (4 bits): ID of the packet destination node.

• Sequence (4 bits): sequence number of the flow to which the message belongs.

• PR Flag (1 bit): high (1) or low (0) priority flag.

• R/R Flag (1 bit): specifies whether the packet belongs to a request message (0)
or to a response message (1).

• PT Flag (2 bit): specifies whether the packet is a header (00), a normal data
(01), a jumbo address (10) or a jumbo length (11).

The remaining 16 bits carry, depending on the type of packet (PT Flag):

• Header (PT = 00): the operation ID (OP-ID) and the number of incoming data
packets. The OP-ID indicates the function to be executed.

• Normal data (PT = 01): a function parameter or result.

• Jumbo address (PT = 10): the address of the destination memory space in
which data have been stored.

• Jumbo length (PT = 11): the number of bytes copied into the destination
memory space.

In conclusion, the HMPCI can work with a maximum of 16 nodes (4 bits dedi-
cated for source and destination nodes). Every Client-Server pair can manage 16
operations at a time (i.e., 16 open flows); this limitation is given by the 4 bits of the
sequence number. 8 bits are dedicated for the OP-ID, therefore, within the overall
multi-processor system up to 256 operations can be defined. Finally, the priority
level can be set for specific tasks (i.e., high or low priority).

85

4 Dynamically Reconfigurable Processing Module

ApplicationsApplications

Client Server

Physical
Independent Layer

Physical Dependent
Layer

1 2 n

Physical Layer

invokation

response

Figure 4.8: Overall functioning of the proposed communication interface [174].

4.3.5 Using the Inter-Processor Communication Interface

Whenever a remote procedure call is required, the client has to perform the follow-
ing operations:

1. Create a message queue associated with the flow that is going to be opened.

2. Create a message.

3. Initialize the header of the message.

4. Initialize the data packets of the message with the data that have to be sent.

5. Send the message.

6. When the RPC ends, deallocate the queue associated with the flow.

It is worth noting that all the operations related to the creation, initialization, and
transmission of data (steps 1 to 5 in the description above) are carried out by the
same function. Thus, executing a remote invocation is easy from the application
developer point of view.

Any application that wants to operate as a server has to create a queue for any
of the functionalities that it wants to make available. These queues will be used to
store requests for the corresponding functionalities.

To reply to requests, after having executed the invoked functionality, a server
has to perform the same procedure performed by the client for the request, apart
from the first step (operations 2 to 5 in the description above). Like for clients, also
for servers, the operations related to answering to a remote function invocation
are all carried out by the same function.

The overall functionality of the proposed communication interface, from an
architectural point of view, is described in Figure 4.8.

86

4.3 Heterogeneous Multi Processor Communication Interface (HMPCI)

Communication Module (Node 0)

 LEON-2 FT Processor

Physical Layer
Driver

Operating System
Dependent API

Physical Layer
Dependent API

Inter-FPGA IPcore

Physical Layer and OS Independent API

Thread 1 Thread 2 Thread n...

RTEMS 4.6.5

Queue 1 Queue 2 Queue n

Processing Module (Node 1)

 Microblaze Processor

Physical Layer
Driver

Operating System
Dependent API

Physical Layer
Dependent API

Inter-FPGA IPcore

Physical Layer and OS Independent API

Thread 1 Thread 2 Thread n...

Xilkernel 5.0

Queue 1 Queue 2 Queue n

Mail Box

Inter-FPGA IPcore

FIFO Bridge Mail Box

Figure 4.9: HMPCI implementation on the DRPM.

4.3.6 HMPCI on the DRPM

The proposed interface has been implementing for targeting the DRPM platform.
As explained in Section 4.1, DRPM is a heterogeneous embedded multiprocessor
system composed of multiple communication modules and processing modules.

The communication modules rely on SpaceWire-RTC AT7913E, based on a
PR-FPGAs CPU (50 MHz working frequency) running the RTEMS operating sys-
tem [93], acting as the system controller. The processing modules are equipped
with a Xilinx Virtex-4 FX100 FPGA with an embedded MicroBlaze processor
(100 MHz working frequency) running the Xilkernel operating system [130]. As
mention in Section 4.1.2, the MicroBlazes of the INT-COMM and EXT-COMM
FPGA are utilized just for debugging purpose, therefore, they are not used in the
considered HMPCI test scenario.

Considering, the DRPM as the target platform, Figure 4.9 shows how HMPCI
has been implemented.

The Physical Layer and the Physical Layer-dependent API

The physical layer of the proposed communication interface relies on the inter
FPGA communication module presented in [89]. Each node in the system is pro-
vided with an inter-FPGA communication module. The inter-FPGA is equipped
with one local interface and up to three external interfaces.

The local interface is used to connect to processors or peripherals on the local
module. The external interfaces are used to connect the inter-FPGA to other com-

87

4 Dynamically Reconfigurable Processing Module

munication modules and thus to allow a node to communicate with components
on other nodes, like processors, accelerators or I/O systems.

A DMA unit available in each node is used for efficient data transfer between
the nodes using the external interfaces. Function invocations and a small set of
data are passed between the processors using the mechanisms described in the
following sections, while a large bunch of data transfer can be handled in hardware
through DMA.

Each interface of the inter-FPGA is identified by an interfaceID. Similarly, each
processor in the system is identified by a processorID. Each inter-FPGA in the
system stores a routing table containing <interfaceID, nodeID> bindings.
This allows communication between any couple of nodes in the system.

In particular, for every possible destination node, each inter-FPGA stores in its
routing table the interfaceID of the interface through which the packet has to bee
forwarded. Moreover, since an inter-FPGA can receive (forward) packets from (to)
either the local interface or the external interfaces, multi-hop communication is
available.

The inter-FPGA IPCore exchanges data through a physical layer communication
protocol. Packets exchanged between communication modules carry 32 bits of
control information (the source and destination nodeIDs and the number of fol-
lowing words of data), 32 bits used to specify the address of the memory space
of the destination node in which the data will be stored, and 1 up to 210 32-bit
words of data. The inter-FPGA physical layer communication protocol uses a 4-bit
addressing scheme, then up to 15 nodes can be connected in the system.

Since the inter-FPGA physical layer of the DRPM is the result of a custom design,
neither the RTEMS nor the Xilkernel operating systems offered the functionalities
needed to access it. Thus, a dedicated PHY-DEP API for the physical communica-
tion infrastructure of the DRPM has been developed. The PHY-DEP API provides
functionalities to configure the routing tables of the communication modules, and,
once these have been configured, to exploit the physical layer communication
protocol to send and receive data.

Implementation details

One of the main targets of the HMPCI protocol is to have a limited footprint.
Table 4.2a shows the code occupation for RTEMS running on PR-FPGAs and
Xilkernel running on MicroBlaze. The results are provided in Bytes and Logical
System Lines Of Code (LLOC). The table is partitioned, according to the HMPCI
software structure, in PHY-IND (marked in green), and PHY-DEP (marked in red).

Moreover, the PHY-DEP software is partitioned into three subcategories: base
protocol, client specific and server specific. Hence, further decrease the footprint
of the code is possible. In the specific, a node could operate just as server or client.

88

4.3 Heterogeneous Multi Processor Communication Interface (HMPCI)

Table 4.2: HMPCI footprint on the DRPM.

(a) PHY-DEP (red) and PHY-IND (green) footprint.

MicroBlaze,
Xilkernel

PR-FPGAs,
RTEMS

Size
[Byte] LLOC Size

[Byte] LLOC

Server Specific 368 42 224 42
Client Specific 592 64 656 64
Base Protocol 7,536 431 5,854 259

Phy Layer APIs 828 203 378 199

Total 9,324 740 7,112 747

(b) HMPCI Client and Server.

MicroBlaze,
Xilkernel Size

[Byte]

PR-FPGAs,
RTEMS Size

[Byte]

Client Node 8,956 6,888
Server Node 8,732 6,456

Client + Server Node 9,324 7,112

740 code lines have been written for the MicroBlaze: 537 for the PHY-IND API
and 203 for the PHY-DEP API. In the case of the PR-FPGAs, 365 LLOC for the
PHY-IND API and 199 for the PHY-DEP API. Most of the developed code could be
compiled for both RTEMS and Xilkernel. The only platform-dependent code is the
one for the management of the semaphores and the queues associated with the
remote function invocations.

The HMPCI has been compiled for RTEMS and Xilkernel with the maximum
optimization level for memory occupation. Using this optimization level, the
RTEMS implementation of HMPCI occupies 7,112 Byte; the PHY-IND API occupies
6,57 kByte: 224 Byte server-specific, 656 Byte client-specific, and 5,854 Byte of base
protocol code.

The Xilkernel implementation occupies 9,324 Byte. More in detail, the PHY-
DEP API occupies 828 Byte; the PHY-IND API occupies 8,496 kByte (368 Byte
server-specific, 592 Byte client specific and 7536 Byte of base protocol code).

Table 4.2b highlight the footprint of the three use cases: Client, Server, Client +
Server. The results show that compiling the interface according to a specific use,
memory space can be saved.

89

4 Dynamically Reconfigurable Processing Module

4.3.7 Experiment Results

Bandwidth

Table 4.3 shows the maximum available bandwidth of the proposed interface.
Depending on the length of the data transfer, the DMA units on the different
nodes are used to transfer the data. DMA is used to transfer data directly from an
interface to a hardware accelerator or between accelerators, while the processor
is just controlling the data flow. In this test, the data are transferred from the
EXT-COMM to the PR-FPGA. For data bigger than 12 Bytes, it has been observed
that is convenient to utilize the DMA engine embedded in the EXT-COMM FPGA.
For transfer lengths ≥ 1 MByte, a utilization of ≥ 90 % is achieved. For bigger
transfers (8 MByte) 98 % are observed.

Latency Evaluation

The one-way latency of the HMPCI protocol is evaluated as well, i.e., the number of
clock cycles between the starting of a remote function invocation and the beginning
of the function execution. Table 4.4 reports the latency calculated for 0 to 12 Bytes
of transmitted data. In detail, the table reports the clock cycles spent by the client
to open the flow and create the message, the clock cycles needed to transmit the
message and the clock cycles needed by the server to pop the message from the
queue and unpack it.

Table 4.3: Bandwidth/Throughput results for the presented interface [174].

Length of data
transfer

Time for
transfer Bandwidth DMA

used

4 Byte 138.64 µs 28.18 kByte/s 8

12 Byte 308.5 µs 37.99 kByte/s 8

16 Byte 308.81 µs 50.60 kByte/s 4

64 Byte 308.93 µs 202.31 kByte/s 4

256 Byte 309.41 µs 807.99 kByte/s 4

1 kByte 311.33 µs 3,14 MByte/s 4

4 kByte 319.01 µs 12.24 MByte/s 4

16 kByte 349.73 µs 44.68 MByte/s 4

1 MByte 2.93 ms 341.27 MByte/s 4

8 MByte 21.28 ms 375.93 MByte/s 4

90

4.3 Heterogeneous Multi Processor Communication Interface (HMPCI)

Table 4.4: Latency results for the presented interface.

0 Byte 4 Byte 8 Byte 12 Byte
[#CLKs] [#CLKs] [#CLKs] [#CLKs]

Client

open flow 390 390 390 390
create message 107 755 1251 1599
msg. transmission 113 273 2074 1989
total client 610 1418 2074 1989

Server
pop msg. from queue 1050 3145 5235 7361
unpack message 774 2369 3899 5472
total server 1824 5514 9134 12833

Total 2434 6932 11208 15425

4.3.8 Summary

In this section, a communication interface for heterogeneous embedded multipro-
cessor systems has been presented (HMPCI).

Table 4.5 reports a performance comparison between HMPCI and some other
interfaces. The comparison has been carried out considering the memory foot-
print (code+data) and number of clock cycles needed to transmit 4 Bytes at the
communication infrastructure level. HMPCI has a memory footprint comparable
to the footprint of the interfaces in [42] and [73] but much smaller than the ones
in [52] and [75]. From the latency point of view, apart from the interface in [75], all
the other interfaces show a higher latency than HMPCI. In particular, while the
interface in [73] has a still comparable latency, the ones in [52] and [42] have much

Table 4.5: Performance comparison [174].

Reference Platform
Memory footprint One-way latency

[KByte] [#CLKs]

SoC-MPI [73] MicroBlaze 11.5 to 16 281
MSG [52] CELL BE ∼256 1200

MCAPI [75] Nios/PC 28.8 32
MMPI [42] custom MPSoC 11 1000

HMPCI PR-FPGAs/ MicroBlaze 6.95 / 9.11 273

91

4 Dynamically Reconfigurable Processing Module

higher latency.
Since the implementation is inspired by the RPC paradigm, the proposed inter-

face offers a higher ease of use to embedded application designers than message
passing-based communication interfaces. Moreover, thanks to the integrated DMA
mechanism, a high channel utilization is achieved.

4.4 DRPM Evaluation and Validation Environment

The software implementation of the DRPM system (presented in Section 4.2) allows
the DRPM to implement space scenarios. In the test and verification phase of the
DRPM development, dedicated test cases have been created to prove the hardware
implementation of the system.

In addition, the platform comes with a complete tool that runs on the Host PC:
the DRPM GUI. The GUI enables a complete setting of the DRPM and provides an
easy-to-use interface for users.

4.4.1 Avionic Interfaces Testing

The system has been validated with specific avionic devices. In the specific, the
utilized devices are the CAN-AC2-PCI Board, the SpaceWire-USB Brick and the STAR
Fire (Figure 4.10).

CAN

The CAN Application Controller CAN-AC2-PCI (Figure 4.10a) allows easy inter-
facing of PC applications to CAN-based networks. CAN-AC2-PCI offers access to
two independent, optoisolated CAN networks.

Test scenarios have been generated utilizing the tool CANalyzer 4.0 [119], which
is a universal software analysis tool for Electronic Control Unit (ECU) networks
and distributed systems. CANalyzer allows observing and analyze data traffic in
CAN devices.

SpaceBrick

The SpaceWire Brick [106] (Figure 4.10b) allows the connection of a host PC to a
SpaceWire device or network. It connects to the PC through a USB port, and it has
two SpaceWire ports.

The unit contains a non-blocking routing switch using the same technology
as the STAR-Dundee Router IP Core, which allows the user to route SpaceWire
packets through any of the three ports (2 x SpaceWire, 1 x USB).

92

4.4 DRPM Evaluation and Validation Environment

(a) CAN-AC2-PCI Board [103]. (b) SpaceWire Brick [107].

(c) StarFire [107].

Figure 4.10: Avionics devices utilized with the DRPM.

This device is utilized for testing the SpaceWire interfaces of the DRPM, con-
nected to the SPWRTC and the EXT-COMM FPGAs. Moreover, technical APIs are
also provided with the SpaceWire Brick, which has allowed integrating the setting
and use of this device into DRPM GUI.

STAR Fire

STAR Fire [107] (Figure 4.10c) supports the evaluation and early adoption of
SpaceFibre technology with a comprehensive test and development platform.
STAR Fire can operate as a bridge between SpaceWire and SpaceFibre.

The SpaceWire APIs provided with the SpaceBrick are compatible with the Space
Brick device. Therefore, the STAR Fire functionalities are also integrated into the
DRPM GUI. Moreover, this device is mainly utilized in the Video Demo Scenario
presented in Section 4.4.2; it allows verifying the utilization of the SpaceFibre and
SpaceWire interface into a video stream scenario.

93

4 Dynamically Reconfigurable Processing Module

4.4.2 DRPM GUI

The DRPM GUI is a complete suite that allows configuring, validating and creating
use case scenarios on the DRPM system. It has been designed utilizing QT Creator
2.6.2 and QT libraries 4.8.4 [116]. This thesis focuses on the SpaceWire/SpaceFibre
video stream functionalities of the DRPM GUI.

The DRPM GUI embeds several functionalities such as:

• FPGAs module configuration: it is possible to load and configure a bitstream
for every module placed on the RAPTOR-X64.

• PROM configuration: load the bitstreams into the FLASH memory placed
on the DB-SPACE and set the PROM to have the automatic configuration of
specific bitstream after a power-on of the system [171].

• SpaceBrick and StarFire configuration: as mentioned in Section 4.4.1, it is possi-
ble to configure and utilize these devices to validate the SpaceWire/SpaceFi-
bre interface and to create specific test scenarios.

• Serial Port debugging: debugs the FPGAs of the systems thanks to serial
connections to the FPGAs. Moreover, it enables to set specific registers of the
system.

• Scheduling tests on the DRPM: it allows creating data-flow cases into the
DRPM, which gives the possibility to investigate the best scheduling strategy
to adopt [173].

Video Demo Scenario

The DRPM provides a complete platform to investigate the utilization of DPR in
space applications. Moreover, it consists of a multi-FPGA system that embeds
different kinds of processors. This thesis presents a test case scenario, which shows
the capabilities of the system: the DRPM video demo.

The video demo is part of the DRPM GUI, and it consists of video stream
frames into the DRPM, filter them and reading back the filtered frames. It is
possible to choose different frame sources: Local Webcam, Local Video or Local
Picture. Moreover, the data can be streamed into the DRPM utilizing the PCI
interface, the SpaceWire interface (through either SpaceBrick or Star Fire) or the
SpaceFibre interface (through the Star Fire).

For example, the user can set a webcam as a source, then send the data using
the SpaceWire interface, execute a specific image filtering (which is placed on
the PR-FPGA as a PR Module) and read back the results utilizing the SpaceFibre
interface. In this kind of scenario, the data go first through the USB-interface into
the StarFire device, then into the EXT-COMM FPGA through SpaceWire link; once

94

4.4 DRPM Evaluation and Validation Environment

Figure 4.11: GUI of the demonstrator [183].

the data are received by the DRPM, they are routed through the INT-COMM to
PR-FPGA (thanks to the inter-FPGA core presented in Section 4.3.6) and finally,
the data goes to the specific filtering. On the one hand, this kind of scenario gives
a validation of the functionalities of the DRPM; On the other hand, it provides an
extensive video demo that can show the capability of the system.

In addition, the video demo shows the self-healing capability of the system, in
the case of a SEE occurs: it is possible to insert a bit-flip into the configuration
memory of the PR-FPGA and verify how the system corrects the error before
it propagates into the system. Figure 4.11 shows this kind of verification: a
picture is selected as Avionic Source Data, then it is sent into an inverter filter. The
window Detailed Computed Data shows the computed picture; the picture has some
erroneous pixel, in fact, the system has been set to insert regularly faults into the
PR-FPGA system. The picture shows, how the system (thanks to the SHRC) can
correct the erroneous bit, replacing the correct behavior of the system.

95

4 Dynamically Reconfigurable Processing Module

4.5 Summary

The DRPM, a novel scalable prototyping environment for space application, has
been presented. The system allows applying DPR of FPGAs in space scenarios.
The system combined dynamically reconfigurable Xilinx FPGAs, a rad-hard SoC
(SPWRTC) and emerging avionic interfaces (e.g., SpaceFibre [182]) additionally to
established ones (e.g., SpaceWire, MIL or CAN). The architecture of the DRPM has
been presented, highlighting its novel architecture and modularity. More results
and benchmarks of the DRPM platform can be found in [177; 179; 181].

The different processors of the systems (i.e., PR-FPGAs and MicroBlaze) are in-
teracting utilizing an inter-processor communication protocol: the Heterogeneous
Multi Processor Communication Interface (HMPCI). This allows having a remote
procedure call based interface, which provides minimal footprint in the system
and high flexibility in term of number of processors and operations that can be in-
stantiated. Furthermore, Heterogeneous Multi Processor Communication Interface
(HMPCI) can be adapted to different heterogeneous embedded multiprocessor
systems.

The modular RAPTOR-X64 FPGA prototyping board has been used to create a
highly scalable platform, which is then connected to a commercial PC, utilizing a
PCI-X interface. A custom GUI enables to configure and debug the overall DRPM
(e.g., download bitstream, processor console debugging, PROM configuration).

A special test case scenario has been created, which verify high-bandwidth of
the system, integration with avionics devices (SpaceWire Brick and StarFire), DPR
and self-healing [177; 183].

96

5 INDRA 2.0

This chapter presents the INtegrated Design flow for Reconfigurable Architectures 2.0
(INDRA 2.0) flow, which targets the creation of DPR systems on Xilinx FPGAs.
These devices can be dynamically reconfigured, changing the functionality of a
portion of the FPGA (as discussed in Section 2.2). However, the Xilinx tools do
not allow exploiting fully DPR on their devices. Section 3.2 discusses how several
research tools overcome the limitations of the Xilinx tools; INDRA 2.0 is one of
them.

The flow enables the user to create advanced DPR systems. It starts with the
HDL definition of a design and generates the bitstreams that are configured on
the device. Moreover, INDRA 2.0 is integrated with the standards Xilinx tools,
allowing utilizing them in the intermediate steps of the flow.

This thesis provided two main contributions on the INDRA 2.0 flow. It provides
a PW database of the Xilinx routing resources, which allow the integration of INDRA
2.0 with the Xilinx FPGA-Edline tool. Then, the PSRerouter has been generated,
which enables the user to reroute specific nets of a design, solving some limitation
of the Xilinx router.

Section 5.2 presents the novel tool DHHarMa. They are introduced the Datas-
tructure for Xilinx FPGAs (DXF), the integration with the Xilinx tools, and the
DHHarMa’s parts (i.e., Homogeneous Packer, Homogeneous Placer, and Homogeneous
Router). The Homogeneous Router is one of the key parts of this thesis, and it is
discussed in detail in Chapter 6.

Section 5.3 presents the PSRerouter. This tool allows rerouting a P&R design
without the need to convert it with the Xilinx XDL tool. In the specific, it is
discussed how a dedicated database has been created to support this tool (the
so-called PW database, which is integrated to the DXF database). Finally, it is
presented how static nets that cross dynamic area of the FPGA can be rerouted.

5.1 Flow Description

INDRA 2.0 is a novel flow that generates DPR systems. It supports a wide range
of Xilinx FPGAs (Virtex-4, Virtex-5, Virtex-6, Spartan-6 and 7 Series) and it is
integrated wit the Xilinx ISE (version 14.7) [129]. On the contrary, the first version
of INDRA (presented in Section 3.2.2) supported just the Virtex-2 family [45].

97

5 INDRA 2.0

The overall flow is depicted in Figure 5.1. INDRA 2.0 provides supports in all
the steps needed to create bitstream files, starting from an HDL representation.
The INDRA 2.0 flow, and its DHHarMa and PSRerouter tools are available as
open-source projects [54].

5.1.1 FPGA partitioning

First of all, the user needs to partition the FPGA according to the requirement
of the DPR system. Then, he has to specify the static area (Base Region) and
the dynamic area (PR Region) of the system. The partitioning depends on the
properties of the selected device, such as the granularity of reconfiguration (length
of a configuration frame) and the design components to be placed. 2D rectangular
areas can be defined, according to the area constraints of the Xilinx tools. The
partitioning of a DPR system is discussed in detail in Section 2.2.2.

The base region is the area of the FPGA that is configured just when the system
is initialized. The configuration of the base region does not change at run-time.
The PR Region is used for run-time reconfiguration. All dynamic system compo-
nents are located in the PR Region. The PR Region is composed of one or more
Reconfigurable Tiles (PR Tiles). A PR Tile is the smallest partially reconfigurable
unit.

It is important to mention that the type of Reconfigurable Tile (PR Tile) is given
by the logical resources contained in it. Therefore, two Reconfigurable Tiles (PR
Tiles) are of the same type if they contain the same logical resources in the same
internal position. The type of a PR Tile is discussed in Section 2.2.2.

After the partitioning step, the HDL source files are then divided into three
groups:

• Static components: these components are placed in the static part of the FPGA.

• Dynamic components: these components are placed in the dynamic region of
the FPGA. Every implementation of the dynamic components is the so-called
PR Modules.

• Communication components: these components are located in both static and
reconfigurable areas. They are in charge to manage the communication
among the static and reconfigurable regions.

In the following, it is explained how this three kinds of components are synthe-
sized on the device.

5.1.2 Communication Macro Generation (DHHarMa)

The creation of a DPR system that supports bitstream relocation requires a suitable
communication infrastructure, which preserves the homogeneity of the system.

98

5.1 Flow Description

PARTITIONING

HDL / Netlists,

Schedule

LAYOUT /

FLOORPLANNING

Architectural

Partitioning,

Communication Macro

COMMUNICATION

MACRO GENERATION

IMPLEMENTATION

OF STATIC HW

POST SYNTHESIS

REROUTER

Initial Design, Template

for dynamic

Components

BITSTREAM

GENERATION

Initial / Partial

Bitstreams

Dynamic Partial

Reconfigurable

system

Top
Level

Mod.
A

Mod.
N

Stat.
Comp

.

DHHarMa

Xilinx PlanAhead / Manual

BitGenBitGen

XST, NGDBuild, MAP, PAR

Top
Level

HDL
Input-
Design

DPR-Part

IMPLEMENTATION

OF DYNAMIC HW

Dyn.
Comp

. A

Dyn.
Comp

. B

XST, NGDBuild, MAP, PAR

PS

ReRouter

PR

Region

Base Region

Figure 5.1: Overview of the INDRA 2.0 Flow. In yellow are highlighted the devel-
oped tools.

99

5 INDRA 2.0

The communication infrastructure interconnects the PR Modules and the base
region; it does not have to introduce any further heterogeneity in the system. There-
fore, the communication infrastructure that has been described in Section 2.2.4 is
utilized in this kind of scenario.

The communication infrastructure needs to be packed, placed and routed con-
sidering the homogeneity of the PR Tiles. For these reasons, DHHarMa has been
developed. Despite the vendor’s tools, DHHarMa provides advanced mechanisms
to utilize the resources of the FPGA keeping the maximum flexibility of DPR
designs.

In the specific, the resources of the PR Tiles of a specific type are always utilized
in the same way by the communication infrastructure; this means that a PR Module
that is placed initially in a specific PR Tile (e.g., PR_Tile_Type1_a) can be relocated
in another one of the same type (e.g., PR_Tile_Type1_b).

At the end of this process a placed and routed communication infrastructure is
generated, which is stored in the Xilinx logical description of the design and macro
library (NMC) format. Details of the DHHarMa implementation are presented
in Section 5.2. DHHarMa can be used either within the INDRA 2.0 flow or as a
standalone tool.

5.1.3 Static PAR and PSRerouter

Once that the communication has been generated, the static design is placed and
routed. First, the communication hard-macro generated with DHHarMa is placed
into the FPGA. Then, the static components are placed and routed within the static
area utilizing the standard Xilinx tools. The routing of the static components can
cross the reconfigurable area, affecting the homogeneity structure of the design
(this topic is discussed in Section 3.2.1).

In order to solve this issue, the Post-Synthesis Rerouter (PSRerouter) tool has
been developed to provide a post-synthesis rerouting of a design. The problem of
the crossing nets and the detail implementation of the PSRerouter are discussed in
PSRerouter. At the end of these steps, the design is stored in an NCD format, and
it contains all the static and communication components of the DPR system.

5.1.4 Dynamic Modules Implementation

The dynamic components are the ones that can be dynamically reconfigured during
run-time, which are grouped in so-called PR Module. A PR Module can be placed
and removed at run-time according to the needs of the application.

As presented in Section 2.2.2, the PR Region can be partitioned into PR Tile; the
dimension of a PR Module can be either of one PR Tiles or a group of contiguous PR
Tiles. Placing a module is equivalent to searching an area with as much contiguous
free tiles as needed by the module.

100

5.2 Design flow for Homogeneous Hard Macros

The creation of the PR Modules is provided with the standard Xilinx PR flow.
The user needs to define the part of the reconfigurable region where the PR Module
has to be placed, and the connections with the communication infrastructure. At
the end of this step, for every PR Module, an NCD file is generated.

5.1.5 Bitstream Generation

Once that all the components of the system have been placed and routed, the last
step of the INDRA 2.0 is the generation of the configuration bitstream of the DPR
system. For this step, the standard Xilinx PR flow is utilized, which generates the
static design bitstream (Top level bitstream in Figure 5.1) and all the PR Module
bitstreams (Mod. A and Mod B. in Figure 5.1).

INtegrated Design flow for Reconfigurable Architectures (INDRA) keeps ho-
mogeneous the static components and the communication infrastructure during
the various implementation steps. Therefore, the PR Modules that have been
generated for a specific portion of the PR Region can be relocated dynamically in a
different area, which has exactly the same type of PR Tiles and same contiguous
position. Therefore, the generated DPR system supports PR Modules relocation.

5.2 Design flow for Homogeneous Hard Macros

Hard macros are pre-placed and pre-routed designs, which can be integrated into
a system design without requiring an additional place and route process. Suitable
packer, placer, and router are required to obtain a homogeneous hard macro. In the
following, it is presented the DHHarMa design flow, which targets the generation
of homogeneous hard macros for Xilinx FPGAs.

The complete design flow is depicted in Figure 5.2. The Xilinx-based front-end
generates an unplaced and unrouted design for the target FPGA device. Then, the
DHHarMa back-end uses the output of the Xilinx-based front-end and generates a
hard macro description by applying packing, placing, and routing homogeneously.

High-Level
Description

(HDL)

Hard Macro
Descripition

(NMC)
Xilinx-based

Frontend

Mapped Hard
Macro (XDL) DHHarMa

Backend

FPGA
partitioning

(CSV)

Figure 5.2: DHHarMa design flow for generating homogeneous hard macros [184].

101

5 INDRA 2.0

In the following, first, it is presented the Datastructure for Xilinx FPGAs (DXF)
database, which contains the FPGA structure information for all the FPGA de-
vices of the Virtex-4, Virtex-5, Virtex-6, Spartan-6 and 7 Series families. The novel
features of Datastructure for Xilinx FPGAs (DXF) database are discussed in Sec-
tion 3.1.

Section 5.2.2 explains the Xilinx-based front-end, focusing on the steps exe-
cuted to provide a proper input to DHHarMa back-end. Section 5.2.3 discusses
the core parts of the DHHarMa flow, which consists of implemented so-called
homogeneous algorithms that generate a hard macro with such property (homo-
geneity). Moreover, it provides details of how a certain FPGA can be partition in
homogeneous areas.

Finally, Section 5.2.4 explains how the final XDL file is generated. This file
provides the standard Xilinx tools a hard macro, which is homogeneously placed
and routed.

5.2.1 Datastructure for Xilinx FPGAs (DXF)

The XDL report (described in Section 2.3.3) can take up to 73 GByte of space
(Virtex-7 2000t), which implicates disadvantages in a direct use:

1. The report stores redundant information: a tool needs to manage them on-line,
adding an extra computational cost.

2. Space needed to get a full description of an FPGA: storing all the reports in the
XDL format needs lot of memory (about 10TB).

3. The report does not reflect the inherent homogeneity of the FPGA fabric: this makes
difficult for a tool to exploit the homogeneity of a device.

These disadvantages are the main reasons to create a custom database for a
Xilinx FPGA: the Datastructure for Xilinx FPGAs (DXF). This database provides fast
access to the various components of the device. For example, a router may check
millions of possible paths when creating a single path between two pins; the faster
the access to a wire component is, the lesser is the time needed to create a path.

One of the more important features of this database regards the PWs information.
In the XDL report, a PW is not stored as a set of wires that composes it; on the
contrary, the wires contains the information of the connection to one or more wires
of the corresponding PW. Therefore, in order to extract all the wires that compose
a PW, an algorithm needs to visit all the wires and verifies all their connections
with other wires. In the DXF database, this information has been organized in
so-called PW objects.

In addition, the PWs created from the XDL report are integrated with the PWs
information extracted with the FPGA-Edline tool. The steps to extract this in-
formation and the use in the PSRerouter flow are explained in Section 5.3.4. As

102

5.2 Design flow for Homogeneous Hard Macros

Xilinx-based Frontend

XST Synthesis NGDBuild MAP XDL
HDL XDL

Figure 5.3: Structure of the Xilinx-based front-end for the design flow.

motivated in Section 3.1.5, the PWs information extracted with the FPGA-Edline
tool are not provided in any other Xilinx FPGA database (either from the vendor
or from academic projects).

More details and benchmarks regarding the DXF database implementation
(starting from the XDL report) are provided in [98].

5.2.2 Xilinx-based front-end

The front-end of DHHarMa uses the Xilinx FPGA tool chain to perform the technol-
ogy mapping of the hard macro design (Section 2.3.1). The front-end generates an
XDL representation of the mapped hard macro (XDL is explained in Section 2.3.3)
starting from a high-level description in HDL. Programs involved in this process
are shown in Figure 5.3 and explained in the following:

1. The XST synthesis tool transforms the HDL source files into an architecture-
specific netlist (Native Generic Circuit (NGC) format). This file contains the
logical design data and additional constraints (e.g., timing or implementation
constraints). The XST synthesis analyzes the VHDL code and infers specific
design building blocks (LUT, RAM, MUX, etc.).

2. The NGC file is a direct input for NGDBuild, which reads the netlist and
transforms it into a logical design file NGD. This file describes the design in
elements such as logic gates (e.g., AND, OR, etc.), flip-flops and RAM.

3. The MAP tool applies the device-specific mapping of the logical design file
and translates the design into a device-specific description (e.g., CLBs, IOBs,
DSPs, etc.).

4. Finally, the XDL tool converts the output of the mapping into an XDL format,
which serves as an input for the DHHarMa back-end.

103

5 INDRA 2.0

DHHarMa BackendFPGA
partitioning

parser

XDL Parser Homogeneous
Packer

Homogeneous
Placer

Homogeneous
Router

FPGA
resource
database

XDL-to-NMC
Converter

NMCXDL

CSV

Figure 5.4: Structure of the DHHarMa back-end [184].

5.2.3 DHHarMa back-end

The DHHarMa back-end uses the technology mapped design description from the
Xilinx-based front-end to apply homogeneous packing, placing, and routing. An
overview of the DHHarMa back-end is presented in Figure 5.4.

DHHarMa inputs

In addition to the design description in XDL format (described in Section 5.2.2),
DHHarMa takes in input an FPGA partitioning file (in Comma-separated values
(CSV) format); this file defines the location, size, and type of region and tiles of the
system. Each region (regardless of the type: static or reconfigurable) is specified
by two coordinates; therefore, only rectangular-shaped regions are supported.

An example of the partitioning of a Virtex-6 FPGA with nine tiles of four different
types (STATIC, REC0 - REC3) is shown in Figure 5.5. The FPGA Editor has
been used to get the two coordinates for the regions (represented with bullets in
the figure).

Another input of DHHarMa back-end is the DXF database (Section 5.2.1). The
homogeneous packer, placer, and router require resources and structure informa-
tion, such as the layouts of CLBs, switch-matrices, DSPs, and their connections
between each other.

Homogeneous steps

After parsing the FPGA partition file and the mapped macro XDL description , the
homogeneous steps are executed.

The homogeneous packer rearranges the resources to guarantee a homogeneous
packing of the slices within each tile of same tile type. This is achieved by the
packing process, wherein the slices within each tile are dissembled into the lowest
atomic blocks called Parts. For example, a Part of a Virtex-6 FPGA comprises a
functional unit (including two LUTs) and two registers. After the dissembling
process, the Parts are reassembled to build a homogeneous slice configuration,

104

5.2 Design flow for Homogeneous Hard Macros

Figure 5.5: Example of the partitioning of a Xilinx Virtex-6 FPGA with nine tiles of
four different types. A communication macro is placed respecting the
homogeneity constraints [184].

which is valid for all tile of the same type. The functionality of the packer is
described in detail in [98].

The homogeneous placer places the reassembled packed slices of each tile in a
way that the homogeneity of placement is maintained for all tiles of the same type.
Details of the placer are provided in [98].

The homogeneous router (the last homogeneous step) computes the paths for each
net connecting the slices of the macro. The routing is performed such that each PR
Tile of the same type uses the same routing resources. In the specific, homogeneity
is achieved utilizing the PIPs in the same relative position within each PR Tile of
the same type.

Figure 5.6a shows how the DHHarMa router ensures this kind of routing in
two PR Tiles of the same type (i.e., Rec2_c and Rec2_d). Figure 5.6b shows how
the Xilinx router does not respect the homogeneity in its routing algorithm. The
DHHarMa router is described in detail in Chapter 6.

After the routing phase, an XDL of the homogeneous packed, placed and routed
macro is generated. Finally, the XDL representation is transformed into an NMC
file by using the Xilinx XDL tool.

5.2.4 Output XDL File

The output file generation is the last step of the DHHarMa flow. In particular,
the input XDL is modified such that the complete communication infrastructure
mapped, packed, placed and routed is stored.

Section 5.2.3 presents how the DHHarMa back-end is divided into three compu-

105

5 INDRA 2.0

(a) DHHarMa Router. (b) Xilinx Router.

Figure 5.6: Comparison between inhomogeneous (Xilinx router) and homogeneous
(DHHarMa router) routing of a hard macro.

tational parts: packer, placer, and router. At the end of each step, the XDL file is
modified; this step by step modification of the XDL allows using the single parts
of the DHHarMa back-end independently. For example, it is possible to take in
input an XDL packed and placed by another tool and to execute just the DHHarMa
router phase.

Figure 5.7a shows an example of an input XDL and Figure 5.7b present how
the single steps of the DHHarMa back-end modify it. The packer can group
in different ways the parts of an instance; therefore, it can also create or delete
instances. Consequentially, if the outPins and inPins of the nets are modified, the
packer changes the corresponding values in the nets part.

In the placement phase only the position of the wires is modified; therefore, the
only modifications are on the slice allocation information of every instance (as
highlighted in Figure 5.7b).

The last modification of the XDL is made by the router, where the pips utilized
by the routed nets are added. For example, the net static_right_out7 of Figure 5.7
shows how the pips are represented in the XDL file. Moreover, the router may
modify the inPin of a net within the same instance part (this operation is called
pinSwap). Eventually, XDL can be converted into an NMC file, and it can be utilized
with the existing Xilinx tools.

5.3 PSRerouter

The routing of an FPGA cannot be fully controlled with standard tools. Several
academic works provided studies and algorithms to find the better strategies to
adopt. On the one hand, the utilized routing strategy by the vendor tools is not
documented. On the other hand, the user can control just few setting of the router;
for example, the user can decide if the routing policy has to either optimize the
timing or the utilized routing resources.

106

5.3 PSRerouter

In
st

an
ce

s
N

et
s

P
ro

p
er

ti
es

an

d
 P

o
rt

s

design "bm_top" xc6vcx75tff484-2 v3.2 ,

#All Port
port "CLK_int" "Base0_[11]_(Slice_2/3)" "CLK";

#All instances (SLICE, IOB, DSP, BRAM ...)
inst "Rec0_a_[0]_(Slice_1/2)" "SLICEL",unplaced ,
 cfg "
A5FFINIT::#OFF A5FFMUX::#OFF A5FFSR::#OFF A5LUT::#OFF A6LUT:Rec0_a/
inst_g[0].base_element_1/LUT2_4.A6LUT:#LUT:O6=(A5*A6) ACY0::#OFF
AFF::#OFF AFFINIT::#OFF AFFMUX::#OFF AFFSR::#OFF AOUTMUX::#OFF
AUSED::0
 B5FFINIT::#OFF B5FFMUX::#OFF B5FFSR::#OFF B5LUT::#OFF
B6LUT:Rec0_a/inst_g[0].base_element_1/LUT2_1.B6LUT:#LUT:O6=(A5*A6)
BCY0::#OFF BFF:Rec0_a/inst_g[0].base_element_1/FD_2.BFF:#FF
BFFINIT::INIT1 BFFMUX::O6 BFFSR::SRLOW BOUTMUX::#OFF BUSED::0
 ;
inst "Rec0_a_[0]_(Slice_1/3)" "SLICEL",unplaced ,
 cfg "
 C5FFINIT::#OFF C5FFMUX::#OFF C5FFSR::#OFF C5LUT::#OFF C6LUT:Rec0_a/
inst_g[0].base_element_1/LUT2_2.C6LUT:#LUT:O6=(A5*A6) CCY0::#OFF
CFF:Rec0_a/inst_g[0].base_element_1/FD_3.CFF:#FF CFFINIT::INIT1
CFFMUX::O6 CFFSR::SRLOW COUTMUX::#OFF CUSED::0
 D5FFINIT::#OFF D5FFMUX::#OFF D5FFSR::#OFF D5LUT::#OFF
D6LUT:Rec0_a inst_g[0].base_element_1/LUT2_3.D6LUT:#LUT:O6=(A5+A6)
DCY0::#OFF DFF:Rec0_a/inst_g[0].base_element_1/FD_1.DFF:#FF
DFFINIT::INIT1 DFFMUX::O6 DFFSR::SRLOW DOUTMUX::#OFF DUSED::#OFF
 CLKINV::CLK COUTUSED::#OFF PRECYINIT::#OFF SYNC_ATTR::ASYNC "
 ;
inst "Rec1_b_[0]_(Slice_2/4)" "SLICEL",unplaced

#All nets connecting the instances
net "static_right_out<7>" ,
 outpin "Rec0_a_[0]_(Slice_1/2)" BQ ,
 inpin "Base0_[0]_(Slice_1/10)" AX ,
 inpin "Rec1_b_[0]_(Slice_2/4)" B6 ,
 inpin "Rec0_a_[0]_(Slice_1/2)" D5 ,
 ;
net "static_right_out<8>" ,

Packer

Placer
Router

design "bm_top" xc6vcx75tff484-2 v3.2 ,

#All Port
port "CLK_int" "Base0_[11]_(Slice_2/3)" "CLK";

#All instances (SLICE, IOB, DSP, BRAM ...)
inst "Rec0_a_[0]_(Slice_1/2)" "SLICEL",placed CLBLM_X12Y118 SLICE_X19Y118 ,
 cfg "
A5FFINIT::#OFF A5FFMUX::#OFF A5FFSR::#OFF A5LUT::#OFF A6LUT:Rec0_a/
inst_g[0].base_element_1/LUT2_4.A6LUT:#LUT:O6=(A5*A6) ACY0::#OFF AFF::#OFF
AFFINIT::#OFF AFFMUX::#OFF AFFSR::#OFF AOUTMUX::#OFF AUSED::0
 B5FFINIT::#OFF B5FFMUX::#OFF B5FFSR::#OFF B5LUT::#OFF B6LUT:Rec0_a/
inst_g[0].base_element_1/LUT2_1.B6LUT:#LUT:O6=(A5*A6) BCY0::#OFF BFF:Rec0_a/
inst_g[0].base_element_1/FD_2.BFF:#FF BFFINIT::INIT1 BFFMUX::O6 BFFSR::SRLOW
BOUTMUX::#OFF BUSED::0
 C5FFINIT::#OFF C5FFMUX::#OFF C5FFSR::#OFF C5LUT::#OFF C6LUT:Rec0_a/
inst_g[0].base_element_1/LUT2_2.C6LUT:#LUT:O6=(A5*A6) CCY0::#OFF CFF:Rec0_a/
inst_g[0].base_element_1/FD_3.CFF:#FF CFFINIT::INIT1 CFFMUX::O6 CFFSR::SRLOW
COUTMUX::#OFF CUSED::0
 D5FFINIT::#OFF D5FFMUX::#OFF D5FFSR::#OFF D5LUT::#OFF D6LUT:Rec0_a
inst_g[0].base_element_1/LUT2_3.D6LUT:#LUT:O6=(A5+A6) DCY0::#OFF
DFF:Rec0_a/inst_g[0].base_element_1/FD_1.DFF:#FF DFFINIT::INIT1 DFFMUX::O6
DFFSR::SRLOW DOUTMUX::#OFF DUSED::#OFF
 CLKINV::CLK COUTUSED::#OFF PRECYINIT::#OFF SYNC_ATTR::ASYNC "
 ;
inst "Rec1_b_[0]_(Slice_2/4)" "SLICEL",placed CLBLM_X12Y119 SLICE_X19Y119 ,

#All nets connecting the instances
net "static_right_out<7>" ,
 outpin "Rec0_a_[0]_(Slice_1/2)" BQ ,
 inpin "Base0_[0]_(Slice_1/10)" AX ,
 inpin "Rec1_b_[0]_(Slice_2/4)" B6 ,
 inpin "Rec0_a_[0]_(Slice_1/2)" D5 ,
 pip CLBLM_X12Y118 CLBLM_L_BQ -> CLBLM_LOGIC_OUTS2 ,
 pip INT_X12Y118 LOGIC_OUTS2 -> IMUX_B20 ,
 pip CLBLM_X13Y117 CLBLM_IMUX_B20 -> CLBLM_L_B6 ,
 ...
 ;
net "static_right_out<8>" ,

Input XDL (a) Output XDL (b)

Figure 5.7: DHHarMa flow modifications of the XDL [184].

In this thesis, it is discussed how the routing of a design can be controlled and
modified utilizing the XDL intermediate language. As shown in Section 2.3.3,
the conversion XDL-NCD-XDL is suitable for small design (e.g., hard macros).
Instead, in full designs, the conversion do not store all the information (e.g., IOBs
and DCMs settings) due to the fact that the conversion of full design has not been
fully considered by Xilinx.

Hence, the novel Post-Synthesis Rerouter (PSRerouter) has been developed,
which enables the user to reroute specific nets of a design directly utilizing FPGA
Editor (without the need of converting it in XDL). In the specific, PSRerouter
allows rerouting specific nets of a static design, which cross the PR Region of the
system.

Section 5.3.1 motivates the PSRerouter; it explains why it is important to ex-
tract the PWs information directly from FPGA Editor. Moreover, it presents the
limitation of the Xilinx approach to control routing of specific nets. Section 5.3.2
discusses the main features of PSRerouter. It shows how the user can control the

107

5 INDRA 2.0

routing of specific nets and modify them, without affecting the rest of the design.
Section 5.3.3 presents the PWs information, explaining how they are extracted and
how the PSRerouter can utilize them.

Section 5.3.4 explains how the PW database is generated and integrated into
the DXF database. The section provides benchmarks of the database creation;
the time required to create the database and the size occupied by the extracted
information of different FPGAs are discussed. Finally, Section 5.3.6 explains the
PSRerouter flow. It explains which input files are required and how the so-called
“crossing-nets” are detected. Furthermore, it presents how the nets are rerouted.
The FPGA-Edline script that modifies the design is presented.

5.3.1 Problem definition

Xilinx allows setting area constraints to create a DPR system. Setting area con-
straints can control the PAR algorithm to limit the placing and the routing of the
design in a specific net. The placing phase respects fully this constraint; once that
a specific part of a design has to be placed in a specific area of the FPGA, the Xilinx
algorithm places it within the defined borders (in case the area does not contain
enough resources the placer requests the user to increase the area’s size). On the
contrary, the routing phase does not always respect the area constraint provided
by the user.

This can generate an inhomogeneous DPR design (see Section 3.2.6). Whenever
a static region is defined, the Xilinx router does not respect the constraints of the
area defined; this means that static nets that have both the outPin and inPin in the
static region may utilize routing resources within the PR Region.

However, Xilinx provided such methods to control and constrain the routing of
nets:

• DIrected Routing Constraints (DIRT): the user can generate constraints that
lock down the routing to Xilinx User Constraints File (UCF) by using the
DIRT constraints. These can be generated utilizing the DIRT command to
specify the location of the UCF file [128]. In this way, the user can fix the
routing of specific nets in different PAR of a specific design.

• XDL manipulation: the design can be converted to XDL format. Then, the
nets routing resources can be modified/added.

These two methods do not allow solving the issues to constrain the routing
resources to generate a homogeneous DPR design. DIRT constraints, on the one
hand, enable the user to route either automatically or manually a specific net and
fix it as a constraint for further PAR of the design. On the other hand, it needs
multiple reruns of the PAR algorithm to get the desired results; moreover, the

108

5.3 PSRerouter

rerun of the PAR algorithm can introduce further problems in the designs (e.g.,
timing not respected, nets that do not respect area constraints, etc.).

Regarding the XDL manipulation, this approach is suitable for small design
(e.g., hard macros). Instead, it cannot be utilized for full design due to the loss of
information that the conversion NCD-XDL-NCD generates (Section 2.3.3).

As discussed in Section 3.2, researchers have provided different kinds of ap-
proaches to guarantee the relocation of the reconfigurable modules in DPR systems.
For example, the works presented in Section 3.2.3 and Section 3.2.5 use so-called
block hard macros to block the routing resources of the PR Region during the static
design PAR.

Xilinx does not provide an easy-to-use way to control the routing of the nets.
However, the routing of the nets can be manipulated utilizing FPGA Editor and
FPGA-Edline, which allow the user to reroute nets manually or with a script.
The issue of utilizing a scripted approach is the loss of routing information to be
utilized. In the specific, Xilinx does not provide a database of the PWs and PIPs,
which can be utilized to route a net. Therefore, the user needs to select in FPGA
Editor the routing resources manually and to execute a manual rerouting.

Hence, it is necessary to retrieve the PWs information of the FPGA devices to
provide an automatized way that enables the rerouting of a net. The Section 5.3.2
explains how this information can be extracted and how a net can be rerouted in
order to preserve the module relocation property.

5.3.2 Implementation Idea

The main idea of the PSRerouter is to have a flow that is able to take in input a
placed and routed design and to verify that the static nets are not crossing the
static region borders. If some nets are not respecting this constraint, the PSRerouter
reroutes them; an FPGA-Edline script is generated, which can be directly executed
on the NCD design.

As explained in Section 5.3.1 a new PW database is required to provide an
automatized way to control the routing of the nets.

The manual rerouting of the crossing nets can work for small design; however,
the complexity of this operation grows up with the increase of the FPGA target
device and design complexity. In addition, a manual rerouting needs a deep
knowledge about the routing structure of an FPGA. Instead, FPGA-Edline script
solution allows having a script, which can reroute nets in few seconds.

The information needed to select routing resources in FPGA-Edline is different
from the XDL info. Therefore, it is necessary to extract the so-called “nodeidx”
information, which is a unique index of a PW within an FPGA. This information is
then integrated with the DXF database generated from the XDL report.

109

5 INDRA 2.0

Figure 5.8: FPGA Editor screenshot [128] of a Virtex-6 LX75t FPGA. It shows how
a PW can be picked, and the PW information is visualized.

5.3.3 Physical Wire Info

The nodeidx information is needed to select a PW in FPGA Editor or FPGA-Edline;
it is necessary to find a relation between the XDL wire name and the PW nodeidx.

Unlike the XDL, Xilinx does not provide the nodeidx information as database or
report. Therefore, it can be extracted just “clicking” on a specific PW in the FPGA
Editor GUI. Figure 5.8 provides an example of the information that appears once
that a PW is selected.

As the example shows, the wire’s data contains the following key info:

• type of the wire (HQUAD).

• reference point of the selected PW ((-12245,-15176)). Every component of the
FPGA can be selected via an XY coordinate. The coordinate (0,0) represents
the center of the FPGA.

• nodeidx: an index that identifies univocally every PW of the FPGA.

• wirename: this information is the same information presented in the XDL.

Having this four information, it is possible to find a relation between the wires
extracted from the XDL and the PW nodeidx. The router can utilize the DXF
database and generate a script as output, which can be run with FPGA-Edline.

110

5.3 PSRerouter

AutoIt

As mentioned, the needed PW information can be extracted just “clicking” on
each PW of every FPGA; of course, this is an exhaustive approach that cannot be
executed without the use of any scripting language. Hence, the extraction has been
made utilizing AutoIt [115].

AutoIt is a freeware BASIC-like scripting language designed for automating
the Windows GUI and general scripting. Therefore, AutoIt is able to execute the
script on a GUI and get back the needed information; a set of scripts have been
developed, which first select a PW and then extract the wire information.

Simple and Advanced PW Info

Xilinx does not provide a direct way to extract the required PW information. There-
fore, the needed information is extracted utilizing the AutoIt scripting language.
The wire information is represented in two different ways, according to the utilized
selecting method. The PW information can be:

• Simple info: the extracted information just contains the wire type and its
coordinate (e.g., node = HQUAD(-12245,-25176))

• Advanced info: the information extracted contains detailed information of
the PW (e.g., node = HQUAD(-12245,-25176) (nodeidx:1258834 wirename:
CENTER_SPACE1_WW4B0 pin=0 long:0 vert:0 segmented:1 cost:21 speed-
model:RC_ZERO speedidx:1378)

This categorization has been highlighted to motivate the implementation steps
described in Section 5.3.4; moreover, detailed benchmarks show the time required
to extract both the simple and the advanced information.

Tile info

The coordinate of the PW info shows the point of reference of the PW, which
corresponds to a specific tile position. Therefore, in order to create a custom
route, for every PW is necessary to have the reference coordinate and the tile
name associated with its PW reference coordinate. As for the PWs, the tile info is
extracted by “clicking” on a specific tile.

Figure 5.9 shows an example of the tile information of an INT. The coordinate
(98,89) indicates the (row, column) coordinate of the selected tile; hence, the (0,0)
coordinate corresponds to the upper left tile of the FPGA device. The name infor-
mation provides the full name of the selected tiles, which also includes the (X,Y)
coordinate of the tile (in the example, X39Y35); the coordinate X0Y0 corresponds

111

5 INDRA 2.0

Figure 5.9: FPGA Editor screenshot [128] of a Virtex-6 LX75t FPGA. It shows how
a tile can be picked, and its information is visualized.

to the bottom left tile. Finally, the type field provides the type of the selected tile
(in the example, INT).

Hence, the tile info provides two different coordinates. Although this informa-
tion seems redundant, they provide different information regarding the position
of the tiles. The row/column coordinate is a unique coordinate for each tile of a
specific device. On the contrary, the X/Y coordinate can be the same for different
tiles.

More in detail, the row/column coordinate can be seen as the position of the tile
in a 2D view of the FPGA; this view represents the low-level implementation of
the FPGA and the abstracted view in FPGA Editor.

The X/Y coordinate represents the position of the tiles, grouping them according
to the INT tiles. As explained in Section 2.1, every logical component of the FPGA
is paired with an INT tile, which allow the signal to be routed within the FPGA.
For example, every CLB and its INT tile have the same X/Y coordinate.

5.3.4 Database Creation Flow

This section explains how the PW database is generated and which are the steps
executed to extract the PW information from FPGA Editor. The final database
is composed of a set of text files, which contain the advanced wire info. For the
considered FPGAs, the PWs info is categorized first according to the tile type; Then,
for every tile, a text file has been generated containing the advanced information
of the physical wires.

112

5.3 PSRerouter

Find Number of

Physical Wires

Extract Simple

Wirenames

Extract

Advanced

Wirenames

Get Tile Type

Wires

PW Database

GenerationTarget

FPGA

FPGA

database

Input Output

Figure 5.10: PW database creation flow.

Figure 5.10 shows which are the steps needed to create the database. As it is
depicted, the PW database creation flow takes in input the name of the target
FPGA and generate as output the FPGA PW database. More in general, the flow
creates a set of AutoIt scripts that interact with FPGA Editor and FPGA-Edline,
extracting and organizing the needed information.

Find Number of Physical Wires

For a target FPGA, this step finds the number of PWs; in the specific, the index of
the last nodeidx corresponds to the total number of PW - 1. This value is extracted
executing a dichotomic search on the nodeidx index. The algorithm stops when
the last selectable nodeidx is found.

The function first executes FPGA Editor, and it opens an empty design; the
opened empty design is then used for the research of the last nodeidx index. Once
that the value is found, it is stored, and it is utilized for the further steps of the
database creation.

The research is made utilizing a dichotomic search algorithm. The function
selects a certain PW and verifies if it exists; the recursive function returns when
the last nodeidx is found.

Extract Simple Wirename

In this step every PW of a target FPGA is selected on FPGA Editor and the
simple wire information is extracted; AutoIt scripts perform this operation auto-
matically. Once that all the information is extracted, they are stored in a file called
“FPGAname_wirename_simple.log”.

This is the slowest step of the creation of the database because for every PW
the information is extracted from a pop-up window of FPGA Editor; the opening
and closing of these windows turn in a delay that depends on the windows GUI
management. In average, the extraction of the simple information of every wire
takes about 70 ms.

The function extractSimpleInfo in Algorithm 1 presents how it is possible to extract
the simple wire information from FPGA Editor (the simple wire information is

113

5 INDRA 2.0

1: function extractSimpleInfo(targetFPGA, lastWireIndex)
2: open FPGA Editor and load an empty design of the FPGA targetFPGA
3: for iWire = 0; iWire <= lastWireIndex; iWire++ do
4: send FPGA-Edline command: “unpost -all; unselect -all”
5: send FPGA-Edline command: “select wire -id” & iWire {e.g., select wire -id 12}
6: send FPGA-Edline command: “post attr” {Shows the info of the PW}
7: get PWinfo, the info of the selected wire wireId from the window
8: store the information on simplewire_database.log {e.g., HQUAD(-101819,-303576)}
9: close PW info window

10: end for
11: end function

Algorithm 1: Pseudo code for the extraction of the simple wirename.

presented in Section 5.3.3). The function takes in input the target targetFPGA and
the lastWireIndex computed with the previous step .

extractSimpleInfo first launches the FPGA Editor program and then creates an
empty design for the target FPGA. Every PW of the FPGA is selected, and the
simple wire information is extracted and stored in the simplewire_database.log file.

In Algorithm 1 Line 5 the FPGA-Edline command “select wire -id” selects the
PW; the command in Line 6 shows the simple properties of the PW.

Extract Advanced Wirename

Once that the simple PW information are stored, another AutoIt script extracts
for every PW the advanced PW information. Despite the simple information
extraction, this step can be executed utilizing FPGA-Edline. Therefore, since that
FPGA-Edline is not a GUI but a prompt program, the information are extracted
without having the delay given by the GUI. Moreover, different tasks running in
parallel can be executed to reduce the extraction time. On average, running the
extraction of PWs on eight different tasks this operation takes about 1 ms per PW.

Algorithm 2 shows the pseudo code of this step. Function createExtractorScript
(Line 1) creates the FPGA-Edline script. The function takes in input the target
FPGA (targetFPGA) and the simplewireLogF ile, which has been generated in
the previous step. The script is stored in the file advancedInfoFPGAedlineScript.

In the script are written first the FPGA-Edline commands required for the cre-
ation of an empty design of the target FPGA. Then, it is extracted from the simple
wire log file (simplewireLogF ile) the PW’s coordinates; these coordinates are the
point of reference of the PWs (see Section 5.3.3).

The function extractAdvancedInfo (Line 12) represents how the script generated by
the previous function is executed and how the advanced information is extracted.
In Line 14 the script is executed. At the end of the computation, FPGA-Edline

114

5.3 PSRerouter

1: function createExtractorScript(targetFPGA, simplewireLogF ile)
2: create and open the file advancedInfoFPGAedlineScript
3: write on the file advancedInfoFPGAedlineScript the FPGA-Edline command to open
simplewireLogF ile

4: write on the file advancedInfoFPGAedlineScript the FPGA-Edline command
“wire_layers_enabled”
{each line contains the simpleWire inf, e.g., HQUAD(-101819,-303576)}

5: for each line iWire of simplewireLogF ile do
6: extract the x,y coordinate of the wire {x: -101819, y: -303576}
7: write on file advancedInfoFPGAedlineScript the FPGA-Edline command: “pick

-a ” & x & “ “ & y {pick -a -101819 -303576}
8: end for
9: close files simplewireLogF ile and advancedInfoFPGAedlineScript

10: return advancedInfoFPGAedlineScript
11: end function

12: func extractAdvancedInfo(targetFPGA, advancedInfoFPGAedlineScript)
13: open FPGA Editor and load an empty design of the FPGA targetFPGA
14: execute advancedInfoFPGAedlineScript
15: open FPGA Editor log file
16: create and open advancedwireLogF ile file
17: parse the file and extract for every “pick command” the advanced wire information {e.g.,

node = BENTQUAD(1225,-6740) (nodeidx:1860030 wirename: CLBLM_NW4END0
pin=0 long:0 vert:0 segmented:1 cost:3 speedmodel:
RC_CLBLM_NW4END speedidx:603))}

18: write advanced information in advancedwireLogF ile
19: return advancedwireLogF ile
20: end func

Algorithm 2: Extract advanced PW information pseudocode.

generates automatically a log file that contains all the results of the commands
executed. In the specific, once that the command pick -a ” & x & “ “ & y is executed,
if the coordinate corresponds to a PW, the advanced information of the wire is
stored in the log file. It is important to mention that the coordinates have been
extracted from the simple extraction steps; therefore, all the coordinates utilized
for these pick operations are always “picking” on PWs.

Line 17 parses all the log file generated by FPGA-Edline and extracts the ad-
vanced information, storing them in the file advancedwireLogF ile.

Get Tile Info

As explained in Section 5.3.3, every represented PW in FPGA Editor has a
reference coordinate (x,y). This Cartesian coordinate indicates the position of the

115

5 INDRA 2.0

1: function createExtractorScript(targetFPGA, simplewireLogF ile)
2: create and open file tileInfoFPGAedlineScript
3: write on file tileInfoFPGAedlineScript the FPGA-Edline command to open
simplewireLogF ile

4: write on file tileInfoFPGAedlineScript the FPGA-Edline command
“wire_layers_disable”
{each line contains the simpleWire info, e.g., HQUAD(-101819,-303576)}

5: for each line iWire of simplewireLogF ile do
6: extract the x,y coordinate of the wire {x: -101819, y: -303576}
7: write on file tileInfoFPGAedlineScript the FPGA-Edline command: “pick -a ” & x

& “ “ & y {pick -a -101819 -303576}
8: end for
9: close files simplewireLogF ile and advanceInfoFPGAedlineScript

10: return tileInfoFPGAedlineScript
11: end function

12: func extractTileInfo(targetFPGA, tileInfoFPGAedlineScript)
13: open FPGA Editor and load an empty design of the FPGA targetFPGA
14: execute advancdeInfoFPGAedlineScript
15: open FPGA Editor log file
16: create and open tilewireLogF ile file
17: parse the file and extract for every “pick command” the tile wire information {e.g.,

TILE(75,103) name=INT_L_X30Y100 type=INT_L}
18: write tile information in tilewireLogF ile
19: return tilewireLogF ile
20: end func

Algorithm 3: Get Tile info pseudocode.

PW on the FPGA. In the step Extract Advanced Wirename, these coordinates have
been used to extract the PW’s advanced information, through a pick function.
The advanced information is not enough to find a relation between the XDL
representation and the FPGA Editor representation of a PW.

It is necessary to know also the name of the tile that corresponds to the reference
coordinate of a specific PW. Then, this operation is essentially the same of the
one presented in Extract Advanced Wirename; the only difference is in the fact
that tiles are picked instead that PWs; therefore, the information stored in the log
file generated by FPGA-Edline contains the tile, which corresponds to a specific
coordinate pick. Algorithm 3 provides the psedocode of this step.

The function extractTileInfo (Line 12) represents how the script is executed and
how the tile information is extracted. In Line 14 the script is executed. At the end
of the computation, FPGA-Edline generates automatically a log file that contains
all the results of the commands executed. In the specific, once that the command

116

5.3 PSRerouter

xc6vcx130tff1156_PWs_database

...

HCLK_VFRAME

INT

TILE(3,1) name=INT_X0Y199 type=INT.txt

node = DOUBLE(-151625,321052) (nodeidx:21400

wirename:NE2END0 pin=0 long:0 vert:0 ...

node = DOUBLE(-151623,321056) (nodeidx:21599

wirename:NW2A1 pin=0 long:0 vert:0 ...

node = DOUBLE(-151619,321060) (nodeidx:21997

wirename:NW2A2 pin=0 long:0 vert:0 ...

...

TILE(3,2) name=INT_X0Y198 type=INT.txt

TILE(3,3) name=INT_X0Y197 type=INT.txt

...

INT_INTERFACE_TERM

...

Figure 5.11: PW database organization.

pick -a ” & x & “ “ & y is executed, if the coordinate corresponds to a Tile, the tile
information of the wire is stored in the log file. It is important to mention that the
coordinates have been extracted from the simple extraction steps; therefore, all the
coordinates utilized for these pick operations are always “picking” on Tiles.

Line 17 parses all the log file generated by FPGA-Edline and extracts the tile
information, storing them in the file tilewireLogF ile.

PW Database generation

In the previous steps, all the needed information have been stored. The following
step organizes the extracted data in folder and file to permit users to utilize this
valuable information. The information stored in the advanced log file and in the
tile name log file are reorganized. For every tile’s type (e.g., INT, CLB, BRAM,
etc.) one folder is generated; then, for every tile of the FPGA, one file is created,
which have as title the full name of the tile. At this point, each PW that have its
coordinate reference within the considered tile is inserted into the file. Figure 5.11
shows an example of how the information is organized.

117

5 INDRA 2.0

Table 5.1: Results of the PW database for different FPGAs.

FPGA Number
of PWs

Number
of Tiles

Find
n.

PW

Extract
Simple

info

Extract
Advan.

Info

Get
Tile
info

Create
PW DB

Total
Time

V4 fx12 627,644 4,818 41s 9h:50m 12m:48s 23m:18s 1m:56s ~10h
V4 fx40 1,985,232 14,933 50s 31h:05m 9m:18s 34m:17s 5m:30s ~32h
V5 lx20t 711,807 5,896 48s 11h:12m 2m:28s 24m:52s 1m:41s ~12h
V5 fx70t 2,745,277 23,718 48s 41h:23m 13m:35s 41m:10s 8m:40s ~42h
V6 cx130t 4,613,058 37,769 50s 75h:33m 25m:55s 50m:12s 15m:32s ~77h
S6 lx9t 352,431 3,285 41s 4h:56m 3m:29s 21m:47s 1m:03s ~5h
S6 lx16 509,301 4,526 43s 5h:59m 6m:14s 23m:31s 1m:33s ~7h
S6 lx25t 793,011 7,290 47s 12h:59m 11m:14s 27m:20s 2m:11s ~14h
A7 8 702,554 6,930 47 11h:36m 2m:37s 25m:21s 5m:58s ~12h
K7 70t 2,677,838 24,453 52s 44h:3m 10m:50s 55m:56s 5m:10s ~45h
K7 355t 13,132,573 97,030 50s 217h:32m 01h:33m 1h:33m 40m:06s ~221h
V7 x330t 12,488,818 95630 51s 188h:11m 01h:27m 1h:31m 40m:23s ~192h
Zynq 010 1,129,281 13,335 48s 18h:29m 11m:32s 21m:57s 3m:16s ~19h

5.3.5 Benchmark

Table 5.1 presents the time for the creation of the PW database for different FPGAs;
moreover, it is presented the time required for all the intermediate steps of the
computation (described in Section 5.3.4). The steps have been executed on an Intel
Xeon Processor W3565 with 24 GB of RAM.

The table shows on the left the family and the model of the FPGA considered.
Then, it shows the Number of PWs and the Number of Tiles of the considered FPGAs;
these results indicate the dimension of the FPGAs and motivate the different
computation time for each FPGA. The PWs computational results are reported in
Find n. PW, Extract Simple info, Extract Advan. Info, Get Tile info, and Create PW DB;
as it will be explained in the following, these results are strongly related to the
dimension of the considered FPGA. Finally, the column Total Time.

In Table 5.1 can be seen that the computational time can vary from about 5h (in
the case of the V4 lx9t) to about 578h (in the case of the K7 355t). Moreover, it can
be noticed that the great majority of the time is taken by the step Extract Simple
info. This step (see section 5.3.4) depends on the number of PWs to be extracted:
more in detail, the complexity of this step is O(n), where n is the number of PWs.

This fact can also be observed in Figure 5.12 where it is depicted a cartesian
graph of the time required for the creation of the Physical Wire DB, where the
x-axis indicates the number of PWs and y-axis indicates the total time required for
the creation of the DB (both axises are represented in logarithmic scale). The graph
shows the linear complexity described above.

118

5.3 PSRerouter

Figure 5.12: Time required for the creation of PhysicalWire DB.

This is due to the time required for the extraction of a single PW. In the 7 Series
and Zynq FPGAs have been set different values for the extraction of the PWs,
which turn in a higher computational time. For this reason, the two lines that
indicate the linear relationship, they have a different slope (gradient).

5.3.6 PSRerouter flow

One of the key parts of the INDRA 2.0 flow is the PSRerouter. This tool is able to
reroute certain nets of a P&R design. The PSRerouter can be used as a standalone
program as well.

Figure 5.13 depicts how the tool operates; the design is first synthesized, trans-
lated, mapped, placed and routed with the standard Xilinx tools (Orange block).
Then, the design is converted in XDL. The PSRerouter takes in input the converted
design, the partitioning file, and the DXF database (Section 5.2.1).

The key steps of the tool are the detection of the crossing nets, the internal nets
rerouting, and the FPGA-Edline script creator. At the end of the execution, the script
can be launched in FPGA Editor, and it provides the rerouting of the nets.

Crossing Nets Detection

This step verifies that the static nets of the design are not crossing the dynamic
area. In case one or more nets are crossing the reconfigurable area, these nets are
detected and listed.

The Algorithm 4 shows how the detection is performed. First, just the nets that
have inPin and outPin within the static areas are selected; these are the nets that
have to be analyzed. In Line 12, the function checks for every net, if any utilized

119

5 INDRA 2.0

Translate

(NGDBuild)

Mapping

(MAP)

HDL

Synthesis

(XST)

Place&Route

(PAR)

NCD2XDL

Conversion

(XDL)

XDL

High-Level

Description

(HDL)

Xilinx

 Frontend

Design

(XDL)

PSrerouter

Backend

Reroute design

(XDL)

FPGA Editor

Script

(SCR)

XDLCSV

FPGA Partition

Parser
XDL Parser

Check

crossing nets

 Static Rerouter

DXF + PW

Database

XDL-Writer

(Internal data

to XDL)

XDL

Internal

Datastructure

FPGA Editor

Script Creator

FPGA Editor Script

(SCR)

List of crossing

nets

Figure 5.13: PSRerouter Flow.

routing resource is within the dynamic area. If such a net is detected, it is listed in
the so-called crossingNetsV ector.

In the case that all the analyzed nets are not crossing the dynamic region, the
program terminates and the input design does not need any modification.

Rerouting of the nets

In this phase of the PSRerouter, the crossing nets are rerouted in such a way that
all the utilized routing resources are within the static region. Algorithm 4 Line 19
shows how the rerouting is executed. First, the nets are “unrouted”, therefore, all
the resources that have been utilized by these nets are freed. Then, for every net a
new path is found, utilizing just routing resources within the static region.

Once that a path is found for every net, the algorithm checks if there are no
conflict in the solution found. In the case there are conflicts, different paths are
found, and the check is performed till no conflicts are presented. In the end, a path
for every net is stored.

120

5.3 PSRerouter

1: function rerouteCrossingNets(fpfF ile, designXDL)
2: parse the designXDL file and detecting all the routed nets of the design and their

utilized resources. The nets of the design are stored in designNetsV ector.
3: create vector recomputeNetV ector
4: recomputeNetV ector = detectCrossingNets(fpfF ile, designNetsV ector)
5: rerouteNets(fpfF ile, designNetsV ector)
6: write the FPGA-Edline script named rerouteScript.scr that reroutes the nets of the

vector recomputeNetV ector.
7: execute the FPGA-Edline script
8: end function

9: function detectCrossingNets(fpfF ile, designNetsV ector)
10: select just the nets that have the outPin and the inPin within the static areas and store

them in the vector staticNetsV ector
11: create vector crossingNets
12: for each net iNet of staticNetsV ector do
13: if iNet utilizes routing resources of dynamic area then
14: add iNet to crossingNets
15: end if
16: end for
17: return crossingNets
18: end function

19: function rerouteNets(fpfF ile, crossingNets)
20: for each net iNet of crossingNets do
21: unroute the net iNet {All the routing resources utilized by the net are freed}
22: end for
23: for each net iNet of crossingNets do
24: find a path of net iNet utilizing just routing resources of the static region
25: end for
26: repeat
27: check if the path of the nets crossingNets they do not use the same resources.
28: if a conflict exists then
29: reroute the nets that create conflicts
30: end if
31: until no conflict exist
32: end function

Algorithm 4: PSrerouter pseudocode.

121

5 INDRA 2.0

########### Vir tex4 XC4VLX100 , ScriptName : r e r o u t e S c r i p t . s c r
open design C:\ example\inputDesign . ncd

s e l e c t net ’NET_0 ’ # S e l e c t the net to reroute
unroute #Unroute the net
u n s e l e c t −a l l # Dese lec t a l l the resource in the design
s e l e c t pin SLICE_X4Y126 . Y # S e l e c t the outPin of the net
s e l e c t wire −id 85028 # S e l e c t the PW connected to the outpin
s e l e c t arc OUTPUT(−50696 ,107456)−>OUTBOUND(−51379 ,108144)
#PIP t h a t connects PW 3952164 to PW 3949768
s e l e c t wire −id 81894
s e l e c t arc IOBIN2OUT(146680 ,135656)−>IOBOUTPUT(146600 ,135792)
s e l e c t wire −id 90919
. . .
. . .
s e l e c t wire −id 250777
s e l e c t pin SLICE_X20Y126 . G4Select net inpin
route # Execute the rout ing
u n s e l e c t −a l l
save
qui t ! # Close the design and e x i t

Figure 5.14: Example of a rerouting script.

The PSRerouter utilizes the Iterative Deepening Depth-First Search algorithm
(IDDFS) routing algorithm, which is explained in Section 6.2.2. The same routing
algorithm has been used for the implementation of the homogeneous router of
DHHarMa.

Output script

This phase creates FPGA-Edline scripts that perform the rerouting of the design.
Figure 5.14 shows an example of the script where one net is rerouted. The figure
shows how first a design is opened; then, a net is selected (in the example the
NET_0). Once that the net is unrouted, with the command ’unroute’ the new path
is provided; the script selects the pin, PWs, and PIPs of the new paths. In the end,
with the command ’route’, the path is stored.

The script can be launched with the command fpga_edline -p rerouteScript.scr.
At the end of the routing phase of the design, it is necessary to run the Timing
Analyzer [129] tool to check if the rerouted nets respect the timing constraints.

122

5.4 Summary

5.4 Summary

This chapter has presented the novel INDRA 2.0 flow. The two main tools utilized
in this flow have been analyzed in detail: DHHarMa and PSRerouter.

DHHarMa is a tool that enables the user the creation of communication in-
frastructure for DPR systems. Its main goal is to synthesize a communication
infrastructure homogeneously; it utilizes all the resources in such a way that reloca-
tion of the reconfigurable modules can be performed. Its main parts are introduced,
i.e., the DXF database, the homogeneous packer, the homogeneous placer and the
homogeneous router.

PSRerouter performs the check of a static design of a DPR system and verifies
that the nets do not use routing resources of the reconfigurable area. In the case
such nets exist, the tool is able to detect and reroute them without affecting any
other component of the system. This can be done executing the rerouting directly
in FPGA Editor. It has been presented how the PW database needed for this tool
has been created. Moreover, benchmarks for the database creation have been
presented. Once that new net’s paths have been found, the tool is able to create
an FPGA-Edline script, which can be executed to reroute the nets of the design
(without converting it in XDL).

123

6 DHHarMa Router

Since the introduction of FPGA devices, new algorithms and tools have been
presented, which focus on optimizing the design’s PAR (e.g., T-VPACK [13] and
VPR [12; 14]). This chapter presents a routing algorithm that despite all the other
algorithms can provide a homogeneous routing. The presented router is part of
the DHHarMa flow (see Section 5.2) and it is capable of routing nets of a design,
respecting the homogeneity constraints. Homogeneity is an important property to
keep, e.g., whenever a design supports DPR and/or bitstream relocation.

Tools that create inhomogeneous designs can utilize different optimized routing
resources to maximize the clock frequency. On the contrary, for homogeneous de-
sign with many PR Regions, the homogeneity forces using a small set of available
routing resources. Therefore, the challenge of this router is to provide a homoge-
neous solution having a small drawback in the performance of the PAR design
(i.e., routing resources utilized and maximum clock frequency).

Section 6.1 provides a detailed analysis of the routing structure of the modern
Xilinx FPGAs. It compares them and shows how the routing structure evolves
through the Xilinx FPGA families. Despite this evolution, the DHHarMa routing
algorithm has been kept general and is compatible with most of the modern Xilinx
FPGAs families.

Section 6.2 introduces the basis of the DHHarMa router. The router’s core
algorithm IDDFS is introduced. Moreover, new terminology and concepts are
provided; these are important to categorize the nets for the homogeneous routing
process (i.e., intra-nets, inter-nets, master regions and slave regions).

Section 6.3 explains the homogeneous routing algorithm and how design’s nets
need to be categorized to provide a homogeneous result. The main phases of the
router are explained, i.e., homogeneous nets grouping, edge region route phase,
and intra-route phase.

Finally, Section 6.4 provides detailed benchmarks of the DHHarMa router. For
different kind of communication macros, a comparison has been made with the
standard ISE routing algorithm. Furthermore, it is presented the communication
infrastructure utilized in the DRPM platform (see Section 4).

125

6 DHHarMa Router

Table 6.1: Comparison of the Xilinx FPGAs routing properties. This table highlights
the routing resources for each INT of the considered FPGA family.

Virtex-4 Virtex-5 Spartan-6 Virtex-6 7 Series

OutWires per INT 96 104 104 104 104
Connected INTs per INT 26 36 22 24 26

Connections per INT 201 203 118 113 116
PIPs per INT 3,312 3,992 3,459 3,636 3,744

6.1 General Purpose Routing Analysis

Xilinx interconnection matrix provides an array of routing switches between each
internal component. Each programmable element (CLB) is tied to a switch matrix,
which allows global routing through the device (see Section 2.1.3). Section 2.1.5
describes the structure of the FPGA’s physical wires (PWs). In Addition, the
structure of the general purpose routing system (composed by local and long PW)
differs in the Xilinx FPGA families.

Differences are most in the number of inWires for every PW, length, and direction
of the PWs. Table 6.1 summarizes the main properties of an INT in different Xilinx
FPGAs families. In Figure 6.1 and Figure 6.4, for every Xilinx FPGA family, starting
from a specific INT, the PWs connected to outWires are depicted; then, the PIPs of
the inWires are selected (shown in yellow).

According to the classification of the PWs given in Section 2.1.5, the outPIPs
(highlighted in purple) are only within the starting INT; every local PW has only
one outWire. In the following, for the considered FPGAs, an analysis of local
connections among the INTs is made. To evaluate the properties of the PWs, the
concept of Manhattan distance is utilized [31].

6.1.1 Virtex-4

The local PWs in the Virtex-4 family FPGAs are classified into three types: Omux,
Double, and Hex. The global view of the wires is depicted in Figure 6.1(a). In the
specific Virtex-4 FPGAs have 96 outWires for each INT (see Table 6.1).

The difference among the PW’ types are:

• Omux: these PWs connect the starting INT with all the adjacent ones (as it
is depicted in Figure 6.2(a)). Vertical, diagonal and horizontal connections
are provided. These PWs have mostly one inWires and they are all bounce
unidirectional PW (see Section 2.1.5).

• Double: the Double PWs are designed to connect INTs to the next two

126

6.1 General Purpose Routing Analysis

(a) Virtex-4.

(b) Virtex-5.

Figure 6.1: Connection structure in Virtex-4, and Virtex-5; FPGA Editor screen-
shots.

127

6 DHHarMa Router

Figure 6.2: Virtex-4 local PWs types; FPGA Editor screenshots.

switches in horizontal and vertical directions. Hence, these PWs have two
inWires; there is an exception in exactly four wires, where is presented one
inWire more that connects an INT at Manhattan distance 3).

• Hex: these PWs aim to connect distant INT in vertical and horizontal po-
sitions. In particular, it is possible to connect switch matrix at Manhattan
distance 3 and 6, from the starting INT; in few cases also a connection at
distance 7 is provided. The horizontal and vertical Hex PWs are shown in
Figure 6.2(c) and Figure 6.2(d) respectively.

6.1.2 Virtex-5

This family introduces a new routing architecture with an enhanced diagonal
routing, improving the block-to-block connectivity [146]. The Virtex-5 family
provides the most number of connections to INTs, starting from one specific switch
matrix. The outWire in one INT are 104 (8 more than Virtex-4, see Table 6.1);
considering all the PWs starting from these wires, it is possible to reach 203 inWire.

Hence, the most difference in the routing system from Virtex-4 and Virtex-5 are
in the distribution of the inWire. Keeping almost the same number of outWire and

128

6.1 General Purpose Routing Analysis

(a) Double (b) Pent (c) BounceAcross

Figure 6.3: Virtex-5 local lines types; FPGA Editor screenshots.

inWire, in Virtex-5 it is possible to reach 36 INTs (in Virtex-4 just 26). The aim of
this new routing configuration is to connect CLBs using fewer routing resources.

The different PWs types are:

• Bounce Across: these PWs connect only two adjacent INTs in a vertical position
(as it shown in Figure 6.3c).

• Double: connect INTs near to starting switch matrix, in horizontal, vertical,
and diagonal positional (Figure 6.3a). These PWs can be considered as a
unified version of the Omux and Double PWs of Virtex-4.

• Pent: these PWs replace the Hex PWs of Virtex-4. They represent the biggest
change from Virtex-4 to Virtex-5 routing structure. These PWs are depicted
in Figure 6.3b. As in the previous family, they provide connections with
long distant INT in horizontal and vertical directions. Moreover, they allow
diagonal connection to distant INTs. This turns in reaching INTs in a horizon-
tal and vertical direction to a maximum Manhattan distance 5; in addition,
diagonal connections are provided till a Manhattan distance of 6.

6.1.3 Virtex-6 and Spartan-6

The objective of the Virtex-6 family is to increase performance reducing power
consumption [2], compared to the Virtex-5 family. Virtex-6 and Spartan-6 present
a minor modification with respect to their Virtex-5 predecessor. In the following,
the structure of the Virtex-6 is analyzed.

As it shown in Table 6.1, the connected INTs starting from one INT are less than
Virtex-5; moreover, the global Manhattan distance of the connections is decreased.

129

6 DHHarMa Router

(a) Spartan-6.

(b) Virtex-6.

(c) 7 Series and Zynq.

Figure 6.4: Connection structure in Virtex-6, Spartan-6, 7 Series, and Zynq; FPGA
Editor screenshots.

In Virtex-4 and Virtex-5 families, every PW has on average two inWire; in Virtex-5
the outWire of one INT are 104 while the PWs connected to them have globally
204 inWire (in fact, 204/104 is about 2). Differently, Virtex-6 FPGAs have the same
number of outWire per INT, despite the PWs connected have 113 connections,
almost half compared with Virtex-5. Therefore, the most of the PWs have one
outWire and one inWire; only 9 PWs have two inWires.

The Virtex-6 wire types are analyzed in the following:

• Bounce Across: as in the Virtex-5, these PWs provide connections with the
INT directly above and below a certain switch matrix. These PWs are shown
in Figure 6.5c.

• Single: these PWs are similar to the Omux PWs of Virtex-4 (see Section 6.1.1).
Starting from one switch matrix, they provide connections with all the ad-

130

6.1 General Purpose Routing Analysis

(b) Double

(c) Bounce Across

(d) Bent Quad

(f) V Quad

(e) H Quad

(a) Single

Figure 6.5: Virtex-6 local PWs types; FPGA Editor screenshots.

jacent INTs, in horizontal, vertical, and diagonal direction. Anyhow, the
number of these PWs is double compared to Virtex-4 Omux PWs.

• Double: according to the reductions of inWires, these PWs provide fewer
connections than the double PWs in Virtex-5, as can it shown comparing
Figure 6.5(b) and Figure 6.3(a)

• Quad: these PWs provide connections with INTs not reached by the other
type of PWs. Unlike Virtex-4 and Virtex-5, according to the direction of their
connections, these PWs are divided into Bent Quad (diagonal connections),
Horizontal Quad, and Vertical Quad. The PWs length, in term of Manhattan
distance, is on average 4.

The routing architecture of the Spartan-6 is very similar to Virtex-6; the number
of inWire per PW and the number of outWires per switch matrix are the same.
Small differences are in the number of INTs connected starting from one switch
matrix. Moreover, the global number of inWire of the PWs connected to the
outWires of one INT are slightly less.

131

6 DHHarMa Router

(a) Bent Quad.

(b) Bounce
Across.

(c) Single.

(d) Double.

(e) H Quad.

(f) V
Quad.

Figure 6.6: Connection structure in 7 Series; FPGA Editor screenshots.

6.1.4 7 Series and Zynq

The interconnect routing resources are slightly increased in size, quantity, and
flexibility about the Virtex-6 FPGA family. The 7 Series family is the Xilinx FPGA
with the most number of PIPs per INT, 3744 (see Table 6.1). Instead, the number of
connection from one INT to other ones is exactly the same to the Virtex-6 family,
104 (see Table 6.1).

The types of connections are the same as well, as can be seen comparing Fig-
ure 6.5 and Figure 6.6. Only the Bent Quad Manhattan distance connection differs
from the Virtex-6’s Bent Quad.

Despite the general routing structure of global interconnection array, it does not
differ much from the Virtex-6 family; the 7 Series introduces a new logic resources
placement. For the previous families, the logic blocks are always placed to the
right of the corresponding INT matrix. Instead, in the 7 Series family, the logic
blocks are alternatively placed to the right and the left. This is well visualized in
the line of Figure 6.6. DHHarMa router has been adapted to this new architecture
keeping the possibility to provide a homogeneous PAR design.

132

6.2 Homogeneous Routing Base Concepts

6.2 Homogeneous Routing Base Concepts

This section introduces the base concepts of the DHHarMa homogeneous routing
algorithm; these concepts are needed to understand the various steps of the homo-
geneous router. The Iterative Deepening Depth-First Search algorithm (IDDFS) is
introduced and the global logic of the router is shown as well, such as the direction
of the research.

6.2.1 Standard Routing Algorithms

FPGA routing algorithms have been one of the main topics since the introduction
of the FPGA devices. Especially in the 90’, researchers have developed and in-
vestigated different routing algorithms. [22] provides a detailed explanation and
comparison of the existing routing algorithms.

Typically, an FPGA routing algorithm is divided in routing resource graph gen-
eration, global routing, and detailed routing. First, the FPGA routing resources are
modeled in a graph, which abstracts the implementation details of the FPGA. The
graph consists of nodes and arcs, where nodes represent the PWs of the FPGA
and arcs represents the PIPs. An example of routing graph model is shown in
Section 7.3. The global routing executes a coarse-grained routing for the nets. Each
net is routed dependability, without considering the conflict with other nets. The
last step, the detailed routing, provides a fine-grained routing. In the specific, it
takes the results of the global routing and, whenever there is a conflict between
the nets, it reroutes them.

One of the first global routers has been the LocusRoute [90]. After that, the
standard global FPGA routers have become the PathFinder [77] and the VPR [14]
routing algorithm. This two algorithm are based on an iterative routing, where at
each iteration the nets are routed using the minimum cost. The cost is determined
by the current costs associated with the outpin and the inpins of the net.

About the detailed routers, the most used are the CGE [19] and the SEGA [69]
routing algorithms. These routers find first the conflicts between the nets. When-
ever a conflict is found, these details routers unroute and reroute the nets utilizing
alternative routing resources. More details are provided in [22].

6.2.2 Iterative Deepening Depth-First Search algorithm
(IDDFS)

The IDDFS is a search strategy based on the depth-first search algorithm [95]. With
this strategy, a depth-limited search is repeatedly run, increasing at every step the
depth of the limit value. Using a depth-first search algorithm with a limit on the
depth avoids the drawbacks regarding the length of the tree (i.e., a typical problem
of the depth-first search algorithm).

133

6 DHHarMa Router

The DHHarMa router uses this strategy, and it considers PWs of the FPGA as
nodes and the PIPs resources connecting them as arcs. The limitation value of the
algorithm represents the number of PIPs that can be activated for each path.

Therefore, starting with a limit value of 1, the router tries to reach the inPin with
a depth-first algorithm, utilizing not more than one PIP. If it is not possible, the
number of PIPs that can be utilized is increased by one: then, the research is run
another time.

Whenever a possible path is found, it is stored as a possible routing path of a net.
The algorithm terminates the execution when after a depth-limited search visit at
least one solution is found. In this way, at the end of the computation, there is a
set of possible paths that use a minimum number of PIPs.

The router needs to store more than one solution for the nets to be routed,
because, in most of the cases, the routing of one net depends on the routing of
another one; since that the goal of the router is to find a homogeneous solution,
nets have to be routed in a particular way in order to keep this property.

The possibility to store more paths with a minimum number of resources used
is one of a main characteristic of the presented homogeneous router. In fact, this
allows having final solutions that optimize the routing on the number of routing
resources utilized.

6.2.3 Routing Direction and Wrong Direction

As presented in Section 6.2.2, the routing algorithm is based on a depth-first
algorithm. To save computational time during the router process, it is possible to
exploit connection structure of the Virtex FPGAs. Hence, the routing direction logic
is introduced. With a routing direction limitation is possible to prevent useless
visit of paths inside the global routing system.

In the route of one net, the router considers that one step is in a Wrong Direction,
if it increases the Manhattan distance [31] to the arriving point. Hence, for one net,
the idea is to find a path taking as less wrong direction as possible.

Figure 6.7 shows how wrong directions are considered in every step of the
routing process. In the figure three cases with different values of wrong directions
are shown. In the specific, the black lines consider the path already computed. The
blue and the red lines show the last step computed by the algorithm. Then, the
blue ones indicate that the last part of the routing respects the routing direction
constraint (i.e., does not increase the Manhattan distance); instead, the red line
shows that the routing is taking a path in a wrong direction (i.e., increase the
Manhattan distance).

Hence, first, the router executes the IDDFS on a net without taking any wrong
directions. In the case the path is not found with this constraint (i.e., activating a
high number of PIPs is not possible to reach the inPin), the router increases the

134

6.2 Homogeneous Routing Base Concepts

A B BA BA BA BA

A B BA BA BA BA

A B BA BA BA BA

Wrong Direction = 0 (a)

Wrong Direction = 1 (b)

Wrong Direction = 2 (c)

I II III IV V

I II III IV V

I II III IV V

Figure 6.7: Direction constraints of the Router [176].

wrong direction limit by 1. Afterward, the routing process is recomputed with this
new constraint value and so on, till a path in not found.

6.2.4 Nets Terminology

The routing algorithm has been written in the C++ object-oriented language. The
objects used in the routing process, represent basically the information provided
in the XDL file representation. Hence, for every component and net presented in
the XDL, one object is created. Anyway, a special classification is necessary for the
nets. In the XDL representation, a net is a set of one outPin and one or more inPin.

In this chapter, the XDL net is then called XDL net. In the homogeneous routing
phase, a net is considered as a point to point connection (one outPin and one inPin).
Hence, XDL nets with n inPins are separated into n independent point-to-point
connections. Therefore, for every XDL net, are created n nets as much as the
number of the inPins.

Figure 6.8 shows an example of an XDL net with more the one inPin. The
XDL net static_right_out<7> has one outPin and three inPins. Therefore, the
XDL net is split in three nets: static_right_out<7>_0, static_right_out<7>_1, and
static_right_out<7>_2.

135

6 DHHarMa Router

net "static_right_out<7>" ,
 outpin "Rec0_a_[0]_(Slice_1/2)" BQ ,
 inpin "Base0_[0]_(Slice_1/10)" AX ,
 inpin "Rec1_b_[0]_(Slice_2/4)" B6 ,
 inpin "Rec0_a_[0]_(Slice_1/2)" D5
 ;

net "static_right_out<7>_0" ,
 outpin "Rec0_a_[0]_(Slice_1/2)" BQ ,
 inpin "Base0_[0]_(Slice_1/10)" AX ;

net "static_right_out<7>_1" ,
 outpin "Rec0_a_[0]_(Slice_1/2)" BQ ,
 inpin "Rec1_b_[0]_(Slice_2/4)" B6;

net "static_right_out<7>_2" ,
 outpin "Rec0_a_[0]_(Slice_1/2)" BQ ,
 inpin "Rec0_a_[0]_(Slice_1/2)" D5 ;

Router Nets

XDL net (MULTI NET)

(a) (b)

Figure 6.8: Example of XDL net Spitting [176].

A BA B A B

A B A B

A BB A BB A BB

(a) (b) (c)

(d) (e)

(f) (g) (h)

IntraNets paths

InterNets paths

Right path

Wrong path

Figure 6.9: Example of right and wrong path to respect homogeneity [176].

136

6.2 Homogeneous Routing Base Concepts

Inter-net and Intra-net

As presented, a net is a point-to-point connection from one outPin to one inPin. It
is possible to divide the nets into two types according to the partitioning of the
FPGA: intra-nets and inter-nets. On the one hand, the intra-net is a net that have
the outPin and the inPin in the same PR Region. On the other hand, the nets with
outPin and inPin in different PR Regions are marked as inter-nets.

This categorization of the nets entails certain constraints in the routing of these
nets. In the following, the constraints are explained:

• Intra-net area constraints: the intra-nets are connections within one PR Region.
Hence, to respect homogeneity of the whole system, the routing algorithm
finds paths that do not cross any area edge. In this way, others PR Regions
are not involved in the routing of these nets.

• Inter-net area constraints: the inter-nets are connections between different
areas. Then, a path may cross the edge of the starting PR Region about an
empty area (i.e., part of the FPGA that is not categorized as either static or
reconfigurable region) or to the destination PR Region. Once that a path
uses a resource that is outside the starting PR Region, then it cannot use the
starting area resources anymore. In the case of the path goes into an empty
area, it can cross only the destination PR Region.

Figure 6.9 provides some examples of admitted and wrong paths, considering
the area constraints, for both types of nets. Figure 6.9[a,b,c,d,e] provide examples
of the inter-nets paths. The paths in Figure 6.9[c,d] are a wrong path because
they cross more than one time the starting area. The path in Figure 6.9e is wrong
because the net crosses more than one time the arrival area.

Figure 6.9[f,g,h] provide examples of intra-nets paths. The nets in Figure 6.9[g,h]
are wrong because the paths are crossing the PR Region borders

6.2.5 Net Initialization

In the previous steps it is presented how the incoming net-list is modified and
grouped to be utilized by the homogeneous router. Before to perform a global rout-
ing, each net is considered without taking care about the homogeneous relations
with other nets.

In particular, two important information are retrieved: the minimum number
of PIPs required by a net, and the computation of the first and last path. Hence,
considering one net, the IDDFS algorithm is computed to find the minimum
number of PIPs required to find at least one path. The algorithm is applied
considering area constraints that are presented in Section 6.2.4. This information
avoids useless path checks in further steps for the homogeneous routing when the
computation of more nets is computed merging more IDDFS.

137

6 DHHarMa Router

Identification of
homogeneous Inter-nets

and Intra-nets sets

Find possible route and
store edge solutions

Find global edge
solution

Initialize nets

Global intra net solution
of Master Regions

Copy solution into Slave
Regions

Find homogeneous edge
solutions for each set

Input XDL

Output
XDL

Figure 6.10: Design flow of the homogeneous router.

6.2.6 Master and Slave Regions

The DHHarMa router is capable of providing a homogeneous routing. As pre-
sented in Section 5.2.3 this means that the PIPs utilized for each path are activated
in the same way in regions of the same type. For this reason, the PR Regions are
categorized in Master Region and Slave Regions.

Considering the partitioning in Figure 5.5, where the FPGA has been partitioned
into 8 PR Regions of four different types. Then, 4 PR Regions are marked as Master
Regions: Rec0_a, Rec1_b,Rec2_c, and Rec3_h. Consequently, the other regions are
marked as Slave Regions: Rec2_d, Rec2_e, Rec1_f , and Rec2_g.

The idea of this categorization is to have a “reference” region, where the routing
resources are occupied; then, to preserve the homogeneity of the design, the paths,
and the routing resources are replicated into the Slave Regions.

6.3 DHHarMa Homogeneous Router Flow

In the following, the novel homogeneous routing algorithm is presented in more
detail. Routing homogeneity is an important property to achieve to guarantee a
homogeneous communication infrastructure (as describe in Section 2.2.4). The
homogeneous router is part of the DHHarMa design flow (described in Section 5.2),
and can route homogeneously a hard macro mapped and placed by the DHHarMa.

In Figure 6.10 the router flow is depicted. This is divided into three main parts:
Initialization phase, Edge Route phase, and Intra-Route phase. The Initialization phase
is described in more detail in Section 6.2.4. Its aim is to initialize all the input
objects, adding some information needed by the router. The other two parts
represent the homogeneous routing process.

The Edge Route phase fixes a routing at the edge of the regions for all the nets
that cross a region (i.e., nets that have the inPin and outPin in two different regions).
The Intra-Route phase provides the routing of the nets that have the inPin and

138

6.3 DHHarMa Homogeneous Router Flow

Rec0_a Rec0_b Rec1_aStatic

InterNets IntraNets

(a) Input XDL.

HInterNets set 1

HInterNets set 2

HIntraNets set 1

HIntraNets set 2

Initialization

Rec0_a Rec0_b Rec1_aStatic

(b) Initialization Step.

Rec0_a Rec0_b Rec1_aStatic

(c) Edge Route Step.

Final Result (Output XDL)

Rec0_a Rec0_b Rec1_aStatic

(d) IntraRoute Step (Output XDL).

Figure 6.11: Example of the homogeneous routing of a design with 9 Nets. The Fig-
ure shows how the routing is built during the homogeneous routing
process.

outPin in the same region. Moreover, it provides the routing to/from the edge
routing computed in the Edge Route phase.

At the end of these three steps, the router gives in output a complete routed
design. Afterward, the output XDL is provided (Section 5.2.4). In the following,
the single parts of the homogeneous router are described in more detail.

The explanation of the homogeneous router flow is supported by the example
in Figure 6.11. This small example shows a portion of the FPGA with three PR Re-
gions: Rec0_a, Rec0_b, and, Rec1_a. Nine nets have to be routed homogeneously
in this example. More in detail, the Figure 6.11a shows the input of DHHarMa flow.
Then, Figure 6.11[b,c,d] shows the output of the three phases of the DHHarMa
router flow.

6.3.1 Initialization Phase

In this phase, the DHHarMa router groups the nets according to the PR Regions of
the FPGA. To achieve routing homogeneity, it is essential to find the homogeneous
relation among the nets of the design.

For example, if the router is computing the path of one net, it is necessary
to know, which are the nets that depend on the routing of the considered net.
According to the net’s types presented in Section 6.2.4 (i.e., intra-nets and inter-

139

6 DHHarMa Router

nets), every net is grouped either in a set of Homogeneous intranet set (HInterNetSet)
or a set of Homogeneous internet set (HIntraNetSet).

The position of the inPins and the outPins is considered to group the nets
homogeneously. The phase is divided into two parts: HInterNetSet generation and
HIntraNetSet generation.

Homogeneous inter-nets set generation

HInterNetSet generation phase can be divided into three steps:

• Outpin relative position grouping: in this step, for every PR Region type, and
for every relative position of an outPin in the region, one group is created
(relative position is explained in Section 5.2.3). At the end of this grouping
phase, there are as many groups as the number of outPins presented in every
PR Region type. The pseudo code of this step is provided in Algorithm 5.

• Inpin relative position grouping: according to the previous step, the nets are
grouped considering the inPin relative position. The algorithm is the same
used for the outPin relative position grouping (Algorithm 5). The only
difference is in the pins selected (i.e., inPins instead of outPins).

1: function outPinNetsGroupping(areaTypeV ector)
2: create outP inInterNetMatrix
3: for each areaTypei in areaTypeV ector do
4: create interNetV ector and add all interNets with outPin in areaTypei
5: for each interNeti in interNetV ector do
6: create new list homoOutP inList
7: for each interNetj in interNetV ector do
8: if (interNeti.outP in.relativePos == interNeti.outP in.relativePos)

and (interNeti.outP in != interNeti.inP in) then
9: add interNetj to homoOutP inList

10: remove interNetj from interNetV ector
11: end if
12: end for
13: insert homoOutP inList in outP inInterNetMatrix
14: end for
15: end for
16: return outP inInterNetMatrix
17: end function

Algorithm 5: Inter-nets grouping considering the outPin positions.

140

6.3 DHHarMa Homogeneous Router Flow

1: func homoInterNetSetGeneration(outP inInternetMatrix,
inP inInternetMatrix)

2: InterNetMatrix = merge(outpinInterNetMatrix, inpinInterNetMatrix)
3: for interNetListi in InterNetMatrix do
4: for each interNetListj in InterNetMatrix after the position of

interNetListi do
5: if intersection(interNetListi, interNetListj) == true then
6: interNetListi = join(interNetListi, interNetListj)
7: remove interNetListj from InterNetMatrix
8: end if
9: end for

10: end for
11: end func

Algorithm 6: Homogeneous inter-net set generation.

• Homogeneous inter-nets sets generation: the groups created in the previous steps
are merged, whenever a net is presented in different groups. The pseudo
code of this phase in presented in Algorithm 6. It consists in a comparison
between every couple of groups. When a couple shared at least one net, the
two groups are merged.

At the end of the computation, every inter-net is only in one HInterNetSet.

Homogeneous intra-nets set generation

The generation of these sets is similar to the inter-net one. Nevertheless, consid-
ering only intra-nets, just one grouping phase is required. Hence, for every area
type, one HIntraNetSet contains nets that have the inPin and the outPin in the
same relative position. In the Algorithm 7 the algorithm of this group phase is
presented.

6.3.2 Edge Routing Phase

This phase of the router finds a homogeneous routing in the regions’ edges.
Algorithm 8 provides the pseudo code of the edge routing phase. Line 1 shows
that the function takes in input the HInterNetSet vector. As it has been explained
in Section 6.3.1, these groups are composed just of inter-nets (i.e., nets that cross
the regions of the design).

First of all, for every HInterNetSet and for every inter-nets (Algorithm 8 Line 2)
the function findPossibleRouteAndStoreEdges is executed. This function executes the

141

6 DHHarMa Router

1: Func homoIntraNetSetGeneration(areaTypeV ector)
2: intraNetGroupedMatrix
3: for each areaTypei in areaTypeVector do
4: intraNetV ector = get IntraNets within region of area type areaTypei
5: for each intraNeti in intraNetV ector not inserted do
6: create homoIntraNetsSet
7: insert intraNeti in homoIntraNetsSet
8: set intraNeti as inserted
9: for each intraNetj in intraNetVector not inserted do

10: if sameRelativePosition(intraNeti.outP in, intraNetj− > outP in and
sameRelativePosition(intraNeti.inP in, intraNetj− > inPin) then

11: insert intraNetj in homoIntraNetsSet
12: set intraNetj as inserted
13: end if
14: end for
15: insert homoIntraNetsSet in intraNetGroupedMatrix
16: end for
17: end for
18: return intraNetGroupedMatrix
19: EndFunc

Algorithm 7: Homogeneous intra-net sets generation.

IDDFS algorithm on an inter-net, storing all the routing solutions on the edges of
the regions.

The second step fixes a unique edge solution for each HInterNetSet. The pseudo
code of this function is shown in Algorithm 8 Line 12. Since that this phase
computes the edges of the paths, it means that the PIP before the edge and the
PIP after the edge have to be activated in the same relative positions in same PR
Regions of the same type.

If in the solution computed in the previous step (findPossibleRouteAndStoreEdges
in Line 4) it is not possible to find a homogeneous edge solution, the findPossi-
bleRouteAndStoreEdges is rerun. Before the rerun, the number of maximum PIPs
that every path can use is increased to have more solutions for each HInterNetSet.

The third and last step provides a global solution of the edges of the HInterNetSet
vector. Algorithm 8 Line 20 shows the pseudocode of this step. This means that
for each HInterNetSet it is selected one edge solution that does not have conflicts
with the other HInterNetSet.

142

6.3 DHHarMa Homogeneous Router Flow

1: func EdgeRoutingPhase(HInterNetSetV ector)
2: for each HInterNetSeti in HInterNetSetVector do
3: for each internetj in HInterNetSetj do
4: findPossibleRouteAndStoreEdges(internetj)
5: end for
6: end for
7: for each HInterNetSeti in HInterNetSetV ector do
8: findHomogeneousEdgeSolutions(HInterNetSeti)
9: end for

10: findGlobalEdgesSolutions(HInterNetSetV ector)
11: EndFunc

12: func findHomogeneousEdgeSolutions(HInterNetSeti)
13: for each HInterNetSeti in HInterNetSetVector do
14: for every net of HInterNetSeti is possible to select an edge solution that

respect the homogeneous constraint
15: if not possible to find edge solution then
16: MoreEdgeSolutions(HInterNetSetV ector)
17: end if
18: end for
19: EndFunc

20: func findGlobalEdgesSolutions(HInterNetSetV ector)
21: globalEdgeSolutionFound = false
22: repeat
23: globalEdgeSolutionFound = fix the edge routing for each inter-net
24: if globalEdgeSolutionFound == false then
25: increment maximum PIPs to be used by the nets HInterNetSetV ector
26: findPossibleRouteAndStoreEdges(HInterNetSetV ector)
27: end if
28: until globalEdgeSolutionFound == false
29: EndFunc

Algorithm 8: Pseudo code of the Edge Routing phase.

6.3.3 Intra-Routing Phase

The Intra-Routing phase is the last phase of the homogeneous router flow. At the
end of this phase, the input design is fully homogeneously routed. After the Edge
Routing phase, the router has fixed the edges for each region (see Section 6.3.2).

Then, in this step, the routing is provided for both intra-nets and inter-nets;

143

6 DHHarMa Router

the inter-nets are just partially routed after the edge routing phase. In the Intra-
Routing phase, the routing of the inter-nets is finalized, finding the path from the
outPin to the edge and the path from the edge routing to the inPin. Differently, the
intra-nets are completely routed in this phase.

Algorithm 9 shows the pseudo code of the Intra-Route phase. As represented in
Figure 6.10 this phase is divided into three steps: Initializationofthenets, Global
intra-net solution of the Master Region and Copy solution into Slave Region.

Since that the routing of this phase does not cross the border of any region, the
routing can be computed just for the Master Region and the copy into the Slave
Region. This allows having a homogeneous intra-routing in all the regions of the
same type.

In the first step, all the nets to be routed are initialized. In the specific, it is
executed the IDDFS for all the intra-nets and inter-nets of a specific master region’s
area type. Therefore, the Intra-Routing phase is executed once for every areaType
of the partitioning. Then, in the example of figure Figure 6.11d the function
IntraRoutingPhase is executed three times, for the 3 area types: Static, Rec0a, and
Rec0b.

Once that all the nets are initialized, the find Global Routing step is executed
(Algorithm 9 Line 8). This step finds intra-global routing and it considers one
solution for each set, the algorithm tries to find a global solution without conflict
among the nets. The router finds the best homogeneous solution in term of utilized
routing resources. The pseudo code of this step is presented in Algorithm 9 Line 25.

If a global solution cannot be found, the sets are recomputed relaxing the limit
PIPs value for every net. The final solution is the one that has the minimum
number of activated PIPs, for each set of homogeneous inter-nets. The algorithm
starts to analyze the solutions with the least PIPs activated and selects the first
solution found. If the algorithm fails to find a solution, the exploration of path
candidates for each set of homogeneous inter-nets is repeated with an increased
maximum number of PIPs that can be used (Line 31).

Once that an intra solution has been found, the last step copies the routing of the
nets within the master regions into the corresponding slave regions. Then, in the
example in Figure 6.11d the solution found for the master region Rec0_a is copied
into the slave region Rec0_b.

In the end, the nets are all fully routed, respecting the homogeneity of the
required homogeneity constraints. It is important to mention that the intra-routing
can benefit from having a loop-back with the edge-routing phase. At the moment,
this functionality can be integrated into a further version of the DHHarMa router.

144

6.3 DHHarMa Homogeneous Router Flow

1: func IntraRoutingPhase(areaType)
2: masterRegion = areaType.masterRegion
3: interNetV ectorInPin = internets that have the inPin in masterRegion
4: interNetV ectorOutP in = internets that have the outPin in masterRegion
5: intraNetV ector = intranets with outPin and inPin within masterRegion
6: netV ector = merge interNetV ectorInPin,interNetV ectorOutP in and
intraNetV ector

7: initNetsIntraRoutingPhase(interNetV ectorInPin, interNetV ectorOutP in,
intraNetV ector)

8: findGlobalRoutingForRegion(netV ector)
9: copySolutionInSlaveRegions(areaType)

10: endfunc

11: func initNetsIntraRoutingPhase(masterRegion)
12: interNetV ectorInPin = internets that have the inPin in masterRegion
13: interNetV ectorOutP in = internets that have the outPin in masterRegion
14: intraNetV ector = intranets with outPin and inPin within masterRegion
15: for each interNeti in interNetV ectorInPin do
16: IDDFS_algorithm(interNeti.getLastPWOfEdge, interNeti.inP ins)
17: end for
18: for each interNeti in interNetV ectorOutP in do
19: IDDFS_algorithm(interNeti.getLastPWOfEdge, interNeti.outP in)
20: end for
21: for each intraNeti in intraNetV ector do
22: IDDFS_algorithm(intraNeti.outP in, intraNeti.inP in)
23: end for
24: endfunc

25: func findGlobalRoutingForRegion(netV ector)
26: globalIntraSolutionFound = false
27: repeat
28: globalIntraSolutionFound = fix a routing for each net in netV ector
29: if globalIntraSolutionFound == false then
30: increment possible PIPs to be used by the nets of netV ector
31: initNetsIntraRoutingPhase(netV ector)
32: end if
33: until globalIntraSolutionFound == false
34: endfunc

Algorithm 9: Pseudocode of the Intra-Routing step.

145

6 DHHarMa Router

6.4 DHHarMa Results

In this section, the presented DHHarMa routing algorithm is verified and tested.
In particular, it is shown how significant is the impact of the homogeneity with
respect to the maximum clock frequency on routed communication macros. There-
fore, it is provided a detailed comparison of a homogeneous hard macro with an
inhomogeneous hard macro of the same functionality (i.e., routed with the ISE
Xilinx router). However, the inhomogeneous hard macro cannot be used for the
target application.

First of all, a dedicated test benchmark flow is presented. Section 6.4.1 explains
how the test has been divided into two parts: DHHarMa homogeneous routing
and Xilinx Routing.

Section 6.4.2 presents the results of different communication designs for DPR
systems. Eleven examples of communication infrastructures have been tested
on the Virtex-4 devices and 7 Series devices. On the one hand, this flow shows
the effectiveness of the approach; on the other hand, it provides a comparison to
the commercial Xilinx commercial router. In the specific, it is highlighted how
the homogeneity affects the final routed design, in term of resources utilized and
timing delay.

Section 6.4.3 presents the communication infrastructure that has been generated
by DHHarMa and utilized in the novel DRPM demonstrator (see Chapter 4). This
communication infrastructure guarantees DPR and bitstream relocation on the
DRPM. Finally, Section 6.4.4 presents another possible application of DHHarMa: a
time-to-digital converter.

6.4.1 Routing Experiment Flow

The experiments focus on verifying routing results of DHHarMa compared to
the standard Xilinx ISE router. Figure 6.12 shows the routing experiment flow.
The HDL communication macro is first synthesized and converted into an XDL
format, utilizing the standard Xilinx Front-end of DHHarMa (see Section 5.2.2).
Then, the DHHarMa backend is executed, which provides at the end an XDL that
is homogeneously placed and routed.

In addition to the standard DHHarMa flow, the Xilinx router is executed as
well. The XDL design that is generated after the homogeneous placement phase of
DHHarMa is converted into the NCD format; then, the standard Xilinx router is
executed (triggered via FPGA Editor). In this way, it is possible to benchmark just
the DHHarMa routing, excluding from the comparison the homogeneous packer
and placer steps.

Finally, the two routed design are analyzed, extracting two base information:
PIPs utilization and the Max. Clock Speed of the designs. The Max Clock Speed is
then calculated utilizing the Xilinx Timing Analyzer (called TRCE) [129].

146

6.4 DHHarMa Results

DHHarMa Homogeneous Router

Xilinx-based ISE Frontend

XST Synthesis NGDBuild MAP
NCD2XDL

Converter

FPGA partitioning

parser

XDL Parser

Homogeneous

Packer

Homogeneous

Placer

Homogeneous

Router

Communication
Macro
HDL

XDL

XDL2NCD

Converted

NCDDPR
Partitioning

CSV

Xilinx Router

FPGA EDITOR

Router

XDL

XDL Xilinx Timing

Analyzer (TRCE)

TWR

Extract # PIPs
TXT

XDL2NCD

Converter

NCD2XDL

Converted

NCD

XDL

Xilinx Timing

Analyzer (TRCE)

TWR

Extract # PIPs
TXT

Figure 6.12: Routing Experiment Flow.

As it has presented in Section 6.3, the DHHarMa router finds a homogeneous
routing, minimizing the number of resources utilized. Therefore, the Xilinx router
is set with the resource optimization option, to have a fair comparison between
two routing algorithms. Moreover, in both routers the Pin Swap option [128] is
activated.

6.4.2 Routing comparison

Section 3.2.1 has presented that the Xilinx router cannot provide a routing of
a design that supports module relocation. Researchers have been developed
different routing algorithms for FPGA. The most important academic routing
algorithm is the VPR [14]. To benchmark routing algorithms for FPGA, it has been
created a dedicated CAD tool, VTR [92]. This tool allows comparing different
algorithms on an ad-hoc FPGA design.

One of the main issues of benchmarking routing algorithms for FPGAs is the
difficulties in comparing them with commercial ones. [51] is the only work that
has created a bridge between VTR CAD tool and Xilinx tools. This has allowed
comparing the benchmarks of the academic algorithms with the Xilinx routing
algorithm. The main limitation of this work is the support of just one device:
the Virtex-6 xc6vls240t. From this comparison, it has been shown an academic
gap with respect to the commercial Xilinx tools. In the specific, academic routing
algorithms have a gap of 15% compared to the Xilinx router.

Eleven examples of communication infrastructures have been tested on the
Virtex-4 devices and 7 Series devices. The results are shown in Table 6.3, and
Table 6.4. In this way, the DHHarMa router has been validated on different FPGA

147

6 DHHarMa Router

Table 6.2: DHHarMa initialization step results for the tested communication infras-
tructures.

Net connections Homogen. Sets

Design #
Reg

#
XDL
Nets

#
Inter-
nets

#Intra
nets Total

#
HInter-
NetSet

HIn-
traNet-

Set

simpleBM 8Bit 2x2 193 96 160 256 32 64
simpleBM 8Bit 3x2 265 128 224 352 32 64

simpleBM 32Bit 2x2 769 384 640 1,024 128 256
simpleBM 32Bit 3x2 1,057 512 896 948 128 256
simpleBM 64Bit 2x2 1,537 768 1,280 2,048 256 512

FullSlaveBM 32Bit 2x2 1,920 1,082 1,550 2,632 380 602
FullSlaveBM 32Bit 3x3 3,805 2,412 3,130 5,542 380 602
FullSlaveBM 32Bit 5x2 4,296 2,792 3,446 6,238 380 602

FullMasterBM 32Bit 2x2 2,634 1,380 2,976 2,632 460 1,089
FullMasterBM 32Bit 3x3 5,465 2,990 6,121 9,111 460 1,089
FullMasterBM 32Bit 5x2 5,892 3,450 6,750 10,200 460 1,089

families, showing is compatibility with the latest devices that are supported by
Xilinx ISE (i.e., 7 Series).

The eleven examples are based on three different communication macros archi-
tectures:

• simple communication macro (called Simple BM) which provides just data
communication connections among static and PR Regions; the Simple BM
can have a data-width of 8, 16, or 32 Bit.

• Full Slave communication macro: a wishbone communication infrastructure
where the PR Regions are just slaves.

• Full Master communication macro: a wishbone communication infrastructure
where the PR Regions are masters.

Table 6.2 shows details of the different designs utilized for the test. For each
communication macro, it is indicated the number of PR Tiles (column # Reg) and
the number of XDL nets (column # XDL nets). The rest of the information are
the number of net connections and homogeneous nets that are generated in the
initialization phase of DHHarMa. Columns # Inter-nets and # Intra-nets provide
the number of net connections that DHHarMa created. As mention in Section 6.2.4,
a net connection is a point to point connection between an outpin and an inpin.

148

6.4 DHHarMa Results

Table 6.3: Routing benchmarks on the Virtex-4 family device. The simple exam-
ple has been executed on the V4LX15 device. The FullSlave and the
FullMaster examples have been executed on the V4FX100 device.

DHHarMa Router ISE Router Comparison
Design #

Reg
PIPs Max

clock
[Mhz]

Time PIPs Max
clock
[Mhz]

Time PIPs Max
clock
[Mhz]

simple 8Bit 2x2 1,258 257 1m:44s 1,158 303 1s +9% -15%
simple 32Bit 2x2 5,279 230 4m:17s 4,947 280 1s +7% -18%
simple 64Bit 2x2 11,399 231 10m:44s 10,476 242 1s +9% -5%

simple 8Bit 3x2 1688 215 1m:33s 1,581 259 1s +7% -17%
simple 32Bit 3x2 7,077 198 5m:18s 7,049 238 1s +17% -1%

FullSlave 32Bit 2x2 16,032 112 1h:14m 14,442 128 7s +11% -13%
FullSlave 32Bit 3x3 33,678 56 1h:20m 30,123 121 7s +12% -54%
FullSlave 32Bit 5x2 41,357 51 1h:53m 34,873 65 8s +19% -22%

FullMaster 32Bit 2x2 26,715 148 46m:2s 21,001 186 8s 27% -20%
FullMaster 32Bit 3x3 61,401 42 04h:11m 52,991 49 9s +14% -16%
FullMaster 32Bit 5x2 66,171 62 2h:41m 58,013 87 8s +26% -29%

Table 6.4: Routing benchmarks on the 7 Series family. The examples have been
routed for the A7100T FPGA, except for the FullSlave 5x2 and the Full-
Master 5x2 examples where the K325T device has been used.

DHHarMa Router ISE Router Comparison
Design #

Reg
PIPs Max

clock
[Mhz]

Time PIPs Max
clock
[Mhz]

Time PIPs Max
clock
[Mhz]

simple 8Bit 2x2 1,684 259 34m:12s 1,626 240 6s +4% +8%
simple 32Bit 2x2 6,672 219 2h:28m 5,126 234 6s +29% -6%
simple 64Bit 2x2 14,408 194 1h:49m 11,791 202 6s +22% -4%

simple 8Bit 3x2 2,278 176 27m:4s 1,779 172 6s +28% +2%
simple 32Bit 3x2 9,457 169 1h:7m 7,238 155 6s +31% +9%

FullSlave 32Bit 2x2 18,972 82 03h:32m 16,282 91 8s 17% -10%
FullSlave 32Bit 3x3 42,364 41 03h:45m 34,919 54 8s 21% -24%
FullSlave 32Bit 5x2 51,197 52 05h:03m 40,906 71 13s 25% -27%

FullMaster 32Bit 2x2 29,641 80 2h:45m 24,949 108 8s +19% -26%
FullMaster 32Bit 3x3 61,401 42 4h:11m 52,991 49 9s +16% -14%
FullMaster 32Bit 5x2 74,507 62 4h:23m 61,693 87 11s +21% -29%

149

6 DHHarMa Router

The Homogeneous Sets column indicates how many homogeneous intra-net
and inter-net sets are generated. As it is shown from this table, the designs have
between 256 and 10,200 net connections. On the one hand, these values provide
topological details about the different communication macros; on the other hand,
they give an idea about the different complexity in the routing of these designs.

Table 6.3 and Table 6.4 show the results for the ISE router and the DHHarMa in-
homogeneous router. The results show that the DHHarMa router utilizes between
1% and 31% more routing resources than the Xilinx Router.

In addition, the maximum clock frequency of the communication macros is
between the range of +9% and -54% compared to the Xilinx router. This means
that in some cases (i.e., in two 7 Series examples) the result of DHHarMa is even
better than the Xilinx router in term of max frequency that can be reached by the
design.

These results show that homogeneous DHHarMa router, despite the fact that is
the only router providing a homogeneous router, introduces a delay of 15% with
the standard Xilinx router. This is a remarkable result considering that the general,
non-homogeneous, and academic VPR router introduces a delay of 15% [51].

Of course, the time required for the routing is much higher compared to the
Xilinx ones, which is in all the tested cases less than 10 seconds. DHHarMa
has routed the designs between 1m and 5h:03m. The high time required for the
routing is given by the proposed IDDFS algorithm and the homogeneity check.
IDDFS algorithm creates for each net connection, a set of possible paths that utilize
the minimum number of PIPs. Instead, the homogeneity check verifies that the
homogeneity constraints are respected within the homogeneous sets.

It is important to mention that the communication macros are intended to be
computed once (as hard macros) and then be placed on a design. This means
that, once that the communication macros are routed with DHHarMa, they can be
reused as a placed-and-routed logical block without required extra computational
time.

6.4.3 DRPM communication infrastructure

The communication infrastructure that allows supporting module relocation on the
DRPM platform has been generated with DHHarMa. The communication macro
connects all PR Regions in a homogeneous manner. This communication macro
corresponds to the FullMasterBM 32 Bit routed on 5x2 regions (see Table 6.3).

Figure 6.13 shows an FPGA Editor screenshot of the DRPM communication
infrastructure. As highlighted, the communication infrastructure spans the 10 PR
Regions, which are all the same type. The FullMasterBM is a wishbone communi-
cation infrastructure that has 32 Bit data, 32 Bit addresses, 4 Byte enable signals,
and 4 Bit auxiliary lines.

150

6.4 DHHarMa Results

Table 6.5: Comparison of homogeneous and inhomogeneous communication
macro of the DRPM.

Homogeneous (DHHarMa PAR) Inhomogeneous (Xilinx ISE PAR)

Designs #
Reg.

max.
Clock
[MHz]

#
LUTs

#
Slices

#
Nets

#
PIPs

max.
Clock
[MHz]

#
LUTs

#
Slices

#
Nets

#
PIPs

Full
32Bit 5x2 62 4,445 2,362 5,892 66,171 121 4,445 3,993 14,514 83,444

Table 6.5 shows the results of this communication macro in the case of using
the DHHarMa homogeneous PAR and the Xilinx PAR. It is important to mention
that this comparison is different from the one presented in Section 6.4.2, where
just the DHHarMa router and Xilinx router have been compared. In this case, it is
benchmarked the overall PAR flow of DHHarMa and Xilinx.

The results show that first, the packer of DHHarMa reduces the number of slices
by 41% (from 3,993 to 2,362). This is motivated with the fact that DHHarMa packer
finds the best solution in term of occupied slices. On the contrary, Xilinx packer is
not oriented to pack a design which is then reused in further design.

Then, The routing results show that DHHarMa router uses less routing resources.
This is due to the fact that the number of slices is less than the Xilinx ISE PAR
results. On the contrary, the maximum clock design for the DHHarMa PAR design
and the Xilinx ISE PAR are 64 MHz and 121 Mhz, respectively. This means that
DHHarMa PAR has a maximum clock delay that is 47% less than the Xilinx PAR.
Again, this result is motivated by the fact that the Xilinx ISE PAR can optimize in a
better way the delays of a path, since that it is aware of the delay of the connections
of the global routing structure.

6.4.4 Further Applications of the Homogeneous Router

In Figure 6.14 a schematic of a delay line is shown, which is commonly imple-
mented in FPGA-based time-to-digital converters. The delay line is used to mea-
sure the time between two pulses by utilizing the delay of the carry chains within
the FPGA fabric.

For this example, it has been generated a corresponding homogeneous hard
macro with 40 small regions of the same type, each containing a single CLB only.
Figure 6.15 shows a homogeneous hard macro generated by DHHarMa and an
inhomogeneous hard macro generated using the place and route tools from the
Xilinx tool chain. The results are shown in Table 6.6.

When comparing the hard macros it can be realized that the homogeneous hard
macro uses identical routing resources for each element, while the inhomogeneous

151

6 DHHarMa Router

Figure 6.13: Homogeneous communication macro utilized in the V4FX100 FPGA
of the DRPM system. The communication macro is a FullMaster 32bit
Macro with ten regions (5x2). All the PR Region are of the same type.

152

6.4 DHHarMa Results

Table 6.6: Comparison of homogeneous and inhomogeneous Delay Line design,
executed on a V4LX15 [184].

Homogeneous Hard Macro Inhomogeneous Hard Macro (Xilinx ISE)

Designs
#

Re-
gion

max.
Clock
[MHz]

#
FFs

#
LUTs

#
Slices

#
Nets

#
PIPs

max.
Clock
[MHz]

#
FFs

#
LUTs

#
Slices

#
Nets

#
PIPs

TDC Delay
40 750 320 160 80 526 863 653 320 240 81 529 1731

Line 160Bit

Register 1
(Latch or
Flip Flop)

Register 1
(Latch or
Flip Flop)

D

CE
CLK SR

Register 2
(Flip Flop)

D

CE
CLK SR

Q

Q

AMUX

A

AQ

CY
O5
O6
X

5Q
O5
O6

XOR

=1

O5
X

PartFunction Unit

A2

A1

A5

A3

A4

A6

Bypass In
AX

LUT
6

LUT
5

Out 5 Out 6

Register 1
(Latch or
Flip Flop)

Register 1
(Latch or
Flip Flop)

D

CE
CLK SR

Register 2
(Flip Flop)

D

CE
CLK SR

Q

Q

BMUX

B

BQ

CY
O5
O6
X

5Q
O5
O6

XOR

=1

O5
X

PartFunction Unit

B2

B1

B5

B3

B4

B6

Bypass In
BX

LUT
6

LUT
5

Out 5 Out 6

Figure 6.14: Schematic of the delay line example [184].

(a) DHHarMa Placer&Router (Homogeneous).

(b) Xilinx Placer&Router (Inhomogeneous).

Figure 6.15: Comparison of a homogeneous and an inhomogeneous hard macro
for the example of a delay line circuit with 40 regions [184].

153

6 DHHarMa Router

hard macro does not. The homogeneous hard macro requires 160 Look-Up-Tables
(LUTs), 526 nets, and 863 PIPs, where the maximum clock frequency is 750 MHz.
The inhomogeneous hard macro requires 240 LUTs, 529 nets, and 1731 PIPs with a
maximum frequency of 652.74 MHz.

The 33.3 % less number of LUTs shows that the homogeneous packer of DHHarMa
performs even better than the one provided by Xilinx. The 50.2 % less number of
PIPs used in the homogeneous macro indicates that fewer lines are used, which re-
flects the result shown in Figure 6.15. The main reason for this is that the DHHarMa
placer places interconnected instances as close as possible, which is not the main
objective of the Xilinx placer. For the delay line example, the hard macro generated
by DHHarMa outperforms the inhomogeneous one.

6.5 Summary

This chapter has introduced a novel homogeneous router for FPGA: the DHHarMa
router. As part of the INDRA flow (see Chapter 5), it guarantees homogeneous
routing of a specific design (e.g., DPR, time-to-digital converter). Details about the
DHHarMa router, as well as details about the overall DHHarMa flow have been
presented in [184].

The DHHarMa router introduces novel concepts and functionalities that leak in
existing commercial and academic tools. The pinWires grouping algorithm allows
categorizing a general XDL design to apply a dedicated homogeneous algorithm.

Details of the homogeneous algorithm have been provided explaining how the
homogeneous solution is generated in all the steps of the routing. To achieve an
optimal solution, an Iterative Deepening Depth-First Search algorithm (IDDFS)
algorithm has been utilized, allowing the creation of sets of solutions for each net
to be routed.

Results have shown that the homogeneous routing cost compared to best avail-
able routing algorithm for Xilinx FPGA (ISE router) is in average the 16% of
routing resources (i.e., PIPs). Regarding the maximum clock speed of the design,
the DHHarMa router suffers a reduction in an average of 15%. These results
validated the presented approach and they show that the drawback in term of
routing resources utilized, as well as the delay of the design, are compensated with
a homogeneous design that can be used to support DPR and bitstream relocation.

One of the uses of the DHHarMa router is the generation of the DRPM homoge-
neous communication infrastructure. This communication infrastructure allows
having 10 PR Region, where a module can be relocated in one of them.

154

7 OLT(RE)2

Chapter 6 has presented how a DPR scenario can be generated, introducing the
INDRA 2.0 flow. In particular, the chapter focuses on tools that allow reaching a
full-homogeneous design, thanks to a static rerouter (PSRerouter) and a homoge-
neous communication infrastructure generator (DHHarMa). Then, DPR has been
only considered for reconfiguring a certain design functionality, i.e., changing a
certain PR Module in the system. Instead, this chapter considers the testing of the
reconfigurable area in DPR systems.

Therefore, OLT(RE)2 flow is presented: an on-line on-demand approach to
testing permanent faults induced by radiation in reconfigurable systems used in
space missions. The proposed approach relies on a test circuit and custom place-
and-route algorithms. OLT(RE)2 exploits DPR offered by today’s SRAM-based
FPGAs to place the test circuits at run-time.

The goal of OLT(RE)2 is to test unprogrammed areas of the FPGA before using
them, thus preventing functional modules of the reconfigurable system to be
placed in areas with faulty resources. It is explained how it is possible to generate,
place and route the test circuits needed to detect physical wires and programmable
interconnection points of an arbitrarily large region of the FPGA in a reasonable
time.

Section 7.1 introduces the overall structure of the flow. Two sub-flows are
presented: Design-time flow and Run-time flow. Section 7.2 presents the testing
circuit architecture that is utilized by the flow. In particular, it is explained how the
nets of the circuits can verify that routing resources of the FPGA are permanent
fault free. Section 7.3 describes how the routing infrastructure of the FPGA has
been modeled in an oriented graph. This graph is used by OLT(RE)2 to reach a full
coverage of routing resources testing. Section 7.4 presents details regarding the
Routing Resources Analyzer (RRA) tool, which is able to categorize the routing
resources of the FPGAs according to their testability.

Section 7.5 explains in detail the core part of OLT(RE)2: the U-TURN algorithm.
This algorithm can place and route the testing circuit to reach an extensive test of
the FPGA routing resources. Section 7.6 presents results of the OLT(RE)2 flow: val-
idation of the testing circuits, design-time results and run-time results. Section 7.7
summarizes the presented flow.

155

7 OLT(RE)2

7.1 Flow Structure

The overall goal of OLT(RE)2 is to support on-line on-demand testing of dy-
namically reconfigurable systems based on SRAM-based FPGAs. More in detail,
OLT(RE)2 exploits DPR capabilities offered by modern SRAM-based FPGA devices
to place ad-hoc designed, placed-and-routed test circuits on the reconfigurable
areas of the system.

These test circuits are meant to be placed and run before a functional module
of the reconfigurable system has to be placed, to verify whether the area where
the functional module are either placed is faulty or fault-free, thus avoiding to
place the functional modules on faulty resources of the device. This increases the
reliability of the reconfigurable system.

From a high-level point of view, the OLT(RE)2 approach can be summarized in
the following steps:

• A test circuit is designed, composed of a Test Pattern Generator (TPG), an
Output Response Analyzer (ORA), and several Net Under Tests (NUTs).

• The test circuit is placed-and-routed multiple times (thus each placed-and-routed
test circuit tests a subset of the routing resources of the Area Under Tests
(AUT)) in such a way as to maximize the amount of resources under test
while minimizing the number of test circuits (and thus the number of recon-
figurations required at run-time);

• Place a test circuit at a time on the AUT. Once the test circuit is placed, there
is no interaction between it and the IOBs. On the contrary, the test circuits
internally generate test stimuli that are propagated to the resources under
test and then received and analyzed by an ORA that determines whether the
resources under test are faulty or not.

• Finally, the result of the test is stored in DRAMs, which are accessed through
memory readback. By knowing the resources occupied by the failed test
circuit, it is also possible to identify a subset of possible faulty resources, thus
performing a coarse-grained fault diagnosis.

The proposed testing approach focuses on most of the routing resources available
in an FPGA device; the only routing resources that are currently not supported by
OLT(RE)2 are the routing resources connected to DSPs, BRAMs, carry chains, and
clock distribution resources.

Finally, OLT(RE)2 is suitable for a wide range of Xilinx FPGA families, including
Spartan-6, Virtex-4, Virtex-5, and Virtex-6. Due to its modular structure, OLT(RE)2

can be extended to work with other Xilinx FPGA families. Additionally, the
methodology can be utilized for FPGAs from other vendors.

156

7.1 Flow Structure

Design Time Test
Generation Testing

Circuits

1..n

Area
Under Test

Run-time Test
Execution

Testing
circuit

Testability
Report

Test
Report

testresponse

INPUTINPUT

TestabilityReport.txt RoutingResources
TestReport.txt

OUTPUTOUTPUT

TestDesignNUT8.xdl

Design Time Run-time

TestCircuit*.bit

FPGAStatic
Design

INPUT

FPGA-
Partitioning.fpf

StaticDesign.xdl

Figure 7.1: The overall OLT(RE)2 CAD flow [178].

7.1.1 The OLT(RE)2 CAD Flow

OLT(RE)2 is composed of a set of C++ tools that are integrated into the standard
Xilinx CAD flow, automating all the activities that need to be carried out to imple-
ment the proposed test strategy. The OLT(RE)2 CAD flow (see Figure 7.1) can be
divided into two parts: the design-time test generation and the run-time test execution
sub-flows.

The design-time test generation is intended to be performed at design-time on
a ground machine to generate all the test circuits. The run-time test execution is
meant to be executed at run-time, on the reconfigurable system itself, before a
module reconfiguration.

The flow utilizes the XDL intermediate language (see Section 2.3.3). Moreover,
it relies on the typical PR flow of Xilinx; it takes a testing circuit design (mapped
with the Xilinx tool), places and routes it, and generates a certain number of testing
circuits (in XDL format). The FPGA’s routing resources are accessible utilizing the
DXF database (presented in Section 5.2.1 and Section 5.3.4). Finally, the testing
circuits are converted to the Xilinx NCD format and can be integrated into the
normal Xilinx flow.

157

7 OLT(RE)2

Routing
Resource

Analyzer (RRA)

TCD
testable

resources

Testing
bitstreams

1..n
OUTPUT

U-TURN Xilinx
bitgenTesting

Circuit

INPUT

P&R
testing
circuit

1..n

OUTPUT

TestDesignNUT8.xdl
TestCircuit*.bit

TCI_TestabilityReport.txt

Area
Under Test

(A-UT)

INPUT

FPGA-Partitioning.fpf

XDL FPGA
Database

Static
Design

INPUT

StaticDesign.xdl

OUTPUT

TCD_TestabilityReport.txt

TCD
Testability

Report

TCI
Testability

Report

Figure 7.2: The design-time test generation sub-flow [178].

7.1.2 Design-time Test Generation Sub-flow

Figure 7.2 depicts the design-time test generation sub-flow, which is the first sub-
flow of the overall CAD flow (depicted in Figure 7.1). The input files consist of a
specification of the partitioning of the system (a .fpf file) that specifies the AUT,
the design of the static region and the test circuit design (a .xdl file containing the
specification of the test circuit described in Section 7.2).

The first tool, called Routing Resources Analyzer (RRA), categorizes the routing
resources (i.e., physical wires and PIPs), for each given AUT. Moreover, by reading
the design of the static region, the RRA detects and excludes all the routing
resources in the reconfigurable region that belong to the static region. In this
way, the U-TURN algorithm can focus just on the testable resources, thus saving
time avoiding testing unsupported ones Section 7.4. At the end of this process,
a detailed report of the testability of the design is created, which lists all routing
resources with their assigned categorization. The RRA step is presented in detail
in Section 7.4.

The RRA’s output contains crucial information for U-TURN phase. The execu-
tion of U-TURN produces multiple placed-and-routed test circuits, which cover
all testable routing resources for the AUTs. To carry out this task, three input files
are needed: the list of testable resources, the partitioning file, and the test circuit
specification. The resulting placed-and-routed test circuits are specified in XDL
and subsequently translated into a Xilinx design file (NCD) or optionally into a
Xilinx hard macro file (NMC) and then into a (partial) bitstream with the standard
Xilinx tools (xdl and bitgen). The U-TURN step is presented in detail in Section 7.5.

158

7.2 Circuits for Testing of Permanent Faults

Satellite

Partial Dynamic
Reconfiguration

Testing
bitstreams

1..n

INPUT

Test
Report

Test Responses
Analyzer

OUTPUT

TestCircuit*.bit

RoutingResources
TestReport.txt Ground

FPGA

Figure 7.3: The run-time test execution sub-flow [178].

7.1.3 Run-time Test Execution Sub-flow

Figure 7.3 depicts the run-time test execution sub-flow, which is the second sub-
flow of the overall CAD flow (depicted in Figure 7.1). This sub-flow is executed as
soon as a reconfiguration of the system is needed. The test circuits (either stored in
a dedicated fault tolerant persistent memory or received “just in time” from the
ground station) are exhaustively placed on the AUT one at a time and then the
test is executed. After each test circuit has been properly placed and run, the ORA
stores the result of the test execution in a dedicated distributed memory. These
results are read back by the Test Responses Analyzer that cumulatively creates the
overall test report that is sent to the ground.

7.2 Circuits for Testing of Permanent Faults

The test circuit on which OLT(RE)2 relies is composed of a TPG and an ORA. Fig-
ure 7.4 provides a high-level representation of the test circuit. All the connections
between the outputs of the TPG and the inputs of the ORA represent the resources
under test. More specifically, all the physical wires and all the PIPs connecting
TPG and ORA represent the Net Under Test (NUT). In the current version of the test
circuit (originally designed for the Xilinx Virtex-4 family of devices, that provides
4-input look-up tables) the test circuit has 8 NUTs.

The goals of the test circuit design are the following:

• Detect 100 % of the faults in the routing resources of the AUT.

159

7 OLT(RE)2

TPG ORA

Switch
Box

Nets Under Test

Wire PIP

Figure 7.4: High-level representation
of a test circuit [178].

Internal Clock
Generator

Internal Reset
Generator

TPG

Start-checking
Circuit

Distributed
RAM

ORA8 NUTs

Figure 7.5: Structure of the 8-NUT test
circuit [178].

• Occupy the smallest possible amount of resources of the FPGA to be applica-
ble also when a large part of the resources of the FPGA is already occupied.

• Be as fast as possible, in order not to interfere with the normal functioning of
the system.

The functional block-level structure of the designed test circuit is depicted in
Figure 7.5: the clock and reset signals that are fed to the test circuit are generated
by dedicated modules, to make the testing structure entirely independent of the
region of the FPGA on which it is placed. No external clock and reset signals
are used, and no input/output buffers are employed. Therefore, it is possible to
change the NUT by only re-placing the test circuit, without any change in the logic.

The result of the test is stored in dedicated LUTs configured as distributed RAM,
whose content can be read-back at the end of the testing activity. A ring oscillator
is used to generate the internal clock signal. A parametric n-bit shift register
pre-loaded with n 1s is used to generate the reset signal.

The start-checking circuit has been added to the test circuit to verify whether
the test circuit has been correctly configured and the test correctly started. Some
faults may prevent the test to start at all: in such a case, although a fault occurred,
the ORA would not be able to detect any misbehavior. The testing circuit utilized
by OLT(RE)2 has been extensively described in [186].

7.2.1 The 8-NUT Hard-Macro

The 8-NUT cross-coupled parity-based hard macro has been designed to test the 8
input nets of the LUTs of one Virtex-4 slice.

In more detail, the TPG is composed of two 2-bit counters, each placed into two
4-input LUTs and using two flip-flops (thus, each counter occupies only one slice).
One of the two counters is an up counter, i.e., counts from 0 up to 3, and produces
an even parity bit; the other counter is a down counter, i.e., counts from 3 down to
0, and produces an odd parity bit.

160

7.2 Circuits for Testing of Permanent Faults

Figure 7.6: The detailed structure of the 8-NUT testing circuit [178].

The ORA is composed of two analyzers, one for each counter, each occupying
one 4-input LUT (thus, the whole ORA occupies only one slice). By comparing
the received 2-bit state with the received parity bit, each analyzer can determine
whether a fault occurred in its input wires or the associated counter.

It is important to mention that the correctness of the used DRAM has to be
verified before placing the testing circuit by utilizing a specific pattern [172]. The
detailed structure of the testing circuit is depicted in Figure 7.6. [186] provides
more information on the testing circuit implementation.

7.2.2 Routing Faults Test Principles

In the following concepts related to fault detection in the routing resources of an
FPGA that can be found in the literature are provided [111]. The switch matrix
shown in Figure 7.7 is utilized for the concepts’ explanation; the switch matrix has

161

7 OLT(RE)2

d e

a

b

T
P
G

O
R
A

c

f g

α
β

γ δ

ε
ζ

Switch
Matrix Physical

Wire

PIP

Figure 7.7: An example switch matrix [178].

6 PIPs (namely α, β, γ, δ, ε, and ζ) and 7 PW (namely a, b, c, d, e, f, and g). For the
fault detection, it is called PIP Under Test (PIP-UT) the PIP under test and PW-UT
the physical wire under test.

The principles discuss in the following have been integrated into U-TURN, used
to place-and-route the test circuit. Section 2.4.4 presents the faults that can occur
in FPGA’s routing resources: stuck-at-0, stuck-at-1, stuck-on, and stuck-off.

Stuck-at and Stuck-off Fault Detection

Figure 7.8 shows how the stuck-at fault’s detection on physical wires and stuck-off
fault’s detection on PIPs is provided. The figure represents a net that is routed
from the TPG to the ORA, which uses two PWs and one PIP. As it is highlighted,
the N-UT can detect stuck-at faults of the utilized PWs and stuck-on faults on the
utilized PIPs. In other words, it is enough to use a routing resource and to write
on it both a logic 1 and a logic 0 to be able to detect stuck-at 0/1 and stuck-off
faults. Therefore, in Figure 7.8 it can be seen that the N-UT crosses PWa and PWd
and PIPβ. Therefore, the N-UT detects stuck-at 0/1 faults on PWa and PWd and
stuck-off faults on PIPβ.

Stuck-on Fault Detection

Figure 7.9 shows how the stuck-on fault’s detection on PIPs is provided; when
the target is on stuck-on faults on PIPs, two nets under tests are needed, each
connected to one of the two ends of the PIP-UT (as shown in Figure 7.9, where the
target is a stuck-on on PIPβ).

It is worth noting that in this case none of the two N-UTs actually uses the
PIP-UT. The idea behind this is that a stuck-on fault on a PIP may cause a short
between two nets. Thus, by routing two N-UTs through the two ends of the PIP-
UT, it can be checked whether the two nets are shorted (and thus the PIP-UT is

162

7.3 Graph Model of FPGA

T
P
G

O
R
A

α

β

γ δ

ε
ζ

d e

a

b

c

f g

N-UT

Stuck-off

Stuck-at 0/1

Switch
Matrix

Figure 7.8: An example routing be-
tween TPG and ORA for
stuck-at/off testing [178].

d ec

f g

T
P
G

O
R
A

Stuck-on

α

β

γ δ

ε
ζ

a

b

N-UT

Switch
Matrix

Figure 7.9: An example routing be-
tween TPG and ORA for
stuck-on testing [178].

stuck-on affected) or not. Apart from the stuck-on fault on PIPβ, the two N-UTs
also test stuck-at 0/1 faults on PWa, PWb, PWc, and PWd and stuck-off faults on
PIPα and PIPγ.

7.3 Graph Model of FPGA

This section describes the permanent faults models, their effects and how faults
are analyzed to perform a real test. In an FPGA, a net represents the connection
between two or more components and it is composed of physical wires and PIPs.
The fault model considered is presented in Section 7.2.2.

A graph model is introduced to generalize the testing coverage problem of
OLT(RE)2. Figure 7.10 shows how the FPGAs routing resources are modeled in a
cyclic oriented graph. The PWs are considered as nodes and the PIPs as arcs. This
kind of representation allows considering the testing coverage problem as a graph
coverage problem.

The Figure 7.10 represents two different kinds of graphs: a graph considering
just one OutPin and InPin (Figure 7.10a) and a graph that considers six OutPins
and six InPins (Figure 7.10b).

In the following, an explanation of how a path on the cyclic oriented graph
representing a routing resource test is shown.

163

7 OLT(RE)2

(a) A graph with one Outpin and
Inpin.

(b) A graph with six Outpins and
Inpins.

Figure 7.10: Cyclic Oriented Graph of the FPGA routing resources.

7.3.1 Stuck-at Coverage

The stuck-at fault model is explained in Section 7.2.2. A stuck-at-0 fault on a
physical wire forces the logic value of the net to ’0’. It is possible to check if a
physical wire is stuck-at-0 free by using it in a NUT while the TPG sends a ’1’ over
it. If the ORA receives a ’0’, it means that a fault occurred. Therefore, if the test
is passed all physical wires that belong to the NUT are stuck-at-0 free. A similar
approach can be applied in the case of stuck-at-1.

Figure 7.11: Testing stuck-at-0/1 in the graph representation.

164

7.3 Graph Model of FPGA

Utilizing the presented graph implementation, the verification that all physical
wires of an AUT are stuck-at-0/1 free is considered as resolving a nodes-covering
problem; it is necessary to discover several paths such that all nodes are crossed at
least once by a NUT.

For simplicity, it is considered the graph represented in Figure 7.10, where just
one NUT can be routed; the graph has only one OutPin and one InPin. The NUT
has to be routed among these nodes. Figure 7.11 highlights three different paths
that cover all nodes of the graph.

7.3.2 Stuck-off Coverage

The stuck-off fault model is explained in Section 7.2.2. A PIP affected by this kind
of fault is always deactivated, and the two physical wires paired by the PIP are
unconnected. Therefore, if a path uses a stuck-off PIP, its logic value is unknown.
It is possible to check if a PIP is stuck-off free by using it in a NUT, while the TPG
sends a stimulus over it. In the case that a fault occurred, the ORA receives wrong
values. If the test is passed, it is possible to assert that all PIPs that belong to the
NUT are stuck-off-free.

Utilizing the presented graph implementation, the verification that all PIPs of
the AUT are stuck-off-free, it is necessary to resolve an edges-covering problem.

In the example depicted in Figure 7.11, three solutions are needed to visit all the
nodes to the graph; apart from the nodes, some PIPs are visited as well. Therefore,
the NUTs verifies that the PIPs are stuck-off-free as well. Figure 7.12 highlights in
bold the PIPs that are not verified by the three solutions of Figure 7.11; where the
stuck-at fault has been targeted. It is needed to add some NUTs to the previous
three tests, such that all edges are crossed at least once.

Figure 7.12 shows the two paths of the NUT that can be added to cover all edges.
So, to cover all the edges of the graph of Figure 7.10, five different testing circuits
are needed.

7.3.3 Stuck-on Coverage

The stuck-on fault model is explained in Section 7.2.2. A PIP affected by this kind
of fault is always deactivated and creates a permanent connection between two
physical wires. Then, this PIP can create an antenna or short two nets of the design.

The consequence of a stuck-on on a design can be a short, either a wired-AND
short or a wired-OR short. It is possible to check if a PIP is stuck-on free using
two NUTs that can be shorted by it (as explained in Section 7.2.2). If both TPGs
of the NUTs send uncorrelated stimuli over their own NUT and the related ORA
receives a different logic value, then a fault occurs. Therefore, if the test passes, all
PIPs that can create a short between the tested NUTs are stuck-on-free.

165

7 OLT(RE)2

Figure 7.12: Testing stuck-off in the graph representation.

Figure 7.13: Testing stuck-off in the graph representation.

For this kind of fault at least two NUTs are needed. For example, Figure 7.13
shows the routing resources graph model, in the case that six nets under test are
routed simultaneously; six outPins and six inPins are present. It is worth noting
that these nets must be independent thus no resources can be shared between
them (i.e. no conflict is created). For this example, just two nets have been routed;
Figure 7.13 shows in green the PIPs that can create a short fault between 2 different
routed NUTs (i.e., NUT1 in light blue and NUT2 in dark blue). If this test is
passed, it can be assert that these PIPs are stuck-on free.

The stuck-on test verification is the most complex operation in term of time and
number of testing circuits needed to execute the test.

166

7.4 Routing Resources Analyzer

7.4 Routing Resources Analyzer

The aim of OLT(RE)2 is to find a flow capable of testing on demand routing re-
sources of a specific FPGA’s region. In addition, the test is oriented to critical
systems (e.g., aerospace and satellite applications). The idea of the flow is to pro-
vide an online testing, within a partially reconfigurable scenario, where the FPGA
is divided into one or more reconfigurable regions, which can be reconfigured at
run-time.

However, with this kind of partitioning, there are routing resources that span
more than one reconfigurable region. These kinds of resources can not be utilized
because a misbehavior of the test can propagate an error in critical parts of the
system, affecting its behavior.

Therefore, in order to execute a test that does not affect the behavior of the other
regions, a static analysis of the routing resource has been developed: the Routing
Resources Analyzer (RRA). All the routing resources (i.e., PIP and PWs) of the
AUT are categorized according to their position and their testability.

The RRA main task is to provide to the U-TURN step, a list of resources that are
“really” testable with the presented approach. As presented in Section 7.1.2, the
RRA takes in input the FPGA partitioning and the list of partitions to be tested.
During this phase, resources are marked depending on their testability.

In Section 7.4.1 the testability categories and the RRA are presented. Then,
the steps of the RRA are explained in Section 7.4.2, focusing on how the routing
resources are categorized “step-by-step”. Finally, Section 7.4.5 presents how the
RRA generates different outputs, which provide the user the testability information
of the routing resources.

7.4.1 Testability of the Routing Resources

The routing resources are categorized according to their testability. In the following,
different categories are presented. It is important to mention that the categorization
has been made with respect to the dependency on the presented testing circuit.
Therefore, the PW categories can be either Testing Circuit Independent (TCI) or
Testing Circuit Dependent (TCD) (see Section 7.4.2). The categorization is divided
into physical wires testability and PIP testability.

Physical Wire Testability

The presented fault detection mechanism can detect if a stuck-at fault is present on
a PW. However, some PWs cannot be visited; then, the RRA marks them to give to
the U-TURN algorithm the right set of PWs to be tested.

A PW can be categorized into the following four categories:

167

7 OLT(RE)2

Physical Wire

TCI Stuck-at
Testable

Stuck-at
Untestable

Stuck-at
Critical

Stuck-at
Unsupported

TCD Stuck-at
Testable

Figure 7.14: PW Testability Categories.

• Untestable: a physical wire is marked as untestable if it cannot be used by a
net that is routed internally to the reconfigurable region.

• Critical: a resource is marked as critical if it can be used internally into the
reconfigurable region, but its activation can affect the behavior of the other
region of the FPGA.

• Testing Circuit Independent (TCI) Testable: a resource is marked as testable if it
is possible to find a path for a NUT that utilizes the considered PW.

It is important to mention that a PW is categorized just with one of these three
categories, as depicted in Figure 7.14. This categorization is provided by the TCI
analysis (explained in 7.4.3).

Beside this first categorization, the TCI Testable PWs can be divided in:

• Testing Circuit Dependent (TCD) Unsupported: a resource is marked as unsup-
ported if it is TCI stuck-at testable but it cannot be utilized by the considered
testing circuits.

• Testing Circuit Dependent (TCD) Testable: a resource is marked as TCD testable
if it is possible to find a path for a NUT that utilizes the considered PW, with
the utilized testing circuit.

This second categorization is necessary to verify which routing resources are
testable according to the presented testing circuit. In the specific, this categorization
is executed by the TCD analysis (explained in Section 7.4.4).

168

7.4 Routing Resources Analyzer

PIP Testability

The presented fault detection method can detect stuck-on and stuck-off faults. The
possible PIP categories are represented in Figure 7.15. With Respect to stuck-off
faults the PIPs resources can be categorized in three different ways:

• Stuck-off Untestable: the PIP cannot be used by a net that is routed internally
to the reconfigurable region.

• Stuck-off Critical: the PIP can be used internally into the reconfigurable region,
but its activation can affect the behavior of the other region of the FPGA.

• Stuck-off Testable: The PIP is marked as testable if it is possible to find a path
for a NUT that utilizes it.

It is important to mention that a PIP is categorized just with one of the three
stuck-off categories, as depicted in Figure 7.15.

Beside this first categorization, the TCI Testable PIPs can be divided into:

• Testing Circuit Dependent (TCD) stuck-off Unsupported: a resource is marked
as unsupported if it is not untestable or critical but it cannot be utilized by
the considered testing circuits.

• Testing Circuit Dependent (TCD) stuck-off Testable: a resource is marked as TCD
testable, if it is possible to find a path for a NUT that utilizes the considered
PIP, with the utilized testing circuit.

With Respect to the stuck-on fault detection, the PIP can be categorized in:

• TCI stuck-on Testable: it is possible to route simultaneously two NUTs of the
same testing circuit that utilize the two PW connected to the considered PW
wire, but without using the PIP itself. The stuck-on detection is described in
detail in Section 7.2.2.

• stuck-on Untestable: if it is not stuck-on Testable.

In addition, as for the stuck-off case, the TCI stuck-on Testable PIPs can be
divided into:

• TCD stuck-on Testable: the PIP stuck-on fault can be verified with the utilized
testing circuit.

• TCD stuck-on Unsupported: the PIP stuck-on fault cannot be verified with the
utilized testing circuit.

169

7 OLT(RE)2

PIP Stuck-on

PIP

TCI
Stuck-off
Testable

Stuck-off
Untestable

Stuck-off
Critical

TCI
Stuck-on
Testable

Stuck-on
Untestable

Stuck-on
Unsupported

TCD
Stuck-on
Testable

Stuck-off
Unsupported

TCI
Stuck-off
Testable

PIP Stuck-off

Figure 7.15: PIP Testability Categories.

7.4.2 Routing Resources Analyzer Flow

This section explains how the PWs and PIPs are analyzed and how for each
routing component a testability category is given. Figure 7.16 shows how the RRA
categorizes the routing resources. The flow is divided into two main parts, which
are executed sequentially: the TCI Analysis and the TCD analysis. In the following,
these two analyses and their sub-phases are described.

7.4.3 Testing Circuit Independent (TCI) Analysis

In this part, the RRA categorizes the routing resources without considering the
target testing circuit of the testing approach. Therefore, the routing resources
within one AUT are just considered according to their position.

This analysis is divided into three phases: Initialization Phase, Dependency Phase,
and stuck-on Testability Phase.

Initialization Phase

In this phase, the testability of the PWs and PIPs is initialized according to the
AUT considered. More in detail, PWs are initialized according to their InWire and
the OutWire position.

170

7.4 Routing Resources Analyzer

PIPs/PWs Stuck-at and Stuck-off testability

TCI TestableUntestable Critical

TCD TestableUnsupported

TCD TestableUnsupportedUntestable Critical

Untestable Critical

Testing Circuit
Independent
(TCI) Analysis

Testing Circuit
Dependent

(TCD) Analysis

Initialization
Phase TCI
(Phase 1)

Dependency
Phase TCI
(Phase 2)

Initialization
Phase TCD
(Phase 4)

Dependency
Phase TCD
(Phase 5)

PIP Stuck-on testability

TCI stuck-on
Testable

stuck-on
Untestable

TCD stuck-on
Testable

stuck-on
Untestable

Stuck-on
Testability TCI

(Phase 3)

TCI Testable

Stuck-on
Testability TCD

(Phase 6)

Untestable Critical TCI Testable

TCD TestableUnsupportedUntestable Critical

OUTPUT

OUTPUT

TCD
Testability

Report

TCI
Testability

Report

stuck-on
Unsupported

Figure 7.16: How the routing resources area categorized in the various phases of
the RRA.

Figure 7.17 shows a simplified version of an FPGA that is partitioned into two
different areas: one static and one reconfigurable that has to be tested. In the figure,
five PWs are highlighted, where two are untestable, one critical, and two testable.

A PW is marked as:

• Untestable: if the OutWire stays in another region or all InWires stay in
another region, then, it is impossible to drive a signal within the AUT (red
PW in Figure 7.17).

• Critical: if the OutWire and the InWires are in the AUT, but there is also an

171

7 OLT(RE)2

Static Region Region Under Test

Testable
Critical
Untestable

Figure 7.17: Analysis of testability.

InWire in another region; if this physical is used an error can be propagated
in the other region (orange PW in Figure 7.17).

• Testable: if and only if the OutWire and all InWires are in the area to be tested,
then the PWs are marked as testable (green PW in Figure 7.17)

Once that all the PWs are categorized, all the PIPs are initialized as well. To
all the PIPs of the AUT is assigned the testability of the connected PWs. Since
that a PIP is always connected to two different PWs, it is probable that the two
PWs connected to the PIPs have different testability categorizes (e.g., testable and
untestable).

Therefore, three different conflicts are possible:

• Testable / Critical: the PIPs is marked as critical. The PIP is connected to a
testable and a critical PWs. Therefore, this situation is considered as a critical
case.

• Testable / Untestable: the PIPs is marked as untestable. The PIP cannot be
used because one of the PW is marked as untestable.

• Critical / Untestable: the PIPs is marked as untestable. The PIP cannot be
used because one of the PW is marked as untestable.

172

7.4 Routing Resources Analyzer

If (allInPIPuntestable == true ||
allOutPIPuntestable == true)

Critical

Untestable
Testable

If ((atLeastOneInPIPtestable == false) ||
(atLeastOneOutPIPtestable == false))

(a) Testable->Critical and Testable->Untestable change of testability of a PW.

Critical Untestable

If (allInPIPuntestable == true ||
allOutPIPuntestable == true)

(b) Critical->Untestable change of testability of a PW.

Figure 7.18: Change of testability of one PW according to its PIPs.

Dependency Phase

In the Dependency Phase, the dependency of the routing resources is analyzed. As
explained above, the PIPs are categorized after the PW categorization; in the case
of conflicts, this priority is considered: untestable/critical/testable.

A possible example can be a PW that is marked as testable, but just untestable
PIPs are then connected to it; therefore, the PW needs to be marked as untestable.

For this reason, in the Dependency Phase, for every PW the testability of the
connected PIPs is verified.

Figure 7.18 shows in which case the testability of the PW can change. Three
cases are considered:

• Testable -> Untestable: the testability of a PW changes from testable to
untestable if all the inPIPs are untestable, or all the outPIPs are untestable
(Figure 7.18a).

• Testable -> Critical: the testability of a PW changes from testable to critical if
there is no testable inPIP or no testable outPIP connected. Therefore, the PW
is marked as critical (Figure 7.18a).

• Critical -> Untestable: the testability of a PW changes from critical to untestable
if all the inPIPs are untestable, or all the outPIPs are untestable (Figure 7.18b).

It is important to mentions that, as in the Initialization Phase, once that all the
testability of the PWs is verified, the PIPs are analyzed considering the updated
testability categories of the PWs. Moreover, these two steps are cyclically executed
till no testability of the routing resources is changed.

173

7 OLT(RE)2

Stuck-on Testability Phase

In this phase, just the stuck-on testability of the PIPs is considered. As explained
in Section 7.4.1, all the PIPs that are marked as stuck-off critical and stuck-off
untestable are consequentially marked as stuck-on untestable.

For the stuck-off testable PIPs, two cases are possible:

• Stuck-on testable: considering the PWs (PWa and PWb) connected by the
PIP (PIPa). Apart from the PIPa, if PWa has at least a testable PIP and
PWb has at least a testable PIP, the PIPa is marked as stuck-on testable.

• Stuck-on untestable: if the PIP is not stuck-on testable.

7.4.4 Testing Circuit Dependent (TCD) Analysis

In the Testing Circuit Dependent Analysis part, the RRA analyses the routing
resource testability according to the capability of the utilized routing resources; the
categorization presented in Section 7.4.3 depends on the FPGA partitioning. The
testing circuits presented and developed in this work are focusing on the test of
global routing resources (i.e., the connection among the SMs). This means that the
current testing circuit can full verify and proof the effectiveness and correctness of
behavior. The testing of further routing resources (e.g., DSP and BRAM resources)
can be provided just implementing new testing circuits. With respect to the TCI
Analysis, the unsupported category is considered.

As it is depicted in Figure 7.16, the TCD Analysis is executed just after the TCI
Analysis. Moreover, it is worth noting that only testable physical wires can become
unsupported (Figure 7.19). Therefore, at the end of the computation, the untestable
and critical resources are the same as in the TCI Analysis.

The TCD Analysis is divided into three main phases: Initialization Phase TCD,
Dependency Phase TCD, and stuck-on Testability TCI.

Initialization Phase TCD

In this phase, the RRA marks the routing resources that cannot be routed by the
presented testing circuit ((e.g., DSP and BRAM resources). More in detail, in this
phase, the RRA takes in input the testable resources given by the Phase 3 (stuck-on
Testability TCI Phase) and divides them in TCD Testable and Untestable resources
(as depicted in Figure 7.16).

First of all, the algorithm categorizes the PWs. Then, the PIPs are analyzed. As
for the Initialization Phase TCI (described in Section 7.4.3), to all the PIPs of the
AUT, it is assigned the testability of the connected PWs. Since that, a PIP is always
connected to two different PWs, it is probable that the two PWs connected to the
PIP have different testability categorizes (e.g., testable and unsupported).

174

7.4 Routing Resources Analyzer

Testable Unsupported

If ((atLeastOneInPIPtestable == false) ||
(atLeastOneOutPIPtestable == false))

Figure 7.19: Change of testability of one PW according to its PIPs (TCD analysis).

The possible conflicts are: Unsupported / TCD Testable, Unsupported / Critical,
Unsupported / Untestable. In all the cases, the PIP is marked as Unsupported.

Dependency Phase TCD

In the Dependency Phase, the dependency of the routing resources is analyzed. As
explained above, the PIPs are categorized after the PW categorization, and in
the case of conflicts, the PIP is marked as unsupported. For this reason, in the
Dependency Phase, for every PW the testability of the connected PIPs is verified.

Differently from the Dependency Phase (explained in Section 7.4.3), in this phase
just one transition is possible: TCD Testable -> Unsupported (as it is shown in
Figure 7.16).

In the specific, a PW changes its state from TCD testable to Unsupported if there
is no testable inPIP or no testable outPIP connected to it. Therefore, the PIP is
marked as critical.

Stuck-on Testability Phase TCD

In this phase, just the stuck-on testability of the PIPs is considered. As for the other
untestable and critical resources, the PIPs that are marked as stuck-on Untestable
remain the same. On the contrary, the TCI stuck-on Testable PIPs can be of two
different categories:

• TCD stuck-on testable: let’s consider two PWs (PWa and PWb) connected a
PIP (PIPa). Apart from the PIPa, if PWa has at least a TCD testable PIP
and PWb has at least a TCD testable PIP, the PIPa is TCD stuck-on testable.

• TCD stuck-on untestable: if the PIP is not stuck-on testable.

7.4.5 Result Output

At the end of the computation of the RRA, the results can be presented in three
possible formats: FPGA-Edline script, text reports, and heatmap. In the following, the
formats are presented.

175

7 OLT(RE)2

Untestable

Critical

Testable

Unsupported

Virtex-4 FX12: INT_X23Y40
Total PIPs: 3312
Total Physical Wires: 418

Figure 7.20: FPGA Editor script example; screenshot taken in FPGA Editor of a
Virtex-4 FX12.

FPGA Editor Script

The RRA is capable of generating FPGA-Edline script files (see 2.3.2) to visual-
ize resources in a different color according to their testability: testable in green,
untestable in red, critical in orange and unsupported in blue.

Figure 7.20 is an FPGA Editor screenshot that represents a switch matrix of the
Virtex-4 FX12 where PWs and PIPs are highlighted: therefore, the figure visualizes
the testability of the 3312 PIPs, and the 418 PWs connected the switch matrix.

With this kind of output, the user can visualize directly the results of the RRA
directly in FPGA Editor.

Text Reports

The RRA generates two different reports as output: a Physical wires testability report
and PIPs testability report. An example of the structure of these reports is shown in
Figure 7.21a and Figure 7.21b.

Both reports are grouped in tiles. The "Tile" indicates a general component of
an FPGA (e.g., an SM or a CLB); the tile’s coordinates are indicated in the square
brackets (in the example, [49,26]).

176

7.4 Routing Resources Analyzer

Tile: Switch Matrix @ [49,26]

Wire: BEST_LOGIC_OUTS0 Testable
Wire: BYP_INT_B5 Testable
Wire: BYP_INT_B7 Testable
Wire: E2BEG6 Testable

…

Wire: LV24 Critical Base0
Wire: LV0 Critical Base1

…

Wire: LV6 Untestable Base1
Wire: LV12 Untestable Base0, Base1

…

(a) Physical wires report

Tile: Switch Matrix @ [49,26]

Critical Resources
Wire: LV0 Base1

Critical OutPIPs (18)
 E2END2 -> LV0
 E2MID1 -> LV0

…

Critical InPIPs (11)
LH0 -> E6BEG2
LH0 -> E6BEG3
…

Untestable Resources
Wire: LV12 Base0, Base1

Untestable InPIPs (10)
 LV12 -> E6BEG2
 LV12 -> E6BEG3

…

Unsupported Resources
...

(b) PIPs report

Figure 7.21: Text Report example.

The Physical wires (PWs) report lists physical wires testability of all tiles in
the area. For non-testable wires, the conflicted areas are given. For example, in
Figure 7.21a the wire LV 0 is marked as critical and indicates that the conflict
generated by one or more wires connected to the Base1 region.

The second report, PIPs testability report, gives details about the testability of
the PIPs. As it is shown in the example Figure 7.21b, for every tile the PIPs are
grouped according to their testability.

Heatmap

The heatmap is represented by a comma-separated value file (CSV). The idea of
the heatmap is to have a faster feedback of the PIP’s testability for each tile of
the region under test. Two different types of heatmaps are created: Testing Circuit
Independent (TCI) and Testing Circuit Dependent (TCD).

Figure 7.22a and Figure 7.22b provide an example of TCI heat-map and TCD
heat-map respectively. In the examples, one clock region of a Virtex-4 FX12 is
considered as AUT. Every cell of the tables represents one FPGA’s tile (e.g., INT,
CLB, DSP). The numbers in figures represent the percentage of testable PIPs within
the corresponding tile.

Figure 7.22a represents the maximum achievable values of testability according
to the partitioning of the FPGA; therefore, this heatmap is Testing Circuit Indepen-

177

7 OLT(RE)2

dent. It can be noticed that larger values appear in the middle of the region, while
numbers decrease as the tiles get closer to the edges.

Figure 7.22b shows a Testing Circuit Dependent heatmap. The values of this
heatmap represent the percentage of testable resources on the testable resources of
the TCI report. Therefore, this heatmap highlight which are the routing resources
that cannot be tested by the presented testing circuits. For example, for DPS tiles,
the values within the table are 0. This is because, as explained in Section 7.2, the
presented testing circuit is not able to test the routing resources of a DSP. Therefore,
all the routing resources of a DSP are set as “unsupported”. As mention in the
Section 7.4.4, this limitation is due to the time required to implement new testing
circuits. At the moment, just one testing circuit has been utilized for the proof of
concepts.

Region
Under Test

Virtex-4 FX12

(a) Test Circuit Independent heat-map

Region
Under Test

Virtex-4 FX12

(b) Test Circuit Dependent heat-map

Figure 7.22: Heatmap example. The picture shows a screenshot taken in FPGA
Editor of a Virtex-4 FX12.

178

7.5 The U-TURN Place-and-Route Algorithm

7.5 The U-TURN Place-and-Route Algorithm

The U-TURN algorithm represents the core of the OLT(RE)2 testing approach. The
basic idea is that the previously presented test circuit (see Section 7.2), composed
of a TPG, an ORA, and eight nets under test is placed once, and then the N-UTs are
routed multiple times (through multiple iterations of the U-TURN algorithm). By
changing the routing of the N-UTs (and leaving unaltered the placement of TPG
and ORA), it is possible to test different resources in the AUT.

Therefore, each run of U-TURN generates a placed-and-routed test circuit that
covers a given subset of the routing resources available in the AUT. In particular,
after a set of dedicated experiments, it has been discovered a technological con-
straint on the Xilinx architectures: each single net (and thus also each NUT of the
testing circuit) can occupy (and test) no more than 100 PIPs, and thus no more
than 101 physical wires.

The constraint of 100 PIPs has been chosen as a result of experiments concluded
on different Xilinx devices and families. When utilizing too many PIPs in one net,
the signal on the particular net shows accumulated jitter and slew rate degradation,
eventually resulting in failing circuit functionality. The effect depends on device
family, temperature, supply voltage, and process variations. Choosing a limit of
100 PIPs guarantees a stable test circuit operation across all device families and
environment conditions.

It is fundamental to point out that U-TURN relies on the database of architectural
resources described in Section 5.2.1. The information stored in the database is
used actually to drive the U-TURN algorithm. In the following, the TPG and ORA
placement algorithm and the N-UTs routing algorithm area introduced.

7.5.1 The TPG & ORA Placer

As presented in Section 2.2.2, in a typical reconfigurable system, an FPGA is
partitioned in a static region and a reconfigurable region. The reconfigurable
region is the area where functional modules can be dynamically placed. The static
region is the area of the FPGA where all the structures required to support the
dynamic reconfiguration of the reconfigurable region are placed; thus, the content
of the static region is fixed.

OLT(RE)2 focuses on faults in the routing resources of the reconfigurable region
(since it relies on DPR), while the static region has to be tested with dedicated
approaches. Figure 7.23a shows an example of an FPGA partitioning where the
right-bottom dark-gray box represents the AUT.

Algorithm 10 presents the pseudo-code of the U-TURN placement algorithm.
The first step that the algorithm performs is the division of the AUT into N non-
overlapping sub-areas under test (line 3 of Algorithm 10). The testing procedure
focuses on one of the obtained sub-areas at a time. When testing a given sub-area,

179

7 OLT(RE)2

Static Region Reconf. Region

Area
Under
Test

(a) The Area Under Test.

Static Region Reconf. Region
TPG

&
ORA

Sub Area
Under
Test

(b) Partitioning of the Area Under Test
and placement of TPG and ORA.

Figure 7.23: Testing partitioning [178].

1: Function U-TURN()
2: testedResources← ∅
3: divide the Area Under Test into n sub-areas under test
4: for each Sub-Area Under Test ai do
5: Place TPG and ORA
6: for each PIP piput in ai do
7: testingCircuit← ∅
8: for each output tpgj of the TPG do
9: smut ← getSwitchMatrix(piput)

10: route tpgj to pipUT according to the targeted fault
11: nut← N-UT_Router(piput, 0)
12: testedResources.add(getAllUsedResources(nut))
13: route nut to input j of the ORA
14: testingCircuit.add(nut)
15: end for
16: save testingCircuit
17: end for
18: end for
19: EndFunction

Algorithm 10: The overall placement and routing algorithm [\cite {Cozzib}].

TPG and ORA are placed in one of the remaining sub-areas under test (line 5 of
Algorithm 10); in this way TPG and ORA do not occupy resources belonging to
the sub Area Under Test (sub-AUT), that can therefore be entirely tested.

Moreover, it is worth noting that TPG and ORA are always placed in one of the
sub-AUT (and thus always into the AUT itself): in this way it is ensured that the

180

7.5 The U-TURN Place-and-Route Algorithm

testing procedure does not interfere with the functioning of the modules placed
outside the AUT. Figure 7.23b shows an example of partitioning of the AUT and
placements of TPG and ORA.

After placing TPG and ORA (which remain in the same position for the test of
an entire sub-area), the U-TURN algorithm has to be iterated multiple times in
to generate all the test circuits needed to cover the sub-AUT entirely. For each
test circuit, each output of the TPG has to be routed through the AUT (line 10
Algorithm 10) and then to an input of the ORA (line 13 Algorithm 10).

Although each test circuit covers multiple resources, the generation process
of a test circuit focuses on one PIP, the PIP under test (PIP-UT, piput at line 6 of
Algorithm 10). The connection between the output of the TPG and the starting
point of the N-UT depends on which fault the N-UT is meant for (as discussed in
the previous section).

7.5.2 The N-UTs Router

Once the output of the TPG has been routed to the PIP-UT (line 10 of Algorithm 10),
the recursive N-UT_Router algorithm is run to build the N-UT (line 11 of Algo-
rithm 10). The pseudo-code of N-UT_Router is shown in Algorithm 11.

The N-UT exits from the switch matrix smut through PIP piput, and it reaches
an SM smk through PW pwj and it eventually occupies one of the PIPs reachable
from pwj (the PIP pipx). All the resources that the N-UT occupies are stored in a
temporary solution as well as marked as already visited (line 11 of Algorithm 11).

Each time the N-UT comes back to the switch matrix smut the checkSolutions()
procedure is invoked (line 14 of Algorithm 11). This procedure checks whether
the temporary solution occupies more yet untested resources than the current
best solution. If yes, the temporary solution becomes the best solutions, while no
exchange is performed otherwise.

Given the technological constraint discussed above, the procedure is repeated
until the N-UT occupies 100 PIPs. Finally, when the N-UT construction process is
completed, the N-UT is routed from the PIP-UT to one of the inputs of the ORA
(line 13 of Algorithm 10).

As previously said, even if each N-UT targets one PIP, after being routed, the
N-UT covers multiple physical wires and PIPs. Thus, the test circuit generation
procedure needs always to keep track of the already covered PIPs (line 12 of
Algorithm 10) to avoid considering these as PIP-UT of the following N-UTs, and
thus saving computational time.

181

7 OLT(RE)2

1: Function N-UT_Router(piput, nUsedPIPs)
2: if nUsedPIPs > 100 then
3: return
4: end if
5: get the physical wire pwj reachable from piput
6: for each PIP pipx not yet visited and reachable from pwj do
7: get the physical wire pwy reachable from pipx
8: if pwy has not yet been visited then
9: add pipx and pwy to the temporary solution

10: set pipx and pwy as visited
11: if pipx belongs to smut then
12: checkSolutions()
13: end if
14: N-UT_Router(pipx, nUsedPIPs+1)
15: remove pipx and pwy from the temporary solution
16: end if
17: end for
18: return
19: EndFunction

Algorithm 11: The N-UT creation algorithm [178].

7.6 Results

Three sets of experiments have been performed to evaluate the correctness, effec-
tiveness, and efficiency of the proposed testing approach.

First of all, the functionality of the designed basic test circuit has been verified
(without considering the U-TURN place-and-route algorithm) to prove that the
testing circuit can detect all the possible faults that may occur in the N-UTs. The
second test regards the actual fault coverage that OLT(RE)2 can assess. This test
analyzes the coverage achieved with the generated placed-and-routed test circuits
as well as its efficiency in terms of time required to generate the test circuits and of
the size of the test circuits. The third test analyzes the run-time efficiency of the
approach in terms of time needed to transfer the test circuits to the device under
test and then run them.

7.6.1 Test Circuit Validation

This experiment validates the implemented basic test circuit. More in detail, the
focus of this test has been assessing whether the circuit is actually able to detect all
the faults that may occur in the nets connecting the TPG and the ORA.

182

7.6 Results

Table 7.1: Area occupation of the designed test circuit for several FPGA fami-
lies [178].

Family
#LUTs

#FFs #slices
logic memory shift reg.

Virtex-4 35 3 1 11 24
Virtex-5 25 3 1 11 18
Virtex-6 25 3 1 10 20
Spartan-6 33 3 1 13 23

In order to do so, it has been emulated the occurrence of faults in the NUTs. In
more detail, the XDL file of the testing circuit has been manipulated to reproduce
the effect of faults. In this way, it is possible to inject stuck-on/off faults by
activating/removing PIPs in the XDL file; similarly, it is possible to emulate
stuck-at 0/1 by forcing the output of specific LUTs in the TPG to 0/1. Finally,
the XDL file is translated into a “faulty” bitstream and downloaded in the FPGA
device.

The fundamental result of this preliminary validation is that the designed test
circuit can detect 100 % of the faults occurring in the N-UTs. Additionally, 100 %
of the faults occurring in the routing resources occupied by the Internal Reset
Generator and by the Distributed RAM are detected. The great majority (about
97 %) of the faults occurring in the routing resources occupied by the Internal
Clock Generator component are also detected.

The only critical sub-component of the test circuit is the Start-checking Circuit:
when faults occur in the routing resources occupied by this sub-component, the
test fails (because the Start-checking Circuit does not recognize the start of the test)
even if the N-UTs are not affected by faults. More details about the validation of
the testing circuit have been presented in [186].

In Table 7.1 the amount of resources (number of LUTs used for logic, DRAM
and shift-registers and number of used flip-flops as well as the total number of
occupied slices) occupied by the test circuit (i.e., TPG and ORA) for the four
currently supported FPGA families (Spartan-6 and Virtex-4, Virtex-5 and Virtex-6)
are summarized. The area occupation regarding percentage of used resources
actually depends on the specific device: for example, the area occupation on the
smallest Virtex-4 device, the FX12 (counting 5472 slices) is only 0.43 %; of course,
the percentage of occupied area in larger devices is even smaller. Thus, as expected,
the proposed testing technique could also be applied in case the majority of the
FPGA area is already occupied.

183

7 OLT(RE)2

Table 7.2: TCD routing testable resource of the tested FPGAs. The selected AUT
has the dimension of one Clock Region [178].

Family Device #PW stuck-at #PIP stuck-off #PIP stuck-on

Virtex-4
FX12 38,784 444,476 427,792
FX100 111,179 1,317,736 1,270,955

Virtex-5
LX20T 79,425 941,323 900,205
LX330T 283,021 3,453,305 3,303,288

Virtex-6
CX130T 331,684 4,130,930 3,973,033
LX760 937,398 11,728,174 11,253,950

Spartan-6
LX9 25,504 268,364 255,940
LX150T 121,804 1,384,587 1,325,959

7.6.2 Design-time Performance Analysis

This analysis aims at assessing the performance of the design-time test circuit
generation. The routing resource fault coverage is investigated for various FPGA
families and devices, first evaluate the effectiveness of the approach (called Effec-
tiveness Analysis). The time needed to place-and-route all the required test circuits
is evaluated as well. This test is provided first for various FPGA families and de-
vices, and then for various sizes of the AUT on the same device, to assess scalability
of the approach (called Efficiency Analysis).

Experimental Setup

The design-time test generation flow has been executed on eight devices belonging
to four different families (Spartan-6 and Virtex-4, Virtex-5 and Virtex-6). In this
way, it is shown that OLT(RE)2 can be utilized in a wide range of FPGAs families.
In the effectiveness analysis, one clock region has been considered as AUT. When
focusing on scalability, a Virtex-4 XC4VFX12 device has been utilized; they are
considered areas of one clock region up to four clock regions as AUT.

The U-TURN algorithm has been launched on a PC equipped with an Intel Xeon
Processor W3565 with 24 GB of RAM. After the generation of the test circuits by
U-TURN, it has been evaluated the achieved fault coverage by measuring the
amount of the routing resources of the AUT occupied by the whole set of test
circuits.

Effectiveness Analysis

The fault coverage achieved by OLT(RE)2 for several device families and models
have been measured; Table 7.2 and Table 7.3 reports the results of this experiment.

184

7.6 Results

Table 7.3: Effectiveness Analysis, Fault Coverage. The percentages show the
covered resources with respect to the testable routing resources of Ta-
ble 7.2 [178].

Family Device #PW sa #PIP stuck-off #PIP stuck-on

Virtex-4
FX12 38,784 (100.00 %) 439,074 (98.78 %) 427.646 (99,97 %)
FX100 111,179 (100.00 %) 1,305,778 (99.09 %) 1,248,119 (98.20 %)

Virtex-5
LX20T 79,225 (99.75 %) 929,720 (98.77 %) 887,975(98.64 %)
LX330T 282,821 (99.93 %) 3,304,783 (95.70 %) 3,199,157 (96.85 %)

Virtex-6
CX130T 329,262 (99.27 %) 3,905,723 (94.55 %) 3,866,526 (97.32 %)
LX760 932,617 (99.49 %) 10,819,240 (92.25 %) 10,648,488 (94.62 %)

Spartan-6
LX9 25,242 (98.97 %) 255,771 (95.30 %) 243,091 (94.98 %)
LX150T 120,594 (99.01 %) 1,318,006 (95.19 %) 1,274,644 (96.13 %)

For each FPGA family, two devices have been considered: a small- and a large-size
one.

First, Table 7.2 reports the number of testable stuck-at faults on physical wires
and the number of possible stuck-off and stuck-on faults on PIPs; these values have
been extracted after the RRA step, where all the routing resources are categorized.
Then, Table 7.3 reports the achieved coverage for the stuck-at, stuck-off, and
stuck-on faults, respectively.

It can be observed that the proposed testing technique always achieves a high
fault coverage (more than 98 % in most cases) both for stuck-at faults on physical
wires and for stuck-off and stuck-on faults on PIPs. It is worth noting that these
good results are achieved for all the device families, which are different regarding
routing architectures. This demonstrates that the proposed technique is actually
independent of the specific FPGA architecture as well.

Efficiency Analysis

Table 7.4 reports about the efficiency of the proposed approach. More in detail,
for each device the table shows the number of test circuits generated to achieve
the fault coverage values reported in Table 7.2, as well as the total size (in MB)
of the test bitstream suite and the size of the test bitstream suite after bitstream
compression and, finally, the time required at design time to generate them.

A first consideration that can be drawn from the results shown in Table 7.4
is that the time required at design time to generate the test bitstream suite is
reasonable, ranging from about 3 hours for the smallest device up to about 16 days
for the largest one; the generation of the test bitstreams has to be performed only
once at design-time. Moreover, since the test circuit and the overall approach are

185

7 OLT(RE)2

Table 7.4: Summary of the performance of OLT(RE)2 [178].

Family Device # Testing
circuits

Bitstream
Size

Bitstream
Size
(Compr.)

Time

Virtex-4
FX12 8,058 249 MB 31 MB 12h:52m
FX100 38,245 1623 MB 149 MB 78h:25m

Virtex-5
LX20T 19,562 1217 MB 96 MB 47h:22m
LX330T 34,081 1555 MB 150 MB 87h:46m

Virtex-6
CX130T 41,053 5418 MB 264 MB 95h:27m
LX760 120,568 7364 MB 719 MB 382h:17m

Spartan-6
LX9 4,179 98 MB 10 MB 3h:40m
LX150T 16,328 914 MB 83 MB 40h:48m

application-independent, it is worth noting that, after having been generated for
a given FPGA device, the test bitstreams can be used for several reconfigurable
systems using the same device without any modification.

Looking at the size of the test bitstreams it can be seen that the “raw” size is large,
ranging from hundreds of MBs up to some GBs. This may represent a limitation
of the proposed testing technique, since, as previously discussed, test bitstreams
have to either be stored in an on-board persistent memory or received “just in time”
from the ground station.

This problem can largely be alleviated by using a compression algorithm to
reduce the size of the bitstream. Even if bitstream compression is not in the scope
of the presented work, it has been investigated how much the total size of the
bitstream could be reduced. It can be observed that the overall suite size it has been
reduced to about 10 % of the original size with a simple run of the ZIP algorithm.

It is important to mention that the current test flow can be integrated with new
test circuits with the goal of performing a more fine-grained fault diagnosis in case
a fault is detected at run-time, thus making possible to re-use partially faulty areas.
In addition, this can allow having the possibility to place more testing circuits at
the same time, reducing the number of reconfiguration required for a full test.

Scalability Analysis

This experiment assesses the scalability of OLT(RE)2. Multiple tests have been
executed utilizing a Virtex-4 device in which the size of the AUT has been increased
from 1 clock region up to 4 clock regions (i.e., half of the entire device).

Table 7.5 and Table 7.6 report the results of this scalability analysis experiment.
More in detail, Table 7.5 reports the size of the AUT in terms of number of clock re-

186

7.6 Results

Table 7.5: TCD routing testable resource of for different size of AUT. This test has
been executed on an XC4VFX12 device [178].

Area Under Test #PW stuck-at #PIPs stuck-off #PIPs stuck-on

1 clock region 38,784 444,476 427,792
2 clock region 83,510 1,013,107 978,481
3 clock region 127,948 1,575,888 1,523,548
4 clock region 396,382 2,120,036 2,050,807

Table 7.6: Coverage of the testable routing resources. The percentages show the
covered resources with respect to the testable routing resources of table
(a). This test has been executed on an XC4VFX12 device [178].

Area Under Test stuck-at stuck-off stuck-on

1 clock region 38,784 (100.00 %) 439,074 (98.78 %) 427,646 (99.97 %)
2 clock region 83,510 (100.00 %) 1,000,594 (98.76 %) 976,606 (99.81 %)
3 clock region 127,948 (100.00 %) 1,558,411 (98.89 %) 1,520,071 (99.77 %)
4 clock region 396,382 (100.00 %) 2,098,496 (98.98 %) 2,046,229 (99.78 %)

gions, the number of stuck-at faults on physical wires and the number of stuck-off
and stuck-on faults on PIPs, respectively; then, Table 7.6 reports the achieved fault
coverage values for stuck-at, stuck-off and stuck-on faults, respectively. It can be
observed that the effectiveness of the proposed approach in achieving high fault
coverage values scales well with respect to the size of the Area Under Test. In all
cases, more than 98 % of faults are covered by the test bitstreams.

Table 7.7 reports the size of the AUT in terms of number of clock regions (first
column), number of test circuits generated to achieve the fault coverage values
reported in Table 7.6 as well as the total size (in MB) of the test bitstream suite and
the size of the test bitstream suite after bitstream compression (third and fourth
columns, respectively) and, finally, the time required at design time to generate
them.

Again, it can be observed that the proposed approach scales well both test
bitstreams size and test generation time with respect to the size of the AUT. These
tests show that OLT(RE)2 can be effectively and efficiently used for a wide range of
device families and that it does not suffer from the increase in the size of the AUT.

187

7 OLT(RE)2

Table 7.7: Analysis of the scalability of OLT(RE)2 on the Virtex-4 XC4VFX12 device
(number and size of the test bitstreams and generation time) [178].

AUT #testCirc. B. Size B. Size (Compr.) Time

1 clk reg. 8,058 249 MB 31 MB 12h:52m
2 clk reg. 19,014 999 MB 88 MB 34h:56m
3 clk reg. 30,552 1863 MB 148 MB 72h:07m
4 clk reg. 41,011 2912 MB 215 MB 102h:18m

7.6.3 Run-time Performance Analysis

The run-time performance of the testing technique has been evaluated on the
DRPM to demonstrate that the proposed testing approach can be applied in a
real-world scenario on a complete reconfigurable system (see Chapter 4). This
test considers both the time needed to transfer the test bitstreams to the reconfig-
urable system and the time required to execute the entire test suite by partially
reconfiguring the FPGA under test.

DRPM as Validation Platform

The data processing modules (see Section 4.1.3) host a Xilinx Virtex-4 FX100 FPGA,
which provides DPR capability. This processing module is used for the validation
process of the OLT(RE)2 flow. The overall test diagram is shown in Figure 7.24.
One of the key components is the self-hosting reconfiguration controller (SHRC),
which interfaces the internal configuration access port (ICAP) and the FrameECC
controller in the FPGA. Therefore, the SHRC is used to perform dynamic partial
reconfiguration internally and to readback the configuration of the FPGA. A Mi-
croBlaze CPU controls SHRC and initiates internal transfers from/to the DDR2
memory. The FPGA has been partitioned into two main regions: a static region
and a reconfigurable region. Within the static region, the main components are the
communication module, the SHRC, and the MicroBlaze. The reconfigurable region
is the target area of the test (the AUT). Given its complexity and completeness, the
DRPM represents the perfect run-time platform for this kind of experiment.

The test is executed as follows: (i) the test bitstreams are sent from a host PC to
the DDR2-RAM of the target systems; (ii) the MicroBlaze is triggered and executes
partial dynamic reconfigurations in order to exhaustively place all the test circuits
on the Area Under Test; (iii) the results of the execution of each test circuit are
readback from the DRAM. Finally, when all the test circuits have been executed, a
report is sent to the host PC.

188

7.6 Results

DDR2-
RAMFPGA (Virtex4 FX100)

 Control Unit
(MicroBlaze)

Communication
Module

Self-Host Reconf.
Controller

Reconfigurable
Region

Area
Under
Test

Testing
Circuit

Testing
bitstreams

Test
Report

Figure 7.24: The architecture of the DRPM reconfigurable module [178].

Run-time Results

The execution of each test circuit on the DRPM took 30.281 ms, while the analysis
of the results produced by each test took 1.373ms. Thus, the execution of the
entire test set (38,245 test circuits) on the DRPM required about 20 minutes. The
number of the testing circuit is given by the design time performance analysis
on the Virtex-4 FX100 (Section 7.6.2), which is the device on board of the DRPM
communication module. More details about the run-time tests are provided in [98].

This number is acceptable if it is taken into account that a reconfigurable system
employed in a space mission does not execute frequent reconfigurations. More-
over, it can be estimated the time required to transfer the entire test suite from a
hypothetical ground station to a hypothetical satellite hosting the DRPM: consider-
ing the bandwidth of 306 Mbps of the FOBS (described in 3.3.2) and considering
the total size of the compressed suite reported in Table 7.4 (162 MB) it can be
estimated a total transfer time of about 4 seconds, that, again is reasonable for a
space mission.

189

7 OLT(RE)2

7.7 Summary

This chapter ha described OLT(RE)2, a testing technique meant to be applied on-
line and on-demand to detect permanent faults in reconfigurable systems. The
proposed technique is particularly interesting for two main reasons: on the one
hand, it can help designers in making the use of state-of-the-art high-performance
commercial-grade FPGAs viable for space applications; on the other hand, it can
help in low-cost application scenarios where high-end radiation-hardened devices
are not affordable.

Experimental results have shown that the proposed approach may be applied to
a large set of FPGA families and models, allowing the great majority of faults both
in the physical wire (PW) and PIPs to be detected. More specifically, OLT(RE)2

have shown that is possible to generate, place, and route the test circuits needed
to detect on average more than 99 % of the physical wires and on average about
97 % of the programmable interconnection points of a large arbitrary region of
the FPGA in a reasonable time. Moreover, the test can be run on the target device
without interfering the functional behavior of the system.

Furthermore, OLT(RE)2 has demonstrated to be highly scalable both in terms of
execution time and of number and size of the test circuits when increasing the size
of the Area Under Tests (AUT). Finally, the run-time experiment carried out on the
DRPM demonstrated that the time required to transfer and apply the test circuits
makes the proposed approach viable for real-world space applications.

190

8 Conclusion and Outlook
This thesis has focused on reconfigurable architectures, which have become key
platforms for many applications. A new prototyping environment (i.e., DRPM)
and tools (i.e., INDRA and DHHarMa) have been introduced to investigate the
use of Dynamic Partial Reconfiguration (DPR) in different use cases.

The presented DRPM is a complete working platform to study the DPR in space
missions. A detailed comparison with the existing prototyping platform as well
as in-flight platforms has been provided. Differently to the other platforms, the
DRPM allows advanced prototyping of space mission scenarios based on DPR,
thanks to the integration of modern reconfigurable SRAM-based FPGAs with
different avionic interfaces (e.g., CAN, SpaceWire, SpaceFibre).

In particular, this thesis has presented a novel communication interface, which
manages the communication among the different processors of the DRPM: the
Heterogeneous Multi Processor Communication Interface (HMPCI) protocol. This
communication interface has been developed to be general and to be adapt to
different multi-processors systems, thanks to its easy to use implementation. Fur-
thermore, HMPCI has small latency and low memory footprint compared to the
state-of-art multi-processor communication protocols (i.e., MMPI, MCAPI, MSG,
SoC-MPI).

The missing DPR functionalities on the commercial and academic FPGA tool-
chains have been filled with the introduction of the INtegrated Design flow for
Reconfigurable Architectures 2.0 (INDRA 2.0). This novel flow allows creating a
full working DPR environment that supports bitstream relocation. It generates
a configurable bitstream starting from an HDL description of a design. INDRA
2.0 flow supports the modern Xilinx FPGAs families Virtex-4, Virtex-5, Virtex-6,
Spartan-6, 7 Series, and Zynq.

This thesis has provided details about the creation of an FPGA PW database,
which has been generated extracting the information from the Xilinx commercial
tools. The PW database is parted of the Datastructure for Xilinx FPGAs (DXF)
database, which has enabled the creation of a flow that is compatible with the
standard Xilinx FPGA tools (i.e., Xilinx ISE).

One important tool developed for INDRA 2.0 is Design flow for Homoge-
neous Hard Macros (DHHarMa). In particular, this thesis presents the router of
DHHarMa, introducing new concepts and algorithms that have allowed generating
a homogeneous routing of a specific design (e.g., a communication infrastructure).
Benchmarks have shown that the router can homogeneously route a communica-

191

8 Conclusion and Outlook

tion infrastructure utilizing between 1% and 31% more routing resources than the
Xilinx router, which provides just inhomogeneous solutions.

INDRA 2.0 has been used to generate the DPR environment of the DRPM. This
has demonstrated the effectiveness of the presented approach and has allowed
having a direct use of the INDRA 2.0 flow.

Finally, the thesis has investigated the permanent faults that can occur on the
SRAM-based FPGA devices. The On-Line Testing of Permanent Radiation Effects
in Reconfigurable System (OLT(RE)2) has been introduced; a testing technique
meant to be applied on-line and on-demand to detect permanent faults in recon-
figurable systems. Parts of the OLT(RE)2 flow are derived from the INDRA 2.0
flow, i.e., the Datastructure for Xilinx FPGAs (DXF) database, which provides a
full open-source description of the modern Xilinx FPGAs. OLT(RE)2 is compatible
with the Virtex-4, Virtex-5, Virtex-6, and Spartan-6 FPGAs.

The proposed techniques can help designers in making the use of high perfor-
mance unreliable commercial FPGAs viable for space applications. Furthermore,
it can help in low-cost application scenarios where high-end radiation-hardened
devices are not affordable.

This thesis focuses on the description of the overall flow of OLT(RE)2, the
categorization of the routing resources to be tested (i.e., the Routing Resources
Analyzer (RRA)), and the place and route algorithm of the testing circuits (i.e., the
U-TURN algorithm).

Experimental results of OLT(RE)2 have shown that the proposed approach may
be applied to a large set of FPGA families and models. It is possible to generate,
place, and route the test circuits needed to detect on average more than 99 % of the
physical wires and on average about 97 % of the programmable interconnection
points of a large arbitrary region of the FPGA in a reasonable time.

Furthermore, OLT(RE)2 has been validated on the DRPM, creating a full test-
benchmark flow that verifies on-line that the routing resources of the reconfig-
urable regions are permanent fault-free. In addition, permanent faults have been
emulated to verify the effectiveness of the testing approach. It is worth to mention
that the OLT(RE)2 tool flow has been inserted in the European Cooperation for
Space Standardization (ECSS) book [36], which is a handbook that summarizes
all the available testing techniques for radiation effects mitigation in ASICs and
FPGAs.

8.1 Outlook

The DRPM can be easily adapted to future architectures by integrating additional
daughterboards with new FPGAs or with additional new interfaces. For example,
this has been the case of the SpaceFibre interface, which has been implemented
after that the platform was already developed.

192

8.1 Outlook

The developed DB-SPACE can be easily adapt to the new version of the Raptor-
X64, the Raptor-XPress. This new modular board comes with further processing
modules, i.e., DB-V5 and DB-V7, which embed a Virtex-5 FX100T and a Virtex-7
X690T respectively.

The INDRA 2.0 flow is compatible with the standard Xilinx ISE flow and can
support a wide range of modern FPGAs. Xilinx has decided to create a new
standard tool, Vivado, for latest and future FPGAs. Nevertheless, DHHarMa
can be adapted to Vivado, which again leaks of the creation of DPR designs that
supports bitstream relocation.

Xilinx ISE has an intermediate language, the Xilinx Desing Language (XDL),
which allows creating a custom design that is compatible with the standard tools.
At the same way, Vivado comes with a different intermediate language, the Tool
Command Language (Tcl). Therefore, the DXF database and the DHHarMa output
need to be adapt to this new scripting language.

OLT(RE)2 has demonstrated to be highly scalable both regarding execution time
and number and size of the test circuits when increasing the size of the area to be
tested. Additionally, the flow can handle new kinds of new test circuits with the
goal of performing a more fine-grained fault diagnosis in case a fault is detected at
run-time, thus making possible to re-use partially faulty areas.

193

List of Figures

2.1 The general architecture of a Xilinx FPGA. 9
2.2 A summary of the FPGA resources terminology. A screenshot of

FPGA Editor [128] has been utilized. 10
2.3 Programmable Interconnection Point (PIP) representation. 12
2.4 Bitstream structure. 13
2.5 Xilinx FPGA PWs types. The light-blue boxes represent SMs, and

the red lines represent the PWs. 15
2.6 Application Specific Modular Block (ASMBL) architecture. 16
2.7 FPGA Partitioning using PR Regions with Reconfigurable Tile [61]. 26
2.8 Typical Communication Infrastructures in a PR Region scenario [61]. 29
2.9 Communication Infrastructure using Embedded Macros [61]. . . . 30
2.10 Xilinx ISE Design Flow. 31
2.11 Xilinx ISE Design Implementation. 32
2.12 An example of an XDL-file of a design for a Xilinx Virtex-6 FPGA [184]. 35
2.13 Radiation Effects classification [121]. 37
2.14 Permanent fault effect cases. 42
2.15 Routing condition without error. The figure represents a simplified

version of an SM with four inWires and four outwires [5]. 43
2.16 Permanent fault effect cases [5]. 44

3.1 INDRA flow overview [45]. 53
3.2 X-CMG routing capabilities for slice based routing [44]. 54
3.3 FPGA Testing Techniques. 65
3.4 Application-Independent Testing Techniques. 65

4.1 RAPTOR-X64 baseboard with one DB-SPACE and two DB-V4 mod-
ules placed [180]. 72

4.2 Block diagram of the DRPM, highlight the structure of one process-
ing module and one communication module [180]. 73

4.3 DB-SPACE communication module components [180]. 74
4.4 Software architecture of the DRPM [30]. 78
4.5 HMPCI structure on a generic node [174]. 81
4.6 Examples of just-once, periodic and jumbo interactions. 83
4.7 Structure of the packets transmitted using the proposed communi-

cation interface [174]. 85

195

List of Figures

4.8 Overall functioning of the proposed communication interface [174]. 86
4.9 HMPCI implementation on the DRPM. 87
4.10 Avionics devices utilized with the DRPM. 93
4.11 GUI of the demonstrator [183]. 95

5.1 Overview of the INDRA 2.0 Flow. In yellow are highlighted the
developed tools. 99

5.2 DHHarMa design flow for generating homogeneous hard macros [184].101
5.3 Structure of the Xilinx-based front-end for the design flow. 103
5.4 Structure of the DHHarMa back-end [184]. 104
5.5 Example of the partitioning of a Xilinx Virtex-6 FPGA with nine tiles

of four different types. A communication macro is placed respecting
the homogeneity constraints [184]. 105

5.6 Comparison between inhomogeneous (Xilinx router) and homoge-
neous (DHHarMa router) routing of a hard macro. 106

5.7 DHHarMa flow modifications of the XDL [184]. 107
5.8 FPGA Editor screenshot [128] of a Virtex-6 LX75t FPGA. It shows

how a PW can be picked, and the PW information is visualized. . . 110
5.9 FPGA Editor screenshot [128] of a Virtex-6 LX75t FPGA. It shows

how a tile can be picked, and its information is visualized. 112
5.10 PW database creation flow. 113
5.11 PW database organization. 117
5.12 Time required for the creation of PhysicalWire DB. 119
5.13 PSRerouter Flow. 120
5.14 Example of a rerouting script. 122

6.1 Connection structure in Virtex-4, and Virtex-5; FPGA Editor screen-
shots. 127

6.2 Virtex-4 local PWs types; FPGA Editor screenshots. 128
6.3 Virtex-5 local lines types; FPGA Editor screenshots. 129
6.4 Connection structure in Virtex-6, Spartan-6, 7 Series, and Zynq;

FPGA Editor screenshots. 130
6.5 Virtex-6 local PWs types; FPGA Editor screenshots. 131
6.6 Connection structure in 7 Series; FPGA Editor screenshots. 132
6.7 Direction constraints of the Router [176]. 135
6.8 Example of XDL net Spitting [176]. 136
6.9 Example of right and wrong path to respect homogeneity [176]. . . 136
6.10 Design flow of the homogeneous router. 138
6.11 Example of the homogeneous routing of a design with 9 Nets. The

Figure shows how the routing is built during the homogeneous
routing process. 139

6.12 Routing Experiment Flow. 147

196

List of Figures

6.13 Homogeneous communication macro utilized in the V4FX100 FPGA
of the DRPM system. The communication macro is a FullMaster
32bit Macro with ten regions (5x2). All the PR Region are of the
same type. 152

6.14 Schematic of the delay line example [184]. 153
6.15 Comparison of a homogeneous and an inhomogeneous hard macro

for the example of a delay line circuit with 40 regions [184]. 153

7.1 The overall OLT(RE)2 CAD flow [178]. 157
7.2 The design-time test generation sub-flow [178]. 158
7.3 The run-time test execution sub-flow [178]. 159
7.4 High-level representation of a test circuit [178]. 160
7.5 Structure of the 8-NUT test circuit [178]. 160
7.6 The detailed structure of the 8-NUT testing circuit [178]. 161
7.7 An example switch matrix [178]. 162
7.8 An example routing between TPG and ORA for stuck-at/off test-

ing [178]. 163
7.9 An example routing between TPG and ORA for stuck-on testing [178].163
7.10 Cyclic Oriented Graph of the FPGA routing resources. 164
7.11 Testing stuck-at-0/1 in the graph representation. 164
7.12 Testing stuck-off in the graph representation. 166
7.13 Testing stuck-off in the graph representation. 166
7.14 PW Testability Categories. 168
7.15 PIP Testability Categories. 170
7.16 How the routing resources area categorized in the various phases

of the RRA. 171
7.17 Analysis of testability. 172
7.18 Change of testability of one PW according to its PIPs. 173
7.19 Change of testability of one PW according to its PIPs (TCD analysis).175
7.20 FPGA Editor script example; screenshot taken in FPGA Editor of a

Virtex-4 FX12. 176
7.21 Text Report example. 177
7.22 Heatmap example. The picture shows a screenshot taken in FPGA

Editor of a Virtex-4 FX12. 178
7.23 Testing partitioning [178]. 180
7.24 The architecture of the DRPM reconfigurable module [178]. 189

197

List of Tables

2.1 Clock Region (CR) properties of Xilinx FPGAs. 11
2.2 Comparison of Xilinx FPGAs. 18
2.3 Comparison of UltraScale and UltraScale+ families FPGAs [162,

pp. 1,26][141, pp. 18,19][141, pp. 878,879]. 21
2.4 Sensitiveness of Xilinx FPGAs to SEUs and TIDs. 41
2.5 The relation between a permanent fault and its effect [5]. 45

3.1 Comparison of CAD tools based on Xilinx intermediate languages. 50
3.2 Comparison of DPR tools. 57
3.3 Comparison of DPR platforms for space applications. 64
3.4 Testing approaches comparison. 68

4.1 Memory resources of the DRPM system. 77
4.2 HMPCI footprint on the DRPM. 89
4.3 Bandwidth/Throughput results for the presented interface [174]. . 90
4.4 Latency results for the presented interface. 91
4.5 Performance comparison [174]. 91

5.1 Results of the PW database for different FPGAs. 118

6.1 Comparison of the Xilinx FPGAs routing properties. This table
highlights the routing resources for each INT of the considered
FPGA family. 126

6.2 DHHarMa initialization step results for the tested communication
infrastructures. 148

6.3 Routing benchmarks on the Virtex-4 family device. The simple
example has been executed on the V4LX15 device. The FullSlave
and the FullMaster examples have been executed on the V4FX100
device. 149

6.4 Routing benchmarks on the 7 Series family. The examples have
been routed for the A7100T FPGA, except for the FullSlave 5x2 and
the FullMaster 5x2 examples where the K325T device has been used. 149

6.5 Comparison of homogeneous and inhomogeneous communication
macro of the DRPM. 151

199

List of Tables

6.6 Comparison of homogeneous and inhomogeneous Delay Line de-
sign, executed on a V4LX15 [184]. 153

7.1 Area occupation of the designed test circuit for several FPGA fami-
lies [178]. 183

7.2 TCD routing testable resource of the tested FPGAs. The selected
AUT has the dimension of one Clock Region [178]. 184

7.3 Effectiveness Analysis, Fault Coverage. The percentages show the
covered resources with respect to the testable routing resources of
Table 7.2 [178]. 185

7.4 Summary of the performance of OLT(RE)2 [178]. 186
7.5 TCD routing testable resource of for different size of AUT. This test

has been executed on an XC4VFX12 device [178]. 187
7.6 Coverage of the testable routing resources. The percentages show

the covered resources with respect to the testable routing resources
of table (a). This test has been executed on an XC4VFX12 device [178].187

7.7 Analysis of the scalability of OLT(RE)2 on the Virtex-4 XC4VFX12
device (number and size of the test bitstreams and generation
time) [178]. 188

200

Acronyms

AMBA Advanced Microcontroller Bus Architecture.
API Application Programming Interface.
ARTEMIS Advanced Responsive Tactically Effective Mili-

tary Imaging Spectrometer.
ASIC Application Specific Integrated Circuit.
ASMBLTM Application Specific Modular Block.
AUT Area Under Tests.

BIST built-in self-test.
Block RAM Block Random Access Memory.
BPI Byte-wide Peripheral Interface.

CLB Configurable Logic Block.
COTS Commercial Off-the-Shelf.
CPLD Complex Programmable Logic Device.
CSV Comma-separated values.

DCM Digital Clock Manager.
DHHarMa Design flow for Homogeneous Hard Macros.
DIRT DIrected Routing Constraints.
DMA Direct Memory Access.
DPCU Dynamic Processing Control Unit.
DPR Dynamic Partial Reconfiguration.
DRPM Dynamic Reconfigurable Processing Module.
DSP Digital Signal Processor.
DXF Datastructure for Xilinx FPGAs.

EAPR Early Access Partial Reconfiguration.

201

Acronyms

ECSS European Cooperation for Space Standardization.
ECU Electronic Control Unit.
EDAC Error Detection and Correction.
ESA European Space Agency.

FAR Frame Address Register.
FOBS Fraunhofer On-Board Processor.
FPGA Field Programmable Gate Array.
FTECMU Fault Tolerance and Error Correction Manage-

ment Unit.

GPIO General Purpose Input Output.
GRACE Gravity Recovery And Climate Experiment.
GUI Graphical User Interface.

HInterNetSet Homogeneous intranet set.
HIntraNetSet Homogeneous internet set.
HMPCI Heterogeneous Multi Processor Communication

Interface.

ICAP Internal Configuration Access Port.
IDDFS Iterative Deepening Depth-First Search algo-

rithm.
INDRA INtegrated Design flow for Reconfigurable Archi-

tectures.
INDRA 2.0 INtegrated Design flow for Reconfigurable Archi-

tectures 2.0.
INT Interconnection Matrix.
IOB Input Output Block.
IoT Internet of things.
ISE Integrated Software Environment.
ISS International Space Station.

JTAG Joint Test Action Group.

202

Acronyms

LET Linear Energy Transfer.
LLOC Logical System Lines Of Code.
LMBT Link Macros Between Tiles.
LUT Look Up Table.

MER Mars Exploration Rover Mission.
MPI Message Passing Interface.
MRO Mars Reconnaissance Orbiter.

N-UT Net Under Test.
NCD Netlist Circuit Description.
NGC Native Generic Circuit.
NGD Xilinx Native Generic Database.
NMC Xilinx logical description of the design and macro

library.
NUT Net Under Test.

OLT(RE)2 On-Line Testing of Permanent Radiation Effects
in Reconfigurable System.

ORA Output Response Analyzer.
OTERA Online Test Strategies for Reliable Reconfigurable

Architectures.

P&R placed and routed.
PAR Place and Route.
PHI DPU Polarimetric and Helioseismic Imager Data Pro-

cessing Unit.
PIP Programmable Interconnection Point.
PIP-UT PIP Under Test.
PLB Processor Local Bus.
PR Partial Reconfiguration.
PR Module Partial Reconfigurable Module.
PR Region Partial Reconfigurable Region.
PR System Partial Reconfigurable System.
PR Tile Reconfigurable Tile.

203

Acronyms

PSRerouter Post-Synthesis Rerouter.
PW physical wire.

R3TOS A Reliable Reconfigurable Real-Time Operating
System.

RA-RCC Responsive Avionics Reconfigurable Computer.
rad Radiation Absorbed Dose.
rad-hard radiation-hardened.
RHBD rad-hard by design.
RHBS Radiation Hardened By Software.
RPC Remote Procedure Call.
RRA Routing Resources Analyzer.
RRMU Resource and Reconfiguration Management Unit.
RTEMS Real-Time Operating System for Multiprocessor

Systems.

SCARS Scalable Self-Configurable Architecture for
Reusable Space Systems.

SEE Single Event Effect.
SEFI Single Event Functional Interrupt.
SEL Single-Event Latch-up.
SET Single Event Transition.
SEU Single Event Upset.
SHRC Self Hosting Reconfiguration Controller.
SM switch matrix.
SPI Serial Peripheral Interface.
SPWRTC SpaceWire Remote Terminal Controller.
SRAM Static Random Access Memory.
sub-AUT sub Area Under Test.

TCD Testing Circuit Dependent.
TCI Testing Circuit Independent.
Tcl Tool Command Language.
TID Total Ionizing Dose.
TMR Triple Modular Redundancy.

204

Acronyms

TORC Tools for Open Reconfigurable Computing.
TPG Test Pattern Generator.

UCF Xilinx User Constraints File.

VHDL Very High Speed Integrated Circuit Hardware
Description Language.

X-CMG XDL-based Communication Macro Generator.
XDL Xilinx Desing Language.
XRTC Xilinx Radiation Test Consortium.

205

Bibliography
[1] M. Abramovici, J. M. Emmert, and C. E. Stroud. “Roving STARs: An inte-

grated approach to on-line testing, diagnosis, and fault tolerance for FPGAs
in adaptive computing systems”. In: Proceedings - NASA/DoD Conference
on Evolvable Hardware, EH (2001), pp. 73–92. DOI: 10.1109/EH.2001.
937949.

[2] P. Abusaidi, M. Fernandez, and P. Abusaidi. Virtex-6 FPGA Routing Opti-
mization Design Techniques. Tech. rep. 2010, pp. 1–9. URL: http://www.
xilinx.com/support/documentation/white_papers/wp381_
V6_Routing_Optimization.pdf.

[3] AEROFLEX GAISLER AB. SPWRTC Development Unit. Tech. rep. 2008,
pp. 1–47. URL: http://www.gaisler.com/doc/GR-SPWRTC-DEV_
User_Manual.pdf.

[4] G. Allen, G. Swift, and C. Carmichael. Virtex-4 VQ static SEU characterization
summary. Tech. rep. 2008. URL: http://trs-new.jpl.nasa.gov/
dspace/handle/2014/40768.

[5] N. Battezzati, L. Sterpone, and M. Violante. Reconfigurable field programmable
gate arrays for mission-critical applications. Springer, 2011, p. 220. DOI: 10.
1007/978-1-4419-7595-9.

[6] L. Bauer, C. Braun, M. E. Imhof, M. A. Kochte, E. Schneider, H. Zhang,
J. Henkel, and H.-J. Wunderlich. “Test Strategies for Reliable Runtime
Reconfigurable Architectures”. In: IEEE Transactions on Computers 62.8 (Aug.
2013), pp. 1494–1507. DOI: 10.1109/TC.2013.53.

[7] R. C. Baumann. “Radiation-induced soft errors in advanced semiconductor
technologies”. In: IEEE Transactions on Device and Materials Reliability 5.3
(Sept. 2005), pp. 305–315. DOI: 10.1109/TDMR.2005.853449.

[8] C. Beckhoff, D. Koch, and J. Torresen. “The Xilinx Design Language (XDL):
Tutorial and Use Cases”. In: Reconfigurable Communication-centric Systems-
on-Chip (ReCoSoC), 2011 6th International Workshop on Xdl (2011), pp. 1–8.
DOI: 10.1109/ReCoSoC.2011.5981545.

[9] C. Beckhoff, D. Koch, and J. Torresen. “Go Ahead: A Partial Reconfigu-
ration Framework”. In: 2012 IEEE 20th International Symposium on Field-
Programmable Custom Computing Machines. 2012, pp. 37–44. DOI: 10.1109/
FCCM.2012.17.

207

http://dx.doi.org/10.1109/EH.2001.937949
http://dx.doi.org/10.1109/EH.2001.937949
http://www.xilinx.com/support/documentation/white_papers/wp381_V6_Routing_Optimization.pdf
http://www.xilinx.com/support/documentation/white_papers/wp381_V6_Routing_Optimization.pdf
http://www.xilinx.com/support/documentation/white_papers/wp381_V6_Routing_Optimization.pdf
http://www.gaisler.com/doc/GR-SPWRTC-DEV_User_Manual.pdf
http://www.gaisler.com/doc/GR-SPWRTC-DEV_User_Manual.pdf
http://trs-new.jpl.nasa.gov/dspace/handle/2014/40768
http://trs-new.jpl.nasa.gov/dspace/handle/2014/40768
http://dx.doi.org/10.1007/978-1-4419-7595-9
http://dx.doi.org/10.1007/978-1-4419-7595-9
http://dx.doi.org/10.1109/TC.2013.53
http://dx.doi.org/10.1109/TDMR.2005.853449
http://dx.doi.org/10.1109/ReCoSoC.2011.5981545
http://dx.doi.org/10.1109/FCCM.2012.17
http://dx.doi.org/10.1109/FCCM.2012.17

Bibliography

[10] M. Bellato, P. Bernardi, D. Bortolato, A. Candelori, M. Ceschia, M. Violante,
A. Paccagnella, M. Rebaudengo, M. S. Reorda, and P. Zambolin. “Evaluating
the effects of SEUs affecting the configuration memory of an SRAM-based
FPGA”. In: Design, Automation and Test in Europe Conference and Exhibition,
2004. Proceedings. Vol. 1. 2004, 584–589 Vol.1. DOI: 10.1109/DATE.2004.
1268908.

[11] C. Bernardeschi, L. Cassano, M. G. C. a. Cimino, and A. Domenici. “GABES:
A genetic algorithm based environment for SEU testing in SRAM-FPGAs”.
In: Journal of Systems Architecture 59.10 (2013), pp. 1243–1254. DOI: 10.
1016/j.sysarc.2013.10.006.

[12] V. Betz, J. Rose, and A. Marquardt. Architecture and CAD for Deep-Submicron
FPGAs. Kluwer Academic Publishers, 1999, p. 23. DOI: 10.1007/978-1-
4615-5145-4.

[13] V. Betz and J. Rose. “Cluster-based logic blocks for FPGAs: Area-efficiency
vs. input sharing and size”. In: Custom Integrated Circuits Conference, 1997.,
Proceedings of the IEEE 1997. 1997, pp. 551–554. DOI: 10.1109/CICC.1997.
606687.

[14] V. Betz and J. Rose. “VPR: A New Packing, Placement and Routing Tool for
FPGA Research”. In: Field-Programmable Logic and Applications. Vol. 1304.
1997, pp. 1–10. DOI: 10.1007/3-540-63465-7_226.

[15] D. Bhatia. Field-Programmable Gate Arrays. 1996. DOI: 10.1155/1996/
87608.

[16] Bielefeld University. RAPTOR Family, Modular Rapid Prototyping. URL: h
ttp://www.ks.cit-ec.uni-bielefeld.de/projects/raptor-
family.html.

[17] B. Blodget, C. Bobda, M. Huebner, and A. Niyonkuru. “Partial and Dynam-
ically Reconfiguration of Xilinx Virtex-II FPGAs”. In: Field Programmable
Logic and Application. Springer, 2004, pp. 801–810. DOI: 10.1007/978-3-
540-30117-2_81.

[18] F. Brosser, E. Milh, V. Geijer, and P. Larsson-Edefors. “Assessing Scrubbing
Techniques for Xilinx SRAM-based FPGAs in Space Applications”. In: 2014
International Conference on Field-Programmable Technology (FPT) (Dec. 2014),
pp. 2–5. DOI: 10.1109/FPT.2014.7082803.

[19] S. Brown, J. Rose, and Z. Vranesic. “A detailed router for field-programmable
gate arrays”. In: 1990 IEEE International Conference on Computer-Aided De-
sign. Digest of Technical Papers. IEEE Comput. Soc. Press, pp. 382–385. DOI:
10.1109/ICCAD.1990.129931.

208

http://dx.doi.org/10.1109/DATE.2004.1268908
http://dx.doi.org/10.1109/DATE.2004.1268908
http://dx.doi.org/10.1016/j.sysarc.2013.10.006
http://dx.doi.org/10.1016/j.sysarc.2013.10.006
http://dx.doi.org/10.1007/978-1-4615-5145-4
http://dx.doi.org/10.1007/978-1-4615-5145-4
http://dx.doi.org/10.1109/CICC.1997.606687
http://dx.doi.org/10.1109/CICC.1997.606687
http://dx.doi.org/10.1007/3-540-63465-7_226
http://dx.doi.org/10.1155/1996/87608
http://dx.doi.org/10.1155/1996/87608
http://www.ks.cit-ec.uni-bielefeld.de/projects/raptor-family.html
http://www.ks.cit-ec.uni-bielefeld.de/projects/raptor-family.html
http://www.ks.cit-ec.uni-bielefeld.de/projects/raptor-family.html
http://dx.doi.org/10.1007/978-3-540-30117-2_81
http://dx.doi.org/10.1007/978-3-540-30117-2_81
http://dx.doi.org/10.1109/FPT.2014.7082803
http://dx.doi.org/10.1109/ICCAD.1990.129931

Bibliography

[20] F. Bubenhagen, B. Fiethe, T. Lange, H. Michalik, and H. Michel. “Reconfig-
urable platforms for Data Processing on scientific space instruments”. In:
2013 NASA/ESA Conference on Adaptive Hardware and Systems (AHS-2013).
2013, pp. 63–70. DOI: 10.1109/AHS.2013.6604227.

[21] J. Burns, A. Donlin, J. Hogg, S. Singh, and M. De Wit. “A dynamic reconfigu-
ration run-time system”. In: Proceedings. The 5th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines Cat. No.97TB100186). IEEE
Comput. Soc, 1997, pp. 66–75. DOI: 10.1109/FPGA.1997.624606.

[22] D. Chen, J. Cong, and P. Pan. “FPGA Design Automation: A Survey”.
In: Electronic Design Automation 1.3 (2006), pp. 195–330. DOI: 10.1561/
1000000003.

[23] X. Cheng and Xu. “Heterogeneous Multi-processor SoC: An Emerging
Paradigm of Embedded System Design and Its Challenges”. In: Proceed-
ings of the Second international conference on Embedded Software and Systems.
Springer-Verlag, 2005, pp. 3–3. DOI: 10.1007/11599555_3.

[24] A. Cilardo. “New Techniques and Tools for Application-Dependent Testing
of FPGA-Based Components”. In: IEEE Transactions on Industrial Informatics
11.1 (Feb. 2015), pp. 94–103. DOI: 10.1109/TII.2014.2370532.

[25] C. Claus, Z. Bin, M. Hubner, C. Schmutzler, W. Stechele, and J. Becker. “An
XDL-based busmacro generator for customizable communication interfaces
for dynamically and partially reconfigurable systems”. In: Workshop on
Reconfigurable Computing Education at ISVLSI. 2007. URL: http://xpu
ters.informatik.uni-kl.de/RCeducation07/busmacro_RC_
education_claus.pdf.

[26] J.-P. Colinge. Silicon-on-Insulator Technology: Materials to VLSI. Springer US,
1997, p. 272. ISBN: 1475726112.

[27] K. Compton and S. Hauck. “Reconfigurable computing: a survey of systems
and software”. In: ACM Comput. Surv. 34.2 (2002), pp. 171–210. DOI: http:
//doi.acm.org/10.1145/508352.508353.

[28] E. Cooperation and F. O. R. S. Standardization. “Space engineering: Com-
munications guidelines”. In: System April (2004), pp. 1–174.

[29] J. D. Couch. “Applications of TORC : An Open Toolkit for Reconfigurable
Computing by”. PhD thesis. 2011.

[30] D. Cozzi, J. Hagemeyer, S. Korf, D. Jungewelter, and M. Porrmann. “DRPM
User Manual v6.1”. In: (2014), p. 283.

[31] S. Craw. Manhattan Distance. U.S. National Institute of Standards and Tech-
nology. 2010. DOI: 10.1007/978-0-387-30164-8_506.

209

http://dx.doi.org/10.1109/AHS.2013.6604227
http://dx.doi.org/10.1109/FPGA.1997.624606
http://dx.doi.org/10.1561/1000000003
http://dx.doi.org/10.1561/1000000003
http://dx.doi.org/10.1007/11599555_3
http://dx.doi.org/10.1109/TII.2014.2370532
http://xputers.informatik.uni-kl.de/RCeducation07/busmacro_RC_education_claus.pdf
http://xputers.informatik.uni-kl.de/RCeducation07/busmacro_RC_education_claus.pdf
http://xputers.informatik.uni-kl.de/RCeducation07/busmacro_RC_education_claus.pdf
http://dx.doi.org/http://doi.acm.org/10.1145/508352.508353
http://dx.doi.org/http://doi.acm.org/10.1145/508352.508353
http://dx.doi.org/10.1007/978-0-387-30164-8_506

Bibliography

[32] M. Darvishi, S. Member, Y. Audet, Y. Blaquière, C. Thibeault, and S. Member.
“Circuit Level Modeling of Extra Combinational Delays in SRAM FPGAs
Due to Transient Ionizing Radiation”. In: IEEE Nuclear and Space Radiation
Effects Conference (2014).

[33] S. Dhingra, D. Milton, and C. E. Stroud. “BIST for Logic and Memory
Resources in Virtex-4 FPGAs”. In: Proc. IEEE North Atlantic Test Workship.
2006.

[34] D. Dye. “Partial Reconfiguration of Xilinx FPGAs Using ISE Design Suite”.
2012. URL: http://www.xilinx.com/support/documentation/
white_papers/wp374_Partial_Reconfig_Xilinx_FPGAs.pdf.

[35] ESA. Solar Orbiter. URL: http://sci.esa.int/solar-orbiter/.

[36] ESA. Space product assurance - Techniques for radiation effects mitigation in
ASICs and FPGAs handbook. Ed. by R. ESA-ESTEC and S. Division. ECSS
Secretariat ESA-ESTEC, 2016. URL: http://microelectronics.esa.
int/asic/ECSS-Q-HB-60-02A1September2016.pdf.

[37] European Space Agency. DRPM: Dynamically Reconfigurable Processing
Module. URL: http://www.esa.int/Our_Activities/Space_
Engineering_Technology/Onboard_Data_Processing/DRPM_-
_Dynamically_Reconfigurable_Processing_Module.

[38] R. Ferguson and R. Tate. “Use of field programmable gate array technol-
ogy in future space avionics”. In: Proceedings of the 24th Digital Avionics
Systems Conference (DASC 2005). Vol. 2. 2005. DOI: 10.1109/DASC.2005.
1563418.

[39] T. FLATLEY. “Advanced Hybrid On-Board Science Data Processor - Space-
Cube 2.0”. In: Earth Science Technology Forum (2010). URL: https://esto.
nasa.gov/conferences/estf2011/papers/Flatley_ESTF2011.
pdf.

[40] L. Fossati and J. Ilstad. “The future of embedded systems at ESA: Towards
adaptability and reconfigurability”. In: NASA/ESA Conference on Adaptive
Hardware and Systems (AHS). 2011, pp. 113–120. DOI: 10.1109/AHS.2011.
5963924.

[41] V.-i. Fpgas, N. J. Steiner, P. Athanas, M. Jones, and C. Patterson. A Standalone
Wire Database for Routing and Tracing in Xilinx A Standalone Wire Database
for Routing and Tracing in Xilinx Virtex , Virtex-E , and Virtex-II FPGAs. 2002.
URL: %7Bhttp://scholar.lib.vt.edu/theses/available/etd-
09112002-143335/unrestricted/thesis.pdf%7D.

210

http://www.xilinx.com/support/documentation/white_papers/wp374_Partial_Reconfig_Xilinx_FPGAs.pdf
http://www.xilinx.com/support/documentation/white_papers/wp374_Partial_Reconfig_Xilinx_FPGAs.pdf
http://sci.esa.int/solar-orbiter/
http://microelectronics.esa.int/asic/ECSS-Q-HB-60-02A1September2016.pdf
http://microelectronics.esa.int/asic/ECSS-Q-HB-60-02A1September2016.pdf
http://www.esa.int/Our_Activities/Space_Engineering_Technology/Onboard_Data_Processing/DRPM_-_Dynamically_Reconfigurable_Processing_Module
http://www.esa.int/Our_Activities/Space_Engineering_Technology/Onboard_Data_Processing/DRPM_-_Dynamically_Reconfigurable_Processing_Module
http://www.esa.int/Our_Activities/Space_Engineering_Technology/Onboard_Data_Processing/DRPM_-_Dynamically_Reconfigurable_Processing_Module
http://dx.doi.org/10.1109/DASC.2005.1563418
http://dx.doi.org/10.1109/DASC.2005.1563418
https://esto.nasa.gov/conferences/estf2011/papers/Flatley_ESTF2011.pdf
https://esto.nasa.gov/conferences/estf2011/papers/Flatley_ESTF2011.pdf
https://esto.nasa.gov/conferences/estf2011/papers/Flatley_ESTF2011.pdf
http://dx.doi.org/10.1109/AHS.2011.5963924
http://dx.doi.org/10.1109/AHS.2011.5963924
%7Bhttp://scholar.lib.vt.edu/theses/available/etd-09112002-143335/unrestricted/thesis.pdf%7D
%7Bhttp://scholar.lib.vt.edu/theses/available/etd-09112002-143335/unrestricted/thesis.pdf%7D

Bibliography

[42] F. Fu, S. Sun, X. Hu, J. Song, J. Wang, and M. Yu. “MMPI: A flexible and
efficient multiprocessor message passing interface for NoC-based MPSoC”.
In: 23rd IEEE International SOC Conference. 2010, pp. 359–362. DOI: 10.
1109/SOCC.2010.5784695.

[43] J. Gebelein. An approach to system-wide fault tolerance for FPGAs. 2009. URL:
https://twiki.cern.ch/twiki/pub/Sandbox/RadHardFPGA/
WFIFT_P11_Gebelein.pdf.

[44] J. Hagemeyer, B. Kettelhoit, M. Koester, and M. Porrmann. “Design of
Homogeneous Communication Infrastructures for Partially Reconfigurable
FPGAs”. In: Proc. of the Int. Conf. on Engineering of Reconfigurable Systems
and Algorithms (ERSA). CSREA Press, 2007.

[45] J. Hagemeyer, B. Kettelhoit, M. Koester, and M. Porrmann. “INDRA -
Integrated Design Flow for Reconfigurable Architectures”. In: International
Journal of Embedded Systems. 2007, pp. 1–2.

[46] J. Holt, A. Agarwal, S. Brehmer, M. Domeika, P. Griffin, and F. Schirrmeister.
“Software Standards for the Multicore Era”. In: IEEE Micro 29.3 (2009),
pp. 40–51. DOI: 10.1109/MM.2009.48.

[47] K.-Y. Hsieh, Y.-C. Liu, P.-W. Wu, S.-W. Chang, and J. K. Lee. “Enabling
Streaming Remoting on Embedded Dual-Core Processors”. In: 2008 37th
International Conference on Parallel Processing. 2008, pp. 35–42. DOI: 10.
1109/ICPP.2008.32.

[48] W. Huang, F. Meyer, N. Park, and F. Lombardi. “Testing memory modules
in SRAM-based configurable FPGAs”. In: Proceedings. International Workshop
on Memory Technology, Design and Testing (Cat. NO.97TB100159). 1997, pp. 79–
86. DOI: 10.1109/MTDT.1997.619399.

[49] M. Hubner, K. Paulsson, and J. Becker. “Parallel and Flexible Multipro-
cessor System-On-Chip for Adaptive Automotive Applications based on
Xilinx MicroBlaze Soft-Cores”. In: 19th IEEE International Parallel and Dis-
tributed Processing Symposium. Vol. 00. c. IEEE. 2005, 149a–149a. DOI: 10.
1109/IPDPS.2005.325.

[50] K. Huey. Xilinx Virtex-5QV Update and Space Roadmap. Tech. rep. 2016. URL:
https://indico.esa.int/indico/event/130/session/11/
contribution/54/material/slides/0.pdf.

[51] E. Hung, F. Eslami, and S. J. E. Wilton. “Escaping the Academic Sandbox:
Realizing VPR Circuits on Xilinx Devices”. In: 2013 IEEE 21st Annual In-
ternational Symposium on Field-Programmable Custom Computing Machines.
IEEE, 2013, pp. 45–52. DOI: 10.1109/FCCM.2013.40.

211

http://dx.doi.org/10.1109/SOCC.2010.5784695
http://dx.doi.org/10.1109/SOCC.2010.5784695
https://twiki.cern.ch/twiki/pub/Sandbox/RadHardFPGA/WFIFT_P11_Gebelein.pdf
https://twiki.cern.ch/twiki/pub/Sandbox/RadHardFPGA/WFIFT_P11_Gebelein.pdf
http://dx.doi.org/10.1109/MM.2009.48
http://dx.doi.org/10.1109/ICPP.2008.32
http://dx.doi.org/10.1109/ICPP.2008.32
http://dx.doi.org/10.1109/MTDT.1997.619399
http://dx.doi.org/10.1109/IPDPS.2005.325
http://dx.doi.org/10.1109/IPDPS.2005.325
https://indico.esa.int/indico/event/130/session/11/contribution/54/material/slides/0.pdf
https://indico.esa.int/indico/event/130/session/11/contribution/54/material/slides/0.pdf
http://dx.doi.org/10.1109/FCCM.2013.40

Bibliography

[52] S. H. Hung, W. L. Yang, and C. H. Tu. “Designing and implementing a
portable, efficient inter-core communication scheme for embedded mul-
ticore platforms”. In: Proceedings - 16th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications, RTCSA 2010.
2010, pp. 303–308. DOI: 10.1109/RTCSA.2010.17.

[53] B. J. Hussein and G. Swift. Single-Event Upsets. Tech. rep. Xilinx, 2015, pp. 1–
11. URL: http://www.xilinx.com/support/documentation/
white_papers/wp395-Mitigating-SEUs.pdf.

[54] INDRA. URL: https://sourceforge.net/projects/indrafpga/

[55] H. N. Institute. RAPTOR Modular Rapid Prototyping. URL: https://www.
hni.uni- paderborn.de/fileadmin/Fachgruppen/Entwurf_
paralleler_Systeme/Lehre/RAPTOR_en.pdf.

[56] X. Iturbe, K. Benkrid, A. T. Erdogan, T. Arslan, M. Azkarate, I. Martinez, and
A. Perez. “R3TOS: A reliable reconfigurable real-time operating system”. In:
2010 NASA/ESA Conference on Adaptive Hardware and Systems. IEEE, 2010,
pp. 99–104. DOI: 10.1109/AHS.2010.5546274.

[57] A. M. Jallad and L. B. Mohammad. “Comparative analysis of middleware
for multi-processor system-on-chip (MPSoC)”. In: 2013 9th International
Conference on Innovations in Information Technology (IIT). 2013, pp. 113–117.
DOI: 10.1109/Innovations.2013.6544403.

[58] H. Kalte, G. Lee, M. Porrmann, and U. Ruckert. “REPLICA: A Bitstream Ma-
nipulation Filter for Module Relocation in Partial Reconfigurable Systems”.
In: Parallel and Distributed Processing Symposium, 2005. Proceedings. 19th IEEE
International. 2005, 151b–151b. DOI: 10.1109/IPDPS.2005.380.

[59] H. Kalte, M. Porrmann, and U. Rückert. “A Prototyping Platform for Dy-
namically Reconfigurable System on Chip Designs”. In: Proceedings of the
IEEE Workshop Heterogeneous Reconfigurable Systems on Chip. 2002.

[60] D. Koch, C. Beckhoff, and J. Teich. “RECOBUS-BUILDER - A NOVEL
TOOL AND TECHNIQUE TO BUILD STATICALLY AND DYNAMICALLY
RECONFIGURABLE SYSTEMS FOR FPGAS Dirk Koch , Christian Beckhoff
, and J Â¨ Hardware / Software Co-Design , Department of Computer
Science”. In: Fpl. 2008, pp. 119–124. ISBN: 9781424419616.

[61] M. Koester, W. Luk, J. Hagemeyer, M. Porrmann, and U. Rückert. “Design
optimizations for tiled partially reconfigurable systems”. In: IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems 19.6 (June 2011), pp. 1048–
1061. DOI: 10.1109/TVLSI.2010.2044902.

212

http://dx.doi.org/10.1109/RTCSA.2010.17
http://www.xilinx.com/support/documentation/white_papers/wp395-Mitigating-SEUs.pdf
http://www.xilinx.com/support/documentation/white_papers/wp395-Mitigating-SEUs.pdf
https://sourceforge.net/projects/indrafpga/
https://www.hni.uni-paderborn.de/fileadmin/Fachgruppen/Entwurf_paralleler_Systeme/Lehre/RAPTOR_en.pdf
https://www.hni.uni-paderborn.de/fileadmin/Fachgruppen/Entwurf_paralleler_Systeme/Lehre/RAPTOR_en.pdf
https://www.hni.uni-paderborn.de/fileadmin/Fachgruppen/Entwurf_paralleler_Systeme/Lehre/RAPTOR_en.pdf
http://dx.doi.org/10.1109/AHS.2010.5546274
http://dx.doi.org/10.1109/Innovations.2013.6544403
http://dx.doi.org/10.1109/IPDPS.2005.380
http://dx.doi.org/10.1109/TVLSI.2010.2044902

Bibliography

[62] A. Krasnov, A. Schultz, J. Wawrzynek, G. Gibeling, and P.-Y. Droz. “RAMP
Blue: A Message-Passing Manycore System in FPGAs”. In: Field Programmable
Logic and Applications, 2007. FPL ’07. International Conference on. 2007, pp. 54–
61. DOI: 10.1109/FPL.2007.4380625.

[63] R. V. Kshirsagar and S. Sharma. “Difference-based partial reconfiguration”.
In: International Journal of Advances in Engineering & Technology. Vol. 1. 2.
2011, pp. 194–197. URL: http://topics-dat175-anand-tauseef.
googlecode.com/svn-history/r78/trunk/papers/rtr/differ
encebasedreconfiguration.pdf.

[64] I. Kuon, R. Tessier, and J. Rose. “FPGA Architecture: Survey and Chal-
lenges”. In: Foundations and Trends® in Electronic Design Automation 2.2
(2007), pp. 135–253. DOI: 10.1561/1000000005.

[65] C. Lavin, M. Padilla, S. Ghosh, B. Nelson, B. Hutchings, and M. Wirthlin.
“Using Hard Macros to Reduce FPGA Compilation Time”. In: Field Pro-
grammable Logic and Applications (FPL), 2010 International Conference on. 2010,
pp. 438–441. DOI: 10.1109/FPL.2010.90.

[66] C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson, and B. Hutch-
ings. “RapidSmith : Do-It-Yourself CAD Tools for Xilinx FPGAs”. In: Lan-
guage. Xdl. 2011, pp. 349–355. DOI: 10.1109/FPL.2011.69.

[67] C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson, B. Hutchings,
and M. Wirthlin. RAPID SMITH: Technical Report and Documentation. Tech.
rep. 2014. URL: http://rapidsmith.sourceforge.net/doc/Tech
ReportAndDocumentation.pdf?format=raw.

[68] T. Lead, G. Allen, R. E. Group, D. Sheldon, T. Staff, and J. Propulsion.
“Europa Clipper Comprehensive FPGA Risk Reduction”. In: (2014). URL:
https://solarsystem.nasa.gov/europa/docs/EuropaClipper
ComprehensiveFPGARiskReduction_smg_gra_(c).pdf.

[69] G. G. Lemieux, G. G. Lemieux, and S. D. Brown. “A Detailed Routing
Algorithm for Allocating Wire Segments in Field-Programmable Gate Ar-
rays”. In: IN PROC. ACM/SIGDA PHYSICAL DESIGN WORKSHOP, LAKE
ARROWHEAD, CA (1993), pp. 215–226. URL: http://citeseerx.ist.
psu.edu/viewdoc/summary?doi=10.1.1.47.1538.

[70] A. Lesea, S. Drimer, J. Fabula, C. Carmichael, and P. Alfke. “The rosetta
experiment: atmospheric soft error rate testing in differing technology
FPGAs”. In: IEEE Transactions on Device and Materials Reliability 5.3 (Sept.
2005), pp. 317–328. DOI: 10.1109/TDMR.2005.854207.

[71] A. Lesea. Continuing Experiments of Atmospheric Neutron Effects on Deep
Submicron Integrated Circuits. Tech. rep. Xilinx, 2011, pp. 1–8. DOI: Xilinx
WP286(v1.1).

213

http://dx.doi.org/10.1109/FPL.2007.4380625
http://topics-dat175-anand-tauseef.googlecode.com/svn-history/r78/trunk/papers/rtr/differencebasedreconfiguration.pdf
http://topics-dat175-anand-tauseef.googlecode.com/svn-history/r78/trunk/papers/rtr/differencebasedreconfiguration.pdf
http://topics-dat175-anand-tauseef.googlecode.com/svn-history/r78/trunk/papers/rtr/differencebasedreconfiguration.pdf
http://dx.doi.org/10.1561/1000000005
http://dx.doi.org/10.1109/FPL.2010.90
http://dx.doi.org/10.1109/FPL.2011.69
http://rapidsmith.sourceforge.net/doc/TechReportAndDocumentation.pdf?format=raw
http://rapidsmith.sourceforge.net/doc/TechReportAndDocumentation.pdf?format=raw
https://solarsystem.nasa.gov/europa/docs/EuropaClipperComprehensiveFPGARiskReduction_smg_gra_(c).pdf
https://solarsystem.nasa.gov/europa/docs/EuropaClipperComprehensiveFPGARiskReduction_smg_gra_(c).pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.47.1538
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.47.1538
http://dx.doi.org/10.1109/TDMR.2005.854207
http://dx.doi.org/Xilinx WP286 (v1.1)
http://dx.doi.org/Xilinx WP286 (v1.1)

Bibliography

[72] J.-j. Li, S.-c. Wang, P.-c. Hsu, P.-y. Chen, and J. K. Lee. “A Multi-core Soft-
ware API for Embedded MPSoC Environments”. In: Methods and Tools of
Parallel Programming Multicomputers. Ed. by C.-H. Hsu and V. Malyshkin.
Vol. 6083. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2010, pp. 40–50. ISBN: 978-3-642-14821-7.

[73] P. Mahr, C. Lörchner, H. Ishebabi, and C. Bobda. “SoC-MPI: A Flexible
Message Passing Library for Multiprocessor Systems-on-Chips”. In: 2008 In-
ternational Conference on Reconfigurable Computing and FPGAs. 2008, pp. 187–
192. DOI: 10.1109/ReConFig.2008.27.

[74] T. Marescaux, A. Bartic, D. Verkest, S. Vernalde, and R. Lauwereins. “In-
terconnection Networks Enable Fine-Grain Dynamic Multi-Tasking on
FPGAs”. In: Proc. 12th Conf. on Field-Programmable Logic and Applications
(FPL). FPL ’02. Springer-Verlag, 2002, pp. 795–805. DOI: 10.1007/3-540-
46117-5_82.

[75] L. Matilainen, E. Salminen, T. D. Hämäläinen, and M. Hämäläinen. “Mul-
ticore Communications API (MCAPI) implementation on an FPGA mul-
tiprocessor”. In: Proceedings - 2011 International Conference on Embedded
Computer Systems: Architectures, Modeling and Simulation, IC-SAMOS 2011.
2011, pp. 286–293. DOI: 10.1109/SAMOS.2011.6045473.

[76] A. S. McEwen, E. M. Eliason, J. W. Bergstrom, N. T. Bridges, C. J. Hansen,
W. A. Delamere, J. A. Grant, V. C. Gulick, K. E. Herkenhoff, L. Keszthelyi,
R. L. Kirk, M. T. Mellon, et al. “Mars reconnaissance orbiter’s high res-
olution imaging science experiment (HiRISE)”. In: Journal of Geophysical
Research E: Planets 112.5 (2007), pp. 1–40. DOI: 10.1029/2005JE002605.

[77] L. McMurchie and C. Ebeling. “PathFinder”. In: Proceedings of the 1995 ACM
third international symposium on Field-programmable gate arrays - FPGA ’95.
ACM Press, 1995, pp. 111–117. DOI: 10.1145/201310.201328.

[78] H. Michel, F. Bubenhagen, B. Fiethe, H. Michalik, B. Osterloh, W. Sullivan,
A. Wishart, J. Ilstad, and S. A. Habinc. “AMBA to SoCWire network on Chip
bridge as a backbone for a Dynamic Reconfigurable Processing unit”. In:
2011 NASA/ESA Conference on Adaptive Hardware and Systems (AHS). IEEE,
2011, pp. 227–233. DOI: 10.1109/AHS.2011.5963941.

[79] S. Miura, T. Hanawa, T. Boku, and M. Sato. “XMCAPI: Inter-core communi-
cation interface on multi-chip embedded systems”. In: Proceedings - 2011
IFIP 9th International Conference on Embedded and Ubiquitous Computing, EUC
2011. 2011, pp. 397–402. DOI: 10.1109/EUC.2011.78.

[80] N. Montealegre, D. Merodio, A. Fernandez, and P. Armbruster. “In-flight
reconfigurable FPGA-based space systems”. In: 2015 NASA/ESA Conference
on Adaptive Hardware and Systems (AHS). IEEE, 2015, pp. 1–8. DOI: 10.
1109/AHS.2015.7231177.

214

http://dx.doi.org/10.1109/ReConFig.2008.27
http://dx.doi.org/10.1007/3-540-46117-5_82
http://dx.doi.org/10.1007/3-540-46117-5_82
http://dx.doi.org/10.1109/SAMOS.2011.6045473
http://dx.doi.org/10.1029/2005JE002605
http://dx.doi.org/10.1145/201310.201328
http://dx.doi.org/10.1109/AHS.2011.5963941
http://dx.doi.org/10.1109/EUC.2011.78
http://dx.doi.org/10.1109/AHS.2015.7231177
http://dx.doi.org/10.1109/AHS.2015.7231177

Bibliography

[81] H. Nakada, S. Matsuoka, K. Seymour, J. Dongarra, C. Lee, and H. Casanova.
“GridRPC: A remote procedure call API for Grid computing”. In: Lecture
notes in computer science. Vol. 2536. GRID ’02. Springer-Verlag, 2002, pp. 274–
278.

[82] NASA. MER. URL: http://mars.nasa.gov/mer/overview/.

[83] A. Otero, E. de la Torre, and T. Riesgo. “Dreams: A tool for the design of
dynamically reconfigurable embedded and modular systems”. In: 2012
International Conference on Reconfigurable Computing and FPGAs. 2012, pp. 1–
8. DOI: 10.1109/ReConFig.2012.6416740.

[84] J. Ou and V. K. Prasanna. “Energy Efficient Hardware-Software Co-Synthesis
Using Reconfigurable Hardware”. PhD thesis. 2009, p. 202. ISBN: 978-0-542-
91214-6.

[85] M. Renovell, J. Portal, J. Figuras, and Y. Zorian. “Minimizing the number of
test configurations for different FPGA families”. In: Proceedings Eighth Asian
Test Symposium (ATS’99). 1999, pp. 363–368. DOI: 10.1109/ATS.1999.
810776.

[86] M. Renovell, J. M. Portal, J. Figueras, and Y. Zorian. “Testing the intercon-
nect of RAM-based FPGAs”. In: IEEE Design and Test of Computers 15.March
(Jan. 1998), pp. 45–50. DOI: 10.1109/54.655182.

[87] F. Rittner, R. Glein, T. Kolb, and B. Bernard. “Broadband FPGA payload
processing in a harsh radiation environment”. In: 2014 NASA/ESA Confer-
ence on Adaptive Hardware and Systems (AHS). IEEE, 2014, pp. 151–158. DOI:
10.1109/AHS.2014.6880171.

[88] P. Roche, J.-L. Autran, G. Gasiot, and D. Munteanu. “Technology Down-
scaling Worsening Radiation Effects in Bulk: SOI to the Rescue”. In: In-
ternational Electron Devices Meeting (IEDM). 2013, pp. 31.1.1–31.1.4. DOI:
10.5772/2600.

[89] J. Romoth, D. Jungewelter, J. Hagemeyer, M. Porrmann, and U. Ruckert.
“Optimizing inter-FPGA communication by automatic channel adapta-
tion”. In: Reconfigurable Computing and FPGAs (ReConFig), 2012 International
Conference on. 2012, pp. 1–7. DOI: 10.1109/ReConFig.2012.6416767.

[90] J. Rose. “Parallel global routing for standard cells”. In: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 9.10 (1990), pp. 1085–
1095. DOI: 10.1109/43.62733.

[91] J. Rose, R. J. Francis, D. Lewis, and P. Chow. “Architecture of field pro-
grammable gate arrays: The effect of logic block functionality on area
efficiency”. In: IEEE Journal of Solid-State Circuits 25.5 (1990), pp. 1217–1225.
DOI: 10.1109/4.62145.

215

http://mars.nasa.gov/mer/overview/
http://dx.doi.org/10.1109/ReConFig.2012.6416740
http://dx.doi.org/10.1109/ATS.1999.810776
http://dx.doi.org/10.1109/ATS.1999.810776
http://dx.doi.org/10.1109/54.655182
http://dx.doi.org/10.1109/AHS.2014.6880171
http://dx.doi.org/10.5772/2600
http://dx.doi.org/10.1109/ReConFig.2012.6416767
http://dx.doi.org/10.1109/43.62733
http://dx.doi.org/10.1109/4.62145

Bibliography

[92] J. Rose, J. Luu, C. W. Yu, O. Densmore, J. Goeders, A. Somerville, K. B. Kent,
P. Jamieson, and J. Anderson. “The VTR Project: Architecture and CAD
for FPGAs from Verilog to Routing”. In: Proceedings of the ACM/SIGDA
international symposium on Field Programmable Gate Arrays - FPGA ’12. ACM
Press, 2012, p. 77. DOI: 10.1145/2145694.2145708.

[93] RTEMS. “Getting Started with RTEMS”. In: October (2003). URL: https:
//docs.rtems.org/releases/rtemsdocs-4.6.5/share/rtems/
html/index.html.

[94] S. Russell, M. Vesely, C. Graham, and M. Petkovic. Progress Towards FedSat
2001 A’stralian Space Odyssey. 1999. URL: http://digitalcommons.usu.
edu/smallsat/1999/all1999/69.

[95] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. 2009.
DOI: 10.1017/S0269888900007724.

[96] J. S and V. K. Agrawal. “Detection and Diagnosis of Faults in the Routing
Resources of a SRAM based FPGAs”. In: International Journal of Computer
Applications 53.13 (Sept. 2012), pp. 18–22. DOI: 10.5120/8481-2421.

[97] D. Sabena, L. Sterpone, M. Scholzel, T. Koal, H. T. Vierhaus, S. Wong, R.
Glein, F. Rittner, C. Stender, M. Porrmann, and J. Hagemeyer. “Recon-
figurable high performance architectures: How much are they ready for
safety-critical applications?” In: 2014 19th IEEE European Test Symposium
(ETS). 2014, pp. 1–8. DOI: 10.1109/ETS.2014.6847820.

[98] K. Sebastian. “Erhöhung der Zuverlässigkeit FPGA-basierter Systeme durch
dynamisch partielle Rekonfiguration”. PhD thesis. 2016.

[99] B. Senouci, A. Kouadri.M, F. Rousseau, and F. Petrot. “Multi-CPU/FPGA
Platform Based Heterogeneous Multiprocessor Prototyping: New Chal-
lenges for Embedded Software Designers”. In: 2008 The 19th IEEE/IFIP
International Symposium on Rapid System Prototyping. 2008, pp. 41–47. DOI:
10.1109/RSP.2008.27.

[100] F. Siegle, T. Vladimirova, J. Ilstad, and O. Emam. “Mitigation of Radiation
Effects in SRAM-Based FPGAs”. In: ACM Computing Surveys 47.2 (2015),
pp. 1–34. DOI: 10.1145/2671181.

[101] J. Silcock, J. Silcock, and A. Goscinski. Message Passing, Remote Procedure
Calls and Distributed Shared Memory as Communication Paradigms for Dis-
tributed Systems. Vol. 28. Technical reports: Computing series. Deakin Uni-
versity, School of Computing and Mathematics, 1995. URL: http : / /
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.95.
2490.

216

http://dx.doi.org/10.1145/2145694.2145708
https://docs.rtems.org/releases/rtemsdocs-4.6.5/share/rtems/html/index.html
https://docs.rtems.org/releases/rtemsdocs-4.6.5/share/rtems/html/index.html
https://docs.rtems.org/releases/rtemsdocs-4.6.5/share/rtems/html/index.html
http://digitalcommons.usu.edu/smallsat/1999/all1999/69
http://digitalcommons.usu.edu/smallsat/1999/all1999/69
http://dx.doi.org/10.1017/S0269888900007724
http://dx.doi.org/10.5120/8481-2421
http://dx.doi.org/10.1109/ETS.2014.6847820
http://dx.doi.org/10.1109/RSP.2008.27
http://dx.doi.org/10.1145/2671181
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.95.2490
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.95.2490
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.95.2490

Bibliography

[102] J. Smith, T. Xia, and C. Stroud. “An automated BIST architecture for testing
and diagnosing FPGA interconnect faults”. In: Journal of Electronic Testing:
Theory and Applications (JETTA) 22.3 (2006), pp. 239–253. DOI: 10.1007/
s10836-006-9319-7.

[103] Softing Automotive Electronics GmbH. CAN-AC2-PCI. Tech. rep. URL: htt
p://automotive.softing.com/fileadmin/sof-files/pdf/en/
ae/data_sheets/vci/Softing-DB_CANAC2pci_E.pdf.

[104] A. A. Sohanghpurwala, P. Athanas, T. Frangieh, and A. Wood. “OpenPR:
An open-source partial-reconfiguration toolkit for xilinx FPGAs”. In: IEEE
International Symposium on Parallel and Distributed Processing Workshops and
Phd Forum. Xdl. 2011, pp. 228–235. DOI: 10.1109/IPDPS.2011.146.

[105] A. Sreeramareddy, J. G. Josiah, A. Akoglu, and A. Stoica. “SCARS: Scal-
able Self-Configurable Architecture for Reusable Space Systems”. In: 2008
NASA/ESA Conference on Adaptive Hardware and Systems. IEEE, 2008, pp. 204–
210. DOI: 10.1109/AHS.2008.77.

[106] STAR-Dundee. SpaceWire Brick. URL: https://www.star- dundee.
com/sites/default/files/SpaceWire%20Brick.pdf.

[107] STAR-Dundee. STAR Fire. URL: https://www.star-dundee.com/
products/star-fire.

[108] N. Steiner and P. Athanas. “An Alternate Wire Database for Xilinx FPGAs”.
In: Proceedings - 12th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines, FCCM 2004. IEEE Computer Society, 2004, pp. 336–337.
DOI: 10.1109/FCCM.2004.13.

[109] N. Steiner, A. Wood, H. Shojaei, J. Couch, P. Athanas, and M. French.
“Torc: Towards an Open-Source Tool Flow Neil”. In: Proceedings of the
19th ACM/SIGDA international symposium on Field programmable gate ar-
rays - FPGA ’11. FPGA ’11. ACM, 2011, p. 41. DOI: 10.1145/1950413.
1950425.

[110] J. O. Stiegler and L. K. Mansur. “Radiation Effects in Structural Materi-
als”. In: Proceedings of the 9th Workshop on Electronics for LHC Experiments.
Vol. V. 14. 1979, pp. 191–194. DOI: 10.1146/annurev.ms.09.080179.
002201.

[111] C. Stroud, J. Nall, M. Lashinsky, and M. Abramovici. “BIST-based diagnosis
of FPGA interconnect”. In: Proceedings. International Test Conference. 2002,
pp. 618–627. DOI: 10.1109/TEST.2002.1041813.

[112] C. Stroud, S. Wijesuriya, C. Hamilton, and M. Abramovici. “Built-in self-
test of FPGA interconnect”. In: IEEE International Test Conference (TC). 1998,
pp. 404–411. DOI: 10.1109/TEST.1998.743180.

217

http://dx.doi.org/10.1007/s10836-006-9319-7
http://dx.doi.org/10.1007/s10836-006-9319-7
http://automotive.softing.com/fileadmin/sof-files/pdf/en/ae/data_sheets/vci/Softing-DB_CANAC2pci_E.pdf
http://automotive.softing.com/fileadmin/sof-files/pdf/en/ae/data_sheets/vci/Softing-DB_CANAC2pci_E.pdf
http://automotive.softing.com/fileadmin/sof-files/pdf/en/ae/data_sheets/vci/Softing-DB_CANAC2pci_E.pdf
http://dx.doi.org/10.1109/IPDPS.2011.146
http://dx.doi.org/10.1109/AHS.2008.77
https://www.star-dundee.com/sites/default/files/SpaceWire%20Brick.pdf
https://www.star-dundee.com/sites/default/files/SpaceWire%20Brick.pdf
https://www.star-dundee.com/products/star-fire
https://www.star-dundee.com/products/star-fire
http://dx.doi.org/10.1109/FCCM.2004.13
http://dx.doi.org/10.1145/1950413.1950425
http://dx.doi.org/10.1145/1950413.1950425
http://dx.doi.org/10.1146/annurev.ms.09.080179.002201
http://dx.doi.org/10.1146/annurev.ms.09.080179.002201
http://dx.doi.org/10.1109/TEST.2002.1041813
http://dx.doi.org/10.1109/TEST.1998.743180

Bibliography

[113] X. S. X. Sun, J. X. J. Xu, B. C. B. Chan, and P. Trouborst. “Novel technique for
built-in self-test of FPGA interconnects”. In: Proceedings International Test
Conference 2000 (IEEE Cat. No.00CH37159). International Test Conference.
2000, pp. 795–803. DOI: 10.1109/TEST.2000.894276.

[114] M. Tahoori. “Application-dependent testing of FPGAs”. In: IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems 14.9 (2006), pp. 1024–1033.
DOI: 10.1109/TVLSI.2006.884053.

[115] J. B. Ã. Team. AutoIt Online Documentation. URL: https://www.autoits
cript.com/autoit3/docs/.

[116] The Qt Company. Qt Creator. URL: https://www.qt.io/ide/.

[117] The University of Texas. Gravity Recovery And Climate Experiment (GRACE).
URL: http://www.csr.utexas.edu/grace/.

[118] I. A. Troxel, M. Fehringer, and M. T. Chenoweth. “Achieving Multipurpose
Space Imaging with the ARTEMIS Reconfigurable Payload Processor”. In:
2008 IEEE Aerospace Conference. IEEE, 2008, pp. 1–8. DOI: 10.1109/AERO.
2008.4526469.

[119] Vector Informatik. CANalyzer. URL: http://vector.com/vi_canalyz
er_en.html.

[120] B. White and B. Nelson. “Tincr - A custom CAD tool framework for Vivado”.
In: 2014 International Conference on ReConFigurable Computing and FPGAs
(ReConFig14). 2014, pp. 1–6. DOI: 10.1109/ReConFig.2014.7032560.

[121] D. White. Considerations surrounding single event effects in FPGAs, ASICs, and
processors. Tech. rep. 2011. URL: http://www.xilinx.com/support/
documentation/white_papers/wp402_SEE_Considerations.
pdf.

[122] Xilinx Inc. “7 Series FPGAs Clocking Resources”. In: (2015), pp. 1–112.
URL: http://www.xilinx.com/support/documentation/user_
guides/ug472_7Series_Clocking.pdf.

[123] Xilinx Inc. 7 Series FPGAs Configuration: User Guide. 2015. URL: http://w
ww.xilinx.com/support/documentation/user_guides/ug470_
7Series_Config.pdf.

[124] Xilinx Inc. 7 Series FPGAs Overview. 2015, pp. 1–112. URL: http://www.
xilinx.com/support/documentation/data_sheets/ds180_
7Series_Overview.pdf.

[125] Xilinx Inc. “Command Line Tools”. In: 628 (2012), pp. 1–419. URL: http:
//www.xilinx.com/support/documentation/sw_manuals/xili
nx11/devref.pdf.

218

http://dx.doi.org/10.1109/TEST.2000.894276
http://dx.doi.org/10.1109/TVLSI.2006.884053
https://www.autoitscript.com/autoit3/docs/
https://www.autoitscript.com/autoit3/docs/
https://www.qt.io/ide/
http://www.csr.utexas.edu/grace/
http://dx.doi.org/10.1109/AERO.2008.4526469
http://dx.doi.org/10.1109/AERO.2008.4526469
http://vector.com/vi_canalyzer_en.html
http://vector.com/vi_canalyzer_en.html
http://dx.doi.org/10.1109/ReConFig.2014.7032560
http://www.xilinx.com/support/documentation/white_papers/wp402_SEE_Considerations.pdf
http://www.xilinx.com/support/documentation/white_papers/wp402_SEE_Considerations.pdf
http://www.xilinx.com/support/documentation/white_papers/wp402_SEE_Considerations.pdf
http://www.xilinx.com/support/documentation/user_guides/ug472_7Series_Clocking.pdf
http://www.xilinx.com/support/documentation/user_guides/ug472_7Series_Clocking.pdf
http://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf
http://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf
http://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/devref.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/devref.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/devref.pdf

Bibliography

[126] Xilinx Inc. Device Reliability Report. Second Hal. Sept. 2015, pp. 1–110. URL:
http://www.xilinx.com/support/documentation/user_guide
s/ug116.pdf.

[127] Xilinx Inc. Early access partial reconfiguration user guide. Tech. rep. 2008.

[128] Xilinx Inc. FPGA Editor Overview. URL: http://www.xilinx.com/
support/documentation/sw_manuals/help/iseguide/merged
Projects/fpga_editor/fpga_editor.htm.

[129] Xilinx Inc. ISE In-Depth Tutorial (UG695). v14.1. 2012. URL: http://www.
xilinx.com/support/documentation/sw_manuals/xilinx14_
1/ise_tutorial_ug695.pdf.

[130] Xilinx Inc. OS and Libraries Document Collection. 2009. URL: http://www.
xilinx.com/support/documentation/sw_manuals/xilinx11/
oslib_rm.pdf.

[131] Xilinx Inc. Partial Reconfiguration User Guide. Apr. 2011. URL: http://www.
xilinx.com/support/documentation/sw_manuals/xilinx14_
5/ug702.pdf.

[132] Xilinx Inc. Power Consumption at 45nm (WP298). Tech. rep. 2016. URL: http:
//www.xilinx.com/support/documentation/white_papers/
wp298.pdf.

[133] Xilinx Inc. QPro Virtex 2 .5V Radiation-Hardened FPGAs. Tech. rep. 2010,
pp. 1–17. URL: http://www.xilinx.com/support/documentation/
data_sheets/ds028.pdf.

[134] Xilinx Inc. QPRO XQR4000XL Radiation Hardened FPGAs. Tech. rep. 2000,
pp. 1–20. URL: http://www.xilinx.com/support/documentation/
data_sheets/ds071.pdf.

[135] Xilinx Inc. Radiation-Hardened, Space-Grade Virtex-5QV Family Overview.
Xilinx. Nov. 2014. URL: http://www.xilinx.com/support/documen
tation/data_sheets/ds192_V5QV_Device_Overview.pdf.

[136] Xilinx Inc. Space-Grade Virtex-4QV Family Overview. Nov. 2014. URL: http:
//www.xilinx.com/support/documentation/data_sheets/
ds653.pdf.

[137] Xilinx Inc. Spartan-6 Family Overview. 2011, p. 11. URL: http://www.xili
nx.com/support/documentation/data_sheets/ds160.pdf.

[138] Xilinx Inc. “Spartan-6 FPGA Clocking Resources User Guide”. In: 382 (2012),
pp. 1–118. URL: http://www.xilinx.com/support/documentatio
n/user_guides/ug382.pdf.

219

http://www.xilinx.com/support/documentation/user_guides/ug116.pdf
http://www.xilinx.com/support/documentation/user_guides/ug116.pdf
http://www.xilinx.com/support/documentation/sw_manuals/help/iseguide/mergedProjects/fpga_editor/fpga_editor.htm
http://www.xilinx.com/support/documentation/sw_manuals/help/iseguide/mergedProjects/fpga_editor/fpga_editor.htm
http://www.xilinx.com/support/documentation/sw_manuals/help/iseguide/mergedProjects/fpga_editor/fpga_editor.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/ise_tutorial_ug695.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/ise_tutorial_ug695.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/ise_tutorial_ug695.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/oslib_rm.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/oslib_rm.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/oslib_rm.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_5/ug702.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_5/ug702.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_5/ug702.pdf
http://www.xilinx.com/support/documentation/white_papers/wp298.pdf
http://www.xilinx.com/support/documentation/white_papers/wp298.pdf
http://www.xilinx.com/support/documentation/white_papers/wp298.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds028.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds028.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds071.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds071.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds192_V5QV_Device_Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds192_V5QV_Device_Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds653.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds653.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds653.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf
http://www.xilinx.com/support/documentation/user_guides/ug382.pdf
http://www.xilinx.com/support/documentation/user_guides/ug382.pdf

Bibliography

[139] Xilinx Inc. Spartan-6 FPGA Configuration User Guide (UG380). 2014. URL:
http://www.xilinx.com/support/documentation/user_guide
s/ug380.pdf.

[140] Xilinx Inc. “UltraScale Architecture and Product Overview”. 2016. URL:
http://www.xilinx.com/support/documentation/data_sheet
s/ds890-ultrascale-overview.pdf.

[141] Xilinx Inc. UltraScale Architecture Configuration User Guide (UG570). v1.6.
2015. URL: http://www.xilinx.com/support/documentation/
user_guides/ug570-ultrascale-configuration.pdf.

[142] Xilinx Inc. Virtex 4 FPGA Configuration User Guide. 2009. URL: http://w
ww.xilinx.com/support/documentation/user_guides/ug071.
pdf.

[143] Xilinx Inc. “Virtex Series Configuration Architecture User Guide”. In: (2004).
URL: http://www.xilinx.com/support/documentation/applic
ation_notes/xapp151.pdf.

[144] Xilinx Inc. Virtex-4 Family Overview. Tech. rep. 2010, pp. 1–9. URL: http:
//www.xilinx.com/support/documentation/data_sheets/
ds112.pdf.

[145] Xilinx Inc. “Virtex-4 FPGA User Guide”. In: (2008). URL: http://www.xi
linx.com/support/documentation/user_guides/ug070.pdf.

[146] Xilinx Inc. “Virtex-5 Family Overview”. In: Xilinx Inc. Vol. 5.0. DS100. Xilinx.
2009, pp. 1–13. URL: http://www.xilinx.com/support/documenta
tion/data_sheets/ds112.pdf.

[147] Xilinx Inc. Virtex-5 FPGA Configuration User Guide. 2012. URL: http://www.
xilinx.com/support/documentation/user_guides/ug191.pdf.

[148] Xilinx Inc. “Virtex-5 FPGA User Guide”. In: (2012), pp. 1–385. URL: http:
//www.xilinx.com/support/documentation/user_guides/
ug190.pdf.

[149] Xilinx Inc. Virtex-6 Family Overview. Xilinx. 2010.

[150] Xilinx Inc. “Virtex-6 FPGA Clocking Resources User Guide”. In: (2012).
URL: http://www.xilinx.com/support/documentation/user_
guides/ug362.pdf.

[151] Xilinx Inc. Virtex-6 FPGA Configuration, User Guide. 2015. URL: http://www.
xilinx.com/support/documentation/user_guides/ug360.pdf.

220

http://www.xilinx.com/support/documentation/user_guides/ug380.pdf
http://www.xilinx.com/support/documentation/user_guides/ug380.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
http://www.xilinx.com/support/documentation/user_guides/ug570-ultrascale-configuration.pdf
http://www.xilinx.com/support/documentation/user_guides/ug570-ultrascale-configuration.pdf
http://www.xilinx.com/support/documentation/user_guides/ug071.pdf
http://www.xilinx.com/support/documentation/user_guides/ug071.pdf
http://www.xilinx.com/support/documentation/user_guides/ug071.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp151.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp151.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds112.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds112.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds112.pdf
http://www.xilinx.com/support/documentation/user_guides/ug070.pdf
http://www.xilinx.com/support/documentation/user_guides/ug070.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds112.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds112.pdf
http://www.xilinx.com/support/documentation/user_guides/ug191.pdf
http://www.xilinx.com/support/documentation/user_guides/ug191.pdf
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf
http://www.xilinx.com/support/documentation/user_guides/ug362.pdf
http://www.xilinx.com/support/documentation/user_guides/ug362.pdf
http://www.xilinx.com/support/documentation/user_guides/ug360.pdf
http://www.xilinx.com/support/documentation/user_guides/ug360.pdf

Bibliography

[152] Xilinx Inc. Virtex-E 1.8V Field Programmable Gate Arrays: Complete Data Sheet
(All Four Modules). 2014. URL: http://www.xilinx.com/support/
documentation/data_sheets/ds022.pdf.

[153] Xilinx Inc. Vivado Design Suite Properties Reference Guide (v2014.2). Nov. 2014,
pp. 1–419. URL: http://china.xilinx.com/support/documenta
tion/sw_manuals/xilinx2014_2/ug912-vivado-properties.
pdf.

[154] Xilinx Inc. “Vivado Design Suite Tcl Command Reference Guide”. In: 835
(2013), pp. 1–977.

[155] Xilinx Inc. “Xcell Journal”. In: 50 (2004), p. 116. URL: http://www.ncbi.
nlm.nih.gov/pubmed/24371147.

[156] Xilinx Inc. “Xcell Journal”. In: (2011), pp. 1–68.

[157] Xilinx Inc. “Xcell Journal”. In: 84 (2013), p. 68. URL: http://www.xilinx.
com/publications/archives/xcell/Xcell84.pdf.

[158] Xilinx Inc. “Xcell Journal”. 2014. URL: http://www.xilinx.com/
publications/archives/xcell/Xcell86.pdf.

[159] Xilinx Inc. “Xcell Journal”. In: 90 (2015). URL: http://www.xilinx.com/
publications/archives/xcell/Xcell90.pdf.

[160] Xilinx Inc. Xilinx, Power Consumption in 65nm FPGAs. Tech. rep. 2. 2007.
URL: http://www.xilinx.com/support/documentation/white_
papers/wp246.pdf.

[161] Xilinx Inc. Zynq UltraScale+ MPSoC. URL: https://www.xilinx.com/
products/silicon-devices/soc/zynq-ultrascale-mpsoc.ht
ml.

[162] Xilinx Inc. Zynq UltraScale+ MPSoC Product Tables and Product Selection Guide.
2016. URL: http://www.xilinx.com/support/documentation/se
lection-guides/zynq-ultrascale-plus-product-selection-
guide.pdf.

[163] Xilinx Inc. “Zynq-7000 All Programmable SoC Overview”. In: 190 (2013),
pp. 1–21. URL: http://www.xilinx.com/support/documentation/
data_sheets/ds190-Zynq-7000-Overview.pdf.

[164] Xilinx Inc. Zynq-7000 AP SoC. Tech. rep. 2015. URL: https://www.xili
nx.com/support/documentation/product-briefs/zynq-7000-
product-brief.pdf.

[165] J. Yao, B. Dixon, C. Stroud, and V. Nelson. “System-level built-in self-test
of global routing resources in virtex-4 FPGAs”. In: 2009 IEEE International
Symposium on Sustainable Systems and Technology, ISSST 2009. 2009, pp. 29–
33. DOI: 10.1109/SSST.2009.4806782.

221

http://www.xilinx.com/support/documentation/data_sheets/ds022.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds022.pdf
http://china.xilinx.com/support/documentation/sw_manuals/xilinx2014_2/ug912-vivado-properties.pdf
http://china.xilinx.com/support/documentation/sw_manuals/xilinx2014_2/ug912-vivado-properties.pdf
http://china.xilinx.com/support/documentation/sw_manuals/xilinx2014_2/ug912-vivado-properties.pdf
http://www.ncbi.nlm.nih.gov/pubmed/24371147
http://www.ncbi.nlm.nih.gov/pubmed/24371147
http://www.xilinx.com/publications/archives/xcell/Xcell84.pdf
http://www.xilinx.com/publications/archives/xcell/Xcell84.pdf
http://www.xilinx.com/publications/archives/xcell/Xcell86.pdf
http://www.xilinx.com/publications/archives/xcell/Xcell86.pdf
http://www.xilinx.com/publications/archives/xcell/Xcell90.pdf
http://www.xilinx.com/publications/archives/xcell/Xcell90.pdf
http://www.xilinx.com/support/documentation/white_papers/wp246.pdf
http://www.xilinx.com/support/documentation/white_papers/wp246.pdf
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
http://www.xilinx.com/support/documentation/selection-guides/zynq-ultrascale-plus-product-selection-guide.pdf
http://www.xilinx.com/support/documentation/selection-guides/zynq-ultrascale-plus-product-selection-guide.pdf
http://www.xilinx.com/support/documentation/selection-guides/zynq-ultrascale-plus-product-selection-guide.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.xilinx.com/support/documentation/product-briefs/zynq-7000-product-brief.pdf
https://www.xilinx.com/support/documentation/product-briefs/zynq-7000-product-brief.pdf
https://www.xilinx.com/support/documentation/product-briefs/zynq-7000-product-brief.pdf
http://dx.doi.org/10.1109/SSST.2009.4806782

Bibliography

[166] Z. Zhang, Z. Wen, L. Chen, F. Zhang, and T. Zhou. “A Novel BIST Approach
for Testing Logic Resources Using Hard Macro”. In: (2008), pp. 379–381.
DOI: 10.1109/ICNNSP.2008.4590376.

[167] J. F. Ziegler. “Terrestrial cosmic ray intensities”. English. In: IBM Journal of
Research and Development 42.1 (Jan. 1998), pp. 117–140. DOI: 10.1147/rd.
421.0117.

222

http://dx.doi.org/10.1109/ICNNSP.2008.4590376
http://dx.doi.org/10.1147/rd.421.0117
http://dx.doi.org/10.1147/rd.421.0117

Advised Thesis
[168] D. Kleibrink. “Integration von SpaceFibre-Schnittstellen in FPGA-basierte

Satellitensysteme”. Diplomarbeit. Universität Paderborn, 2014.

[169] F. Mascolo. “Design and implementation of a routing algorithm to max-
imize test coverage of permanent faults in FPGAs”. Master Thesis. Uni-
versità di Pisa, 2015. URL: https://etd.adm.unipi.it/t/etd-
09062015-235709/.

[170] L. Santangelo. “Viv2XDL: a bridge between Vivado and XDL based soft-
ware”. Master Thesis. 2014. URL: https://etd.adm.unipi.it/t/etd-
09012014-224107/.

[171] T. Schlüssler. “Realiserung einer Konfigurationsinfrastruktur für fehlertol-
erante FPGA-basierte Satellitensysteme”. Bachelor Thesis. Bielefeld Univer-
sity, 2013.

[172] D. Sorrenti. “Exploiting Partial Dynamic Reconfiguration for On-Line On-
Demand Detection of Permanent Faults in SRAM-based FPGAs”. Master
Thesis. Università di Pisa, 2014. URL: https://etd.adm.unipi.it/t/
etd-03282014-113705/.

[173] M. Vorfeld. “Kommunikationslösungen für Datenübertragung in FPGA-
basierten Satellitensystemen”. Master Thesis. Bielefeld University, 2014.

223

https://etd.adm.unipi.it/t/etd-09062015-235709/
https://etd.adm.unipi.it/t/etd-09062015-235709/
https://etd.adm.unipi.it/t/etd-09012014-224107/
https://etd.adm.unipi.it/t/etd-09012014-224107/
https://etd.adm.unipi.it/t/etd-03282014-113705/
https://etd.adm.unipi.it/t/etd-03282014-113705/

Author’s Publications
[174] L. Cassano, D. Cozzi, D. Jungewelter, S. Korf, J. Hagemeyer, M. Porrmann,

and C. Bernardeschi. “An inter-processor communication interface for
data-flow centric heterogeneous embedded multiprocessor systems”. In:
Design Technology of Integrated Systems In Nanoscale Era (DTIS), 2014 9th
IEEE International Conference On. 2014, pp. 1–6. DOI: 10.1109/DTIS.
2014.6850669.

[175] L. Cassano, D. Cozzi, S. Korf, J. Hagemeyer, M. Porrmann, L. Sterpone, and
P. Torino. “On-Line Testing of Permanent Radiation Effects in Reconfig-
urable Systems”. In: Design, Automation Test in Europe Conference Exhibition
(DATE), 2013. 2013, pp. 717–720. DOI: 10.7873/DATE.2013.154.

[176] D. Cozzi. “Homogeneous Communication Router for Xilinx FPGAs”. PhD
thesis. Politecnico di Milano, 2011. URL: http://hdl.handle.net/
10589/12964.

[177] D. Cozzi, D. Jungewelter, S. Korf, J. Hagemeyer, and M. Porrmann. Dy-
namically Reconfigurable Hardware for Resource Efficiency and Fault Tolerance
in Space Applications. 2014. URL: https://indico.esa.int/indico/
event/59/session/5/contribution/8.

[178] D. Cozzi, S. Korf, L. Cassano, J. Hagemeyer, A. Domenici, C. Bernardeschi,
M. Porrmann, and L. Sterpone. “OLT(RE)2 : an On-Line on-demand Testing
approach for permanent Radiation Effects in REconfigurable systems”. In:
IEEE Transactions on Emerging Topics in Computing (2016), pp. 1–13. DOI:
10.1109/TETC.2016.2586195.

[179] D. Cozzi and K. Sebastian. OLT(RE)2: A Tool Flow for Mitigation of Permanent
Faults in Reconfigurable Systems. Tech. rep. March. European Space Research
and Technology Centre (ESTEC), 2016. URL: https://indico.esa.
int/indico/event/130/session/7/contribution/43.

[180] J. Hagemeyer, A. Hilgenstein, D. Jungewelter, D. Cozzi, C. Felicetti, U.
Rueckert, S. Korf, M. Koester, F. Margaglia, M. Porrmann, F. Dittmann,
M. Ditze, et al. “A scalable platform for run-time reconfigurable satellite
payload processing”. In: Proceedings of the 2012 NASA/ESA Conference on
Adaptive Hardware and Systems, AHS 2012. 2012, pp. 9–16. DOI: 10.1109/
AHS.2012.6268642.

225

http://dx.doi.org/10.1109/DTIS.2014.6850669
http://dx.doi.org/10.1109/DTIS.2014.6850669
http://dx.doi.org/10.7873/DATE.2013.154
http://hdl.handle.net/10589/12964
http://hdl.handle.net/10589/12964
https://indico.esa.int/indico/event/59/session/5/contribution/8
https://indico.esa.int/indico/event/59/session/5/contribution/8
http://dx.doi.org/10.1109/TETC.2016.2586195
https://indico.esa.int/indico/event/130/session/7/contribution/43
https://indico.esa.int/indico/event/130/session/7/contribution/43
http://dx.doi.org/10.1109/AHS.2012.6268642
http://dx.doi.org/10.1109/AHS.2012.6268642

Author’s Publications

[181] J. Hagemeyer, D. Jungewelter, D. Cozzi, S. Korf, and M. Porrmann. DRPM
architecture overview. 2012. URL: https://amstel.estec.esa.int/t
ecedm/website/conferences/sefuw/d2_p6_SEFUW_2012_drpm_
hagemeyer_final.pdf.

[182] D. Jungewelter, D. Cozzi, D. Kleibrink, S. Korf, J. Hagemeyer, M. Porrmann,
and J. Ilstad. “AXI-based SpaceFibre IP core implementation”. In: 2014
International SpaceWire Conference (SpaceWire). 2014, pp. 1–6. DOI: 10.1109/
SpaceWire.2014.6936258.

[183] S. Korf, D. Cozzi, D. Jungewelter, J. Hagemeyer, M. Porrmann, and J. Ilstad.
“Leveraging dynamic reconfiguration to increase fault-tolerance in FPGA-
based satellite systems”. In: 2014 Design, Automation and Test in Europe
(DATE). Vol. 62. 8. 2013, p. 2013. URL: https://www.date-conference.
com/date14/files/file/date14/ubooth/2602.pdf.

[184] S. Korf, D. Cozzi, M. Koester, J. Hagemeyer, M. Porrmann, U. Rückert, and
M. D. Santambrogio. “Automatic HDL-Based Generation of Homogeneous
Hard Macros for FPGAs”. In: 2011 IEEE 19th Annual International Symposium
on Field-Programmable Custom Computing Machines. 2011, pp. 125–132. DOI:
10.1109/FCCM.2011.36.

[185] S. Korf, G. Sievers, J. Ax, D. Cozzi, T. Jungeblut, J. Hagemeyer, M. Porrmann,
and U. Rückert. “Dynamisch rekonfigurierbare Hardware als Basistech-
nologie für intelligente technische Systeme”. In: Wissenschaftsforum 2013
Intelligente Technische Systeme. Proceedings Wissenschaftsforum 2013 Intelli-
gente Technische Systeme. 2013, pp. 79–90. ISBN: 978-3-942647-29-8.

[186] D. Sorrenti, D. Cozzi, S. Korf, L. Cassano, J. Hagemeyer, M. Porrmann,
and C. Bernardeschi. “Exploiting dynamic partial reconfiguration for on-
line on-demand testing of permanent faults in reconfigurable systems”.
In: 2014 IEEE International Symposium on Defect and Fault Tolerance in VLSI
and Nanotechnology Systems (DFT). 2014, pp. 203–208. DOI: 10.1109/DFT.
2014.6962065.

226

https://amstel.estec.esa.int/tecedm/website/conferences/sefuw/d2_p6_SEFUW_2012_drpm_hagemeyer_final.pdf
https://amstel.estec.esa.int/tecedm/website/conferences/sefuw/d2_p6_SEFUW_2012_drpm_hagemeyer_final.pdf
https://amstel.estec.esa.int/tecedm/website/conferences/sefuw/d2_p6_SEFUW_2012_drpm_hagemeyer_final.pdf
http://dx.doi.org/10.1109/SpaceWire.2014.6936258
http://dx.doi.org/10.1109/SpaceWire.2014.6936258
https://www.date-conference.com/date14/files/file/date14/ubooth/2602.pdf
https://www.date-conference.com/date14/files/file/date14/ubooth/2602.pdf
http://dx.doi.org/10.1109/FCCM.2011.36
http://dx.doi.org/10.1109/DFT.2014.6962065
http://dx.doi.org/10.1109/DFT.2014.6962065

	Introduction
	DRPM
	INDRA2
	OLTRE
	Organization

	Background
	SRAM-based FPGA Architecture
	Terminology
	Clock Regions
	Programmable Interconnection Points (PIPs)
	Configuration Memory (Bitstream)
	Routing Physical Wires
	Xilinx FPGA families
	Space-Grade devices

	Dynamic Partial Reconfiguration
	Benefits
	FPGA partitioning
	Communication Infrastructure in a PR system
	Embedded Macros

	Xilinx Design Flow
	ISE
	FPGA Editor
	XDL tool
	Vivado

	Radiation Effects
	Single Event Effects
	Total Ionizing Dose
	Radiation Sensitiveness on SRAM-based FPGAs
	Permanent Faults in Routing Resources

	State of the Art
	XDL-based databases and APIs
	ReCoBus and GoAhead
	RapidSmith
	Torc
	Tincr
	Comparison

	Dynamic Partial Reconfiguration Tools
	Xilinx ISE DPR
	INDRA
	ReCoBus and GoAhead
	OpenPR
	Dreams
	Comparison

	Reconfiguration in Space Applications
	DPR research platforms
	In-flight reconfigurable space-missions
	Commercial FPGAs in Space
	Comparison

	Testing of Routing Resources
	Fault Detection mechanism
	Off-line application-independent testing
	On-line application-independent testing
	Motivation

	Summary

	Dynamically Reconfigurable Processing Module
	System Architecture
	RAPTOR-X64
	DB-SPACE
	DB-V4
	Memory Resources

	DRPM Software
	Software Structure

	HMPCI
	Related Works
	Inter-Processor Communication Interface
	HMPCI Interactions
	Inter-Processor Communication Protocol Details
	Using the Inter-Processor Communication Interface
	HMPCI on the DRPM
	Experiment Results
	Summary

	DRPM Evaluation and Validation Environment
	Avionic Interfaces Testing
	DRPM GUI

	Summary

	INDRA2
	Flow Description
	FPGA partitioning
	Communication Macro Generation (DHHarMa)
	Static PAR and PSrerouter
	Dynamic Modules Implementation
	Bitstream Generation

	DHHarMa
	DXF
	Xilinx-based front-end
	DHHarMa back-end
	Output XDL File

	PSrerouter
	Problem definition
	Implementation Idea
	Physical Wire Info
	Database Creation Flow
	Benchmark
	PSrerouter flow

	Summary

	DHHarMa Router
	General Purpose Routing Analysis
	Virtex-4
	Virtex-5
	Virtex-6 and Spartan-6
	7 Series and Zynq

	Homogeneous Routing Base Concepts
	Standard Routing Algorithms
	Iterative Deepening Depth-First Search algorithm (IDDFS)
	Routing Direction and Wrong Direction
	Nets Terminology
	Net Initialization
	Master and Slave Regions

	DHHarMa Homogeneous Router Flow
	Initialization Phase
	Edge Routing Phase
	Intra-Routing Phase

	DHHarMa Results
	Routing Experiment Flow
	Routing comparison
	DRPM communication infrastructure
	Further Applications of the Homogeneous Router

	Summary

	OLTRE
	Flow Structure
	The OLTRE CAD Flow
	Design-time Test Generation Sub-flow
	Run-time Test Execution Sub-flow

	Circuits for Testing of Permanent Faults
	The 8-NUT Hard-Macro
	Routing Faults Test Principles

	Graph Model of FPGA
	Stuck-at Coverage
	Stuck-off Coverage
	Stuck-on Coverage

	RRA
	Testability of the Routing Resources
	RRA Flow
	TCI Analysis
	TCD Analysis
	Result Output

	The U-TURN Place-and-Route Algorithm
	The TPG & ORA Placer
	The N-UT Router

	Results
	Test Circuit Validation
	Design-time Performance Analysis
	Run-time Performance Analysis

	Summary

	Conclusion and Outlook
	Outlook

	List of Figures
	List of Tables
	Acronyms
	Bibliography
	Advised Thesis
	Author's Publications

