668 research outputs found

    Borrow from Anywhere: Pseudo Multi-modal Object Detection in Thermal Imagery

    Full text link
    Can we improve detection in the thermal domain by borrowing features from rich domains like visual RGB? In this paper, we propose a pseudo-multimodal object detector trained on natural image domain data to help improve the performance of object detection in thermal images. We assume access to a large-scale dataset in the visual RGB domain and relatively smaller dataset (in terms of instances) in the thermal domain, as is common today. We propose the use of well-known image-to-image translation frameworks to generate pseudo-RGB equivalents of a given thermal image and then use a multi-modal architecture for object detection in the thermal image. We show that our framework outperforms existing benchmarks without the explicit need for paired training examples from the two domains. We also show that our framework has the ability to learn with less data from thermal domain when using our approach. Our code and pre-trained models are made available at https://github.com/tdchaitanya/MMTODComment: Accepted at Perception Beyond Visible Spectrum Workshop, CVPR 201

    INTELLIGENT MACHINE VISION BASED RAILWAY INFRASTRUCTURE INSPECTION AND MONITORING USING UAV

    Get PDF
    Traditionally, railway inspection and monitoring are considered a crucial aspect of the system and are done by human inspectors. Rapid progress of the machine vision-based systems enables automated and autonomous rail track detection and railway infrastructure monitoring and inspection with flexibility and ease of use. In recent years, several prototypes of vision based inspection system have been proposed, where most have various vision sensors mounted on locomotives or wagons. This paper explores the usage of the UAVs (drones) in railways and computer vision based monitoring of railway infrastructure. Employing drones for such monitoring systems enables more robust and reliable visual inspection while providing a cost effective and accurate means for monitoring of the tracks. By means of a camera placed on a drone the images of the rail tracks and the railway infrastructure are taken. On these images, the edge and feature extraction methods are applied to determine the rails. The preliminary obtained results are promising

    CONCEPTS FOR DEVELOPMENT OF SHUTTLE CAR AUTONOMOUS DOCKING WITH CONTINUOUS MINER USING 3-D DEPTH CAMERA

    Get PDF
    In recent years, a great deal of work has been conducted in automating mining equipment with the goals of increasing worker health and safety and increasing mine productivity. Automating vehicles such as load-haul-dumps been successful even in underground environments where the use of global positioning systems are unavailable. This thesis addresses automating the operation of a shuttle car, specifically focusing on positioning the shuttle car under the continuous miner coal-discharge conveyor during cutting and loading operations. This task requires recognition of the target and precise control of the tramming operation because a specific orientation and distance from the coal discharge conveyor is needed to avoid coal spillage. The proposed approach uses a stereo depth camera mounted on a small-scale mockup of a shuttle car. Machine learning algorithms are applied to the camera output to identify the continuous miner coal-discharge conveyor and segment the scene into various regions such as roof, ribs, and personnel. This information is used to plan the shuttle car path to the continuous miner coal-discharge conveyor. These methods are currently applied on 1/6th scale continuous miner and shuttle car in an appropriately scaled mock mine

    A review on technologies for localisation and navigation in autonomous railway maintenance systems

    Get PDF
    Smart maintenance is essential to achieving a safe and reliable railway, but traditional maintenance deployment is costly and heavily human-involved. Ineffective job execution or failure in preventive maintenance can lead to railway service disruption and unsafe operations. The deployment of robotic and autonomous systems was proposed to conduct these maintenance tasks with higher accuracy and reliability. In order for these systems to be capable of detecting rail flaws along millions of mileages they must register their location with higher accuracy. A prerequisite of an autonomous vehicle is its possessing a high degree of accuracy in terms of its positional awareness. This paper first reviews the importance and demands of preventive maintenance in railway networks and the related techniques. Furthermore, this paper investigates the strategies, techniques, architecture, and references used by different systems to resolve the location along the railway network. Additionally, this paper discusses the advantages and applicability of on-board-based and infrastructure-based sensing, respectively. Finally, this paper analyses the uncertainties which contribute to a vehicle’s position error and influence on positioning accuracy and reliability with corresponding technique solutions. This study therefore provides an overall direction for the development of further autonomous track-based system designs and methods to deal with the challenges faced in the railway network.European Union’s Horizon 2020 research and innovation programme. Shift2Rail Joint Undertaking (JU): 88157

    Modelling rail thermal differentials due to bending and defects

    Get PDF
    Rail foot flaws have the potential to cause broken rails that can lead to derailment. This is not only an extremely costly issue for a rail operator in terms of damage to rolling stock, but has significant flow-on effects for network downtime and a safe working environment. In Australia, heavy haul operators run up to 42.5 t axle loads with trains in excess of 200 wagons and these long trains produce very large cyclic rail stresses. The early detection of foot flaws before a broken rail occurs is of high importance and there are currently no proven techniques for detecting rail foot flaws on trains at normal running speeds. This paper shall focus on the potential use of thermography as a detection technique and begin investigating the components of heat transfer in the rail to determine the viability of thermography for detecting rail foot flaws. The paper commences with an introduction to the sources of heat generation in the rail and modelling approaches for the effects of bending, natural environmental factors and transverse defects. It concludes with two theoretical case studies on heat generated due to these sources and discusses how they may inform the development of a practical thermography detection methodology

    Towards Autonomous Selective Harvesting: A Review of Robot Perception, Robot Design, Motion Planning and Control

    Full text link
    This paper provides an overview of the current state-of-the-art in selective harvesting robots (SHRs) and their potential for addressing the challenges of global food production. SHRs have the potential to increase productivity, reduce labour costs, and minimise food waste by selectively harvesting only ripe fruits and vegetables. The paper discusses the main components of SHRs, including perception, grasping, cutting, motion planning, and control. It also highlights the challenges in developing SHR technologies, particularly in the areas of robot design, motion planning and control. The paper also discusses the potential benefits of integrating AI and soft robots and data-driven methods to enhance the performance and robustness of SHR systems. Finally, the paper identifies several open research questions in the field and highlights the need for further research and development efforts to advance SHR technologies to meet the challenges of global food production. Overall, this paper provides a starting point for researchers and practitioners interested in developing SHRs and highlights the need for more research in this field.Comment: Preprint: to be appeared in Journal of Field Robotic

    Autonomous Pedestrian Detection in Transit Buses

    Get PDF
    This project created a proof of concept for an automated pedestrian detection and avoidance system designed for transit buses. The system detects objects up to 12 meters away, calculates the distance from the system using a solid-state LIDAR, and determines if that object is human by passive infrared. This triggers a visual and sound warning. A Xilinx Zynq-SoC utilizing programmable logic and an ARM-based processing system drive data fusion, and an external power unit makes it configurable for transit-buses

    Borrow from Anywhere: Pseudo Multi-modal Object Detection in Thermal Imagery

    Get PDF
    Can we improve detection in the thermal domain by borrowing features from rich domains like visual RGB? In this paper, we propose a ‘pseudo-multimodal’ object detector trained on natural image domain data to help improve the performance of object detection in thermal images. We assume access to a large-scale dataset in the visual RGB domain and relatively smaller dataset (in terms of instances) in the thermal domain, as is common today. We propose the use of well-known image-to-image translation frameworks to generate pseudo-RGB equivalents of a given thermal image and then use a multi-modal architecture for object detection in the thermal image. We show that our framework outperforms existing benchmarks without the explicit need for paired training examples from the two domains. We also show that our framework has the ability to learn with less data from thermal domain when using our approac

    A deep learning approach towards railway safety risk assessment

    Get PDF
    Railway stations are essential aspects of railway systems, and they play a vital role in public daily life. Various types of AI technology have been utilised in many fields to ensure the safety of people and their assets. In this paper, we propose a novel framework that uses computer vision and pattern recognition to perform risk management in railway systems in which a convolutional neural network (CNN) is applied as a supervised machine learning model to identify risks. However, risk management in railway stations is challenging because stations feature dynamic and complex conditions. Despite extensive efforts by industry associations and researchers to reduce the number of accidents and injuries in this field, such incidents still occur. The proposed model offers a beneficial method for obtaining more accurate motion data, and it detects adverse conditions as soon as possible by capturing fall, slip and trip (FST) events in the stations that represent high-risk outcomes. The framework of the presented method is generalisable to a wide range of locations and to additional types of risks

    A review on the prospects of mobile manipulators for smart maintenance of railway track

    Get PDF
    Inspection and repair interventions play vital roles in the asset management of railways. Autonomous mobile manipulators possess considerable potential to replace humans in many hazardous railway track maintenance tasks with high efficiency. This paper investigates the prospects of the use of mobile manipulators in track maintenance tasks. The current state of railway track inspection and repair technologies is initially reviewed, revealing that very few mobile manipulators are in the railways. Of note, the technologies are analytically scrutinized to ascertain advantages, unique capabilities, and potential use in the deployment of mobile manipulators for inspection and repair tasks across various industries. Most mobile manipulators in maintenance use ground robots, while other applications use aerial, underwater, or space robots. Power transmission lines, the nuclear industry, and space are the most extensive application areas. Clearly, the railways infrastructure managers can benefit from the adaptation of best practices from these diversified designs and their broad deployment, leading to enhanced human safety and optimized asset digitalization. A case study is presented to show the potential use of mobile manipulators in railway track maintenance tasks. Moreover, the benefits of the mobile manipulator are discussed based on previous research. Finally, challenges and requirements are reviewed to provide insights into future research
    corecore