97 research outputs found

    Measuring inconsistency in a network intrusion detection rule set based on Snort

    Get PDF
    In this preliminary study, we investigate how inconsistency in a network intrusion detection rule set can be measured. To achieve this, we first examine the structure of these rules which are based on Snort and incorporate regular expression (Regex) pattern matching. We then identify primitive elements in these rules in order to translate the rules into their (equivalent) logical forms and to establish connections between them. Additional rules from background knowledge are also introduced to make the correlations among rules more explicit. We measure the degree of inconsistency in formulae of such a rule set (using the Scoring function, Shapley inconsistency values and Blame measure for prioritized knowledge) and compare the *This is a revised and significantly extended version of [1]

    Managing intrusion detection rule sets

    Full text link

    Misconfiguration Analysis of Network Access Control Policies

    Get PDF
    Network access control (NAC) systems have a very important role in network security. However, NAC policy configuration is an extremely complicated and error-prone task due to the semantic complexity of NAC policies and the large number of rules that could exist. This significantly increases the possibility of policy misconfigurations and network vulnerabilities. NAC policy misconfigurations jeopardize network security and can result in a severe consequence such as reachability and denial of service problems. In this thesis, we choose to study and analyze the NAC policy configuration of two significant network security devices, namely, firewall and IDS/IPS. In the first part of the thesis, a visualization technique is proposed to visualize firewall rules and policies to efficiently enhance the understanding and inspection of firewall configuration. This is implemented in a tool called PolicyVis. Our tool helps the user to answer general questions such as ‘‘Does this policy satisfy my connection/security requirements’’. If not, the user can detect all misconfigurations in the firewall policy. In the second part of the thesis, we study various policy misconfigurations of Snort, a very popular IDS/IPS. We focus on the misconfigurations of the flowbits option which is one of the most important features to offers a stateful signature-based NIDS. We particularly concentrate on a class of flowbits misconfiguration that makes Snort susceptible to false negatives. We propose a method to detect the flowbits misconfiguration, suggest practical solutions with controllable false positives to fix the misconfiguration and formally prove that the solutions are complete and sound

    Evaluating Machine Learning Classifiers for Hybrid Network Intrusion Detection Systems

    Get PDF
    Existing classifier evaluation methods do not fully capture the intended use of classifiers in hybrid intrusion detection systems (IDS), systems that employ machine learning alongside a signature-based IDS. This research challenges traditional classifier evaluation methods in favor of a value-focused evaluation method that incorporates evaluator-specific weights for classifier and prediction threshold selection. By allowing the evaluator to weight known and unknown threat detection by alert classification, classifier selection is optimized to evaluator values for this application. The proposed evaluation methods are applied to a Cyber Defense Exercise (CDX) dataset. Network data is processed to produce connection-level features, then labeled using packet-level alerts from a signature-based IDS. Seven machine learning algorithms are evaluated using traditional methods and the value-focused method. Comparing results demonstrates fallacies with traditional methods that do not consider evaluator values. Classifier selection fallacies are revealed in 2 of 5 notional weighting schemes and prediction threshold selection fallacies are revealed in 5 of 5 weighting schemes

    Secure Virtual Machine Migration in Cloud Data Centers

    Get PDF
    While elasticity represents a valuable asset in cloud computing environments, it may bring critical security issues. In the cloud, virtual machines (VMs) are dynamically and frequently migrated across data centers from one host to another. This frequent modification in the topology requires constant reconfiguration of security mechanisms particularly as we consider, in terms of firewalls, intrusion detection/prevention as well as IPsec policies. However, managing manually complex security rules is time-consuming and error-prone. Furthermore, scale and complexity of data centers are continually increasing, which makes it difficult to rely on the cloud provider administrators to update and validate the security mechanisms. In this thesis, we propose a security verification framework with a particular interest in the abovementioned security mechanisms to address the issue of security policy preservation in a highly dynamic context of cloud computing. This framework enables us to verify that the global security policy after the migration is consistently preserved with respect to the initial one. Thus, we propose a systematic procedure to verify security compliance of firewall policies, intrusion detection/prevention, and IPsec configurations after VM migration. First, we develop a process algebra called cloud calculus, which allows specifying network topology and security configurations. It also enables specifying the virtual machines migration along with their security policies. Then, the distributed firewall configurations in the involved data centers are defined according to the network topology expressed using cloud calculus. We show how our verification problem can be reduced to a constraint satisfaction problem that once solved allows reasoning about firewall traffic filtering preservation. Similarly, we present our approach to the verification of intrusion detection monitoring preservation as well as IPsec traffic protection preservation using constraint satisfaction problem. We derive a set of constraints that compare security configurations before and after migration. The obtained constraints are formulated as constraint satisfaction problems and then submitted to a SAT solver, namely Sugar, in order to verify security preservation properties and to pinpoint the configuration errors, if any, before the actual migration of the security context and the virtual machine. In addition, we present case studies for the given security mechanisms in order to show the applicability and usefulness of our framework, and demonstrate the scalability of our approach

    A Semantic Wiki-based Platform for IT Service Management

    Get PDF
    The book researches the use of a semantic wiki in the area of IT Service Management within the IT department of an SME. An emphasis of the book lies in the design and prototypical implementation of tools for the integration of ITSM-relevant information into the semantic wiki, as well as tools for interactions between the wiki and external programs. The result of the book is a platform for agile, semantic wiki-based ITSM for IT administration teams of SMEs

    Evolution of security engineering artifacts: a state of the art survey

    Get PDF
    Security is an important quality aspect of modern open software systems. However, it is challenging to keep such systems secure because of evolution. Security evolution can only be managed adequately if it is considered for all artifacts throughout the software development lifecycle. This article provides state of the art on the evolution of security engineering artifacts. The article covers the state of the art on evolution of security requirements, security architectures, secure code, security tests, security models, and security risks as well as security monitoring. For each of these artifacts the authors give an overview of evolution and security aspects and discuss the state of the art on its security evolution in detail. Based on this comprehensive survey, they summarize key issues and discuss directions of future research

    Models, methods and information technologies of protection of corporate systems of transport based on intellectual identification of threats

    Get PDF
    In article results of researches on development of methods and models of intellectual recognition of threats to information systems of transport. The article to contain results of the researches, allowing to raise level of protection of the automated and intellectual information systems of the transportation enterprises (AISTE) in the conditions of an intensification of transportations.  The article to contain mathematical models and results of an estimation information systems having Internet connection through various communication channels. The article also considers the issues of research and protection of the AISTE under the condition of several conflict data request threads
    corecore