
Misconfiguration Analysis of Network 

Access Control Policies 

 

 

 

 

by 

 

 

Tung Tran 

 

 

A thesis 

presented to the University of Waterloo 

in fulfillment of the 

thesis requirement for the degree of 

Master of Mathematics 

in 

Computer Science 

 

 

 

Waterloo, Ontario, Canada, 2008 

 

 

©Tung Tran 2008 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144143292?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 ii 

AUTHOR'S DECLARATION 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any 

required final revisions, as accepted by my examiners. 

I understand that my thesis may be made electronically available to the public. 

 



 

 iii 

Abstract 

Network access control (NAC) systems have a very important role in network security. However, 

NAC policy configuration is an extremely complicated and error-prone task due to the semantic 

complexity of NAC policies and the large number of rules that could exist.  This significantly 

increases the possibility of policy misconfigurations and network vulnerabilities. NAC policy 

misconfigurations jeopardize network security and can result in a severe consequence such as 

reachability and denial of service problems. In this thesis, we choose to study and analyze the NAC 

policy configuration of two significant network security devices, namely, firewall and IDS/IPS. 

In the first part of the thesis, a visualization technique is proposed to visualize firewall rules and 

policies to efficiently enhance the understanding and inspection of firewall configuration. This is 

implemented in a tool called PolicyVis.  Our tool helps the user to answer general questions such as 

‘‘Does this policy satisfy my connection/security requirements’’. If not, the user can detect all 

misconfigurations in the firewall policy.  

In the second part of the thesis, we study various policy misconfigurations of Snort, a very popular 

IDS/IPS. We focus on the misconfigurations of the flowbits option which is one of the most important 

features to offers a stateful signature-based NIDS. We particularly concentrate on a class of flowbits 

misconfiguration that makes Snort susceptible to false negatives. We propose a method to detect the 

flowbits misconfiguration, suggest practical solutions with controllable false positives to fix the 

misconfiguration and formally prove that the solutions are complete and sound. 
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Chapter 1 

Introduction 

1.1 Network Access Control Systems 

At the core of an access-control system is the secure evaluation of whether an established identity has 

access to a particular computing resource [7]. Access control is decided over an existing security 

context and a controlled resource. Modern access-control mechanisms are based on the reference 

monitor concept introduced in early 1970s by Lampson [24]. A reference monitor is the trusted 

computing base component of a computing system that mediates every access of a subject to a 

resource in accordance with a security policy that governs such access. The policy normally has the 

form of rules and attributes associated with a registry of subjects and a registry of objects. The rules 

can be static access rights (permissions), roles, or dynamically deduced rights [7]. 

Network Access Control (NAC) is a computer networking solution that uses a set of protocols to 

define and implement security policies on all devices seeking to access network computing resources 

[30] . A NAC system controls access to a network with policies, that includes pre-admission endpoint 

security policy checks and post-admission controls over users’ activities in a network. Even though 

the definition of NAC is evolving and controversial, the common goals of a NAC system generally 

include:  

• Mitigation of zero-day attacks: a NAC system is able to reduce the damage of zero-day 

attacks by preventing end-stations that lack antivirus or patches from accessing the network and 

placing other computers at risk.  

• Policy enforcement: a NAC system allows an admin to define policies, such as the types of 

computers or roles of users allowed to access the network, and to enforce them in network 

devices. 

• Identity and access management: a NAC system enforces access policies in terms of IP 

addresses and/or authenticated user identities. 

 

 

1.2 Network Access Control Policy Misconfigurations 

Threats are made possible due to vulnerabilities, also referred to as weaknesses, either in the 

mechanisms enforcing a particular security policy or in the operational controls of that policy (such as 

those having to do with configuration parameters) [7]. For a network access control system to be 
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effective, the policies it supports must match those that its users need. Sometimes we need to access a 

resource that should be allowed, but that is denied by the system. This is typically the result of a NAC 

policy misconfiguration. 

In [5], the authors defined two types of policies: Implemented policy and Intended policy. 

Implemented policy is the policy explicitly enacted via credentials that grant authority to users. 

Intended policy includes implemented policy and also policy that is consistent with user’s intentions 

but has not yet been enacted through credentials. Policy misconfigurations are then defined as 

inconsistencies between implemented and intended policies. 

To be more specific, in this thesis, we consider a NAC system policy misconfiguration as any 

error or mistake in the policy that makes the system misbehave or perform poorly. A NAC system 

misbehaves when it does not carry out the policy exactly as the system admin expected, and performs 

poorly when it takes longer time than it should to carry out the policy. 

With the increased semantic complexity of NAC policies and the large number of rules that could 

exist, the possibility of policy misconfigurations has significantly increased. NAC policy 

misconfigurations can result in user frustration and wasted time, and can sometimes jeopardize 

network security.  As a result, the process of identifying and fixing policy misconfigurations is 

essential to improving the usability and security of any NAC system. 

NAC brings together a variety of network security systems including identity management, 

firewalls, IDS/IPS (intrusion detection system/ intrusion prevention system), anti-virus software, etc. 

However, in this thesis, we concentrate on studying policy configuration of firewalls and IDS/IPS 

because of their popularity and their importance in network security. 

 

1.3 Introduction to Firewall 

With the increase of network attack threats, firewalls are considered effective network barriers and 

have become important elements not only in enterprise networks but also in small-size and home 

networks.  A firewall is a program or a hardware device designed to protect a network or a computer 

system by filtering out unwanted network traffic.  

There are two main types of firewalls: network layer and application layer firewalls. The first type 

makes decisions on packets based on examining the TCP and IP headers. The second type works on 

the application level of the TCP/IP stack (i.e., all browser traffic, or all telnet or ftp traffic), and may 

intercept all packets traveling to or from an application. 
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Network layer firewalls generally fall into two sub-categories, stateful and stateless. Stateful 

firewalls maintain context about active sessions and use that "state information" as one of criteria to 

decide if a packet is allowed to continue its path. However, stateless firewalls do not keep track of 

connection states and provide network access control based on several pieces of information 

contained in a packet’s TCP and IP headers.  

In this thesis, we mainly concentrate on stateless network layer firewalls, also called stateless 

packet filters. The filtering decision is based on a set of ordered filtering rules written based on 

predefined security policy requirements. 

A firewall security policy is a list of ordered filtering rules that define the actions performed on 

matching packets. A rule is composed of filtering fields (also called network fields) such as protocol 

type, source IP address, destination IP address, source port and destination port, and an action field. 

Each network field could be a single value or range of values. Filtering actions are either to accept, 

which passes the packet into or from the secure network, or to deny, which causes the packet to be 

discarded. The packet is accepted or denied by a specific rule if the packet header information 

matches all the network fields of this rule. Otherwise, the following rule is examined and the process 

is repeated until a matching rule is found or the default policy action is performed. 

 The rules that govern the firewall only match some traffic and leave the question of what to do 

with the rest.  There are two approaches to decide on undefined traffic: default-accept and default-

deny. While the default-accept approach lets all undefined traffic go through, the default-deny 

approach blocks all undefined traffic. If an event is unexpected, it is safer to assume that it is 

dangerous, at least until it has been investigated. Firewalls should therefore use the default-deny 

approach to block all traffic that they are not known to accept. Inevitably, this sometimes stops new 

or legitimate traffic; however, this inconvenience is much less painful to resolve than the alternative 

of allowing hostile traffic. In this thesis, we assume a default-deny policy action.  

Managing firewall policies is an extremely complex task because the large number of interacting 

rules in single or distributed firewalls can cause significant incidents of policy misconfiguration and 

network vulnerabilities. Moreover, due to low-level representation of firewall rules, the semantics of 

firewall policies can become incomprehensible, which makes inspecting firewall policy’s properties a 

difficult and error-prone task. 

In this thesis, a visualization technique is proposed to visualize firewall rules and policies to 

efficiently enhance the understanding and inspection of firewall configuration. This is implemented in 

a tool we have devised called PolicyVis.  Our tool helps the user to answer general questions such as 
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‘‘Does this policy satisfy my connection/security requirements’’. If not, the user can detect all 

misconfigurations in the firewall policy.  

 

1.4 Introduction to Intrusion Detection and Prevention Systems 

Intrusion Detection System (IDS) is the generic term given to any hardware, software, or combination 

of the two that monitors a system or network of systems looking for suspicious activity [10]. An IDS 

is used to detect different kinds of malicious behaviors and attacks that can compromise the security 

and trust of a computer system. Alerts raised by an IDS allow the system admin, in a swift manner, to 

take the appropriate actions, such as applying patches to the system or blocking the attack by setting 

firewalls accordingly, in order to minimize possible damages caused by attackers.  

An IDS can be either a signature-based IDS or an anomaly-based IDS based on the methodology 

used by the engine to generate alerts.  While anomaly-based IDSs detect intrusion by monitoring 

system activity and classifying it as either normal or anomalous, signature-based IDSs detect 

intrusion by matching system activities against a set of defined signatures (rules). 

Moreover, based on the type and location of an IDS, it can be categorized as either a network-

based IDS (NIDS) or a host-based IDS (HIDS). While NIDSs detect intrusions by examining packets 

that travel on network links, HIDSs detect intrusions by monitoring file system modifications, 

application execution logs, system calls, etc. 

Intrusion Prevention System (IPS) is considered by some to be an extension of IDS. An IPS can 

react, in real-time, to block or prevent malicious or unwanted activities. For example, a host-based 

IPS can block some types of system calls and a network-based IPS can drop any packet that contains 

a specific string. 

In this thesis, we are interested in studying signature-based NIDSs, especially policy 

misconfigurations in these systems. More specifically, Snort [33], the most popular open-source 

NIDS, is chosen as the source for this study.  Besides investigating various policy misconfigurations 

of Snort, we focus on the misconfigurations of the flowbits option, which is one of the most important 

features that offer a stateful signature-based NIDS. We particularly concentrate on a class of flowbits 

misconfigurations that makes Snort susceptible to false negatives. We propose a method to detect the 

flowbits misconfiguration, and then suggest practical solutions with controllable false positives to fix 

the misconfiguration, and finally, we formally prove that the solutions are complete and sound. 
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1.5 Thesis Organization 

This thesis is organized as follows: we describe PolicyVis in Chapter 2. In Chapter 3, we investigate 

Snort rules misconfiguations. Related work is discussed in Chapter 4. Finally, we show conclusions 

and plans for future work in Chapter 5.  
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Chapter 2 

PolicyVis: Firewall Security Policy Visualization and Inspection 

2.1 Motivation 

Firewalls can be deployed to secure one network from another. However, firewalls can be ineffective 

in protecting networks if policies are not managed correctly and efficiently. It is crucial to have policy 

management techniques and tools that users can use to examine, refine and verify the correctness of 

written firewall filtering rules in order to increase the effectiveness of firewall security. 

It is true that humans are well adapted to capture data essences and patterns when presented in a 

way that is visually appealing. This truth promotes visualization on data, on which the analysis is very 

hard or ineffective to carry out because of its huge volume and complexity. The amount of data that 

can be processed and analyzed has never been greater, and continues to grow rapidly.  

With the necessity of guaranteeing a correct firewall behavior, users need to recognize and fix 

firewall misconfigurations in a swift manner. However, the complexity of dealing with firewall 

policies is they are attributed to the large number of rules, rules complexity and rules dependency. 

Those facts motivate a tool which visualizes all firewall rules in such a way that rule interactions are 

easily grasped and analyzed in order to come up with an opportune solution to any firewall security 

breach.  

In this chapter, we present PolicyVis, a useful tool in visualizing firewall policies. We describe 

design principles, implementations and application examples of PolicyVis.  We demonstrate how 

PolicyVis is used to discover firewall policy’s properties and rule anomalies (for single and 

distributed firewalls).  

Although network security visualization has been given strong attention in the research 

community, the emphasis was mostly on the network traffic [8] [18].  On the other hand, tools in [25] 

[38] visualize some firewall aspects, but don’t give users a thorough look at firewall policies.  

This chapter is organized as follows: in the next section, we describe PolicyVis design principles 

followed by descriptions of scenarios that show the usefulness of PolicyVis. Next, we show how rule 

anomalies are visualized by PolicyVis and demonstrate some examples of determining rule anomalies 

by using PolicyVis. We then describe visualization of distributed firewalls in PolicyVis followed by a 

discussion of the implementation and evaluation of PolicyVis.  
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2.2 PolicyVis Objectives and Design Principles 

2.2.1 Objectives 

PolicyVis is a visualization tool of firewall policies which helps users to achieve the following goals 

in an effective and fast fashion: 

Visualizing rule conditions, address space and action: a firewall policy is attributed by rules 

format, rules dependency and matching semantics. Comprehensive visualization of firewall policies 

requires a mechanism of transforming firewall rules to visual elements which significantly enhance 

the investigation of policies. PolicyVis effectively visualizes all firewall rule core elements: 

conditions, address space and action. 

Firewall policy semantic discovery: it is a very normal demand of users to know all possible 

behaviors of a firewall to its intended protected system. With advantages of visualization and many 

graphic options supported by PolicyVis, all potential firewall behaviors can be easily discovered, 

which are normally very hard to grasp in a usual context.  

Firewall policy rule conflict discovery: PolicyVis can be able to not only give users a view on 

normal rule interactions, but also pinpoint all possible rule anomalies in the policy. This is a crucial 

feature of PolicyVis to become a very helpful tool for users. All kind of rule conflicts can be 

efficiently visualized without worrying about running any algorithm to find potential rule conflicts.  

Firewall policy inspection based on users’ intention: with a policy of thousands of rules, it is much 

likely that the user will make configuration mistakes (not rule conflicts mentioned above) in the 

policy which causes the firewall to function incorrectly. PolicyVis brings all firewall rules to a 

graphic view so that all configuration mistakes are highlighted without any difficulty.  

Visualizing distributed firewalls: distributed firewalls security is as important as a single firewall, 

besides visualizing a single firewall; PolicyVis also lets users visualize distributed firewalls with the 

same efficiency in all goals mentioned above. 

2.2.2 Design Principles 

The fundamental design requirements for PolicyVis included: 

Simplicity: It should be fairly intuitive for users to inspect firewall policies in a 2D graph using 

multiple fields. We chose to compress firewall rules into 2D graph with 3 factors because it is much 

likely that a certain field (like source port) can be ignored or not important when investigating the 
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policy.  2D graph is simple but quite effective in terms of helping users thoroughly look into the 

policy’s behaviors.  

 Expressiveness: It is very important that users can easily capture true rule interactions so that 

appropriate actions can be taken immediately. PolicyVis supports very detailed and thorough 

visualization of all possible firewall rules’ behaviors by considering all rules fields, rule orders as 

well as all rule actions.  

 Flexible Visualization scope: PolicyVis allows users to visualize what they are interested in (the 

target: any rule field) so that all possible aspects of the policy can be viewed and analyzed. Moreover, 

with multiple dimensions support, PolicyVis is flexible in letting users choose desired fields for the 

graph coordinates, which is convenient and effective to observe and investigate the policy from 

different views. Besides, there are choices on type of traffic (accepted, denied or both) which can be 

viewed separately to meet users’ different purposes.  

Compress, Focus and Zoom: It is a normal thing to take a closer look at a specific set of rules 

when investigating the policy. PolicyVis supports zooming so that users can closely investigate a set 

of considered rules. This zooming feature is very useful if too many rules get involved in the 

investigation and the axes get crowded. In addition, PolicyVis gives users the ability to investigate 

rule anomalies existing in the policy through the focusing feature. With PolicyVis, users can also 

visualize the whole policy at once as well as portions of the policy partitioned by ranges of a specific 

field. This is a helpful feature of PolicyVis when users want to consider the policy applied to a subnet 

or a desired portion of the network. 

Using Policy segmentation: In order to investigate accepted or denied traffic only, policy 

segmentation with BDDs technique [1] is a powerful means employed by PolicyVis to increase the 

effectiveness and correctness of extracting useful information from the policy.  

Using symbols, colors, notations: Policies are attributed by rules format, rules dependency and 

matching semantics (rule order).  Moreover, firewall rules contain conditions (protocol, port and 

address), values (specific and wildcard) and actions (allowed and denied). PolicyVis visualizes those 

features using colors, symbols, and notations which are essential for users to capture quickly and 

easily the inside interactions and performance of firewall policies.  

2.3 Multi-level Visualizing of Firewall policies 

Using PolicyVis, multi-level visualizing of firewall policies can be accomplished effectively. With 

PolicyVis’ many flexible features, users can inspect the firewall policy from different views (like port 
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level, address level,..etc) to understand all potential inside behaviors of the policy. In order to achieve 

this goal, PolicyVis deploys many methods and techniques which efficiently bring firewall policies to 

expressive visual views. 

2.3.1 Using BDDs to segment policy and find accepted and denied spaces 

Firewall policy segmentation using Binary Decision Diagram or BDD was first introduced in [1] [19] 

to enhance the firewall validation and testing procedures. As defined in [1], a segment is a subset of 

the total traffic address space that belongs to one or more rules, such that each of the member 

elements (i.e., header tuples) conforms to exactly the same set of policy rules. Rules and address 

spaces are represented as Boolean expressions and BDD is used as a standard canonical method to 

represent Boolean expressions. By taking advantages of BDD’s properties, firewall rules are 

effectively segmented into disjointed segments each of which belong to either accepted or denied 

space. 

  

 

Table 2.1: Example of Firewall Policy Segmentation 

 

In specific, the authors in [19] suggest constructing a Boolean expression for a policy Pa using the 

rule constraints as follows: 

 

where index(a) is the set of indices of rules that have a as their action and Ci is the rule condition of 

conjunctive fields. In other words,  
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This formula can be understood as saying that a packet will trigger action a if it satisfies the 

condition Ci for some rule Ri with action a, provided that the packet does not match the condition of 

any prior rule in the policy. Table 2.1 shows an example of a policy of three intersecting rules 

forming total of four independent segments of policy address space.  

PolicyVis allows users to visualize only accepted or denied traffic; therefore it is important to 

efficiently extract those spaces from the policy. A naïve algorithm to achieve this might take 

exponential running time. Fortunately, policy segmentation using BDD is quite effective in doing 

this. We decided to employ BDDs for segmenting rules to quickly retrieve correct accepted and 

denied spaces. This makes PolicyVis a reliable and fast tool.  Policy rules are segmented using BDD 

right after they are read from the input file. This ahead-of-time rule segmentation speeds up the 

process when the user chooses to visualize only accepted or denied traffic.  

2.3.2 Firewall Visualization Techniques 

In this section, we describe the visualization techniques and methods used in our PolicyVis tool to 

achieve the objectives. More specific techniques and algorithms to visualize firewall anomalies are 

described in the “Rule Anomaly Visualization Methodology and Algorithm” section. 

To achieve the visualization effectiveness, PolicyVis supports both policy segments and policy 

rules visualization, which depends on properties of the policy users want to examine. When dealing 

with only accepted or denied space, PolicyVis visualizes policy segments obtained from using BDD 

as mentioned in the “Using BDDs to segment policy and find accepted and denied spaces” section. 

However, when users choose to investigate both accepted and denied spaces together, PolicyVis 

visualizes policy rules because the union of both spaces returns to the original rules. Moreover, 

visualizing policy rules in this case helps users capture all possible rule interactions which is hard to 

conceive by looking at separate visualizations of both spaces. 

When users investigate a firewall policy scope (a field and a value), PolicyVis collects all rules (or 

segments) that have the corresponding field as a superset of the scope input and visualizes those rules 

(or segments).  When choosing a scope to investigate, users want to inspect how the firewall policy 

applies to that scope, thus rules (or segments) that include only the address space of the target scope. 

Rules (or segments) are represented as rectangles with different colors to illustrate different kinds of 

traffic (accepted or denied). Those colors are set transparent so that rules overlapping with the same 

or different actions can be effectively recognized. Moreover, different symbols (small square and 

circle) placed at the corner of rectangles are used for different traffic protocols (e.g., TCP, UDP, 
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ICMP, IGMP) and notations (i.e., tooltips or legends) are used to determine rules’ order and related 

things.  

When multiple rectangles (rules or segments) are sketched from the same coordinates, colors and 

symbols might not be enough to tell what kind of traffic or protocol a rectangle belongs to. Additional 

notations are used to clearly indicate those properties. Round brackets are used to tell if a rectangle 

represents denied traffic, otherwise it represents allowed traffic. Curly brackets are used to denote 

UDP protocol, otherwise it is TCP protocol. 

PolicyVis uses three different rule fields to build the policy graph, two of which are used as the 

graph’s vertical and horizontal coordinates and the third field is integrated into the visualization 

objects (e.g., at the corner of rectangles) avoiding 3D graphs for simplicity. In general, by default, 

PolicyVis chooses the investigated scope as one of the coordinates (axes), and from 3 remaining 

fields, the least common field (discussed in the “Rule Anomaly Visualization Methodology and 

Algorithm” section)  will be the other coordinate and the second least common field will be the last 

dimension. 

Besides, PolicyVis places rule field values along x-axis and y-axis in such a way that the 

aggregated values (e.g, wildcards) precedes the discrete values in the axis, or closer to the origin of 

the graph. Moreover, the width, the length and the position of a rectangle are chosen based on its 

corresponding rule’s attributes so that an aggregated rule or segment (represented by a rectangle) 

contains its subset ones in the graph and disjoint segments or rules are represented by non-

overlapping rectangles (there are no adjacent rectangles and each rectangle covers only the rule field 

values of its x-axis and y-axis).   

2.3.3 Case Studies 

 

In this section, we created application scenarios to explore the potential of PolicyVis to help users 

find the policy misconfigurations. All the scenarios were created based on the single firewall policy 

shown in Figure 2.1.  
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Figure 2.1 : A single firewall policy 

 

 

 

Figure 2.2. Allowed traffic to port 22 
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Scenario 1: The admin receives an email from the SSH server development team mentioning that 

there currently exists a SSH server zero-day exploit in the wild. He wants to investigate the firewall 

policy for accepted traffic to port 22. The admin performs this investigation by choosing the target 

(scope): Destination Port with 22 as the input and viewing allowed traffic only as shown in Figure 

2.2. 

 

Observation:  policy segments that allow traffic to SSH (port 22) are extracted and visualized by 

PolicyVis as shown in Figure 2.2. Thus, the admin can then decide to block this traffic temporarily. 

 

 

Figure 2.3. Traffic blocked and allowed to 161.120.33.44 

 

Scenario 2:  The University’s student database is stolen and the database server with IP address 

161.120.33.44 (possibly compromised) is suspected that it is not protected well by the firewall. The 

admin wants to investigate the firewall policy applied to this server. He looks into the traffic allowed 

and blocked by the firewall for this IP address by choosing the target (scope): Destination Address 

with 161.120.33.44 as the input as shown in Figure 2.3. 

 

Observation: denied and allowed traffic to port 1433 (Microsoft SQL server) controlled by the 

firewall is almost like what the admin expected except the traffic from source address 140.192.37.2 
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(from rule number 1) which should not be allowed. The problem is traffic allowed to 161.120.33.* 

from rule 1 is also allowed to 161.120.33.44. Thus, the admin might remove or change Rule 1 from 

the firewall. 

 

Scenario 3: The University’s whole network is down because of a denial of service attack. The admin 

suspects that this attack is from a specific region in a country with network IP address starting with 

141.*.*.* aiming at many services including telnet, web, ftp, etc...  He needs to revise the firewall 

policy for any traffic from any IP address starting with 141.*.*.*. The admin chooses the target 

(scope): Source Address with 141.*.*.* as the input and selects Destination Port (corresponding to 

University’s network services) as one of the graph dimensions as shown in Figure 2.4. 

 

 

Figure 2.4. Controlled traffic from 141.*.*.* 

 

Observation: the firewall policy currently blocks traffic to telnet service (port 23) and web service 

(port 80) from some IP addresses starting with 141, however, SMTP service (port 25) and FTP 

service (port 21) are accessible from most of IP addresses starting with 141 and hence vulnerable to 

the attack.  Thus, the admin may set firewall rules to block traffic from some or all addresses starting 

with 141 to those services as well.  
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Figure 2.5. Firewall policy for destination port 69 

 

Scenario 4: The University maintains two replicated TFTP servers (port 69) with IP addresses 

161.122.33.43 and 161.122.33.44 to satisfy students’ high demand of downloading video lectures and 

also increase the downloading speed. However, several students still complain about low 

downloading speed and sometimes they are blocked from downloading. The admin first checks the 

two servers and sees that they both are working well. He suspects that he might make mistakes when 

writing firewall rules for the two servers so that one of them might not function as wanted. He needs 

to check the firewall policy and expects that the policy for both servers should be the same because 

they are replicated and have the same mission. The admin chooses the target (scope): Destination 

Port with 69 as the input as shown in Figure 2.5. 

 

Observation: traffic controlled by the firewall to the two servers is not the same. The admin 

recognizes that he made mistakes blocking traffic from 144.*.*.* and 145.*.*.* to server 

161.122.33.44 when they should be allowed as to server 161.122.33.43. Thus, the admin corrects his 

mistakes by changing the actions in the corresponding rules in the firewall. 
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2.4 Visualizing Rule Anomalies 

2.4.1 Definition 

In this section, we mention crucial definitions and concepts of firewall policy anomalies introduced in 

[15] so that readers can understand how PolicyVis visualizes rule anomalies described in the “Rule 

Anomaly Visualization Methodology and Algorithm” section. 

 A firewall policy conflict is defined as the existence of two or more filtering rules that may match 

the same packet or the existence of a rule that can never match any packet on the network paths that 

cross the firewall.  

Shadowing anomaly: a rule is shadowed when a previous rule matches all the packets that match 

this rule and they have different actions. The shadowed rule will never be activated.  

Generalization anomaly: a rule is a generalization of a preceding rule if they have different actions 

and if the second rule can match all the packets that match the first rule.   

Redundancy anomaly: a redundant rule performs the same action on the same packets as another 

rule such that if the redundant rule is removed, the security policy will not be affected. 

Correlation anomaly: two rules are correlated if they have different filtering actions, and the first 

rule matches some packets that match the second rule and the second rule matches some packets that 

match the first rule. 

2.4.2 Rule Anomaly Visualization Methodology and Algorithm 

As the number of firewall rules increases, it is very likely that an anomaly will exist in the policy 

which threatens the firewall’s security. Anomaly discovery is necessary in order to ensure the 

firewall’s concreteness. Firewall policy advisor [15] is the first tool to discover anomalies in a 

firewall policy. However, it is not as expressive as PolicyVis in anomaly discovery and does not give 

users a visual view on how an anomaly occurs.  

Four classes of firewall policy anomalies mentioned previously are visualized by PolicyVis. These 

anomalies are easily pinpointed by overlapping areas on the graph because an overlapping area 

represents for rules with overlapping traffic, which can potentially cause firewall policy anomalies. 

Each of the anomalies has specific features that are easily recognized on the PolicyVis graph because 

its corresponding overlapping area is formed (or look) differently in terms of rectangles position, 

colors and notations. These features are different for all four anomalies.  
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As PolicyVis visualizes rules in 2D-graph which shows users only 3 fields on the graph, an 

overlapping traffic area is a feature of a potential anomaly, however, it sometimes does not indicate 

that the corresponding rules are really overlapping because their 4
th
 field might be different.  

Nonetheless, PolicyVis still lets users visualize real anomalies by allowing related rules to be 

investigated more closely. When the user wants to investigate an overlapping area, he simply clicks 

on it and PolicyVis will focus on more details of the related rules.   

PolicyVis first collects all rules containing the selected area, and then sketches a different graph 

for these rules. In order to correctly view real anomalies with only 3 fields used on the graph, 

PolicyVis needs to choose a left-out field which is the same for all the related rules. This common 

field is guaranteed to exist because related rules from an overlapping area must have at least 2 fields 

in common. PolicyVis selects the most common and least important field to be the left-out one if 

there are multiple common fields among the related rules.   

Moreover, among three fields used for the focusing graph, PolicyVis picks the most common field 

over the related rules to be the third coordinate (the one integrated into visualization objects), and 

chooses the other two fields as the graph normal coordinates (used for axes). This coordinate 

selection technique assures users that, from this focusing view, an overlapping area definitely 

indicates at least one anomaly in the policy.  

To find the most common field over some firewall rules, for each rule field excluding the Action 

field, PolicyVis needs to find a rule’s field value which is a subset of all other rules’ field values, and 

compute the number of rules that have the field value equal to that rule’s field value. The field that 

has the biggest number is the most common field over the rules. The algorithm 

FindMostCommonField to find the most common field is implemented as shown in Table 2.2.  
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How to recognize anomalies in PolicyVis:  

The rules order is an important factor in understating the policy semantic and determining the firewall 

anomaly types, especially between shadowing and generalization anomalies. Besides allowing users 

to see the rules order by moving the mouse over the overlapping area, PolicyVis also uses 

surrounding rectangles (not color-filled)  around the overlapping rule rectangles only in the focusing 

view to visualize rules or rectangles order in each overlapping area. The width (and height) difference 

Algorithm FindMostCommonField 

Input: rules 

Output: the most common field among the input rules 

 1:   for each field in rule.fields/{action} 

 2:        if field = dest_ip or field = src_ip  
 3:     Cfield  = *.*.*.* 
 4:        end if 

 5:        if field = dest_port or field = src_port 
 6:      Cfield  = * 
 7:        end if 

 8:        for each rule i in rules {find a field value which is a subset of all other field values} 

 9:     Cfield = Cfield  ∩ Ri.field 
10:       end for  

11:       Nfield = 0  
12:       for each rule i  in rules {count the number of rules having the field value equal to 

the common subset value} 

13:   if Ri.field  = Cfield  

14:      Nfield = Nfield + 1 
15:           end if    

16:       end for     

17:   end for 

18:   N = max(Ndest_ip  , Nscr_ip   , Ndest_port  , Nscr_port) {choose the most common field} 

19:   if N = Nsrc_port 

20:          return src_port 
21:   end if 

22:   if N = Ndest_port 

23:     return dest_port 
24:   end if 

25:   if N = Nsrc_ip 

26:     return src_ip 
27:   end if 

28:   if N = Ndest_ip 

29:     return dest_ip 
30:   end if 

Table 2.2: Algorithm to find the most common field 



 

 19 

between a rule rectangle and its surrounding one in an overlapping area is called boarder and it 

basically shows the rule order: the rule or rectangle with bigger boarder comes first in the policy. This 

technique will offer an easy way to determine the type of the anomaly visually and without any 

manual investigation. 

 

Figure 2.6.  Diagram to determine possible anomalies 

Shadowing and generalization anomalies:  These two anomalies can be recognized by a rectangle 

totally contained in another rectangle but have different colors (different filtering actions), the rules 

order (based on extra rectangles) will decide which anomaly the overlapping area belongs to.  

Redundancy anomaly: The features used to recognize this anomaly are almost the same as features 

used to pinpoint shadowing and generalization anomalies. Instead of having different colors, the 

overlapping rectangles should have the same color (same filtering action) and there is no another 

different color rectangle appears between them. 

Correlation anomaly: This anomaly is corresponding to two rectangles with different colors 

partially contained in each other.  

If two rectangles are not overlapping, there is no anomaly between two rules represented by those 

two rectangles. With the help of PolicyVis, it is straightforward to pinpoint all anomalies that might 

exist in the firewall policy. Figure 2.6 summarizes the method to determine different rule anomalies 

which is very effective in a visualized environment like PolicyVis. 
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2.4.3 A Case Study 

Using PolicyVis to investigate the firewall policy shown in Figure 2.7, the firewall rules are 

visualized as shown in Figure 2.8. The admin sees many overlapping areas which might contain 

potential rule anomalies.  

There are five suspected overlapping areas (numbered on the graph) which the user believes 

contain rule anomalies. From this view only, he suspects that: 

 

1. potential of shadowing anomaly 

2. potential of generalization anomaly 

3. potential of correlation anomaly 

4. potential of redundancy anomaly 

5. potential of generalization anomaly 

 

 

Figure 2.7. An example of a firewall policy 
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Figure 2.8. Many potential anomalies in the policy (these arrows are manually inserted) 

 

 

Figure 2.9. Shadowing anomaly between rule 3 and rule 4 (area number 1 from Figure 2.8) 

 

 

However, in order to make sure that those anomalies are real anomalies, the admin needs to 

closely investigate each overlapping area. To do this, the admin simply clicks on each selected 

overlapping area and PolicyVis will focus on and show a more elaborated view for that area. 
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Shadowing anomaly visualization: When the admin clicks on the overlapping area number 1 

(Figure 2.8), he is brought to the view where all traffic has the same Destination IP address 

161.120.33.41 as shown in Figure 2.9. From this view, it is clear that there is a shadowing anomaly 

between rule 3 and rule 4 (rule 4 is shadowed by rule 3) because the rectangle representing rule 4 is 

totally contained in the rectangle representing rule 3 and they have different colors. “Rule 3” and 

“Rule 4” tooltips appear in this case because the admin moves the mouse over the overlapping area. 

Without these tooltips, the admin can still tell that this is a shadowing anomaly because he knows the 

outer rectangle comes first in the policy based on the surrounding rectangles.   

 

 

Figure 2.10. Generalization anomaly between rule 5 and rule 6 (area number 2 from Figure 

2.8)  

 

Generalization anomaly visualization: When the admin clicks on the overlapping area number 2 

(Figure 2.8), he is brought to the view where all traffic has the same Destination IP address 

161.120.33.43 as shown in Figure 2.10. From this view, it is clear that there is a generalization 

anomaly between rule 5 and rule 6 (rule 6 is a generalization of rule 5) because the rectangle 

representing rule 5 is totally contained in the rectangle representing rule 6 and they have different 

colors. Moreover, without the tooltips (“Rule 5” and “Rule 6”), the admin still can tell that the inner 

rectangle comes first in the policy based on the surrounding rectangles and hence this is a 

generalization anomaly. 
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Figure 2.11. Correlation anomaly between rule 1 and rule 2 (area number 3 from Figure 

2.8) 

 

 

Correlation anomaly visualization: When the admin clicks on the overlapping area number 3 

(Figure 2.8), he is brought to the view where all traffic has the same Destination Port 20 as shown in 

Figure 2.11. From this view, it is clear that there is a correlation anomaly between rule 1 and rule 2 

because the rectangle representing rule 1 is partially overlapped with the rectangle representing rule 2 

and they have different colors. 

 

 

Figure 2.12. Redundancy anomaly between rule 2 and rule 13 (area number 4 from Figure 

2.8) 

 



 

 24 

Redundancy anomaly visualization: When the admin clicks on the overlapping area number 4 

(Figure 2.8), he is brought to the view where all traffic has the same Destination IP address 

161.120.33.43 as shown in Figure 2.12. From this view, it is clear that there is a redundancy anomaly 

between rule 2 and rule 13 (rule 13 is redundant to rule 2) because the rectangle representing rule 13 

is totally contained in the rectangle representing rule 2 and they have same color. 

 

 

Figure 2.13. There is no anomaly in this case (area number 5 from Figure 2.8) 

 

Overlap but no anomaly: When the admin clicks on the overlapping area number 5 (Figure 2.8), 

he is brought to the view where all traffic has the same Destination IP address 161.120.33.45 as 

shown in Figure 2.13. From this view, it is clear that there is no anomaly because the rectangles 

representing rules are not overlapping. Rule 11 and Rule 12 are overlapped in Fig.8 because Rule 

11’s  Destination Address and Source Address are subsets of Rule 12’s  Destination Address and 

Source Address respectively and those 2 fields with Destination Port are chosen as dimensions for the 

view as shown in Figure 2.8. However, Rule 11 and Rule 12 have different Source Ports which is 

automatically chosen by PolicyVis as one of the dimensions for the new view as shown in Figure 2.13. 

2.5 Visualizing Distributed Firewall Policy Configuration 

2.5.1 Concept 

While a single firewall is normally deployed to protect a single subnet or domain, distributed 

firewalls are essential for protecting the entire network. Any misconfiguration or conflict between 

distributed firewalls might cause serious flaws or damages to the network [14]. 



 

 25 

Anomalies exists not only in a single firewall but also in inter-firewalls if any two firewalls on a 

network path take different filtering actions on the same traffic. It is always a higher chance that 

distributed firewalls contain rule anomalies than a single firewall because of the decentralized 

property in distributed firewalls management. It is possible that each single firewall in the network 

might not contain any rule anomaly, but there are still anomalies between different firewalls. 

Visualizing distributed firewalls gives the same benefits as visualizing single firewalls in 

achieving policy behavior discovery, policy correctness checking and anomaly finding.  Distributed 

firewalls are considered as a tree where the root is the borderline firewall which directly filters traffic 

in and out of the network. Each node in the tree represents a single firewall which can be placed 

between subnets or domains in the network.  

A packet from outside of the network in order to get through a firewall needs to pass all filterings 

of all firewalls from the root to the node representing that firewall. In the distributed firewalls view, 

PolicyVis creates a firewall tree based on the network topology input files and let the user pick a path 

(from the root to any node) he wants to examine. PolicyVis then builds up a rule set for that path by 

simply reading rules from nodes in order from the root to the last node. After that, PolicyVis 

considers this rule set as for a single firewall and visualizes it as before. 

2.5.2 A Case Study 

The admin wants to investigate the distributed policy configuration applied to traffic to the Network 

Lab. He first changes the view to Distributed Firewalls view and expands the tree to get to the 

Network Lab node. As shown in Figure 2.14, PolicyVis creates a new rule set containing all rule sets 

from firewalls on the path in this order: University of Waterloo, Math faculty, CS department and 

Network Lab.   

After building up the rule set for the path from University of Waterloo to Network Lab, PolicyVis 

allows the admin to start visualizing the path policy. In this visualization, the admin chooses to 

investigate all rules on this firewall path that control traffic to any destination address in the 

university network by choosing the scope Destination Address with value 161.*.*.*. 
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Figure 2.14. An example of distributed firewalls 

 

In this case, there are multiple subnets getting involved because multiple firewalls are considered 

at once. PolicyVis not only lets the admin visualize all the subnets at the same time, but also supports 

a single view on each subnet and the admin can switch views between subnets easily. In this example, 

there are six subnets whose traffic are controlled by the firewalls on the path and the Network Lab 

subnet 161.120.33.* is currently viewed and analyzed by the admin (Figure 2.15). The admin can 

change the view to a different subnet by clicking on the Next or Previous button.  

 

It is easy to recognize that while the single firewall placed at the Network Lab subnet (Figure 2.16) 

which only controls traffic to 161.120.33.*  does not contain any anomaly, the distributed firewalls 

(Figure 2.15) seems to have anomalies (overlapping areas). In fact, there is a shadowing anomaly in 

this case between a rule in the University of Waterloo firewall and a rule in the Network Lab firewall. 
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Figure 2.15. Visualization of all firewall policies to subnet 161.120.33.* 

 

 

Figure 2.16. Visualization of the Network Lab subnet firewall 
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2.6 Implementation and Evaluation 

We implemented PolicyVis using Java and Jfreechart [13], a free open source Java chart library, in 

PolicyVis to make it easy for displaying charts in the graph. We also used Buddy [26] for BDD 

representation of firewall policies. 

In this section, we present our evaluation study of the usability and efficiency of PolicyVis. To 

access the practical value of PolicyVis, we not only created firewall policies randomly (with and 

without rule anomalies), but also used real firewall rules from our own machines for the evaluation 

study. 

 Each firewall used in the evaluation test has from 30 to 45 rules. We then asked 11 people (with 

varying level of expertise in the field) under test to use both PolicyVis and raw firewall rules to find 

some specific firewall properties (like what traffic is allowed to a chosen domain or which machine 

has Web accessible web traffic and so on), firewall  and locate rule anomalies in the firewalls. We 

recorded the time to answer each task by using each method for all people and computed the average 

time over all. 

 

Task\ Method PolicyVis Raw firewall rules 

Find firewall properties 3.12 minutes 10.44 minutes 

Find firewall anomalies 1.98 minutes 12.78 minutes 

Table 2.3: Average estimated time to achieve each task by using each method 

People in this evaluation test were getting familiar with PolicyVis very quickly and very confident 

with features supported by PolicyVis. As shown in Table 2.3, the average time to achieve each task 

by using PolicyVis is much faster than by investigating raw firewall rules, especially in finding 

firewall anomalies (with small standard deviation).  This evaluation test demonstrated that PolicyVis 

is a very user-friendly tool with high usability and efficiency. 
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Chapter 3 

Snort Policy Misconfigurations 

3.1 Snort Rule Background 

Snort [33] is a  popular, free and open source Network Intrusion Prevention System  and Network 

Intrusion Detection  capable of performing packet logging and real-time traffic analysis on IP 

networks. Snort might be considered a lightweight NIDS because it has a small footprint, has 

relatively small requirements, does not always demand a suite of specialized servers, and runs on a 

variety of operating systems [10]. Even though Snort supports some anomaly detection through its 

pre-processors, Snort is more like a signature-based NIDS and famous for its intrusion detection 

capabilities that match packet contents against a set of rules. Snort rules are easy to write and Snort 

supports a strong and flexible rule language with a variety of options, which allow users to inspect all 

fields of a packet. A snort rule has two parts: rule header and rule body.   

3.1.1 Rule Header 

A Snort rule header contains the following options: 

Action: the type of action to take when the rule matches a packet. The action can be Pass (tell 

Snort to ignore the packet), Log( tell Snort to log the packet), Alert (tell Snort to send an alert 

message), Activate (create an alert and then activate another rule for checking more conditions), or 

Dynamic (Dynamic action rules are invoked by other rules using the Activate action). Besides these 

actions, a user can define his own action for different purposes. 

Protocol: the type of packet the rule matches. The protocol can be IP, ICMP, TCP or UDP. 

Address: there are two address parts in a rule header. These addresses are used to check the source 

from which the packet originated and the destination of the packet.  The address can be a defined 

variable, a single IP address, a CIDR block or a list of these.  

Port: there are two port parts in a rule header. One is for the source and the other is for the 

destination of the matching packet.  The port can be a defined variable, a single port number, or a port 

range.  

Direction: this field determines the source and destination addresses and port numbers in the rule 

header. A “�” symbol means the source is on the left and the destination is on the right. A “” 

symbol means the source is on the right and the destination is on the left. A “<>” symbol shows that 
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the rule will be applied to packets traveling on either direction.  In this thesis, we assume that only    

“�” is used because a rule using ““ or “<>” can be rewritten (or splitted) to use the “�” direction.   

3.1.2 Rule Body 

The rule body begins and ends with the open and brackets “()”. There are five types of options that 

can be used in the rule body:  General rule options, Payload detection, Non-payload detection, Post-

detection, and Event thresholding. 

General rule options: these options provide Snort with information about the rule itself or pass on 

information to the analyst. Examples: msg, reference, classtype, etc.   

Payload detection options: these options let users look inside the packet payload. Examples: content, 

uricontent, depth, offset, distance, byte_test, etc.  

Non-Payload detection options: these options let users look for non-payload data, like inside the 

packet header. Examples: dsize, flowbits, ttl, flags, etc. 

Post-Detection options: these options specify actions Snort will take if the rule is fired. Examples: 

logto, tag, resp, etc. 

Event thresholding options: these  options can be used to reduce the number of logged alerts for 

noisy rules. Examples: limit, threshold, both, etc. 

  

Here is an example of a Snort rule from [9]: 

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"BLEEDING-EDGE EXPLOIT 

CVSTrac filediff Arbitrary Remote Code Execution"; flow: to_server,established; uricontent:"filediff|3f|f="; nocase; 

pcre:"/filediff\?f=.+&v1=[\d.]+&v2=[\d.]+\;.+/Ui"; reference:bugtraq,10878; reference:cve,2004-1456; 

classtype:web-application-attack; sid:2002697; rev:4;)   

This rule is used to detect any attempt to use filediff from the CVSTrac application to execute 

arbitrary code on the HTTP server. 

• Rule header:  alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 80. This rule will alert on 

tcp packets from source address $EXTERNAL_NET (this is a variable defined in snort.conf 

), source port any to destination address $HTTP_SERVERS (defined in snort.conf), 

destination port 80. Moreover, those packets need to match the following rule body: 

• Rule body: (msg:"BLEEDING-EDGE EXPLOIT CVSTrac filediff Arbitrary Remote Code Execution"; 

flow:to_server,established;uricontent:"filediff|3f|f=";nocase;pcre:"/filediff\?f=.+&v1=[\d.]+&v2=[\d.]+\;.+

/Ui"; reference:bugtraq,10878; reference:cve,2004-1456; classtype:web-application-attack; 

sid:2002697; rev:4;). The msg option tells Snort to log the message inside the quotations if 
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the rule is triggered. The flow:to_server, established option tells Snort to match only 

packets sent from server and from an established connection. The uricontent option 

requires a packet to contain the string inside the quotations in its normalized URI (nocase 

means no case sensitive). The pcre option requires a packet to contain a string that 

matches the regular expression inside the quotations. The reference options show the 

reference source of the attack. The classtype option denotes the type of the attack, which is 

web application attack.      

 

 

3.2 Snort Rule Misconfigurations 

A snort policy misconfiguration is any kind of error or mistake in rule specification that causes at 

least one of the following problems: 

Snort misbehaves: Snort does not carry out the policy exactly as the user expected. This will cause 

false positives or false negatives. In other words, Snort will raise an alert on benign traffic or miss 

real attacks.  

Snort performs poorly: Snort takes longer time than it should to carry out the policy. In the worst 

case, Snort cannot function properly anymore or stops functioning. 

In this section, we classify various Snort rule misconfigurations and give examples for each of 

those. However, we only consider misconfigurations based on the rules themselves and assume that 

all other different components related to the intrusion detection are well configured. Moreover, within 

the scope of this thesis, it is impossible to give solutions for all Snort rule misconfiguration classes. 

Instead, we deliberately concentrate on a class of flowbits misconfiguration that makes Snort 

susceptible to false negatives. We show how the flowbits misconfiguration can be exploited, propose 

a method to detect the flowbits misconfiguration and suggest practical solutions with controllable 

false positives to fix the misconfiguration. 

There are two kinds of misconfigurations that can occur in a Snort policy: misconfigurations 

within a single rule and those amongst multiple rules.  

3.2.1 Misconfigurations  Within a Single Rule 

•  Rule with redundant option(s): A redundant option in a rule does not have any effect on how the 

rule matches a packet. In other words, a redundant option can be removed from the rule without 
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changing the rule’s semantics. A rule with redundant options potentially causes false positives and 

false negatives.  If the user mistakenly provides a redundant option and still thinks that the option 

contributes to the rule’s semantics, it is very likely that the rule will not work as expected. Here are 

two examples: 

Example 1: alert tcp any any -> any any (content:”shell”; offset:3; offset:4;) 

The offset option is a modifier to the content option and it allows the rule writer to specify where 

to start searching for a pattern within a packet. There are two offset modifiers to the content option in 

this rule. The first offset (offset:3) is a redundant option and only the second offset (offset:4) (comes 

after in the rule) contributes the rule’s semantics. A packet with the payload starting with “xxxshell” 

(where ‘x’ is any character) does not trigger this rule. 

 

Example 2: alert tcp any any -> any 80 (content:”shell”; http_client_body; http_uri;) 

In this rule, while the http_client_body  option restricts the search for “shell” to the normalized 

body of an HTTP client request, the  http_uri option restricts the search for “shell” to the normalized 

request URI field. The http_client_body option is redundant because only the http_uri option (comes 

after in the rule)  contributes to the rule’s semantics. This rule does not match an HTTP request that 

contains “shell” in its normalized body but does not have “shell” in its normalized URI field.   

 

•  False rule: A rule that has inconsistencies amongst its options’ values which cause the rule always 

evaluated to false. This kind of rule never matches any packet. Inconsistencies can happen amongst 

options within the rule body, or between options in the rule header and the rule body. Here are some 

examples of false rules:       

Example 1: alert tcp any any -> any any (content:”AA”; dsize:1;) 

This rule will not match any packet because there is no packet with the payload of size 1 byte and 

the payload contains “AA” which is 2 bytes.   

 

Example 2: alert tcp any any -> any any (content:”AAA”; offset:5; dsize:4;)  

This rule is false because it matches any packet with the payload of size 4 bytes but expects the 

packet payload contain the string “AAA” from the 5
th
 byte. 
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Example 3: alert tcp any any -> any any (content:”|00|”; depth:2; content:”|01|”; depth:2;)  

This rule will not match any packet because the first 2 bytes of any packet payload cannot be “00” 

and “01” at the same time. 

 

Example 4: alert tcp any any -> any any (isdataat:5; dsize:2;) 

This rule is false because there is no packet with the payload of size 2 bytes and the payload has 

data at the 5
th
 byte. 

 

Example 5: alert tcp any any -> any any (msg:”malicious matching rule”; content:”|00|”; flowbist:isset,test; 

flowbits: isnotset, test;) 

 

This rule is false because the flowbits constraints are never satisfied. The label “test” cannot be set 

and not set at the same time.  

 

Example 6: alert tcp 10.10.1.0 any -> 10.10.1.1 any (sameip;) 

This rule will not match any packet because the option sameip only matches packets having the 

same source and destinations addresses. However, the source and destination addresses from the rule 

header are different.    

 

•  Loose rule: A rule with simple matching options that possibly matches a lot of traffic, which 

potentially causes   false positives.  We consider a loose rule as a misconfiguration not only because it 

potentially causes false positives, but also because it can be exploited to bypass Snort detection 

(causes false negatives) when the flowbits option is used (discussed in Section 3.3). 

 

•  Slow rule: To avoid some evasion cases, Snort must use recursion (on payload detection options) 

to perform pattern matching.  The order of matching options (in the rule body) in a rule might affect 

the rule matching performance. A slow rule is defined as a rule without optimized order of matching 

options. A slow rule can be rewritten to achieve better matching performance, especially against 

unmatched packets. Here are two examples of slow rules: 

 

Example 1: R1: alert tcp any any -> any any (content:”shell”; dsize:5;) 

                  R2: alert tcp any any -> any any (dsize:5; content:”shell”;)  
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R1 and R2 have the same matching semantics; however R1 is a slow rule and R2 has optimal order 

of matching options. While a packet with payload containing 10 “shell”s could cause R1 to perform 

10 pattern match attempts and 10 dsize checks, R2 will stop checking this packet immediately after 

the dsize option fails to match.    

 

Example 2: R1: alert tcp any any -> any any (content:”A”; content:”AA”; content:”AAA”;) 

                  R2: alert tcp any any -> any any (content:”AAA”; content:”AA”; content:”A”); 

R1 and R2 have the same matching semantics; however R1 is a slow rule and R2 has optimal order 

of matching options. While a packet with payload “AA” causes R1 to perform at least 3 pattern match 

attempts, R2 will stop checking this packet immediately after the first pattern “AAA” fails to match.    

 

 

3.2.2 Misconfigurations Amongst Multiple Rules 

Misconfigurations occur amongst multiple rules when the order of rule triggering affects the 

correctness of Snort detection. In other words, the triggering of one rule depends on the triggering of 

one or many other rules. In this thesis, we assume that Snort is configured with the default rule 

application order activate� dynamic�pass�alert�log.  It means that Snort will match a packet in 

this order of rule types.  

In Snort, there are 3 ways in which the triggering of one rule might affect the triggering of another 

rule: 

a) Pass rules: for activate, dynamic, alert and log rules, Snort allows multiple events trigger. It 

means that Snort does not stop applying rules to a packet when a match is made for these 

rules.  However, when a packet matches a pass rule, it is not processed by Snort anymore. 

Therefore, the triggering of a pass rule might affect the triggering of an alert or log rule.  

b) Dynamic/Activate rules: a dynamic rule is able to trigger only if its corresponding activate 

rule is triggered. Therefore, the triggering of a dynamic rule depends on the triggering of its 

corresponding activate rules.  

c) Rules using the flowbits option: the flowbits option allows Snort to detect an intrusion over 

multiple rules and multiple packets.  Within a flowbits rule set, the triggering of one rule 

depends on the triggering of one or many rules in the rule set. 
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While the triggering of a pass rule might affect the triggering of an alert or log rule on the same 

packet, the triggering affection in dynamic/activate rules and rules using the flowbits option occur on 

different packets, i.e., the triggering of one rule on a packet might affect the triggering of another rule 

on another packet. Therefore, we divide misconfigurations amongst multiple rules into two 

corresponding classes: misconfigurations on a single packet and misconfigurations on multiple 

packets.  

 

3.2.2.1 Misconfigurations On A Single Packet  

Considering misconfigurations on the same packet, Snort rules also have the same types of 

misconfigurations as in firewall rules [15]. However, compared with a firewall rule, a Snort rule has 

one more tuple, which is the rule body. A snort rule has the following format: 

<action>  <protocol> <src_ip>  <src_port>  ����  <dst_ip> <dst_port>  <body> 

A packet can be considered as a binary string. Let LR represent all strings that match R’s body. We 

first define all possible relations that may exist between Snort rules (independent of the rule action), 

and then we classify different misconfigurations that may exist based on these relations. 

Definition 1: Rx and Ry are disjoint if  

∃ i: Rx[i] ∩ Ry[i] = ∅ where i ∈  {protocol, s_ip, s_port, d_ip, d_port, LR} 

We denote Rx RD Ry. 

Definition 2: Rx and Ry are exactly matching if  

∀i: Rx[i] = Ry[i] where i ∈  {protocol, s_ip, s_port, d_ip, d_port, LR} 

We denote Rx REM Ry. 

Definition 3: Rx and Ry are inclusively matching if they are not exactly matching and 

∀i: Rx[i] ⊂ Ry[i] or Rx[i] = Ry[i] where i ∈  {protocol, s_ip, s_port, d_ip, d_port, LR} 

Rx is called the subset match and Ry  is called the superset match. 

We denote Rx RIM Ry. 

Definition 4: Rx and Ry are correlated if they are neither exactly matching nor inclusively matching 

and   

∀i: Rx[i] ∩ Ry[i] ≠ ∅ where i ∈  {protocol, s_ip, s_port, d_ip, d_port, LR} 

We denote Rx RC Ry. 
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It is easy to see that any two Snort rules are related by one and only one of the defined relations. 

Based on these relations, we classify all possible misconfiguations on the same packets as follows:                                                                                                                              

 

•  Shadowing misconfiguration: a rule is shadowed if the rule’s action is alert or log and there is a 

pass rule that matches all the packets that match this rule. A shadowed rule is never triggered. 

Formally, rule Ry is shadowed by rule Rx if the following conditions hold: 

Rx[action] = pass, Ry[action] = alert or log, Ry REM  Rx  or Ry RIM  Rx 

Example: R1: pass tcp 192.168.0.100 � 192.168.1.109 (content:”water”;) 

               R2:  alert tcp 192.168.0.100 � 192.168.1.109 (content:”waterloo”;) 

In this example, R2 is shadowed by R1 because R1 matches all the packets that match R2. R2 is 

never triggered because all packets that match R2 will be let through by R1.  

 

•  Generalization misconfiguration: an alert (or log) rule is a generalization of a pass rule if the alert 

(or log) rule matches all the packets that match the pass rule. Formally, rule Rx is a generalization of 

rule Ry if the following conditions hold: 

Rx[action] = alert or log, Ry[action] = pass, Ry RIM  Rx 

Example: R1: alert tcp 192.168.0.100 � 192.168.1.109 (content:”water”;) 

               R2: pass tcp 192.168.0.100 � 192.168.1.109 (content:”waterloo”;) 

In this example, R1 is a generalization of R2 because R1 matches all the packets that match R2. 

Some packets which match R1 will be dropped by R2.   

 

•  Redundancy misconfiguration: a redundant rule has the same action on the same packets as 

another rule such that if the redundant rule is removed, the security policy will not be affected. 

Formally, rule Ry is redundant to rule Rx if the following conditions hold: 

Rx[action] = Ry[action],  Ry REM  Rx or Ry RIM  Rx 

Example: R1: log tcp 192.168.0.100 -> 192.168.1.* (content:”water”;) 

               R2: log tcp 192.168.0.100 -> 192.168.1.109 (content:”waterloo”;) 

In this example, R2 is redundant to R1 because both rules tell Snort to log matched packets and all 

packets triggering R2 will trigger R1.      
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•  Correlation misconfiguration: Two rules are correlated if one rule’s action is alert or log and the 

other rule’s action is pass. The first rule matches some packets that match the second rule and the 

second rule matches some packets that match the first rule. Formally, rule Rx and Ry are correlated if 

the following conditions hold: 

Rx[action] = pass, Ry[action] = alert or log, Ry RC  Rx 

Example: R1: pass tcp 192.168.0.100 -> 192.168.1.109 (content:”waterloo”;) 

               R2: alert tcp 192.168.0.100 -> 192.168.1.* (content:”university”;) 

In this example, R1 and R2 are correlated because they both match packets from 192.168.0.100 to 

192.168.1.109 with the payload containing both “waterloo” and “university”. However, R1 does not 

match packets from 192.168.0.100 to 192.168.1.109 with the payload “university”, which match R2. 

On the other hand, R2 does not match packets from 192.168.0.100 to 192.168.1.109 with the payload 

“waterloo”, which match R1. 

  

3.2.2.2 Misconfigurations On Multiple Packets 

•  Missing corresponding rule: activate and dynamic rules always go together as a pair. This 

misconfiguration occurs when there is an activate rule without its corresponding dynamic rule or vice 

versa. 

 

•  Unreachable rule: this misconfiguration has the same effect as the shadowing misconfiguration on 

a single packet, i.e., a rule is never triggered (even though the rule is not a false rule). However, the 

cause of this misconfiguration is one of the followings: 

o A dynamic rule is unreachable: if the corresponding activate rule is a false rule 

o A flowbits rule is unreachable: each flowbits rule set can be represented or modeled by a DFA 

(more details are discussed in Section 3.3). A flowbits rule is unreachable if the states from 

which the rule can be triggered are not reachable. Either these states are not reachable from 

the flowbits rules set’s DFA, or one (or more) another flowbits rule is shadowed (or a false 

rule) that causes these states unreachable. 

 

Example: R1: alert tcp any any -> any 80 (content:”waterloo1”; flowbits:set, label1;noalert) 

    R2: alert tcp any any -> any 80 (content:”waterloo2”; dsize:3;flowbits:set, label2;noalert); 

    R3: alert tcp any 80 -> any any (content:”waterloo3”; flowbits:isset, label2; flowbits:set,label3; noalert) 
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   R4: alert tcp any any -> any 80 (msg:”attack 1 detected”; content:”waterloo4”; flowbits:isset, label1;) 

   R5: alert tcp any any -> any 80 (msg:”attack 2 detected”; content:”waterloo5”; flowbits:isset, label4;) 

This flowbits rule set has 5 rules. R5 can be triggered only if label4 is set (flowbits:isset, label3;), 

however, there is no rule in the rule set that sets label4. Therefore, R4 is unreachable. Moreover, R3 

can be triggered only if label2 is set, however, R2 is the only rule that sets label2 and R2 is a false 

rule. Hence, R3 is unreachable. 

 

•  False rule set: this misconfiguration is similar to the false rule misconfiguration within a single 

rule. However, this miconfiguration is related to the detection of a rule set instead of a single rule. A 

pair of activate/dynamic rules or a flowbits rule set raises an alert on a sequence of packets. The set of 

all packet sequences that trigger an alert can be considered as the rule set’s detection language (more 

details are discussed in Section 3.3). A rule set is false if its detection language is empty. A false rule 

set never raises an alert on any packet sequence.  

 

Example: considering the rule set used as the example for the unreachable rule misconfiguration, if 

R4 is shadowed by a pass rule, then both R4 and R5 are unreachable. Because only R4 and R5 can 

raise an alert (other rules use the noalert option), the rule set therefore will not raise an alert on any 

packet sequence. This makes it a false rule set. 

 

• Vulnerable rule set: a flowbits rule set makes Snort susceptible to false negatives, i.e., allows the 

attacker to carry out an attack without Snort detection. This misconfiguration is studied in detail in the 

following section.  
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3.3 Flowbits Misconfiguration 

3.3.1 Flowbits Background 

The flowbits option was first introduced in Snort 2.1.1 and is most useful for TCP sessions, as it 

allows rules to generically track the state of an application protocol [43]. Sometimes, looking at one 

packet at a time, one rule at a time could not tell whether an event occurs if the event is a series of 

actions that we need to keep track of. In fact, many times we need to inspect more than just a single 

packet with more than one rule to detect an attack, especially complicated ones. Before the addition 

of flowbits, Snort could not do this. The flowbits detection option makes snort rules stateful and 

allows the detection engine to track state across multiple packets in a single session. Stateful detection 

is so important that sometimes it is implemented separately for a specific service [47]. 

With flowbits, we can essentially set a flag that another rule can check and take into consideration. 

We can think of this in terms of streams and multiple rules. We can look at flowbit usage in terms of 

a chain of events, or a logic flow: If condition 1 happens, set a flowbit. If this flowbit is set and you 

see condition 2 but not condition 3, generate an alert. That second event can occur many packets later 

in the stream, or seconds or minutes later in the stream [10]. The flowbits option works by using 

labels to set and change the session state. The flowbits option is used with this format: flowbits: 

[set|unset|toggle|isset,reset,noalert][,<LABEL>]; 

E.g: Here is a rule set using flowbits from BleedingEdge [9]: 

 

    alert tcp $EXTERNAL_NET any - >  $HOME_NET 21 (msg:”BLEEDING-EDGE FTP USER login flowbit”; 

flow: established, to_server; content: “USER”; nocase; flowbits: set, login; flowbits: noalert;) 

    alert tcp $EXTERNAL_NET any - >  $HOME_NET 21 (msg: “BLEEDING-EDGE FTP HP-UX LIST command 

without login”; flow: established, to_server; content: “LIST”; nocase; flowbits: isnotset, login;) 

Table 3.1: Example of Snort flowbits rule set 

These rules in Table 3.1 use flowbits to follow a FTP session. The first rule checks if a user is 

trying to log in the FTP server and sets the label “login”. The second rule will raise an alert if the user 

uses the “LIST” command, however, only if the user has not logged in yet. In other words, the second 

rule is triggered only if the label “login” is not set. This rule set might do a good job in detecting 

someone using the “LIST” command without even trying to log in the server. However, an attacker 

can always try to log in first (even not authorized) and then use the “LIST” command. This way 

allows the attacker to execute the LIST command without really logging in, but Snort still thinks that 
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the user already logged in. As a result, the use of the “LIST” command is allowed. In this case, Snort 

misjudges the actual session, and of course no alert is raised.  

Because of its powerfulness as well as usefulness, the flowbits option is now getting more attention 

and used more frequently. In about 20K rules we collected from many different sources on the 

internet, about 3K rules (15%) make use of flowbits.  The flowbits concept is used in many different 

IDSes as well, like in Cisco IPS [11], Bro [32],etc. For example, Bro [32] allows users to write a 

script to raise an alert based on a sequence of events. This is equivalent to the use of flowbits in Snort 

if we consider handling each event by a rule and set flowbits accordingly so that Snort will raise an 

alert if it see the event sequence. 

Complicated attacks against services with complex protocols are normally hard to detect. The 

flowbits option allows Snort to keep track of the session state and raise an alert if an event happens 

when the session is in a specific state. With the use of flowbits, Snort keeps track of the session by 

maintaining its own session state, called in-snort session state. The in-snort session state is supposed 

to reflect the actual session state, in other words, the actual session state is simulated in Snort as 

much as possible. However, due to the protocol complication (of the session’s corresponding service) 

and overheads caused by doing so, it is impossible to have a complete simulation of the actual session 

state in Snort.  

3.3.2 Flowbits Misconfiguration Establishment 

In this thesis, we concentrate on a class of flowbits misconfiguration that allows the attacker to carry 

out an attack without Snort detection. This kind of flowbits misconfiguration gives the attacker a 

chance to make Snort misunderstand the actual session state, i.e. the attacker can force a difference 

between the actual and the in-snort session states (Snort thinks that the session is in a state but the 

session is actually in a different state) at some point in the attack, therefore, possible to bypass Snort 

detection. The possibility of this flowbits misconfiguration class is due to: 

• Complex sessions:  A complex session may have many possible states and many possible 

transitions back and forth between these states. Moreover, in order to avoid false positives, a 

Snort policy needs to consider “innocent” paths, which Snort should not raise an alert. 

Complicated states, complex state transitions, and “innocent” paths might give the attacker a 

chance to put the session into a desired state before finishing the attack so that the attack goes 

unnoticed.  
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• Insecure detection approaches:  For a given attack, even a simple one, there are possibly 

many approaches to detect it, and more than one rule set can be created to detect the attack. 

Even though these rule sets semantically do the same thing (raise an alert if the attack 

occurs), they might make use of different session states, so it has different ways to come up 

with the alert. There are approaches which logically leave a path allowing the attacker to 

finish the attack without being detected.  For example, in order to detect if a normal user 

(non-admin) uses a bad command in a telnet session, one straight approach is to only raise an 

alert if the bad command use is detected when the session is in a state that a normal user has 

logged in. Another approach is to always raise an alert if the use of the bad command is 

detected except when the session is in a state that the admin has logged in. While the first 

approach can always catch the attack because the attacker has to log in as a normal user 

before using the bad command, the second approach opens a door for the attacker: if he can 

pretend that he has successfully logged in as the admin, then he can execute the bad 

command. 

 

This flowbits misconfiguration can be exploited in practice because of these factors: 

• Packet-based property of Snort: As we know,  Snort is a packet-based NIDS and basically 

most packets received by Snort, after processed by preprocessors, are passed down to the 

detection engine to make sure all possible attacks are considered. Exploiting this feature, we 

can construct a packet that is not processed by the receiver’s application layer but still 

inspected by the Snort detection engine and triggers a given rule. This will cause the 

inconsistency between the actual and in-snort session states. 

• Loose rules: A loose rule is a rule with simple matching options that possibly matches a lot of 

traffic. A loose rule matches a packet by only checking if its payload contains some strings 

and does not examine other fields and the packet structure. It is the fact that if a rule is loose, 

it might cause false positives. However, a loose rule used with flowbits might allow an 

attacker to carry out an attack without being detected, which causes false negatives. The 

reason people still write loose rules is in a normal connection session, without the attacker’s 

interference, packets that match loose rules only occurs when the session is in a specific state. 

So loose rules still exist in many Snort rule sets using flowbits. Moreover, loose rules are 

easier to write and reckless users normally create loose rules in their policy. Because loose 

rules are easy to be triggered and normally cause false positives, they might be exploited to 
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cause a difference between the actual and in-snort session states when flowbits options are 

used to keep track of the session state. Each rule when triggered is supposed to change the in-

snort session state according to the actual connection state. A loose rule might be exploited 

by the attacker to change the in-snort session state but preserve the actual session state. 

 

3.3.3 Flowbits Misconfiguration Problem 

Problem definition: Let S = {R1,R2,…,Rn} be a Snort rule set which uses flowbits. Let T be a subset 

of S (T ⊂ S) that raise alerts. We denote T as the set of all target rules of S. The problem is to find all 

possible packet sequences that successfully attack the service protected by S yet manage to not trigger 

any rule from T. 

A target rule is normally a non-intermediate rule (usually with high priority) which indicates a 

successful attack when it is triggered. When flowbits is used in a rule set, many rules act as 

intermediate steps leading to the triggering of a target rule if the attack is successful. Intermediate 

rules normally don’t raise alerts and this can be done by using “noalert” with flowbits. flowbit:noalert 

is a critical function. It enables us to use a rule that would hit on a lot of traffic that is not of interest, 

but that must occur before a packet that would be of interest in a session [10].  

 

Definition 5 ( Target rule set) It is the set of all target rules in a rule set. 

Definition 6 ( Target rule group) It is a group of target rules that have the same match options 

except the flowbits conditions. 

  

It is conceptually possible that a rule set contains several target rule groups. In this case, we need 

to define and solve the problem for each target rule group separately so that to detect evasions that try 

to mislead Snort to trigger an alarm different than the one the attack really does.  

A packet sequence can include packets coming from both directions: server to client and client to 

server. From the attacker’s perspective, a packet can come from the attacker’s side and the other side. 

However, in most of the time, the attacker plays the client role. So in this thesis, we assume that the 

attacker always comes from the client side, and he tries to carry out an attack to a service at a server 

and does not want to be detected by Snort. Nevertheless, the attack concept is still applicable if the 

attacker is from the server side. 
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In this thesis, we only consider the session states considered by Snort because Snort might not 

need to use all possible states from a real session to detect a specific attack.  It is very important to 

understand two crucial concepts: the actual session state and the in-snort session state. The actual 

session state is the state where the session is truly currently in, and the in-snort session state is the 

state that Snort thinks the session is currently in.  

 

Definition 7 (Session state) It is defined as a group of labels that are currently set. If n  is the 

number of labels used in the rule set, then there are potentially 
n2  different session states.  

Definition 8 (Target state) It is a session state where a target rule in T can be triggered (to 

change to another state). 

Definition 9 (Non-target state) It is a session state where no target rule in T can be triggered (to 

change to another state).  

Definition 10 (Target packet) It is a packet that matches any target rule in T and presumably the 

last packet in the packet sequence of a real attack.  

Definition 11 (Evadable rule) It is a rule that can be triggered by the attacker to change the in-

snort session state but preserve the actual session state. A rule is evadable or not depends on whether 

the attacker can construct a packet that can trigger the rule without affecting the actual session. This 

is discussed in Section 3.3.5.  

 

An evadable rule can be triggered by two different kinds of packets: a packet (from the connection 

session) that is supposed to trigger the rule at a given time and correctly reflects what Snort thinks 

about the session, and a packet that is not supposed to trigger the rule and makes Snort misjudge the 

session. Given a rule Ri, let Pi represent the first kind of packets, called “a normal packet”, and Pi* 

represent the second kind of packets (if Ri is evadable), called “an evasion packet”. Pi* causes a 

change in the in-snort session state (by triggering Ri), but has no effect on the actual session state. 

A packet sequence is considered a successful attack if and only if it puts the session in one of the 

target states right before the corresponding target packet (the last packet in the sequence) is sent. 

Therefore, a packet sequence is considered a successful attack but does not trigger the target rule if 

right before the target packet is sent; the packet sequence puts the actual session in one of the target 

states and puts the in-snort session in one of the non-target states.  

We can assume that, when the actual session is in one of the target states and the in-snort session is 

in one of the non-target states, the attacker will always trigger the sending of the corresponding target 
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packet. As a result, the problem can be redefined as finding all possible packet sequences that put the 

actual session in one of the target states and the in-snort session in one of the non-target states. 

Moreover, a rule set can detect all packet sequences that trigger a target rule in T if and only if it can 

detect all packet sequences that put Snort in a target state. So from now on, we don’t consider a 

packet sequence that includes a target packet as its last packet because the target packet can be 

implicitly added to the end of the packet sequence when the attacker performs the real attack.   

3.3.4 Language of All Flowbits Evasion 

From the rule set S, a corresponding state diagram can be created to show all possible reachable 

session states and transitions between them. This state diagram can be considered as a DFA. Because 

we deal with two separate session states: the actual one and the in-snort one, each of these session 

states corresponds to a DFA, say Ds and Da. Both Ds and Da have the same alphabet, set of states, start 

state and the set of accept states. The only difference between them is the transition function. They 

are constructed as shown in Table 3.2. 

 

 

 

 

Let Ls(S) and La(S) be the languages corresponding to Ds and Da respectively. While Ls(S) 

represents all packet sequences that Snort thinks to put the session in a target state, La(S) represents 

all possible packet sequences that truly put the session in a target state. 

 1: Set of states: reachable session states constructed from the rule set 

 2: Start state: the state where no label is set 

 3: Accept state: all target states 

 4: Alphabet ∑ = {Pi: Ri is not a target rule} ∪ {Pi*: Ri is evadable and Ri is not a target rule}  

 5: //Transition function 
 6: for all non target rule Ri do 

 7:    for all state A do 

 8:        if  Ri can be triggered at A leading to state B then 

 9:           Add (A,Pi) � B to both Ds and Da 

10:          if Ri is evadable then 

11:       Add (A,Pi*) � B to Ds 

12:       Add (A,Pi*) � A to Da 

13:    end if 

14:       end if 

15:    end for 

16: end for     

Table 3.2: Construction of in-snort (Ds) and actual (Da) session DFAs 
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The goal is then to find all possible packet sequences that truly put Da in a target state but not Ds. 

These packet sequences must hence be accepted by Da and rejected by Ds. In other words, these 

packet sequences are accepted by both the Da and ¬Ds. If we consider these packet sequences as a 

language, say Le(S), then:  

Language of all flowbits evasion: The language of all packet sequences (or evasion sequences) 

that successfully attack the service protected by a rule set S without triggering an alarm is equal to:  

 Le(S) = La(S) ∩ ¬Ls(S) = L(De(S)) where De(S) = Da(S) ∩ ¬Ds(S). 

Le(S) therefore represents all possible packet sequences (or evasion sequences) that successfully 

attack the service without the Snort’s detection. If Le(S) != ∅, S is said vulnerable. Table 3.3 shows 

steps to find all possible evasion sequences. 

 

 

 

 

3.3.5 Rule evadability 

An important task the attacker needs to do to exploit the flowbits misconfiguration is to construct a 

packet which causes the triggering of a given rule to change the in-snort session state but does not 

have any effect on the actual session state. In practice, there are many possible conditions that can be 

exploited to construct such a packet. For example, if the Snort IDS is not correctly configured (e.g: 

some preprocessors are not turned on), existing NIDS evasion techniques [44] [20] [32] can be used 

to accomplish this task. However, in this thesis, we concentrate on exploiting two existing factors to 

create evasion packets: the packet-based property of Snort and loose rules.  

Besides, we also discuss the possibility of constructing evasion packets for two kinds of rules: 

rules triggered by packets coming from the client side and rules triggered by packets coming from the 

server side. It is always easier for the attacker to control packets coming from the client side (the 

attacker’s side) than the server side. 

1: Construct Ds(S) and Da(S) based on the rule set S and evadable rules in S 

2: Construct ¬Ds(S) 

3: Construct  De (S) = Da (S) ∩ ¬Ds(S) 

4: Le(S) = L(De(S)) 

Table 3.3: Steps to find all possible evasion sequences 
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3.3.5.1 Packet-based Property of Snort 

As mentioned above, Snort is a packet-based NIDS and most packets received by Snort are 

checked by the detection engine. This feature allows the creation of evasion packets. There might be 

many ways to achieve this, but one method is to construct a packet that matches a given rule, 

however, with “out of order” TCP sequence number. This packet is not processed by the receiver’s 

application layer but still examined by the Snort detection engine and then triggers the rule. For 

example, if the expected sequence number of the next packet (from the client) is X, we can construct a 

packet with sequence number X-1. Snort with stream5 preprocessor enabled knows that the packet 

does not have an expected sequence number for the session stream and is overlapped with a previous 

packet (assuming that this previous packet has some payload). Snort does exactly as the protected 

host does:  not reassemble this packet into the session stream. However, the packet is still passed 

down to the detection engine because the packet might match TCP-based attacks where sequence 

number is not important (e.g: Nmap [31] uses TCP packets with random sequence number to probe a 

host's OS).  This issue was tested with Snort 2.8.1 [41] (the newest version at this time).  

Packets constructed by exploiting this feature are injected into the connection session with the 

purpose of faking interactions (requests and responses) between the client and the server to make 

Snort misunderstand the session. There are two cases according to two kinds of rules: 

Rules matching traffic from the client side: It is always possible to construct a packet (with “out-

of-order” sequence number) to fake a request from the client and inject it into the connection session.   

Therefore, any rule matching traffic from the client side can be triggered without causing the actual 

session state change. 

Rules matching traffic from the server side: It is easy to fake a response from the server but it is 

hard to deliver the packet to the Snort IDS. In order to deliver a packet to the Snort IDS, the attacker 

needs to have control over a computer from a network where the crafted packet can reach the Snort 

IDS (e.g.: a computer from the same network with the server the attacker is trying to attack). Notice 

that even though the attacker is in the same network with the server, carrying the attack directly from 

local is still detected if the Snort IDS is configured to detect attacks carried out in the local network. 

Therefore, constructing fake responses from the server is still necessary.  

The scenario where the attacker can control a computer from which the packet can be delivered to 

the Snort IDS is not rare. For example, an employee from a company has his own computer or a 

student has an account to access a server in the university network, or the attacker has compromised a 
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computer in the network before, etc. In this case, the Snort IDS thinks that the packet comes from the 

server and processes it normally.  

In addition, when dealing with rules matching packets from the server side, sometimes the injected 

packet needs to be repeatedly sent to make sure that it comes to the Snort IDS before the real response 

from the server. When the real response reaches the Snort IDS, the in-snort session has already been 

in a state where the real response is no longer important, however, the injected response is ignored by 

the client and the real response is processed normally at the client side. This situation occurs when 

there is more than one possible response from the server for a given request, and based on the 

response from the server, the in-snort session state is changed accordingly. 

 

3.3.5.2 Loose Rules 

When a rule is loose, it does not thoroughly match a packet by using tight options like dsize, depth, 

offset, etc. A loose rule can wrongly explain the intention of a packet if the packet just happens to 

match the rule but logically does something else. Moreover, it is very possible to create or trigger the 

sending of such a packet. The packet can be created from the connection session itself (no need to be 

crafted and injected). There are 2 cases according to two kinds of rules: 

Rules matching traffic from client: Although depending on the service protocol, most of the time 

the attacker can easily make a request from client that matches a loose rule but logically does 

something else rather than the rule expected. For example, a loose rule checks if a user currently in a 

FTP session is trying to quit the session by examining packets from the client to see if any packet has 

“QUIT/n” in its payload. The attacker can make a request to create a directory named “QUIT”, which 

happens to have ““QUIT/n” in the packet payload and causes Snort misjudge the session.  

Rules matching traffic from server: It is harder to evasively trigger a loose rule matching traffic 

from the server side than the client side because traffic from the server side is not always controllable. 

However, when dealing with interactive protocols, there are many tricks the attacker can use to cause 

the server to send a packet containing desired strings and then trigger the rule. Let’s say if a rule 

simply checks for any packet from the server in a telnet session which contains the string “Granted” 

in the payload, the attacker can issue an invalid command containing “Granted”. The server will send 

back a complain of unknown command, which happens to contain the command name “Granted”, and 

hence triggers the rule. Another trick is the attacker can create a folder with name “Granted” and then 

try to list all the folders. 
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3.3.5.3 Summary 

In summary, a rule’s content and the scenario context decide whether a packet can be constructed to 

trigger the rule without affecting the actual session state. In other words, whether a rule is evadable or 

not depends on its content and the scenario context.  

If a rule matches traffic from client: it is always evadable because the attacker can exploit the 

packet-based property of Snort to construct a corresponding evasion packet. If the rule is also loose, 

the attacker has another choice (exploiting the rule looseness) to accomplish the task. On the other 

hand, if a rule matches traffic from server:  the probability the rule is evadable depends on several 

aspects: whether the attacker has access to a computer where fake responses (from the server) can 

reach the Snort IDS, service protocol, and the rule’s looseness. If the rule is loose, it is very likely that 

the rule is evadable.  Otherwise, the rule is evadable with small possibility. Table 3.4 shows the 

algorithm to determine the evadability of a rule. 

 

 

 

 

3.3.6 Example 

The rule set in Table 3.5 is created to follow an FTP session.  It will raise an alert if a normal user 

tries to do anything related to an important file which should only be accessed by the Admin. Rule 1 

and Rule 2 determine if a normal user is logging in, Rule 3 indicates that the user is denied to login, 

Rule 4 checks if the user is successfully logged in, Rule 5 indicates that the user has logged out of the 

FTP session, and Rule 6 checks if the logged-in user tries to do anything with the file 

C:\Windows\System32\sam and raises an alert. Only rule 6 is the target rule. 

 

Algorithm FindRuleEvadability 

Input: Rule R 

Output: the evadability of rule R 

 1:   if R matches traffic from client then  

 2:        return EVADABLE  
 3:   end if 

 4:   if R contains only content options then 

 5:        return PROBABLY_EVADABLE 
 6:   else  

 7:        return MAYBE_EVADABLE 
 8:    end if 

Table 3.4: Algorithm to determine the evadability of a rule 
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R1 alert tcp 192.168.0.101 any -> 192.168.0.100 21 (msg:"FTP Normal User Login Attempt - Send 

username";  flow:established, to_server; content:"USER"; depth:5; nocase; content:!"Admin"; within:5; 

content:"|0D0A|"; flowbits:set,NormalUserLoginAttempt; flowbits:noalert;) 

R2 alert tcp 192.168.0.101 any -> 192.168.0.100 21 (msg:"FTP Normal User Login Attempt - Send 

password";  flow:established, to_server; content:"PASS"; depth:5; flowbits:isset, 

NormalUserLoginAttempt; flowbits:set,NormalUserLoginAttempt2;flowbits:noalert;) 

R3 alert tcp 192.168.0.100 21 -> 192.168.0.101 any (msg:"FTP login denied"; flow:established,to_client; 

flags:A; flowbits:isnotset, NormalUserLoggedIn; flowbits:isset,NormalUserLoginAttempt; 

flowbits:isset,NormalUserLoginAttempt2; flowbits:unset,NormalUserLoginAttempt; flowbits:unset,Normal 

UserLoginAttempt2; flowbits:noalert;) 

R4 alert tcp 192.168.0.100 21 -> 192.168.0.101 any (msg:"FTP login  granted"; flow:established,to_client; 

content:"230 Login successful.|0D0A|"; nocase; flags:AP;flowbits:isset,NormalUserLoginAttempt2; 

flowbits:set,NormalUserLoggedIn;flowbits:noalert;) 

R5 alert tcp 192.168.0.101 any -> 192.168.0.100 21 (msg:"FTP user exits"; flow:established,to_server; 

content:"QUIT|0D0A|"; nocase; flowbits: isset,NormalUserLoggedIn; flowbits:unset, 

NormalUserLoggedIn; flowbits:unset,NormalUserLoginAttempt; flowbits:unset, 

NormalUserLoginAttempt2; flowbits:noalert;) 

R6 alert tcp 192.168.0.100 any -> 192.168.0.101 21 (msg:"Normal User accesses important file"; 

flow:established, to_client; content:"Windows";content:"system32";content:"sam"; 

nocase;flowbits:isset, NormalUserLoggedIn;) 

Table 3.5: A rule set to detect a non-admin user accessing an important file from a FTP session 

Theoretically, any rule from the rule set is evadable, but in this example, for simplicity, we assume 

that only Rule 5  is evadable from the attacker’s perspective. It means that the attacker can come up 

with a way to trigger Rule 5 without affecting the actual session state. The attacker can accomplish 

this in many different ways which are discussed in Section 3.3.5.   

There are 3 labels used in this rule set which put the session in 2
3
 = 8 possible states. However, 

there are only 4 reachable states including the empty state (no label is set): A ={}, 

B={NormalUserLoginAttempt}, C={NormalUserLoginAttempt, NormalUserLoginAttempt2} and 

D={NormalUserLoginAttempt, NormalUserLoginAttempt2,NormalUserLogedIn} 

The in-snort DFA Ds and actual session state DFA Da are depicted in Figure 3.1 and Figure 3.2. 

¬Ds is constructed as in Figure 3.3. The intersection of ¬Ds and Da, which is De is constructed in 

Figure 3.4, where (A,A) is the start state and (D,A), (D,B), and (D,C) are accept states. The language 

corresponding to this De represents all possible packet sequences that successfully attack the FTP 

server. 
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Figure 3.1: Ds of the FTP rule set 

 

Figure 3.2: Da of the FTP rule set       

 

Figure 3.3: ¬Ds of the FTP rule set 

 

Figure 3.4: De of the FTP rule set 
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For example, P1 P2 P4 P5* is a packet sequence accepted by this De. The attacker can apply this 

packet sequence to perform a real attack. The attack is carried out as follow: The attacker logs in as a 

normal user (not Admin) with correct username and password. This action needs P1 and P2 to be sent 

from the attacker and leads to the sending of P4 from the server to indicate that the user is successfully 

authorized. The next step the attacker needs to do is to cause the sending of P5*. There are 2 options 

to create P5
*
. The first option is to manually construct and inject into the connection a packet that 

matches Rule 5 but has out-of-order sequence number. The second option is to send a packet that 

matches Rule 5 but logically does something else rather than exiting the session as Snort thinks. The 

attacker can create a directory named “QUIT”, which makes Snort misjudge the session and think that 

the user has logged out. After that, the attacker can take the last step of the attack which is 

downloading or accessing the restricted important file at the server. This action won’t trigger the 

target rule. 

 

 

3.3.7 Flowbits Misconfiguration Rectification 

3.3.7.1 Manual Solution 

The admin needs to re-examine rules that he thinks are evadable. If the admin is not sure which rule is 

really evadable, it is safe to assume that all rules are evadable and constructs all possible evasion 

sequences as shown previously to see which rules can be exploited to evade Snort if they are 

evadable. These rules should be rewritten in a tighter manner: matching different packet fields (from 

different layers like TCP, IP) by using non-payload options; the packet payload should be carefully 

matched by using tight options like offset, depth, etc.  Moreover, if possible, the admin should limit 

rules matching packets coming from the attacker’s side as much as possible because rules that match 

packets coming from the protected side (normally from server) are harder to evade, while rules 

matching packets coming from the client side are always evadable as discussed in Section 4. 

 

3.3.7.2 Ideal Solution 

An ideal solution is the solution that automatically changes the rules so that the new rule set 

semantically does the same thing as the old rule set but is not vulnerable to the proposed evasion 

technique. However, the difficulty to find such an ideal solution is to automatically understand the 
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semantics of the rule set. Moreover, even if the rule set’s semantics is understood, it is possible that 

any rule set which follows exactly the semantics is always vulnerable to the proposed attack. 

Therefore, finding an ideal solution is very hard and sometimes impossible. 

 

3.3.7.3 Proposed Solutions 

In this section, we suggest solutions to patch vulnerable misconfigured flowbits rule sets. The idea is 

to create a new rule set that detects not only all attack sequences but also all evasion sequences. If the 

number of evasion sequences is small, extra rules can be added to detect each of these sequences 

without causing much overhead (number of added rules). Normally, a small vulnerable rule set has a 

small number of evasion sequences. Besides, there might be an exponential number of evasion 

sequences, so patching each evasion sequence works effectively for only small rule sets. On the other 

hand, if the rule set is large (the number of evasion sequences is also large), another approach is used 

to patch the rule set based on the common features among all evasion sequences: always contain at 

least one evasion packet. Moreover, a target packet always follows an evasion sequence in a real 

attack is an aspect that can be considered as well. 

 

A. Solution for small rule sets 

Our proposed solution for small rule sets is trying to detect all possible evasion sequences by 

adding extra rules to the old rule set with acceptable overhead. We can simultaneously consider the 

De as a directed graph, where each state is a node and each transition is a directed link. Theoretically, 

we need to add a rule set to detect each path from the start state to an accept state (called an evasion 

path), however, the number of evasion paths is possibly infinite and we cannot add infinite number of 

rules to Snort. We need to find a way to add minimum number of rules but still possibly detect all 

evasion paths (proved in Appendix A.2). It turns out that it is enough to consider only simple evasion 

paths (a simple path is a path that does not have a circle) because rules added to detect all simple 

evasion paths can detect all evasion paths. Moreover, it is sufficient to consider only subset paths over 

all simple paths. Here is the procedure to create new rules to add to the old rule set: 

1) Determine all simple paths from the start node to an accept node from the graph, let SP be the 

set of these simple paths. 

2) If x,y ∈ SP, x’s corresponding packet sequence is a prefix of y’s corresponding packet sequence, 

remove y from SP. 
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3) Assign each simple path in SP a different number. 

4) For the simple path number k in SP, a rule set is created as follow: 

a) A label is created for each node, assume the simple path has n nodes, so they are labeled 

“A-k1”, “A-k2”,… “A-kn” respectively as the order of the nodes on the path (so each simple 

path uses a different label set). 

b) For each directed link on the path: create a new rule. Assume that the link connects a 

node with label “A-ki” to a node with label “A-k(i+1)”, and the link’s attribute is Pj or Pj*. A 

new rule Rk(i) is created by using all options in Rj in the original rule set (header and body) 

except the flowbits options. Rk(i)’s  flowbits options check if label “A-ki” is set, and also set 

label “A-k(i+1)”. “noalert” option is also used in the rule because rules created for the this 

simple path are not target rules. Note: “A-k1” is always set by default, so Rk(1)’s flowbits 

options only need to set label “A-k2”. 

c) For the accept node (the last node on the path having label “A-kn”), create the rule 

Rk(n) by using all options in an inspected target rule (header and body) except the flowbits 

options. Rk(n) ‘s flowbits option checks if label “A-kn” is set. Rk(n) acts as the target rule in 

this rule set. 

 

 

Figure 3.5: Simple evasion path(s) collected from De 

 

The set of simple paths SP collected from the De of Figure 3.4 has one simple path (after removing 

subset paths) as shown in Figure 3.5. There are five rules added for this simple path as shown in 

Table 3.6. 

The fact that the procedure searches for all simple paths that reach target states makes its running 

time potentially prohibitive. We prove in Appendix C.2 that the complexity of this phase ranges from 

2M  (De consisting of a single simple path) to 1||
2

2 ||1)||(|| −−
Σ×−−×

TMTMT , where M is the number 

of states of Ds, |T| is the size of the target rules set and |Σ| is the size of the rule set plus the number of 

evadable rules. 

Because of this complexity, this solution is only suitable for rule sets of a small size. In the 

following, we present a different solution that is feasible for large rule sets. 
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R1(1) alert tcp 192.168.0.101 any -> 192.168.0.100 21 (msg:"FTP Normal User Login Attempt – Send 

username"; flow:established,to_server; content:"USER"; depth:5;nocase; content:!"Admin"; within:5; 

content: "|0D0A|";flowbits:set,A-12;flowbits:noalert;) 

R1(2) alert tcp 192.168.0.101 any -> 192.168.0.100 21 (msg:"FTP Normal User Login Attempt - Send 

password"; flow:established, to_server; content:"PASS"; depth:5; flowbits:isset, A-12; flowbits:set, A-13; 

flowbits:noalert;) 

R1(3) alert tcp 192.168.0.100 21 -> 192.168.0.101 any (msg:"FTP login granted"; flow:established,to_client; 

content:"230 Login Successful.|0D 0A|"; nocase;flags:AP;flowbits:isset,A-13;flowbits:set,A-

14;flowbits:noalert;) 

R1(4) alert tcp 192.168.0.101 any -> 192.168.0.100 21 (msg:"FTP user exits"; flow:established,to_server; 

content:"QUIT|0D0A|"; nocase; flowbits:isset,A-14;flowbits:set,A-15;flowbits:noalert;) 

R1(5) alert tcp 192.168.0.100 any -> 192.168.0.100 21 (msg:"Normal User accesses important file"; 

flow:established,to_client;  content:"Windows"; content:"system32";content:"sam"; nocase; 

flowbits:isset,A-15;) 

Table 3.6: Rules added for the simple path in Figure 3.5 

B. Solution for large rule sets 

We want to detect all evasion sequences but sometime we cannot find all of them or maybe there are 

too many of them to deal with, which cause too much overhead. We need a way to cover all evasion 

sequences without considering each of them separately. We know that any evasion sequence needs to 

exploit at least one evadable rule, i.e. it contains at least one evasion packet. Furthermore, in a real 

attack, a target packet is always sent after an evasion sequence.  

The idea is to set a flag whenever an evadable rule is triggered. After that, if Snort sees the target 

packet and the flag is set, it will raise an alert. However, we do not need to do this with all evadable 

rules. An evadable rule needs to set the flag when it is triggered only if the rule causes the rule set 

vulnerable (Le(S)! = ∅) even if all the other rules are not evadable. This kind of evadable rule is said 

vulnerable. The reason is if two or more evadable rules together cause the rule set vulnerable, then at 

least one of them is vulnerable (this is proved in Appendix C.1). Therefore, an evasion sequence 

always contains an evasion packet whose corresponding evadable rule is vulnerable.  

Here are the steps to patch a large vulnerable rule set: 
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1) Check if any evadable rule is vulnerable. This can be done by creating the De for each evadable 

rule (while assuming all the other rules are not evadable) and check if Le(S) !=  ∅ (or  De  has a 

reachable accept state).  

2) For each vulnerable rule Ri, insert the flowbits option flowbits:set, TARGET_RULE_X where X 

is a representative number for the target rule group currently inspected. 

3) Create a new rule that uses all options in an inspected target rule except the flowbits options. 

This rule’s flowbits option checks if the label TARGET_RULE_X is set. 

These steps have a polynomial time complexity. In Appendix C.3, we prove that its worse case 

running time is
 
|R| x (M^2 x |Σ| + 1), where |R| is the size of the rule set, M is the number of states of 

Ds,  and |Σ| is the size of the rule set plus the number of evadable rules. 

  

Example: Instead of giving an example of a large rule set, we use the rule set in Table 3.5 for 

simplicity because the approach works for small rule sets as well. Assume that all rules in Table 3.5 

are evadable. The first step indicates that only rule R3 and R5 are vulnerable (note that Figure 3.4 is 

the De created for R5). So R3 and R5 are modified by inserting the flowbits option flowbits:set, 

TARGET_RULE_6. R7 is the added rule and all other rules are the same. Table 6 shows the modified 

and added rules to patch the rule set. 

 

 

R3 alert tcp 192.168.0.100 21 -> 192.168.0.101 any (msg:"FTP login denied"; flow:established,to_client; 

flags:A; flowbits:isnotset, NormalUserLoggedIn; flowbits:isset,NormalUserLoginAttempt; 

flowbits:isset,NormalUserLoginAttempt2; flowbits:unset,NormalUserLoginAttempt; flowbits:unset, 

Normal UserLoginAttempt2;  flowbits: set, TARGET_RULE_6;  flowbits: noalert;) 

R5  alert tcp 192.168.0.101 any -> 192.168.0.100 21 (msg:"FTP user exits"; flow:established,to_server; 

content:"QUIT|0D0A|"; nocase; flowbits: isset,NormalUserLoggedIn; flowbits:unset, 

NormalUserLoggedIn; flowbits: unset,NormalUserLoginAttempt;  flowbits:unset, 

NormalUserLoginAttempt2;  flowbits: set, TARGET_RULE_6;  flowbits: noalert;) 

R7  alert tcp 192.168.0.100 any -> 192.168.0.101 21 (msg:"Normal User accesses important file"; 

flow:established, to_client; content:"Windows";content:"system32";content:"sam"; nocase; flowbits: 

isset, TARGET_RULE_6;)  

Table 3.7: Modified and added rules using the large rule sets approach 
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C. False positives discussion 

Even though the approach used for large rule sets also works for small rule sets, it potentially causes 

more false positives then the one used for small rule sets. While the latter only raises an alert if a 

complete evasion sequence is seen, the former raises an alert on important packets in an evasion 

sequence. However, the overhead caused by the latter is larger than the former. Therefore, depending 

on the size of a rule set and the acceptable overhead, an appropriate solution can be applied.  

A patching solution without completely changing the rule set (which requires the understanding of 

the rule set semantics) always potentially causes false positives. In the extreme case, when all rules 

are vulnerable, the only solution is to always raise an alert when an evasion packet and a target packet 

are seen. This reflects the situation when Snort cannot trust any packet and it has to raise an alert most 

of the time in the favor of not missing the attack. 

However, our proposed solutions should not cause false positives in general because the patched 

portion covers possible events seen from the attacker and normally not occurring from normal users. 

For example, in an FTP session, a normal user will not access a file after he quits the session. 

Moreover, in practice, the extreme case does not seem to exist, as shown in the evaluation section of 

this chapter. 

 

D. False positives control patch 

Although our solutions are only potential to cause false positives, there are situations (like the 

extreme case mentioned above) where false positives are very likely to occur. In this section, we 

propose a false positives control patch in addition to the proposed solutions. False positives occur 

when alerts are raised on normal users’ actions. Therefore, in order to avoid false positives, Snort 

needs to consider session packets it will see after it is put into a target state (by a patched rule set: a 

vulnerable rule set rectified by the small rule set solution or the large rule set solution). These packets 

might give Snort some clues about who is running the session. If Snort sees a target packet right 

away, it is most likely that the attacker is running the session. Otherwise, if the following packets 

cause transitions in Ds as a normal user will do, it is possible that the session is run by a normal user. 

The more session packets Snort considers afterward, the more accurate decision Snort will make.  

Solutions for small and large rule sets put Snort into a target state when an evasion sequence is 

seen or a vulnerable rule is triggered respectively. Now,  instead of raising an alert whenever a target 

packet is seen after Snort is put into a target state,  if a number of packets corresponding to normal 
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users’ actions are seen (before a target packet), Snort will assume that the session is run by a normal 

user and put the session back to a non-target state. 

In order to determine all possible actions a normal user might do after Snort is put into a target 

state, we need to know all the states in Ds after an evasion sequence is seen (for small rule sets 

solution) or after a vulnerable rule is triggered (for large rule sets solutions). Then all possible actions 

of a normal user are equivalent to all paths starting from any of these states.  

Let L be the length of actions (or length of a path) Snort considers afterward.  

Here is the procedure to add new rules (to the patched rule set from proposed solutions) to control 

potential false positives:  

A. Find all states in Ds that are used to determine possible normal users' actions: 

1) Solution for small rule sets: each evasion sequence puts Ds into a state and this state can be 

found by tracing through Ds. States are collected for all evasion sequences. 

2) Solution for large rule sets: for each vulnerable rule, find all states in Ds where the rule can be 

triggered (to change to a different state), and then find all states right after the vulnerable rule is 

triggered. States are collected for all vulnerable rules. 

 

B. For each state Xt found at stage A: 

1) Find all paths from Ds of length L started at state Xt  

2) Assign each path a different number. 

3) For the path number k:  

 a) A label is created for each node. The first node is labeled as the last node of the simple 

path (from De) corresponding to the evasion sequence that puts Ds into Xt (for small rule sets 

solution) or  TARGET_RULE_X (for large rule sets solution). The rest are labeled “A-t-k2”, “A-t-

k3”,…,“A-t-kn” respectively as the order of the nodes on the path. 

 b) For the first link on the path: assume the link’s attribute is Pj (or Pj
*
) . Create a rule R

t
(1) 

uses all options in Rj in the original rule set (header and body) except the flowbits options.  R
t
(1)’s  

flowbits options check if the first node’s label is set, and then set label “A-t-k2”. “noalert” option 

is used in this rule. 

 c) For the last link on the path: assume the link’s attribute is Pj (or Pj
*
) . Create a rule R

t
(n-1) 

that uses all options in Rj in the original rule set (header and body) except the flowbits options.  

R
t
(n-1)’s  flowbits options check if label “A-t-k(n-1)” is set, and then unset the first node’s label. 

“noalert” option is used in this rule. 
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 d) For each link on the path (except the first and the last links): assume that the link connects 

a node with label “A-t-ki” to a node with label “A-t-k(i+1)”, and the link’s attribute is Pj (or Pj
*
). 

A new rule R
t
(i) is created by using all options in Rj in the original rule set (header and body) 

except the flowbits options. R
t
(i)’s  flowbits options check if label “A-t-ki” is set, and then set label 

“A-t-k(i+1)”. “noalert” option is used in the rule. 

 

L can be chosen by Snort users to balance between false positives and overheads (number of rules 

added). It is easy to see that the longer L, the less false positives, but the more rules to be added.  

There is always a tradeoff between vulnerability and false positives. In the extreme case where 

Snort needs to raise an alarm most of the time, the new rule set is totally secure. On the other hand, if 

the rule set is not patched and insecure, it will not cause any new false positive. This false positives 

control patch makes the rule set vulnerable again because a smart attacker can always send packets 

corresponding to all possible actions a normal user might do before sending the target packet. 

However, this patch at least gives Snort users an option to control potential false positives and is 

useful when missing some attacks is better than having too many false positives. Moreover, Snort 

users can apply the heuristic method to reduce number of rules added to control false positives. 

Instead of adding rules to cover all paths found in step 1 (stage B) above, only paths that reflect 

regular normal users’ actions should be considered (these actions can be found from the application 

session log files).  

 

R
1
(1) alert tcp 192.168.0.101 any -> 192.168.0.100 21 (msg:"FTP Normal User Login Attempt – Send 

username"; flow:established,to_server; content:"USER"; depth:5;nocase; content:!"Admin"; within:5; 

content: "|0D0A|"; flowbits:isset,A-15; flowbits:set,A-1-12; flowbits:noalert;) 

R
1
(2) alert tcp 192.168.0.101 any -> 192.168.0.100 21 (msg:"FTP Normal User Login Attempt - Send 

password";  flow:established, to_server; content:"PASS"; depth:5; flowbits:isset, A-1-12; 

flowbits:unset, A-15; flowbits:noalert;) 

Table 3.8: False-Positives-Control Rules added to the solution in Table 3.6 when L=2 

Example: There are two rules (Table 3.8) added to the solution in Table 3.6 (solution for small rule 

sets) to control false positives where L=2. 
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3.3.8 Proof of Correctness 

There are two things that we need to prove for each solution approach:  

1) The new rule set is complete: it can still detect all packet sequences detected by the old rule set 

and also detect all possible evasion sequences. 

2) The new rule set is sound: The new rule set itself is not vulnerable to the proposed evasion 

technique.  

 

3.3.8.1 Solution for small rule sets 

In this section, we introduce a crucial concept: independent rule sets. Two rule sets are independent if 

the triggering of any rule in one rule set does not depend on the existence of the other rule set. This 

concept is important to argue the soundness and completeness of the new rule set. 

We can assume that rules using flowbits are all alert rules. Moreover, another assumption we can 

make is: the option flowbits:reset is not used in a rule set. This option flowbits:reset is used without 

specifying any label and equivalent to unsetting all labels already set for a flow. This option can be 

replaced by using  flowbits:unset on all labels of a rule set. 

With these assumptions, two rule sets which use the flowbits option on two non-overlapping label 

sets are independent. Assume S1, S2 … ,Sn are added rule sets for n simple paths in SP. We have Snew  = 

S ∪ S1 ∪ S2 … ∪ Sn. 

 

• Completeness of the new rule set 

In order to prove that the new rule set can detect all packet sequences detected by the old rule set, 

we need to prove that Ls(S) ⊂ Ls(Snew) and this is proved in Appendix A.1 Moreover, we need to 

prove that the new rule set also detect all possible evasion sequences. In other words, we need to 

prove that, given any evasion sequence Xes accepted by De(S), the new rule set can detect Xes. i.e., 

Xes∈ Ls(Snew). This is proved in Appendix A.2. 

 

• Soundness of the new rule set 

In order to show that the new rule set Snew is safe against the proposed attack, we need to prove 

Le(Snew) = ∅.  In order to prove this, we first need to prove that if S = S1 ∪ S2 (S1 and S2 are 

independent), then Ls(S) = Ls(S1) ∪ Ls(S2) and La(S) = La(S1) ∪ La(S2). 
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Then we prove that each added rule set corresponding to a simple path is not vulnerable to the 

proposed attack. Finally, by using induction, we can prove Le(Snew) = ∅. The proof can be found in 

Appendix B. 

 

3.3.8.2 Solution for large rule sets 

Let Snew be the new constructed rule set. We’ll prove that Snew is complete and sound. 

 

• Completeness of the new rule set 

The way the new rule set is constructed can be viewed from the DFA creation. It  is equivalent to 

adding extra transitions and states to the Ds(S): for any state X, for any vulnerable rule Ri,  if (X,Pi*) 

!= X then add a state X* and transitions (X,Pi*) = X*, (X,Pi) = X*. Set X* as a target state.  Now we 

have an NFAs of the new rule set. It is easy to see that any sequence accepted by Ds(S) is accepted by 

this NFAs, i.e, Ls(S) ⊂ Ls(Snew). Figure 3.6 shows an example of the NFAs of the new rule set Snew for 

the vulnerable rule set in Table 2 with the assumption that only rule 5 is evadable (and the rule is 

vulnerable). 

 

Figure 3.6: NFAs of the new rule set Snew 

 

 

Figure 3.7: NFAa of the new rule set Snew 
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To prove that all evasion sequences can be detected by the new rule set, we first need to prove a 

theorem that if two or more evadable rules together cause the rule set vulnerable, then at least one of 

them is vulnerable. This theorem is proved in Appendix C.1. Therefore, any evasion sequence needs 

to trigger at least one vulnerable rule, otherwise, there exists an evasion sequence that does not 

contain any evasion packet whose corresponding rule is vulnerable, and this contradicts the theorem. 

From the way the new rule set is constructed, after a vulnerable rule is triggered, Snort is always put 

in a target state, hence given any evasion Xes, we have Xes ∈ Ls(Snew). So, all evasion sequences can 

be detected by the new rule set.  

 

 

• Soundness of the new rule set 

We can convert NFAs(Snew) to NFAa(Snew) by replacing transitions (X,Pi
*
) � Y by (X,Pi

*
) � X for 

all vulnerable rules Ri’s. Figure 3.7 shows the corresponding NFAa of the new rule set Snew in Table 4.  

We see that any sequence accepted by Da(S) is accepted by NFAa(Snew) , i.e, La(S) ⊂ La(Snew).  

Given any packet sequence M ∈ La(Snew).  

- If M contains evasion packets corresponding to a vulnerable rule, M ∈ Ls(Snew) as the way Snew is 

constructed.  

- If M does not contains evasion packets corresponding to any vulnerable rule, then M ∉ Le(S).  If 

M ∉ Ls(Snew), then M ∉ Ls(S) because Ls(S) ⊂ Ls(Snew). So M ∉ La(S) because M ∉ Le(S). Then M 

∉ La(Snew) because La(S) ⊂ La(Snew) which is a contradiction. Therefore M ∈ Ls(Snew).  

Hence, there does not exists any packet sequence M so that M ∉ Ls(Snew) and M ∈ La(Snew). So 

the new rule set is not vulnerable. 

 

3.3.9 Implementation and Evaluation 

We created a program called SFET (Snort Flowbits Evasion Tool) to parse a flowbits rule set, check 

if the rule set is vulnerable to the proposed evasion technique, generate the corresponding De (or 

evasion sequences)  and patch the rule set accordingly depending on its size and the number of 

evasion sequences.  
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SFET can be run in 3 modes: specified mode, automatic mode and cautious mode. In the specified 

mode, SFET allows users to specify which rule is evadable and which rule is a target rule. In the 

automatic mode, SFET itself decides the possibility of a rule to be evadable based on the rule’s 

matching options (like content options and traffic direction the rule matches) and chooses rules with 

no flowbits:noalert option as target rules. Lastly, in the cautious mode, SFET assumes all rules in a 

rule set are evadable and chooses only one rule from all possible target rules (no flowbits:noalert 

option) as the target rule. A rule set is considered vulnerable if there exists an evasion sequence for 

any chosen target rule. 

We collected all possible rule sets publicly available from the internet (most of them from 

BleedingEdge [9] and SourceFire [42]). There are about 60% of the rules using flowbits that match 

traffic coming from the client’s side (presumably from the attacker’s side), hence these rules are 

considered evadable. All together (considering different rule options as well), there is about 68% out 

of the rules using flowbits determined by SFET evadable and highly evadable. In addition, there are 

about 6% and 4% out of 400 rule sets (using flowbits) detected vulnerable to the proposed attack 

when SFET was run in the cautious mode and the automatic mode respectively.  

 

Figure 3.8: Vulnerable and safe rule sets percentage when SFET is run in the cautious mode 

Large vulnerable rule sets:2%

Large safe rule sets:18%

Small vulnerable rule sets: 4%

Small safe rule sets: 76%
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Figure 3.9: Overheads to patch small rule sets 

  

Figure 3.10: Overheads from false 

positives control patch 

 

When running SFET in the specified mode with some chosen rule sets (we know exactly which 

rule is evadable), all evasion sequences generated by SFET can be converted to a real attack (this is 

not true for other modes).  

Even though large rule sets (the number of rules is greater than 9) make up only 20% out of the 

considered rule sets, they are more susceptible to the attack than small rule sets. While 10% of large 

rule sets are vulnerable to the attack, only 5% of small rule sets are vulnerable. This is shown in 

Figure 3.8. 

When applying the proposed solution to small vulnerable rule sets, the number of added rules to 

patch a rule set in average is triple the number of rules in the rule set (for both automatic and cautious 

modes). Figure 3.9 shows the average number of added rules for each rule set size (note: we do not 

find any vulnerable rule set of size 6). 

For large vulnerable rule sets, the number of modified rules is the same as the number of 

vulnerable rules. Even though some large rule sets have many evadable rules, in average, only 10% of 

evadable rules are vulnerable. In addition, the number of added rules for each large rule set is as most 

the number of target rules in the rule set. The average number of added rules is only 3.5 for both 

automatic and cautious modes. 
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We chose some patched rule sets (including small and large rule sets) to apply the false positive 

control patch for different values of L. In average, the number of rules added to control false positives 

increases exponentially as L increases (as expected) and this is shown in Figure 3.10. 
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Chapter 4 

Related work 

In this chapter, we focus our study on the work that this thesis’ contributions intersect with. Several 

research areas are closely related to what we have done in this thesis. Related to access control 

misconfigurations in general, Lujo Bauer et al. [5] applied association rule mining to the history of 

accesses to predict changes to access-control policies that are likely to be consistent with users’ 

intentions, so that these changes can be instituted in advance of misconfigurations interfering with 

legitimate accesses. However, in this thesis, we only concentrate on NAC policies and we do not 

make use of the history of accesses to detect or predict misconfigurations. Instead, NAC policy 

misconfigurations are found from the policy itself. We provide tools to effectively support users in 

policy inspection (for firewall policies) and to automatically detect misconfigurations from a given 

policy (for Snort IDS policies).  

Besides, the authors in [45]  proposed an integrated, constraint-based approach for modeling and 

reasoning about firewall and NIDS policy configurations, however, they mainly deal with these 

components’ misconfigurations when they are put together in a network and consider the 

dependencies among them to reason automatically about their combined behavior. Our work 

concentrates on each component and its policy separately.  

Related to PolicyVis’ design objectives, a significant amount of work has been reported in the area 

of network security visualization and firewall policy management.  

There are many visualization tools introduced to enhance network security. PortVis [28] uses port-

based detection of security activities and visualizes network traffic by choosing important features for 

axes and displaying network activities on the graph. SeeNet [6] supports three static network displays: 

two of these use geographical relationships, while the third is a matrix arrangement that gives equal 

emphasis to all network links. NVisionIP [23] uses a graphical representation of a class-B network to 

allow users to quickly visualize the current state of networks. Le Malécot et al. [27] introduced an 

original visualization design which combines 2-D and 3-D visualization for network traffic 

monitoring. However, these tools only focus on visualizing network traffic to assist users in 

understanding network events and taking according actions.  

Moreover, previous work on firewall visualization only concentrates on visualizing how firewalls 

react to network traffic based on network events. Chris P. Lee et al. [25] proposed a tool visualizing 

firewall reactions to network traffic to aid users in configuration of firewalls. FireViz [38] visually 
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displays activities of a personal firewall in real time to possibly find any potential loop holes in the 

firewall's security policies. These tools can only detect a small subset of all firewall behaviors and can 

not determine all possible potential firewall patterns by looking at the policy directly like PolicyVis. 

Besides, Tufin SecureTrack [46] is a commercial firewall operations management solution; however, 

it provides change management and version control for firewall policy update. It basically visualizes 

firewall policy version changes, but not rule properties and relations and allows users to receive alerts 

if any change violates the organizational policy.  Thus, Tufin SecureTrack cannot be used for rules 

analysis and anomaly discovery. Finally, Firmato [50], a firewall management toolkit, has a graphical 

firewall rule illustrator. This graphical component visualizes both the host-group’s structure and the 

services (packets) that the firewall passes. However, it does not allow the user to visualize chosen 

firewall scopes and firewall anomalies.  

In the field of firewall policy management, a filtering policy translation tool proposed in [14] 

describes, in a natural textual language, the meaning and the interactions of all filtering rules in the 

policy, revealing the complete semantics of the policy in a very concise fashion. However, this tool is 

not as efficient as PolicyVis in helping users capture the policy properties quickly in case of huge 

number of rules in the policy. In [15], the authors mentioned firewall policy anomalies and techniques 

to discover them, and suggested a tool called Firewall Policy Advisor which implements anomaly 

discovery algorithms. However, Firewall Policy Advisor is not capable of showing all potential 

behaviors of firewall policies and does not help users in telling if a policy does what he wants.  

The authors in [16] [4] suggest methods for detecting and resolving conflicts among general 

packet filters. However, only correlation anomaly [15] is considered because it causes ambiguity in 

packet classifiers.  In addition, the authors in  [3] [49] [2] proposed firewall analysis tools that allow 

users to  issue customized queries on a set of filtering rules and display corresponding outputs in the 

policy. However, the query reply could be overwhelming and still complex to understand.  PolicyVis 

output is more comprehensible. Moreover, those tools require users to consider very specific issues to 

inspect the policy. PolicyVis, on the other hand, enables users to investigate the policy at once, which 

is more practical and efficient in large policies. 

In this thesis, the work on Snort policy misconfigurations intersects with two research areas: NIDS 

policy management and NIDS attack and evasion techniques.  

IDS Policy Manager [21]  is a tool to manage Snort IDS sensors in a distributed environment. It 

helps deploy and update Snort policies to sensors in an easy manner; however, it is not capable of 

detecting any misconfiguration in Snort policies. In fact, there has not been much work done in the 
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area of NIDS policy misconfigurations. To the best of our knowledge, we are the first to classify 

policy misconfigurations in an NIDS.  

 

In the field of IDS attacks  and evasion techniques, even though there are attacks on host-based 

IDS like mimicry attacks introduced by Wagner and Soto [48], attacks and evasion techniques on 

NIDS seems to be a more interesting topic and have been very well studied in the literature. Ptacek 

and Newsham [44] were the first to bring up a way to evade a NIDS by using TCP Segmentation and 

IP Fragmentation, and FragRoute is the tool created to carry out these evasion techniques. A NIDS 

needs to carry out TCP segments and IP fragments reassembly to defend these evasion techniques. 

Besides, Handley and Paxson [20] [32] discussed evasion techniques based on inherent ambiguities of 

the TCP/IP protocol which leads to the difference between a NIDS and its protected system in 

performing TCP segments and IP fragments reassembly. Traffic normalization suggested by Handley 

et al. [20] tries to remove these ambiguities by patching the packet stream. Another solution to this 

was proposed by Shankar and Paxson [37], Active Mapping, which eliminates TCP/IP-based 

ambiguity in a NIDS’ analysis with minimal runtime cost. Active Mapping efficiently builds profiles 

of the network topology and the TCP/IP policies of hosts on the network; a NIDS may then use the 

host profiles to disambiguate the interpretation of the network traffic on a per-host basis. This idea is 

implemented in the Stream5 [22] preprocessor of Snort, which makes Snort a "target-based" NIDS.  

Snot [40], Stick [17], IDSWakeup [36] and Mucus [29] are over-stimulation tools that cause a 

DOS attack to Snort by trying to overload Snort with alerts from mutated packets constructed from 

Snort rules. Another DOS attack to a NIDS comes from the algorithmic complexity issue [12] [39] 

especially the authors in [39] presented a highly effective attack against Snort, and provided a 

practical algorithmic solution that successfully thwarts the attack. 

Rubin et al. [34] observed that different attack instances can be derived from each other using 

simple transformations. TCP and application-level transformations are modeled as inference rules in a 

natural-deduction system. Starting from an exemplary attack instance, they used an inference engine 

to automatically generate all possible instances derived by a set of rules. They created AGENT, a tool 

capable of both generating attack instances for NIDS testing and determining whether a given 

sequence of packets is an attack. However, each attack generated by our evasion technique against the 

flowbits misconfiguration is neither a TCP nor an application-level transformation, hence, is not an 

instance generated by AGENT, assuming that the rule set represents the original exemplary attack 

instance. Although in this thesis, we only deal with Snort rules, which are mainly manually written by 
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users, automatic generated semantic-aware signatures [51] or session signatures [35]  are still possibly 

vulnerable to our proposed evasion technique. In order to avoid false positives, these generated 

signatures must consider “innocent” paths (or sequences) which are not attack instances. Our evasion 

technique exploits these “innocent” paths and tries to convince Snort that the session is following one 

of the “innocent” paths. 
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Chapter 5 

Conclusion and Future Work 

5.1 Conclusion 

NAC systems provide proper security services if they are correctly configured and efficiently 

managed. NAC policies used in enterprise networks are getting more complex as the number of rules 

and devices becomes larger. This significantly increases the possibility of policy misconfigurations 

and network vulnerabilities. As a result, it is essential that we need to classify and detect policy 

misconfigurations of any NAC system. In addition, it will be very useful if there is an effective policy 

management tool which significantly helps users in discovering NAC policy misconfigurations.  In 

this thesis, we chose to study and analyze the NAC policy configuration of two significant network 

security devices, namely, firewall and IDS/IPS. 

In the first part of the thesis, we presented PolicyVis, a tool that visualizes firewall rules to 

efficiently enhance the understanding and inspection of firewall configuration. PolicyVis provides 

visual views on firewall policies and rules, which gives users a powerful means for inspecting 

firewall policies. In this thesis, we described design features of PolicyVis and illustrated PolicyVis 

with multiple examples showing the effectiveness and usefulness of PolicyVis in determining the 

policy behavior in various case studies. We presented concepts and techniques to find rule anomalies 

in PolicyVis. Besides, we also showed how PolicyVis visualizes distributed firewalls to achieve same 

benefits as visualizing single firewalls. Finally, we presented the implementation and evaluation of 

PolicyVis. 

Using PolicyVis was shown very effective for firewalls in real-life networks. In regards to 

usability, unskilled people with short time of learning how to use PolicyVis can quickly understand 

and start using all features of PolicyVis. Moreover, by evaluation, PolicyVis effectively helped users 

including network security juniors and seniors to figure out firewall policy behavior easily by 

reviewing the visualizing of primitive firewall rules. In addition, PolicyVis was shown a very good 

tool in finding rule anomalies or conflicts easily and quickly. The number of dimensions users need to 

consider during firewall inspection varies according to situations; however, considering all possible 

rule fields always gives users a better analysis of the policy. 

In the second part of the thesis, we classified and gave examples of various policy 

misconfigurations of Snort. Then we particularly concentrated on a class of flowbits misconfiguration 

that makes Snort susceptible to false negatives. We formalized the flowbits misconfiguration problem 
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and suggested practical solutions to patch small and large vulnerable rule sets. Moreover, we formally 

proved that the solutions are complete and sound. In addition to these solutions, we proposed a false 

positives control method which allows Snort users to reduce potential false positives caused by the 

patches. 

We implemented a tool called SFET, which can automatically calculate the possibility that a rule 

is evadable based on the rule's content and generate all possible evasion sequences to a given flowbits 

rule set. Besides, SFET is also able to augment the rule set with additional rules that thwart the 

proposed attack without changing the functionality of the original rule set. 

The evaluation showed that a large number of available flowbits rule sets are vulnerable, which 

seriously affects the security of Snort users' systems. However, as shown, the practical nature of our 

solutions generates little overhead for both small and large vulnerable rule sets. 

5.2 Future work 

This thesis is limited to the study and analysis of firewall and IDS/IPS policy misconfigurations, 

therefore we plan to work on policy misconfigurations of other NAC security systems in the near 

future. 

Related to PolicyVis, even though the tool was shown a very effective tool, we still want to 

perform more evaluation on it and collect more users’ ideas to make PolicyVis a better tool for the 

inspection of firewall policy misconfigurations. There are still many possible features that we want to 

implement in PolicyVis to maximize its usability as well as efficiency. We want PolicyVis to support 

more viewing levels of firewall policies and automatically show users possible strange behaviors 

(possibly misconfigurations) and true rule anomalies of firewall policies on the graph. In addition, 

PolicyVis currently shows how to visualize stateless firewalls but we can easily envision extending 

this to visualize stateful firewalls too by preprocessing the policy to create the implicit rules in 

stateful firewalls. We consider supporting stateful firewalls in PolicyVis in our future work.  

Related to the work on Snort rule misconfigurations, the first thing we want to accomplish in the 

future is to provide detection methods and solutions for all of the classified Snort rule 

misconfigurations. Moreover, we plan to extend the concept of our defined Snort rule 

misconfigurations (including the flowbits misconfiguration and the evasion technique) to different 

NIDSs as well.  Even though we have proposed a method to control false positives in addition to the 

solutions for vulnerable flowbits rule sets, accurately measuring how much false positives caused by 
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the patched rule sets is still nesseccary. However, we leave this task for future work because it  

requires Snort to run for a long period of time in order to have a correct answer.  
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Appendix A 

The new rule set is complete (solution for small rule sets) 

Lemma 1: If S = S1 ∪ S2, Ls(S) = Ls(S1) ∪ Ls(S2). 

Proof: 

Because S = S1 ∪ S2, so target rules of S = target rules of S1  ∪ target rules of S1. Because S1 and S2 

are independent, then if a packet sequence puts S1 in a target state, it still puts S1 in a target state when 

S2 is added to S1. The same argument applies for S2. A target state of S is a state where a target rule of 

S can be triggered, which is either S1’s target rule or S2’s target rule. It means that a target state of S is 

either S1’s target state or S2’s target state. Therefore, a packet sequence that puts S in a target state if 

and only if it puts S1 or S2 in a target state. So we have Ls(S) = Ls(S1) ∪ Ls(S2). 

 

 

Lemma 2: If S = S1 ∪ S2, La(S) = La(S1) ∪ La(S2). 

Proof: 

We’ll prove that Da(S) = Da(S1) ∪ Da(S2) 

- By Lemma 1, we have Ls(S) = Ls(S1) ∪ Ls(S2).  So Ds(S) = Ds(S1) ∪ Ds(S2).  

- Let D* = Da(S1) ∪ Da(S2).  

- Let Fs-S , Fs-S1 , Fs-S2 , Fa-S, Fa-S1 , Fa-S2 , and F
* 

 be transition functions for Ds(S), Ds(S1), Ds(S2), Da(S),  

Da(S1), Da(S2), and D
*
 respectively. 

- Both D* and Da(S) have the same alphabet which is ∪{Pi, Pi*(if Ri is evadable) : Ri in S and Ri is not 

a target rule} 

- Given any state A in Ds(S1), any state B in Ds(S2), any Ri in S: 

+ By the way union of two Ds is constructed, the transition function of Ds(S) is as follow: 

Fs-S([A,B],x) = [Fs-S1(A,x) , Fs-S2(B,x)] 

+ By the way union of two Ds is constructed, the transition function of D* is as follow: 

F*([A,B],x) = [Fa-S1(A,x) , Fa-S2(B,x)] 

+ Based on the construction of Ds and Da of a rule set, we have: 

Fa-S([A,B],x) = Fs-S([A,B],x) if x is Pi 

Fa-S([A,B],x) = [A,B] if x is Pi
*
 and Ri is evadable 

Fa-S1(A,x) = Fs-S1(A,x) if x is Pi 

Fa-S1(A,x) = A if x is Pi
*
 and Ri is evadable 

Fa-S2(B,x) = Fs-S2(B,x) if x is Pi  
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Fa-S2(B,x) = B if x is Pi
*
 and Ri is evadable 

- We have: 

+ if x is Pi: 

Fa-S([A,B],x) = Fs-S([A,B],x) = [Fs-S1(A,x) , Fs-S2(B,x)] = [Fa-S1(A,x) , Fa-S2(B,x)] = F*([A,B],x) 

+ if x is Pi
*
 and Ri is evadable: 

Fa-S([A,B],x) = [A,B] =  [Fa-S1(A,x) , Fa-S2(B,x)] = F*([A,B],x) 

� F* = Fa-S 

- Let As-S , As-S1 , As-S2 , Aa-S, Aa-S1 , Aa-S2 , and A
* 

 be sets of accept states of  Ds(S), Ds(S1), Ds(S2), 

Da(S), Da(S1), Da(S2), and D
*
 respectively. We have: 

Aa-S = As-S (the construction of Ds and Da) and  As-S = {[e1, e2] in which either e1 is in As-S1 or e2 is in 

As-S2} (the construction of union of two Ds) 

A
*
 = {[e1, e2] in which either e1 is in Aa-S1 or e2 is in Aa-S2} = {[e1, e2] in which either e1 is in As-S1 or e2 

is in As-S2} 

� Aa-S  = A*  

- With the same argument, we also have that Da(S) and D* have the same start state. 

=> We have shown that Da(S) and D* have the same alphabet, state transition functions, start state 

and accept states. So Da(S) = D* = Da(S1) ∪ Da(S2), in other words, La(S) = La(S1) ∪ La(S2). 

 

A.1 The new rule set can detect all packet sequences detected by the old rule set 

Proof: 

We have Snew  = S ∪ S1 ∪ S2 … ∪ Sn where S, S1, S2 … ,Sn use non-overlapping label sets. So by Lemma 

1,  

Ls(Snew) = Ls(S ∪ S1 ∪ S2 … ∪ Sn) = Ls(S) ∪ Ls(S1 ∪ S2 … ∪ Sn) (because S and S1 ∪ S2 … ∪ Sn use non-

overlapping label sets and are independent) 

� All packet sequences detected by S are detected by Snew. 

 

A.2 The new rule set can detect all possible evasion sequences 

Proof: 

- We need to prove that, given any path X from the start state to an accept state in the De(S), the new 

rule set can detect the packet sequence corresponding to X, say Xes.  

- Let Z be the simple path after all circles are removed from X. Let Y be the simple path in SP such 

that Y’s corresponding packet sequence is a prefix of Z’s corresponding packet sequence. Let SY be 
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the rule set added for Y and Yes be Y’s corresponding packet sequence. We will prove that Xes is 

detected by SY or accepted by DS(SY). Assume SY uses label set {A1, A2,…,An} and Yes = Y1 Y2 …. 

Yn-1. So Xes = Y1 X1 Y2 X2 … Yn-2 Xn-2 Yn-1Xn-1  where Xi is any packet sequence. 

- Let Ti be the state where A1,…,Ai are set and Ai+1,…,An are not set. Let Fs be the transition function 

of Ds(SY). 

- By the construction of SY, we have  

Fs (Ti, YJ) = Ti+1 if i=j and Ti if i!=j (i<n) 

Fs (Ti, x) = Ti if x != YJ for some j or i=n 

� Fs (Ti, XJ) = Tk where k>=i 

- Now let’s consider how Xes is processed by Ds(SY):  

We’ll prove that the state right before Ds(SY) sees Yi is Tc where c>=i. This can be proven by using 

induction.  

It is true for i=1. Assume it is true for 1<=i<=k.  

Let Te and Tf be the states right before and after Ds(SY) sees Yk repsectively.  We know e>=k because 

of the inductive hypothesis. 

If e=k, Tf = Fs (Tk, Yk) = Tk+1 � f=k+1>k. 

If e>k, Tf = Fs (Te, Yk) = Te � f=e >k. 

So f>=k+1 

We have Tw = Fs (Tf, Xk) (w>=f) is the state right before Ds(SY) sees Yk+1. We have w>=f>=k+1. 

So we have proven that the state right before Ds(SY) sees Yi is Tc where c>=i. It means that the state 

right before Ds(SY) sees Yn-1 is Tn-1 or Tn. So Fs(T1, Xes) = Fs(Tn-1, Yn-1Xn-1)=Tn or Fs(Tn, Yn-1Xn-1)= Tn. 

� Fs(T1, Xes) = Tn. 

- So Xes is accepted by Ds(SY) and hence detected by SY. 

- Since SY is independent with the rest in the new rule set (because SY uses a different label set), a 

packet sequence detected by SY  is detected by the new rule set (by Lemma 1) 
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Appendix B 

The new rule set is sound (solution for small rule sets) 

 

Lemma 3: Each added rule set corresponding to a simple path is not vulnerable to the proposed 

attack.  

Proof: 

Assume the rule set S is added for the simple path K. We need to show that Le(S) = ∅. 

Assume S={R1,R2,…,Rn} and uses label set {A1, A2,…,An}.Let Ti be the state where A1,…,Ai are set 

and Ai+1,…,An are not set.  

Let Fs , Fa, and Fe  be transition functions for Ds(S), Da(S), and De(S) respectively. 

  

- Based on the construction of S from K, we have 

Fs (Ti, PJ) = Ti+1 if i=j and Ti if i!=j (i<n) 

Fs (Ti, PJ*) = Ti+1 if i=j and Ti if i!=j (If RJ is evadable) (i<n) 

Fs (Tn, x) = Tn 

Fa (Ti, PJ) = Ti+1 if i=j and Ti if i!=j (i<n) 

Fa (Ti, PJ*) = Ti (If RJ is evadable) (i<n) 

Fa (Tn, x) = Tn 

- Based on the construction of De(S), we have: 

+ If i=j: 

Fe([Ti,TJ], x) = Fe([Ti,Ti], x)  = [Fs(Ti, x), Fa(Ti, x)] = [Ti, Ti] or [Ti+1, Ti+1] or [Ti+1,Ti] 

+ If j<i: 

Fe([Ti,TJ], x) = [Fs(Ti, x), Fa(TJ, x)] = [Ti, TJ] or [Ti, TJ+1] or [Ti+1,TJ] 

 

Initially, the start state is [T1, T1], so based on the transition functions above, it is clear that [Ti , TJ] 

(j>i) is not reachable in the De(S) 

However, accept states of De(S) are [Ti,Tn] where 1<= i < n , so Le(S) = ∅. 

Therefore, each added rule set corresponding to a simple path is not vulnerable to the proposed attack. 

The new rule set itself is not vulnerable to the proposed attack 

Proof : 

Assume S1, S2 … ,Sn are added rule sets for n simple paths in SP 
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We have Snew  = S ∪ S1 ∪ S2 … ∪ Sn where S, S1, S2 … ,Sn use non-overlapping label sets. 

We need to prove that the new rule set Snew is safe against the proposed attack. In other words, we 

need to prove that Le(Snew) = ∅. 

From what we have proved in Appendix A.2, we have: Le(S) = Ls(S1) ∪ Ls(S2) ∪ … ∪ Ls(Sn)  (*) 

Now, we have Le(Snew) = Le(S ∪ S1 ∪ S2 … ∪ Sn) = ¬Ls (S ∪ S1 ∪ S2 … ∪ Sn)  ⋂  La (S ∪ S1 ∪ S2 … ∪ Sn) 

= (¬Ls(S) ⋂ ¬Ls(S1) ⋂ … ⋂ ¬Ls(Sn))    ⋂   (La (S) ∪ La (S1) ∪ La (S2) … ∪ La (Sn)) (by Lemma 1 and 

Lemma 2) 

= (¬Ls(S) ⋂ ¬Ls(S1) ⋂ … ⋂ ¬Ls(Sn) ⋂  La (S)) ∪ (¬Ls(S) ⋂ ¬Ls(S1) ⋂ … ⋂ ¬Ls(Sn) ⋂  La (S1)) ∪ ….  

∪  (¬Ls(S) ⋂ ¬Ls(S1) ⋂ … ⋂ ¬Ls(Sn) ⋂  La (Sn)) 

= (¬Ls(S) ⋂ ¬Ls(S1) ⋂ … ⋂ ¬Ls(Sn) ⋂  La (S)) ∪ (¬Ls(S) ⋂ … ⋂ ¬Ls(Sn) ⋂  Le (S1)) ∪ ….  ∪  

(¬Ls(S) ⋂ … ⋂ ¬Ls(Sn-1) ⋂  Le (Sn))   

= (¬Ls(S) ⋂ ¬Ls(S1) ⋂ … ⋂ ¬Ls(Sn) ⋂  La (S)) ∪ ∅ … ∪ ∅ (by lemma 3) 

= ¬Ls(S) ⋂ ¬Ls(S1) ⋂ … ⋂ ¬Ls(Sn) ⋂  La (S) 

= (¬Ls(S) ⋂  La (S)) ⋂ ¬Ls(S1) ⋂ … ⋂ ¬Ls(Sn) 

= Le(S) ⋂ ¬Ls(S1) ⋂ … ⋂ ¬Ls(Sn) 

= (Ls(S1) ∪ Ls(S2) ∪ … ∪ Ls(Sn)) ⋂ ¬Ls(S1) ⋂ … ⋂ ¬Ls(Sn) (by  (*) ) 

=  ∅ (use induction on n and use Ls(Si) ⋂ ¬Ls(Si)= ∅) 

So we have Le(Snew) = ∅, this means Snew is not vulnerable to the proposed attack. 
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Appendix C 

 

C.1 Theorem: If a set Q of evadable rules makes the rule set vulnerable, then at least one of these 

evadable rules is vulnerable. 

Proof: 

We’ll prove this theorem by contradiction. 

Assume there is no rule in the set is vulnerable. Let K be an evasion sequence that exploits these 

evadable rules in Q. K contains evasion packets correponding to evadable rules in  Q  and normal 

packets. 

So K ∉ Ls(S) and K ∈ La(S). 

Let K
a
 be the packet sequence from K without evasion packets (removing evasion packets from K), so 

K
a
 ∈ La(S). 

Let K
f
 be the packet sequence from K with Pi*’s replaced by Pi’s for all Ri ∈ Q. We have K

f
 ∉ Ls(S) 

because from Snort’s perspective, K and K
f 
are the same, and we also have K ∉ Ls(S) 

Now we consider this procedure: 

Let K
s
 = K

a 

For each Ri ∈ Q: 

1- Set K
a
 = K

s
  

2- Add Pi*’s to K
a
 at the positions where they are removed from K 

3- Set K
s
 = packet sequence from K

a
 with Pi*’s replaced by Pi’s. 

Before the first iteration: K
a
 ∈ La(S) 

After the first iteration: We have K
a
 ∈ La(S) because we just add evasion packets to K

a
. We also have 

K
a
 contains evasion packets corrensponding to only Ri for some i. So K

a 
can not be an evasion 

sequence, otherwise Ri is vulnerable. Together we must have K
a
 ∈ Ls(S). But from Snort’s 

perspective, K
a
 and K

s
 are the same, so K

s
 ∈ Ls(S). Since K

s
 does not contain any evasion packet, 

then if K
s
 ∈ Ls(S) � K

s
 ∈ La(S). 
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With the same arguments, we always have K
s
 ∈ Ls(S) after each iteration. But when the loop is done, 

we have K
s
 = K

f
. This means K

f
 ∈ Ls(S): a contradiction. 

So the assumption is wrong. Therefore, there is at least one rule in the set is vulnerable. 

 

C.2  Small rule set solution complexity proof 

In De , a simple path from the start node to a target node can be of length M^2. There is one choice 

for the start node in the path, |Σ| choices for the second node, |Σ|^2 for the third, … and so on until 

node M^2-|T|, entailing an upper bound complexity of  ~ |Σ|^(M^2-|T|-1) for each target state in |T|. 

For each simple path in SP of size |p|, a set of |p|-1 flowbits and rules is created. |p| has an upper 

bound length of M^2-|T|. 

In summary, an upper bound on the complexity of the procedure is |T| x (M^2-|T|-1) x |Σ|^(M^2-

|T|-1) new rules! 

 

C.3 Large rule set solution complexity proof 

We always have |Σ| <= |R|. 

Number of edges in Ds= M x |Σ|. 

The evasion DFAconstruction has a worst case cost of M^2 x |Σ|. 

For each constructed De, there is a need to run an algorithm to find if a final state is reachable from 

the start state. This can be avoided by doing this test while constructing the De, so the this operation 

can be assumed to have no cost. 

The step of adding and changing rules to the rule set has an upper bound of |R| operations. 

In total, the worst case complexity is  |R| x (M^2 x |Σ| + 1), which is polynomial. 

 

 

 

 

 

 

 



 

 79 

Bibliography 

[1] A. El-Atawy, K. Ibrahim, H. Hamed, and E. Al-Shaer, "Policy segmentation for intelligent 

firewall testing," in 1st Workshop on Secure Network Protocols, November 2005. 

[2] A. Mayer, A. Wool, and E. Ziskind, "Fang: A firewall analysis engine," in Proc. IEEE Symp. on 

Security and Privacy, Oakland, CA, May 2000, pp. 177-187. 

[3] A. X. Liu, M. G. Gouda, H. H. Ma, and A. H. Ngu, "Firewall queries," in Proceedings of the 8th 

International Conference on Principles of Distributed Systems, December 2004. 

[4] B. Hari, S. Suri and G. Parulkar, "Detecting and Resolving Packet Filter Conflicts," in 

Proceedings of IEEE INFOCOM '00, March 2000. 

[5] L. Bauer, S. Garriss, and M. K. Reiter, "Detecting and resolving policy misconfigurations in 

access-control systems," in SACMAT '08: Proceedings of the 13th ACM Symposium on Access 

Control Models and Technologies, New York, NY, USA, 2008, pp. 185-194. 

[6] R. A. Becker, S. G. Eick, and A. R. Wilks, "Visualizing Network Data," IEEE Transactions on 

Visualization and Computer Graphics, vol. 1, no. 1, pp. 16-28, 1995. 

[7] M. Benantar, Access Control Systems: Security, Identity Management and Trust Models. 

Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2005. 

[8] Bethel, E. W., S. Campbell, E. Dart, K. Stockinger, and K. Wu, "Accelerating Network Traffic 

Analysis Using Query-Driven Visualization," in IEEE Symposium on Visual Analytics Science 

and Technology , IEEE Computer Society Press, 2006. 

[9] BleedingEdge Inc. [Online]. http://www.bleedingthreats.net 

[10] B. Caswell, J. Beale, and A. R. Baker, Snort Intrusion Detection and Prevention Toolkit.: 

Syngress Publishing, 2007. 

[11] Cisco Systems, Inc. (2006-2008) Installing and Using Cisco Intrusion Prevention System Device 

Manager 6.0. OL-8824-01. 

[12] S. A. Crosby and D. S. Wallach, "Denial of service via algorithmic complexity attacks," in SSYM 

'03: Proceedings of the 12th Conference on USENIX Security Symposium, Berkeley, CA, USA, 

2003, pp. 3-3. 

[13] David Gilbert and Thomas Morgner. JFreeChart, Java chart library. [Online]. 

http://www.jfree.org/jfreechart/ 



 

 80 

[14] E. Al-Shaer and Hazem Hamed, "Discovery of Policy Anomalies in Distributed Firewalls," in 

Proceedings of IEEE INFOCOM '04, March 2004. 

[15] Ehab Al-Shaer, Hazem Hamed, Raouf Boutaba, and Masum Hasan, "Conflict classification and 

analysis of distributed firewall policies," IEEE Journal on Selected Areas in Communications, 

pp. 23(10):2069--2084, October 2005. 

[16] D. Eppstein and S. Muthukrishnan, "Internet packet filter management and rectangle geometry," 

in SODA '01: Proceedings of The Twelfth Annual ACM-SIAM Symposium on Discrete 

Algorithms, Philadelphia, PA, USA, 2001, pp. 827-835. 

[17] C. Giovanni. (2001, March) Fun with Packets: Designing a Stick, Draft White Paper on Stick, 

Tech. Rep. [Online]. http://www.eurocompton.net/stick 

[18] J. R. Goodall, W. G. Lutters, P. Rheingans, and A. Komlodi, "Preserving the Big Picture: Visual 

Network Traffic Analysis with TN," in VIZSEC '05: Proceedings of the IEEE Workshops on 

Visualization for Computer Security, Washington, DC, USA, 2005, p. 6. 

[19] H. Hamed, E. Al-Shaer, and W. Marrero, "Modeling and Verification of IPSec and VPN 

Security Policies," in ICNP '05: Proceedings of the 13TH IEEE International Conference on 

Network Protocols, Washington, DC, USA, 2005, pp. 259-278. 

[20] M. Handley, V. Paxson, and C. Kreibich, "Network intrusion detection: evasion, traffic 

normalization, and end-to-end protocol semantics," in SSYM '01: Proceedings of The 10th 

Conference on USENIX Security Symposium, Berkeley, CA, USA, 2001, pp. 9-9. 

[21] IDS Policy Manager. [Online]. http://www.activeworx.org/Default.aspx?tabid=55 

[22] J. Novak and S. Sturges, "Target-Based TCP Stream Reassembly," Aug 2007. 

[23] K. Lakkaraju, R. Bearavolu, and W. Yurcik, "NVisionIP - a traffic visualization tool for large 

and complex network systems," in International Multiconference on Measurement, Modelling, 

and Evaluation of Computer-Communication Systems (Performance TOOLS), 2003. 

[24] B. W. Lampson, "Protection," in Proceedings of the 5th Princeton Symposium on Information 

Science and Systems, March 1971, pp. 437--443. 

[25] C. P. Lee, J. Trost, N. Gibbs, R. Beyah, and J. A. Copeland, "Visual Firewall: Real-time 

Network Security Monito," in VIZSEC '05: Proceedings of the IEEE Workshops on Visualization 

for Computer Security, Washington, DC, USA, 2005, p. 16. 

[26] J. Lind-Nielsen. The buddy obdd package. [Online]. http://www.bddportal.org/buddy.html 



 

 81 

[27] E. L. Malécot, M. Kohara, Y. Hori, and K. Sakurai, "Interactively combining 2D and 3D 

visualization for network traffic monitoring," in VizSEC '06: Proceedings ofTthe 3rd 

International Workshop on Visualization for Computer Security, New York, NY, USA, 2006, pp. 

123-127. 

[28] J. McPherson, K.-L. Ma, P. Krystosk, T. Bartoletti, and M. Christensen, "PortVis: a tool for port-

based detection of security events," in VizSEC/DMSEC '04: Proceedings of the 2004 ACM 

Workshop on Visualization and Data Mining for Computer Security, New York, NY, USA, 

2004, pp. 73-81. 

[29] D. Mutz, G. Vigna, and R. Kemmerer, "An Experience Developing an IDS Stimulator for the 

Black-Box Testing of Network Intrusion Detection Systems," in ACSAC '03: Proceedings of the 

19th Annual Computer Security Applications Conference, Washington, DC, USA, 2003, p. 374. 

[30] Network Access Control. [Online]. http://en.wikipedia.org/wiki/Network_Access_Control 

[31] Nmap. [Online]. http://nmap.org 

[32] V. Paxson, "Bro: a system for detecting network intruders in real-time," in SSYM '98: 

Proceedings of The 7th Conference on USENIX Security Symposium, Berkeley, CA, USA, 1998, 

pp. 3-3. 

[33] M. Roesch, "Snort - Lightweight Intrusion Detection for Networks," in LISA '99: Proceedings of 

The 13th USENIX Conference on System Administration, Berkeley, CA, USA, 1999, pp. 229-

238. 

[34] S. Rubin, S. Jha, and B. P. Miller, "Automatic Generation and Analysis of NIDS Attacks," in 

ACSAC '04: Proceedings of the 20th Annual Computer Security Applications Conference, 

Washington, DC, USA, 2004, pp. 28-38. 

[35] S. Rubin, S. Jha, and B. P. Miller, "Language-Based Generation and Evaluation of NIDS 

Signatures," in SP '05: Proceedings of the 2005 IEEE Symposium on Security and Privacy, 

Washington, DC, USA, 2005, pp. 3-17. 

[36] S.Aubert. IDSWakeup. [Online]. http://www.hsc.fr/ressources/outils/ids wakeup/, 2000 

[37] U. Shankar and V. Paxson, "Active Mapping: Resisting NIDS Evasion without Altering Traffic," 

in SP '03: Proceedings of the 2003 IEEE Symposium on Security and Privacy, Washington, DC, 

USA, 2003, p. 44. 

[38] Sharma Nidhi, "FireViz : a personal firewall visualizing tool," Massachusetts Institute of 



 

 82 

Technology, Dept. of Electrical Engineering and Computer Science, Thesis (M. Eng.) 2005. 

[39] R. Smith, C. Estan, and S. Jha, "Backtracking Algorithmic Complexity Attacks against a NIDS," 

in ACSAC '06: Proceedings of the 22nd Annual Computer Security Applications Conference on 

Annual Computer Security Applications Conference, Washington, DC, USA, 2006, pp. 89-98. 

[40] Sniphs. (2003, January) Snot. [Online]. http://www.l0t3k.org/tools/IDS/snot-0.92a.tar.gz 

[41] Snort 2.8.1. [Online]. http://www.snort.org/dl/current/snort-2.8.1.tar.gz 

[42] SourceFire, Inc. [Online]. http://www.sourcefire.com 

[43] Sourcefire, Inc. (2003-2008) The Snort Project. 

[44] T. Ptacek and T. Newsham, "Insertion, Evasion, and Denial of Service: Eluding Network 

Intrusion Detection," , 1998. 

[45] Tom'as E. Uribe and Cheung Steven, "Automatic analysis of firewall and network intrusion 

detection system configurations," in FMSE '04: Proceedings of the 2004 ACM Workshop on 

Formal Methods in Security Engineering, pp. 66--74. 

[46] Tufin SecureTrack: Firewall Operations Management Solution. [Online]. http://www.tufin.com 

[47] G. Vigna, W. Robertson, V. Kher, and R. A. Kemmerer, "A Stateful Intrusion Detection System 

for World-Wide Web Servers," in ACSAC '03: Proceedings of the 19th Annual Computer 

Security Applications Conference, Washington, DC, USA, 2003, p. 34. 

[48] D. Wagner and P. Soto, "Mimicry attacks on host-based intrusion detection systems," in CCS 

'02: Proceedings of the 9th ACM conference on Computer and Communications Security, New 

York, NY, USA, 2002, pp. 255-264. 

[49] A. Wool, "Architecting the Lumeta firewall analyzer," in SSYM '01: Proceedings of the 10th 

Conference on USENIX Security Symposium, Berkeley, CA, USA, 2001, pp. 7-7. 

[50] Y. Bartal, A. Mayer, K. Nissim, and A. Wool, "Firmato: A novel firewall management toolkit," 

in ACM Transactions on Computer Systems, November 2004, pp. 22(4):381-420. 

[51] V. Yegneswaran, J. T. Giffin, P. Barford, and S. Jha, "An architecture for generating semantics-

aware signatures," in SSYM '05: Proceedings of the 14th Conference on USENIX Security 

Symposium, Berkeley, CA, USA, 2005, pp. 7-7. 

 


