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In this preliminary study, we investigate how inconsistency in a network intrusion detection

rule set can be measured. To achieve this, we first examine the structure of these rules which

are based on Snort and incorporate regular expression (Regex) pattern matching. We then

identify primitive elements in these rules in order to translate the rules into their (equivalent)

logical forms and to establish connections between them. Additional rules from background

knowledge are also introduced to make the correlations among rules more explicit. We measure

the degree of inconsistency in formulae of such a rule set (using the Scoring function, Shapley

inconsistency values and Blame measure for prioritized knowledge) and compare the

*This is a revised and significantly extended version of [1].
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informativeness of these measures. Finally, we propose a new measure of inconsistency for

prioritized knowledge which incorporates the normalized number of atoms in a language

involved in inconsistency to provide a deeper inspection of inconsistent formulae. We conclude

that such measures are useful for the network intrusion domain assuming that introducing

expert knowledge for correlation of rules is feasible.

Keywords: Network intrusion detection; inconsistency measures; Snort rules.

1. Introduction

Research into intrusion detection and prevention within the network security

domain has accumulated a considerable amount of rules for detecting various

intrusions and security threats. For instance, the size of Snort (a well-known open

source Network Intrusion Detection System (NIDS) and Network Intrusion

Prevention System (NIPS)) has expanded rapidly in recent years [2]. Such

intrusion detection systems (IDSs) have provided advantages over traditional

security measures in terms of accuracy and reliability [3]. Furthermore, efficient

implementation of the rules used by these IDSs has proven that it is possible to

integrate these systems into modern high speed networks. One such method has

been to execute regular expression (Regex) pattern matching on network traffic

using high performance computing facilities.

However, the current IDS rules have their limitations as identified in [4]. The

most significant limitation is that for every rule there is one alert, and there is little

consideration for subsequent correlation of individually detected primitive alerts.

That is to say, the connections between detected suspicious messages/actions are

not accurately correlated to allow understanding and to identify unusual trends and

patterns in network activity. Therefore high level network intrusion events are not

adequately detected and reported. At the same time new rules are continuously

being added, in Snort for example [2], so it is crucial to validate any new rules to

ensure they are a consistent set before being combined with the global knowledge

base (the main rule set). In Snort, new rules are created in the Snort format and this

set of new rules must be consistent before it is added to the main Snort rule set.

In this paper, we do not consider how network intrusion rules are obtained or

whether each rule is correct. Rather, given a set of such rules (called Snort2Regexa

rules) created using the Snort2Regex translator [5], our task is to deploy formal

Artificial Intelligence (AI) approaches for analyzing these rules and to discover any

(logical) inconsistencies among them, i.e. to identify rules which may conflict. Such

attempts for inconsistency detection, using formal AI methods, have not been

carried out within intrusion detection research. The implication of inconsistency

in intrusion detection systems is that the detection of intrusion attempts will

not be reliable when conflicting alerts are reported. Similarly, false alarm and

aWe focus on the Snort2Regex rule set, rather than the original Snort rules, because it addresses the issue

of creating a generic IDS rule format which will provide us with a wider range of rules for analysis in the

future. It also improves on Snort by focusing on high speed implementation.
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mis-detection rates are likely to increase with a greater level of inconsistency

in the intrusion detection rule set.

Recent developments in inconsistency handling [6�8] have demonstrated that to

effectively manage inconsistencies, it is necessary to propose measures to quantify

the degree of inconsistency that individual formulae have contributed, instead of

considering the inconsistency of the knowledge base as a whole. These formula-level

inconsistency values, such as the Scoring function in [7] and the SIMI
measure in [8],

can be considered as a degree of blame assigned to each formula in terms of its

contribution to the inconsistency of the overall base. The advantage of these

methods is that they identify an ordering for the degree of blame that each formula

contributes to the inconsistency of the rule set.

There are a number of paths which are available to begin resolving inconsistency,

the most basic of which is to simply remove inconsistent rules ��� one at a time ���
until the knowledge base is consistent. For example, given an inconsistent knowl-

edge base K ¼ fa;:a ^ b; cg then either a or :a ^ b would be removed to make K

consistent. However, this approach is limited since information loss is inevitable. An

alternative approach (or at least one which can be combined with removal) is to

weaken inconsistent rules [6], by modification, in order to remove inconsistency

while limiting information loss. For example, given the inconsistent knowledge

base K ¼ fa;:a ^ b; cg then :a ^ b could be weakened to :a _ b in order to make

K consistent. By measuring the degree of blame associated with each rule for

inconsistency, using inconsistency measures, it is possible to identify which rules are

more inconsistent than others in order to identify the rules which should be removed

or weakened first.

In many real word applications, such as in Requirements Engineering (RE) [9],

some knowledge will be more important than others. Rather than assuming that all

formulae are equally important, knowledge of this nature is often organized into

some kind of prioritized or stratified form to differentiate more important vs. less

important knowledge. For example, requirements on security would be regarded as

more important than requirements on interfaces or the openness of a system.

Accordingly inconsistency measures for flat knowledge bases need to be adapted for

prioritized bases. The approach described in [10] demonstrates the significance of

applying inconsistency measures to prioritized knowledge bases where the advan-

tage of this approach is that the priority of a formula can be considered when

measuring inconsistency.

In this preliminary study, we examine the structure of rules in the Snort2Regex

rule set and then separate them into their elementary units in order to reflect their

primary structure. We then apply some existing approaches to measuring incon-

sistency for rules in the Snort2Regex format. This study reveals that the SILPm
measure is most useful for non-prioritized knowledge while the Blamev prioritized

measure potentially provides more useful paths for resolving inconsistency. Finally,

we propose a new measure for inconsistency in prioritized knowledge which incor-

porates the normalized number of the atoms in a language involved in inconsistency.
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Since this measure provides a deeper inspection of inconsistent formulae it is

potentially more useful for identifying the most problematic rules in the Snor-

t2Regex rule set. The investigation will lead to proposals as to how inconsistencies

can be most effectively identified in an IDS rule set and, more generally, how they

can be resolved.

1.1. Network intrusion detection

In general, the data traveling through a network (called network traffic) is com-

prised of network packets which are units of data usually consisting of a header and

contents (or payload). The header of a packet consists of information for packet

delivery such as source address, destination address and checksums to ensure

transmission integrity. The contents, on the other hand, will contain the actual data

to be delivered. Network intrusion detection systems are a form of network security

which monitor this network traffic to detect malicious activity such as unauthorized

access, misuse by authorized users or denial of service (DoS) attacks [11]. These

IDSs differ from traditional forms of network security, such as firewalls and access

rights, which restrict outside access to the network. Instead, IDSs apply rules to

network traffic in order to detect possible intrusion attempts, originating from

inside and outside the network, as they occur.

The usual method employed by modern IDSs is deep packet inspection (DPI)

which has become increasingly popular since packet inspection based on packet

header information only (stateful packet inspection (SPI)) is limited. In SPI for

example, if a packet is received through port 80, the port used for HTTP, then SPI

cannot tell whether the packet contains a web page or a virus. DPI, however, can

examine the packet header, like traditional SPI, but in cases where this is not

sufficient it is able to examine the packet contents as well. In addition to this, DPI is

also capable of examining the contents across multiple packets. This allows DPI to

determine if a packet (or series of packets) is suspicious based, not only on how the

packet is being delivered, but also on what is being delivered. For example, a

malware application may communicate through port 80 (the typical HTTP port) by

masquerading as general HTTP traffic. In this case, SPI would permit the traffic

while DPI may be able to examine the contents and detect the application initiating

the communication. It may not always be necessary to examine the contents of a

packet (since this is more computationally expensive), but either method can be

applied by a DPI system.

Snort [12], for example, is a widely used signature-based network intrusion

detection systemwhich uses DPI. It is signature-based in the sense that intrusions are

detected by searching network traffic for predefined signatures which are indicative of

possible attacks.These signatures are definedas Snort rules, using theSnort language,

and comprise the Snort rule set. Each Snort rule contains conditions (the attack

signature), an action (e.g. an alert) and other metadata (e.g. where the rule origi-

nated). If an attack signature is detected innetwork traffic then anaction is performed.
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The Snort rule set is open source, with an extensive development community and

user base, which means that it is easy to create and integrate new rules. The rule set

itself is of enterprise quality because it is commercially maintained and has

numerous commercial users and contributors. However, the major limitation of the

Snort rule set is that it is purpose built for the Snort IDS and so can only be used, in

their original format, by systems based on the Snort IDS [5]. Also, a general issue

with modern IDSs is the continuing increase in network traffic and network speeds

as well as the continuous addition of new detection rules. The effectiveness of cur-

rent software implementations for intrusion detection and prevention, given the

new 40/100Gb Ethernet standards for example, is becoming increasingly limited.

Hardware implementations are proving more useful for these high speed networks,

however they too are restrictive in that they need to be purpose built for a particular

rule format.

The system developed in [5] aims to create a unified DPI rule set integrating,

initially, the Snort rule set but later also integrating most other DPI rule sets such

as Bro, L7-filter and ClamAV as well. These new generalized rules incorporate

regular expression (Regex) pattern matching for DPI since Regex is particularly

useful for its high speed performance. A Snort translator, called Snort2Regex, was

developed to convert the existing Snort rules into Regex format for high speed

hardware and software implementation. Currently, this Snort2Regex rule set con-

tains around 8500 rules which is too large to manually identify inconsistencies

between rules. Also, since this rule set is based on Snort, it will constantly expand in

order to replicate new rules added to Snort. These factors mean that it will be even

more difficult to maintain consistency as time passes, and so an automated approach

is needed to detect and resolve conflicts.

The extent of false alarms is a well-known issue in the intrusion detection field

and network security more generally. A recent study to determine the extent of false

alarms caused by the default Snort IDS was carried out using a private dataset of

real network traffic, from a public network, over a period of 40 days [13]. The study

found that approximately 96% of total alerts generated by Snort were false alarms.

These figures are particularly surprising given the popularity of Snort among IDSs.

Further to this study, the false alarm rate caused by Snort was measured against the

Defense Advanced Research Projects Agency (DARPA) 1999 synthetic dataset [14].

In this case, approximately 69% of total alerts generated by Snort were considered

false alarms. Similar results for false alarms caused by Snort in the DARPA 1991

dataset have been found [15].

While the issue of false alarms in IDSs is as much to do with redundancy and

poorly formed rules, inconsistency between rules cannot be ignored. In practice, the

results found in [13] were that approximately 3000 alerts were generated per day

that required manual verification. The scale of false positives detected by Snort

significantly reduces its usefulness and demonstrates the difficulty in attempting to

post-process alerts. While the suggestions of fine tuning Snort rules showed an

improvement (resulting in a false alarm rate of 87% after fine tuning) [13], each
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modification has the potential to introduce new inconsistencies which can only be

identified by validating the entire set.

1.2. Related issues

There are a number of important issues relating to the management of IDS rule sets,

of which the validation of rule sets is just the first part. Validation in this case refers

to the goal of ensuring that, given a single knowledge base, there are no incon-

sistencies inherent in it as an isolated set. This set could be the global knowledge

base, such as the current Snort or Snort2Regex rule sets, or a set of new rules which

are to be added to the global knowledge base. In the latter case for example, the set

of new rules should be self-consistent before being added to the global knowledge

base since inconsistency among new rules is a separate issue from inconsistencies

between new and old rules. This is the aim of this study: that, given a set of IDS

rules, how can we identify and begin to resolve inconsistencies.

A related, but separate, issue for the management of an IDS rule set deals with

the case when there is a set of new rules which need to be added to the global

knowledge base. From a network security perspective, and specifically for intrusion

detection, this is particularly important because of the changing nature of security

threats and detection mechanisms. What this means is that vulnerabilities in

security systems are constantly being identified, fixes are being created, security

policies are changing and new vulnerabilities are being introduced. Since old rules

may deal with elapsed security threats and new rules have been introduced to deal

with new threats, it is important to remove these old rules (especially if they con-

tradict new rules) and to make sure new rules are represented in the rule set. This is

the topic of revising the rule set to best represent current security threats.

Similar to the revision of rule sets, another issue which affects the management of

any IDS system is how to merge multiple rule sets. These rule sets which are to be

combined may simply be separate rule sets built from the same language but devel-

oped by different authors, e.g. Snort rules created separately but built from the

common Snort language. Alternatively, the rule sets may be heterogenous in which

case a common interpretation is need, e.g. if a Snort rule set is to be combined with

another popular IDS, such as Bro. In either case the task becomes how to best rep-

resent the meaning of both rule sets. For example, if one set identifies a particular

attack signature but the other does not, unless this other set explicitly defines this

signature as safe, the cautious approach would be to include this attack signature in

the merged rule set. In the case where two separate IDSs produce different alerts for

the same signature, if the alerts are considered mutually exclusive then there is an

inconsistency between both sources which needs to be resolved during the merging

process. The inconsistency, in this instance, is unrelated to inconsistencies identified

in the validation process since it is an inconsistency between two separate rule sets.

A final issue worth mentioning is that of data inconsistency, i.e. inconsistency in

actual network traffic, such as a contradiction between the packet header field and
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packet contents caused by transmission errors. This type of inconsistency is sep-

arate from the issue of inconsistency when validating a rule set although it is

important to consider for overall accurate intrusion detection. In contrast to rule

inconsistency, data inconsistency may be beneficial for intrusion detection since

problematic data could indicate an attack signature. In this case it is desirable to

detect the inconsistency, rather than resolve it.

2. Related Work

The issue of understanding and correlating intrusion detection rules is important in

order to begin handling inconsistency in the rule set. One such method is to formally

encode the IDS knowledge base in Description Logics (DL) where rules are described

in a Tbox and facts (network traffic) are described in an Abox [16]. Similarity

measures could then be applied [17] to correlate rules and alerts semantically, rather

than just syntactically as proposed here. This is an interesting path to address in

future work.

In the literature, approaches to network security have tended to focus on the

avoidance of inconsistency or the application of workarounds after inconsistencies

have been detected. This is in contrast to an approach of formally measuring a

degree of blame associated with rules in relation to their contribution to incon-

sistency. The method applied in [18] for network intrusion and firewall anomalies

(of which inconsistencies are a subset) differs from ours in that it seeks to reduce the

impact of anomalies by decoupling of rules. They have shown that this method is

effective in reducing inconsistencies since constraints are removed and rules are

independent. However this leads to redundancy and, from an AI perspective, makes

it difficult to construct semantic understanding in order to correlate rules.

The term ‘anomaly’ [19�21] in network security covers a number of issues

relating to potential inconsistency, such as conflicts (mutual exclusion) and ambi-

guity (e.g. subsumption) [22, 23], however it rarely addresses logical inconsistency.

While the term anomaly is not synonymous with inconsistency as it is applied here,

it is used in the case of refining a network security rule set of which inconsistency is

an important factor.

Techniques and algorithms are presented in [19] for identifying anomalies

in distributed firewall policies and implemented in a software tool, ‘Firewall

Policy Advisor’. This approach does not offer a mechanism to automatically resolve

inconsistencies, rather it requires user interaction to decide on the actions to take. If

this approach were applied to an IDS, such as the Snort2Regex rule set, it would be

prohibitive since any inconsistencies caused by new rules would have to be resolved

manually. It could be argued however, that manual resolution is the most desirable

path since the security operator should have overall control of the security system

[24] but never the less, it is an expensive and often very difficult task for a security

operator when dealing with a large collection of rules such as ours. In this case,

the approach of formally measuring inconsistencies can be useful in identifying
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problematic rules so that the security operator can focus on the most promising

solutions. Other work on anomalies in Firewalls can be found in [25�27].
In addition to work on inconsistencies in network intrusion systems and firewalls,

there are a number of methods which address the issue of Access Control List (ACL)

conflicts. In [28], conflicts between packet filter rules (used for packet classification

from packet header fields) are defined as the existence of ambiguity between rules,

which is a case of inconsistency from [22] not addressed in this paper. While it

does not consider explicit logical inconsistency, it applies an automatic system for

detecting and resolving these ambiguities. In this case, it finds that using a simple

prioritizing approach to avoid inconsistencies is not enough and instead adds resolve

filters (new rules which address the ambiguous region of conflicts). This type of

approach is analogous to weakening of rules, which we have suggested as a possible

path to resolving conflicts. Other examples of resolving conflicts in ACLs can be

found in [24, 29], while further work on resolving anomalies in security policies can

be found in [20].

More generally, an alternative approach for inconsistency handling in knowledge

bases is the use of paraconsistency which views the occurrence of inconsistency as

unavoidable. Instead of attempting to resolve inconsistency, the paraconsistent

approach seeks to reason in the presence of inconsistency by isolating or ignoring

inconsistent areas of a knowledge base [30]. Paraconsistency does not support the

trivial assumption that inconsistent information is incorrect and so by maintaining

inconsistencies, meaningful information is not lost. However, the extent of false

positives (detecting a threat where no threat has occurred) in IDSs [13�15] means

that it is a laborious and difficult task to identify true positives (actual attacks). A

paraconsistent approach would most likely need to be run online which would

further increase the burden on the detection system. For this reason an offline

approach of identifying and resolving inconsistencies can prove more effective for an

intrusion detection scenario.

3. Preliminaries

Let L denote the propositional language obtained from a finite set of propositional

atoms P ¼ fa; b; c; . . .g, using logical connectives f_;^;:;!g. Formulae in L are

denoted as �; �; �, etc. An interpretation w is a total function from P to f0; 1g and

let W denote the set of all interpretations. Interpretation w is a model of formula a,

denoted w � a, iff a is true in the usual truth-functional way. We denote set

inclusion (resp. strict) by � (resp. �). Let ? denote an inconsistent formula.

If K logically entails � we denote this as K ‘ � where � is the logical consequence

of K .

We define a knowledge (belief) base as the union of a rule base (rule set) and a

fact base, though either can be empty. In the Snort2Regex example, the Snor-

t2Regex rules comprise the rule base and the network traffic (events) comprises the

fact base. Together they form the knowledge base.
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We define inconsistency (contradiction) as logical inconsistency in the classical

sense, i.e. that a knowledge base is unsatisfiable under any interpretation. The term

inconsistency measure [6, 7] refers to a measure of the degree to which a formula

contributes to the inconsistency of the knowledge base or, when applied to the

knowledge base itself, the degree to which the base is inconsistent. The term is

synonymous with the terms inconsistency value [8], blame measure and degree of

blame [9, 10] (as well as the significance of a formula in relation to inconsistency).

Definition 1 ([7]). Let D be the set of databases formed from L, where D ¼ }ðLÞ.
Let N be the set of natural numbers. For n 2 N, Dn is the set of databases of size n

i.e. Dn ¼ f� 2 D j j�j ¼ ng.
Definition 2 (MI and MC [7]). Let � 2 D, Conð�Þ ¼ f� � � j�0 ?g, and

Inconð�Þ ¼ f� � � j� ‘?g.
MCð�Þ ¼ f� 2 Conð�Þ j 8� 2 Conð�Þ;�½6 �g;
MI ð�Þ ¼ f� 2 Inconð�Þ j 8� 2 Inconð�Þ;�½6 �g:

MI ð�Þ is the set of minimal inconsistent subsets (MISs) of�, andMCð�Þ the set
of maximal consistent subsets of �.

In logics, inconsistency is the occurrence of conflicting information. e.g. both a and

:a can be proven.However, for the rule set we are considering,we need to determine if

inconsistent information will ever be produced, e.g. fa ! b; b ! :ag is classically

consistent but if we later learn fag then fa; a ! b; b ! :ag is classically inconsistent.
We introduce a new definition of inconsistency below, equivalent to the classical

MISs, with which we can ‘pre-empt’ inconsistencies.

Definition 3 (£-inconsistency). Let � � L s.t. �0 ?. A knowledge base K is

said to be �-inconsistent (formerly preemptively-inconsistent [1]) iff K [� ‘?.

The set of minimal �-inconsistent subsets of K is MPSðK j�Þ ¼ f�n� j� 2
MI ðK [�Þg.

From this definition we can see that if K is inconsistent then MI ðKÞ �
MPSðK j�Þ for all �. � can be taken as a kind of constraint for a given K . In the

application we consider, � is in fact a subset of atoms which is a very small pro-

portion of alerts generated, e.g. the most important alerts. MPSðK j�Þ is � sensi-

tive, since given a K , there may be more than one � satisfying Definition 3. Due to

space limitation, we do not consider how this can be addressed [31].

Note that a similar definition to �-inconsistency was given in [32] on require-

ments engineering, in which notation R [�I was used to state that R (a set of

requirements) is inconsistent relative to a scenario � ¼ h�I ;�Ei. However, in [32],

the authors retained the computation of the MI set on R [�I whilst we propose the

calculation of MPS set on K here.

Although methods deploying model-based approaches in the inconsistency

handling community interpret the comma connector in the definition of knowledge
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bases as synonymous with the conjunctive connector, i.e. K ¼ fa; b; cg and K 0 ¼
fa ^ b ^ cg are the same. It is important to clarify that, although K and K 0 could be

considered semantically equivalent (i.e. they have the same set of models), this is

not the adopted interpretation used in this paper. The reason for this is that we are

seeking to identify individual formula responsible for inconsistency and, since K and

K 0 have different cardinalities, i.e. jK j ¼ 3 and jK 0j ¼ 1, this would dramatically

affect the formula-level inconsistency measures applied later.

4. Snort2Regex Rules

We currently have 8500 rules from [5], which have been translated into Snort2Regex

format using the Snort2Regex translator. Regex pattern matching is then executed

using high-speed hardware for intrusion detection on raw packet data. Rules in the

Snort2Regex format are difficult to read and analyze in terms of inconsistency so we

first translate them into a logical format and then attempt to measure their

inconsistency.

4.1. Regex

Regex [33] is a formal language for pattern matching of text strings and is used

extensively in computing. The Regex strings themselves are interpreted by a regular

expression processor which parses input text for patterns matching the predefined

Regex string. In the Snort2Regex rule set, Regex strings are used for identifying

suspicious packets by examining the character encoded, raw packet data of

incoming and outgoing traffic. These Regex strings will examine the header and/or

contents of incoming packets for predefined patterns (attack signatures). For ex-

ample, in Fig. 1 the Snort2Regex rule uses one Regex string to examine the packet

header and two Regex strings to examine the packets contents. Then if the raw data

of a packet matches these predefined patterns, the packet will be detected as

Fig. 1. A sample Snort2Regex rule using three Regex strings.
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suspicious and an alert will be generated. The syntax for defining Regex strings is

complex and an understanding of it is not necessary for this paper.

4.2. Logical representation of rules

All rules expressed as Snort2Regex follow the same strict format as defined below.

Definition 4. Let U be a unique rule identifier, m and n integers, A a set of

regular expressions for packet header matching, B a set of regular expressions

for packet content matching, c a message describing the consequence of the rule

and L a reference for identifying a source. A rule � in Snort2Regex format is

defined as:

� ¼

U

headers : m

A ¼ fa1; . . . ; amg
content : n

B ¼ fb1; . . . ; bng
msg : c

freference : L; g

8>>>>>>>>>>>><
>>>>>>>>>>>>:

A Snort2Regex rule, �, says that from any of the given headers coupled with all

the contents, we can infer the message. � can be translated into a unique equivalent

propositional formula denoted as Pð�Þ ¼ ða1 _ � � � _ amÞ^ðb1 ^ � � � ^ bnÞ ! c, where

each regular expression in A (resp. B) is represented by an atom ai (resp. bi).

Example 1. Given two intrusion detection rules S (Fig. 2) and T (Fig. 3) of the

format �, we can convert them to an equivalent logical form.

Both rules contain one regular expression for packet header matching but no

regular expressions for packet content matching; they produce different messages

for intrusion alerts; and originate from the same sources, i.e. bugtraq,9952,

cve,2004-0176 and cve,2004-0367.

Let z be a unique regular expression from S (resp. T) matched to packet headers:

:̂f1g:f1g:f2g:f2g:f2g:f1gnx02:f2g:f4g:f4g:f2g:f2g

Fig. 2. Snort2Regex rule S.
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Let v be the message from S:

\EXPLOIT IGMP IGAP account overflow attempt";

and let x be the message from T:

\EXPLOIT IGMP IGAP message overflow attempt";

then we have logical rules PðSÞ ¼ z ! v and PðTÞ ¼ z ! x.

4.3. Extending the rule set

Snort2Regex treats S and T independent from each other, suggesting

v ¼ \EXPLOIT IGMP IGAP account over flow attempt";

x ¼ \EXPLOIT IGMP IGAP message over flow attempt";

have no connection. However there are obvious connections, e.g. both refer to the

IGMP protocol, EXPLOIT attempts, etc, which are ignored by Snort2Regex. To

identify connections among rules, we examine the structure of these rules and

establish connections, where possible, for inconsistency analysis.

Definition 5. Let � be a rule in Snort2Regex format and c be its message. Assume

that c can be expressed as c ¼ fc1; . . . ; ctg where each ci is a meaningful expression

for intrusion detection, and is treated as an atom, then c can be expressed as a

conjunctive form of atoms obtained from ci, denoted as PðcÞ ¼ c1 ^ � � � ^ ct .

For instance, given message v in S where

v ¼ fEXPLOIT; IGMP; IGAP; account; overflowAttemptg;
its logical form is PðvÞ ¼ q ^ n ^ t ^ r ^ s, where q denotes atom EXPLOIT, and u

denotes IGMP, etc. Similarly, the logical form for x in T is PðxÞ ¼ q ^ n ^ t ^ p ^ s.

Therefore v and x share 4 out of 5 atoms, with only one atom different, i.e. account

versus message.

The importance of this transformation is that it allows correlations between rules

to be identified and, along with underlying knowledge constraints, makes it easier to

maintain the rule set by allowing us to identify inconsistencies.

Fig. 3. Snort2Regex rule T.
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Example 2. Given expert knowledge suggesting IGAP ! :EXPLOIT , denoted as

t ! :q, then we have a new rule set K ¼ fz ! q ^ n ^ t ^ r ^ p ^ s; t ! :qg where

z is a Regex string for packet headers. If z is successfully matched to the header of a

packet then an inconsistency will occur, i.e., MPSðK j fzgÞ ¼ fKg.
The �-inconsistency in K occurs if we define � ¼ fzg, because we know the

IGAP variant will not be involved in EXPLOIT attempts but we have previous

IGAP related EXPLOIT rules. When the Regex string z is matched (the relevant

attack signature is found) the first rule is triggered, which in turn triggers the second

rule and the inconsistency occurs. The main advantage of identifying formulae at

this elementary level is that it allows connections among rules to be identified.

Definition 6. Let � be a rule in Snort2Regex format where r is the collection of

Regex strings for finding attack signatures in �, then RðrÞ is the set of unique

elementary tasks in r expressed as a set of atoms.

The functionRðrÞ lets us identify the unique tasks carried out by the collection of

Regex strings contained in a Snort2Regex rule where possible. For example, if a rule

is searching for an attack signature by examining the protocol field and the source

address from the packet header, then instead of considering this as a single task

(which could be carried out by one Regex string) we divide this into two tasks, i.e.

finding the protocol and finding the source address.

Definition 7. Let � be a rule in Snort2Regex format where c is the the message in

� and r is the collection of Regex strings in �. We define M� as a mapping

M� : 2RðrÞ ! 2c assigning each ri � RðrÞ to a subset ci � c, i.e. M�ðriÞ ¼ ci.

The function M� allows us to assign the unique tasks in � to their relevant

conclusions. Continuing the previous example, we can now say that if the two tasks

(finding the source address and finding the protocol) are completed, then we carry

out the final task of producing the alert.

Example 3. Given a Snort2Regex rule S where PðSÞ ¼ w ! q ^ n ^ t ^ r ^ :p ^ s

and RðwÞ ¼ fa; b; cg then, after identifying the relevant tasks,

MS ¼ fa ! n; b ! r ^ s; c ! p ^ sg:
Let K be a set of expert knowledge (constraints) for Snort2Regex rules where

K ¼ fn ^ r ^ :p ^ s ! q; n ^ y ! :dg. Let E by the resulting knowledge base

where E ¼ MS [K then

E ¼

a ! n;

b ! r ^ s;

c ! p ^ s;

n ^ r ^ :p ^ s ! q;

n ^ y ! :d

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
:
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These rules are therefore defined in terms of low-level tasks which are not unique

to any single rule (the task of finding port 80, for example, can be identified between

rules) and where tasks are delegated between interdependent rules. As such,

redundancy is removed because the method used for detection of particular exploits

is subdivided into the tasks of detecting contributing aspects of the exploit, e.g.

detecting the protocol, detecting an exploit attempt and defining the consequence of

an exploit attempt for a given protocol.

Regular expressions in Snort2Regex rules are implemented as a whole in a high-

performance environment, individual primitive elements are not considered at the

regular expression or message level. However, individual primitive elements in

regular expressions and in messages do have delicate connections which domain

experts can identify in order to make links between what is being detected and how

it is being detected. It is also possible to introduce constraints to limit the scope of

rules and to identify possibly incorrect rules, where they exist, because they will be

inconsistent with the constraints. In this sense, expert knowledge forms the meta-

knowledge of the intrusion detection rule set which correlates rules and introduces

constraints based on negation (forcing logical inconsistency).

The method for analyzing and correlating rules presented in this section is

potentially limited because, while the rules themselves are standardized, rule com-

ponents are not. This means that while all rules are created using conditions (Regex

strings) and actions (such as alerts) in a predefined format, how these actions are

created is not predefined, i.e. two alerts referring to the same threat could be written

differently where neither is incorrect. For example, given the alert \Samba

send mailslot buffer overflow attempt" from an actual Snort2Regex rule, this could

potentially be written as \Samba send mailslot tried exceed buffer". In practice

however, alert definitions tend to follow the same format, e.g. the application/service

name will be stated, the description will refer to known keywords, etc.

It is important to stress that in attempting to reduce false alarms in IDSs, the

question of how to correlate rules and alerts needs to be addressed whether a rule

inconsistency resolution or an alert post-processing approach is taken. For this

reason other methods for correlating rules and alerts may prove useful.

5. Approaches to Inconsistency Detection and Measurements

Generally speaking, we can refer to three types of inconsistent rules: logically

inconsistent, conflicting and ambiguous [22]. Logical inconsistency refers to a rule

which is unsatisfiable under any interpretation (such as a ^ :a), while a conflicting

set of rules are those which can be simultaneously triggered but whose conclusions

(consequents) are mutually exclusive (such as a ! b and a ! c where b and c

cannot be simultaneously true). Finally, ambiguous rules are those which can be

simultaneously triggered but whose conclusions are different (such as a ! b and

a ! c where b 6¼ c). When we refer to inconsistency in this paper we understand this

to mean logical inconsistency only, however the case of conflicting rules can also be
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considered as long as it is encoded in a logical format and contained in the knowl-

edge base (since this reverts to logical inconsistency). Ambiguous rules will not be

considered since they are an intentional feature of this rule set and are not pro-

blematic in relation to intrusion detection.

Some more explanation about the motivation for Definition 3 is in order.

Although a subset of rules K translated from rules in the SnortsRegex format may

be consistent in the sense of classical logic, when an event (denoted as a) is reported,

K [ fag could be inconsistent. There are potentially millions of events which may be

generated by these Snort2Regex rules. However, if we do not detect inconsistencies

in the rules until events are detected then actual intrusion detection will be unre-

liable. Therefore, subsets of rules for detecting intrusion attempts should be con-

sistent given any eventuality, especially for major events (alerts).

Consider this simple example: we have a blacklist of IP addresses from which

exploit attempts are known to originate; we have a rule stating that if the source

address is blacklisted then an exploit attempt is detected; we have another rule,

originating from expert knowledge, stating that if the packet uses the IGMP protocol

and the source address is blacklisted then an exploit attempt is not detected. These

rules are classically consistent but if we later receive an IGMP packet originating

from a blacklisted IP address then they will become classically inconsistent. However

this inconsistency detection can only be achieved at runtime, and since we need to

ensure that inconsistencies will never occur, �-inconsistency is needed.

Let us look at this example, given K1 ¼ fa ! b; b ! :ag then K1 [ fag is clas-

sically inconsistent. However we cannot simply add formula to create an incon-

sistency and apply inconsistency measures in the traditional way to the result (such

as K1 [ fag) since there are potentially a large number of variations which could

create an inconsistency. Given K2 ¼ fa _ b ^ c ! d; d ! :a ^ :bg there are two

alternatives which create an inconsistency, i.e. K2 [ fag and K2 [ fb; cg where

jK2 [ fagj ¼ 3 and jK2 [ fb; cgj ¼ 4. These will produce different inconsistency

measures because the number of formulae in the inconsistency will vary. Therefore

we consider K2 as a �-inconsistent subset where jK2j ¼ 2. We are only interested in

K2, not K2 [ fag or K2 [ fb; cg.
Given the case of conflicting rules, suppose we have a knowledge base

K3 ¼ fa ! b; a ! cg. If b and c are considered mutually exclusive and jointly

exhaustive (a ! b and a ! c are conflicting) then this concept would need to be

represented in K3, e.g. by containing the rule ðb ^ :cÞ _ ð:b ^ cÞ s.t. K3 ¼ fa ! b;

a ! c; ðb ^ :cÞ _ ð:b ^ cÞg. In this case,K3 would be�-inconsistent sinceK3 [ fag ¼
fa; a ! b; a ! c; ðb ^ :cÞ _ ð:b ^ cÞg and MI ðK3 [ fagÞ ¼ fK3 [ fagg.

Suppose we have another knowledge base K4 ¼ fa ! b; a ! :cg. If b and c are

considered synonymous (a ! b and a ! :c are conflicting) then this concept would

again need to be represented in K4 for it to be included in our understanding. In this

case, K4 could include the rules b ! c and c ! b s.t. K4 ¼ fa ! b; a ! :c;
b ! c; c ! bg. K4 would then be �-inconsistent since K4 [ fag ¼ fa; a ! b; a !
:c; b ! c; c ! bg and MI ðK4 [ fagÞ ¼ fa; a ! b; a ! :c; b ! cg.
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5.1. Identifying inconsistencies

A Snort2Regex parser was developed to convert the rules to abstract propositional

logic. While a purely syntactic analysis is beneficial to identify patterns and rep-

etition in the language, we found that negation does not occur and so logical

inconsistency is impossible. This is not to say that logical inconsistency does not

exist, merely that it cannot be discovered without a semantic understanding. For

this preliminary study, we will introduce constraints assumed from expert knowl-

edge to further correlate Snort2Regex rules.

Example 4. Let E be the abstract propositional Snort2Regex rule set K from

Example 3:

E ¼

a ! n;

b ! r ^ s;

c ! p ^ s;

n ^ r ^ :p ^ s ! q;

n ^ y ! :d

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
:

Let Z and H be rule sets built from the same Snort2Regex language:

Z ¼

a ! :q;
y ! d ^ s;
q ! :a;

m _ t ! g;
:w ! q

8>>>><
>>>>:

9>>>>=
>>>>;

H ¼
s ! :b ^ :c;

a ! q;
m ! :e;
k ! l

8>><
>>:

9>>=
>>;
:

Given the rule set � ¼ E [ Z [H (where j�j ¼ 14), then the MPSs of � (w.r.t.

different �) are:

MPSð� j fa; r;:p; sgÞ ¼ fM1;M3g;
MPSð� j fn; ygÞ ¼ fM2g;

MPSð� j fbgÞ ¼ fM4g;
MPSð� j fcgÞ ¼ fM5g;
MPSð� j fagÞ ¼ fM6;M7g

where

M1 ¼ fa ! n; n ^ r ^ :p ^ s ! q; a ! :qg;
M2 ¼ fn ^ y ! :d; y ! d ^ sg;
M3 ¼ fa ! n; n ^ r ^ :p ^ s ! q; q ! :ag;
M4 ¼ fb ! r ^ s; s ! :b ^ :cg;
M5 ¼ fc ! p ^ s; s ! :b ^ :cg;
M6 ¼ fa ! q; q ! :ag;
M7 ¼ fa ! :q; a ! qg:
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Using �-inconsistency, we can therefore identify 7 inconsistencies among this

sample of Snort2Regex and expert rules given a set of facts (alerts). While identi-

fying minimal inconsistencies is computationally hard, algorithms in [34] have

shown that a practical application is possible.

5.2. Scoring function

The first inconsistency measure we will look at is the Scoring function since it is

closely related to the concept of minimal inconsistent subsets. As described in [7] the

Scoring function assigns a value to each subset in terms of its contribution to the

overall inconsistency of a rule set based on how many inconsistencies would be

resolved if the subset was removed. This provides an intuitive ordering to incon-

sistent subsets where the greater the score the greater the inconsistency and a value

of 0 indicates the subset is entirely consistent.

Definition 8 (Scoring function [7]). Let � 2 D and S be the Scoring function

for � defined as follows, where S : }ð�Þ 7! N and � 2 }ð�Þ, then Sð�Þ ¼
jMI ð�Þj � jMI ð�� �Þj.

The Scoring function can be seen as the most natural inconsistency measure since

for � � K , it measures the number of inconsistencies in K caused by �.

Example 5. Consider K3 ¼ f:a; b; a; c;:a _ :d;:c; dg. Then MI ðK3Þ ¼ fM1;M2;

M3g, where
M1 ¼ f:a; ag; M2 ¼ fc;:cg; M3 ¼ fa;:a _ :d; dg:

So,

SðfagÞ ¼ 2; SðfbgÞ ¼ 0; Sðf:a _ :dgÞ ¼ 1;

and

SðK3Þ ¼ 3:

With the Scoring function a is most inconsistent because it is involved in two

inconsistencies, while b is completely consistent. The Scoring function considers the

remaining formulae to be equally inconsistent since they are all involved in a single

inconsistency each.

Example 6. The result of applying the Scoring function on formulae in

�-inconsistent subsets in � w.r.t. � ¼ fa; r;:p; s; n; y; b; cg is:

Sðfa ! ngÞ ¼ 2 Sðfb ! r ^ sgÞ ¼ 1 Sðfc ! p ^ sgÞ ¼ 1

Sðfn ^ r ^ :p ^ s ! qgÞ ¼ 2 Sðfn ^ y ! :dgÞ ¼ 1 Sðfa ! :qgÞ ¼ 2

Sðfy ! d ^ sgÞ ¼ 1 Sðfq ! :agÞ ¼ 2

Sðfs ! :b ^ :cgÞ ¼ 2 Sðfa ! qgÞ ¼ 2:
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The combined scores for subsets E, Z and H would be SðEÞ ¼ 6, SðZÞ ¼ 5 and

SðHÞ ¼ 4. The overall inconsistency score for the rule set � is Sð�Þ ¼ 7.

From these results we can identify an inconsistency order based on the Scoring

value, i.e. those formulae with a score of 2 would be considered more inconsistent

than those with a score of 1 because their removal would resolve more incon-

sistencies. However it is not sufficiently discriminatory because variations in

inconsistency scores are limited (e.g. 0, 1, 2). This means identifying inconsistency

ordering will also be limited because the Scoring function does not assign each

formula a proportion of blame for the overall inconsistency.

The ability to assign an inconsistency score to the entire rule set allows com-

parisons to be made between multiple sets, e.g. when merging multiple rule sets, a

set could be ignored if it was particularly inconsistent.

The use of the Scoring function for automatic resolution of inconsistent Snort

2Regex rules is limited, however manual resolution may be more desirable anyway

and in this case the Scoring function would be useful. Once minimal inconsistencies

have been identified in the Snort2Regex rule set, application of the Scoring function

becomes trivial. From this, the most problematic rules can be highlighted for the

security operator. A further benefit of the Scoring function is that it can be applied

to any subset which would allow the identification of consistent subsets of IDS rules.

This would be useful to allow clustering of rules in order to avoid inconsistencies,

rather than resolve them.

5.3. Shapley inconsistency value

The next set of methods we will look at, which were proposed in [8], extend the

approach applied by the Scoring function. They address the issue of identifying a

proportion of blame associated with each formula in terms of its contribution to the

overall inconsistency of the base. Both methods take an inconsistency measure as a

payoff function in coalitional form and, using the Shapley value from coalitional

game theory, determine the proportional inconsistency for each formula in a base

called the Shapley Inconsistency Value (SIV). We first present the definition for the

SIV, since it will be combined with the IMI and ILPm
measures, to provide a pro-

portional representation of inconsistency.

Proportional inconsistency measures, such as the SIVs, are significantly more

useful for identifying the most problematic rules in an IDS set. By focusing on a rules

responsibility for inconsistency in the whole set in relation to other rules, a more

representative and discriminatory value can be determined. This in turn allows

more precise identification of problematic rules for resolution. During manual res-

olution for example, it means that fewer rules need to be examined by the security

operator.

Definition 9 (Shapley Inconsistency Value [8]). Let I be a basic inconsistency

measure. Let K be a knowledge base where C � K . We define the corresponding
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Shapley Inconsistency Value (SIV), denoted SI , as the Shapley value of the

coalitional game defined by the function I , i.e. let a 2 K :

S K
I ðaÞ ¼

X
C�K

ðc � 1Þ!ðn � cÞ!
n!

ðI ðC Þ � I ðC nfagÞÞ;

where n is the cardinality of K and c is the cardinality of C .

The SIV is a proportional measure because it represents the inconsistency of

each formula in relation to the inconsistency of the base. It works by calculating

the sum of the inconsistency of every subset of the power set of the knowledge

base. As a result, a practical application of the SIV is prohibitive for an complete

IDS rule set, since for � 2 K where jK j ¼ 14 then jPðKÞj ¼ 214. If rules are clustered

in terms of attack type, attack severity or origin it may be feasible to automatically

determine the SIV for the particular subset instead of the set as a whole. Alter-

natively, the concepts of the SIVs could simplified for performance.

The SIV for a knowledge base is represented as a vector of the SIV for every

formula in the base. These vectors are defined below.

Definition 10 (SIV Vector [8]). SI ðKÞ denotes the vector of the corres-

ponding SIV for each formula of the base K where a 2 K, i.e. SI ðKÞ ¼
ðS K

I ða1Þ; . . . ; S K
I ðanÞÞ.

Definition 11 (SIV Vector for £-inconsistency). SI ðK j�Þ denotes the vector

of the corresponding SIV for each formula of the base K w.r.t. � where a 2 K , i.e.

SI ðK j�Þ ¼ ðS K[�
I ða1Þ; . . . ; S K[�

I ðanÞÞ.
Since the Shapley inconsistency measures produces a vector value for the

knowledge base (representing the degree of blame for each individual formula) it is

difficult to make comparisons with similar measures. When attempting to produce a

single inconsistency value to compare with other measures, a simple sum of the

Shapley values for each formula is not suitable since this results in the basic

inconsistency measure when applied to the knowledge base, i.e. the sum of S K
IMI

ð�Þ
for � 2 K is equal to IMI ðKÞ thereby removing the benefit of the Shapley value. For

this reason, the Max SIV was defined in [8] to provide a single inconsistency measure

for a knowledge while retaining a representation of the Shapley value. Intuitively

this is based on the maximum inconsistency value produced for a formula in the

knowledge base.

Definition 12 (Max SIV [8]). Let K be a belief base, Ŝ I ðKÞ ¼ max S K
I ðaÞ,

a 2 K .

Definition 13 (Max SIV for £-inconsistency). Let K be a belief base,

Ŝ I ðK j�Þ ¼ max S K[�
I ðaÞ, a 2 K .

We will consider two functions presented in [35]: the IMI inconsistency measure

which, similar to the Scoring function, only takes into account the formulae which
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contribute to an inconsistency; and the ILPm
inconsistency measure which considers

the number of atoms, as well as formulae, contributing to an inconsistency. These

measures are then combined with the Shapley inconsistency value to provide a

proportional measure.

Firstly, we define the IMI measure [8], which takes into account the extent to

which a formula contributes to an inconsistency.

Definition 14 (MI [8]). The MI inconsistency measure is defined as the number of

minimal inconsistent subsets of K , i.e.: IMI ðKÞ ¼ jMI ðKÞj:
The IMI measure simply represents the number of inconsistencies in a

given K .

Example 7. Consider K3 ¼ f:a; b; a; c;:a _ :d;:c; dg. Then MI ðK3Þ ¼ fM1;M2;

M3g, where
M1 ¼ f:a; ag; M2 ¼ fc;:cg; M3 ¼ fa;:a _ :d; dg:

So,

IMI ðK3Þ ¼ 3:

We now apply the IMI measure as a Shapley inconsistency value, denoted SIMI
[8],

which takes into account the proportion that a formula contributes to an

inconsistency.

Example 8. Consider K3 ¼ f:a; b; a; c;:a _ :d;:c; dg. Then MI ðK3Þ ¼ fM1;M2;

M3g, where
M1 ¼ f:a; ag; M2 ¼ fc;:cg; M3 ¼ fa;:a _ :d; dg:

So,

S K3

IMI
ðfagÞ ¼ 1

2
þ 1

3
¼ 5

6
;

and

SIMI
ðK3Þ ¼

1

2
; 0;

5

6
;
1

2
;
1

3
;
1

2
;
1

3

� �
;

Ŝ IMI
ðK3Þ ¼

5

6
:

Taking the formula :a, we can see that it has a SIMI
value of 1

2 since it is

a member of the inconsistency M1 which has a cardinality of 2. This value is

therefore the proportion that :a contributes to the inconsistencies that it is involved

in, i.e. M1.

Example 9. Given the rule set � in Example 3, the result of applying the SIMI

measure on formulae in �-inconsistent subsets of � w.r.t. � ¼ fa; r;:p; s; n; y; b; cg
is (to reduce notation in the calculations below, we simply write � instead of � [�,

300 K. McAreavey et al.



this applies to the remaining examples in which � is defined):

S �
IMI

ðfa ! ngÞ ¼ 2

3
S �
IMI

ðfb ! r ^ sgÞ ¼ 1

2
S �
IMI

ðfc ! p ^ sgÞ ¼ 1

2

S �
IMI

ðfn ^ r ^ :p S �
IMI

ðfn ^ y ! :dgÞ ¼ 1

2
S �
IMI

ðfa ! :qgÞ ¼ 5

6

^sÞ ! qgÞ ¼ 2

3
S �
IMI

ðfy ! d ^ sgÞ ¼ 1

2
S �
IMI

ðfq ! :agÞ ¼ 5

6

S �
IMI

ðfs ! :b ^ :cgÞ ¼ 1 S �
IMI

ðfa ! qgÞ ¼ 1:

Giving a vector value

SIMI
ð�Þ ¼ 2

3
;
1

2
;
1

2
;
2

3
;
1

2
;
5

6
;
1

2
;
5

6
; 0; 0; 1; 1; 0; 0

� �
:

The Max SIV for subsets E, Z and H would be: Ŝ
�
IMI

ðEÞ ¼ 2
3, Ŝ

�
IMI

ðZÞ ¼ 5
6, and

Ŝ
�
IMI

ðHÞ ¼ 1. And a Max SIV for the rule set Ŝ IMI
ð�Þ ¼ 1.

This function produces more useful results than the Scoring function since it is

proportional, and so has a greater degree of discrimination in the inconsistency

measures (e.g. 0; 12 ;
2
3 ;

5
6 ; 1) which allows us to identify more significant inconsistent

formulae. The SIMI
measure also produces a notably different inconsistency ordering,

e.g. fs ! :b ^ :cg has the maximum inconsistency value by SIMI
but is less sig-

nificant by the Scoring function.

The benefit of the SIMI
measure is clear from this example. Firstly, it is more

specific about which rules are most problematic (in an IDS rule set with hundreds of

rules, for example, the difference between identifying 10 or 100 rules as most pro-

blematic is significant). Secondly, it can distinguish between a rule which plays a

small role in an inconsistency (such as an inconsistency caused by the union of 10

rules) and a rule which plays a large role (such as an inconsistency caused by the

union of only two rules).

As an alternative to the IMI measure we introduce the ILPm
measure [8], from LP

models.

Definition 15 (ILPm
[8]). Let P be the set of atoms in a language and K be a belief

base from the language. Let ! be a total function from P to fT ;F ;Bg, where B

indicates an interpretation ‘both true and false’. ‘Truth values’ are ordered as

F <t B<t T . Then

ILPm
¼ min!2ModLP ðKÞfj!!jg

jPj :

Here

!! ¼ fx 2 P j!ðxÞ ¼ Bg
which is the set of ‘inconsistent’ variables in an interpretation. Also

ModLPð’Þ ¼ f! 2 3P j!ð’Þ 2 fT ;Bgg
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which is the set of models of formula ’.

minðModLPð’ÞÞ ¼ f! 2 ModLPð’Þ j =9! 0 2 ModLPð’Þ s:t: ! 0! � !!g:
The minimum models of a formula are the ‘most classical’ ones. The LPm con-

sequence relation is then defined by:

K � LPm
’ iff minðModLPðKÞÞ � ModLPð’Þ

So ’ is a consequence of K if all the ‘most classical’ models of K are models of ’.

The ILPm
measure differs from the concepts discuss so far since it represents

variable-based inconsistency instead of formula-based inconsistency. Here an

inconsistency occurs if there is an interpretation in which a variable is ‘both true

and false’.

Example 10. Consider K3 ¼f:a; b; a; c;:a _ :d;:c; dg. ThenMI ðK3Þ ¼ fM1;M2;

M3g, where
M1 ¼ f:a; ag; M2 ¼ fc;:cg; M3 ¼ fa;:a _ :d; dg:

So,

ILPm
ðM1Þ ¼

1

1
¼ 1;

since minðModLPÞðM1Þ ¼ fw1g where w1ðaÞ ¼ B,

ILPm
ðM2Þ ¼

1

1
¼ 1;

since minðModLPÞðM2Þ ¼ fw2g where w2ðcÞ ¼ B,

ILPm
ðM3Þ ¼

1

2
;

since minðModLPÞðM3Þ ¼ fw3;w4g, where w3ðaÞ ¼ T ;w3ðdÞ ¼ B or w4ðaÞ ¼ B;

w4ðdÞ ¼ T .

Then

ILPm
ðK3Þ ¼

2

4
¼ 1

2
:

In this example the atom d is only inconsistent in !3 so the proportion of

inconsistent atoms in K3 is 1
2.

We now apply the ILPm
measure as a Shapley inconsistency value, denoted

SILPm [8], which takes into account the proportion that a formula contributes to an

inconsistency as well as the proportion of inconsistent atoms in the formula in

relation to the language.

Example 11. Consider K4 ¼ fa;:a; b; c ^ :cg. Then MI ðK4Þ ¼ fM1;M2g, where
M1 ¼ fa;:ag; M2 ¼ fc ^ :cg:
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So,

SILPm ðK4Þ ¼
1
3

2
;
1
3

2
; 0;

1
3

1

� �
¼ 1

6
;
1

6
; 0;

1

3

� �
:

Consider K 0
4 ¼ fa ^ :a ^ b ^ c ^ :cg. Then MI ðK 0

4Þ ¼ K4. So,

SILPm ðK 0
4Þ ¼

2
3

1

� �
¼ 2

3

� �
:

Then

Ŝ ILPm
ðK4Þ ¼

1

3
; Ŝ ILPm

ðK 0
4Þ ¼

2

3
:

This example highlights the difference between the SILPm value and previous

measures in that it does not simply identify K 0
4 as completely inconsistent since the

atom b does not contribute to inconsistency.

We can see this function introduces the concept that the more atoms of a

language affected by inconsistency, the more inconsistent the base, e.g. S �
IMI

ðK 0
4Þ ¼

1ð Þ but S �
ILPm

ðK 0
4Þ ¼ 2

3

� �
since the atom b does not contribute to inconsistency. It is

also more discriminatory than both the Scoring function and SIMI
measure when

there are variations in the number of atoms contributing to inconsistency.

Example 12. Given the rule set �, the result of applying the SILPm measure on

formulae in �-inconsistent subsets of � w.r.t. � ¼ fa; r;:p; s; n; y; b; cg is:

S �
ILPm

ðfa ! ngÞ ¼ 2

51
S �
ILPm

ðfb ! r ^ sgÞ ¼ 1

34
S �
ILPm

ðfc ! p ^ sgÞ ¼ 1

34

S �
ILPm

ðfn ^ r ^ :p S �
ILPm

ðfn ^ y ! :dgÞ ¼ 1

34
S �
ILPm

ðfa ! :qgÞ ¼ 5

102

^s ! qgÞ ¼ 2

51
S �
ILPm

ðfy ! d ^ sgÞ ¼ 1

34
S �
ILPm

ðfq ! :agÞ ¼ 5

102

S �
ILPm

ðfs ! :b ^ :cgÞ ¼ 1

17
S �
ILPm

ðfa ! qgÞ ¼ 1

17
:

Giving a vector value

SILPm ð�Þ ¼
2

51
;
1

34
;
1

34
;
2

51
;
1

34
;
5

102
;
1

34
;
5

102
; 0; 0;

1

17
;
1

17
; 0; 0

� �
:

The Max SIV for subsets E, Z and H would be Ŝ
�
ILPm

ðEÞ ¼ 2
51, Ŝ

�
ILPm

ðZÞ ¼ 5
102, and

Ŝ
�
ILPm

ðHÞ ¼ 1
17 : And a Max SIV for the rule set Ŝ ILPm

ð�Þ ¼ 1
17.

The reason there is less variance than the SILPm measure, in this case, is because

the �-inconsistencies in � only relate to one atom in each instance. In other cases,

where inconsistencies are caused by multiple atoms, we would expect a greater

degree of variation in inconsistency values.
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The obvious benefit of the SILPm for an intrusion detection rule set is that in can

further discriminate between how problematic rules are, based the amount of the

language they incorporate, i.e. more complicated rules are more/less problematic

than less complicated rules.

5.4. Blamev prioritized measure

In network intrusion detection systems there are a number of ways in which the

concept of prioritization could be applied to rules. These include the age of a rule,

the severity/significance of an attack that a rule relates to, the reliability of the rule

author and a confidence or certainty rating for a rule. In most cases these priority

ratings will be a form of meta-knowledge where multiple interpretations of priority

may be applied at once, for example a rule relating to a serious attack developed by

a reputable author would be more important than a rule relating to a serious attack

but developed by a unknown author. In terms of inconsistency, the application of

this meta-knowledge is not only more accurate than simply considering all rules as

equally important, but is useful in deciding on how to begin resolving conflicts when

they arise by incorporating these priority levels.

There are two types of prioritized knowledge bases described in [10], namely the

Type-I and the Type-II prioritized knowledge base, which provide an intuitive

ordering for formulae within a base. The approach of Type-I knowledge bases is to

assign a numerical significance value to each formula. Its limitation is that it is a

quantitative approach to a qualitative concept, i.e. it is difficult to determine a

significance value for a formula in relation to other formulae in the base. The

exception to this would be when representing uncertainty by probability values,

for example more certain rules could be considered more important than less

certain rules. On the other hand, Type-II prioritized knowledge bases use a

qualitative approach by dividing formulae into subsets based on their priority

instead of assigning numerical values to formulae. A knowledge base is regarded

as a collection of subsets with the first subset containing the most important

formulae.

In this subsection, we use ~K to represent a classical (flat) knowledge base and K

to represent a Type-II prioritized knowledge base. We use ~KL to denote the set of

classical knowledge bases definable from the language L[10]. The relevant prior-

itized knowledge base can then be defined.

Definition 16 (Type-II prioritized knowledge base). Let T be a Type-II

prioritized knowledge base [10] with k priority levels. Let T ¼ h ~A1 ; . . . ; ~Ak i
containing subsets of formulae assigned to priority levels 1; . . . ; k respectively,

where ~A1 has the most important formulae, and ~Ak the least.

Example 13. Let � be a Type-II prioritized knowledge base and E, Z and H be

the sets of formulae from Example 3. Let E be most significant and H be

least significant, i.e. � ¼ hE;Z ;Hi. The set of MPSs of � from Example 3 w.r.t.
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� ¼ fa; r;:p; s; n; y; b; cg are now:

M1 ¼ hfa ! n; n ^ r ^ :p ^ s ! qg; fa ! :qg; ;i;
M2 ¼ hfn ^ y ! :dg; fy ! d ^ sg; ;i;
M3 ¼ hfa ! n; n ^ r ^ :p ^ s ! qg; fq ! :ag; ;i;
M4 ¼ hfb ! r ^ sg; ;; fs ! :b ^ :cgi;
M5 ¼ hfc ! p ^ sg; ;; fs ! :b ^ :cgi;
M6 ¼ h;; fq ! :ag; fa ! qgi;
M7 ¼ h;; fa ! :qg; fa ! qgi:

The same MISs (or MPSs) of a prioritized knowledge base are equivalent to those

from a classical knowledge bases except that formulae are prioritized.

The Blamev inconsistency measure for prioritized knowledge bases, from [10],

is divided into a number of components. To begin defining the Blamev measure we

will introduce each of these components, starting with the concept of Opposed

formulae.

Definition 17 (Opposed formulas [10]). Let M be a minimal inconsistent

prioritized knowledge base and �P a formula being attached with a priority level.

Then the set of opposed formulae to �P w.r.t.M , denotedOppðM ; �PÞ, is defined as:

OppðM ; �PÞ ¼
f�Pg; if M ¼ f�Pg;
M � f�Pg; if f�Pg � M ;

;; if �P 62 M :

8><
>:

This is the set of remaining formulae from a MIS resulting from the removal of a

single formula from the MIS at each priority level. The cardinality of this set is used

in determining a degree of blame for the formulae in an inconsistency. When a

formula is a minimal inconsistency (internally inconsistent) the Opposed formula

is itself.

Example 14. Consider K5 ¼ hf:a; bg; fa; c;:a _ :dg; f:c; dgi. Then MI ðK5Þ ¼
fM1;M2;M3g, where

M1 ¼ hf:ag; fag; ;i; M2 ¼ h;; fcg; f:cgi; M3 ¼ h;; fa;:a _ :dg; fdgi:
So,

Opp ðM1; aÞ ¼ hf:ag; ;; ;i;
Opp ðM1;:aÞ ¼ h;; fag; ;i:

Example 15. Given the MPS M1 from MPSð�jfa; r;:p; sgÞ, the result of applying
the OppðM1;mÞ for m 2 M1 is:

OppðM1; a ! nÞ ¼ hfn ^ r ^ :p ^ s ! qg; fa ! :qg; ;i;
OppðM1; n ^ r ^ :p ^ s ! qÞ ¼ hfa ! ng; fa ! :qg; ;i;

OppðM1; a ! :qÞ ¼ hfa ! n; n ^ r ^ :p ^ s ! qg; ;; ;i:
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The next step in defining the Blamev measure is to introduce the Significance

function. The Significance function alone is not an inconsistency measure, it merely

determines a weighting for a given set.

Definition 18 (Significance function Sigc [10]). The significance function for

classical knowledge bases, denoted Sigc is a function Sigc : ~KL 7! N s.t. 8 ~K 2 ~KL,

Sigcð ~K Þ ¼ j ~K j:
The Significance function can be applied to each priority level to determine a

weighting for each level, i.e. the number of formulae at each level.

Example 16. Consider ~K 3 ¼ f:a; b; a; c;:a _ :d;:c; dg. Then MI ð ~K 3Þ ¼ f ~M 1;
~M 2; ~M 3g, where

~M 1 ¼ f:a; ag; ~M 2 ¼ fc;:cg; ~M 3 ¼ fa;:a _ :d; dg:
So,

Sigcð ~M 1Þ ¼ 2; Sigcð ~M 2Þ ¼ 2; Sigcð ~M 3Þ ¼ 3;

and

Sigcð ~K 3Þ ¼ 7:

Next, we define the Incc measure which is another component of the Blamev
measure.

Definition 19 (The inconsistency measure Incc [10]). The inconsistency

measure for classical knowledge bases, denoted as Incc, is a function Incc : ~KL 7! R

s.t. 8 ~K 2 ~KL,

Inccð ~K Þ ¼
X

~M2MI ð ~K Þ
Inccð ~M Þ;

where Inccð ~M Þ ¼ 1
j ~M j for each

~M 2 MI ð ~K Þ.
Example 17. Consider ~K 3 ¼ f:a; b; a; c;:a _ :d;:c; dg. Then MI ð ~K 3Þ ¼ f ~M 1;
~M 2; ~M 3g, where

~M 1 ¼ f:a; ag; ~M 2 ¼ fc;:cg; ~M 3 ¼ fa;:a _ :d; dg:
So,

Inccð ~M 1Þ ¼
1

2
; Inccð ~M 2Þ ¼

1

2
; Inccð ~M 3Þ ¼

1

3
;

and

Inccð ~K 3Þ ¼
8

6
¼ 4

3
:
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We continue defining the structure of the Blamev measure by introducing the

Incv measure [10]. This, along with the Opposed formula, determines the Blamev
value of a formula.

Definition 20 (The Significance Vector Sigv [10]). Let K ¼ hKð1Þ; . . . ;KðnÞi
be a Type-II prioritized knowledge base. The significance vector for K , denoted

SigvðKÞ, is defined as

SigvðKÞ ¼ ðSigcðKð1ÞÞ; . . . ; SigcðKðnÞÞÞ:
The significance vector Sigv allows us to define the significance of a knowledge

base at each priority level.

Example 18. Consider K5 ¼ hf:a; bg; fa; c;:a _ :dg; f:c; dgi. Then MI ðK5Þ ¼
fM1;M2;M3g, where

M1 ¼ hf:ag; fag; ;i; M2 ¼ h;; fcg; f:cgi; M3 ¼ h;; fa;:a _ :dg; fdgi:
So,

SigvðK5Þ ¼ ð2; 3; 2Þ:
In this example, K5 has the highest significance value at the second priority level.

Definition 21 (Incv inconsistency measure [10]). Let K ¼ hKð1Þ; . . . ;KðnÞi
be a Type-II prioritized knowledge base. The inconsistency measure for K , denoted

as IncvðKÞ, is defined as:

IncvðKÞ ¼
X

M2MI ðKÞ
IncvðMÞ;

where IncvðMÞ ¼ SigvðM Þ
jM j � InccðM �Þ for each M 2 MI ðKÞ.

Especially, we call Inc
ðiÞ
v ðM Þ ¼ Sig

ðiÞ
v ðMÞ
jM j � InccðM �Þ the ith level inconsistency

amount of M , and abbreviate it as Inc
ðiÞ
v ðMÞ.

The Incv measure combines the Sigv vector with the Incc value to produce an

inconsistency measure for each priority level.

Example 19. Consider K5 ¼ hf:a; bg; fa; c;:a _ :dg; f:c; dgi. Then MI ðK5Þ ¼
fM1;M2;M3g, where

M1 ¼ hf:ag; fag; ;i; M2 ¼ h;; fcg; f:cgi; M3 ¼ h;; fa;:a _ :dg; fdgi:
So,

IncvðM1Þ ¼
1

22
;
1

22
;
0

22

� �
¼ 1

4
;
1

4
; 0

� �
;

IncvðM2Þ ¼
0

22
;
1

22
;
1

22

� �
¼ 0;

1

4
;
1

4

� �
;

IncvðM3Þ ¼
0

32
;
2

32
;
1

32

� �
¼ 0;

2

9
;
1

9

� �
;
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and

IncvðK5Þ ¼
1

4
;
13

18
;
13

36

� �
:

Again, K5 has the highest inconsistency value at the second priority level.

Example 20. Given the Type-II prioritized knowledge base � w.r.t. � ¼
fa; r;:p; s; n; y; b; cg and the MPS M1, the result of applying the Incv inconsistency

measure is:

IncvðM1Þ ¼
2

32
;
1

32
;
0

32

� �
¼ 2

9
;
1

9
; 0

� �
:

The Incv result for � is Incvð�Þ ¼ ð4336 ; 3536 ; 1Þ.
We now present the full definition of the Blamev measure from [10].

Definition 22 (The Blame of each formula for the ����th level inconsistency

[10]). Let K ¼ hKð1Þ; . . . ;KðnÞi be a Type-II prioritized knowledge base. Then for

each 1 � k � n, the blame of each formula of K for the kth level inconsistency of K ,

denoted Blame
ðkÞ
v , is defined as follows:

8� 2 K ;Blame
ðkÞ
v ðK ; �Þ ¼

X
M2MI ðKÞ

Blame
ðkÞ
v ðM ; �Þ;

where

Blame
ðkÞ
v ðM ; �Þ ¼

Sig
ðkÞ
v ðOppðM ; �ÞÞX

�2M
Sig

ðkÞ
v ðOppðM ; �ÞÞ

� Inc ðkÞ
v ðMÞ; if jMðkÞj > 0;

0; if jMðkÞj ¼ 0;

8>><
>>:

for each M 2 MI ðKÞ.
The Blamev measure for the formula � can be summarized as the sum of the

blame of �, at priority level K , in each inconsistency in which it is involved.

Example 21. Consider K5 ¼ hf:a; bg; fa; c;:a _ :dg; f:c; dgi. Then MI ðK5Þ ¼
fM1;M2;M3g, where

M1 ¼ hf:ag; fag; ;i; M2 ¼ h;; fcg; f:cgi; M3 ¼ h;; fa;:a _ :dg; fdgi:
So,

Blame
ð1Þ
v ðM1; aÞ ¼

jf:agj
jf:agj þ j;j �

1

4
¼ 1

4
;

Blame
ð2Þ
v ðM1; aÞ ¼

j;j
j;j þ jf:agj �

1

4
¼ 0;

Blame
ð3Þ
v ðM1; aÞ ¼

j;j
j;j þ j;j � 0 ¼ 0;
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and

BlamevðM1; aÞ ¼
1

4
; 0; 0

� �
:

This example indicates the formula a is to blame for the inconsistency M1 at the

first priority level only.

Example 22. Given the results of OppðM1;mÞ form 2 M1 and IncvðM1Þ, the result
of Blame

ðkÞ
v for the formula a ! n in each priority level is:

Blame
ð1Þ
v ðM1; a ! nÞ ¼ jfn ^ r ^ :p ^ s ! qgj

jfn ^ r ^ :p ^ s ! qgj þ jfa ! ngj
þ jfa ! n; n ^ r ^ :p ^ s ! qgj

� 2

9
¼ 1

18
;

Blame
ð2Þ
v ðM1; a ! nÞ ¼ jfa ! :qgj

jfa ! :qgj þ jfa ! :qgj þ j;j �
1

9
¼ 1

18
;

Blame
ð3Þ
v ðM1; a ! nÞ ¼ j;j

j;j þ j;j þ j;j � 0 ¼ 0:

Giving an overall Blamev value for a ! n in M1:

BlamevðM1; a ! nÞ ¼ 1

18
;
1

18
; 0

� �
:

A vector value for a formula represents the total blame at each priority level for

the inconsistency of the knowledge base.

Definition 23 (The Blame of each Formula for Inconsistency [10]). Let

K ¼ hKð1Þ; . . . ;KðnÞi be a Type-II prioritized knowledge base. The blame of

each formula of K for the inconsistency of K , denoted Blamev, is defined as

follows:

8� 2 K ;BlamevðK ; �Þ ¼ ðBlame
ð1Þ
v ðK ; �Þ; . . . ;Blame

ðnÞ
v ðK ; �Þ;

where Blame
ðkÞ
v ðK ; �Þ is the blame of � to the kth level inconsistency of K for each

1 � k � n.

Example 23. Consider K5 ¼ hf:a; bg; fa; c;:a _ :dg; f:c; dgi. Then MI ðK5Þ ¼
fM1;M2;M3g, where

M1 ¼ hf:ag; fag; ;i; M2 ¼ h;; fcg; f:cgi; M3 ¼ h;; fa;:a _ :dg; fdgi:
So,

BlamevðM1; aÞ ¼
1

4
; 0; 0

� �
;

BlamevðM3; aÞ ¼ 0;
1

18
;
1

18

� �
;
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and

BlamevðK5; aÞ ¼
1

4
;
1

18
;
1

18

� �
:

Given the result of the Blamev measure on each formula of the knowledge base,

an ordering for the degree of blame between formulae can then be defined.

Definition 24 (The relation of less blameful than,�B [10]). Let K be a Type-

II prioritized knowledge base. A binary relation on K , denoted as �B, is defined as

follows: ��B � if and only if BlamevðK ; �Þ¹BlamevðK ; �Þ:
Further, �<B � if �¹B � and �B�. �’B � if ��B� and ��B �. We say that � is

less blameful for the inconsistency in K than � if �<B �.

Example 24. Given the Type-II prioritized rule set �, the result of applying the

Blamev measure on formulae in �-inconsistent subsets of � w.r.t. � ¼
fa; r;:p; s; n; y; b; cg would be:

Blamevð�; a ! nÞ ¼ 1

9
;
1

9
; 0

� �
Blamevð�; b ! r ^ sÞ ¼ 0; 0;

1

4

� �

Blamevð�; c ! p ^ sÞ ¼ 0; 0;
1

4

� �
Blamevð�; n ^ r ^ :p ^ s ! qÞ ¼ 1

9
;
1

9
; 0

� �

Blamevð�; n ^ y ! :dÞ ¼ 0;
1

4
; 0

� �
Blamevð�; a ! :qÞ ¼ 1

9
; 0;

1

4

� �

Blamevð�; y ! d ^ sÞ ¼ 1

4
; 0; 0

� �
Blamevð�; q ! :aÞ ¼ 1

9
; 0;

1

4

� �

Blamevð�; s ! :b ^ :cÞ ¼ 1

2
; 0; 0

� �
Blamevð�; a ! qÞ ¼ 0;

1

2
; 0

� �
:

This produces an ordering for the distribution of blame between inconsistent

formulae of �, i.e.

ðfb ! r ^ sg ’B fc ! p ^ sgÞ<Bfn ^ y ! :dg<Bfa ! qg
<Bðfa ! :qg’Bfq ! :agÞ<Bðfa ! ng

’B fn ^ r ^ :p ^ s ! qgÞ<Bfy ! d ^ sg<Bfs ! :b ^ :cg;

where s ! :b ^ :c is considered as most to blame for the inconsistency of �.

The results for the Blamev measure are striking since the formula a ! q

(considered one of the most problematic formulae by the Scoring function, SIMI

measure and SILPm measure) is here considered to much less problematic. The reason

for this is because a ! q is considered a low priority rule in the original definition

of �. This result clearly demonstrates the significance of integrating prioritization

in determining the degree of blame to associate with a formula for inconsistency.

310 K. McAreavey et al.



The implication for a practical IDS rule set is that the degree of importance for rules,

whichcanbedeterminedbynumerous factors, canhavea significant impactonassignan

inconsistency rating. This, along with the extra discrimination provided by theBlamev
measure, will assist resolution whether a manual or automatic mechanism is used.

5.5. Comparison of current inconsistency measures

We have applied a number of approaches to measuring the degree of inconsistency

in knowledge bases. The informativeness of these measures can be summarized as:

. the SIMI
measure is more representative than the Scoring function because it

considers the proportion that a formula contributes to the base;

. the SILPm measure is an extension of the SIMI
measure because it also considers the

proportion of a language affected by inconsistency;

. when formulae are prioritized the Blamev measure, unlike the SIMI
measure, can

take into account this ordering. However it cannot represent the proportion of

language affected by inconsistency.

For all the inconsistency measures discussed, an ordering can be defined in terms

of a formula’s contribution to the inconsistency of a base where the greater the

inconsistency value, the greater the degree of blame. This ordering can then be used

in the process of resolving inconsistency because the most inconsistent formulae

have been identified.

Reducing or even eliminating inconsistencies in an intrusion detection system

such as the Snort2Regex rule set, would be a significant step in reducing false alarms

and mis-detection. In the end this will improve the performance of the IDS for

network security. In terms of this formal inconsistency measure, their potential

benefit for resolving these inconsistencies is based on how they can be practically

implemented. As we have seen, the Scoring function is trivial to calculate while the

Blamev measure would not have a significant impact on performance. However it is

unlikely that the SIVs could be applied in practice without a large amount of

refinement or simplification. In this case it would still be possible to incorporate

their basic concepts such as language inconsistency.

6. BlameL Measure for Prioritized Knowledge Bases

When knowledge is prioritized it is intuitive that incorporating this relative priority

level is beneficial when measuring the degree of inconsistency of formulae, i.e. if

formulae are considered more or less important then they will contribute to

inconsistency to a greater or lesser degree. While the Blamev measure offers a sol-

ution to this problem, it treats all formulae equally regardless of the proportion of

the language involved. Similarly, the SILPm measure is able to provide an analysis of

inconsistency in terms of the number of inconsistent variables in an interpretation,

but this measure can only be applied to classical knowledge bases. To overcome this
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problem, we propose a solution which extends the Blamev measure using an

approach similar to the SILPm value. In this way, we can incorporate the normalized

number of the atoms in a language involved in inconsistency to provide a deeper

inspection of inconsistent formulae to define a new measure, denoted BlameL, for

inconsistency in prioritized knowledge bases.

The advantage of this approach for intrusion detection rules is that it can dis-

tinguish between rules based on their complexity, i.e. the proportion of the language

involved in each rule. This is common variation between IDS rules which is not

considered by the Blamev measure and the extra discrimination is useful for iden-

tifying the most problematic rules for resolution.

The BlameL measure is broken up into components in the same way as the

Blamev measure. These components will be redefined for the new measure where

necessary. We begin by introducing the SigP significance function which represents

the normalized number of the atoms in a language involved in inconsistency. This

function is also able to take into account the priority level of atoms in the language,

i.e. for the set of atoms in K , the number of atoms at any KðiÞ may be different.

Definition 25 (Significance function SigP). Let P be the set of atoms in a

language and K ¼ hKð1Þ; . . . ;KðnÞi be a Type-II prioritized knowledge base from

the language. Let PK be the set of atoms in K . The significance value for K , denoted

SigPðKÞ, is defined as

SigPðKÞ ¼
X

M2MðKÞ
SigPðM jKÞ;

where SigPðM jKÞ ¼ jPM j
jPK j for each M 2 MI ðKÞ.

Especially, we call Sig
ðiÞ
P ðM jKÞ ¼ jPM ðiÞj

jPKðiÞj the ith level significance of M in relation

to K , and abbreviate it as Sig
ðiÞ
P ðM jKÞ.

Informally speaking, Sig
ðiÞ
P ðM jKÞ describes the normalized number of variables

ofMðiÞ involved in inconsistency within the context of KðiÞ. It provides a more fine-

grained inspection on variables involved in inconsistency of K . Note that if K is a

minimal inconsistent knowledge base, then Sig
ðiÞ
P ðK jKÞ ¼ 1 for all i s.t. KðiÞ 6¼ ;.

Example 25. Consider K3 ¼ hf:a; bg; fa; c;:a _ :dg; f:c; dgi. Then MI ðK3Þ ¼
fM1;M2;M3g, where

M1 ¼ hf:ag; fag; ;i; M2 ¼ h;; fcg; f:cgi; M3 ¼ h;; fa;:a _ :dg; fdgi:
So,

SigPðM1 jK3Þ ¼
1

4
;

SigPðM2 jK3Þ ¼
1

4
;

SigPðM3 jK3Þ ¼
1

2
;
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and

SigPðK3Þ ¼ 1:

If there exists M 2 MI ðKÞ such that SigPðM jKÞ ¼ 1, this indicates that all

atoms in the language are involved in inconsistency.

Definition 26 (The significance vector SigL). Let K ¼ hKð1Þ; . . . ;KðnÞi be a

Type-II prioritized knowledge base. The significance vector for K , denoted SigLðKÞ,
is defined as

SigLðKÞ ¼
X

M2MI ðKÞ
SigLðM jKÞ;

where SigLðM jKÞ ¼ ðSig ð1Þ
P ðM jKÞ; . . . ; Sig ðnÞ

P ðM jKÞÞ for each M 2 MI ðKÞ.
Especially, we call

Sig
ðiÞ
L ðKÞ ¼

X
M2MI ðKÞ

Sig
ðiÞ
P ðM jKÞ

the ith level significance of K, and abbreviate it as Sig
ðiÞ
L ðKÞ.

The significance vector therefore represents the normalized number of the atoms

in a language, at each priority level, involved in inconsistency.

Example 26. Consider K3 ¼ hf:a; bg; fa; c;:a _ :dg; f:c; dgi. Then MI ðK3Þ ¼
fM1;M2;M3g, where

M1 ¼ hf:ag; fag; ;i; M2 ¼ h;; fcg; f:cgi; M3 ¼ h;; fa;:a _ :dg; fdgi:
So,

SigLðM1 jK3Þ ¼
1

2
;
1

3
; 0

� �
;

SigLðM2 jK3Þ ¼ 0;
1

3
;
1

2

� �
;

SigLðM3 jK3Þ ¼ 0;
2

3
;
1

2

� �
;

and

SigLðK3Þ ¼
1

2
;
4

3
; 1

� �
:

In this example, the highest proportion of the language in the second priority

level is involved in inconsistency.

Definition 27 (The inconsistency measure IncL). Let K ¼ hKð1Þ; . . . ;KðnÞi
be a Type-II prioritized knowledge base. The inconsistency measure for K, denoted

as IncLðKÞ, is defined as

IncLðKÞ ¼
X

M2MI ðKÞ
IncLðM jKÞ;
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where IncLðM jKÞ ¼ SigLðM jKÞ
jM j for each M 2 MI ðKÞ.

Especially, we call
Sig

ðiÞ
L
ðM jKÞ
jM j the ith level inconsistency amount of M , and

abbreviate it as Inc
ðiÞ
L ðM jKÞ.

Note that IncLðM jKÞ takes into account the size of the minimal inconsis-

tent subset M as well as the priority level of each formula of M within the context

of K .

Example 27. Consider K3 ¼ hf:a; bg; fa; c;:a _ :dg; f:c; dgi. Then MI ðK3Þ ¼
fM1;M2;M3g, where

M1 ¼ hf:ag; fag; ;i; M2 ¼ h;; fcg; f:cgi; M3 ¼ h;; fa;:a _ :dg; fdgi:
So,

IncLðM1 jK3Þ ¼
1
2

2
;
1
3

2
; 0

� �
¼ 1

4
;
1

6
; 0

� �
;

IncLðM2 jK3Þ ¼ 0;
1
3

2
;
1
2

2

� �
¼ 0;

1

6
;
1

4

� �
;

IncLðM3 jK3Þ ¼ 0;
2
3

3
;
1
2

3

� �
¼ 0;

2

9
;
1

6

� �
;

and

IncLðK3Þ ¼
1

4
;
5

9
;
5

12

� �
:

In this example, the second priority level is most inconsistent because the

greatest proportion of language and formulae are affected by inconsistency.

Example 28. Given the Type-II prioritized knowledge base � w.r.t. � ¼
fa; r;:p; s; n; y; b; cg and the �-inconsistent subset M1, the result of applying the

IncL inconsistency measure is:

IncLðM1Þ ¼
6
10

3
;
2
9

3
; 0

� �
¼ 1

5
;
2

27
; 0

� �
:

Next we define the BlameL measure, which is the Blamev measure adapted for the

new SigP, SigL and IncL values.

Definition 28 (The Blame of each formula for the kth level inconsistency

BlameL). Let K ¼ hKð1Þ; . . . ;KðnÞi be a Type-II prioritized knowledge base.

Then for each 1 � k � n, the blame of each formula of K for the kth level

inconsistency of K , denoted Blame
ðkÞ
L , is defined as follows:

8� 2 K ;Blame
ðkÞ
L ðK ; �Þ ¼

X
M2MI ðKÞ

Blame
ðkÞ
L ðM jK ; �Þ:
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where

Blame
ðkÞ
L ðM jK ; �Þ ¼

Sig
ðkÞ
v ðOppðM ; �ÞÞX

�2M
Sig

ðkÞ
v ðOppðM ; �ÞÞ

� Inc
ðkÞ
L ðM jKÞ; if jM ðkÞj > 0;

0; if jM ðkÞj ¼ 0;

8>><
>>:

for each M 2 MI ðKÞ.
Example 29. Consider K3 ¼ hf:a; bg; fa; c;:a _ :dg; f:c; dgi. Then MI ðK3Þ ¼
fM1;M2;M3g, where

M1 ¼ hf:ag; fag; ;i; M2 ¼ h;; fcg; f:cgi; M3 ¼ h;; fa;:a _ :dg; fdgi:

So,

Opp ðM1; aÞ ¼ hf:ag; ;; ;i;
Opp ðM1;:aÞ ¼ h;; fag; ;i;

and

Blame
ð1Þ
L ðM1 jK3; aÞ ¼

jf:agj
jf:agj þ j;j �

1

4
¼ 1

4
;

Blame
ð2Þ
L ðM1 jK3; aÞ ¼

j;j
j;j þ jfagj �

1

6
¼ 0;

Blame
ð3Þ
L ðM1 jK3; aÞ ¼

j;j
j;j þ j;j � 0 ¼ 0;

BlameLðM1 jK3; aÞ ¼
1

4
; 0; 0

� �
:

In this example, the formula a is to blame for the inconsistency M1 in K3 at the

first priority level only.

Example 30. Given the results of OppðM1;mÞ form 2 M1 and IncLðM1Þ, the result
of Blame

ðkÞ
L for the formula a ! n in each priority level is:

Blame
ð1Þ
L ðM1; a ! nÞ ¼ jfn ^ r ^ :p ^ s ! qgj

jfn ^ r ^ :p ^ s ! qgj þ jfa ! ngj
þ jfa ! n; n ^ r ^ :p ^ s ! qgj

� 1

5
¼ 1

20
;

Blame
ð2Þ
L ðM1; a ! nÞ ¼ jfa ! :qgj

jfa ! :qgj þ jfa ! :qgj þ j;j �
2

27
¼ 1

27
;

Blame
ð3Þ
L ðM1; a ! nÞ ¼ j;j

j;j þ j;j þ j;j � 0 ¼ 0:
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Giving an overall BlameL value for a ! n in M1:

BlameLðM1; a ! nÞ ¼ 1

20
;
1

27
; 0

� �
:

A vector value for a formula represents the total blame at each priority level for

the inconsistency of the knowledge base.

Definition 29 (The Blame of each Formula for Inconsistency BlameL).

Let K ¼ hKð1Þ; . . . ;KðnÞi be a Type-II prioritized knowledge base. The blame of

each formula of K for the inconsistency of K , denoted BlameL, is defined as follows:

8� 2 K ;BlameLðK ; �Þ ¼ ðBlame
ð1Þ
L ðK ; �Þ; . . . ;Blame

ðnÞ
L ðK ; �ÞÞ;

where Blame
ðkÞ
L ðK ; �Þ is the blame of � to the kth level inconsistency of K for each

1 � k � n.

Example 31. Consider K3 ¼ hf:a; bg; fa; c;:a _ :dg; f:c; dgi. Then MI ðK3Þ ¼
fM1;M2;M3g, where

M1 ¼ hf:ag; fag; ;i; M2 ¼ h;; fcg; f:cgi; M3 ¼ h;; fa;:a _ :dg; fdgi:
So,

BlameLðM1; aÞ ¼
1

4
; 0; 0

� �
;

BlameLðM3; aÞ ¼ 0;
1

18
;
1

12

� �
;

and

BlameLðK3; aÞ ¼
1

4
;
1

18
;
1

12

� �
:

Example 32. Consider K4 ¼ hfa ^ :a ^ b; c ^ :cg; fdg; f:dgi. Then MI ðKÞ ¼
fM1;M2;M3g, where

M1 ¼ hfa ^ :a ^ bg; ;; ;i; M2 ¼ hfc ^ :cg; ;; ;i; M3 ¼ h;; fdg; f:dgi:
So,

OppðM1; a ^ :a ^ bÞ ¼ hfa ^ :a ^ bg; ;; ;i;
OppðM2; c ^ :cÞ ¼ hfc ^ :cg; ;; ;i;

OppðM3; dÞ ¼ h;; ;; f:dgi;
OppðM3;:dÞ ¼ h;; fdg; ;i:

Then by applying Blamev

IncvðM1Þ ¼
1

12
;
0

12
;
0

12

� �
¼ 1; 0; 0ð Þ;
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IncvðM2Þ ¼
1

12
;
0

12
;
0

12

� �
¼ 1; 0; 0ð Þ;

IncvðM3Þ ¼
0

22
;
1

22
;
1

22

� �
¼ 0;

1

4
;
1

4

� �
;

and

BlamevðK ; a ^ :a ^ bÞ ¼ 1; 0; 0ð Þ;
BlamevðK ; c ^ :cÞ ¼ 1; 0; 0ð Þ:

Alternatively, by applying BlameL

IncLðM1Þ ¼
2
3

1
;
0

1
;
0

1

� �
¼ 2

3
; 0; 0

� �
;

IncLðM2Þ ¼
1
3

1
;
0

1
;
0

1

� �
¼ 1

3
; 0; 0

� �
;

IncLðM3Þ ¼
0

2
;
1
1

2
;
1
1

2

� �
¼ 0;

1

2
;
1

2

� �
:

and

BlameLðK ; a ^ :a ^ bÞ ¼ 2

3
; 0; 0

� �
;

BlameLðK ; c ^ :cÞ ¼ 1

3
; 0; 0

� �
:

This example illustrates the benefit of the BlameL measure, over the Blamev
measure, since it maintains the general approach of Blamev (d and :d are con-

sidered less to blame than a ^ :a ^ b and c ^ :c). However, it is more dis-

criminating and as such allows more distinction to made between the blame of

formulae. In this case, Blamev is able to identify a ^ :a ^ b and c ^ :c as most to

blame but is unable to make a distinction between the blame of the two. On the

other hand, BlameL is able to identify a ^ :a ^ b as more to blame since more of the

language is involved in inconsistency.

The benefit for inconsistency detection in intrusion detection rules is that it can

distinguish between rules based on their complexity as well as the core character-

istics examined by the Blamev measure. When beginning the inconsistency resol-

ution process it provides a more specific starting point.

Given the result of the BlameL measure on each formula of the knowledge base,

an ordering for the degree of blame between formulae can then be defined.

Definition 30. (The relation of less blameful than, �B) Let K be a Type-II

prioritized knowledge base. A binary relation on K , denoted as �B, is defined as

follows: ��B� if and only if BlameLðK ; �Þ¹BlameLðK ; �Þ:
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Further, �<B� if �¹B� and �B�. �’B� if ��B� and ��B�. We say that � is less

blameful for the inconsistency in K than � if �<B�.

Example 33. Given the Type-II prioritized rule set �, the result of applying the

�-inconsistent subsets of � w.r.t. � ¼ fa; r;:p; s; n; y; b; cg would be:

BlameLð�; a ! nÞ ¼ 1

10
;
2

27
; 0

� �
BlameLð�; b ! r ^ sÞ ¼ 0; 0;

1

6

� �

BlameLð�; c ! p ^ sÞ ¼ 0; 0;
1

6

� �
BlameLð�; n ^ r ^ :p ^ s ! qÞ

BlameLð�; n ^ y ! :dÞ ¼ 0;
1

6
; 0

� �
¼ 1

10
;
2

27
; 0

� �

BlameLð�; a ! :qÞ ¼ 1

10
; 0;

1

9

� �
BlameLð�; y ! d ^ sÞ ¼ 3

20
; 0; 0

� �

BlameLð�; q ! :aÞ ¼ 1

10
; 0;

1

9

� �
BlameLð�; s ! :b _ :cÞ

BlameLð�; a ! qÞ ¼ 0;
2

9
; 0

� �
¼ 3

10
; 0; 0

� �
:

This produces an ordering for the distribution of blame between inconsistent

formulae of �, i.e.

ðfb ! r ^ sg ’B fc ! p ^ sgÞ<Bfn ^ y ! :dg<Bfa ! qg
<Bðfa ! :qg’Bfq ! :agÞ<Bðfa ! ng

’B fn ^ r ^ :p ^ s ! qgÞ<Bfy ! d ^ sg<Bfs ! :b ^ :cg;
where s ! :b ^ :c is considered as most to blame for the inconsistency of �.

In this instance, the inconsistency ordering between the Blamev and BlameL
inconsistency measures are the same. However, from these results we can see that

the inconsistency values are different since the BlameL measure also takes into

account the proportion of the language involved in inconsistency. In this way, the

BlameL measure is more discriminatory as it has a greater degree of variation in

inconsistency values. It is also capable of distinguishing between formulae, which

would be considered as contributing equally to inconsistency by Blamev, if the

number of atoms in the formula are different.

For IDS rules, we can see that given the worse case (complexity is equal among

rules) BlameL is at least as discriminatory, and at least as useful, as the Blamev
measure. However in any IDS rule set, such as Snort or Snort2Regex, rule com-

plexity is a common variation between rules, e.g. Snort2Regex rules may contain

one or more Regex strings to search for attack signatures and alerts do not have a

fixed length. Just as it is useful to consider rule priorities when identifying proble-

matic rules, it is also useful to consider this degree of complexity.
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7. Conclusion

Effective management of inconsistencies in intrusion detection rules is essential

for reliable detection of intrusion attempts, especially with a large set of rules

such as Snort. The ability to not only identify these inconsistencies, but to dis-

tribute the degree of blame among contributing rules is important in the process of

resolving inconsistencies. Also, the reality of varying degrees of importance of

information in real world applications means that considering prioritized rules will

produce more representative result. Snort, for example, is open source and so the

rules originate from multiple sources ��� if we are able to say that some sources are

more important than others, then we can also say that some inconsistencies are

more important than others.

In this preliminary study, we investigated how Snort2Regex rules, based on

Snort, can be translated into logical formulae. We began by identifying elementary

units in the rules because in the current Snort2Regex system, each rule is looked at

as a whole, so it is difficult to correlate them. We then extended this rule set to

include some expert knowledge to more explicitly correlate rules. We then applied a

number of approaches for measuring inconsistency in this extended rule set. From

this work we were able to define a new measure of inconsistency for prioritized

knowledge which incorporates the proportion of the language involved in incon-

sistency. In summary of our results:

. We have demonstrated a method for analyzing a set of Snort2Regex IDS rules,

converting them to a propositional logic format and introducing expert knowledge

to further correlate rules. This is essential to begin the process of inconsistency

analysis;

. Measuring inconsistencies in intrusion detection rules is potentially very useful for

this domain since ensuring accurate and reliable intrusion detections is dependent

on a consistent detection system;

. The inconsistency measures presented here are effective for quantifying the

inconsistency of formula in an extended, knowledge-based, system. Using these

values they can determine an inconsistency ordering for the degree of blame

associated with each formula in order to begin resolving inconsistency;

. Our proposed measure, denoted BlameL, is able to consider the proportion of the

language involved in inconsistency at each priority level. This is useful in many

cases since it is more discriminatory than the Blamev measure and can be applied

to prioritized knowledge, unlike the Scoring function and SIVs;

. The major problem identified by this paper is that current rules used for intrusion

detection are vulnerable to inconsistencies, but because they do not incorporate

any domain specific knowledge, it is difficult to correlate rules in order to identify

these inconsistencies.

. Our study has revealed weaknesses in the current Snort2Regex rule set, in terms

of redundancy and the correlation of rules, and we have demonstrated approaches
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to addressing these issues. This study provides a promising way forward for

constructing and maintaining a scalable set of consistent rules over time.

Further work will aim at using practical methods to apply these measures of

inconsistency to identify inconsistent Snort2Regex rules. We then aim to propose

strategies for removing minimal numbers of Snort2Regex rules in order to resolve

inconsistency. Experimentally, we aim to develop a tool to automatically identify

inconsistent rules in order to measure the impact of inconsistency on false alarm and

mis-detection rates. Following this, automatic resolution methods can be applied

and compared with the aid of experimental results.
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