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Abstract (max 200 words): Numerous studies have reported high accuracy using voice tasks for 9 

remote detection and monitoring of Parkinson’s Disease (PD). Most of these studies, however, re- 10 

port findings on a small number of voice recordings, often collected under acoustically controlled 11 

conditions and therefore cannot scale at large. In this study, we aimed to evaluate the potential of 12 

using voice as a population-based PD screening tool in resource-constrained settings. Using the 13 

standard telephone network, we processed 11942 sustained vowel /a/ phonations from a US-English 14 

cohort comprising 1078 PD and 5453 control participants. We characterized each phonation using 15 

304 dysphonia measures to quantify a range of vocal impairments. Given this is a highly unbalanced 16 

problem, we used the following strategy: selected a balanced subset (n=3000 samples) for training 17 

and testing using 10-fold cross-validation (CV), and the remaining (unbalanced held-out dataset, 18 

n=8942) samples for further model validation. Using robust feature selection methods we selected 19 

27 dysphonia measures to present into a radial-basis-function support vector machine and demon- 20 

strated differentiating PD participants from controls with 67.43% sensitivity and 67.25% specificity. 21 

These findings could help pave the way forward towards the development of an inexpensive, re- 22 

mote, and reliable diagnostic support tool for PD using voice as a digital biomarker. 23 

Keywords: Acoustic measures; biomarker; clinical decision support tool; dysphonia measures; Par- 24 

kinson’s disease; sustained vowel phonations; telemonitoring.  25 

 26 

1. Introduction 27 

 28 

Neurological diseases strain health systems and pose a considerable ongoing burden 29 

on healthcare resources. Parkinson’s Disease (PD) has been reported as one of the fastest- 30 

growing neurological disorders in terms of prevalence and deaths [1]. A large global bur- 31 

den of disease study identified PD as one of the top 5 leading causes of death from neu- 32 

rological disorders in the US [2]. It is estimated there were approximately 6.1 million peo- 33 

ple with PD (PwP) globally in 2016 indicating a sharp upward trend compared to 2.5 mil- 34 

lion PwP in 1990 [1].  35 

 36 

Diagnosis of PD requires subjective assessment in-clinic, which incurs logistical 37 

costs. Crucially, consultant neurologists might misdiagnose PD up to around 20% of the 38 

total cases, while the symptom monitoring accuracy is inherently limited from the intra- 39 

and inter-rater variations in the standard clinical scales used to assess PD symptoms se- 40 

verity [3, 4]. Given the current objective constraints and limitations with subjective assess- 41 

ments, there is an urgent and unmet need for developing diagnostic support tools for the 42 

objective detection and monitoring of PD. 43 

 44 
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Parkinson’s disease is a neurodegenerative disease that is characterized by four car- 45 

dinal signs: tremor, bradykinesia, rigor, and postural instability [5]. The vast proportion 46 

of PwP also report speech performance degradation as one of the PD symptoms [6]. It is 47 

due to this reason, that the potential of capitalizing on acoustic analysis of speech signals 48 

to develop PD decision support tools has been pursued vigorously with considerable suc- 49 

cess over the last 10-15 years. Encouragingly, using voice, studies have proposed technol- 50 

ogies based on acoustic analyses to: (1) Differentiate PD from controls [7-10], (2) Monitor 51 

the symptom severity of PD [11-14], (3) Assess voice rehabilitation in PD [15], (4) Identify 52 

at-risk participants (i.e., those with isolated Rapid Eye Movement (REM) sleep Behavior 53 

Disorder as confirmed by a polysomnography test)[16], (4) Identify participants with a 54 

higher genetic predisposition for developing PD (i.e., those with a mutation in the Leu- 55 

cine-Rich Repeat Kinase 2 (LRRK2) gene) [17], and (5) Predict a range of clinical scores that 56 

quantify participants’ motor symptoms, cognition, daytime sleepiness, depression, and 57 

the overall state of health [18]. A limitation of these studies was, however, that they typi- 58 

cally rely on using high-quality voice recordings for the analyses which are collected under 59 

acoustically carefully controlled conditions with high-end specialized equipment.  60 

 61 

Recently, to assess the scalability of voice as a population screening tool for PD, we 62 

undertook the largest PD characterization study employing telephone-quality voice [19], 63 

which we refer to as the Parkinson’s Voice Initiative (PVI) study (Arora et al. 2019). PVI is 64 

the first of its kind large scale study collecting speech data from PwP and control partici- 65 

pants under free-living acoustic conditions. Using sustained vowel phonations (Interna- 66 

tional phonetic alphabet /a:/) collected from participants in 7 countries, [19] sought to dis- 67 

criminate PD participants from controls using phonations collected under non-acousti- 68 

cally controlled conditions  69 

 70 

The use of sustained phonations for quantifying vocal impairment is well established 71 

[20, 21]. However, our understanding of variations in dysphonia measures/sustained pho- 72 

nations from participants with different linguistic backgrounds is still rather limited. His- 73 

torically, the use of sustained vowels has been motivated by the fact that they can be con- 74 

sidered generic (certain vowels such as /a/ are met across different languages) and hence 75 

the processing of sustained vowel phonations overcomes linguistic differences [20]. In 76 

their analyses, Arora et al. (2019) [19] relied on the underlying assumption that sustained 77 

vowel phonations are considered generalizable across people from different linguistic 78 

backgrounds pooling together all the data from PVI. Tsanas and Arora (2021) [22] inves- 79 

tigated the differences in dysphonia measures between UK- and US-English speaking 80 

PwP, and reported that although there is an excellent agreement between classical acous- 81 

tic measures (such as jitter and shimmer), there are pronounced differences in some of the 82 

more advanced acoustic measures between the two cohorts. Given that phonations may 83 

be language-dependent, this prompts the further question of whether acoustic analyses 84 

should be performed separately for participants from different linguistic backgrounds, 85 

along with undertaking cross-cohort comparisons. Therefore, this study is a natural ex- 86 

tension of the work undertaken by Arora et al. (2019) [19], whereby we focus on the strat- 87 

ified analysis of the sustained phonation by using voice recordings from participants from 88 

one linguistic background, specifically, the US-English cohort.  89 

 90 

The paper is organized as follows. Section 2 presents the data, followed by the meth- 91 

odology used for acoustic analysis comprising data pre-processing, feature extraction, fea- 92 

ture selection, classification, and evaluation strategy. Section 3 presents the results, focus- 93 

ing on describing the most salient dysphonia measures that differentiate PwP from con- 94 

trols, along with the out-of-sample classification results. Discussions and directions for 95 

future research are provided in Section 4. Conclusions are provided in Section 5.  96 

2. Data and Methods 97 
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 98 

2.1 Data characteristics 99 

 100 

We processed sustained vowel (/a/) phonations collected as part of the PVI.  The record- 101 

ings were sampled at 8kHz with 16 bits resolution and were collected via telephone digital 102 

audio lines. The participants were instructed to say ‘aaah’ for as long and as steadily as 103 

possible. All calls were non-identifiable, and participants were entirely self-selected. Dur- 104 

ing the call, participants were asked to provide basic demographics (age, gender) and 105 

whether they have received a clinical PD diagnosis. For further details on the data collec- 106 

tion protocol, please see Arora et al. (2019) [19]. As mentioned previously, here we focus 107 

on the cohort where we have the largest participation (US) in the PVI study, and aim to 108 

progressively explore further differences in follow-up work. 109 

 110 

Table 1 presents the data details and participant characteristics of the US PVI-cohort 111 

that is used hereafter. A total of 12675 phonations from 6942 participants were originally 112 

collected. We used an automated algorithm to exclude phonations that had excessive 113 

background noise, erroneous recordings, or otherwise missing information following the 114 

methodology we had previously described [19, 23]. Specifically, 1987 phonations from 115 

1078 PD participants and 9955 phonations from 5453 controls were further processed. 116 

                                              Table 1. Data details and participant characteristics. 117 

Characteristics PD participants Controls 

No. of phonations 1987 9955 

No. of participants 1078 5453 

Age (years) 62.65 (12.03) 49.19 (15.89) 

Male/Female 566/512 2976/2477 

       Note: Age is reported as mean and standard deviation (in brackets) 118 
      119 

 120 

2.2 Dysphonia measures 121 

 122 

We acoustically characterized each sustained vowel /a/ phonation using speech sig- 123 

nal processing algorithms to extract 304 dysphonia measures. These dysphonia measures 124 

have been developed specifically to characterize sustained vowel /a/ phonations in the 125 

context of PD voice assessment, quantifying physiological patterns including deviation 126 

from vocal fold periodicity (jitter and shimmer variants), acoustic/turbulent noise, and 127 

articulator placement. For the rationale, background and detailed algorithmic expressions 128 

for the computation of the dysphonia measures we refer interested readers to our previ- 129 

ous work [12, 21, 24, 25]. The MATLAB source code for the computation of the dysphonia 130 

measures is freely from the last author’s website: https://www.darth-group.com/software. 131 

For completeness, we succinctly summarize these algorithms in Table 2 categorized in 132 

algorithmic families along with a brief description.  133 

 134 

The fundamental frequency (F0) is a critical component in speech signal analysis and 135 

is often used as a pre-processing step for many of the dysphonia measures such as jitter 136 

[20, 21]. Strictly speaking, F0 is only defined for strictly periodic signals. In practical 137 

speech signal processing, we use the concept of F0 to refer to the vibrating pattern of the 138 

vocal folds in the short term and typically compute the F0 contour in short pre-specific 139 

segments (typically every 10 msec) [12, 26, 27]. This is therefore a practically applicable 140 

approach even in speech signals which are not periodic [12, 26]. Here, we computed F0 141 

https://www.darth-group.com/software
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using the Sawtooth Waveform Inspired Pitch Estimator (SWIPE) algorithm [28]  which we 142 

had previously reported is one the most accurate F0 estimators in the context of sustained 143 

vowels [29]. We clarify that we processed only the most stationary 2-second signal seg- 144 

ment from each phonation, which was determined by identifying the least fluctuating 2- 145 

second continuous F0 contour segment (in 10 msec steps) as determined using SWIPE: 146 

this circumvents problems with highly fluctuating signals. Applying the speech signal 147 

processing algorithms gave rise to a 11,942×304 feature matrix that was subsequently pro- 148 

cessed to map onto the binary outcome (0 was used to denote controls and 1 to denote 149 

PwP). 150 

 151 

 152 

Table 2: Breakdown of the dysphonia measures used in the study 153 

Family of acoustic measures Brief description 
Number of 

measures 

Jitter variants F0 perturbation  28 

Shimmer variants Amplitude perturbation 21 

Harmonics to Noise Ratio (HNR) 

and Noise to Harmonics Ratio 

(NHR) 

Signal to noise, and noise to signal ratios computed using 

standard approaches relying on autocorrelation 4 

Glottis Quotient (GQ) Vocal fold cycle duration changes 3 

Glottal to Noise Excitation (GNE) Extent of noise in speech using energy and nonlinear 

energy concepts 
6 

Vocal Fold Excitation Ratio 

(VFER) 

Extent of noise in speech using energy, nonlinear energy, 

and entropy concepts 
9 

Empirical Mode Decomposition 

Excitation Ratio (EMD-ER) 

Signal to noise ratios using EMD-based energy, nonlinear 

energy, and entropy 
6 

Mel Frequency Cepstral 

Coefficients (MFCC) 

Amplitude and spectral fluctuations on the Mel scale 

quantifying envelope and high frequency aspects 
39 

F0 related Comparisons of F0 against age and gender matched 

controls, inclduing probabilistic variabilities 
3 

Wavelet-based coefficients Amplitude, scale, and envelope fluctuations quantified 

using wavelet coefficients 
182 

Pitch Period Entropy (PPE) Variability of F0 expressing inefficiency of F0 stability 

over and above controls 
1 

Detrended Fluctuation Analysis 

(DFA) 

Stochastic self-similarity of turbulent noise 
1 

Recurrence Period Density 

Entropy (RPDE) 

Uncertainty in estimation of F0 
1 

Algorithmic expressions for the dysphonia measures summarized above are described in detail in [12, 21, 24, 25] 154 
. The MATLAB source code for the computation of the dysphonia measures is freely available from the last 155 
author’s group website: https://www.darth-group.com/software. F0 refers to fundamental frequency estimates, 156 
here computed using SWIPE [28]. 157 
 158 

 159 

 160 

2.3 Dimensionality reduction using feature selection and feature transformation 161 

 162 

High dimensional datasets often lead to well-known problems broadly known as the 163 

curse of dimensionality. In short, the presence of a large number of noisy and redundant 164 

features may affect the predictive performance of the statistical learning algorithm [30]. 165 

To address this problem, traditionally feature selection or feature transformation ap- 166 

proaches are used, aiming to reduce the dimensionality of the dataset before presenting it 167 

https://www.darth-group.com/software
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to the statistical learner. We indicatively used three feature selection methods and one 168 

feature transformation method to explore different approaches to the problem of optimiz- 169 

ing the out of sample performance of the subsequent statistical learner. Specifically, we 170 

applied the following feature selection methods: (1) GSO [31], (2) RELIEF [32], and SIMBA 171 

[33]. Each of those feature selection methods provides a ranking of the features. In each 172 

case, we used the feature selection voting strategy we had previously introduced [10, 15] 173 

to robustly determine the final feature subset for each feature selection algorithm. In all 174 

cases, we restricted the search to the top-30 features selected using each algorithm. Finally, 175 

we explored feature transformation using standard principal component analysis (we ex- 176 

tracted the first 30 principal components). 177 

 178 

2.4 Statistical Mapping 179 

 180 

 We have used three state-of-the-art statistical mapping algorithms: (1) Random For- 181 

ests (RF) [34], (2) Support Vector Machines (SVM) [35], (3) Adaptive Boosting (AdaBoost) 182 

[36] to tackle the binary differentiation problem in the study. We chose these methods as 183 

they are commonly used off-the-shelf classifiers that have been shown to be accurate in 184 

diverse supervised learning problems and in particular in a similar context differentiating 185 

PwP from controls using voice [18, 19, 25]. For the RF we explored optimizing perfor- 186 

mance using Breiman’s recommendation with half and twice the default recommended 187 

number of features over which to select features for each node, and explored findings 188 

using 500 trees and 1000 trees. For the SVM we used the LIBSVM implementation with a 189 

MATLAB wrapper  [37] and followed the suggestions of the developers of that implemen- 190 

tation for optimizing hyper-parameters [38]: we linearly scaled each of the features to lie 191 

in the range [-1, 1], and used a Gaussian, radial basis function kernel. We clarify that for 192 

the scaling of the features in both the training and the testing subsets only the information 193 

from the training subset was used. The penalty parameter C and the kernel bandwidth w 194 

were determined using a standard grid search (C, w) defined by the product of the sets 195 

𝐶 = [2−5, 2−13, … , 215], and 𝑤 = [2−15, 2−13, … , 23]. The optimal parameter pair  (𝐶, 𝑤) was 196 

determined using the highest balanced accuracy. For the Adaboost, the learning rate hy- 197 

per-parameter was optimized in the range 0.01 to 0.5 (we searched the following possible 198 

values: 0.01, 0.03, 0.05, 0.1, 0.3, 0.5) and the number of trees used as weak base learners of 199 

the boosted classifier was set to 1000. We refer to the original papers and Hastie et al. [30] 200 

for an authoritative description of the methods and further details on parameter fine-tun- 201 

ing and optimization.  202 

 203 

Given the dataset is highly unbalanced (9955/11942 samples are from controls and 204 

1987/11642 samples from PwP, i.e. >80% samples in the dominant class) and this setting is 205 

known to be particularly challenging for statistical learning models [39], we wanted to 206 

explore a different strategy to mitigate potential problems due to a class dominating the 207 

performance of the classifiers. The strategy we followed for training and testing the model 208 

comprises two steps.  209 

 210 

In the first step, we randomly selected 1500 samples from PwP and 1500 samples 211 

from controls to create a balanced binary classification dataset (n=3000 samples) which we 212 

will use to train, explore, optimize, and validate the classifiers used using a standard 10- 213 

fold with 100 iterations model validation approach, following the standard methodology 214 

we had previously used in similar applications in this field [10, 12, 18]. The aim is to use 215 

this first step to decide on the final model, by optimizing and setting any hyper-parame- 216 

ters so that it can be finalized and used externally in new datasets. We clarify that the 217 

feature selection and feature transformation approaches were applied using only the bal- 218 

anced dataset. We report performance on the out-of-sample CV data. The second step is 219 

used as a final model validation assessment where we have used the remaining data that 220 

has not been already used in step 1. In this case, we have an unbalanced dataset with the 221 
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remaining samples (8942 samples, 8455 recordings from controls and 487 recordings from 222 

PwP). This is used to provide further evidence of the model generalization performance 223 

with samples that have not been used for any of the preceding steps with feature selec- 224 

tion/transformation and statistical mapping.  225 

 226 

Throughout we report performance in terms of the accuracy, along with sensitivity 227 

and specificity. In the final model validation step, we provide the full confusion matrix to 228 

facilitate understanding of the classifier’s output. The full methodology of the study is con- 229 

cisely summarized in Figure 1. 230 

 231 

 232 

Figure 1. Schematic diagram showing the different stages of this study. Specifically: (Step 1) 233 
data collection: sustained phonations were collected over a standard telephone line network; 234 
(Step 2) feature extraction: 304 dysphonia measures were extracted from each phonation to 235 
characterize voice impairment; (Step 3) feature selection: using a balanced dataset (n=1500 PwP 236 
and 1500 control participants), the feature matrix was split into non-overlapping training and 237 
test data using a 10-fold cross-validation scheme, and three feature selection techniques (GSO, 238 
RELIEF, and SIMBA) were employed for identifying the most salient features on the training 239 
data; (Step 4) classification: the most salient subset of features were mapped onto clinical as- 240 
sessment (PD/Control) using binary classifiers (SVMs, Adaboost, and Random Forests). The 241 
final classification step was on the test data held out as part of the CV; subsequently, once we 242 
decided on the final statistical learning model, the trained classifier was also presented with the 243 
held-out dataset (8942 samples) as an additional performance assessment approach. 244 

3. Results 245 

Figure 2 illustrates the performance (balanced accuracy) of the model as a function 246 

of the features presented into SVM in the standard 10-fold CV setup. Table 3 summarizes 247 
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the different performance measures for the three classifiers considered in this study for 248 

completeness. The performance was evaluated using only the test data, using a 10-fold 249 

CV scheme with 100 iterations. We remark that 27 features with an SVM led to a balanced 250 

accuracy of about 67.3% (sensitivity: 67.43%, specificity: 67.25%). Therefore, we selected 251 

this trained model with the 27 features to test further how well findings generalize on the 252 

out of sample (held-out) unbalanced dataset. The resulting confusion matrix for the un- 253 

balanced held-out dataset (n=8942 samples) is provided in Figure 3 (balanced accuracy 254 

66.3%). 255 

 256 

Figure 2. Balanced accuracy as a function of the number of features presented into the three 257 
binary classifiers for the validation dataset comprising 3000 samples (1500 controls and 1500 258 
PwP). The bars denote the standard deviation around the quoted mean score. The features pre- 259 
sented into the classifiers were selected using SIMBA. 260 

Table 3. Out-of-sample performance measures for the three classifiers (SVM, Adaboost, and 261 
Random Forests) using 10-fold CV with 100 iterations on the balanced dataset (n=3000 samples). 262 

Classifier 
# of optimal 

features 
Sensitivity Specificity 

Balanced 

accuracy 

SVM 27 67.43% 67.25% 67.34% 

Random Forests 27 66.38% 66.20% 66.29% 

Adaboost 27 63.11% 63.60% 63.36% 

Note: highest scores are highlighted in bold.  263 
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 264 

Figure 3. Confusion matrix denoting performance on the held-out unbalanced dataset (n=8942 265 
samples) when using the best performing model selected from the results presented in Fig. 2 266 
(SVM with 27 features selected using SIMBA). 267 

The results in Fig. 3 suggest that we can indeed correctly identify the vast majority of 268 

PwP in the held-out (unbalanced) dataset, and hence this supports the presented method- 269 

ology as a potentially useful biomarker that could be further explored. 270 

 271 

4.  Discussion  272 

We investigated the potential of differentiating PwP and controls using telephone- 273 

recorded speech collected under acoustically non-controlled conditions exploring differ- 274 

ent statistical machine learning techniques and strategies. This study is part of our wider 275 

goal to explore whether we can develop a PD screening tool that is readily accessible, 276 

accurate, ideally free-of-charge, and is the underlying reason we set up the PVI study 277 

where data for this study were drawn from. We demonstrated 67.34% balanced accuracy 278 

using 27 acoustic features presented into an SVM with a standard 10-fold CV approach. 279 

This finding was further verified on an additional out of sample unbalanced dataset where 280 

we found a balanced accuracy of 66.3% (sensitivity: 65.09%, specificity: 67.49%). Overall, 281 

this is very similar performance to what we had previously reported in Arora et al. (2019) 282 

(66.4% balanced accuracy), however this has now been achieved using 27 acoustic features 283 

compared to the need to include 100 features that we had reported in the afore-mentioned 284 

study and hence is a more parsimonious result. 285 

 286 

Compared to our previous exploration of the PVI dataset to differentiating PwP from 287 

controls, here we had used only the US cohort. This was motivated by some of our earlier 288 

investigations that some of the feature distributions are different across the PVI cohorts 289 

[22], which suggests we should carefully consider stratifying the PVI data and investigat- 290 

ing cohorts independently. We aim to explore transfer learning approaches [40] to account 291 
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for covariate shifting between the different datasets in the PVI study (given data has been 292 

collected across 7 countries and participants between countries may come from different 293 

linguistic backgrounds e.g. English or Spanish). 294 

 295 

Placing the results in the wider context in the research literature, this study’s findings 296 

are very modest given we had previously reported more than 98% binary differentiation 297 

between PwP and controls using a similar protocol to collect sustained vowel /a/ phona- 298 

tions [10]. Similarly, other research groups had reported accuracies around and over 90% 299 

in this binary differentiation application, indicatively [8, 41]. However, we stress that pre- 300 

vious work had focused on collecting data under carefully controlled acoustic conditions 301 

(e.g. sound-treated booths, using high-quality standardized microphones [10, 15]), 302 

whereas in the PVI participants self-enrolled using their own devices which have different 303 

specifications in terms of microphone quality and frequency attenuation characteristics, 304 

at their own environments which typically had some background noise, whilst using dif- 305 

ferent telephone networks. Moreover, unlike most research studies, participants in the 306 

PVI were not screened or clinically assessed for study enrollment and thus we cannot rule 307 

out the presence of clinical-pathologic differences in voice within this cohort. Collectively, 308 

all these ‘degrees of freedom’ lead to lower quality data and therefore it is expected there 309 

will be considerable performance degradation. For example, some of the most successful 310 

nonlinear dysphonia measures in this application rely on the use of high frequencies (2.5- 311 

10 KHz) to compute the ‘noise’ component in the recorded signal, see [10] for details. 312 

Given that the sampling rate in PVI is 8 kHz (and hence the useful recorded information 313 

is up to 4 kHz according to the Nyquist sampling theorem), this constrains extracting clin- 314 

ically informative features.  315 

 316 

Speech impairment is commonly associated with Parkinson’s [40] and is character- 317 

ized by pitch monotonicity, variable rate, imprecise consonants, and breathiness and 318 

harshness. As opposed to other types of speech signals that are often used in clinical as- 319 

sessments, such as running speech and reading loud a linguistically rich prespecified text 320 

e.g. the Grandfather Passage [20], the use of sustained phonations helps circumvent chal- 321 

lenges associated with different accents and linguistic confounds [20]. For example, our 322 

previous work has shown that sustained phonations can provide high accuracy in differ- 323 

entiating PwP from controls [10], along with other interesting insights in the speech-PD 324 

literature including replicating PD symptom severity and assisting PD rehabilitation [10, 325 

12, 18, 21]. We emphasize also that the methodology adopted in this study for processing 326 

sustained vowels had previously also been generalized to analyze different types of 327 

speech, e.g. voice fillers [42], and to provide useful insights more widely in different bio- 328 

medical speech signal processing applications [43]. Therefore, the use of sustained vowels 329 

is strongly motivated and has been practically vindicated. A further practical considera- 330 

tion is that this study draws data from PVI, where data was collected across 7 countries 331 

with participants coming from different linguistic backgrounds [19]. One of the aims of 332 

PVI was to provide cross-linguistic comparisons for the assessment of PD within a short 333 

time span of speech samples from a large, self-selected population group. Therefore, for 334 

practical reasons and to minimize participant burden, we had decided in PVI to collect 335 

exclusively sustained vowels. It is due to these reasons that the focus of this study was on 336 

analyzing sustained phonations. Nevertheless, we remark that the use of alternative 337 

speech types, e.g. running speech, might be accommodating additional acoustic infor- 338 

mation which is not captured in sustained vowels (although we stress that the argument 339 

goes both ways, the use of sustained vowels may capture information not accounted in 340 

running speech). An interesting line of future work would be to evaluate the efficacy of 341 

telephone-quality sustained phonations in conjunction with running speech to develop 342 

screening tools for PD. 343 

 344 
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The participants for this study were entirely self-selected, where they were prompted 345 

to answer the question – ‘Do you have Parkinson’s disease?’ and their response was 346 

treated as the gold standard (or label) for statistical mapping. In the absence of detailed 347 

clinical assessments, we cannot rule out clinical-pathologic differences in voice within this 348 

cohort, which could be one of the factors contributing to the relatively low discrimination 349 

accuracy reported in this study. It is worth noting that diagnosis/monitoring of PD re- 350 

quires in-person subjective assessment, typically by a trained neurologist, which can incur 351 

substantial logistical costs in resource-constrained and remote settings.  Thus, we deemed 352 

it necessary to include only self-reported symptoms. Specifically, the data collection pro- 353 

tocol of PVI was designed with the objective to develop a population-based screening (and 354 

not monitoring) tool for PD, which would have the potential to transform current prac- 355 

tices by reducing logistical costs associated with in-person clinical assessments, while ex- 356 

ploring alternate routes to recruiting participants for clinical trials. 357 

 358 

This study builds on our previous work on PVI [19] and acoustic analysis [10, 12, 14, 359 

21] to almost completely automate the data processing pipeline. In principle, it may be 360 

useful to apply auditory-perceptual analysis relying on human expertise to analyze the 361 

data and potentially identify problems, e.g. highly aperiodic/too noisy signals, and also to 362 

perceptually characterize the signals (producing additional features). This is indeed often 363 

done in studies with a low number of speech samples with speech signals of different 364 

nature (e.g. running speech, counting days, reading pre-specified linguistically rich text 365 

etc.). Auditory-perceptual analysis is not commonly used when processing sustained 366 

vowels, at least in the biomedical speech signal processing literature. Moreover, auditory- 367 

perceptual analysis would be practically very challenging and costly for the size of the 368 

available data in PVI. Instead, developing automated pattern recognition tools combined 369 

with statistical machine learning offers a replicable, objective, automated, and directly 370 

scalable approach. This has enabled us to automatically determine, for example, highly 371 

aperiodic and noisy signals which were discarded from further analysis (for details on the 372 

algorithm see our previous work [19]). 373 

 374 

We explored three different feature selection methods and standard feature transfor- 375 

mation using PCA to reduce the dimensionality of the dataset. The transformed features 376 

using PCA led to consistently worse results and hence these results are not presented in 377 

the paper due to space constraints. The three feature selection algorithms led to quite dif- 378 

ferent feature subsets (results not shown), and SIMBA along with SVM provided a some- 379 

what better overall performance in the balanced dataset where we applied the standard 380 

CV approach. Therefore, we reported in Figure 2 the performance of classifiers as a func- 381 

tion of the number of features progressively selected by SIMBA. 382 

 383 

SVMs and RF worked considerably better than Adaboost in this application (see Fig- 384 

ure 2). In our experience on this and related PD problems using classification tools, we 385 

have observed that generally bagging approaches tend to outperform boosting ap- 386 

proaches, although we do not have a theoretical justification for this finding. SVMs led to 387 

the best overall result, which is broadly in agreement with our empirical observation in 388 

related studies in Parkinson’s applications: we have previously reported SVMs slightly 389 

outperform RF in binary classification problems, whereas RF generally leads to better out- 390 

comes in multiclass classification problems [21]. Again, this should be cautiously consid- 391 

ered on the basis of our experience in related applications, and we make no further claims 392 

on generalizability of this finding. We remark that the choice of the three classifiers used 393 

here is indicative of some commonly used methods, there are many alternative classifiers 394 

that could be explored. For example, an interesting line of further research work would 395 

be to provide a comparison of different classification methods, including deep learning. 396 

Moreover, it would be worth exploring different classifiers in further detail in conjunction 397 

with different class balancing schemes and model validation strategies.  398 
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 399 

There are different model validation strategies that could be explored and here it is 400 

particularly important because of the highly unbalanced nature of the dataset.  In princi- 401 

ple, when having a single dataset it is useful to perform CV (e.g. 5-fold or 10-fold CV, 402 

along with additional iterations for statistical confidence) rather than leaving a single por- 403 

tion of the data out for testing (‘the testing dataset’). This is because often we want to 404 

assess the model’s robustness with perturbed training/test data, also assessing variability 405 

in performance across folds (and iterations) to provide an estimate of the generalization 406 

performance including a confidence interval. However, the highly unbalanced nature of 407 

the problem given the available dataset in this study poses considerable challenges using 408 

a standard CV approach. Therefore, we decided on a strategy where we used both model 409 

validation approaches: retaining a completely separate subset of the data for testing at the 410 

very end, and using a balanced subset with 3000 randomly selected samples (which over- 411 

comes problems with highly unbalanced data) for a standard training/testing scenario us- 412 

ing 10-fold CV. This enables us both to assess the model’s performance in a ‘classifier- 413 

friendly’ binary classification setting with a balanced dataset where we can also provide 414 

a confidence interval on the estimates (see Fig. 2) and also test the model’s performance 415 

on an additional unbalanced subset (see Fig. 3). 416 

 417 

We remark that the developed SVM model was further validated on an unbalanced 418 

‘held-out’ dataset (see Figure 3), where we observe that most PwP were correctly detected. 419 

The false positives rate is still fairly high and there is ample space for improving these 420 

results further before it can be meaningfully used as an accurate clinical decision support 421 

tool. Nonetheless, the findings in Figure 3 highlight this freely accessible tool towards 422 

screening for PD might be a useful direction and could be complemented with additional 423 

modalities (e.g. smell [44], smartphone-based tests [11, 16, 18]) to form a more accurate 424 

practical tool that people could periodically use for mobile check-up and potentially facil- 425 

itate referrals for specialized physical neurological assessment. 426 

 427 

This study has some key limitations primarily regarding the quality of the speech 428 

dataset. The standard recommendation of the speech community is that speech signals 429 

should be sampled with at least 20KHz sampling frequency for clinical applications be- 430 

cause there is useful information in the higher frequencies of the spectrum [20]. Also, the 431 

data in PVI was collected under acoustically non-controlled conditions, which has a clear 432 

degradation effect on the data quality of the recorded speech signals. Nevertheless, some 433 

exploratory recent work has demonstrated that sustained vowels /a/ transmitted over the 434 

simulated standard telephone network (following the typical digital communications pro- 435 

cess with down-sampling to 8KHz, encoding, transmitting through a noisy channel and 436 

decoding) demonstrated that the reduction in voice quality was not prohibitive for repli- 437 

cating the standard PD symptom severity metric [14]. Therefore, there is some justification 438 

that the reduced sampling rate used in PVI (8KHz) would still be useful information to be 439 

extracted from the sub-optimally recorded data. In principle, a study could be designed 440 

these days where people could collect speech samples on a high-end smartphone (which 441 

use high-quality microphones) and captured using a dedicated smartphone app at the 442 

recommended sample rate. However, that would require people to have access to high- 443 

end expensive equipment, and thus such a solution would not be widely available. In- 444 

stead, PVI was conceptualized as an approach to democratize access to a potentially useful 445 

PD screening tool that could be accessible to all at practically no cost. We maintain that if 446 

we want to scale up work and deliver responsible innovative solutions to make a mean- 447 

ingful difference in practice with a largely accessible tool, there are some compromises we 448 

will likely need to make when collecting data in a practical setting so that it would be as 449 

accessible as possible by those who would like to use it. 450 

 451 

 452 
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5.  Conclusions  453 

 454 

This study further supports the concept of exploring telephone-quality speech to- 455 

wards developing a screening tool to assess PD with an easy-to-use test relying solely on 456 

the use of the sustained vowel /a/. Our findings have important implications towards de- 457 

mocratizing access to a useful, generalizable, and robust PD tool at practically no cost, 458 

which can be easily used remotely and at scale with any telephone device. This study is a 459 

part of the broader work that increasingly members of the research community focus on 460 

towards developing diagnostic decision support tools in PD which can be adopted at 461 

scale. In time, this approach could be expanded to facilitate early diagnosis both for PD 462 

and potentially other related conditions. We envisage this tool may be widely applied to 463 

provide early probabilistic indication of PD particularly for groups at-risk, potentially fa- 464 

cilitating early PD diagnosis which in turn can lead to better longitudinal symptom man- 465 

agement. 466 

 467 
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