4,102 research outputs found

    Detecting Relevance during Decision-Making from Eye Movements for UI Adaptation

    Full text link
    This paper proposes an approach to detect information relevance during decision-making from eye movements in order to enable user interface adaptation. This is a challenging task because gaze behavior varies greatly across individual users and tasks and groundtruth data is difficult to obtain. Thus, prior work has mostly focused on simpler target-search tasks or on establishing general interest, where gaze behavior is less complex. From the literature, we identify six metrics that capture different aspects of the gaze behavior during decision-making and combine them in a voting scheme. We empirically show, that this accounts for the large variations in gaze behavior and out-performs standalone metrics. Importantly, it offers an intuitive way to control the amount of detected information, which is crucial for different UI adaptation schemes to succeed. We show the applicability of our approach by developing a room-search application that changes the visual saliency of content detected as relevant. In an empirical study, we show that it detects up to 97% of relevant elements with respect to user self-reporting, which allows us to meaningfully adapt the interface, as confirmed by participants. Our approach is fast, does not need any explicit user input and can be applied independent of task and user.Comment: The first two authors contributed equally to this wor

    Diverse Contributions to Implicit Human-Computer Interaction

    Full text link
    Cuando las personas interactúan con los ordenadores, hay mucha información que no se proporciona a propósito. Mediante el estudio de estas interacciones implícitas es posible entender qué características de la interfaz de usuario son beneficiosas (o no), derivando así en implicaciones para el diseño de futuros sistemas interactivos. La principal ventaja de aprovechar datos implícitos del usuario en aplicaciones informáticas es que cualquier interacción con el sistema puede contribuir a mejorar su utilidad. Además, dichos datos eliminan el coste de tener que interrumpir al usuario para que envíe información explícitamente sobre un tema que en principio no tiene por qué guardar relación con la intención de utilizar el sistema. Por el contrario, en ocasiones las interacciones implícitas no proporcionan datos claros y concretos. Por ello, hay que prestar especial atención a la manera de gestionar esta fuente de información. El propósito de esta investigación es doble: 1) aplicar una nueva visión tanto al diseño como al desarrollo de aplicaciones que puedan reaccionar consecuentemente a las interacciones implícitas del usuario, y 2) proporcionar una serie de metodologías para la evaluación de dichos sistemas interactivos. Cinco escenarios sirven para ilustrar la viabilidad y la adecuación del marco de trabajo de la tesis. Resultados empíricos con usuarios reales demuestran que aprovechar la interacción implícita es un medio tanto adecuado como conveniente para mejorar de múltiples maneras los sistemas interactivos.Leiva Torres, LA. (2012). Diverse Contributions to Implicit Human-Computer Interaction [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17803Palanci

    Designing Attentive Information Dashboards with Eye Tracking Technology

    Get PDF

    A Learning-based Stochastic MPC Design for Cooperative Adaptive Cruise Control to Handle Interfering Vehicles

    Full text link
    Vehicle to Vehicle (V2V) communication has a great potential to improve reaction accuracy of different driver assistance systems in critical driving situations. Cooperative Adaptive Cruise Control (CACC), which is an automated application, provides drivers with extra benefits such as traffic throughput maximization and collision avoidance. CACC systems must be designed in a way that are sufficiently robust against all special maneuvers such as cutting-into the CACC platoons by interfering vehicles or hard braking by leading cars. To address this problem, a Neural- Network (NN)-based cut-in detection and trajectory prediction scheme is proposed in the first part of this paper. Next, a probabilistic framework is developed in which the cut-in probability is calculated based on the output of the mentioned cut-in prediction block. Finally, a specific Stochastic Model Predictive Controller (SMPC) is designed which incorporates this cut-in probability to enhance its reaction against the detected dangerous cut-in maneuver. The overall system is implemented and its performance is evaluated using realistic driving scenarios from Safety Pilot Model Deployment (SPMD).Comment: 10 pages, Submitted as a journal paper at T-I

    Description and application of the correlation between gaze and hand for the different hand events occurring during interaction with tablets

    Get PDF
    People’s activities naturally involve the coordination of gaze and hand. Research in Human-Computer Interaction (HCI) endeavours to enable users to exploit this multimodality for enhanced interaction. With the abundance of touch screen devices, direct manipulation of an interface has become a dominating interaction technique. Although touch enabled devices are prolific in both public and private spaces, interactions with these devices do not fully utilise the benefits from the correlation between gaze and hand. Touch enabled devices do not employ the richness of the continuous manual activity above their display surface for interaction and a lot of information expressed by users through their hand movements is ignored. This thesis aims at investigating the correlation between gaze and hand during natural interaction with touch enabled devices to address these issues. To do so, we set three objectives. Firstly, we seek to describe the correlation between gaze and hand in order to understand how they operate together: what is the spatial and temporal relationship between these modalities when users interact with touch enabled devices? Secondly, we want to know the role of some of the inherent factors brought by the interaction with touch enabled devices on the correlation between gaze and hand, because identifying what modulates the correlation is crucial to design more efficient applications: what are the impacts of the individual differences, the task characteristics and the features of the on-screen targets? Thirdly, as we want to see whether additional information related to the user can be extracted from the correlation between gaze and hand, we investigate the latter for the detection of users’ cognitive state while they interact with touch enabled devices: can the correlation reveal the users’ hesitation? To meet the objectives, we devised two data collections for gaze and hand. In the first data collection, we cover the manual interaction on-screen. In the second data collection, we focus instead on the manual interaction in-the-air. We dissect the correlation between gaze and hand using three common hand events users perform while interacting with touch enabled devices. These events comprise taps, stationary hand events and the motion between taps and stationary hand events. We use a tablet as a touch enabled device because of its medium size and the ease to integrate both eye and hand tracking sensors. We study the correlation between gaze and hand for tap events by collecting gaze estimation data and taps on tablet in the context of Internet related tasks, representative of typical activities executed using tablets. The correlation is described in the spatial and temporal dimensions. Individual differences and effects of the task nature and target type are also investigated. To study the correlation between gaze and hand when the hand is in a stationary situation, we conducted a data collection in the context of a Memory Game, chosen to generate enough cognitive load during playing while requiring the hand to leave the tablet’s surface. We introduce and evaluate three detection algorithms, inspired by eye tracking, based on the analogy between gaze and hand patterns. Afterwards, spatial comparisons between gaze and hands are analysed to describe the correlation. We study the effects on the task difficulty and how the hesitation of the participants influences the correlation. Since there is no certain way of knowing when a participant hesitates, we approximate the hesitation with the failure of matching a pair of already seen tiles. We study the correlation between gaze and hand during hand motion between taps and stationary hand events from the same data collection context than the case mentioned above. We first align gaze and hand data in time and report the correlation coefficients in both X and Y axis. After considering the general case, we examine the impact of the different factors implicated in the context: participants, task difficulty, duration and type of the hand motion. Our results show that the correlation between gaze and hand, throughout the interaction, is stronger in the horizontal dimension of the tablet rather than in its vertical dimension, and that it varies widely across users, especially spatially. We also confirm the eyes lead the hand for target acquisition. Moreover, we find out that the correlation between gaze and hand when the hand is in the air above the tablet’s surface depends on where the users look at on the tablet. As well, we show that the correlation during eye and hand during stationary hand events can indicate the users’ indecision, and that while the hand is moving, the correlation depends on different factors, such as the degree of difficulty of the task performed on the tablet and the nature of the event before/after the motion

    Co-adaptive control strategies in assistive Brain-Machine Interfaces

    Get PDF
    A large number of people with severe motor disabilities cannot access any of the available control inputs of current assistive products, which typically rely on residual motor functions. These patients are therefore unable to fully benefit from existent assistive technologies, including communication interfaces and assistive robotics. In this context, electroencephalography-based Brain-Machine Interfaces (BMIs) offer a potential non-invasive solution to exploit a non-muscular channel for communication and control of assistive robotic devices, such as a wheelchair, a telepresence robot, or a neuroprosthesis. Still, non-invasive BMIs currently suffer from limitations, such as lack of precision, robustness and comfort, which prevent their practical implementation in assistive technologies. The goal of this PhD research is to produce scientific and technical developments to advance the state of the art of assistive interfaces and service robotics based on BMI paradigms. Two main research paths to the design of effective control strategies were considered in this project. The first one is the design of hybrid systems, based on the combination of the BMI together with gaze control, which is a long-lasting motor function in many paralyzed patients. Such approach allows to increase the degrees of freedom available for the control. The second approach consists in the inclusion of adaptive techniques into the BMI design. This allows to transform robotic tools and devices into active assistants able to co-evolve with the user, and learn new rules of behavior to solve tasks, rather than passively executing external commands. Following these strategies, the contributions of this work can be categorized based on the typology of mental signal exploited for the control. These include: 1) the use of active signals for the development and implementation of hybrid eyetracking and BMI control policies, for both communication and control of robotic systems; 2) the exploitation of passive mental processes to increase the adaptability of an autonomous controller to the user\u2019s intention and psychophysiological state, in a reinforcement learning framework; 3) the integration of brain active and passive control signals, to achieve adaptation within the BMI architecture at the level of feature extraction and classification

    An end-to-end review of gaze estimation and its interactive applications on handheld mobile devices

    Get PDF
    In recent years we have witnessed an increasing number of interactive systems on handheld mobile devices which utilise gaze as a single or complementary interaction modality. This trend is driven by the enhanced computational power of these devices, higher resolution and capacity of their cameras, and improved gaze estimation accuracy obtained from advanced machine learning techniques, especially in deep learning. As the literature is fast progressing, there is a pressing need to review the state of the art, delineate the boundary, and identify the key research challenges and opportunities in gaze estimation and interaction. This paper aims to serve this purpose by presenting an end-to-end holistic view in this area, from gaze capturing sensors, to gaze estimation workflows, to deep learning techniques, and to gaze interactive applications.PostprintPeer reviewe

    Dissemination of aerospace science and technology to highway safety and highway transportation programs Final report, 1 Jan. - 1 Apr. 1968

    Get PDF
    Feasibility of NASA literature application to highway safety and transportation engineerin

    Neutral coding - A report based on an NRP work session

    Get PDF
    Neural coding by impulses and trains on single and multiple channels, and representation of information in nonimpulse carrier
    corecore