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Abstract: Inspection and repair interventions play vital roles in the asset management of railways.
Autonomous mobile manipulators possess considerable potential to replace humans in many haz-
ardous railway track maintenance tasks with high efficiency. This paper investigates the prospects
of the use of mobile manipulators in track maintenance tasks. The current state of railway track
inspection and repair technologies is initially reviewed, revealing that very few mobile manipulators
are in the railways. Of note, the technologies are analytically scrutinized to ascertain advantages,
unique capabilities, and potential use in the deployment of mobile manipulators for inspection and
repair tasks across various industries. Most mobile manipulators in maintenance use ground robots,
while other applications use aerial, underwater, or space robots. Power transmission lines, the nuclear
industry, and space are the most extensive application areas. Clearly, the railways infrastructure
managers can benefit from the adaptation of best practices from these diversified designs and their
broad deployment, leading to enhanced human safety and optimized asset digitalization. A case
study is presented to show the potential use of mobile manipulators in railway track maintenance
tasks. Moreover, the benefits of the mobile manipulator are discussed based on previous research.
Finally, challenges and requirements are reviewed to provide insights into future research.

Keywords: mobile manipulator; railway track maintenance; robotic maintenance technology;
autonomous systems

1. Introduction

Railway infrastructure networks are among the most important transportation assets
and have served the worldwide growth of industry and civilization for hundreds of years.
The notion of asset management within a railway infrastructure context is developing to
fulfill the needs of both users and owners for sustainable railway management. The railway
infrastructure network can include vast numbers of tracks, bridges, tunnels, stations, track-
side markers, overhead electric lines, etc. For example, the British railway network has
approximately 20,000 miles of track, 30,000 bridges, and 2500 stations, some of which are
almost 200 years old, as well as a plethora of signaling, electrification, and crossing systems
that are geographically spread out [1]. Railway infrastructure operators are responsible
for planning, controlling, and maintaining all asset-related hardware operations and main-
tenance. Railway track inspection and repair are fundamental requirements for ensuring
safe transit and long-term growth [2]. The quality of the railway track also impacts both
the reliability of pantograph–catenary interactions [3] and ride comforts [4]. Railways
maintenance or repair tasks have primarily relied on human interventions for decades.
Although many modern tools and machines have been introduced recently, human involve-
ment is still essential. Currently, over 40,000 people are working in Britain to maintain the
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appropriate operation of infrastructures (e.g., signals and power supplies) and assets (e.g.,
tracks and bridges) [5].

Train services are considered among the safer, greener, and most reliable public
transport systems. Construction of new railway infrastructure is time-consuming and
costly. For example, the construction cost of the High Speed 2 (HS2) railway line of
330 miles may rise to more than GBP 100 billion [6]. Moreover, the construction cost per
km of railway track is 12.5 to 30 times higher than per km per lane road [7]. Modern asset
management systems ensure the life cycle of well-maintained railway assets, producing
environmental and financial benefits by balancing maintenance, renewal, and enhancement
activities [8]. Thus, governments and stakeholders strive to maximize the availability of
railway networks by introducing enhanced asset management systems, including AI-based
robotics [2]. As a result, there is avid demand for flexible and autonomous robots that can
perform maintenance tasks effectively and which possess remote, reliable communication
and sensing technology. Maintaining adequate track quality ensures a safe and comfortable
journey for passengers and timely freight delivery. Railway maintenance tasks demand
dexterity, quality, versatility, and speed. Some tasks can be repetitive and need to be
performed out of hours or in adverse weather conditions.

Smart maintenance is a concept which could revolutionize the available maintenance
systems across different industries. It uses IoT, faster computing, sensor technologies, etc.,
to digitalize the maintenance process. Moreover, with the advancement of robotic technolo-
gies, it will include different solutions with which to optimize the existing maintenance
tasks in order to minimize the whole life cycle cost and ensure the optimum usage of the
assets. When used in railway inspection and maintenance tasks, robotics technologies will
enable smart maintenance. During the inspection process, robotic technologies should
detect any defects if provided with enough information, such as defect type, size and
location, for the actuation tasks. In the maintenance tasks, robots should perform the repair
tasks with or without human involvement based on the information from the inspection.

A manipulator or robotic arm is a multipurpose mechanical device which is pro-
grammable for various tasks. Manipulators are articulated kinematic chains, linked with
one another with flexible joints [9] and programmed to perform some motions in a des-
ignated workspace. Based on the requirements and design, manipulators have multiple
joints known as “Degrees-of-Freedom” or DoFs. The use of industrial manipulators can
be dated back to 1954 when General Motors began using Unimate, a hydraulic arm, to lift
heavy loads [10].

A mobile manipulator combines an industrial or robotic arm with a mobile platform.
In the literature, mobile manipulators can be dated back to 1992, when the mobile robot
lab at LAAS developed “Hilare 2bis” [11], shown in Figure 1. A mobile manipulation
system benefits from both the manipulator’s dexterity and the mobile platform’s mobility.
Because of these advantages, mobile manipulators can be used across industries for various
challenging tasks to reduce the risks to human workers, increase efficiency, and maximize
financial benefits.
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Only 28% of track inspection and repairs involve robotic and autonomous system
(RAS) techniques, even though railway track faults cause 17% of train delays and 33.1% of
passenger train cancellations [5]. A mobile manipulator is a particular type of robot with
a mobile base and a robotic arm. With the help of multiple sensors and computational
algorithms, mobile manipulators can perform various tasks, such as cleaning a nuclear
reactor [12] or inspecting a railway tunnel [13]. With the recent advancement in sensor and
computation technologies, the mobile manipulator has revealed many promising use cases
in maintenance technologies across various industries [14–17]. These promising results
substantiated an increment in productivity, efficiency, and safety for the human opera-
tors [18,19]. This research aims to discuss the prospects of adopting mobile manipulators
for railway track inspection and repair tasks, as observed in other industries.

This paper will begin by reviewing the current state of the art maintenance machines
for railway track inspection and repair tasks. Afterward, robotic technologies for railway
track inspection and repair tasks will be discussed in Section 3. Section 4 reviews the defi-
nition, classification, and usage of the mobile manipulators found across other industries
during the last 20 years for inspection and repair. Next, a mobile manipulator made of a
commercially available unmanned ground vehicle (UGV) and an industrial manipulator
for railway track inspection and repair tasks will be introduced in Section 5. The benefits
of adopting mobile manipulators for track inspection and repair will be presented in Sec-
tion 6. Then, Section 7 will discuss the challenges and requirements of the use of a mobile
manipulator for track maintenance. Finally, Section 8 will present our conclusions.

2. Current Technologies for Railway Track Maintenance

Railway asset maintenance systems range in size from carriages to hand-held devices.
These can be stationary or movable. Fixed maintenance assets are usually positioned
along the railway infrastructure network at crucial locations. They record information,
such as passing train information, and monitor track components. On the other hand,
movable devices are designed to run along the railway track in order to perform specific
tasks at a certain speed. In some cases, the movable platform can be airborne, such as
an unmanned aerial vehicle (UAV) or a helicopter. Table 1 shows the advantages and
disadvantages of several devices for use in railway track maintenance. These devices
are equipped with various types of sensors for navigation, monitoring, surveying, and
inspection. Common inspection methods used so far include visual inspection, digital
image correlation (DIC) [20] and thermal cameras [21] for rail component inspection,
laser vision sensors [22] for rail wear and track geometry assessments, laser distance
meters [23] for rail corrugation, ultrasonic sensors [24] for surface and internal defect
determination, light detection and ranging (LiDAR) [25] for track clearance and vegetation
detection, eddy currents [26] for internal rail defect inspection, electromagnetic acoustic
transducers (EMAT) [27] for surface and internal defect analysis, ground-penetrating radar
(GPR) [28] for ballast fouling and moisture assessment, interferometric synthetic aperture
radar (InSAR) [29] for track settlement, etc.

Table 1. Type of track maintenance devices and systems used in railway.

Type Main Tasks Advantages Disadvantages

Push trolley Track inspection,
carry material

Smaller in size,
easy to transport

Slow speed,
human-operated

Road-Rail Vehicle (RRV) Repair, transport material,
inspection High speed, easy to transport Costly, human-operated

Specialist trains Repair and inspection of track High speed and payload,
multiple measurements Very costly to operate

Train-borne system Track inspection, track repair Moderate cost, easy to install Limited validation
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2.1. Push-Trolley

Inspection trolleys used in railway maintenance are capable of on-track navigation
because of their rail-shaped wheels. The size of the trolley used depends on the payload
requirements. They can be used for different purposes, whether carrying materials for
maintenance or carrying people. Depending on their size and design, these simple trolleys
can carry up to 60 kg of material [30].

Inspection trolleys are typically trimmed to reduce mass and increase sensor payload
capability. They are ideal for use in ultrasonic inspection systems because of their slower
operating speed. Moreover, they are widely used for track geometry validation on short
track lengths [31]. GPS capability provides the defect location [32]. However, as humans
typically push these devices, their maximum speed is limited, and they are only suitable
for use over short distances. Figure 2 is an example of a track geometry inspection trolley.
The disadvantage of using a push-trolley for smart maintenance is that it can only carry
a limited payload before it becomes cumbersome. Moreover, it lacks the capability for
payload deployment.
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Figure 2. Track geometry inspection trolley: (a) track geometry validation trolley [31]; (b) track
geometry inspection trolley with GPS [32].

2.2. Road–Rail Vehicle

Road–rail vehicles (RRV) are a unique type of maintenance equipment with both pneu-
matic and retractable rail wheels, as shown in Figure 3. These multipurpose maintenance
machines can be used for transporting material or persons or as an inspection device with a
proper sensor attachment. The Rail Industry Safety and Standards Board (RISSB) classifies
RRVs into three main categories based on power transmission mechanism: self-powered,
friction drive and direct drive RRVs [33]. Moreover, braking power, safety procedures
during road–rail conversion and seating arrangements are also standardized by the Rail
Safety and Standard Board (RSSB) to reduce accidents and maintain safety [34].
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High-load-carrying RRVs are usually used for repair or construction tasks, while
smaller RRVs are used for inspection. For example, Unimog, shown in Figure 3a, from
Mercedes-Benz [35] can tow up to 1000 t, and has served the railway industry for a long
time. A range of instruments can be installed in to the RRVs to convert them into a mobile
asset management platform for surveying and inspecting the railway environment to assess
the condition of road–rail access points, vegetation, and track infrastructure. Figure 3b
shows a mobile asset management platform which can provide LiDAR point cloud and
images at a maximum speed of 20 mph [36]. RRVs are much faster than manual inspection
trolleys and can carry more weight, as demonstrated by Runner Wizard V2R [37]. The
localization of defects and payload deployment are still challenging and control of RRVs
remains in the hand of a human operator.

2.3. Train-Borne System

Train-borne systems are convenient for assessing the geometrical or structural prop-
erties of railways or for performing remote condition monitoring. These can be adapted
to train vehicles and do not need separate power sources. They are economically viable
and can be more efficient than the conventional track inspection method [38]. For example,
machines with vision have been used to develop a train-borne track condition monitor-
ing system based on computer vision and condition monitoring sensors for preventive
maintenance [39]. With easy-to-fit hardware, this system is capable of millimeter-level
accuracy and real-time data communications and processing software. Another example of
a train-borne system is the RILA system from Furgo [40]. This is a remote train-mounted
system combining laser scanners, computer vision, and GPS to perform unmanned remote
track surveys. These systems provide significant advantages for inspection as they are
easy to install on a running passenger or a freight train. However, the lack of actuation
capability is the most significant disadvantage of these systems.

2.4. Specialist Train

The inspection and monitoring of vast railway networks require faster inspection
methods and specialist trains. Equipped with a variety of sensors, these trains can finish
inspection tasks quickly and carry repair crews and materials. The new measurement train
(NMT) [41] and mobile maintenance train (MMT) [42] are two state-of-the-art specialist
trains, used in the UK for track inspection and repair, as shown in Figure 4.
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NMT, shown in Figure 4a, is fitted with multiple cameras, laser sensors, transducers,
and accelerometers [41]. Plain line pattern recognition (PLPR) methods [43] can detect
anomalies with the camera at a top speed of 125 mph, while the transducers and accelerom-
eters can record the track geometry. This model generates and records almost 10 terabytes
of data on an onboard computer for every 440 miles. On the other hand, MMT, shown in
Figure 4b, is a specially designed and equipped train for track maintenance tasks and has
been described as a “workshop on wheels,” providing a workplace which is from the sun,
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rain, and trains in operation [42]. Based on their design, attached sensors, and actuation
systems, specialist trains can perform inspections at a higher speed or can perform some
repair tasks. However, these specialist trains require human involvement, are costlier to
run, and reduce track possession while in operation.

3. Robotic Technologies Used in Railway Track Inspection and Maintenance

Due to their efficiency and safety reasons, robotic technologies are being gradually
adopted by the railway industry [13]. Though railway track is one of the most critical
infrastructures in railway, most RASs are developed for rolling stock maintenance. This
review will report on the state-of-the-art robotic inspection technologies for railway tracks,
tunnels, and bridges to show the trend of past research and the future need for research
into robotic maintenance technologies for railway tracks.

3.1. Robotic Inspection Technologies in Railway
3.1.1. Track Inspection

Railway track constantly degrades with use. It is subject to the enormous stresses of
the lateral and longitudinal forces from trains [44]. Environmental conditions such as heavy
rain, extreme cold, snow, scorching heat, etc., accelerate degradation. The first significant
study on the use of robotic technology for track maintenance was carried out by Trivedi
et al. The project, SysTem for Autonomous Railway TRACK operations (STAR-TRACK),
aimed to studying the feasibility of using robots in track maintenance and developing a
multi-robot autonomous track maintenance system for the high-speed Shinkansen line to
perform two specific tasks; loosening bolts after detection and assembling new fasteners
automatically [45]. Other attempts have been made to address different tasks, such as
railroad crossing inspection [46], faulty rail profile detection [47], crack detection [48], etc.
Table 2 shows a summary of different track inspection robots.

Table 2. Track inspection robots.

Type Main Function Sensing Method Key Technology and Contribution

STAR-TRACK [45] Fastener maintenance Monocular camera Multi-robot autonomous
track maintenance

Train-borne system [49] Fastener inspection TV camera Neural classifier for
fastener detection

Train-borne system [50] Fastener detection Video camera Artificial lighting source to reduce
ambiance noise

Visual inspection system for
railway (VISyR) [51] Fastener detection Camera

Computer vision and machine
learning, a maximum

speed of 200 km/h

Train-borne system [52] Fastener detection Camera Machine learning, structured
lighting condition

Manual trolley [53] Turn out and tie detection Multiple cameras Slow speed, a machine
learning algorithm

RRV [54] Track inspection Four cameras, GPS Defect location based on GPS

Train-borne system [55] Fastener detection CCD camera, GPS Machine learning for detection and
GPS for location information

Comprehensive track inspection
vehicle (CTIV) [56] Fastener detection Camera Fastener quality based on image

and machine learning algorithm

Modified truck with sensor [46] Railroad crossing inspection Camera, LiDAR
Pattern recognition, 3D point cloud

using support
vector machine (SVM)

Diagnostic analysis for railways
and trams (DART) [57] Track geometry Track measurement Computer-assisted diagnostic tool

Hand-pushed
inspection device [47] Faulty rail profile detection Multiple laser camera 3D modeling, deep learning model

for fault detection



Appl. Sci. 2023, 13, 6484 7 of 30

Table 2. Cont.

Type Main Function Sensing Method Key Technology and Contribution

Railpod [58] Track inspection Customizable based
on requirements

Easy to transport, both rail and
pneumatic wheel

Robot trolley with sensors [59] Fatigue cracks on track Alternating current field
measurement (ACFM) Automatic crack detection robot

AutoScan [48] Crack detection on track Electromagnetic acoustic
transducer (EMAT) Manipulator for inspection

RIIS1005 [22] Multiple track defects Camera, LiDAR Easy-to-assemble and -disassemble,
pattern recognition, deep learning

Felix [60] Switches and
crossings (S&C) laser Artificial vision system, wireless

data transfer

Fasteners fix the rails to the sleepers. If fasteners are missing, the stiffness of the
track is reduced. A computer vision-based approach, based on wavelet transform (WT)
and principal component analysis (PCA), was developed by Mazzeo et al. to detect
the absence of fasteners [49] using a camera, which increased detection reliability than
manual inspection. Another computer vision-based missing clip detection technique was
developed by Singh et al. using a video camera and an artificial lighting source to eliminate
the inconsistent illumination effect in image processing [50]. Marino et al. presented
a visual inspection system for railways (VISyR) to determine the presence of fasteners
using computer vision and machine learning at a maximum speed of 200 km/h [51].
Another machine learning-based fastener inspection method was proposed by Zhang et al.,
who combined unstructured and structured lighting conditions to reduce the impact of
light, vibration, and obstacles [52]. This proposed method was more reliable in practical
conditions as its training dataset was robust.

A conceptual hand-pushed cart with computer vision and a machine learning algo-
rithm was developed for turnout detection and tie detection [53], as shown in Figure 5a.
Li et al. proposed another vision-based track component inspection system that could
detect multiple components using 4 cameras with geo-location from onboard GPS, as
shown in Figure 5b [54]. Wang et al. also used machine learning and computer vision for
missing fastener detection with a high-speed charge-coupled device (CCD) camera [55].
Gibert et al. proposed a machine learning approach based on histograms of oriented gradi-
ents (HOG) and trained the model using images collected from the comprehensive track
inspection vehicle (CTIV), which could detect missing clips and classify existing clips into
different categories [56].
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track locations for potential future defects were further inspected by a human. Using
multiple laser cameras, Santur et al. created 3D modeling of the rail track in order to train
it and thus identify defects [47].

In recent years, multiple state-of-the-art robotic solutions have been developed for
track inspection, as shown in Figure 6, which are easy to transport and reduce human
involvement. Railpod, shown in Figure 6a, is an inspection platform that can perform
autonomous navigation along the track or can be controlled by remote operation. Because of
having both the pneumatic and rail wheels, it can be easily transported along the road [58].
Rowshandel et al. proposed a system consisting of a commercially available alternating
current field measurement (ACFM) sensor attached to a trolley and a robot for detecting
rolling contact fatigue cracks in rails [59], as shown in Figure 6b.
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AutoScan, a project from Horizon 2020, is another example of an autonomous robotic
inspection platform with a manipulator for close inspection, shown in Figure 6c. Initially,
rolling contact fatigue (RCF) or electromagnetic acoustic transducer (EMAT) sensors are
used to find the defect [48]. Then, the operator can use the manipulator to perform further
inspection by standing on the side of the rail. RIIS1005 is another intelligent track inspection
robot developed by Shenhao Technology, as shown in Figure 6d [22]. The combination of
deep learning, pattern recognition, and feature-matching algorithms can detect multiple
defects on rail surfaces, fasteners, ties, etc. Finally, Felix, shown in Figure 6e, an automated
inspection kart developed by Loccioni, was designed to inspect the switches and crossings
(S&C) and track with a maximum operational speed of 5 km/h [60].

3.1.2. Tunnel and Bridge Inspection

Tunnels and bridges are essential components of the infrastructure of the railway
network. The inspection of bridges poses fatal risks for the operator from ergonomics and
workplace perspectives. Tunnels are usually dark and enclosed, lacking a cellular signal
or GPS. Apart from the track inspection in the bridge and tunnel, a particular inspection
method is required to inspect structural integrity.

An unmanned aerial vehicle (UAV) can navigate in remote places both with and
without the help of a human. Jung et al. proposed a framework for autonomous bridge
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inspection using a UAV equipped with LiDAR, GPS, IMU, and a camera [61], as shown in
Figure 7a. Initially, a map of the test area was created with the help of a human operator, and
then the UAV localized and navigated between different waypoints on a predefined map
and acquired inspection data which were processed later. Wang et al. also demonstrated
automatic data acquisition for bridge bottom inspection using a tethered UAV [62], which
is shown in Figure 7b. Phillips et al. developed an autonomous bridge bottom inspection
robot with an unmanned ground vehicle (UGV) [63], as shown in Figure 7c.
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Liu et al. designed a prototype of a steel bridge inspection robot, a combination of
a rail kart and a manipulator, to discover research challenges [64]. Next, Rui Wang and
Youhei Kawamura designed and experimented with a robot with a magnetic wheel for
steel bridge inspection. Magnetic wheels provide two advantages: they can climb vertical
steel structures and create magnetic fields for sensing [65]. A specially designed robotic
system with a guide rail was proposed, which came with a user interface for controlling it
from a long distance [66].

Cracks are common in tunnel walls. Zhang et al. presented tunnel wall surface
crack detection and classification techniques based on a camera [67]. A semi-supervised
computer vision-based robotic system, named ROBO-SPECT, with multiple degree-of-
freedom was designed by Menendez et al. for use on a road tunnel [13]. As shown in
Figure 8a, with the help of a robotic arm, the robot was able to inspect the crack on the
surface wall with an ultrasonic sensor. Huang et al. used deep learning-based semantic
segmentation of images to detect cracks on the surface [68]. Moving tunnel inspection
(MTI-200a), shown in Figure 8b, was used to acquire data which were later analyzed using
a deep learning algorithm.
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3.2. Robotic Repair Technology in Railway

Inspections are important in railway asset management to verify the integrity of assets
and to prevent catastrophic failures. For example, in the UK, once a defect is detected
on the track, details of the defect are recorded in track geometry reports (TGR). Based on
the standards of Network Rail Limited (NR-L2-TRK-001-MOD11), infrastructure main-
tenance engineers (IMEs) and track maintenance engineers (TME) categorize the defects
as immediate action-level (IAL), intervention-level (IL), and alert-level (AL) faults [69].
Both IAL and IL defects require repair without delay, while AL defects can be scheduled.
Repair tasks in railways vary, including bolt or clip removing or fastening, grinding rail
surface, welding, removing obstacles, demolishing trackside vegetation, fixing overhead
electric lines, cleaning snow or leaf from the track, cleaning rolling stock, repairing rolling
stock, etc. Most repairs involve humans and specially designed tools and machines. More-
over, adverse weather conditions and out-of-hours work can create hazardous conditions.
Some tasks are physically demanding, involving heavy loads that result in the fatiguing of
railway workers, posing a risk to their health and safety. Although robots are used in many
inspection tasks around the railway network, they are rarely used in any repair task. This
section will summarize all the repair robot-related literature, despite focusing only on the
track. Even after scrutinizing the literature rigorously, very few examples of repair robots
have been found; those discovered are mostly used in cleaning tasks and are related to the
repair task of rolling stock.

The first attempt to determine the usability of robots in repair tasks was carried out
in 1987. After considering 24 technically viable processes in locomotive rebuilding, the
researchers concluded that most of the processes were neither economically beneficial nor
productive [70]. Just 2 years later, carrying out a separate study in Toronto Subway, Wier-
cienski and Leek assessed that robots are economically and technologically advantageous
for cleaning rolling stock [71].

Four types of cleaning robots were introduced by the East Japan Railway to tackle
the problem posed by the lack of cleaning staff. Among the 4 types of self-propelled
cleaning robots, 2 types were for stations, and 2 types were for rolling stock, including
dust-collector or sweeper types and floor cleaning or scrubber types [72]. Those robots were
equipped with ultrasonic sensors and laser sensors for navigation and obstacle avoidance.
Xu et al. designed and demonstrated a self-traction model for cleaning the vehicles used
for urban mass transit in China. The robot was designed with a mobile platform and a
manipulator to save energy and water. Apart from the path planning and control algorithm,
the researchers also developed an efficient energy and water management algorithm [73].
Tomiyama et al. discussed the requirements and conceptual design of a rolling stock front
cleaning robot [74], and a prototype was built to analyze the cleaning time and force applied
at the cleaning head [75].

Apart from cleaning, robots are also used for cutting, welding, grinding, or material
handling. Vale, a mining company in Brazil, developed a robot to repair the rail cars used for
the mining operation. As shown in Figure 9, the system had multiple manipulators capable
of cutting and welding carbon steel [76]. The wheelset of rolling stock, a combination
of 2 wheels with a shaft, is very heavy and requires expertise for repair. NSH USA,
formerly known as the SIMMONS Machine Tool Corporation, utilized a robot and overhead
cranes to altogether remove the human involvement in transporting wheel sets in different
workshop locations [77].
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A novel technology has been developed in Britain for in situ rail defect repair which
is both cost-effective and semi-automated. The discrete defect repair (DDR) process re-
moves the defective part of the rail head and then repairs the defective rail using semi-
automatic arc welding [78]. Finally, a milling tool was used in grinding the rail profile,
and quality has been ensured with an automatic inspection process. Figure 10a shows
the railhead repair machine, while Figure 10b–d show the intermediate process of DDR
technology, respectively.
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4. Robotic Maintenance Technology in Other Industries

Mobile manipulators represent a remarkable area of research for robotics, control, and
automation enthusiasts. A simple search in an indexing website will provide thousands of
research articles in several research areas, such as control of strategy, design, simulation,
safety, cost analysis, motion planning, navigation, perception capability, etc. To match the
objectives of this specific research, the search criteria have been narrowed down to “mobile
manipulator” and “maintenance”. After scrutinizing the search results, 74 pieces of research
have been selected which discuss the application of mobile manipulators, specifically for
inspection and repair tasks, in various fields for the last 20 years, namely from 2002 to
2022. Furthermore, after reviewing the selected literature, mobile manipulators have been
classified based on mobility features and application area.
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4.1. Overview of Mobile Manipulator Based on Mobility and Applicability

Initially, the concept of a mobile manipulator started with attaching a manipulator
with a wheeled robot. However, in many cases, the navigation capability of mobile ground
manipulators is limited. Therefore, instead of using an unmanned ground vehicle (UGV),
the use of an unmanned aerial vehicle (UAV) can extend the navigation capability of a
mobile manipulator at any height and traverse terrain. Moreover, the mobile manipulator
can operate underwater with proper design and fabrication. Apart from in the ground-, air-,
or water-based applications, mobility features are required for mobile manipulators used
in space or along overhead high-voltage power transmission lines. Based on the mobility
features, the mobile manipulator can be divided into several categories: ground, aerial,
marine, space and crawling. After analyzing all the selected mobile manipulator-related
studies for this research, they have been divided into multiple categories based on their
mobility features, as shown in Figure 11a. More than half of the mobile manipulators, 54%,
were based on a ground vehicle. In comparison, 20% and 12% had aerial navigation and
crawling navigation capability, respectively.
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As sensor and instrumentation technology continues to improve, mobile manipulators
are becoming more capable of performing many monotonous and repetitive tasks, which
might pose a risk to human health and financial penalties. For example, a mobile manipula-
tor can routinely survey and inspect nuclear reactors or perform inspection or repair at an
overhead high-voltage power transmission line. Moreover, with the correct configuration,
mobile manipulators can perform inspection and repair tasks inside and outside a pipe or
clean a window, wind turbine, cellular tower, etc. The selected publications were divided
into several categories, as shown in Figure 11b, on the basis of their area of application.

Among the selected studies, the mobile manipulator’s highest percentage (20%) was
used for inspection and repair tasks in high-voltage power transmission lines. A notable
percentage, 12% of the mobile manipulators, were used to find defects in nuclear reactor
vessels or other nuclear power plant infrastructure. Other relevant application fields
included space vehicles, surveillance, and repair of civil infrastructure and construction
sites, electric substation maintenance, teleoperation, agriculture, etc.

4.2. Mobile Manipulators for Inspection and Repair Tasks
4.2.1. Maintenance in High-Voltage Transmission Line and Substation

High-voltage power transmission lines can be hazardous and unergonomic workspaces
for a human operator because of heights and live electricity risks. Mobile manipulators
require unique moving mechanisms to navigate along power transmission lines. A semi-
autonomous teleoperated mobile manipulator was designed to inspect the aircraft warning
spheres of the overhead power transmission lines [79]. A sensor arm was designed to be
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a mobile manipulator that can move along the transmission line via sliding mechanism
and perform inspection using a high-quality camera [80]. A robotic system was designed
to inspect and repair the switch in the underground power transmission line, as shown in
Figure 12a. The designed models consisted of a vehicle with a five DoFs hydraulic arm
holding a six DoFs manipulator, a tool rack and a pneumatic tool changer [81,82].

LineScout, a teleoperated robot with a programmable pan and tilt camera, was pro-
posed for live transmission lines with a rolling wheel for obstacle avoidance [83]. Another
live transmission line inspection robot was proposed in [84] with two locomotion strategies
to provide obstacle-crossing capability. Obstacles in a power transmission line include
compression slices, vibration dampers, spacers, suspension clamps, etc., and the capability
of crossing these obstacles is a desirable feature [85]. Simulations of and experiments
using a mobile manipulator to adjust the vibration damper in the transmission line were
performed in [14]. This robot hung on the line with the arm and moved along the line with
the rolling wheel, as shown in Figure 12b.

Apart from inspecting the power transmission line, mobile manipulators can perform
various actuation and repair tasks. For example, an autonomous live-line maintenance
robot (ALMR), shown in Figure 12c, stripped and clipped wire clips on a 10 kV trans-
mission line [86]. Zhang et al. proposed a mobile manipulator with a creeping mecha-
nism that moved along horizontal and suspended insulator strings via extra-high-voltage
(EHV) lines [87].

Apart from the ground, creeping, or crawling, an aerial mobile manipulator can be
a feasible option for overhead transmission line maintenance. Aerial robots could easily
reach different heights and navigate in the air without a special kinetic or driving mecha-
nism [88,89]. POSITRON, shown in Figure 12d, was a conceptual design and simulation
for controlling the aerial mobile manipulator in a GPS-denied environment.
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A substation is an important part of electricity transmission. However, most of
the equipment in the substation is installed outdoors, which is heavily affected by the
environment and weather conditions. Research was carried out by Want et al. to find a
suitable robotic technology for performing maintenance both in the indoor and outdoor
environment [90]. Zhang et al. designed, fabricated, and experimented with a mobile
manipulator to clean and remove ice from the insulator and repair broken wires [91,92].

4.2.2. Maintenance in Nuclear Power Plants & Hazardous Places

Nuclear materials, the mining industry, or any container with radioactive material
are incredibly hazardous to humans. Short exposure may create cancerous cells, while
prolonged exposure will create severe health effects such as skin burns or radiation sickness,
leading to death. Although many protective measures are in place to minimize exposure, a
remote mobile manipulator is the ultimate form of protection.

A wheeled mobile manipulator, called radiation protection assistant robot (RPAR-I),
was designed for surveillance and monitoring of radioactive material [15] with a camera
for safe navigation and this was controlled remotely to protect the worker from exposing
themselves to radiation. Figure 13a shows 4 DoF manipulators attached to a 2-wheel drive
robot base. Instead of teleoperation, many researchers took a dual approach to design
the control system, considering both autonomous and remote-controlled modes [93–95].
A semi-autonomous system, CERNbot [94], was designed with few predefined standard
operating procedures, as shown in Figure 13b. CERNbot used an autonomous mode for
inspection and navigation and an operator-friendly human–machine interface (HMI) for
teleoperation. As all these robots had teleoperation capability, these robots were also
equipped with computer vision systems and had data transfer capabilities.

The multifunctional inspection and rescue robot (MIRR) was engineered to execute
inspection, maintenance, and rescue operations, such as the remote handling (RH) system
in the tokamak fusion facility [96]. Equipped with two manipulators, operation robot
arm (ORA) and inspection robot arm (IRA), on an omnidirectional mobile vehicle (OMV),
MIRR navigated in a narrow space by avoiding multiple obstacles and performing different
tasks. Another omnidirectional mobile manipulator was MIRA SPS, which detected and
navigated through a narrow passage in a semi-structured environment by leveraging a
computer vision strategy [97].

In many cases, manipulation was required underwater [98], in the air [99], or inside a
steam generator [100]. For example, the underwater mobile manipulators designed in [98]
detected and removed unwanted objects from the bottom of nuclear reactor vessels. In
contrast, the lightweight aerial mobile manipulator proposed in [99] was experimented
with for accessing hard-to-reach and hazardous locations. The aerial mobile manipulator
was equipped with a manipulator and deposited material through a small-scale extruder
to repair a crack, as shown in Figure 13c.
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4.2.3. Maintenance in Aerospace

The aerospace industry deals with aircraft and spacecraft for space. Workspaces and
environments are different in the aerospace industry, which requires motion and navigation
capability in the air with or without gravitational force. For example, ground, aerial, or
underwater navigation systems are not usable in space because of the lack of gravitational
force. Hence, researchers developed free-flying or free-floating mobility features for mobile
space manipulators [101,102]. The dual-arm free-flying space robotic system (DAFSAR),
shown in Figure 14a, can estimate the target object’s pose, self-dock onto the host, and
perform robotic maintenance.
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To increase the repair capability and real-time on-orbit assessment, researchers from
the United States Naval Academy designed a mobile manipulator called Autonomous
Mobile On-orbit Diagnostic System (AMODS), which was a combination of multiple
CubeSat (Cube shaped Satellite) with 7 DoFs manipulator [103]. This robotic system
consisted of two satellite systems, one for repair (RSat) and one for navigation (BRICSat),
as shown in Figure 14b.

The control system of a space mobile manipulator requires special attention as a free-
floating mobile base, disturbance from the host spacecraft, and end-effector motion can
affect the pose of the whole robot. A coordinated control system considering the attitude of
the base robot and the motion of the dual arm manipulator system was investigated [104].
Alternatively, Dongming et al. discussed an impedance-based control system by designing
the end-effector motion as a mass damper-spring system for target grabbing [105]. Another
impedance-based control system was investigated for the docking of the robot onto the
spacecraft [106]. Teleoperation or virtual reality (VR) controllers were used for control
system for space mobile manipulators [107,108].

4.2.4. Maintenance in Civil and Construction Sites

Civil infrastructures such as buildings, roads, bridges, etc., require scheduled inspec-
tion and repair to ensure their asset life, safety, and user comfort. Inspection and repair
technology for civil and construction infrastructure requires human involvement. Although
robots have been used in civil infrastructure since the early 2000s [16,109,110], they have
mostly been used for inspections, but not to perform any repair work. The earliest mobile
manipulator with repair capability found in this review was published in 2013. In this
work, Liu et al. demonstrated a mobile manipulator for dry friction-based drilling for
bridge deck repair tasks [111].

Nguyen et al. designed a civil infrastructure inspection and evaluation with a mobile
manipulator with a combination of computer vision and thermal camera technologies for
detection, shown in Figure 15 [112]. Apart from a ground-based system, an aerial mobile
manipulator can be used for civil infrastructure inspection and repair, as many places are
hard-to-reach with a wheeled robot. Therefore, collaborative aerial mobile manipulators
were proposed, in which one can detect cracks using artificial intelligence, and the other
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can localize and repair cracks by depositing material [113]. Usually, commercially available
drones and UAVs can only carry a light payload, typically one of less than 1 kg. However,
repair work in civil infrastructure regularly requires a larger payload capacity. To solve this
issue, research was carried out to design and fabricate an aerial manipulator with a coaxial
tri-rotor arrangement capable of carrying a high payload [114].
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4.2.5. Application of Mobile Manipulator in Agriculture

The world population continues to increase, but cultivatable land and the workforce
are decreasing [115]. Food production methods demand exact and efficient robotic solutions.
Examples include a dredger robot that can perform maintenance tasks such as removing
debris, weeds, and sediments [116].

Mobile manipulators can assist and even replace humans in labor-intensive fruit or
vegetable picking. To succeed, they should be able to locate the plant, determine the
ripeness of fruits, navigate autonomously, and pick the fruits or vegetables without damag-
ing them [117–120]. As shown in Figure 16a, most of these mobile manipulators are made
of ground-based mobile-base robots equipped with a vision system for fruit detection [119].
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Figure 16. Mobile manipulator for agricultural application: (a) strawberry picking robot [117]; (b) pest
detection and spraying robot for a greenhouse [15].

Another complex task conducted by mobile manipulators is detecting weeds and
spraying pesticides while navigating the traversal of terrain. Vineet et al. proposed a
pesticide-spraying robot with a skid-steering mobile manipulator [121]. Tracked wheels
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with skid-steering mechanisms were used instead of pneumatic wheels, as tracked wheels
improved the navigation capability on deformable terrain. Martin et al. demonstrated a
mobile manipulator with a robot operating system (ROS), shown in Figure 16b, fitted with
multiple sensors (RGB camera, RGB-D camera, GNSS, IMU, LiDAR, and laser scanner) on
a Segway RMP Omni Flex mobile robot [122,123] with mecanum wheels for pest detection
and spraying inside a greenhouse [17].

4.2.6. Other Applications of Mobile Manipulators

Mobile manipulation is an issue of particular importance. Industry 4.0 uses modern
technologies such as automation, digitalization, cyber–physical systems, and artificial intel-
ligence to increase efficiency and productivity, while Industry 5.0 is planning to push the
limit of modern technologies to create a human-centric industrial model with increased
human–robot collaboration to increase resilience and sustainability. With dexterity and
mobility features, mobile manipulators can help industries to achieve future demands by
introducing Industry 5.0. Conceptual designs of mobile manipulators to assist helping
humans in the industry surfaced in the research community in early 2000 [124,125]. Var-
ious companies offer commercially available mobile manipulator platforms that can be
reprogrammed for various use cases [126,127]. As their versatility, accuracy, and environ-
ment perception improve alongside collaboration capacity, the areas of application are also
expanding. Table 3 illustrates some of the diverse applications of mobile manipulators.

Table 3. Different areas of application for mobile manipulators.

Application Base Robot Sensing Method Key Technology and Contribution

5G tower maintenance [128] Aerial Camera
Tower inspection and repair, a

study of manipulator stability with
wind disturbance

Aerial drilling and screwing [129] Aerial Camera An adaptive robust control system,
real-time object detection

Outdoor maintenance in industry [130] Aerial LiDAR, stereo
camera, GNSS Multidirectional thrust controller

Cooperative payload delivery [131] Aerial RGB-D camera Heavy load control, learning-based
planning for aerial cooperation

Lifting bars for assembly [132] Aerial External motion
capture system

Multidirectional thrust
control flying

Window cleaning of building [133] Magnetic climbing Force sensors Elastic actuators, passive
obstacle avoidance

Archive room patrolling [134] Ground Infrared camera, laser Storage basket, monitor
abnormal temperature

Assembly task of space telescope [135] Ground Two cameras Stretchable manipulator,
assembly in space

Indoor sign inspection [136] Ground Camera Scissor mechanism for manipulator

Dual robot payload delivery [137] Ground Multiple cameras Extended payload
carrying capability

Penstock inspection [138] Ground Camera, laser Wall climbing capability

Water distribution pipe maintenance [139] Ground Four cameras
Navigation inside a pipe,

contamination less rehabilitation
(CLR) of pipe
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Table 3. Cont.

Application Base Robot Sensing Method Key Technology and Contribution

Garbage collection and sorting [140] Ground RGB-D camera Deep learning for garbage
type identification

Bomb disposal [141] Ground Two cameras Teleoperation

Hydraulic manipulator for
undersea environments [142] Underwater Multiple cameras Deep underwater operation

Transformable autonomous
underwater vehicle [143] Underwater Camera

Control system similar to
spaceflight, user in the loop over

low-data transmission

Seabed inspection, repair [144] Underwater Camera
Free-floating actuation, a

convolutional neural network for
object recognition

5. Case Study

To examine the feasibility of mobile manipulators for railway track maintenance
tasks, a robotic inspection and repair system (RIRS) has been developed by Cranfield
University in conjunction with Network Rail Limited, UK. RIRS combines rail trolley,
warthog UGV, and UR10e. These can navigate both off-track and on-track, as shown in
Figure 17. Although the conversion between off-track and on-track navigation is performed
manually, this is a unique capability of RIRS, which changes the kinematics of the whole
system [145]. Moreover, different navigation strategies are required for off-track and
on-track navigation [146].
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Figure 17. Railway inspection and repair system (RIRS) in two different operational modes; (a) off-
track navigation mode and (b) on-track navigation mode.

RIRS has multiple sensors such as IMU, wheel encoder, PTZ environment camera,
monocular wrist camera, RGB-D camera, LiDAR, and RTK-GPS. Table 4 lists the sensors
and functions of RIRS. The monocular camera, attached to the manipulator end, can de-
tect a range of defects. The manipulator enables it to inspect from different perspectives,
providing comprehensive defect information. Combining the features from ROS, a UR10e
industrial manipulator, and a monocular camera, RIRS can repeatedly and precisely in-
spect for defects [147]. The manipulator has a payload capacity of up to 10 kg, but the
Warthog UGV has a higher capacity of 250 kg. Because of this, a RIRS can be equipped
with additional auxiliary devices, such as ultrasonic track inspection instruments [148] or
repair tools.
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Table 4. Purpose of different sensors in RIRS.

Sensor Purpose in RIRS

IMU Localization and navigation

Wheel encoder Localization and navigation

PTZ environment camera Environment awareness

GPS Localization, navigation, referencing defect position

Monocular camera Defect detection, close inspection of defect

RGB-D camera Defect detection, obstacle avoidance

LiDAR 3D perception of surroundings, obstacle avoidance

Multiple experiments were conducted in the Northampton and Lamport Heritage
Railway facilities to demonstrate the command-and-control system of RIRS and find the
operational challenges for autonomous systems in the railway environment. Successful
results showed the capability of RIRS in static and dynamic obstacle avoidance, short-range
and long-range navigation, defect detection, and repair actuation. Furthermore, the testing
facility provided standard gauge operational railway environments. Hence, a technology
readiness level (TRL) of −7 [149] was achieved after successful experiments.

Moreover, as a mobile manipulator, RIRS can provide many flexibilities and cost–
benefits in railway track maintenance. The attached RGB-D camera can provide 3D image
of the target object, but it fails to capture information from the side and back of the object
(Figure 18a). A 3D reconstruction method has been proposed and demonstrated with RIRS
and sensor fusion technology to improve the track inspection technique as the reconstructed
3D model (Figure 18b) provides more dimensional and textural information than RGB-D
camera output (Figure 18a) [150]. Additionally, the 3D reconstructed model can be fused
with depth camera to provide better robot perception, with the LiDAR point cloud for
environmental sensing and GPS data for geo-location.
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Though there are some industrial 3D imaging solutions such as Zivid 2 [151], they
are more expensive than monocular cameras. The method proposed in [150] was a cost-
effective solution as it created 3D model of the target object using a monocular camera
and open source structure-from-motion (SfM) technique [152]. Moreover, because of the
flexibility of the overall method, this technique can be used for creating digital model of the
railway track without human involvement, as shown in Figure 18c, which can be beneficial
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for creating a digital twin of railway tracks, performing digital surveys or creating railway
datasets for machine learning algorithms.

6. Benefits of Using a Mobile Manipulator for Railway Track Maintenance

(a) Environmentally friendly and sustainability

Current maintenance techniques in railways are heavily dependent on humans, a fact
which poses severe health and life risks. This dependency on humans also reduces the
efficiency of the rail network. Train services are greener means of public transportation
compared to other public transportations system. For example, modern Eurostar rail only
emits 6 g of CO2 per passenger per kilometer (pppk), which is almost zero and insignificant
compared to other transport systems such as small and medium petrol cars, which emit 96 g
and 192 g CO2 pppk, respectively [153]. Adopting train services for public transport will
contribute towards the sustainable development goals (SDG) by reducing carbon footprint.
However, delays and cancellations of trains impact customer satisfaction negatively and
discourage users. In the UK, 3.3% of the train services were canceled, whereas 10.7%
were delayed by at least 3 min during 2021–2022 Q4 [154]. Of these, almost 17% of delays
could be attributed to track faults [155]. Therefore, timely track maintenance is essential to
maximize the availability of railway networks. A flexible mobile manipulator system with
inspection and repair capability, capable of working out of hours and in adverse weather
conditions, could provide a considerable positive impact.

(b) Efficiency and productivity

Mobile manipulators are gaining more flexibility and productivity features. Robots
are well known for their accuracy and repeatability in many industries. For decades,
industrial manipulators have been performing many challenging and repetitive tasks, such
as welding in the automotive industry. The same benefits could be available for railway
track maintenance if using the correct designs and control strategy. As the manufacturing
cost of robots has been reduced gradually [156], some hardware features, such as water
and dust resistance, are becoming easy to achieve. Hence, the design and fabrication of
outdoor mobile manipulators are becoming more feasible. Moreover, manipulators are
now capable of carrying very high payloads. For example, ABB has multiple models of
industrial manipulators which can carry more than 200 kg payload [157]. As many railway
maintenance tasks require a high payload, these manipulators can perform railway track
repair tasks.

(c) Financial impact

The financial benefits of robots and automation have already been demonstrated for
other industries. A cable-driven construction robot can save more than EUR 1.2 million in
5 years after considering the cost–benefit analysis with the labor [18]. Furthermore, after
considering 10 robots working in 12 different construction sites, researchers concluded that
robots save 13% on cost while increasing quality by almost 50% [19]. A whole life-cycle
cost model showed that an autonomous robotic tunnel inspection system can save 81%
of labor costs and reduce 8700 h of inspection time annually [158]. Another study on
tunnel inspection concluded that inspection based on photogrammetry could reduce the
cost and data acquisition time to one-fifth, which will directly impact safety costs and
conditions [159]. These examples show that railway infrastructure owners will benefit from
using mobile manipulators for railway track inspection and repair tasks which will reduce
human involvement. With adequately equipped inspection sensors, mobile manipulators
can inspect the railway track autonomously. Moreover, they can perform some repair tasks
autonomously, assist humans in repair tasks, and ensure information flow in different steps
of digital asset management system.

(d) Asset utilization

Currently, many railway asset management companies use state-of-the-art railway
track monitoring devices. New measurement train (NMT) is a track monitoring train
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deployed by Network Rail Limited. This is very costly to operate and needs many crews
per shift to collect, analyze and verify recorded data [41]. Because of the size (Figure 4a),
NMTs are unable to locate defects in a short range, which is essential for the planning of
repair tasks. Besides, these track monitoring trains can only perform inspection. Moreover,
other trains are not allowed to use the same track during the inspection, which increases
track possession and reduces asset utilization. Human intervention is required for instant
inspection, defect verification, and performing repair tasks. The forecasted increased
demand for railway usage requires more frequent passenger and freight trains. More
frequent track maintenance will be needed with this increased track usage. This is a
dilemma and challenge for the railway track maintenance companies to ensure the optimum
utilization of the assets. A fleet of mobile manipulators can assist humans in frequent and
instant inspection and repair tasks, reducing track downtime and possession.

(e) Safety of workforce

Although many modern inspection technologies perform track inspection tasks in
railways, confirmation, sizing, and criticality classification are often performed by human
operators. Weather conditions, tiredness, monotony, etc., can negatively affect inspection
results and the quality of repairs completed by a human operator. According to rail safety
statistics, there were 3978 workforce physical injuries and 806 workforce shock and trauma
incidents on the main line from March 2021 to April 2022 [155], accounting for 20 million
pound cost for the companies [160]. A reduction in the number of injuries could be expected
if robots could undertake those high-risk maintenance activities.

(f) Connectivity

As 5G and cellular technologies become more robust, a fleet of connected mobile
manipulators is becoming feasible. These connected mobile manipulators could securely
communicate with the central command and control center. Upon receipt of a task com-
mand, a mobile manipulator could autonomously navigate to the designated intervention
or possession area.

7. Challenges and Requirements
7.1. Challenges for a Mobile Manipulator for Track Maintenance

The mobile manipulator has a lot of potential uses in railway track maintenance.
However, it has to overcome some challenges before successful deployment. These chal-
lenges arise from the railway track structure and maintenance systems, communication
and localization methods, power, and weather conditions.

(a) Track structure and access points—Railway track surface condition is different than
road or industrial setup. The railway track is an uneven terrain. Moreover, the
workspace for the robot is limited inside the tunnel or bridge. Additionally, as the
mobile manipulator cannot stay on track after finishing the tasks, it will need access
points to use the track. Railway infrastructure such as platform, trackside furni-
ture, overhead line equipment (OLE), and leftover material may cause navigational
problems for autonomous robots [161].

(b) Communication—Other challenges come from the communication perspective. Com-
munication between the control or operation center and the mobile manipulator is
required. With the advancement of teleoperation, human skills can be transferred to
robots. However, stable communication between the human operator and the robot
is a must in this scenario. Moreover, in the case of a fleet of robots, communication
among mobile manipulators is required for safety and task collaboration. As railway
track passes through mountains, forests, or remote locations, there is a lack of signal
or weak signal along the track.

(c) Location awareness—Localization of the robot is essential for defect location referenc-
ing and for re-locating the defect for repair tasks. Due to the remoteness of the track,
overhead line equipment (OLE), nearby buildings, or dense forest interfere with the
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GPS signals. Additionally, tunnels are GPS-denied areas. Hence, in many places, the
GPS positioning accuracy will be very low, or there will be no GPS signal.

(d) Power—Most of the mobile manipulators are battery-powered, which is convenient.
The mobile manipulator will need powerful batteries to perform many repair tasks,
such as welding, grinding, drilling, and lifting heavy payloads. However, powerful
batteries will increase the weight of the mobile robot and reduce the usable space on
the robot. Although internal combustion (IC) engines can provide power instead of
batteries, this is not feasible from an environmental perspective. Thus, power capacity
and management are still challenging for mobile manipulators.

(e) Data budget and management—The mobile manipulator will record sensor output
for inspection. Depending on the control architecture, the mobile manipulator will
analyze those data in real-time or save those for future usage. The data budget
analyzes and estimates the requirements of data storage capacity and computational
cost based on the sensor output. On the other hand, data management determines
which data to store for future usage, the computation requirement for onboard data
processing, and the data transfer process between the robot and the primary control
system. As a portable machine, the mobile manipulator has limitations in processing
large quantities of data, while the lack of internet connectivity in many places along
the railway track will hinder the data transfer process.

7.2. Requirements of a Mobile Manipulator for Track Maintenance

As railway infrastructure is becoming smarter, robotic technologies are being gradually
deployed. Mobile manipulators are particularly advantageous for use in inspection and
repair. Based on the use case mentioned in Section 5 and the benefits mentioned in this
section, mobile manipulators specifications for railway track maintenance include:

(a) Reduced track possession—Track possession is important to maintain the safety of
the maintenance people. Usually, total possession time is the sum of 3 times: time
from last train to start of work, work in progress time, and time from end of work to
the first train. In the UK, the average time for the last train to start work was around
50 min and 20 min for AC-electrified and non-electrified routes, respectively [162].
Moreover, the end of work to the first train passing time was calculated as 25 min for
AC-electrified routes and 100 min for non-electrified routes. Additionally, a minimum
safety distance of 2 m is maintained between the staff and train in case of parallel
tracks [162]. To ensure financial benefits and maximize asset utilization, mobile
manipulators should have reduced track possession.

(b) Safety and security—With the advancement of Industry 5.0, the collaboration between
robots and humans is increasing gradually. Safety aspects of a robotic system should
integrate both the autonomous and collaboration modes. Robotic systems should
be capable of identifying static objects, dynamic objects, humans, or animals visible
inside the workspace. Robotic systems should avoid any collision with objects. Lack
of safety measures in robotic systems can cause fatalities in the workplace [163].
Security in a robotic system ensures that the environment does not create any harm to
the robot or robot operation. Cybersecurity measures such as the security layer and
authenticity of data communication are required to minimize the risk of hijacking or
cyberattacks. Identifying the hazard; assuring safe design, safe operation, hazardous
failure management; and verifying action are important tasks for any autonomous
system working in complex environments [164].

(c) Design for maintenance—Design for maintenance is a guideline to enhance the main-
tainability, reliability, and supportability of a product to ensure maintenance of the
product at less expense, less time, and less effort [165]. The mobile manipulator used
for track maintenance will require regular maintenance such as sensor calibration,
battery condition monitoring, links, and joint integrity. Easy maintainability will keep
the robot ready for the next repair job and extend the life of the robot. Design for
maintenance is also important to achieve overall cost-effectiveness [165].
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(d) Task verification capability—finally, the mobile manipulator should be equipped with
a task verification system. This will certify that the successful task completion is
compliant with the railway’s standards. This verification system will also capture any
repair faults and save trains from any catastrophic accidents.

(e) Using intelligence: Robots are becoming smarter gradually in terms of perception,
object detection and control system with the usage of machine learning (ML), deep
learning (DL) and artificial intelligence (AI). Although ML is used in many inspection
tasks [46,51–56], more research is needed to ensure smart and intelligent robotic main-
tenance. Usage of ML, DL, AI can improve the efficiency of perception to differentiate
between railway and foreign objects, detect humans, and identify faults. Moreover,
robotic intelligence can improve the decision-making ability of control systems. Hence,
the usage of robotic or machine intelligence is required in the future robots.

(f) Legal and regulatory requirements: Railway is a highly regulated industry. As railway
carries more people and freight than other mass transportation systems, policy makers
give maximum priority to safety. For example, RSSB [166] and Network Rail [167]
develop, modify, and maintain standards in all aspects including the detail design
of rolling stock, railway infrastructures, safety standards, driving and controlling
methods, maintenance procedures, engineering acceptance, etc.

8. Conclusions

Railway is an environmentally friendly, safe, and reliable public transport system. The
track is the most critical part of a railway asset management system, which requires rigorous
maintenance to ensure a safe and comfortable travel experience. The railways are older
than the automotive or aerospace industries yet do not use modern robotic technologies in
a widespread fashion. As the demand for trains is increasing, more attention is required
to upgrade current maintenance technologies using robotic and autonomous solutions.
Although a small number of railways robots have been developed, the vast majority do not
have manipulation capability and only focus on inspection tasks without repair capability.

The feasibility and benefits of using mobile manipulators for maintenance tasks across
various industries have been found throughout extensive research in the past few decades.
An extensive literature review has classified mobile manipulators into different categories
based on the base robot type and application areas. Although most mobile manipulators
are based on ground robots, researchers are looking into other types of base robots, such as
aerial, underwater, etc. The high-voltage power transmission line is the most significant
area of application for application of mobile manipulator. However, mobile manipulator
usage is increasing across the nuclear reactor, aerospace, agriculture, and construction fields.

With adequate design, instrumentation, computational algorithms, and workflow frame-
works, the usability and benefits of mobile manipulators can be successfully adopted in the
railway track maintenance activities. Previous studies have proved the economic and safety
benefits of modern robotic technologies in different applications in railway [48,71,158,159].
Hence, the usage of intelligent mobile manipulators for track maintenance will provide
robust, reliable, and greener support for a mass transportation system which can increase
human safety and asset digitalization.

Nonetheless, improved navigation methods in GPS-denied areas and local data storage
capabilities are required to achieve deployment in remote areas. Additionally, safety
and security measures are demanded for successful operation. Moreover, the design
of maintenance is a desirable criterion for cost optimization. Finally, the hardware and
software of robots should be capable of verifying the completed task by following the
railway standard.

Most of the current mobile manipulators are not designed to consider railway appli-
cations. Hence, more research is required in the future to design and fabricate railway-
compatible mobile manipulators. Furthermore, as many of the railway sites lack good
signal for data transfer-, teleoperation-, and mixed reality (MR)-based mobile manipula-
tion in railway track environment can be potential future research. Besides, railway track
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maintenance requires different types of tools. Thus, self-reconfigurable end-of-arm tools
constitute another research prospect in the field of mobile manipulators.
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