90 research outputs found

    Detecting Parkinson's Disease with Sustained Phonation and Speech Signals using Machine Learning Techniques

    Get PDF
    International audienceThis study investigates the processing of voice signals for detecting Parkinson's disease. This disease is one of the neurological disorders that affect people in the world most. The approach evaluates the use of eighteen feature extraction techniques and four machine learning methods to classify data obtained from sustained phonation and speech tasks. Phonation relates to the vowel /a/ voicing task and speech to the pronunciation of a short sentence in Lithuanian language. The audio tasks were recorded using two microphone channels from acoustic cardioid (AC) and a smartphone (SP), thus allowing to evaluate the performance for different types of microphones. Five metrics were employed to analyze the classification performance: Equal Error Rate (EER) and Area Under Curve (AUC) measures from Detection Error Tradeoff (DET) and Receiver Operating Characteristic curves, Accuracy, Specificity, and Sensitivity. We compare this approach with other approaches that use the same data set. We show that the task of phonation was more efficient than speech tasks in the detection of disease. The best performance for the AC channel achieved an accuracy of 94.55%, AUC 0.87, and EER 19.01%. When using the SP channel, we have achieved an accuracy of 92.94%, AUC 0.92, and EER 14.15%

    Factor Analysis of Speech Signal for Parkinson’s Disease Prediction using Support Vector Machine

    Get PDF
    Abstract—Speech signal can be used as marker for identification of Parkinson’s disease. It is neurological disorder which is progressive in nature mainly effect the people in old age. Identification of relevant discriminant features from speech signal has been a challenge in this area. In this paper, factor analysis method is used to select distinguishing features from a set of features. These selected features are more effective for detection of the PD. From an empirical study on existing dataset and a generated dataset, it was found that the jitter, shimmer variants and noise to harmonic ratio are dominant features in detecting PD. Further, these features are employed in support vector machine for classifying PD from healthy subjects. This method provides an average accuracy of 85 % with sensitivity and specificity of about 86% and 84%. Important outcome of this study is that sustained vowels phonation captures distinguishing information for analysis and detection of PD

    Assessing Parkinson’s Disease at Scale Using Telephone-Recorded Speech:Insights from the Parkinson’s Voice Initiative

    Get PDF
    Numerous studies have reported on the high accuracy of using voice tasks for the remote detection and monitoring of Parkinson’s Disease (PD). Most of these studies, however, report findings on a small number of voice recordings, often collected under acoustically controlled conditions, and therefore cannot scale at large without specialized equipment. In this study, we aimed to evaluate the potential of using voice as a population-based PD screening tool in resource-constrained settings. Using the standard telephone network, we processed 11,942 sustained vowel /a/ phonations from a US-English cohort comprising 1078 PD and 5453 control participants. We characterized each phonation using 304 dysphonia measures to quantify a range of vocal impairments. Given that this is a highly unbalanced problem, we used the following strategy: we selected a balanced subset (n = 3000 samples) for training and testing using 10-fold cross-validation (CV), and the remaining (unbalanced held-out dataset, n = 8942) samples for further model validation. Using robust feature selection methods we selected 27 dysphonia measures to present into a radial-basis-function support vector machine and demonstrated differentiation of PD participants from controls with 67.43% sensitivity and 67.25% specificity. These findings could help pave the way forward toward the development of an inexpensive, remote, and reliable diagnostic support tool for PD using voice as a digital biomarker

    A Review of the Assessment Methods of Voice Disorders in the Context of Parkinson's Disease

    Get PDF
    In recent years, a significant progress in the field of research dedicated to the treatment of disabilities has been witnessed. This is particularly true for neurological diseases, which generally influence the system that controls the execution of learned motor patterns. In addition to its importance for communication with the outside world and interaction with others, the voice is a reflection of our personality, moods and emotions. It is a way to provide information on health status, shape, intentions, age and even the social environment. It is also a working tool for many, but an important element of life for all. Patients with Parkinson’s disease (PD) are numerous and they suffer from hypokinetic dysarthria, which is manifested in all aspects of speech production: respiration, phonation, articulation, nasalization and prosody. This paper provides a review of the methods of the assessment of speech disorders in the context of PD and also discusses the limitations

    Diagnosis of Parkinson's Disease Based on Voice Signals Using SHAP and Hard Voting Ensemble Method

    Full text link
    Background and Objective: Parkinson's disease (PD) is the second most common progressive neurological condition after Alzheimer's, characterized by motor and non-motor symptoms. Developing a method to diagnose the condition in its beginning phases is essential because of the significant number of individuals afflicting with this illness. PD is typically identified using motor symptoms or other Neuroimaging techniques, such as DATSCAN and SPECT. These methods are expensive, time-consuming, and unavailable to the general public; furthermore, they are not very accurate. These constraints encouraged us to develop a novel technique using SHAP and Hard Voting Ensemble Method based on voice signals. Methods: In this article, we used Pearson Correlation Coefficients to understand the relationship between input features and the output, and finally, input features with high correlation were selected. These selected features were classified by the Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), Gradient Boosting, and Bagging. Moreover, the Hard Voting Ensemble Method was determined based on the performance of the four classifiers. At the final stage, we proposed Shapley Additive exPlanations (SHAP) to rank the features according to their significance in diagnosing Parkinson's disease. Results and Conclusion: The proposed method achieved 85.42% accuracy, 84.94% F1-score, 86.77% precision, 87.62% specificity, and 83.20% sensitivity. The study's findings demonstrated that the proposed method outperformed state-of-the-art approaches and can assist physicians in diagnosing Parkinson's cases

    Novel speech signal processing algorithms for high-accuracy classification of Parkinson's disease

    Get PDF
    There has been considerable recent research into the connection between Parkinson's disease (PD) and speech impairment. Recently, a wide range of speech signal processing algorithms (dysphonia measures) aiming to predict PD symptom severity using speech signals have been introduced. In this paper, we test how accurately these novel algorithms can be used to discriminate PD subjects from healthy controls. In total, we compute 132 dysphonia measures from sustained vowels. Then, we select four parsimonious subsets of these dysphonia measures using four feature selection algorithms, and map these feature subsets to a binary classification response using two statistical classifiers: random forests and support vector machines. We use an existing database consisting of 263 samples from 43 subjects, and demonstrate that these new dysphonia measures can outperform state-of-the-art results, reaching almost 99% overall classification accuracy using only ten dysphonia features. We find that some of the recently proposed dysphonia measures complement existing algorithms in maximizing the ability of the classifiers to discriminate healthy controls from PD subjects. We see these results as an important step toward noninvasive diagnostic decision support in PD

    Intelligent IoT Framework for Indoor Healthcare Monitoring of Parkinson's Disease Patient

    Get PDF
    Parkinson’s disease is associated with high treatment costs, primarily attributed to the needs of hospitalization and frequent care services. A study reveals annual per-person healthcare costs for Parkinson’s patients to be 21,482,withanadditional29,695 burden to society. Due to the high stakes and rapidly rising Parkinson’s patients’ count, it is imperative to introduce intelligent monitoring and analysis systems. In this paper, an Internet of Things (IoT) based framework is proposed to enable remote monitoring, administration, and analysis of patient’s conditions in a typical indoor environment. The proposed infrastructure offers both static and dynamic routing, along with delay analysis and priority enabled communications. The scheme also introduces machine learning techniques to detect the progression of Parkinson’s over six months using auditory inputs. The proposed IoT infrastructure and machine learning algorithm are thoroughly evaluated and a detailed analysis is performed. The results show that the proposed scheme offers efficient communication scheduling, facilitating a high number of users with low latency. The proposed machine learning scheme also outperforms state-of-the-art techniques in accurately predicting the Parkinson’s progression

    Developing a large scale population screening tool for the assessment of Parkinson's disease using telephone-quality voice

    Get PDF
    Recent studies have demonstrated that analysis of laboratory-quality voice recordings can be used to accurately differentiate people diagnosed with Parkinson's disease (PD) from healthy controls (HC). These findings could help facilitate the development of remote screening and monitoring tools for PD. In this study, we analyzed 2759 telephone-quality voice recordings from 1483 PD and 15321 recordings from 8300 HC participants. To account for variations in phonetic backgrounds, we acquired data from seven countries. We developed a statistical framework for analyzing voice, whereby we computed 307 dysphonia measures that quantify different properties of voice impairment, such as, breathiness, roughness, monopitch, hoarse voice quality, and exaggerated vocal tremor. We used feature selection algorithms to identify robust parsimonious feature subsets, which were used in combination with a Random Forests (RF) classifier to accurately distinguish PD from HC. The best 10-fold cross-validation performance was obtained using Gram-Schmidt Orthogonalization (GSO) and RF, leading to mean sensitivity of 64.90% (standard deviation, SD 2.90%) and mean specificity of 67.96% (SD 2.90%). This large-scale study is a step forward towards assessing the development of a reliable, cost-effective and practical clinical decision support tool for screening the population at large for PD using telephone-quality voice.Comment: 43 pages, 5 figures, 6 table

    An algorithm for Parkinson's disease speech classification based on isolated words analysis

    Get PDF
    Introduction Automatic assessment of speech impairment is a cutting edge topic in Parkinson's disease (PD). Language disorders are known to occur several years earlier than typical motor symptoms, thus speech analysis may contribute to the early diagnosis of the disease. Moreover, the remote monitoring of dysphonia could allow achieving an effective follow-up of PD clinical condition, possibly performed in the home environment. Methods In this work, we performed a multi-level analysis, progressively combining features extracted from the entire signal, the voiced segments, and the on-set/off-set regions, leading to a total number of 126 features. Furthermore, we compared the performance of early and late feature fusion schemes, aiming to identify the best model configuration and taking advantage of having 25 isolated words pronounced by each subject. We employed data from the PC-GITA database (50 healthy controls and 50 PD patients) for validation and testing. Results We implemented an optimized k-Nearest Neighbours model for the binary classification of PD patients versus healthy controls. We achieved an accuracy of 99.4% in 10-fold cross-validation and 94.3% in testing on the PC-GITA database (average value of male and female subjects). Conclusion The promising performance yielded by our model confirms the feasibility of automatic assessment of PD using voice recordings. Moreover, a post-hoc analysis of the most relevant features discloses the option of voice processing using a simple smartphone application

    Diagnosis of Parkinson’s Disease using Fuzzy C-Means Clustering and Pattern Recognition

    Get PDF
    Parkinson’s disease (PD) is a global public health problem of enormous dimension. In this study, we aimed to discriminate between healthy people and people with Parkinson’s disease (PD). Various studies revealed, that voice is one of the earliest indicator of PD, and for that reason, Parkinson dataset that contains biomedical voice of human is used. The main goal of this paper is to automatically detect whether the speech/voice of a person is affected by PD. We examined the performance of fuzzy c-means (FCM) clustering and pattern recognition methods on Parkinson’s disease dataset. The first method has the main aim to distinguish performance between two classes, when trying to differentiate between normal speaking persons and speakers with PD. This method could greatly be improved by classifying data first and then testing new data using these two patterns. Thus, second method used here is pattern recognition. The experimental results have demonstrated that the combination of the fuzzy c-means method and pattern recognition obtained promising results for the classification of PD
    • 

    corecore